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Abstract 

Although many diseases have been well characterized at the molecular level, the underlying 

mechanisms often remain unclear. This may be attributed to the large number of genes for 

which it remains unknown in which biological processes and diseases they play a role. Genes 

involved in the same biological processes and diseases are often co-expressed, which 

information can be used to predict the biological process a poorly annotated gene likely plays 

its primary role in. With this purpose, we constructed a co-expression network from a large 

number of microarray and RNA-seq samples. We conclude that co-expression analysis can be 

used to postulate the functions of both coding and non-coding genes. Additionally, it can be 

used to predict diseases they likely play an important role in. It is also shown that gene-

function predictions based on a co-expression network that is constructed on a transcript 

rather than gene level can differentiate between different functions of transcripts originating 

from the same gene. We have created an online resource, GeneFriends, the first online 

resource that utilizes a co-expression network constructed from RNA-seq data, also allowing 

users to query for co-expression at the transcript rather than gene level. This allows 

researchers to identify and prioritize novel candidate genes and transcripts involved in 

biological processes and complex diseases. This is a valuable resource to the research 

community as supported by usage of GeneFriends in a number of independent publications. 

GeneFriends is available online at: http://GeneFriends.org/. 

To validate the ability of our tool to identify genes that are relevant to diseases, we tested 

GeneFriends by conducting a co-expression analysis with seed lists for aging, cancer, and 

mitochondrial complex I disease. We identified several candidate genes that have previously 

been predicted as relevant targets for each of these diseases. Some of the identified genes 

http://genefriends.org/
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were already being tested in clinical trials supporting the effectiveness of this approach. 

Furthermore, two of the novel candidates of unknown function that were identified by 

GeneFriends as co-expressed with cancer genes were selected for experimental validation. 

Knock-down of the human homologs (C1ORF112 and C12ORF48) of these two candidate genes 

in HeLa cells slowed proliferation suggesting that these genes indeed play a role in cancer 

growth.  

Co-expression analyses often lead to large lists of gene-disease associations without a clear 

indication which genes are most relevant for follow up studies. To select such relevant genes, 

those that are important nodes in a co-expression network are often identified under the 

notion that these are of higher biological relevance than the others. To validate if this method 

selects the most relevant genes for aging, we conduct a co-expression analysis on a rat thymus 

dataset and identified transcription factors that are important network nodes. Whilst 

literature supports that some of these transcription factors may be important regulators of the 

aging process, this method can also miss some of the most interesting intervention targets. 

Lastly, in a rat brain aging RNA-seq dataset, generated in our lab, we tested if we could identify 

co-expression modules for which the expression correlates with aging and investigate if we can 

identify dietary interventions that potentially affected this correlation. Although modules were 

identified that correlated with aging, no significant effect of the dietary interventions for any 

of these modules was detected. Additionally, this dataset contained detailed information 

about the expression of microRNAs in addition to the whole transcriptome data. This was 

utilized to investigate if expression of microRNAs and their targets are negatively correlated, 

which we did not observe.   
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 Introduction 

The number of identified genes has tripled over the last few years. Even though most of these 

new genes do not encode proteins they can play an important role in gene regulation and 

disease. For most of these non-coding genes no information is available about their function. 

Genome wide analyses, such as RNA sequencing (RNA-seq) experiments or genome 

sequencing project, may find such genes differentially expressed or mutated. The lack of 

annotation makes interpretation of any results including such genes difficult. Function 

predictions for such genes facilitate the interpretation of such results and the design for 

potential follow-up studies.  

The functions of many genes are still not completely understood, an issue that has vastly 

expanded with the recent identification of many novel non-coding genes [1]. For decades, 

studying individual genes and their products has provided a wealth of knowledge about the 

functions and regulatory mechanisms of a wide range of genes [2]. However, it is clear that 

this reductionist method is inappropriate to fully understand gene functions and regulation of 

whole systems. Therefore, scientists have favored the development of high-throughput 

technologies and data-analysis methods to identify the functional and regulatory status of a 

gene from a systematic perspective [3]. One of these methods is co-expression network 

analysis, an approach that emerged shortly after the introduction of microarrays to assess 

genome-wide gene expression. Gene co-expression networks can be used for multiple 

purposes among which candidate gene prioritization and functional annotation. 

Gene co-expression networks can be used to predict in which biological processes a gene likely 

plays its primary role [4-6], to prioritize candidate disease genes [4, 7-20]  or to discern 

transcriptional regulatory programs [21]. New gene- or disease-function associations in this 
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thesis are defined as the function or disease annotation of the top 5 percentile co-expression 

partners of a particular gene being enriched for a particular function or disease based on well-

defined annotations such as GO for function predictions and OMIM for disease gene 

predictions. The expectation is that a gene plays its most prominent role in the biological 

processes or diseases for which the enrichment is found. With recent advances in 

transcriptomics, co-expression networks constructed from RNA-seq data should also enable 

the inference of functions and disease associations for non-coding genes and splice variants, 

which is the main aim of this thesis. Previous studies have already shown that this is possible 

for coding RNAs, which we review in this chapter. We discuss different types of co-expression 

networks, metrics and how co-expression can be used to identify regulators of a network. 

Lastly, we discuss some of the advantages and controversies associated with co-expression 

methods. 

 Microarrays and RNA-seq data for co-expression analysis 
Co-expression information is obtained from large numbers of gene expression snapshots, such 

as microarray or RNA-seq data from humans and model systems. These platforms describe the 

activity/expression of each individual gene at a given time point and when many are combined 

in a co-expression analysis, create a picture of which genes have a tendency to be co-activated. 

This picture then represents a co-expression network. Since expression data is a prerequisite to 

co-expression analysis it is not surprising that this type of analysis emerged after the rapid 

evolution of microarrays in the beginning of this millennium. The rapid growth of expression 

data has allowed researchers to combine data from different experiments for co-expression 

network analyses. Different approaches for co-expression analyses were suggested to identify 

gene functions and causative relationships with important phenotypic parameters [22], soon 
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after followed by the first co-expression network analyses. To date co-expression analyses has 

facilitated functional classification of genes [16, 23, 24] as well as identification of genes 

associated to diseases [8-20] using a Guilt-By Association (GBA) approach, described in Section 

1.5. Furthermore, co-expression network analysis has allowed researchers to separate driver 

from passenger genes, helping prioritize targets for intervention studies [25-28]. Recent 

developments have allowed co-expression to give more detailed insights into genetic variation 

that is causative to diseases, which help understanding the mechanisms underlying the diseases 

and aid the design of intervention studies [5]. 

1.1.1. Non-coding RNAs: Definition, functions and mechanisms 

Co-expression analyses have, up to now, focused on coding genes, due to the limited ability of 

microarrays to measure expression of non-coding RNAs (ncRNAs). As the name indicates these 

ncRNAs do not encode proteins, yet many of them are thought to have regulatory roles [29] 

and to play a role in disease [30, 31]. Unfortunately for most no information is available about 

the biological process they most likely play a role in, an issue we aim to tackle in this thesis 

using co-expression analysis. Not all mechanisms through which ncRNAs exert their regulatory 

role are clear yet, but it is known they can epigenetically modify the DNA by recruiting 

chromatin remodeling complexes to specific loci [32, 33] or recruit transcription factors 

directly. Conversely they can bind to promotors to prevent transcription initiation.  

Additionally, they can modify proteins post transcriptionally by preventing splicing events from 

occurring through various mechanisms. These mechanisms and more are more elaborately 

discussed in [34]. There are different subclasses of ncRNAs, such as long non-coding RNAs 

(lncRNA), microRNAs (miRNA), antisense RNAs, small nuclear RNAs (snRNAs) and small 

nucleolar RNAs (snoRNAs). LncRNA are those ncRNAs longer than 200 basepairs. LncRNAs are 

essential in many physiological processes, such as X-inactivation specific transcript (Xist), which 
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is important for X-chromosome inactivation in mammals [35]. Xist was used in this thesis to 

validate our method. MicroRNAs and antisense RNAs are RNAs that function by binding to 

mature RNAs of their target genes to degrade these in conjunction with a RNA-induced 

silencing complex (RISC) complex [36, 37] or simply inhibit their expression effectively 

downregulating the target gene. SnRNAs and snoRNAs are small RNAs (<50bp) that guide the 

chemical modifications of other RNAs, such as methylation, and can play a role in splicing [38, 

39]. A more detailed distinction between ncRNA types is described in [40] table 1. Although 

many ncRNAs have been identified it remains unclear how many are functional. GeneFriends 

helps researchers identify the co-expression partners of such genes and which functions these 

are enriched for, if any. If there are no such functions we argue it suggests these are less likely 

to be functional ncRNAs. 

Although co-expression networks can be constructed from both microarrays and RNA-seq 

data, a major benefit of RNA-seq is that it quantifies the expression of the over 70,000 ncRNAs 

not usually measured with microarrays [1], including many recently annotated lncRNAs. 

Microarrays nowadays also include probes for ncRNAs, but the number of ncRNAs that is 

discovered is rapidly expanding and therefore these arrays become quickly outdated. It is also 

possible to use data from tiling arrays [41], which also measure gene expression of ncRNAs. A 

study comparing tiling data and RNA-seq data reports that RNA-seq data is more reliable, 

having a higher dynamic range if more than 4 million reads are sequenced, and should be used 

as a gold standard [42]. In our work we only use samples in which more than 10 million reads 

were sequenced and results obtained from these samples are thus likely of higher quality than 

those that would be obtained from tiling arrays. We also are under the impression that RNA-

seq will in the future be more commonly used than microarrays and tiling arrays adding more 
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power of our future analyses than these two alternatives would. For these reasons we have 

used RNA-seq data for the identification of co-expression of ncRNAs with coding genes. 

When RNA-seq experiments are performed, one of the library preparation steps that is often 

used is a ribosomal depletion step. This is used to remove the highly abundant ribosomal RNA, 

which is not of interest. This step achieves its goal by removing short RNAs. However, this also 

means other short RNAs are removed, such as miRNAs [43]. Thus, to effectively measure the 

expression of miRNAs, a different protocol should be used, which is not the case for most of 

the experiments we used to construct our co-expression network. The undetected miRNAs are 

excluded from our database and analyses conducted in Chapter 3. To assess whether co-

expression can be used to detect targets of miRNAs on a genome wide scale, we conducted a 

separate analysis on an in-house generated rat brain aging dataset. In this dataset miRNAs 

were isolated using a protocol specifically tailored to this purpose (Chapter 4). 

Apart from its increased accuracy when measuring low-abundance transcripts [14], RNA-seq 

also has other benefits [44]. It distinguishes expression profiles of closely-related paralogues 

better than microarray-derived profiles [45]. RNA-seq can also distinguish between the 

expression of different splice variants [46, 47], which can have distinct interaction partners 

[48] and biological functions [49]. This utility was used in Chapter 3 to construct a transcript 

level co-expression network. Co-expression analysis on RNA-seq data can assign putative roles 

to different splice variants and lncRNAs [50], and identify diseases in which they might play a 

part [50].  

 From sample to gene expression 
To determine expression levels using microarrays many well established tools are available. 

Microarrays contain many microscopic spots, each containing probes that are specific for a 
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gene. Messenger RNAs (mRNAs) of genes are commonly labeled/dyed with a fluorescent label 

and will bind to the probes with their complementary sequence (provided the gene is 

expressed).  Each microscopic spot can then be read out by a machine that translates the 

amount of label in the well to a signal representing the expression of the gene for which this 

spot contains specific probes. [51] 

RNA-seq relies on a different strategy to determine the expression of genes. It revolves around 

the sequencing of the mRNAs present in a sample. Prior to the sequencing, a complementary 

DNA (cDNA) library is created and amplified to increase the abundance of each mRNA. This is 

then fragmented and for each fragment a short region is sequenced. This can either be done 

single end (only sequencing one end of the fragment) or paired end (sequencing both ends), 

the latter allowing more accurate mapping of the reads [52]. The reads are typically mapped to 

the respective genome and the number of reads per gene are counted. These counts then 

represent the expression level of the gene. We have computed a list of tools that can be used 

by readers that are interested in conducting co-expression analysis with RNA-seq data (Table 

1.1), most of which are discussed in the sections below. 
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Tool/method Description 
Quality control 
FastQC (see further 
information) 

A tool that can be used both with and without a user interface. Uses 
.fastq .bam or .sam files to identify and highlight potential issues in the 
data, such as low base quality scores, low sequence quality, GC content 
biases. 

Mappers   
Kallisto [53] A tool that uses a pseudo-alignment strategy to assigns expression 

values to transcripts/genes, to achieve optimal speed whilst 
maintaining comparable accuracy to other tools. Limitation is that it 
maps to a transcriptome/gene annotation file and does identify new 
genes that are not annotated in this file. Uses little memory and can be 
run on a regular desktop computer. 

Salmon [54] Another pseudo-alignment tool that performs comparably to Kallisto. 
STAR [55] A read aligner that maps reads to a genome. Detects splice variants and 

novel genes. An example shows that this tool maps approximately 50 
times faster than Tophat and Tophat2. The tool uses a large amount of 
memory (approximately 27 GB when mapping to the human genome). 

HISAT [56] A read aligner that maps reads with slightly faster speed with 
comparable accuracy [57]. The newer HISAT2 version aligns to 
genotype variants which will likely result in a higher accuracy. HISAT2 
will be the core of the next version of Tophat (Tophat3). 

Bowtie/Tophat/Tophat2 [58] The first widely used mapping tool. Detects splice variants and novel 
genes. Although much slower than most other mappers whilst 
requiring a relatively large amount of memory and a number of reports 
stating it maps with a relatively low accuracy, still widely used. 

Read count tools 
HTseq [59] Assigns expression values to genes based on reads that have been 

aligned with e.g. STAR or HISAT. Well supported by the author. 
FeatureCounts [60] Similar to HTseq, but much faster. Results are slightly different due to 

slightly different read-to-gene assignment strategies. 
Normalization 
FPKM/RPKM [61, 62] Widely used normalization methods that correct for the total number 

of reads in a sample whilst also accounting for gene length. TMM has 
been suggested as a better alternative. 

TPM [63] Similar to FPKM, but normalizes the total expression to a total of 1 
million. The summed expression of a TPM normalized samples is thus 
always 1 million. 

TMM [64] Similar to FPKM/RPKM, but puts these expression measures onto a 
common scale across different samples 

RAIDA [65] Utilizes ratios between counts between genes in each sample for 
normalization to avoid problems caused by differential transcript 
abundance between samples (resulting from differential expression of 
highly abundant genes transcripts).  

Module detection 
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WGCNA [66] Constructs a co-expression network using a user selected method; 
Pearson correlation by default. Uses hierarchical clustering and has 
varying tree cutting options to identify modules. 

DiffCoEx [67] Uses a similar approach to WGCNA, but to identify and group similarly 
differentially co-expressed genes instead of co-expression modules 
altering in co-expression strength as a whole, creating modules of 
genes that have the same different partners between different 
samples. 

CoXpress [68] Identifies co-expression modules, similar go WGCNA, in each sample 
group and tests if these modules are also co-expressed in other groups. 

Biclustering [69] Identifies modules that are unique to a subset of samples without the 
need of prior grouping of samples. 

GSVD [70] Identifies "genelets", which can be interpreted as modules representing 
partial co-expression signal from multiple genes. These signals are then 
compared between two groups to identify genelets unique to samples 
and those that are shared with the two groups. 

HO-GSVD [71] Similar to GSVD, but across multiple groups rather than only two. 
Functional enrichment 
DAVID [72] A widely used tool, with an online web interface. Users supply a list of 

genes and select the annotation categories from various sources to 
identify enrichment for. 

PANTHER[73] Uses a comprehensive protein library combined with human curated 
pathways and evolutionary ontology. If a gene is not in the library, a 
gene is classified based on proteins with conserved sequences for 
which the function is known. 

g:Profiler Functional enrichment tool, enabling users to perform enrichment 
analyses for gene ontologies, KEGG pathways, protein-protein 
interactions, transcription factor- and miRNA binding sites. Also 
available as R package. 

ClusterProfiler 
Enrichr 

R package for overrepresentation and gene set enrichment analyses for 
several curated gene sets. Allows users to compare the results of 
analyses performed on several gene sets. Has an easy-to-use web tool 
for performing gene overrepresentation analyses and using 
comprehensive set of up-to-date functional annotations. 

GSEA [74] Another widely used tool that can optionally be used with a desktop 
interface. Uses an extensive collection of geneset annotations and has 
documentation of the different features available with this tool. 

Visualization 
Cystoscape [75] A widely used tool for visualization of networks that has many plug-ins 

available that can help further analyze the network. 
Biolayout [76] Similar to Cystoscape, but less widely used and does not have the 

Cytoscape plug-ins. Can load and visualize much larger networks than 
Cytoscape. 

 
Table 1.1. Tools for RNA-seq data based network analysis 
In this table we describe a number of tools required for the different steps of an RNA-seq co-
expression network analysis. This list includes the tools we recommend at the time of writing, 
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but many others are available and continuously released. As such, we recommend to consult 
literature to select the most appropriate tools and methods for this type of analyses.  
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To determine the gene expression levels from RNA-seq sequences, obtained from RNA-seq 

machines, several tools are available. For quality control of the samples we would advise 

FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Unless there is a 

specific interest in unannotated genes, we would recommend Kallisto [53], which can map the 

reads to the transcriptome on a desktop computer. Otherwise we would recommend tools 

such as Spliced Transcripts Alignment to a Reference (STAR) [55] or Hierarchical Indexing for 

Spliced Alignment of Transcripts (HISAT) [56], which map at a much faster rate than TopHat 

[77] whilst achieving a similar accuracy if not better [55]. Kallisto reports expression levels per 

transcript, whereas STAR and HISAT report the genomic location of each read. To convert 

these to expression levels per gene (or transcript/exon) we advise to use FeatureCounts [60] 

or the much slower, but well supported, HTseq tool [59]. The evolution of these tools is rapid 

and the tools described here may have been superseded by better tools at the time of reading. 

As such, we would advise to follow forums such as SEQanswers 

(http://seqanswers.com/forums/forumdisplay.php?f=26) for the latest developments. In this 

thesis, we have used STAR in conjunction with FeatureCounts as Kallisto was not readily 

available at the time we started this project. 

Although RNA-seq has many benefits over microarrays, it still has limitations. RNA-seq 

struggles to determine which splice variant is expressed if multiple splice variants share the 

same expressed exon. This can be circumvented using knowledge acquired from the mapping 

of other reads in the same region that do not map to shared exons. For example, if “transcript 

a” and “transcript b” are partly overlapping and there are e.g. 90 reads ambiguously mapping 

to both transcripts and simultaneously there are 100 reads unambiguously mapping to 

“transcript a” and 0 reads to “transcript b”, it is likely the 90 ambiguously mapping reads are 

originating from “transcript a”. This method is, for example, utilized by Bitseq [78], which uses 
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a Bayesian approach to estimate the origin of an ambiguously overlapping read based on how 

many reads have been mapped to each of these transcripts. This Bayesian approach calculates 

the probability that each read originate from a given transcript based on which transcripts the 

other reads were assigned to. These probabilities are then used to determine if the transcript 

is differentially expressed between different samples. SpliceNet is another tool that uses a 

similar method. SpliceNet effectively divides the reads, mapping to an exon shared with 2 

splice-variants, proportionally to the total expression of each of the two whole isoforms [79]. 

This thus means that a particular isoform is considered to have no expression if it has no 

expression in any exons that are not shared with any other isoforms, even if the shared exons 

do have expression.  This method may, however, introduce different biases. For example, if 

these ambiguously overlapping reads are in reality originating from a different transcript than 

the other reads in their vicinity, which could be biologically relevant. For example, in a 

hypothetical situation where a large transcript largely overlaps a smaller transcript and some 

reads overlapped the larger transcript non-ambiguously, the ambiguously overlapping reads 

would be assigned to the larger gene. Then if the smaller gene has an inhibitory function on 

the larger gene, which could hypothetically be functioning by binding to the larger gene’s 

transcripts, the incorrect assignment of reads could lead to incorrect biological conclusions 

(i.e. the large gene’s proteins quantity or activity is increased instead of decreased). In this 

thesis, we have assigned ambiguously mapping reads to each transcript, meaning strong co-

expression between transcripts that share the same exons is likely to be reported, but not 

necessarily biologically meaningful. This is a bias that should be considered when interpreting 

the results obtained from our web-tool. 
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 Expression data normalization 
Normalization of expression data is necessary for the removal of non-biological variance 

(introduced by, e.g., different read depths, the use of different preparation protocols, 

machines and varying environmental variables, such as temperature and humidity), which can 

introduce biases when attempting to conduct a biologically meaningful comparison between 

different samples especially those generated in separate batches [80]. Microarray data is 

commonly normalized using MAS5 [81] or Robust Multi-array Average (RMA) [82]. MAS5 

normalizes each array individually based on the average of the perfect-match/mismatch 

values. RMA, on the other hand, uses information from other arrays in the dataset to 

normalize each array. MAS5 and RMA have been compared in more detail in [83].  

Normalization methods for RNA-seq data are different from those used for microarray data. 

Also for RNA-seq data there are several different methods that are being used, but not without 

debate. Fragments/Reads Per Kilobase of transcript per Million mapped reads (FPKM/RPKM) 

[61, 62] and Transcripts Per Million (TPM) [63] values, are normalization methods that correct 

for the total number of reads in a sample, as well as gene length [61]. One issue with these 

methods is that if a very highly expressed gene increases in expression, these normalization 

methods will make it appear as if all other genes decrease in expression. This is particularly 

important for co-expression analysis as it will create a false impression of positive co-

expression between all these other genes. The commonly used Trimmed Mean of M-values 

(TMM) normalization of FPKM values and a more recent method [64], Ratio Approach for 

Identifying Differential Abundance (RAIDA) [65], resolve this issue and are preferable over 

other normalization methods [80]. Although, unlike TMM normalization, RAIDA can cope with 

differences in total expression levels of RNA between samples. Both TMM and RAIDA rely on 

the assumption that the expression of majority of genes is stable across the samples [80], 
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which may not be the case. For example, in cancer samples this is commonly not the case. 

Some of these methods were not available at the time we started this project. We corrected 

for the total number of reads in the sample, but not for gene length as this makes no 

difference for the resulting Pearson correlation values calculated using our method. 

Minimum read depth and sample size required for co-expression analyses. To create co-

expression networks from RNA-seq data, a 20-sample minimum has been suggested [66, 

84].Increased sample sizes produce networks with a higher connectivity, a term explained in 

[84]. Not surprisingly, higher quality data tend to result in more accurate co-expression 

networks [84, 85]. It is therefore essential to select a number of criteria for data quality 

control. A higher total read depth for RNA-seq samples increases the accuracy of the data, 

especially for genes with low expression [84, 85]. For RNA-seq data, sequencing depth cut-off 

thresholds are usually selected arbitrarily. Several co-expression studies have used a cut-off of 

10 million reads per sample [50, 84, 86], which was also used in the project described in this 

thesis. Co-expression networks constructed using a 10 million reads per sample cut-off have 

been suggested to have a similar quality to microarray-based co-expression networks if 

constructed from the same number of samples [84], but with decreasing quality with fewer 

reads. The percentage of mapped reads is another frequently considered cut-off in which 

samples with less than 70 or 80% of the reads mapping to the genome are removed. Giorgi et 

al. demonstrated, using 65 Arabidopsis thaliana samples with 12 million reads but only a 30% 

mapping cut-off threshold, that the resulting RNA-seq-based co-expression network had a 

lower similarity to biological networks than microarray networks [87]. Cut-off thresholds may 

vary per species, based on, among other factors, the quality of the genome annotation. As 

more and higher quality data becomes available, higher cut-off thresholds may be preferable. 

In this thesis, we used a cutoff of 10 million reads and over 4000 samples. 
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To ensure that a network is robust, bootstrapping can be used [88]. This is the repetitive 

construction of networks from subsets of the data, which are then used to assess the 

reproducibility of the network created from the entire data set. Randomizing the dataset (e.g. 

by randomly reassigning expression values to their gene/transcript identifiers and 

reconstructing the network) can also help identify correlations that occur stochastically 

because of specific biases rather than as a result of biologically-relevant interactions [50], 

which is a method we applied in 99.  

 Co-expression networks 
A co-expression network identifies which genes have a tendency to show a coordinated 

expression pattern across a group of samples. This co-expression network can be represented 

as a gene–gene similarity matrix, which can be used in downstream analyses (Figure 1.1). 

Canonical co-expression network construction and analyses can be described with the 

following three steps.  
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In the first step, individual relationships between genes are commonly defined based on 

correlation measures or mutual information [89-91] between each pair of genes. These 

relationships describe the similarity between expression patterns of each possible gene pair 

across all the samples. Different measures of correlation have been used to construct 

networks, including Pearson’s or Spearman’s correlations [19, 92]. Alternatively, least absolute 

error regression [93] or a Bayesian approach [94] can be used to construct a co-expression 

network. The latter two have the added benefit that they can be used to identify causal links 

and have been explained elsewhere [22]. The largest difference between correlation and 

mutual information is that mutual information can also measure non-monotonic relationships, 

whereas correlation cannot. In a monotonic relationship one variable increases as the other 

variable increases, or alternatively one variable decreases as the other increases, whereas this 

is not the case for non-monotonic relationships (Figure 1.2). 

 
Figure 1.2: Monotonic versus non-monotonic relationships 
In a monotonic relationship one variable decreases as the other variable increases or 
alternatively one variable increases as the other variable increases (although not necessarily in 
a linear fashion). In non-monotonic relationships this is not the case. 
 

Where Pearson correlation is sensitive to outliers Spearman correlation is not. Pearson 

correlation is parametric, assuming the data is normally distributed, whereas Spearman 
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correlation is not. Since Pearson correlation is sensitive to outliers, Spearman correlation is 

preferable for co-expression analysis with smaller sample sizes and/or noisier data [95]. In 

stationary data (as opposed to time series data) mutual information performs similar to 

Pearson or Spearman correlation, which can be attributed to the rare occurrence of non-linear 

relationships in these networks [96]. Another correlation method, biweight midcorrelation is 

also less sensitive to outliers and was shown to outperform Pearson- and Spearman 

correlation in stationary data [96], yet is not as commonly used. For a discussion of other types 

of similarity measures we refer to [95]. To construct our co-expression networks we used 

Pearson correlation. We opted to use this metric to allow users to compare our RNA-seq based 

co-expression networks with previously published microarray based co-expression networks, 

which often use Pearson correlation, without having to worry about a potential bias 

introduced by the use of a different correlation metric.  

In the second step, co-expression associations are used to construct a network. Such a 

network consists of nodes representing genes and edges representing the presence and the 

strength of the co-expression relationship (Figure 1.1) [97]. A co-expression network can be 

either weighted or unweighted. In a weighted network all nodes are connected to each other. 

These connections have continuous weight values between 0 and 1 that indicate the strength 

of co-regulation between the genes. In an un-weighted network the interaction between gene 

pairs is binary, i.e. either 0 or 1, indicating genes are either connected or unconnected. An un-

weighted network can be created from a weighted network by, for example, considering all 

genes with a correlation above a certain threshold to be connected and all others 

unconnected. Weighted networks have produced more robust results than un-weighted 

networks [98]. 
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In the third step, modules (in this thesis defined as: groups of strongly co-expressed genes) are 

identified using one of several available clustering techniques. Clustering, in co-expression 

analyses, is a method that can be used to identify groups of genes that have a similar 

expression pattern across multiple samples, to produce groups of co-expressed genes rather 

than only pairs. Many clustering methods are available, including k-means clustering and 

hierarchal clustering, and are discussed in detail in [99]. Modules can subsequently be 

interpreted by functional enrichment analyses, a method that can be used to identify and rank 

overrepresented functional categories in a list of genes [44, 100, 101]. In this thesis, we have 

used the 5 percentile closest genes in the network, for a gene of interest, as a module, which 

were subsequently used for the functional enrichment analysis. 

With co-expression analysis, it is important to consider the heterogeneity of the samples. 

Tissue-specific or condition-specific co-expression modules may not be detectable in a co-

expression network constructed from multiple tissues or conditions, because the correlation 

signal of the tissue/condition-specific modules is diluted by the lack of correlation in other 

tissues/conditions. However, limiting co-expression analysis to a specific tissue or condition 

also reduces the sample size, thereby decreasing the statistical power to detect shared co-

expression modules. An over representation of samples from a specific origin may bias the co-

expression network for processes described by these samples. To ensure this was not the case 

for our samples, we have analyzed the cell and tissue types from which these originated in 

Section 3.3.4. Data describing multiple tissues and conditions should be used for identification 

of common co-expression modules, while differential co-expression comparing different 

conditions or tissues will be better suited to identify modules unique to a specific condition or 

tissue. Tissue specific networks and differential co-expression are further discussed in the 

discussion of this thesis. In this thesis, we aim to assign potential functions to ncRNAs and 
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splice variants in a non-tissue-specific manner. Motivation for this choice is that we aimed to 

identify functions that are not specific to a specific tissue or cell type, so they would be of use 

to a broad range of researchers, which work with varying tissue and cell types. Additionally, at 

the start of this project the amount of RNA-seq data was limited and isolating a specific tissue 

would have further decreased the sample size. 

 Guilt-by-association based on gene co-expression 
The next step in a co-expression analysis is to derive biological meaning from the constructed 

co-expression network. A widely used approach to attach biological meaning to co-expression 

modules is to determine functional enrichment among the genes within a module. Assuming 

that co-expressed genes are functionally related, enriched functions can be assigned to poorly 

annotated genes within the same co-expression module, an approach commonly referred to as 

‘Guilt-By-Association’ (GBA) [7, 16]. Poorly annotated genes, in our definition, are those genes 

that have been annotated as genes, but which have not been annotated to any ontologies or 

pathways yet. GBA approaches are also widely used to identify new potential disease genes. If 

a substantial proportion of the genes within a module is associated with a particular disease, it 

suggests that other genes within this module play a more prominent role in this disease than 

those genes that are not within this module [11, 13, 16-20]. In this thesis, we have used this 

GBA concept to assign putative functions to genes and to predict new disease genes. 

In 1998 the first microarray based co-expression work was published using S. cerevisiae data 

[102], later followed by a study conducting a co-expression analysis on human fibroblast data 

[103]. In these studies the correlation of the expression between all included genes was 

calculated based on data obtained from different conditions and time points. Even though 

utilizing these early low quality versions of micro-arrays, GBA proved strikingly effective at 
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grouping functionally related genes based on co-expression. It was later shown that genes 

encoding physically interacting proteins are likely to be co-expressed [103-106]. These 

observations underpin the assumption that co-expressed genes are indeed more likely to be 

functionally related. Using a GBA approach on co-expression data allowed poorly annotated 

genes to be related to well annotated genes and predict the function the poorly annotated 

gene(s) most likely play their primary role in [16, 107]. GBA has been widely used in co-

expression analyses for gene function association/annotation to processes [108-113] and for 

the prediction of numerous disease genes involved in diseases such as cancer [8-12, 114], 

schizophrenia [13], diabetes [14, 15] and others [16-19]. Due to the successes obtained from 

early microarray versions and correspondingly smaller sample sizes, we felt that it should also 

be possible to use current RNA-seq data, even though limitedly available at the time, to assign 

putative functions to ncRNAs in a similar fashion. 

1.5.1. Gene associations 

In this thesis, GBA is widely applied to predict the biological process in which poorly annotated 

genes likely play their primary role.  We use three different methods to achieve this.  

One, we define new gene-function “associations” as: A gene being co-expressed (arbitrarily 

defined as the top 5 percentile co-expressed genes) with a list of genes enriched for that 

function. The functions can be defined in, for example, Gene Ontology (GO) [115] or Reactome 

terms [116].  Disease annotations are often obtained from specific studies and will have been 

annotated to that disease based on different types of evidence, which can be found in the 

corresponding referenced papers.  Whether this association is significant is determined by the 

False Discovery Rate (FDR) value as calculated and obtained from DAVID [72]. Thus we define 

the categories for which the FDR is smaller than 0.01 as “associated” and those that have 
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larger FDR values as “not associated”. When we refer to “previous associations obtained from 

the literature”, we refer to genes that have been annotated to a specific category such as an 

ontology or disease. Again, the evidence for these associations can vary between the 

associations and can be found in the corresponding references.  

Two, we obtain the ranking of all genes with a gene of interest and split these into a group of 

genes that are annotated to a category and those that are not. Consecutively, we calculate the 

difference between the rankings of the genes in these two groups, using a Mann-Whitney U 

test. This is a non-parametric test, therefore not requiring the data to be normally distributed. 

Additionally, the Area Under the Receiver Operator Curve (AUROC) or Area Under the Curve 

(AUC) in short can be derived from the results of this statistical test. The AUC is an indicator of 

how well false positives can be separated from true positives. An AUC of 1 or 0 indicates 

perfect separation where an AUC of 0.5 indicates the opposite. The significance value is 

calculated and if below 0.01 we define this gene as associated to that and otherwise not. This 

is used in Section 3.3.3 to estimate how often associations are found for the functions each 

gene has previously been annotated to.  

Three, to associate a gene to a disease, we calculate how often a gene is partners (in the top 5 

percentile co-expressed genes of the disease genes) with any of the genes in the disease 

geneset. Then we calculate it this significantly higher than expected by random chance 

described in Section 2.6.4. If this is the case we define this gene as associated to that disease 

and otherwise not. 

 Transcriptional binding site analysis 
Transcription factor activity is often controlled by factors other than expression, such as a wide 

range of post-translational modifications like phosphorylation [117], acetylation [118] and 
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methylation [119], as well as ligand binding [120], and interaction with other transcription 

factors [121, 122]. As a result, transcription factors are often not co-expressed with their 

targets.  This makes it difficult to identify the targets of transcription factors by simply 

investigating co-expressed genes with a particular transcription factor. To predict which 

regulatory elements are controlling the expression of functional groups in different 

phenotypes, we analyzed the enrichment for specific transcription factor binding sites (TFBS) 

among co-expressed genes with the aging seed list, as depicted in figure 1.3. Although highly 

co-expressed genes share TFBSs in yeast [123], this approach appears to be less successful in 

more complex organisms. In human, mouse, and fruit flies, it was shown that genes sharing 

TFBSs are not more likely to be co-expressed [124] unless the study is tissue specific [125], 

which is also supported by other studies [126-128]. On the other hand, in Arabidopsis thaliana, 

it was shown that co-expressed genes that share the same motifs can be assigned to modules 

[129] for several well-known motifs such as G-box, MYB, W-box, and site II element and 

associate them with specific immune and metabolic pathways [130]. Using a similar approach 

transcription factors E2F1, GATA2, and NFKB1 were associated with cell cycle, fat, and 

muscle/glycolysis, respectively, using bovine muscle data [131]. The GATA TFBS was associated 

with aging in worms with the Elt-3 GATA transcription factor being co-expressed in some 

tissues, but not in others [132]. Lastly, it was shown that promoter regions, which usually 

contain multiple TFBS, better correlate to co-expressed modules than single TFBSs [126, 133]. 

As there are cases where this type of analysis has yielded biologically interesting results, we 

opted to conduct a similar analysis on our list of genes co-expressed with aging genes (Section 

2.3.4). 
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Figure 1.3: Identification of transcription factors potentially regulating co-expression modules 
After modules have been identified, the genes within a module can be investigated for 
enrichment of TFBSs. If there is an enrichment for a particular TFBS, the TF that has been 
annotated to act on this TFBS can be identified. This TF may be (partially) regulating the 
expression of this module. 
 
1.6.1. MicroRNAs and GBA 

As mentioned in Section 1.1.1, our co-expression analysis and the database we created are not 

tailored to the analysis of miRNAs. These tend to function by deactivating the gene they target. 

In Chapter 4 of this thesis, we set out to test if we can identify those targets by identifying 

genes that show a negatively correlated expression pattern with the miRNA. The expectation is 

that, for those miRNAs that degrade their targets in conjunction with a RISC complex [36], such 

a negative correlation is detectable. The proportion of miRNAs that function by degrading their 

targets rather than just deactivating their target through binding of the target’s mRNA is not 

known, but we expected that a significant proportion of the miRNAs indeed do degrade their 

targets. To conduct this analysis, we used an in-house generated rat aging brain dataset. 

Additional to our miRNA analysis, we aimed to identify key regulators in the rat brain aging 

process. To achieve this, we conducted a co-expression analysis in which we identified a 

number of hub genes that could potentially be key players in the aging process of the rat brain 

(Section 4.4.4). 
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 Hub genes  
GBA, as described earlier, can be used to associate genes to diseases, but this often leads to 

large lists of new gene-disease associations. It often remains unclear which of these genes is 

most likely the causal factor. A widely-employed approach to identify genes that are key 

players (defined as the gene playing a much more prominent role in that particular biological 

process or disease than most others), is to identify highly connected genes in a co-expression 

network, commonly referred to as hub genes. Network hubs have been shown to generally be 

more relevant to the functionality of networks [134]. This is also the case in biological 

networks [97], although mathematical derivations show that this is only the case for intra-

modular hubs, as opposed to inter-modular hubs [135, 136] (Figure 1.4).  

1.7.1. Centrality and connectivity 

To identify hub genes "betweenness centrality" is often used. Betweenness centrality, which 

can be interpreted as the relevance of a node in the network, is determined by counting the 

number of shortest paths between any other pair of nodes going through this node [137]. To 

measure the robustness of a network, network connectivity is often measured. Connectivity 

indicates how many genes have to be removed from the network to disconnect the remaining 

genes in the network. Identifying hub genes in co-expression networks has led to the 

identification of several genes essential in diseases such as cancer [25], type 2 diabetes [26], 

chronic fatigue [27] and others [28, 138].  
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Figure 1.4: Hypothetical network explaining inter-, intra-modular hubs and network centrality 
The blue node is an inter-modular hub having a high network centrality as the highest number 
of shortest paths, from one node to another node in the entire network, go through this node 
(Red line is one example of a shortest path through the network between two nodes). 
Although this inter-modular hub is important for the network’s structure it does not have a 
higher biological relevance as opposed to the intra-modular hubs. Intra-modular hubs (marked 
with orange) are central to individual modules, defined by the highest number of shortest 
paths from one node to another within the module going through this node. These intra-
modular hubs have a higher biological relevance than the nodes that are not intra-modular 
hubs. 
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 Weighted Gene Correlation Network Analysis (WGCNA) 
In Section 4.4.2 of this thesis, we set out to identify the key regulators in a rat brain aging 

dataset, generated in our lab. These key regulators were identified by identifying hub genes in 

a tissue specific co-expression analysis. To identify these hub genes, we used WGCNA, a tool 

that can be employed for this purpose. This tool is easy to implement and works by first 

creating co-expression modules using hierarchical clustering based on a correlation network 

created from expression data [66]. Hierarchical clustering iteratively divides each co-

expression cluster into sub clusters based on how strongly genes are co-expressed with each 

other. This creates a tree in which the branches represent the co-expression modules. By 

cutting the branches at a certain height, the modules are defined (Figure 1.1). These modules 

are often large and it is important to identify the genes in the module that best explain the 

behavior of the module, which are the intra-modular hub genes. This is why the centrality of 

each gene within a module and each gene is determined; those having a high centrality being 

intra-modular hub genes.  

1.8.1. Eigengenes 

Additionally, WGCNA determines the genes behaving similar to the eigengene of a module, as 

well as the intra-modular hub genes, which tend to coincide with each other in our experience. 

An eigengene is a hypothetical gene that best describes the average expression changes of the 

relative module between different samples. This eigengene is a vector that represents the 

partial expression of each gene (to a different extent per gene). This is calculated using 

Principal Component Analysis (PCA) on the expression of the genes within the module across 

all samples, where the first Principal Component (PC) is defined as the eigengene. PCA is a 

method to summarize variance of multiple variables into linear vectors. PCA first summarizes 

all variables into a linear variable describing as much variation as possible, becoming the first 
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PC. Then this process is iterated over the remaining variation (thus the variation that is not 

described by any of the lower PCs), until all variance is explained. The first PC is always the 

vector that best describes the variance of all variables in a module and is used as the vector 

that best represents the module, being the eigengene. 

 Differential co-expression analysis 
WGCNA can also be used for differential co-expression analysis. Differential co-expression 

analysis can identify biologically-important differential co-expression modules that would not 

be detected using regular co-expression analyses. Identification of differentially connected hub 

genes can also help to identify potential regulatory genes and thus explain phenotypic 

differences that would not be uncovered in a standard differential expression or co-expression 

analysis [139-142]. Differential co-expression analysis has been used to identify genes 

underlying differences between healthy and disease samples [139-142] or between different 

tissues [143], cell types [144] or species [145].  

Most differential co-expression analyses rely on differential clustering; they identify clusters 

that contain different genes or behave differently under changing conditions or phenotypes. 

With “behaving differently”, we are referring to altering activity of a module in different 

sample groups, where activity of a module can, for example, be represented by an eigengene, 

as described in Section 1.8.1. There is a number of tools which identify co-expression modules 

in the study samples and then correlate these to predefined sample subpopulations 

representing, for example, disease status or tissue type. Three such tools are: WGCNA [66], 

Differential Correlation in Expression for meta-module Recovery (DICER) [141] and DiffCoEx 

[67], which have been compared in [141] [146]. 



Introduction
 

Page 45 of 233 

These different tools have slightly different interpretations of differential expression which is 

explained in this paragraph. WGCNA determines the activity and importance of each module in 

each subpopulation of samples (Figure 1.5a and c). It then prioritizes which genes in these 

modules are likely to underlie the phenotype associated with the module by identifying either 

genes behaving similarly to the eigengene of the module or those genes that are intra-modular 

hub genes (these tend to coincide), as described in [66]. By design, DICER is tailored to identify 

module pairs that correlate differently between sample groups, e.g. modules that form one 

large interconnected module in one group compared to several smaller modules in another 

(Figure 1.5d). DICER may be particularly useful for time series experiments in which co-

expression changes are gradual, e.g., cell cycle series experiments, where modules are specific 

to a particular phase and co-expressed in transitions between phases. DiffCoEx focuses on 

modules that are differentially co-expressed with the same sets of genes. The most extreme 

case of this behavior is sets of genes which ‘hop’ from one set of correlated genes to another 

in a coordinated manner (Figure 1.5e). In this case, DiffCoEx would cluster ‘hopping’ genes in a 

similar manner. These are the most likely genes to explain different phenotypes that are 

associated with the two different networks. Each of the methods detects specific module 

changes by design, but they can also detect modular changes that they were not specifically 

designed for, and may outperform other tools in the identification of these changes [21].  
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Figure 1.5: Differences in gene co-expression pattern changes that can occur between 
samples 
Differential co-expression can manifest as the presence of the module in only one of the 
sample groups (a), differences in the structure of the module (b) or the differences in the 
correlation strength between the members of the modules (c). Additionally, the differential 
co-expression can be detected if some of the genes switch to another module (“gene 
hopping”, d) or if one larger interconnected module splits into several smaller ones (e). 
This figure was created by Urmo Võsa. 
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A number of studies have used differential co-expression network analyses to identify 

networks unique to specific tissues [143] or disease states [147]. The rapid increase in publicly 

available RNA-seq data and projects such as Genotype-Tissue Expression (GTEx) and 

Encyclopedia of DNA Elements (ENCODE), which generate RNA-seq profiles on a large scale, 

has enabled co-expression analysis within and across different tissues [143, 148]. The GTEx 

project collects and provides expression data from multiple human tissues for the study of 

gene expression, regulation and their relationship to genetic variation [149]. In a study 

comparing RNA-seq data from 35 tissues from the GTEx dataset, a tissue hierarchy was 

constructed based on the average gene expression in each tissue. Related tissues, such as 

those from different brain regions, clustered together. This hierarchy was used to construct a 

single combined co-expression network derived from the tissue-specific co-expression 

networks; a meta-network. It was then shown that in tissue-specific networks TFs with 

functions specific to that tissue tend to be highly expressed together with tissue-specific 

genes. These genes tend to form a stronger connection with each other than with other genes, 

but remain at the periphery of the network (thus having low centrality), whilst the tissue-

specific TFs become more central to that module [143]. Thus, tissue-specific TFs could be 

uncovered by identifying modules with increased co-expression strength in tissue-specific 

networks (Figure 1.5a and c) and by pinpointing the central hubs of these modules. In contrast, 

genes that are not TFs but are tissue-specific should be detectable by identifying those genes 

that are at the periphery in these modules (Figure 1.5b). Moreover, some TFs have different 

roles in different tissues. These TFs would be expected to be hub genes that are central to one 

module under one condition and central to another module in another condition. 

In our analysis, we used WGCNA to determine which modules are differentially expressed at 

different ages in rats (Sections 4.3.2, 4.3.3 and 4.4.3). The activity of a module in a subgroup is 
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indicated by the eigenvalues of the eigengene (of a particular module) for the different 

samples in that group as explained in Section 1.8.1. The correlation between the module 

eigenvalues and the phenotype of interest, represented by that subgroup or multiple 

subgroups, then suggests the importance of this module for that particular phenotype. For 

example, in a dataset where different samples are derived from individuals with a different 

age, the age can be correlated with the eigengene eigenvalues of each module to find the 

module that has the strongest correlation. It then prioritizes genes in these modules 

identifying the genes that behave most similar to the eigengene of that module (by simply 

correlating the eigengenes’ eigenvalues with the genes expression values across the samples). 

WGCNA has widely been shown to perform well under many different circumstances and for 

different purposes [66]. A comparison between these tools and others, including WGCNA, 

show that WGCNA and ARACNE perform best at defining the network structure of E. coli [21], 

for which a well-defined regulatory network is available and was used as a golden standard 

[150].  

We used WGCNA on a rat brain dataset created in our own group, to identify modules that 

may or may not be important in different feeding regimes and aging (Section 4.4.3). After our 

analysis on our in-house generated rat brain aging dataset (Sections 4.4.2 and 4.4.3), we 

tested, in a rat aging thymus dataset (Section 4.4.4), if WGCNA would identify a gene, Foxn1, 

proven to be able to regenerate the thymus of old rats seemingly reverting aging [151], as a 

hub gene in any of the modules of which the activity correlates with aging. The purpose of this 

exercise was to test if WGCNA would identify a gene with a seemingly high aging intervention 

potential as a key regulator, and to which extent this factor would be prioritized. To achieve 

this, we use WGCNA to conduct a co-expression analysis on this dataset containing gene 

expression data from rat thymi at different ages. 
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 Contributions 
In general all work described in this thesis was conducted by Sipko van Dam, unless stated 

otherwise. In particular the co-expression analysis and most of the construction of the 

website, including the corresponding databases, were conducted by Sipko van Dam. The 

exemptions on the construction of the website are the following: 1. The .css file describing the 

layout and design of the web page.  2. The javascript that loads the DAVID table dynamically. 3. 

The symbol visible on the front page. These were all created by Thomas Craig. 4. The 

experimental work conducted on the C1ORF112 and C12ORF48 gene knockouts described in 

Chapter 2, which was carried out by Rui Cordeiro. Additionally, several people have proofread 

the thesis to aid with the structure and the language of this thesis. 
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 Aims 
A key objective in the post-genomic era is to systematically identify all gene products as well as 

their functions and interactions within a living cell. Genes involved in common biological 

processes and diseases are often co-expressed. We use these co-expression associations to 

predict the function of poorly annotated genes and associate them to diseases. Although this 

has previously been achieved for coding genes, no tools were available that allowed users to 

retrieve co-expression associations for non-coding genes or on a transcript rather than gene 

level. In this project, we created a tool that allows users to obtain new gene/transcript-

function or disease associations for those that are poorly annotated. This includes ncRNAs, for 

which no tool was available at the time of this project. This is of great importance to enable 

prediction for these ncRNAs as well, since these poorly annotated genes and RNAs may play 

key roles in diseases, for which, in most cases, the molecular mechanisms often remain 

unclear. We attribute this partly to the lack of information for some elements, such as these 

ncRNAs. The tool we have created allows users not only to identify those coding and non-

coding genes that are co-expressed with groups of disease genes, but also predict the 

biological process/pathway they likely play a role in. Furthermore, diseases can be caused by 

deviations in isoform expression patterns of a gene. At the start of this project, there were no 

tools available that allowed users to quickly identify the biological processes different 

transcripts, originating from the same gene, associate with. GeneFriends enables users to 

obtain co-expression based transcript-function predictions, thereby enabling them to 

potentially better understand which deviations in isoform expression patterns lead to 

particular phenotypes.  

Here we list the goals of this project: 
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1. Construct a co-expression network from a large number of microarray samples and create a 

resource that is useful to the research community, in particular a website that can be queried 

with a single gene or multiple genes simultaneously. The purpose of this tool is to allow users 

to query sets of genes representing a certain disease or function to identify new gene 

associations. Additionally, we included the option to query single genes, to allow users to 

predict the biological process in which they most likely play their primary role based on 

enrichment among co-expression partners (Chapter 2). Similar works are readily available 

(Table 5.1) and this part of this project is most comparable to COXPRESdb [6]. A limitation of 

COXPRESdb is that the user interface, in our opinion, is not user friendly. For example, it is not 

possible to download the full co-expression networks and the results for queries are limited to 

the first 300 co-expressed genes. We created a similar database and conducted a similar 

analysis to acquire experience and to establish a user friendly website that could be used also 

for our second aim. Unique to our website is that we allow users to download the entire co-

expression network as well as full lists of co-expressed genes with the query gene(s). The latter 

allows users to also investigate the least co-expressed genes, which can potentially also be 

biologically relevant. 

2. Construct a co-expression network from RNA-seq data to include ncRNAs and add this to our 

existing website. As part of this aim we tested if the GBA approach, know to perform well at 

associating coding RNAs to biological processes and diseases, also performs well on ncRNAs. 

To our knowledge this had not previously been attempted on a genome wide scale and we 

were the first to publish a database that allowed this. (Chapter 3). 

3. Construct a co-expression network from RNA-seq data for transcripts rather than genes and 

add this to our existing website. As part of this aim we identified transcripts originating from 
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the same gene that had different co-expression partners. The purpose was to elucidate if it is 

possible to find genes for which different transcripts associate with different functions using 

our co-expression database. Although transcript specific expression is gaining more attention, 

this is progressing slowly and our publication on our database, which allowed identification of 

transcript-function associations using co-expression on a genome wide scale, was the first of 

its kind [50]. (Chapter 3). 

4. Conduct a co-expression analysis on our in-house generated rat aging RNA-seq dataset, to 

identify if the expression of miRNAs and their targets is negatively correlated. Although 

research has shown that this is the case, we aimed to test if this relationship would also be 

detectable in co-expression data, which had not been previously reported to our knowledge. 

(Section 4.4.1) 

5. Conduct a co-expression analysis on our in-house generated rat aging RNA-seq dataset to 

identify modules that are altering in activity during aging (Section 4.4.2), as well as to identify 

modules that counter this effect through dietary interventions (Section 4.4.3).  

6. Conduct an analysis to test if hub gene selection would identify Foxn1 as one of the most 

important genes in the aging process in an aging dataset. This gene has proven to play a major 

role in thymus regeneration [151] and if it would not be identified it would indicate that 

selection of hub genes can miss important targets that would potentially be very targets for 

intervention studies. Motivation for this in silico experiment was that the importance of hub 

genes has been widely supported, but debated as well. We were interested to know how well 

this gene of great relevance, would be prioritized by this method. (Section 4.4.4) 
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These aims are more elaborately described and discussed in the following three chapters. In 

Chapter 5, the results of the research conducted to achieve these aims are further discussed 

and summarized in Chapter 6.  
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 GeneFriends: an online co-expression analysis tool to 

identify novel gene targets for aging and complex diseases. 

As described in the aims in the previous chapter, the aim of the work in this chapter is to 

associate new genes to diseases based on a co-expression network. The network was 

constructed using microarray data from the Gene Expression Omnibus (GEO) database [152]. 

Initially, the assumption was that only high quality data would be submitted to this database 

and therefore each included dataset would increase the reliability of the network. We have 

learned that poor quality data is also present in such databases, which may negatively impact 

the quality of the network. Since we used a number of quality control cutoffs, the samples 

with the poorest quality will have been excluded. We observe that genes co-expressed with 

genes of known function are functionally enriched for their annotated functions, supporting 

the notion this network can be used for this purpose. Similarly, when querying the co-

expression network with sets of disease genes, there is a statistically significant enrichment for 

other genes annotated to the same disease but not present in the initial geneset. This suggests 

that the network can also be used to prioritize genes that are more likely to play an important 

role in a particular disease. It is likely possible to improve the network’s ability to associate 

new genes to biological functions and disease by pruning the data for high quality data only 

and correcting for biases that may exist within these datasets. Although similar works have 

been previously published this database comes with an interface that is easy to use as 

supported by published works that have utilized our database over others [153-157]. 

Additionally, it laid the groundwork for the work conducted in Chapter 3. Further to the 

construction of our database, we have predicted that C/ebp transcription factors play a role in 

aging, supporting suggestive evidence that is readily available [158, 159]. Additionally, we have 
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made novel associations between previously poorly annotated genes and the cancer/cell cycle 

ontologies, which were experimentally validated. This work was published in BMC Genomics 

[20]. Thomas Craig designed the website and supplied the corresponding css file, Rui Cordeiro 

conducted the experiment described in Section 2.3.6, Shona Wood guided Rui with the design 

and execution of this experiment and significantly edited the manuscript to improve its 

readability. João Pedro de Magalhães provided guidance throughout the project and helped 

drafting and editing the manuscript. 

 Abstract 
Although many diseases have been well characterized at the molecular level, the underlying 

mechanisms are often unknown. Nearly half of all human genes remain poorly studied, yet 

these genes may contribute to a number of disease processes. Genes involved in common 

biological processes and diseases are often co-expressed. Using known disease-associated 

genes in a co-expression analysis may help identify and prioritize novel candidate genes for 

further study. We have created an online tool, called GeneFriends, which identifies co-

expressed genes in over 1,000 mouse microarray datasets. GeneFriends can be used to assign 

putative functions to poorly studied genes. Using a seed list of disease-associated genes and a 

guilt-by-association method, GeneFriends allows users to quickly identify novel genes and 

transcription factors associated with a disease or process. We tested GeneFriends using seed 

lists for aging, cancer, and mitochondrial complex I disease. We identified several candidate 

genes that have previously been predicted as relevant targets. Some of the genes identified 

are already being tested in clinical trials, indicating the effectiveness of this approach. Co-

expressed transcription factors were investigated, identifying C/ebp genes as candidate 

regulators of aging. Furthermore, several novel candidate genes that may be suitable for 
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experimental or clinical follow-up, were identified. Two of the novel candidates of unknown 

function that were co-expressed with cancer-associated genes were selected for experimental 

validation. Knock-down of their human homologs (C1ORF112 and C12ORF48) in HeLa cells 

slowed proliferation, indicating that these genes of unknown function, identified by 

GeneFriends, may be involved in cancer. GeneFriends is a resource for biologists to identify 

and prioritize novel candidate genes involved in biological processes and complex diseases. It 

is an intuitive online resource that will help drive experimentation. GeneFriends is available 

online at: http://GeneFriends.org/. 

 Background 
Over the last decade, microarray technology has allowed researchers to measure gene 

expression levels across large numbers of genes simultaneously identifying genes and 

biological processes that are activated or impaired under different conditions. Potential 

biomarkers [160-163] and genes involved in a number of diseases, such as cancer, have been 

identified by microarray analyses [164, 165]. By combining gene expression data in a meta-

analysis, greater power and more information can be gained from existing data. Meta-analyses 

have been successfully used to identify new relationships between genes and new candidate 

disease-associated genes [4, 166]. Microarrays provide large-scale, genome-wide data, from 

which coordinated changes in gene expression can be inferred. Information about these 

coordinated changes is valuable as they can be harnessed to identify the factors involved in 

disease and the functions of many poorly studied genes. One of the issues that arises with 

these large-scale datasets, however, is that it becomes harder to interpret the data and 

identify key players. To facilitate the attainment of biological understanding of results acquired 

http://genefriends.org/
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from large-scale dataset analysis in which poorly annotated genes are identified as key players, 

we have created a tool to assign putative functions to such genes: GeneFriends. 

GeneFriends is based on a co-expression analysis, in which the general behavior of genes, 

relative to each other, is studied. This makes it possible to uncover genetic modules that are 

functionally related [6]under the assumption that those genes active in the same biological 

processes are co-expressed. The main theory behind this approach is that functionally related 

genes are more likely to be co-expressed [102, 167, 168]. This “guilt-by-association” concept 

has already been used to relate hundreds of unidentified genes to inflammation, steroid-

synthesis, insulin-synthesis, neurotransmitter processing, matrix remodeling and other 

processes [4, 7]. Some of the predicted results have been experimentally validated 

demonstrating the effectiveness of this approach [4]. Candidate genes for cancer, Parkinson’s 

and Schizophrenia have also been identified using this approach [7, 169]. Furthermore, it is 

possible to identify transcriptional modules that may play causative roles in the disease or 

process under study [4, 166]. 

The aim of this work was to construct an online tool that can be used to derive novel candidate 

genes for further studies in aging and complex diseases, in a quick and intuitive manner. Aging 

is not considered a disease, yet older individuals are more susceptible to several diseases such 

as Alzheimer’s, Parkinson’s and cancer. This is one of the reasons why research in this field is 

rapidly expanding and several hundreds of genes have been linked to aging [170]. A major 

bottleneck in aging/complex disease research is that it is difficult to determine the causality of 

transcriptional alterations. It is also unclear if the altered expression profile observed with 

aging/complex disease consists of one particular biological module or whether it consists of 
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genes that act separately from each other. To this end, GeneFriends outputs transcription 

factors co-expressed with the genes supplied by the user.  

Underlying GeneFriends is a genome-wide co-expression map created using over 1,000 mouse 

microarray datasets. We validated our co-expression map by showing that functionally related 

genes are more likely to be co-expressed. We then used GeneFriends to study transcriptional 

changes with aging, cancer and mitochondrial disease. Multiple candidate genes associated 

with cancer and mitochondrial diseases, including poorly annotated, were identified. Two of 

the novel candidates of unknown function that were co-expressed with cancer-associated 

genes were experimentally validated by knock-down in HeLa cells this slowed growth, 

supporting our predictions. This demonstrates that GeneFriends is a useful resource for 

studying complex diseases/processes and can infer function of poorly studied genes. 

GeneFriends is freely available online to allow researchers to quickly identify candidate genes 

co-expressed with their genes of interest (http://GeneFriends.org/). 

 Results 
2.3.1. GeneFriends: An online tool for the research community 

The aim of the project was to create a user-friendly tool, which can take a list of genes related 

to a given disease or process and quickly identify new candidate genes. Using co-expression 

profiling, the genes are given a rank reflecting which genes tend to co-activate with the list of 

input genes the most and which the least. This ranked list of genes then helps prioritize 

candidates for experimental follow up. Underlying GeneFriends is a Mus musculus co-

expression map created from 1,678 microarray datasets, comprising over 20,000 individual 

samples from previously published experiments. To create the co-expression map, we 

employed a vote counting method. The co-expression map contains ≈ 427.5 million gene pairs 
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(20,676 x 20,676) arranged in a matrix and are given a scored based on how often they are co-

expressed across all microarrays (see Materials and Methods). 

The input for GeneFriends is either a single gene or a list of Entrez or gene symbol identifiers. 

The output is a list of co-expressed genes, which can be downloaded or viewed online. 

GeneFriends has the following functionalities: 

1. It searches for co-expressed genes based on a seed list or a single gene, and provides a 

ranked list of significantly co-expressed genes. 

2. It identifies the GO terms and enrichment for the significantly co-expressed genes. 

3. It returns a ranked list of significantly co-expressed transcription factors.  

We feel this output will help researchers in various fields identify interesting genes for follow 

up studies in a quick and intuitive manner. To test if this novel tool can be used to derive 

biologically-relevant predictions, we tested gene sets related to aging, cancer or mitochondrial 

complex I disease. Furthermore, we tested two predicted novel cancer candidates 

experimentally, as detailed below.  

2.3.2. Testing the co-expression map 

The biological significance of the co-expression map was verified using nine well annotated 

genes known to be involved in three biological processes: three genes annotated to cell 

division cycle, three genes known to be important in the immune system and three genes 

annotated to fatty acid metabolism. For each gene the 5% most strongly co-expressed genes 

were selected and DAVID [171] was employed to detect enriched biological processes and 

functions. This resulted in the functional enrichment categories of the co-expressed genes for 

each of the nine genes. For each of the nine genes, the functional enrichment of their co-
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expressed genes was consistent with its known annotation: for the three cell cycle genes:  cell 

cycle (GO:0007049) FDR< 10-50, the three immune genes: inflammatory response 

(GO:0006954) FDR<10-5, the three fatty acid metabolism genes: fatty acid metabolic process 

(GO:0006631) FDR< 10-15. Detailed results are included in the supplementary data 

(Supplement 1). Additionally, figure 2.1 shows the clustering of the co-expression map’s 

network, demonstrating that co-expressed genes tend to be involved in the same biological 

processes. 
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Figure 2.1: Gene clustering in the network of co-expressed genes 
Illustration to visualize the structure of the co-expression network. Each node represents a 
gene (gene names are not readable to avoid clotting the figure), and the connections indicate 
a co-expression ratio of at least 0.8 between gene pairs. Genes without any edges are not 
plotted. Circles were drawn arbitrarily around densely connected gene clusters. Functional 
enrichment among the genes within these circles was identified to investigate if co-expressed 
genes are functionally related. Yellow: Cell cycle (Enrichment score: 66, Benjamini: 5.2x10-83); 
Blue: Extra-cellular matrix, collagen (Enrichment score: 16, Benjamini: 3.0x10-22); Red: Immune 
system (Enrichment score: 6, Benjamini: 1.3x10-16); Green: Fatty acid metabolism (Enrichment 
score: 16, Benjamini: 1.6x10-23). Benjamini corrected p-values < 0.01 indicate that the co-
expressed genes are enriched for the respective function and thus tend to be functionally 
related. 
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GeneFriends uses a vote-counting method to rank co-expression. We compared GeneFriends 

to COXPRESdb [6], which utilizes the more commonly used correlation value (Pearson). To do 

so, we selected 3 genes with known functions and retrieved output from both tools and used 

DAVID to determine enriched categories. We identified the functional enrichment among the 

top 300 strongest co-expressed genes retrieved from each of the tools. The results show the 

same categories, with slightly different enrichment scores although the overlap in the specific 

genes among the top 300 strongest co-expressed genes can vary (table 2.1). These results 

show that functional enrichment of the top 300 genes, for these 3 genens, between 

GeneFriends and COXPRESdb are similar.  

When comparing the numbers of transcription factors present in the top 1000 co-expressed 

genes from GeneFriends and COXPRESdb, the results are similar. This demonstrates that our 

approach performs similar to using Pearson correlation to create a co-expression map, in the 

sense that it leads to the same functional enrichment of gene co-expression partners (Table 

2.1). In Chapter 3, we switched to the use of Pearson correlation as it is more commonly 

used/accepted and does not have a bias toward datasets that contain more conditions, as 

described in Section 2.6.2. 
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Gene Category COXPRESdb GeneFriends Overlap (out of top 300 genes) 
Brca1 

   
197 

  Cell Cycle 66.35 75.09  
  Chromosome 54.62 50.5   
H2-Aa 

   
94 

  Disulfide bond 30.09 11.27  

  Immune response 19.5 14.52   
Ppara 

   
100 

  Fatty Acid metabolism 8.75 19.1  
  Peroxisome 14.37 11.12  

 
Table 2.1: Comparison GeneFriends and COXPRESdb co-expression analysis results 
To identify the differences in the results between two different co-expression databases, using 
two different approaches, we selected the top 300 strongest co-expressed genes for 3 
annotated genes, retrieved from each database. Functional enrichment scores for these 300 
genes were retrieved from DAVID. The last column indicates the overlap between the genes in 
the top 300 genes retrieved from both databases. Although the overlap of co-expressed genes 
is not as large as we expected the functional annotation of the enriched genes is similar, 
leading to the same predicted biological processes for the query genes. 
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2.3.3. Candidate gene prediction from process/disease gene lists 

We used GeneFriends to identify novel candidate genes associated with specific processes or 

diseases. The results show the number of times each of the 20,676 genes in the co-expression 

map were "friends" with genes in the disease gene seed-list and corresponding p-values 

indicate the statistical significance of the co-expression (see Materials and Methods). The p-

value is calculated based on the number of input genes a given gene is co-expressed with and 

the total number of genes it is co-expressed with (Materials and Methods). DAVID was used to 

interpret the broader biological significance of the results. Functional enrichment analysis was 

conducted on all genes with a co-expression p-value <10-6 using the default settings in DAVID. 

The stringent cutoff of 10-6 is based on a Bonferroni correction for 20,677 genes on a 0.05 p-

value significance cutoff. 

2.3.4. Aging-related gene prediction and putative transcriptional mechanisms 

GeneFriends was used to identify genes related to aging. A seed list of genes known to be 

consistently over-expressed with age in mammals was used [170]. In total, 1119 genes were 

co-expressed with the aging seed list at p <10-6; table 2.2 shows the top 25 genes.  
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Gene Previous association evidence Reference 
Thbs1 Plays a role in platelet aggregation, angiogenesis and 

tumorigenesis 
[172, 173] 

Ctsh No previous associations  
2310043n10rik No previous associations  
Sat1 Induction has been suggested as a therapeutic strategy 

for treating colorectal cancer 
[174] 

Tcn2 No previous associations  
Pgcp No previous associations  
D12ertd647e No previous associations  
Cd74 Initiates signaling leading to cell proliferation and 

survival 
[175] 

B2m B2m deficient mice suffer from tissue iron overload [176] 
Tgm2 Overexpression increases apoptosis in neuroblastoma 

cells.  
Implicated in fibrosis, neurodegenerative and celiac 
disease 

[177] 
[178] 

Rarres2 No previous associations  
Anxa1 Plays an important role in anti-inflammatory signaling, 

apoptosis and proliferation 
[179, 180] 

Il10rb No previous associations  
Ctsc Mutations cause Papillon-Lefevre Disease [181, 182] 
Lipa Mutations can cause Cholesteryl ester storage disease 

and Wolman disease 
[183] 

IL3ra1 No previous associations  
Lgals3bp Associated with cancer and metastasis [184] 
Pros1 Associated with Thrombosis [185, 186] 
Fcgr2b No previous associations  
Scd1 Plays an important role in body weight regulation and 

development of obesity 
[187] 

Ifi35 No previous associations  
Ctla2b No previous associations  
Cebpd Implicated in adipocyte differentiation, learning and 

memory, mammary epithelial cell growth control. 
Loss of Cebpd leads to chromosome instability 

[188-190] 
[191] 

Fcgrt No previous associations  
H2-t23 No previous associations  

 
Table 2.2: Top 25 genes co-expressed with aging related genes 
For each gene, the number of times it is in the top 5 percentile co-expressed genes of the 
genes in the aging set, was counted. Then the overall occurrence of this gene in the top 5 
percentile of any gene was counted. Using this overall occurrence, the chance this gene would 
occur this many times in the top 5 percentile co-expressed genes of only the aging related 
genes, was calculated using the binomial. The results were ranked on the corresponding p-
values leading to the ranking as shown in the table. For a more detailed description, we refer 
to the methods in Section 2.6.4. For a full list and the corresponding p-values, we refer to 
supplement 2. 
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Next, we tested if there was an enrichment for aging associated genes using a curated list of 

aging associated genes from a separate source [192] (Supplement 3). Genes in the initial seed 

list were removed from the list of co-expressed genes and a Fishers exact test proved there are 

significantly more aging related genes in the list of co-expressed genes (top 5 percentile 

strongest co-expressed genes) as compared to those that are not co-expressed (p<0.01). 

Many of the co-expressed genes have been associated with age-related diseases, such as 

Alzheimer, Parkinson and cancer. Several other genes that have been shown to play a role in 

aging, such as lysosomal-associated membrane protein-2 Lamp2 [193] (p <5.68-30), Fas [194] 

(p<2.70-31) and growth hormone receptor Ghr [195] (p<1.34-19), also showed significant co-

expression with the aging seed list genes. Anxa2, Anxa3 and Anxa4 also show a low p-value 

(p<10-25), as well as several S100 calcium binding proteins, which have been shown to interact 

with annexins [196]. 

The most significantly over-represented functional clusters were inflammatory response 

(enrichment score (ES) = 24.13, FDR = 1.97x10-18), vasculature development (ES = 10.18, FDR = 

2.31x10-8) and lysosome (ES = 9.00, FDR = 2.25x10-8).  Since most of the genes in the seed list 

were classified in the categories related to the immune system, it was unsurprising to find 

similar results for the co-expressed genes.   

Eighty genes, from the initial 181 genes in the aging seed list, showed a co-expression p-value 

<10-6, suggesting the presence of shared transcriptional modules. In order to investigate the 

underlying transcriptional mechanisms that may induce this expression profile, we used the 

co-expressed transcription factor (TFs) results obtained from GeneFriends. Table 2.3 shows the 

10 most significantly co-expressed TFs with aging.  
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Transcription factors p-value Gene Name 
C/ebpδ 7.90X10-34 CCAAT/enhancer binding protein (C/EBP), delta 
C/ebpα 1.19X10-30 CCAAT/enhancer binding protein (C/EBP), alpha 
C/ebpβ 3.78X10-30 CCAAT/enhancer binding protein (C/EBP), beta 
Creg1 1.70X10-29 cellular repressor of E1A-stimulated genes 1 
Nfe2l2 1.17X10-28 nuclear factor, erythroid derived 2, like 2 
Irf7 8.04X10-26 interferon regulatory factor 7 
Klf2 1.86X10-23 Kruppel-like factor 2 (lung) 
Irf1 8.17X10-23 interferon regulatory factor 1 
Ostf1 1.96X10-22 osteoclast stimulating factor 1 
Atf3 2.09X10-22 activating transcription factor 3 
 
Table 2.3: Ten most significantly co-expressed transcription factors with genes increased in 
expression with aging 
We selected the transcription factors that are most strongly co-expressed with the aging seed 
list, as these may be important regulators in the aging process. We identified several cebp 
genes which have also been reported to extend lifespan in mice if their expression levels are 
altered [197, 198]. Since transcription factors are not always co-expressed with their targets, 
other transcription factors that play an important role in the aging process may be missing 
from this list. 
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The most TFs with the most significant p-values were C/ebpα, C/ebpβ and C/ebpδ (Table 2.3). 

Interestingly, these TFs show co-expression (i.e., in top 5% of co-expressed genes) with a 

significant proportion of the genes co-expressed with the aging seed list: 477 out of 1119 

genes (p-value < 10-100) for all 3 TFs and 730 out of 1119 (p-value < 10-100) were co-expressed 

with at least 2 out of 3 C/epβ genes. 

Since these TFs are co-expressed with the aging-related genes it was expected that these 

genes, at least in part, would be regulated by the co-expressed TFs. Therefore, they would 

share TFBSs for these TFs. To identify over-represented binding motifs in the genes co-

expressed with the aging genes (p-value<10-6), we employed FactorY [199]. For the aging gene 

set, this revealed Nfkb as the most significant result (Table 2.4). Some of the TFBSs identified 

are targeted by the co-expressed TFs with the aging seed list such as; Nfkb1 (pTFBS <1.48 x10-5, 

pCoexpress = 4.44 x10-9), the C/ebp (pTFBS< 6.95 x 10-3, pCoexpress =7.9 x 10-34) genes and Irf1 (pTFBS < 

5.8 x 10-4, pCoexpress <8.17x10-23) genes (Table 2.4). However, TFBSs for Isre, Nfkb2 (p65) and Sp1 

were identified as over-represented but not co-expressed and many co-expressed TFs did not 

have over-represented binding sites.  
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  N Total N Select p-value (corrected) 
MA0061 (NF-kappaB) 2132 172 1.48E-05 
V$ISRE_01 (ISRE) 2411 185 7.67E-05 
MA0107 (p65) 2174 167 1.92E-04 
V$GC_01 (GC) 9594 596 1.65E-04 
V$NFKAPPAB_01 (NFKAPPAB) 2085 161 1.34E-04 
MA0051 (Irf-2) 1440 117 3.13E-04 
V$SP1_01 (SP1) 7474 475 3.30E-04 
V$NFKB_Q6 (NFKB) 2433 179 4.39E-04 
MA0056 (MZF_1-4) 4521 304 4.90E-04 
V$NFKAPPAB65_01 (NFKAPPAB65) 2204 164 4.66E-04 
V$IRF1_01 (IRF1) 1851 141 5.72E-04 
V$NFKB_C (NFKB) 1635 123 3.18E-03 
V$MZF1_01 (MZF1) 5057 327 3.76E-03 
MA0050 (Irf-1) 3187 216 5.54E-03 
V$CREL_01 (CREL) 3152 213 6.85E-03 
MA0102 (cEBP) 3106 210 6.95E-03 
V$SREBP1_02 (SREBP1) 1707 123 1.30E-02 
MA0073 (RREB-1) 5643 353 1.80E-02 
V$PAX4_03 (PAX4) 3765 245 1.73E-02 
V$SP1_Q6 (SP1) 9475 565 1.96E-02 
MA0079 (SP1) 7190 438 2.38E-02 
V$MZF1_02 (MZF1) 5883 363 3.30E-02 
MA0101 (c-REL) 3146 204 4.96E-02 
V$IRF2_01 (IRF2) 1412 100 4.94E-02 
V$GKLF_01 (GKLF) 7519 452 4.82E-02 
V$STAT_01 (STAT) 3411 219 4.93E-02 

 
Table 2.4: TFBS enrichment analysis 
These are the results retrieved from FactorY [199], using the list of genes co-expressed with 
our aging seed list as input for the TFBS enrichment analysis. “N Total” indicates the number of 
genes that this transcription factor targets genome wide. “N Select” is the number of targets 
that have a transcription factor binding site in the input set of genes. The p-value indicates the 
significance, which has been corrected for multiple testing (Bonferroni). cEBP, for which 
several genes are also found to be strongly co-expressed with the aging associated genes, is 
also among this list further supporting the notion that this gene may be a regulator of the 
aging associated genes. 
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2.3.5. Cancer-related gene prediction  

A seed list of 45 cancer-related genes was used as input for GeneFriends. DAVID analysis 

identified Cell cycle (ES = 58.84, FDR =2.9x10-77) and DNA replication/repair (ES = 34.99, FDR = 

6.0x10-51) as the most significant over-represented categories for cancer-related co-expressed 

genes. This is expected given the fact that cancer arises from the uncontrolled division of cells.  

Table 2.5 shows the top 10 co-expressed genes. 
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Gene Previous association evidence Reference 
Nfkbil2 Confers resistance to DNA damaging agents and is a 

component of the replication stress control pathway 
[200] 

Chtf18 Involved in checkpoint response and chromosome cohesion [201] 
Cdc25c Over expression associated with poor prognosis of cancer [202] 
Cdc7 Effective in inhibition of cancer growth [203] 
E130303b06rik No previous associations  
Cep152 Involved in centriole duplication [204] 
Bc055324 No previous associations  
Cenpp Required for proper kinetochore function and mitotic 

progression  
[205] 

Anln Increased in expression in lung carcinogenesis and suggested 
as target 

[206] 

Hirip3 No previous associations  
 
Table 2.5: Top 10 genes co-expressed with cancer-related genes 
Most of these genes have been previously reported as genes that play a role in cancer 
development. Others have been associated to biological processes that can cause cancer if 
they are disrupted. For a full list refer to supplement 4. 
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From the original seed list, only 6 genes were co-expressed with the entire set of cancer genes 

(p-value <10-6), which could be due to the heterogeneity of cancer etiology. However, there 

were several significantly co-expressed genes, not included in the seed list, that have 

previously been associated with cancer. For example, Cdc25A, Cdc25B and Cdc25C, members 

of the Cdc25 family, are significantly co-expressed (p < 10-6) with the cancer genes. There were 

a high number of significantly co-expressed centromere proteins co-expressed with the cancer 

seed list. These proteins play a role in chromosome segregation, and incorrect segregation of 

chromosomes during the cell cycle can lead to cancer [207]. Cep152 is involved in centriole 

duplication [204]. Cenpp, as well as Cenpn, Cenpf, Cenph, Cenpj, CenpI, Cenpc1, Cenpt, Cenpk, 

Cenpm, Cenpe, Cenpq, Cenpa and Cenpl are all co-expressed significantly with the cancer seed 

list and are part of the CENP-A NAC complex (Table 2.6). This complex is required for proper 

kinetochore function and mitotic progression and its disruption can lead to incorrect 

chromosome alignment and segregation that preclude cell survival despite continued 

centromere-derived mitotic checkpoint signaling [208, 209]. Plk1, Aurka, AurkB and Cdca8 are 

in the top 50 co-expressed genes, these play an important role in cancer formation [210, 211].   
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Gene 
symbol 

Seed list co-
expression partners 

Total co-expression 
partners Seed list gene number p-value 

Cenpp 23 2247 45 2.54E-11 
Cenpn 22 2216 45 1.61E-10 
Cenpf 18 1365 45 1.74E-10 
Incenp 20 2062 45 2.54E-09 
Cenph 25 3505 45 5.01E-09 
Cenpj 20 2291 45 1.56E-08 
Cenpi 24 3512 45 3.09E-08 
Cenpc1 14 1088 45 4.45E-08 
Cenpt 18 1983 45 6.33E-08 
Cenpk 20 2515 45 7.55E-08 
Cenpm 12 1019 45 1.29E-06 
Cenpe 17 2169 45 1.38E-06 
Cenpq 21 3495 45 3.52E-06 
Cenpa 19 3090 45 9.78E-06 
Cenpl 23 4398 45 9.90E-06 

 
Table 2.6: List of CENP-A NAC complex related genes co-expressed with the list of cancer 
associated genes 
P-values are calculated using a cumulative binomial test, determining the significance of 
observing this number of seed list co-expression partners based on the total number of 
partners in the entire network and the number of seed list genes. It is important to consider 
that the p-value is dependent on the number of genes in the network, meaning if more genes 
are added to the network it is more likely to observe more significantly co-expressed genes 
(100 out of 1000 is more significant than 10 out of 100 according to a binomial test). 
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Several poorly annotated genes (Bc055324, E130303B06Rik, 4930547N16Rik, F730047E07Rik, 

1110034A24Rik, and 4632434I11Rik) were co-expressed with the cancer-related genes 

suggesting these genes might play a role in occurrence or pathophysiology of cancer. One of 

these poorly annotated genes, Bc055324, is a predicted protein coding gene, which has a high 

co-expression ratio of more than 0.7 with the cancer genes Rad51 and Ccdc6 [212], indicating 

this gene is increased in expression in >70% of the cases that Rad51 is increased in expression. 

Many other cancer-related genes, such as Brca1 and Brca2, also show a strong co-expression 

with the Bc055324 gene (Supplement 4). The genes co-expressed with Bc055324 show an 

enrichment genes annotated to the cell cycle ontology (ES = 52, FDR = 1.7*10-74). A Basic Local 

Alignment Search Tool (BLAST) analysis of the protein sequence shows no there is no 

significant homology to other Mus musculus proteins. Similar sequences, however, are found 

in a large number of different multi-cellular species such as Gallus gallus, Bos taurus and Homo 

sapiens and there also is a significantly similar gene present in Arabidopsis thaliana, suggesting 

it is conserved in plants as well. Since this gene is well conserved it is likely a functional gene, 

as opposed to being a pseudogene. 

2.3.6. Validating the role of C1ORF112 and C12ORF48 in growth of cancer cells 

To test our predictions, we employed small interfering RNA (siRNA) to knock down the human 

homologs of Bc055324 (C1ORF112) and 4930547N16Rik (C12ORF48) in the widely-used HeLa 

cancer cell line. These two genes were selected for validation because they are co-expressed 

with genes involved in the cell cycle (DAVID Enrichment score: 56, FDR<1.0E-10), thus 

knockdown of these genes should lead to a measurable phenotype. The expectation is that, if 

these genes play a role in cancer, they play a crucial role in proliferation. As such, knocking 

these genes down should lead to decreased growth rate of the cells.  Furthermore, we 

selected these two genes because validated siRNAs were available (see Materials and 
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Methods) for these genes. The results show that the growth rate of the cancer cells is 

significantly lower when either C1ORF112 or C12ORF48 are knocked down (Figure 2.2). These 

results support our predictions and demonstrate that C1ORF112 and C12ORF48 are important 

for cell growth.  We do note that this phenotype is likely to occur when knocking down any 

gene. In yeast it was shown that 15% of all homozygous diploid disruptions cause reduction in 

growth rate [213]. It is imaginable this is also the case for mouse cell line knockouts, which 

would mean this phenotype would be observed for a relatively large proportion of gene 

knockdowns, i.e. 15%. Nonetheless, the fact that we observe this reduced growth rate 

supports the notion that these genes could be important for cancer growth. 
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Figure 2.2: Knock-down of candidate cancer related genes slows growth of HeLa cells 
a. Cell counting assay for the knock down of the human homolog gene of Bc055324 
(C1ORF112). b. Cell counting assay for the knock down of the human homolog gene of 
4930547N16Rik (C12ORF48). Error bars indicate the standard deviation. Negative control 
contains siRNA's targeting non-mammalian genes. Positive control contains siRNA's inducing 
apoptosis. The knock-down of either of these genes appear to reduce the proliferation rate of 
the cells. 
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2.3.7. Mitochondrial complex I disease-related gene prediction 

All 10 genes in the seed list of mitochondrial complex I disease genes were significantly co-

expressed with each other. This functional enrichment for the co-expressed genes with this 

seed list was the strongest amongst all disease gene seed lists tested, indicating these co-

expressed genes are involved in the same process and are tightly regulated (Table 2.7). Table 

2.8 shows the top 10 co-expressed genes with the seed list.  
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Annotation Cluster 

Enrichm
ent Score 

Category 

Term
 

Count 

%
 

List Total 

FDR 

1 210.25 GOTERM_CC_FAT GO:0005739~mitochondrion 350 61.73 466 3.62E-250   
SP_PIR_KEYWORDS mitochondrion 275 48.5 539 3.75E-234   
SP_PIR_KEYWORDS transit peptide 197 34.74 539 4.56E-181 

2 64.54 GOTERM_CC_FAT GO:0044429~mitochondrial 
part 

193 34.04 466 8.87E-147 
  

GOTERM_CC_FAT GO:0005743~mitochondrial 
inner membrane 

124 21.87 466 4.32E-97 
  

GOTERM_CC_FAT GO:0031966~mitochondrial 
membrane 

134 23.63 466 3.70E-96 

3 32.71 GOTERM_CC_FAT GO:0005759~mitochondrial 
matrix 

77 13.58 466 1.77E-62 
  

GOTERM_CC_FAT GO:0031980~mitochondrial 
lumen 

77 13.58 466 1.77E-62 
  

GOTERM_CC_FAT GO:0031974~membrane-
enclosed lumen 

95 16.75 466 4.55E-10 

4 18.25 GOTERM_BP_FAT GO:0045333~cellular 
respiration 

28 4.94 400 5.90E-23 
  

GOTERM_BP_FAT GO:0015980~energy 
derivation by oxidation of 
organic compounds 

32 5.64 400 8.20E-21 

  
GOTERM_BP_FAT GO:0051186~cofactor 

metabolic process 
39 6.88 400 7.78E-19 

5 14.49 GOTERM_MF_FAT GO:0016651~oxidoreductase 
activity, acting on NADH or 
NADPH 

26 4.59 402 8.12E-22 

  
GOTERM_MF_FAT GO:0016655~oxidoreductase 

activity, acting on NADH or 
NADPH, quinone or similar 
compound as acceptor 

18 3.17 402 9.52E-17 

  
GOTERM_MF_FAT GO:0050136~NADH 

dehydrogenase (quinone) 
activity 

17 3 402 3.03E-16 

6 14.06 SP_PIR_KEYWORDS ribosomal protein 49 8.64 539 2.52E-29   
GOTERM_CC_FAT GO:0005840~ribosome 49 8.64 466 1.04E-23   
SP_PIR_KEYWORDS ribonucleoprotein 50 8.82 539 1.00E-21 

7 10.35 GOTERM_BP_FAT GO:0006006~glucose 
metabolic process 

26 4.59 400 5.26E-10 
  

GOTERM_BP_FAT GO:0019318~hexose 
metabolic process 

27 4.76 400 6.34E-09 
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Table 2.7: Enrichment of genes co-expressed with mitochondrial complex I disease genes 
”List total” indicates the total number of genes annotated to this term, where “count” 
indicates the number of these genes in the list of co-expressed genes. The “FDR” indicates the 
False Discover Rate (FDR) based significance of this enrichment. There is a strong enrichment 
for mitochondrial processes. The strong enrichment for these specific mitochondrial processes 
and strong co-expression among these genes suggests they are tightly regulated.  

  
GOTERM_BP_FAT GO:0044275~cellular 

carbohydrate catabolic 
process 

17 3 400 1.73E-08 
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Gene Previous disease association evidence Reference 
Atp5j Risk factor for ischemic heart disease end-stage renal 

disease 
[214] 

Cox7a2 No previous association evidence  
Ndufa1 No previous association evidence  
Ndufb7 No previous association evidence  
Cox7c No previous association evidence  
Cox5b Interacts with the human androgen receptor [215] 
Atp5f1 No previous association evidence  
D830035I06/Atp5k Atp5k has been associated with atherosclerosis [216] 
Deb1 C.elegans mutants were paralyzed and had 

disorganized muscle 
[217] 

Ndufb6 No previous association evidence  
 
Table 2.8: Top 10 genes co-expressed with mitochondrial complex I disease related genes 
References for all genes previously associated with disease have been supplied. Since multiple 
genes associated with disease could be recovered, the other genes in this list may also cause a 
mitochondrial complex I related disease if mutated or ablated.  
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The results included a number of genes that have been associated with several diseases 

amongst which Alzheimer’s and Parkinson’s disease. Not surprisingly, DAVID analysis identified 

Mitochondrion (ES = 210.25, FDR= 3.6x10-250), Cellular respiration (ES = 18.25, FDR = 5.9x10-23) 

and Oxidoreductase activity, acting on NADH (ES = 14.49, FDR = 2.3x10-22), as the most 

significant functional clusters. 

The co-expressed genes include several mitochondrial complex I genes (not in seed list), 

multiple cytochrome c proteins, and genes involved in the ATP synthase complex. 

Furthermore, there are approximately 50 poorly annotated genes co-expressed. A 

pseudogene, 3000002C10Rik, shows a co-expression ratio of >0.50 with 512 genes. 

Classification of these 512 genes using DAVID results in an enrichment score of 53.7 (FDR = 

2.9x10-70) for mitochondrial genes. Therefore, 3000002C10Rik may play a biologically relevant 

role in mitochondrial processes. 

2.3.8. Predicting functions of  poorly annotated genes 

To investigate if it is possible to predict or estimate a given gene’s function based on its 

co-expression pattern, we inspected a selection of  poorly annotated genes. Using DAVID, the 

functional categories for the top 5% co-expressed genes were obtained. Table 2.9 shows the 

functional categories for the poorly annotated genes with the highest significance value.  
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Table 2.9: Top functional annotation clusters of the 5% genes with the strongest co-
expression with the poorly annotated genes 
Term clusters as defined by DAVID, (summarizing similar term definitions originating from different 
sources) with an enrichment score (ES) above 5 are displayed (10 for 0610010D20Rik). Cluster titles and 
FDR were selected based on the most significant annotation within the cluster. For each gene a different 
enrichment among their co-expressed genes is uncovered. The fact that these results contain similar 
enrichment scores as the annotated genes used to validate our approach, is suggestive that these genes 
play a role in the processes noted in the table. For full lists refer to supplement 5. 

  

Un-annotated Gene DAVID Functional Annotation ES FDR 
0610006I08Rik Mitochondrion 32.75 1.1x10-40 
0610006L08Rik Disulfide bond/secreted 33.14 3.1X10-38 
 PeptidaseS1/Chymotrypsin 16.25 1.4X10-20 
0610010D20Rik Peroxisome 21.8 3.8X10-22 
 Fatty acid metabolism 21.78 1.7X10-22 
 Drug metabolism/CytochromeP450 17.94 6.1X10-20 
0610031J06Rik Lysosome 18.59 2.4x10-18 
0610037L13Rik Ribosomal protein 16.97 1.2x10-22 
0610037M15Rik Immune response 24.02 2.0 x10-28 
0710008K08Rik Vasculature development 13.26 1.9x10-12 

 Lung development 12.36 2.4x10-10 
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While some of the categories identified are broad, others are more specific. These results 

show that it is possible to use GeneFriends to infer gene functions for unannotated genes. The 

fact that for 9 annotated genes the inferred functions are coherent with the known functions 

supports the notion that these inference are reliable, as shown in Section 2.3.2. This is further 

supported by the experimentally validated results for C1ORF112 or C12ORF48, showing that 

genes co-expressed with cancer genes are important for proliferation speed. 

 Discussion 
2.4.1. GeneFriends: A genetics and genomics tool for the research community  

GeneFriends is freely available online (http://GeneFriends.org/) and is an intuitive tool, which 

can be used to identify the genes co-expressed from a user supplied gene list. This simple, yet 

powerful new tool can be a valuable resource for genome interpretation, annotation, mouse 

genetics, functional genomics, and transcriptional regulation. It may also be useful to develop 

network analyses of mouse genes in a variety of studies. 

  

We tested GeneFriends to determine whether it can give biologically relevant data. We also 

demonstrated how GeneFriends can be used to quickly identify interesting gene targets for 

follow-up studies. Furthermore, we experimentally validated that two poorly annotated genes 

co-expressed with a cancer seed list are important for cell proliferation.  Below, we discuss the 

findings we have obtained from our example analyses and the biological relevance of our 

results. 
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2.4.2. Validation of the co-expression map 

Our analyses rely on the assumption that   co-expressed genes tend to be involved in the same 

biological processes. Our results clearly support this, as co-expressed clusters of genes show 

strong enrichment for functional categories and specific processes, indicating a significant 

number of genes within these clusters play a role in the same process (Figure 2.1). This is 

further supported by the fact that co-expression partners of genes for which the function is 

well established show enrichment for the known functions of these tested genes (Supplement 

1). There is a high degree of functional coherence between co-expressed genes. This supports 

the notion that our co-expression map can be used to obtain biologically-relevant information.  

Given the intrinsic noisy nature of microarray data, we used a vote counting approach, which is 

a standard meta-analysis technique, to build our co-expression map [218]. Dealing with the 

noisy nature of the data is particularly important when combining large and diverse datasets 

and meta-analysis has been shown to increase sensitivity when studying aging, for example 

[170]. Using this vote counting method, single gene expression or sample outliers do not 

heavily impact on the overall gene correlation scores. We assumed the vast majority of 

samples uploaded to the public database are of high quality and therefore aimed to include as 

much of this data as possible. Experience has taught this is not necessarily the case and that 

refined quality control will likely improve the reliability of the results obtained from the 

network. Nonetheless, we feel our network can be reliably used to assign putative functions to 

unknown genes and identify possible disease gene targets. This is based on the observation 

that co-expression analysis for 9 well annotated genes identified the correct role and that 

genes not present in a seed list of disease genes are often also annotated in the context of the 

corresponding disease according to the literature (Table 2.2, table 2.5 and table 2.8). 
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2.4.3. Co-expression analysis of genes associated with aging 

Using a guilt-by-association method, we identified candidate genes related to seed lists of 

genes previously associated with diseases or processes. Our study not only identified genes 

that are relevant to aging according to current theories of aging, e.g. inflammation, but it also 

identified novel candidates for further research. C/ebp transcription factors showed the 

strongest co-expression and are therefore candidate activators of the altered expression 

patterns with age. TFBS for C/ebp genes were identified in the aging genes and there is some 

evidence of a transcriptional cascade via SP1 [219]. The two proteins encoded by the C/ebpβ 

gene are liver activating protein (LAP) and liver inhibiting protein (LIP), which have opposing 

effects [220, 221]. The LIP protein is also capable of inhibiting other C/ebp proteins. This could 

explain why C/ebp transcription factors themselves are not found to be increased/decreased 

in expression with age. This could also be due to the fact that TFs are sometimes expressed at 

low levels causing the expression not to be detected by microarrays.  

The fact that replacement of the C/ebpα gene with C/ebpβ increases lifespan by 20% supports 

the case that these C/ebp genes play an important role in aging [197, 198]. These different 

isoforms may alter the rate of aging [222], indicating that altering the isoform expression of 

these genes can affect lifespan.  Moreover, the life-extending drug rapamycin may affect 

isoform ratios of C/ebpβ. Rapamycin has been shown to increase lifespan via the suppression 

of Mtor [223] which in turn controls the isoform ratios of C/ebpβ [224]. Therefore, we 

speculate that rapamycin may, in part, exert its life extending effect through C/ebpβ.  
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2.4.4. Co-expression analysis of cancer genes and experimental validation of 

candidates 

We used GeneFriends to identify new candidate cancer genes. Many of the cancer genes in the 

initial seed list were not present in the results indicating they are not co-expressed with each 

other. This may be due to the fact that this set of cancer genes includes both oncogenes and 

tumor suppressor genes, which are not expected to be co-expressed. Also cancer can arise 

through different mechanisms. Therefore, the genes identified as co-expressed in this study 

are likely involved in common pathways leading to cancer, or are at least triggered by 

transformation.  

Genes that are co-expressed with several oncogenes may prove to be useful targets in 

countering the proliferative effect of these genes in tumors. Examples of such genes are Cdc7 

and Cdc25. These genes were both identified as co-expressed in our study and were readily 

being studied in cancer context. Cdc25 has been suggested as a therapeutic cancer target, and 

on-going studies in this direction have shown some level of success [202, 225-227]. Two 

compounds that target Cdc7 are currently in phase I clinical trials [228]. The fact that candidate 

genes identified by our method have already been suggested as potential drug targets shows 

that GeneFriends can be useful for the identification of candidate targets for cancer studies. 

Bc055324 is one of the poorly annotated genes that is strongly co-expressed with a large 

number of cancer genes. Knock-down of the human homolog, C1ORF112, in HeLa cells 

diminishes cell growth, which, adding the fact that Bc055324 knockout mice are not viable 

[229] (http://www.europhenome.org/), demonstrates that this gene is functional, as opposed 

to being a pseudogene. Further studies of this gene in the context of cell cycle regulation, 

development, and cancer are warranted. These results show that GeneFriends can indeed be 
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used to identify novel targets for particular diseases. In addition, it confirms that the functional 

enrichment of co-expressed genes can give indications about a poorly annotated gene's 

function. The other poorly annotated gene co-expressed with cancer we tested was 

4930547NRik (C12ORF48). C12ORF48 was recently shown to be over-expressed in pancreatic 

ductal adenocarcinoma (PDAC) cells [230] and in other aggressive and therapy-resistant 

malignancies [230]. In line with our findings in HeLa cells, knock down of the C12ORF48 

significantly suppressed PDAC cell growth [230]. 

2.4.5. Co-expression analysis of mitochondrial I complex disease genes 

Mitochondrial complex I diseases include isolated complex I deficiency, which is the most 

common enzymatic defect of the oxidative phosphorylation disorders and can cause a wide 

range of clinical disorders [231, 232]. These include macrocephaly with progressive 

leukodystrophy, nonspecific encephalopathy, cardiomyopathy, myopathy, liver disease, Leigh 

syndrome, Leber hereditary optic neuropathy, and some forms of Parkinson’s disease [233-

235]. Mutations in the nuclear encoded mitochondrial genes have been previously associated 

with several pathologies [236, 237]. However, half of the patients with mitochondrial complex 

I (CI) deficiencies lack mutations in any known CI subunit. This suggests that yet unidentified 

genes crucial for maturation, assembly, or stability of CI may be involved in these diseases 

[237]. We identified several poorly annotated genes that show a strong co-expression with the 

mitochondrial disease gene set. As most of the other co-expressed genes encode 

mitochondrial proteins, these poorly annotated genes most likely also encode mitochondrial 

proteins. This is further supported by the fact that a number of these poorly annotated genes 

have been shown to be active in the mitochondria in another large-scale study [238]. Some of 

these genes could be responsible for the CI deficiency phenotype and are therefore promising 

candidates for further studies.  
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 Conclusion 
In this study we created a tool that identifies co-expressed genes from a user’s seed list. 

Moreover, it returns the GO term enrichment of this list as well as a separate list of the 

co-expressed transcription factors. This allows novel candidate genes to be quickly identified 

for follow up studies. GeneFriends employs a biologically-relevant co-expression map and a 

guilt-by-association method to identify novel candidate genes for complex diseases. We 

demonstrated the biological relevance of this tool by analyzing aging, cancer and 

mitochondrial I complex deficiency seed lists. Furthermore, we experimentally validated two 

poorly annotated candidate genes co-expressed with cancer-related genes.  We also 

demonstrated how GeneFriends can be used to investigate transcription factors that are co-

expressed with seed genes of interest, helping to elucidate the regulatory mechanisms. 

GeneFriends is freely available online (http://GeneFriends.org) to other researchers allowing 

the identification and prioritization of candidate genes to study other complex diseases and 

processes. 
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 Materials and Methods 
2.6.1. Data selection 

To create the co-expression map, normalized microarray datasets, obtained from the GEO 

database, were used [152]. GEO files GSE1 to GSE18120 were downloaded containing 16,916 

datasets in total. From these, 3,850 Mus musculus datasets, containing 64,849 microarrays and 

the corresponding annotation files, were extracted. Mouse experiments are generally better 

controlled than human studies and there is less variation caused by genotypic  factors in mice. 

To reduce the effect of genotypic differences between individuals on co-expression patterns, 

Mus musculus data was used instead of Homo sapiens data. Using mouse data also allows 

more datasets to be included and they originate from a more diverse set of experiments [170]. 

This potentially allows for the investigation of target genes in the different mouse models of 

aging and complex diseases. 

All datasets containing annotation files that did not include gene symbols for at least 90% of 

the probes present in the data, were removed. All microarray datasets containing values 

higher than 25 were log transformed, under the assumption this data was non-log-

transformed data. To remove poor signal, low quality data or data containing nonsense values 

up to 1099, datasets containing no values above 2log(5,000) or one or more values over 

2log(20,000,000), were removed . Datasets with no reference to any annotation file were 

removed as well. After these steps, 1,678 datasets representing 8,417 different conditions and 

21,744 individual samples remained. The probe IDs were converted into gene symbols. If 

multiple probe IDs mapped to the same gene symbol, they were averaged. Within each 

dataset the experimental conditions were manually determined. Microarrays from individuals 

under the same conditions were averaged; in other words, replicates were averaged. Missing 
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gene expression values were replaced by the average expression value of the replicates. If 

these were also missing or not available, the gene was removed.  

2.6.2. Constructing the co-expression map 

To create GeneFriends, we first constructed a genome-wide co-expression map, using 

normalized Mus musculus microarray data from the GEO database. This describes which genes 

are related based on how often they are co-expressed. In total, 1,678 mouse datasets 

containing 8,417 different conditions and 21,744 individual samples met our data selection 

criteria. To construct our expression map, the different conditions within each dataset were 

compared to each other. Since different datasets contain different probes mapping to 

different gene symbols, a selection was made. Only those gene symbols that are present in 

gene platform file GPL1261 (Affymetrix GeneChip Mouse Genome 430 2.0 Array) were used. 

This platform contains 20,676 gene symbols and is the most common platform used for 

microarrays amongst those included in this work. All of these gene symbols were present in 

over 850 datasets. 

In this work, we have used a vote counting approach to quantify co-expression for 

approximately 400 million (20,676*20,676) gene pairs. We used these pairs to establish if 

genes were co-regulated; co-regulation being defined as both genes increasing or decreasing 

in expression at least two-fold simultaneously, a standard (even if arbitrary) measure of 

differential expression, between any pair of conditions within each dataset. By only comparing 

conditions within the same datasets, we avoid inducing non-biological correlations resulting 

from inter-dataset technical biases. Then based on how often gene pairs were co-regulated 

compared to how often the single genes showed a two-fold increase or decrease in 

expression, we calculated a co-expression ratio, which quantifies how strongly two genes are 
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co-expressed, for all 20,676*20,676 gene pairs. The number of times two genes were 

simultaneously differentially expressed in the same direction (i.e. relative up or down 

regulated), was calculated using the equation: 

 

Where s is the total number experimental conditions (or samples, if no replicates are used), 

“gene” represents the expression of the gene (in sample i or j), and N is the number of times 

two genes are differentially expressed (in the same direction) simultaneously. The total 

number of times each gene was relatively up or down regulated (Qgene) (i.e., >2 fold) was 

calculated using the following equation: 

 

Where s is the total number of experimental conditions. 

From the values N and Q, the co-expression ratio was deducted. The genes were then ranked 

based on their N/Q ratio. A ratio of 0.50 would indicate that, if gene 1 is increased or 

decreased in expression in 50% of the cases, gene 2 is also increased or decreased in 

expression. Each gene pair is present in at least 850 datasets, thus the ratio is based on a large 

number of measurements. We note that datasets that the number of comparisons that can be 

made within 1 datasets is increasing rapidly (n!) with the number of conditions present within 

a dataset, causing these datasets to weigh more heavily and introducing a strong bias toward 
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datasets describing more conditions. To construct the RNA-seq data based co-expression 

network we used Pearson correlation, a more commonly applied method to assess gene co-

expression (Chapter 3). 

2.6.3. Testing the co-expression map 

One of the objectives of the co-expression network is to assign putative functions to poorly 

annotated genes, based on the functional enrichment among co-expressed genes. To test 

whether this is possible and likely identifies the correct function, a set of 9 well annotated 

genes were selected and their function was predicted based on their co-expression partners: 

Three genes that are known to be active in fatty acid metabolism: Ppara, Acaa2 and Acadm; 

three genes known to be involved in immune response: Cd4, Cd8 and Il10; and three cell cycle 

genes: Cdc6, Cdc7 and Cdc8. For each of these genes, the top 5 percentile co-expressed genes 

were selected for functional enrichment analysis, which was conducted using DAVID [72] (see 

Section 2.6.6 for functional enrichment analysis).  

2.6.4. Prediction of novel candidate genes in aging and complex diseases 

To identify genes co-expressed with known disease genes, three disease-related gene sets 

were included. The first of these was an aging gene set. It consisted of genes over-expressed 

with age, obtained from a meta-analysis of aging microarray studies in mice, rats and humans 

that revealed several conserved genes increasing or decreasing in expression with age [170] 

(Supplement 6). The second gene set included was a set of cancer-related genes [239] 

(Supplement 6). This is a manually curated cancer set that includes only heritable cancer genes 

with strong evidence that mutations in these genes are causative for cancer. The third gene set 

added included genes known to cause diseases through mitochondrial complex I deficiencies. 

The genes in this set contain the nuclear mitochondrial complex I deficiency genes in the 
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Online Mendelian Inheritance in Man (OMIM) database (Supplement 6). Gene symbols that 

were not present in the co-expression map were not included in the analysis. 

Using the seed lists described in the previous paragraph, a "guilt-by-association" approach was 

employed with the aim of finding new potential disease-related gene targets. In this approach, 

the top 5% most co-expressed genes with each gene were considered “friends” of that 

particular gene. For each of the 20,676 genes, we calculated how many times it was “friends” 

with the disease related genes. Next, the probability that a gene was “friends” with this 

number of disease genes was calculated, as follows: The number of times each gene was 

“friends” with any other gene was counted and consecutively the chance a gene is "friends" 

with another gene was calculated. 

p = total number of times this gene is friends with other genes/total number of genes 

Where p thus is the chance that a particular gene occurs in the top 5% of a random gene. 

We assume the following null hypothesis: The probability of a gene being a “friend” with one 

of the n disease genes equals the probability p of being a “friend” with a random gene. Then 

the probability of a gene being a “friend” with k or more genes from the disease list can be 

calculated by using the right-tail of the binomial distribution. 

Pr(𝐾𝐾 ≥ 𝑘𝑘) = ��
𝑛𝑛
𝑖𝑖
�𝑝𝑝𝑖𝑖(1 − 𝑝𝑝)𝑛𝑛−𝑖𝑖

𝑛𝑛

𝑖𝑖=𝑘𝑘

 

Where Pr(K>= k) is the probability that a gene would be “friends” with k or more genes in the 

disease gene set; k is the number disease gene “friends”; n is the number of genes in the gene 

set. When calculating p the number of occurrences of a gene in the top 5% of all genes was 
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included. This is necessary since some genes tend to be co-expressed more often, in general, 

than other genes.  

To test whether there was a significantly larger number of aging genes among the co-

expressed genes versus those that are not, we also used a Fisher exact test. A curated list of 

aging genes was obtained from GenAge [192]. We selected all Mus musculus aging related 

genes from build 18 (11/10/2015). 

2.6.5. Experimental validation of cancer-predicted genes Bc055324 and 

4930547N16Rik 

To test the predictions from the analyses using GeneFriends, we took poorly annotated genes 

that had the strongest co-expression with the cancer disease gene list. Validated siRNAs were 

available from Qiagen for two the human homologs of the top poorly annotated genes: 

Bc055324 (C1ORF112) and 4930547N16Rik (C12ORF48). The experiment was conducted in 

human HeLa cells using standard culture conditions. A negative and a positive control were 

also included (Qiagen). The positive control contained a mix of several apoptosis-inducing 

siRNAs, demonstrating that the transfection was successful through the observed elevated cell 

death. The negative control consisted of siRNAs targeting non-mammalian genes. The full 

protocol followed for this experiment is described in supplement 7.  

2.6.6. Gene set function enrichment analysis 

The Database for Annotation, Visualization and Integrated Discovery (DAVID) [171] was used 

to identify enriched functional groups within these genes. The default settings were used in 

this analysis. The results were ranked based on p-value and genes with a p-value <10-6 were 

selected. We adapted our significance 0.05 p-value cutoff for multiple testing based on a 

Bonferroni correction for 20,677 genes resulting in a stringent cutoff of 10-6. In addition, 
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several geneset, containing random sets of genes, were created and the co-expression 

network was used to identify functional enrichment among co-expressed genes with these 

random sets of genes. The significance p-values found for all results were >10-5, indicating no 

significant results are found using these random sets of genes with p-value a cutoff of 10-6. 

Next, to understand the significance of the DAVID enrichment score, 1000 genes were 

randomly selected and used as an input for DAVID. This resulted in an enrichment score of 2.2 

with an FDR score of 0.7 for the most significant category found. The same was done for 

smaller sets of genes, resulting in similar scores. This indicates that the enrichment scores of 

>10 and FDR <10-10 are unlikely to be reported when there is not an actual significant 

enrichment among the list of genes used (as opposed to these scores being the result of some 

type of bias). Benchmarking using our co-expression map and COXPRESdb revealed similar 

results (Table 2.1), suggesting our co-expression map is not inferior to those built using 

correlation measures. Therefore, our work demonstrates that vote counting is a viable method 

to build co-expression maps. 

A concern with our analysis is that some of the genes in functional categories used by DAVID 

were assigned based on their expression pattern; if this would be the case it could lead to 

circular reasoning. However, an analysis conducted by the DAVID team shows that less than 

1% (78/20676) of the genes is grouped based solely on their expression pattern (See table 2.10 

for a full list of these genes). 
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name 
5'-3' exoribonuclease 2 
acyl-CoA thioesterase 11 
ADP-ribosylation factor-like 6 
amelogenin X chromosome 
antigenic determinant of rec-A protein 
aryl hydrocarbon receptor nuclear translocator 2 
Bardet-Biedl syndrome 1 (human) 
Bardet-Biedl syndrome 4 (human) 
Bardet-Biedl syndrome 9 (human) 
bestrophin 1; hypothetical protein LOC100046789 
bestrophin 2 
bone morphogenetic protein 10 
bone morphogenetic protein 2 
bone morphogenetic protein receptor, type 1B 
cartilage associated protein 
CCAAT/enhancer binding protein (C/EBP), gamma 
cDNA sequence Bc054059 
centrin 2 
centrosomal protein 57 
collagen, type I, alpha 1 
collagen, type XIII, alpha 1 
DiGeorge syndrome critical region gene 14 
DNA methyltransferase 3B 
EGF-like domain 7 
EGF-like domain 8 
endoglin 
four and a half LIM domains 2 
gametogenetin 
GATA binding protein 4 
GATA binding protein 6 
glycerol kinase-like 1 
growth arrest specific 8 
helicase, lymphoid specific 
HERPUD family member 2 
insulin-like growth factor 1 
insulin-like growth factor 2 
interferon regulatory factor 6 
interleukin-1 receptor-associated kinase 1 
intraflagellar transport 81 homolog (Chlamydomonas) 
Iroquois related homeobox 1 (Drosophila) 
Iroquois related homeobox 3 (Drosophila) 
LIM homeobox transcription factor 1 beta 
MAD homolog 1 (Drosophila) 
MAD homolog 5 (Drosophila) 
McKusick-Kaufman syndrome protein 
microtubule-associated protein 1S 
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misshapen-like kinase 1 (zebrafish) 
mohawk homeobox 
muscleblind-like 1 (Drosophila) 
neurensin 1 
NK-3 transcription factor, locus 1 (Drosophila) 
NK2 transcription factor related, locus 5 (Drosophila) 
NK2 transcription factor related, locus 6 (Drosophila) 
nuclear receptor subfamily 6, group A, member 1 
peroxisome proliferator activator receptor delta 
piwi-like homolog 2 (Drosophila) 
placental specific protein 1 
proprotein convertase subtilisin/kexin type 2 
prospero-related homeobox 1 
protocadherin 18 
renin 1 structural; similar to renin 2 tandem duplication of Ren1; renin 2 tandem 
duplication of Ren1 
salt inducible kinase 1 
similar to iroquois-class homeobox protein IRX2; Iroquois related homeobox 2 
(Drosophila) 
similar to Nanog homeobox; Nanog homeobox 
STEAP family member 4 
stromal cell derived factor 4 
suppressor of variegation 3-9 homolog 2 (Drosophila) 
tescalcin; similar to Tescalcin 
testis-specific serine kinase 3 
tetratricopeptide repeat domain 8 
timeless homolog (Drosophila) 
titin-cap 
triggering receptor expressed on myeloid cells-like 1 
tripartite motif-containing 32; RikEN cDNA 3632413A11 gene 
tubulin, gamma 1 
tumor necrosis factor, alpha-induced protein 1 (endothelial) 
uncoupling protein 1 (mitochondrial, proton carrier) 
zinc finger protein 105 

 
Table 2.10: List of 79 genes annotated to functional categories solely based on co-expression 
One concern with our co-expression was that the reasoning would be circular if the annotated 
genes would have been previously annotated to a particular term because they are co-
expressed with other genes in that term. To this end, we contacted the DAVID team, which 
were kind enough to supply a list of genes that were annotated to terms solely based on co-
expression, which is listed above. This is a very small number compared to the genes 
annotated based on at least one other source of evidence. Therefore we are not concerned 
this bias is an issue in our analyses. 
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2.6.7. BLAST 

A Position-Specific Iterative (PSI-BLAST) search was conducted with the Bc055324 gene against 

the non-redundant protein sequence database. The protein sequence of this gene was 

recovered from GenBank. All sequences recovered in the initial search with a p-value <0.005 

were used in the PSI-BLAST search. This last step was iterated twice.  
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 A human RNA-seq-based gene and transcript co-

expression database 

In the previous chapter, we have established a web interface and created a database that can 

be used to query co-expression partners for coding genes. The results described in the 

previous chapter, support the notion that this database and the corresponding web interface 

can be used to predict which biological process and well-studied diseases a poorly annotated 

genes plays a role in . However, this co-expression network does not contain ncRNAs, which 

are often poorly annotated and may play important roles in diseases. Often these ncRNAs are 

not studied in the context of disease, because the lack of information about their function 

makes it hard to interpret the functional meaning of associations between such genes and 

disease. In this light, the second goal of the project described in this thesis was to create a co-

expression database that would also include co-expression information for these ncRNAs. To 

achieve this, we used RNA-seq data, which includes expression data for ncRNAs. The resulting 

database could be queried for genes annotated to a particular disease to uncover ncRNAs that 

are strongly co-expressed with these disease genes suggesting these may also play a role in 

these disease, as we show in an example. Additionally, our database allows users to query 

ncRNAs that may appear differentially expressed or mutated in the disease or process they 

study and acquire potential functions for these genes. This information thereby aids the 

interpretation of results obtained from such differential expression analyses. The predictions 

can also be utilized to prioritize the ncRNAs that are most likely of the user’s interest and 

design follow-up experiments to acquire further insights into the function of these genes. 

RNA-seq data can also be used to assess the expression on a transcript level to a certain 

extent. Additional to including ncRNAs in our database, we created a transcript specific 
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database that allows users to query transcripts rather than genes, adding another layer of 

detail to our database. This feature allows researchers to query our database for transcript 

level co-expression. This will aid researchers that identify differential splicing in their study 

with the interpretation of their results.  Researchers may, for example, find that in some cases 

a different isoform becomes expressed in their samples of interest due to, for example, 

genetic variation [240]. With our database they can test if these different isoforms tend to 

have different co-expression partners, which would suggest they play a role in different 

processes and the enrichment analysis results will show which processes these are. This can 

help the interpretation of their results and aid the design of follow-up experiments. 

In this chapter, we created a co-expression database for transcripts, as well as a gene co-

expression database, that includes non-coding genes. Additionally, we investigated if it is 

possible to predict the process in which ncRNAs and different transcripts exert their function. 

To do so, a similar method was used as the method used in Chapter 2 for their coding 

counterparts in addition to a number of additional measures described in Section 3.3.3 to 

3.3.6. In this chapter, we opted to use Pearson correlation to construct the co-expression 

network rather than the vote counting approach used in Chapter 2. Motivation for this choice 

was that Pearson correlation does not suffer from the bias described in Section 2.6.2. The 

same web design was used (.css file) as for the original GeneFriends website, which was 

originally supplied by Thomas Craig. Additionally, Thomas Craig maintained the server on 

which the GeneFriends website is served. João Pedro de Magalhães provided guidance with 

the project and helped drafting and editing the manuscript. All other work was conducted by 

Sipko van Dam. This work was published in Nucleic Acid Research in 2015 [50].  
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 Abstract 
Co-expression networks have proven effective at assigning putative functions to genes based 

on the functional annotations of co-expressed genes, at candidate disease gene prioritization 

and in improving understanding of regulatory networks. The growing number of genome 

resequencing efforts and genome-wide association studies often identify loci containing novel 

genes and there is a need to infer their functions and interaction partners. To facilitate this, we 

have expanded GeneFriends, an online database that allows users to identify co-expressed 

genes with one or more user-defined genes. This expansion entails an RNA-seq-based co-

expression map that includes genes and transcripts that are not present in the microarray-

based co-expression maps, including over 10,000 ncRNAs. The results users obtain from 

GeneFriends include a co-expression network as well as a summary of the functional 

enrichment among the co-expressed genes. Novel insights can be gathered from this database 

for different splice variants and ncRNAs, such as miRNAs and long non-coding (lncRNAs). 

Furthermore, our updated tool allows candidate transcripts to be linked to diseases and 

processes using a guilt-by-association approach. GeneFriends is freely available from 

http://www.GeneFriends.org and can be used to quickly identify and rank candidate targets 

relevant to the process or disease under study. 

 Introduction 
The rapid expansion of microarray data over the past decade has resulted in large repositories, 

which have been employed in various meta-analyses. This has led to a better understanding of 

many biological processes and the identification of gene functions, biomarkers and targets for 

several diseases [161, 162, 170]. Co-expression is a type of meta-analysis, which describes the 

expression of genes relative to each other, and has been used for over a decade [4]. This 

method has proven effective at assigning putative functions to genes based on the functional 
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annotations of the genes they are co-expressed with, as well as a better understanding of the 

underlying regulatory networks [146, 241-243]. Examples of tools utilizing co-expression data 

derived from public databases are: GeneFriends (see below), COXPRESdb, CORNET, 

mouseMap, Genevestigator and STARNET2 [20, 244-249]. All of these works have used 

microarray data to construct co-expression networks, albeit using different metrics and 

approaches. Co-expression analyses have identified novel genes to be involved in diseases 

such as cancer [8, 243], schizophrenia [13] and type 2 diabetes [250], or processes such as 

stem cell regulation [108] and the cell cycle [251]. 

Transcriptome sequencing (RNA-seq) is a powerful and emerging technology that allows 

researchers to measure differential expression of genes more accurately than  microarrays 

[252]. Like microarray databases, RNA-seq databases are growing exponentially (Figure 3.1). 

This creates the opportunity for meta-analyses similar to those conducted using microarrays, 

such as co-expression analyses.  
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Figure 3.1: Exponential growth curve of RNA-seq data 
The graph shows that the amount of available RNA-seq data is increasing exponentially at a 
rate of approximately 4 fold per year. If this trend is maintained in the next 5 years, 1000 fold 
more RNA-seq data will be available. Although the graph suggests the rate of this increase will 
slow down, it is still very likely that a very large amount of RNA-seq data will become available 
that can be used for co-expression analyses. As such, we felt that even if the data available at 
the start of this project would have been insufficient, this issue would resolve in time. Taken 
from the Sequence Read Archive (SRA) [253]. 
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RNA-seq also measures expression of different splice variants and ncRNAs (ncRNAs), which can 

play important roles in gene expression regulation [29, 254]. The approximately 20,000 human 

genes only make up a small portion of the over 60,000 coding and ncRNAs [255] that encode 

the over 200,000 transcripts measured using RNA-seq [256], which greatly increases the 

challenges faced by researchers when interpreting RNA-seq results. A bottleneck in RNA-seq 

analyses is that even though a large number of transcripts can be detected as differentially 

expressed, often many have not been well studied. It is frequently unclear what possible 

functions poorly studied genes, especially non-coding ones, may have. As such, interpreting 

results from RNA-seq experiments and understanding the mechanisms involved in the disease 

or process under study is often impeded. Given the growing community of researchers 

employing RNA-seq, there is an unmet need for resources that help interpret results from such 

experiments. Moreover, the growing number of genome resequencing efforts and genome-

wide association studies often associate loci containing poorly studied genes, such as ncRNAs, 

with diseases and traits [31, 257]. To interpret the biological meaning of such identified 

associations, there is a need to infer putative functions and interaction partners of new 

candidate genes [31, 258]. 

As a result of the rapidly evolving sequencing technologies, there are now more RNA-seq 

samples available than there were microarrays at the time of the construction of the first 

widely used plant [259] and mammalian [6] co-expression websites. Recently, the first co-

expression analysis using RNA-seq data was conducted using 21 striatal samples and showed 

that co-expression networks created from RNA-seq data are more robust than those created 

from microarray data [260]. This co-expression map, however, is striatal-specific and is not 

available online to the research community. No RNA-seq-based co-expression database is 

currently available for humans or for biomedical models (co-expression tools like CORNET, 
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Genevestigator, and COXPRESdb are based on microarray data). In this work, we developed 

the first online RNA-seq co-expression database for the bioscience community. 

We had previously created an online co-expression analysis platform using over 3,000 

microarray datasets to facilitate the identification of candidate gene targets based on a user-

defined list of disease- or process-related genes [20]. This tool, GeneFriends, can be used to 

assign putative functions to poorly studied genes using a guilt-by-association method (i.e., by 

investigating which genes a given poorly-studied gene is co-expressed with); it can also identify 

and prioritize novel candidate genes for further study based on a seed list of genes associated 

with a given disease or process. This allows allowing researchers to identify novel genes 

relevant to their study without conducting a microarray or RNA-seq experiment. This tool has 

been successfully used to identify novel cancer-related genes that were validated 

experimentally [20]. Whilst many tools are available to identify the function of genes and 

associate new genes with a seed list, based on different types of interaction data [248, 261-

263], information on interaction of ncRNAs is more limited. Therefore, in this work we have 

created and integrated into GeneFriends a co-expression map, constructed from RNA-seq 

data, which allows for a better understanding of the regulatory patterns of ncRNAs in relation 

to mRNAs. Since RNA-seq allows researchers to assess the expression of different transcripts 

rather than only the gene level expression, we have also constructed a transcript level co-

expression map. This is particularly of interest since different transcripts originating from the 

same gene can have different functions [264] and co-expression is an easy way to detect 

different co-expression partners, which suggests different functionality. 

Understanding the regulated and coordinated changes that occur between ncRNA and coding 

(including splice variants) expression may reveal novel important players in biological 
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processes and diseases.  Furthermore, RNA-seq has a larger dynamic range and measures 

expression of more genes, including those previously un-annotated. These include ncRNAs, 

such as miRNAs and long ncRNAs (lncRNAs), which may be crucial to understand the 

mechanisms underlying disease and biological pathways. This co-expression map allows these 

RNAs to be associated with known genes for inferring their function as well as with diseases, 

processes and pathways, leading to new associations that can be further investigated 

experimentally. GeneFriends is freely available on http://www.GeneFriends.org. 

 Results 
3.3.1. Construction of the RNA-seq-based co-expression map 

The RNA-seq-based addition to GeneFriends represents 2 co-expression maps: One containing 

genes (both coding and non-coding) and one containing transcripts. The RNA-seq-based co-

expression map was constructed using 4133 quality controlled RNA-seq samples across 240 

studies, obtained from the SRA database [265] (Supplement 8). Our aim is to create a co-

expression map that captures the behavior of genes under different circumstances. For this 

reason data describing a range of different cell types was used (Table 3.1). 
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Number Cell Types 
723 Stem 
716 Lymphoblastoid 
552 Embryonic 
289 Neurons 
279 Hesc 
268 Extraembryonic 
268 Hesc-derived 
268 Mesodermal 
226 Myeloid 
219 Neural 
203 Progenitor 
170 Pluripotent 
158 Fibroblasts 
149 Differentiated 
124 Blood 
117 Breast 

 
Table 3.1: Cell types of the samples included in the construction of the RNA-seq based co-
expression network 
Determined by counting how many sample descriptions contain each word describing a tissue 
or cell-type. We calculated the Shannon–Wiener index for the words describing the 16 different 
tissue types/states in this table resulting in a corresponding Shannon–Wiener index of 2.6 (where 
the absolute maximum would be ln(16)=2.77, which value indicates maximum possible diversity 
among 16 description terms).  
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For condition-specific genes, a co-expression map created from a smaller set of samples may 

result in a more accurate result [249, 266], but this is not the purpose of this tool, which is 

aimed at identifying the general role and associations of genes and transcripts.  Each included 

sample complied with the following criteria:  

1. Measured using the Illumina HiSeq2000 platform (although in future updates we anticipate 

also incorporating more recent platforms, like HiSeq2500) 

2. Contained at least 10 million reads 

3. Used a cDNA library preparation protocol 

4. A minimum of 60% of the reads mapped to the Ensembl GRCh37 human genome [255] 

The samples were mapped using STAR [55] and read counts per gene were determined with a 

custom Java program, named ReadCounter (Appendix I). We opted to create our own counting 

tool since the widely used HTSeq tool [59] was too slow for our purposes. ReadCounter is 

more efficient, running approximately 3-fold faster on a single core (not shown). Additionally, 

ReadCounter utilizes multithreaded technology, which, using 8 cores on our system, resulted 

in a 15 to 20 fold faster runtime. For benchmarking, ReadCounter has extra options that allow 

results to be identical to those obtained from HTSeq, albeit at a much faster rate. Moreover, 

ReadCounter can more accurately assess the gene of origin in case a read is overlapping 

multiple genes on the genome, utilizing the overlap size of the reads with the different genes 

in a certain region. This advantage has been utilized when constructing our co-expression map. 

Furthermore, ReadCounter has another advantage.  It automatically counts the number of 

reads mapping to introns as well as reporting ambiguously mapping genes in a separate 

column. ReadCounter is written in Java and can be run using a command line in the terminal or 
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command prompt (Mac/Linux/Windows) without the requirement of installation. The tool is 

free to use and publicly available at http://www.GeneFriends/ReadCounter. A more elaborate 

description is included on the website. To define the gene regions, the 

Homo_sapiens.GRCh37.75.GTF annotation file was used. This is based on the human genome 

assembly 37 [267]. For normalization, the expression per gene/transcript was divided by the 

combined expression of all genes/transcripts per sample (note that reads that do not map to 

genes are excluded from the normalization procedure). The resulting data was used to 

construct the co-expression maps. 

To create the co-expression map, we employed the same approach that COXPRESdb used to 

construct their microarray-based co-expression map [6]. For each possible gene pair 

combination a weighted Pearson correlation, based on sample redundancy, was calculated. 

The sample redundancy is calculated based on the number of similar samples in the dataset, 

and the sample similarity is measured by the correlation between samples 

(http://coxpresdb.hgc.jp/help/coex_cal.shtml). Next, a mutual rank was calculated based on 

the ranking of each gene with its partner. The mutual rank is the average rank of two genes 

relative to each other. For example, we rank all genes based on their expression correlation 

with gene A and find gene B ranks in e.g. 15th position. Similarly we rank all genes based on 

their expression correlation with gene B and find that gene A ranks in 100th position. Then the 

mutual rank of gene A to gene B (and vice versa) is (15+100)/2. This causes genes, such as 

ribosomal genes that are often strongly co-expressed with many other genes, to have a lower 

ranking. This is preferred since these genes are often not of interest for functional enrichment 

analysis or candidate gene prioritization. On the other hand, genes that are more specialized 

(i.e., playing a role in only a specific biological process) will rank higher. 
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3.3.2. Database content and user guide 

The GeneFriends database, constructed from RNA-seq data, contains co-expression data for 

44,248 human genes and for 114,936 transcripts. Transcripts/genes that were not expressed 

(expression < 10 reads) in at least 10% of the samples were excluded from the co-expression 

map. As a result, 19,430 out of 63,678 genes and 100,234 out of 215,170 transcripts were 

excluded. A list of the types of genes found in the co-expression map are shown in table 3.2. 
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 Gene type Genes Transcripts 
Protein coding 18658 82528 
Pseudogene 9483 9888 
LncRNA 4997 6221 
Antisense 4537 6476 
MiRNA 1024 1017 
SnRNA 819 814 
SnoRNA 444 448 

 
Table 3.2: List of genes and corresponding types present in the co-expression map 
A division of different gene types and corresponding transcripts present in the respective 
databases. Coding genes have far more expressed splice variants than ncRNAs, which are less 
commonly spliced overall. A more detailed list can be found in supplement 9. 
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To employ GeneFriends, the user can submit one or multiple gene/transcript IDs. The results 

then contain the following sections: (i) A list of the 50 strongest co-expressed genes and the 

corresponding Human Genome Organization (HUGO) Gene Nomenclature Committee (HGNC) 

annotation for each gene; (ii) A list of the 25 strongest co-expressed transcription factors; (iii) 

Top 20 functional enrichment categories of the co-expressed list of genes, including GO [115], 

Kyoto Encyclopedia of Genes and Genomes (KEGG) [268] and OMIM [269]. To assess functional 

enrichment among the co-expressed genes, DAVID web services [72] are used, which is a 

commonly used tool to assess overrepresentation of functional categories among a list of 

genes. To obtain the DAVID web results the top 1,500 co-expressed genes/transcripts are used 

(or fewer if there are fewer genes significantly co-expressed (cutoff p-value < 10-6; since 

correction for multiple testing using the Bonferroni correction: 0.05/44248= 1.12*10-6 [20]). 

Additionally, full lists can be downloaded, as well as a network file that can be imported into 

Biolayout [76] or Cytoscape[75] for visualization and further analyses. Lastly, there is an option 

to download the functional enrichment of those genes that have an expression pattern which 

negatively correlates with the expression of the gene(s) of interest, thus those genes with an 

opposing expression pattern. This is especially interesting for genes/RNAs that downregulate 

expression of others. Further details can be found on http://www.GeneFriends.org/RNA-

seq/about/. A graphical overview of the steps involved in retrieving results from GeneFriends 

is depicted in figure 3.2.  
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Figure 3.2: A graphical overview of the steps involved in retrieving results from GeneFriends 
1. Insert genes 2. Validate input 3. Retrieve co-expressed genes 4. Investigate functional 
enrichment 5. Visualize the network of co-expressed genes using BioLayout 6. Use BioLayout 
to select the network of interest by setting different thresholds. 
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3.3.3. Gene co-expression based function prediction validation 

One of the two main purposes of GeneFriends is that users can input a poorly annotated gene 

or transcript and utilize the functional enrichment of its co-expressed partners to associate it 

with specific biological processes. To validate this approach, we tested 9 genes for which the 

functions are well established. We previously used this approach to validate our microarray-

based co-expression map [20] and decided to use the same set of genes. We initially picked 

three categories; cell cycle, immune system and fatty acid metabolism and picked three genes 

of which we expected co-expressed genes to be functionally enriched for these categories, 

based on known associations. We expected the following genes to associate with the following 

categories; the cell cycle: CDC6, CDC7, CDCA8; the immune system: IL10, CD4, CD8; fatty acid 

metabolism: ACADM, PPARA, ACAA2 (Supplement 10). We used DAVID [72] to identify 

functional enrichment among the top 5% co-expressed genes. For all genes, this showed 

significant enrichment for the predicted categories, supporting the notion that this approach 

can be used to elucidate which processes poorly annotated genes play their primary role in. 

Moreover, for some genes the more specific roles, such as mitochondrial oxidation for ACADM 

and ACAA2 within these general processes, showed the strongest enrichment, to which these 

genes are indeed annotated [115]. Others, such as PPARA, that are known to be associated 

with a wider range of processes [270, 271], showed enrichment also for this wider range of 

processes, underlining the potential of this approach. From these results, we conclude that co-

expression results obtained from GeneFriends can be used to predict the processes the 

genes/transcripts are associated with.  

To further support this claim, we estimated the performance of our gene function predictions 

on a larger scale. We tested if genes that are annotated to the same Reactome term are more 

strongly co-expressed than those that are not. First, we isolated each gene annotated to one 
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or more of the 1730 Reactome terms. For each of those 8447 genes, we tested if the genes 

belonging to the same term ranked significantly higher or lower (based on co-expression with 

that particular gene) than those that are not part of the term.  We conducted a two tailed 

Mann-Whitney U test between the rankings of the genes belonging to the same Reactome 

term compared to those not belonging to the that Reactome term.  We found for 69.5% of the 

gene-Reactome term relationships that the genes belonging to the same Reactome term 

ranked significantly higher (based on co-expression with that gene) than the other genes (p-

value <0.01) (Supplement 11). This indicates that genes that are annotated to the same 

Reactome term tend to be more strongly co-expressed than those that are not.  For 10.5% of 

the gene-Reactome relationships, the genes belonging to the same Reactome term ranked 

significantly lower than the other genes (Supplement 11) (p-value <0.01). And for 19.9% of the 

gene-Reactome relationships, there was no significant difference between the ranking of the 

relative Reactome term genes versus the other genes (Supplement 11) (p-value >0.01). 

The fact that for most gene-Reactome term combinations the genes annotated to the pathway 

indeed rank higher supports the notion functional enrichment analysis of co-expression 

partners can be used to assign putative functions to the genes in the majority, but not in all 

cases. To put this in perspective and assure these relationships does not also occur randomly, 

we reconstructed the co-expression network, but prior to doing so we scrambled the 

expression of each gene. This scrambling entails the reassignment of each expression value 

within a sample to another gene randomly. In this way, we randomize our data, but the 

distribution of the expression values within a sample remains the same. Next, we conducted 

our analysis, as described in the first paragraph, again. The aim of this exercise is to test if the 

genes associated with the respective Reactome term also rank higher than those that are not 

part of the respective Reactome term by random chance. In this randomized case, we found 
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that for 1.7% of the gene-Reactome relationships the relative Reactome term genes ranked 

significantly higher than the others (p-value <0.01) (Supplement 12).  For 0.5% of the gene-

Reactome relationships the relative Reactome term genes ranked significantly lower than the 

others (Supplement 12) (p-value <0.01). And for 97.8% of the gene-Reactome relationships 

there was no significant difference between the ranking of the relative Reactome term genes 

versus the other genes (Supplement 12) (p-value >0.01). This shows that the higher ranking for 

70% of the gene-term relationships observed in the previous paragraph are not commonly 

observed in a network constructed using randomized data that have the same distribution. 

The observation that for a minority of genes the genes that do not belong to the same 

Reactome term rank higher in terms of co-expression, we speculate, may be the result of 

negative regulators, e.g. inhibitors within a pathway, which are also part of these Reactome 

terms, but more likely have an inverse expression of the rest of the genes in the pathway. It is 

difficult to systematically assess if this is indeed the case on a genome wide scale. Another 

plausible explanation could be that different proteins, translated from the same gene, have 

opposing functions. This is a phenomenon that is occasionally observed in biology such as with 

the C/ebpβ gene [220]. The fact that for 20% of the genes we do not observe a significantly 

higher ranking for genes contained within the same term as those that are not, can be 

explained by the fact transcription is just one layer of genomic regulation and that other 

regulatory mechanisms likely cause our co-expression method not to be 100% accurate. 

However, the majority of genes that are annotated to the same Reactome term do indeed 

rank higher based on their co-expression correlation. This supports the notion that terms for 

which genes rank higher based on correlation, represent the functional role of those genes.  
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Next, we tested for each Reactome term if the genes annotated to the term themselves rank 

higher than those that are not when querying for the co-expression of all genes annotated to 

the term. The purpose is to test if our geneset (rather than gene specific) based co-expression 

analysis (as described in Section 2.3.3) is able to retrieve genes that are part of the same 

geneset. To do so, we used a set of 1730 Reactome terms (Supplement 13) and their 

associated gene lists (varying from 1 to 2372 genes). These Reactome terms represent 

biological pathways. Genes annotated to the same term thus are part of the same pathway 

and thus partake in the same biological functions (e.g. cell growth, immune response or fatty 

acid metabolism). For each term, we queried GeneFriends for co-expressed genes with the 

geneset that is annotated to this term.  We next applied a one-tailed Mann–Whitney U test to 

determine if genes that are part of the geneset ranked higher on average than those that are 

not (Supplement 14).  We found that for 1501 (87%) of the Reactome terms there was a 

significant difference (p-value<0.05) between the ranking of the genes within the seed geneset 

compared to those not in the geneset, with an average AUC of 0.82 (derived from U statistic 

from Mann–Whitney U test). The average AUC for genesets containing more than 10 genes 

was 0.85 and for those containing more than 1000 genes 0.82. The genesets for which no 

significant difference was observed were mostly either very large (>1000 genes) or very small 

(<10 genes).  The fact that the AUC is not 1 is in accordance with our previously reported result 

that for a small portion of the genes the ranking of genes in the same Reactome term was 

actually lower (10.5%), as well as a number of genes that showed no significant difference 

(19.9%). Therefore these results are in accordance with our expectations. 

We also compared the co-expressed gene lists from the RNA-seq-based co-expression map to 

our previously constructed microarray-based map [20]. Unlike the RNA-seq-based map, the 

microarray version was created using a vote counting approach and includes a wider range of 
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data with data from over 4,000 experiments rather than the 240 included in the construction 

of the RNA-seq version. In an ideal world one would expect this overlap to be 100%, but some 

differences are to be expected. However, the overlap we observe, as described in table 3.3, is 

lower than we would have expected. Possible explanations can be the nature and quantity of 

data that underlies the co-expression network. These observed differences support the notion 

that the co-expression maps are dependent on the data they are constructed from. 

Additionally, some biases may exist in RNA-seq data that are not present in microarrays and 

vice versa. Nonetheless, either co-expression map proves effective at identifying the correct 

function using the functional enrichment among co-expressed genes for the 9 annotated 

genes, suggesting that the different co-expressed genes are annotated to similar functional 

categories. 
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 Gene 
Overlap 5 percentile co-expressed genes  
Microarray and RNA-seq 

ACAA2 24% 

ACADM 24% 

CD4 39% 

CD8A 34% 

CDC6 31% 

CDC7 31% 

CDCA8 25% 

PPARA 9% 

IL10 17% 
 
Table 3.3: Overlap of the microarray-based co-expressed gene list with the RNA-seq-based 
co-expressed gene list 
The percentages indicate the percentage of genes that are in the top 5 percentile co-expressed 
genes in both the RNA-seq and the microarray based co-expression network. These numbers 
are lower than we expected and support the notion that the data from which the co-
expression is constructed lead to different co-expression networks. This is supported by the 
fact that co-expression networks created from different tissues result in different co-
expression networks [143]. The RNA-seq co-expression network is created from a set of 
samples with a different balance between tissues and cell types than those used for the 
microarray network, potentially explaining the difference noted in this table. The functional 
enrichment of co-expressed genes from either network are comparable indicating the genes 
still associate with the same biological functions.  A more elaborate table can be found in 
supplement 16. 
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3.3.4. Tissue and cell type diversity of used datasets 

Although the 240 studies from which we used the RNA-seq data describe a wide range of 

conditions, certain conditions may be overrepresented. We counted the prevalence of terms 

in the summaries of each sample (Supplement 15). The most prevalent tissue and cell type 

description terms are "stem" and "lymphoblastoid". These were present in 723/4133 (17.6%) 

and 716/4133 (17.3%) sample summaries respectively. We calculated the Shannon–Wiener 

index for the words describing different tissue types/states. In total, we detected 16 description 

terms describing different tissue or cell types with a corresponding Shannon–Wiener index of 2.6 

(where the absolute maximum would be ln(16) = 2.77, which value indicates maximum diversity). 

There was no strong overrepresentation for any disease related terms,   "cancer" (259/4133 

samples (6.2%)) being the most prevalent. Since co-expression data has been reported to be 

tissue and condition dependent [249, 272], we anticipate differences between microarray- and 

RNA-seq-based maps. Although the expression ratios of the microarray version cannot be 

directly compared to the Pearson correlation, or mutual rank calculated for the RNA-seq 

version, it is still possible to compare the ranking of each gene to each other. Only genes 

present in both co-expression maps were included in this analysis. Conducting this analysis, 

using the 9 genes also used for the validation of the microarray and RNA-seq co-expression 

network, showed an average overlap of 27% (Standard deviation: 9%) of the top 5% co-

expressed genes in the microarray with the top 5% co-expressed genes in the RNA-seq version 

(Table 3.3). 

3.3.5. NcRNA validation 

To investigate if it is possible to use GeneFriends to postulate the function of ncRNAs, we 

investigated the functional enrichment of genes co-expressed with 3 annotated ncRNAs. One 

ncRNA, Evf-2, known to cooperate with Dlx2, which plays a critical role in neuronal 
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differentiation and migration, as well as craniofacial and limb patterning during development 

[273], and two lncRNAs: Xist, a lncRNA active, during embryogenesis, known to trigger X-

chromosome inactivation in mice [274, 275], and HOTAIR, a lncRNA that is required for 

silencing of HOXD genes, which, if absent, causes severe limb and genital abnormalities. [276, 

277].  

We found that genes co-expressed with EVF-2 (ENSG00000231764) are strongly co-expressed 

with synaptic transmission (1.61E-50) and neuron projection (1.71E-44) (Supplement 17), 

which is in accordance with our expectations (Bonferroni corrected p-values are marked in 

parentheses). XIST’s co-expressed genes were enriched for embryogenic morphogenesis 

(1.75E-3) and were most strongly enriched for transcription (9.10E-57), cell cycle (1.70E-18), 

chromosome organization (2.33E-21) and zinc finger regions (5.72E-35) (Supplement 17). 

Although there is enrichment for embryogenic morphogenesis, other terms show much 

stronger enrichment. The enrichment for chromosomal organization is in line with literature, 

as X-chromosome inactivation involves major reorganization of the X-chromosome and is 

triggered by Xist in mice [275].  We found that the co-expressed genes for HOTAIR were 

enriched for the HOX homeodomain (2.37E-3) and that they are most strongly enriched for the 

ontologies spermatogenesis (1.72E-13) and reproduction (1.94E-16) (Supplement 17). These 

results support the notion that GeneFriends can be used to predict functions of ncRNAs. 

Since we were curious if functional enrichment could also be detected for genes for which no 

functional annotation is yet available, we also randomly selected poorly annotated genes until 

we found 3 with significant functional enrichment. As a result, we tested 4 genes and found 

significant enrichment for functional categories for 3 of these genes (Table 3.4), supporting the 

notion that GeneFriends can assign putative roles to poorly studied genes.  
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Table 3.4: Top enrichment categories for 3 poorly annotated genes 
Terms for which the co-expressed genes are most significantly enriched, are listed. The fact 
that these results contain similar enrichment scores as the annotated coding genes used to 
validate our GBA approach (Section 3.3.3) suggests that these genes play a role in the 
processes noted in this table.  
  

Gene Enrichment 
Score 

Term Count List 
Total 

FDR 

ENSG00000232862 15.19 GO:0019953~sexual 
reproduction 

66 444 4.71E-21 
  

GO:0048232~male gamete 
generation 

51 444 3.55E-18 

    GO:0007283~spermatogenesis 51 444 3.55E-18 
ENSG00000258776 45.52 GO:0050953~sensory 

perception of light stimulus 
97 606 3.40E-69 

  
GO:0007601~visual 
perception 

97 606 3.40E-69 

    SP_PIR_KEYWORDS ~vision 76 845 1.79E-61 
ENSG00000271947 15.66 GO:0045202~synapse 102 1005 9.54E-29   

SP_PIR_KEYWORDS ~synapse 74 1446 1.10E-26   
GO:0044456~synapse part 75 1005 4.50E-22 
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The following functional enrichment was found for these 3 genes, which are all lncRNAs 

(Bonferroni corrected p-values marked in brackets): ENSG00000271947, synapse (3.23E-29); 

ENSG00000258776, visual perception (4.22E-69); ENSG00000232862, sexual reproduction 

(5.19E-21).  

We also conducted a systematic analysis on a much larger scale. For each non-coding gene, we 

assessed if there was an enrichment for any Reactome term annotated genes. For each of the 

1730 Reactome terms we determined if the genes that are annotated to the term ranked 

higher in the co-expression list compared to those annotated to the term, for each non-coding 

RNA. We used a Bonferroni corrected p-value cutoff of 0.01/1730= 5.78e-6. We found a 

significant enrichment for at least one of the Reactome terms for 4659 out of 4834 (96%) of 

the lncRNAs, which is the largest ncRNA category (results for other categories can be found in 

supplement 18). The average AUC for the most significant term per gene was 0.80. We also 

conducted this analysis on a network created from scrambled data in which hardly any 

significant enrichment for these terms is expected to be observed. This was indeed the case. 

For only 0.2% of the genes a significant enrichment was observed after scrambling 

(Supplement 19). This further supports the notion that co-expression analysis on non-coding 

genes can be used to predict functions. However, we do note that in the majority of the cases 

the category for which the co-expressed genes rank higher most significantly is the olfactory 

signaling pathway (3127 out of 4659 lncRNAs), whereas this is not the case for the coding 

genes (1945 out of 18374 coding genes, which number is in accordance with the over 1000 of 

reported human olfactory receptor genes [278, 279]) (Supplement 20). Additionally, we 

compared the results obtained for lncRNAs to those obtained for pseudogenes and found that 

also these had a significantly higher ranking of genes associated with at least one term 

compared to those not associated for 9006 out of 9314 of the pseudogenes. This was contrary 
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to our expectation, which was to find little to no significant categories for any of these terms, 

since pseudogenes by definition are non-functional [280]. Three possible explanations that 

could potentially explain this observation are: 1. Some of these genes perhaps do have a 

function and are potentially incorrectly annotated as pseudogenes. 2. These may be genes that 

have lost their function throughout evolution, but are co-located and co-transcribed on the 

genome with other genes playing a role in a particular pathway that have not lost their 

function. This is supported by the observation that intact olfactory receptor genes and 

pseudogenes tend to be co-located on the genome [278, 281, 282]. This would cause them to 

remain co-expressed with the genes still participating in that particular pathway even though 

being non-functional. This would fit with the observation that many of these genes are 

predicted to be involved in the Olfactory Signaling Pathway (4193 out of 9006) on which the 

selection pressure is much lower in humans than in other species that much stronger rely on 

their olfactory sensing pathways to survive [283]. These two potential explanations may also 

be applicable to the observed overrepresentation of the Olfactory Receptor Reactome term. 

Since this overrepresentation is not observed for coding genes we do expect that these results 

are not caused by a technical bias. However, we do think it is important to consider that a 

significant enrichment for a particular term among co-expressed genes does not imply 

functionality. Nonetheless, we do suspect it represents the potential function to which these 

pseudogenes and non-coding genes are, or were earlier in evolution, most likely associated. 

3.3.6. Transcript-specific co-expression 

Since one of the benefits of the RNA-seq-based co-expression map is that it also contains 

transcripts, we investigated if it is possible to differentiate between the function of different 

transcripts originating from the same gene. To this end, we have selected a gene that has 

multiple transcripts with different co-expression partners, annotated to different processes: 
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MACF1. This is a protein that binds to actin and microtubules [284] and is important for cell 

motility [285-287]. 

We identified the two transcripts with the least overlapping partners, ENST00000360115 and 

ENST00000482035, which shared only 80 out of their 5747 (top 5%) co-expression partners. 

Next, we investigated the functional enrichment for the co-expressed transcripts of the two 

transcripts originating from the same gene. We found that this functional enrichment shows 

different categories. The top 5% co-expression partners of the ENST00000360115 transcript 

showed strong enrichment for the GO terms (Bonferroni corrected p-values are marked in 

parentheses) synapse (2.46 E-27) and neuron projection (3.88E-21), whereas 

ENST00000482035 partners show strong enrichment for regulation of cell motion (8.19E-12) 

and extracellular matrix (7.82E-14). The top categories to whichENST00000360115 was 

associated were not present in the enrichment results for ENST00000482035 and vice versa 

(Table 3.5).  
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Annotation Cluster 

Enrichm
ent Score 

Category 

Term
 

Count 

List Total 

FDR 

1 12.5 GOTERM_BP_FAT GO:0051270~regulation of cell motion 70 1811 3.72E-12 

  GOTERM_BP_FAT GO:0030334~regulation of cell migration 63 1811 2.46E-11 

  
GOTERM_BP_FAT GO:0051272~positive regulation of cell 

motion 43 1811 1.11E-09 

    SP_PIR_KEYWORDS extracellular matrix 80 2415 1.67E-13 
2 10.92 GOTERM_CC_FAT GO:0031012~extracellular matrix 104 1787 1.24E-11 

  
GOTERM_CC_FAT GO:0005578~proteinaceous extracellular 

matrix 95 1787 5.62E-10 

3 10.89 GOTERM_BP_FAT GO:0001944~vasculature development 81 1811 3.52E-11 

  GOTERM_BP_FAT GO:0001568~blood vessel development 79 1811 8.03E-11 

  
GOTERM_BP_FAT GO:0048514~blood vessel 

morphogenesis 63 1811 1.32E-06 

 
Transcript: ENST00000360115 

 

Annotation Cluster 

Enrichm
ent Score 

Category 

Term
 

Count 

List Total 

FDR 

1 18.8 GOTERM_CC_FAT GO:0045202~synapse 108 1179 6.69E-27   
GOTERM_CC_FAT GO:0044456~synapse part 83 1179 2.38E-23 

    SP_PIR_KEYWORDS synapse 72 1695 6.55E-21 
2 18.26 GOTERM_CC_FAT GO:0043005~neuron projection 96 1179 1.06E-20   

GOTERM_CC_FAT GO:0042995~cell projection 140 1179 2.59E-16   
GOTERM_CC_FAT GO:0030425~dendrite 49 1179 1.86E-10 

3 9.74 UP_SEQ_FEATURE domain:SH3 47 1694 2.82E-08   
SP_PIR_KEYWORDS sh3 domain 52 1695 2.21E-08   
INTERPRO IPR001452:Src homology-3 domain 52 1548 2.94E-07 

 
Table 3.5: Top 3 enrichment categories for the following 2 transcripts originating from the 
same gene: ENST00000360115, ENST00000482035 
Co-expression partners from the two different transcripts show different functional 
enrichment categories. This supports the notion that co-expression analysis can be used to 

Transcript: ENST00000482035  
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associate different transcripts, originating from the same gene, to different functions. Our co-
expression network could thus be used to identify all genes for which different splice variants 
associate with different functions. This could be interesting for annotation purposes of these 
transcripts and corresponding genes.  For a full list of enriched categories, we refer to 
supplement 21.  
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This shows that there can be a clear distinction between the co-expression results obtained 

from different transcripts originating from the same gene, and that it is possible to postulate 

which genes encode transcripts that lead to proteins involved in different processes.  

Next, we aimed to identify how often transcripts originating from the same gene are co-

expressed with different transcripts. Doing so for each gene resulted in 294,829 comparisons. 

Of these 294,829 comparisons, 123,650 have less than 10% of overlapping transcripts in the 

top 5% co-expressed transcripts. This suggests that different transcripts arising from the same 

gene are often expressed under different conditions and are likely to play roles in different 

processes, or that some may be  non-functional transcripts. 

To determine for how many of these transcripts we can assign a putative function, we 

conducted the same analysis as we did on ncRNAs. We found that for 103639 out of 114933 

transcripts there was a significant enrichment for a particular term (Supplement 22). The term 

which most commonly had the most significantly higher ranking for the genes annotated to 

the term was “Olfactory Receptor”, as previously observed on a gene level as well, but to a far 

lesser extent than with the lncRNAs and pseudogenes (13430 out of 103639 transcripts). This 

indicates that there is no bias toward this Olfactory Receptor pathway for the alternatively 

spliced variants of the coding genes (which have many more splice variants than most non-

coding RNAs). We also conducted this analysis on a matrix constructed from randomized data, 

where the expression values per transcript within a sample had been randomly reassigned. 

This causes the data to have the same distribution, but functional enrichment analysis on co-

expression partners of a particular gene or list of genes should no longer functional 

enrichment for any terms. When the same approach was tested on this data, a significantly 

higher ranking for genes annotated to a Reactome term was observed in only 0.3% of the 
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cases (Supplement 23), just like the randomized data on a gene level as described earlier. 

These results suggest it is possible to predict functions on a transcript specific level as well, and 

that the results we find are not the result of biases in our method. 

3.3.7. Gene set co-expression 

The second purpose of GeneFriends [20] is that users can submit a list of genes or transcripts 

associated with a specific disease or biological process to find other genes/transcripts 

associated with it. This is particularly of interest with the RNA-seq-based co-expression map as 

it contains non-coding genes, which may play crucial roles in understanding the mechanisms 

underlying these diseases/processes. 

Similar to our previous analysis [20], we used a set of causative cancer genes [239] and 

identified genes co-expressed with this list of genes. Interestingly, this included a number of 

genes that one would not find in a microarray-based co-expression map. Using this approach 

83 pseudogenes, 1 miRNA (MIR4444-1) and 2 antisense RNAs (EMC3-AS1, UBL7-AS1) were 

associated with the cancer seed list (Supplement 24). Genes co-expressed with miRNA 4444-1 

(Supplement 23) are strongly enriched for genes involved in transcription (Bonferroni 

corrected p-value: 8.67E-20) and chromatin organization (Bonferroni corrected p-value: 2.58E-

14), suggesting this miRNA may exert a role in cancer by affecting the expression profile in 

cancer cells. This is an example of how GeneFriends can be used to associate non-coding 

factors with diseases/biological processes and how it can help elucidate possible roles of 

poorly annotated factors uncovered through this procedure. 

3.3.8. RNA-seq-related biases 

While GeneFriends provides a unique opportunity to elucidate the roles of unstudied genes, it 

is important to mention a few possible biases that might be present in the RNA-seq co-
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expression map. Since the co-expression map is created from RNA-seq data, any biases 

existing in this type of data will propagate to the co-expression map, in particular: 

(i) In the library preparation of RNA-seq experiments, there is a bias against smaller RNAs [288] 

for which reason measurements for shorter RNAs, such as miRNAs, may be less accurate.  

(ii) One important step in RNA-seq analysis is to assign reads to genes based on their 

coordinates. However, in some cases genes overlap with each other, making it hard to assess 

from which gene the read originates. As a result, the read is then ignored. This means that 

genes that are fully overlapped by other genes can never show expression and this becomes a 

major issue when mapping to transcripts rather than genes as they commonly overlap each 

other. For this reason we considered ambiguously overlapping reads to represent the 

expression of each transcript it overlaps with rather than ignoring it. This will mean that 

transcripts spawning from the same gene are much more likely to show strong co-expression, 

which should be considered when retrieving transcript co-expression results from 

GeneFriends. This can be circumvented using knowledge acquired from the mapping of other 

reads, e.g. using a Bayesian approach, as described in the introduction Section 1.2, although 

this will lead to different biases.  

(iii) We observed a bias toward positive correlation, as opposed to negative correlation. This 

may be due to the biological nature of the data, as negative correlation, as a result of negative 

transcriptional regulation, is expected to be much rarer than positive correlation, as genes 

involved in the same biological processes more often co-operate rather than inhibit each 

other. However, it is not unreasonable to state that the normalization procedure has not yet 

been optimized for RNA-seq data and normalizing by total read counts has been reported to 

introduce biases [80]. The most commonly applied correction in the past few years calculates 
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FPKM/RPKM values, which correct for gene length. However, these have been extensively 

debated [80] and new metrics have been suggested [289], which have also been challenged 

[290]. Since none of these normalization protocols have been proven to be perfect, we opted 

to normalize samples by the total expression of all genes (reads that do not map to genes are 

excluded as these are more likely to introduce biases), until one of these metrics becomes 

generally accepted, at which point we will reconstruct the co-expression maps. We are, 

however, confident that these biases minimally affect the effectiveness of our tool, since our 

aforementioned validation tests have proven consistent with the existing literature. 

 Concluding remarks 
Over the past century, research has led to a better understanding of many diseases and 

biological processes. However, the underlying mechanisms often remain unclear. In research 

there is a tendency to focus on genes that have already been studied to a broader extent and 

ignore poorly annotated genes. Yet, it is reasonable to assume that some of the unstudied 

genes play a crucial role and that without studying them, we might never be able to fully 

understand the mechanisms that underlie these diseases and processes. GeneFriends allows 

researchers to quickly identify poorly annotated genes that are associated with genes that 

have readily been associated with the disease/process under study. This unveils new venues 

for research and helps uncover new findings, as shown, for example, in [20]. This is particularly 

interesting since GeneFriends also allows association of ncRNAs, such as miRNAs and lncRNAs. 

These RNAs have been indicated to play crucial regulatory roles in multiple studies [291-293]. 

Additionally, it is not uncommon that unannotated genes are detected as differentially 

expressed in  a study, yet, since no knowledge is available, they tend to be ignored. 



A human RNA-seq-based gene and transcript co-expression database
 

Page 132 of 233 

GeneFriends can help identify possible roles of these genes, which will help experimental 

design. 

Since Next-Generation Sequencing (NGS) is an emerging technology, our proposed RNA-seq 

co-expression tool will be useful for a growing number of researchers to gather clues regarding 

the many poorly studied transcripts detected by this approach. Unstudied transcripts or genes 

differentially expressed in a given RNA-seq analysis can be input into GeneFriends to assess 

the functional enrichment of co-expressed genes, effectively assigning a putative role to the 

query transcript/gene and identifying possible interaction partners. Knowing the potential 

roles of these transcripts will allow the assessment of the most interesting transcripts among 

those differentially expressed in the process under study and generate a hypothesis that can 

be challenged. This addresses an unmet need for the bioscience community and will help drive 

post-genome science. GeneFriends is freely available from http://www.GeneFriends.org. 
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 Correlation of expression of miRNAs with their targets 

and Weighted Gene Co-expression Network Analysis (WGCNA) of 

aging rat brain and thymus data 

One downside of co-expression analyses is that they often lead to long lists of genes being 

associated to a process or disease under study and it often remains unclear which genes are 

the most relevant factors in the phenomena under study. It is desirable to identify those 

factors that are of greatest relevance in the context of the studied process/disease. In this 

light, we aimed to use WGCNA to identify genes that are more central to specific networks, 

under the assumption that central genes play a more important role. We focused on well-

connected transcription factors in co-expression networks created from brain-tissue-specific 

datasets. We used literature to validate their importance to the brain related diseases. Lastly, 

we investigated the connectivity of a transcription factor that has been shown to have a large 

regenerative power in thymus tissue [151] in a co-expression network created from thymus 

samples. 

Additional to the connectivity analysis, we aimed to investigate if there is a negative 

correlation between miRNAs and their annotated targets. These analyses were conducted on 

data previously created in our lab [294]. 

 Abstract 
Co-expression analyses often lead to long lists of new gene-disease associations and it can be 

difficult to select the most promising genes for follow-up studies. We tested the importance of 

transcription factors that act as hub genes (genes that are well connected) in a tissue-specific 

co-expression analysis on rat brain data created in our lab. The fact that two of the 
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transcription factors that were hub genes had already been associated with brain diseases 

supports the notion that this approach helps highlight important genes. We conducted the 

same analysis on a set of rat thymus samples of different ages to investigate if a transcription 

factor with highly regenerative power when expressed in an aged thymus, Foxn1, would also 

be hub gene. This was not the case which indicates that, whilst transcription factors that are 

hub genes in a network can be important factors, not every transcription factor that is an 

important regulator of a network is necessarily among these hub genes. 

In addition to this analysis, we also investigated, in the samples obtained from the rat brain, if 

annotated targets of miRNAs were down-regulated in expression if the miRNA expression 

increased and vice versa. We could not find a biologically significant correlation and deem co-

expression analyses unfit to uncover miRNA targets by simply identifying genes that are down-

regulated when the miRNA is upregulated. 

 Introduction 
In Chapter 3 of this thesis, we found that it is possible to associate ncRNAs with biological 

functions using co-expression in the same manner this previously has been done for genes. 

However, some ncRNAs are known to suppress the expression of other genes. This is in 

particular true for miRNAs (miRNAs), which inhibit the expression of other genes by, among 

the other mechanisms described in the introduction of this thesis, binding mRNAs. This binding 

significantly reduces the efficiency of translation and by cleavage of the mRNA effectively 

leading to its degradation [295]. As such, we expect that the expression of targets of such 

miRNAs are negatively correlated with the expression of the miRNA itself. In the RNA-seq 

based co-expression map we created in Chapter 3, a large number of these miRNAs are not 

present. This can be explained by the fact that we used data that was created with a cDNA 
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library preparation involving a ribosomal depletion step. Ribosomal depletion removes smaller 

RNAs often including miRNAs. As a result, many miRNAs showed no expression in any of the 

samples and measurements for those that did not get fully removed, are likely biased.  Since 

we were still curious if there indeed is a negative correlation between the expression of 

miRNAs and their targets, we used a dataset that used a separate isolation protocol to isolate 

the miRNAs and determine their expression.  

Since this dataset contained 39 rat brain samples (unpublished results) from different ages,  

we were curious if we could utilize co-expression to identify modules that associate with brain 

aging using the WGCNA package [66]. This is an R package that allows users to construct a co-

expression network and has several different functions to analyze this network. The standard 

WGCNA analysis pipeline suggested by the creator, includes the following steps: 

1. Determine correlation between the samples. In this step a dendrogram is constructed 

indicating which samples resemble each other the most. Replicates are expected to cluster 

together and if different treatments are applied, it gives an indication of which treatments 

have the most similar effects, based on how close their branches are in the dendrogram. 

Additionally, this will allow the user to identify outliers, which are distant from all the other 

samples, which should be removed from the analysis before proceeding.  

2.  Additionally, these rats were raised with different diets and we aimed to identify aging 

associated modules that are affected by these diets. Lastly, we identified the genes that are 

central to the modules that behave differently at older ages when supplemented with lipoic 

acid as part of their dietary regime [296].  
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To establish the relevance of these genes and determine whether it is reasonable to expect 

that these genes are major players in the aging process, we aimed to elucidate the network 

behavior of Foxn1, a gene that has been shown to regenerate the thymus upon activation in 

old mice [151]. The expectation was that this gene was central to a module that associates 

with aging and has a high module membership to this module. We aimed to elucidate whether 

Foxn1 is a hub gene and whether a WGCNA analysis, as described in the previous paragraph, 

will highlight this gene. This gene is one factor that most clearly has shown a role in regulating 

aging changes by its ability to regenerate an aged thymus, which shrinks significantly with age, 

in old mice, upon its activation [151]. 

 Methods 
We used 39 RNA-seq samples obtained from rat brain. We used the read counts as determined 

in [294] by Shona Wood: 

 "The RNA-seq results from the SOLiD system are output as color space fasta and quality files, 

files were mapped to the Ensembl release 71 rat reference genome (Rnor_5.0, March 2012 

and rn4) using Bowtie (Langmead et al. 2009) and settings appropriate to SOLiD data. For each 

sample approximately 36 million reads were generated. On average for rn5, 23 million reads 

per sample were mapped to the reference genome (approximately 63% of reads generated 

were mapped). " 

These samples were obtained from rats with different feeding regimes and measurements 

were taken at several time points. The different treatments are described by the original study 

[296], from which table 4.1 was obtained, describing the different regimes and their effects on 

life span. 
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Group 
number n Dietary group description 

Median survival 
(95% CI) (days) 

Mean 
survival 
(days) 

S.E. 
(days) 

1 102 Control animals fed ad libitum the CRM diet throughout life 926 (909-943) 854 22 

2 75 
Fed a restricted intake of the CRM diet from 2 months to maintain body weight at 55% 
age-matched control animals 1047 (930-1163) 1025 25 

3 75 
Animals fed ad libitum the CRM diet supplemented with R/S racemic mixture of α-lipoic 
acid from 2 months of age 900 (839-961) 858 27 

4 24 DR fed the CRM diet until 12 months, then DR fed the α-lipoic acid supplemented diet 1125 (1078-1172) 1068 38 
5 25 Ad libitum fed CRM diet, animals switched to DR feeding at 12 months 1031 (1007-1055) 1000 33 
6 25 DR fed the CRM diet from 2 to 12 months, then switched to ad libitum feeding 975 (935-1015) 914 44 
7 25 Ad libitum fed the CRM diet, animals switched to DR feeding at 6 months 1078 (1048-1108) 1021 45 
8 25 DR fed the CRM diet 2-6 months, then switched to ad libitum feeding 928 (858-998) 909 28 

9 25 
Animals fed ad libitum α-lipoic acid supplemented diet 2-12 months, then switched to 
DR feeding the CRM diet (no α-lipoic acid supplementation after 12 months) 934 (874-994) 859 57 

10 25 
Animals fed ad libitum lipoic acid supplemented diet 2-6 months, then switched to DR 
feeding the CRM diet (no α-lipoic acid supplementation after 6 months) 1086 (1059-1113) 1021 51 

11 25 
DR fed the CRM diet from 2 until 12 months, then switched to ad libitum feeding the α-
lipoic acid supplement CRM diet 1041 (895-1187) 1009 34 

12 24 
DR fed the CRM diet 2 until 6 months, then fed ad libitum the α-lipoic acid supplement 
CRM diet 996 (927-1065) 947 43 

 
Table 4.1: Dietary groups with the associated median survival  
Brain samples from dietary restricted rats [296] were used for RNA-seq analysis [294]. The resulting data was used in our WGCNA analysis, to test if 
we can find co-expression modules that have an expression pattern that correlates with age and/or any of these treatments. 
CI – Confidence Interval 
S.E. – Standard Error
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4.3.1. MicroRNA target repression associations 

We obtained a list of 5226 targets across 183 annotated miRNAs in miRBase [297]. We next 

identified how often these targets were negatively co-expressed with their respective miRNA. 

To do so, we selected the 1% genes with the strongest negative correlation with each miRNA 

and counted the number of targets that were among this list. We opted to use this vote 

counting approach since we were interested in the % of targets we could identify using this 

approach.  

4.3.2. WGCNA analysis of rat brain data 

Genes that contained no expression in at least 3 out of the 32 samples were removed from the 

analysis. Samples were clustered by similarity using the hierarchical clustering algorithm, as 

described in [298] (Figure 4.1).  Next, we used this clustering algorithm to identify the modules 

and calculate the Pearson correlation between the eigengenes of these modules and different 

treatments. Eigengenes can be viewed as the hypothetical gene that best describes the 

behavior of the genes in the module, as also described in the introduction of this thesis in 

Section 1.8.1. This hypothetical gene describes the partial expression of each gene (albeit to a 

different extent for each gene). This eigengene is the vector that best describes the variation 

(in a linear fashion) of the genes within this module, therefore being a better descriptor than 

the average expression of the module genes, which does not capture this variation as well as 

the eigengene. Apart from the different groups defined by the different treatments, we added 

a group describing those samples that increase the longevity of the rats. The list of sample 

groups consists of the following treatment groups: 1. Caloric restriction, 2. Ad libitum switch to 

caloric restriction after 12 months, 3 Caloric restriction switch to ad libitum feeding with lipoic 

acid after 12 months.  Lastly, we identified the transcription factors (genes annotated as 

transcription factors) that are most central and behave most similar to the modules that 
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behave differently within this group of longer lived rats. To do so, we selected the three 

transcription factors that behave most similar to the eigengenes for each of these modules. 

The longevity signature is defined by the expression of the rats that are significantly longer 

lived than the controls. For a detailed description of the feeding regimes and isolation 

protocols of the brain tissue, we refer to [296]. 

4.3.3. WGCNA analysis Rat thymus data 

The samples were obtained from [299], retrieved from the SRA database [253] and consist of 

32 samples, 8 for each time point at 2,6,21 and 104 days. For each time point there were 8 

samples: 4 females and 4 males. We used STAR to map the reads from the 32 samples to the 

Rattus norvegicus genome (Ensembl annotation Rnor_5.0). On average, the samples contained 

over 20 million reads and 81% of the reads mapped to the genome. To determine whether the 

expression of Foxn1 is decreasing with age, we used a one-way Analysis of Variance (ANOVA) 

test, showing there is a significant yet mild decrease in expression with age (F(1,30) = 

11.08, p = 0.002) (Figure 4.4).  
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Next, we used WGCNA to do a hierarchical clustering on the samples. This was followed by a 

hierarchical clustering based on genes. The correlation of these modules with the different 

traits was determined next. Lastly, we determined which module Foxn1 is part of and its 

connectivity and module membership for this module. 

 Results 
4.4.1. MicroRNA-target repression is not clear from the co-expression network 

We observed that 135 out of 5226 miRNA targets were negatively co-expressed with the 

corresponding miRNA (Cumulative binomial < 5.7e-22). While statistically significant, the 

percentage was much lower than we expected based on the fact that miRNAs are known to 

silence their targets (only 2.6% of the targets were negatively co-expressed with the miRNAs).  

Since we felt these results may be caused by the inclusion of miRNAs that might only show a 

very marginal differential expression, we decided to conduct the analysis using a different 

approach. We opted to conduct a differential expression analysis between all the possible 

combinations of the samples setting a number of criteria that would include only large 

differential expression of strongly expressed miRNAs. Doing so, we aimed to eliminate any 

biases caused by miRNAs with marginally altered expression and expected to observe clear 

negative correlations between targets and the corresponding miRNAs. We used a vote 

counting approach to determine how often there is a negative effect on the expression of the 

target when the miRNA is upregulated. We used a 2 fold cut off on the differential expression 

of the miRNA as a minimum, as well as a minimum expression level of 100 reads in at least one 

of either samples, for both the miRNA and the target gene expression level. We then identified 

the extent to which the targets are differentially expressed. It appears that the target is 

downregulated in 48% and upregulated 52% of the cases a miRNA is upregulated. We did not 
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use a minimum fold change for the target expression levels as mild changes in expression can 

be biologically relevant as well [300].  We observed that in more 97% of the cases the fold 

change of the targets was less than 2, with an average down regulation to 85% of the original 

expression, if the target gene was down regulated in expression. These results do not seem to 

indicate any significant increase in down regulation for annotated targets of miRNAs, 

reinforcing the notion that co-expression networks are not able to identify targets of miRNAs 

by simply inspecting the strongest negatively co-expressed genes. One observation that may 

be worth noting is the fact that several targets of different members of the let7 miRNA family 

consistently are downregulated in expression. However, since the downregulation remains 

mild and the number of observations is relatively small the significance of this result is 

debatable. As such, we feel it is not feasible to predict miRNA targets by identifying negatively 

co-expressed targets.  

4.4.2. WGCNA analysis rat brain data 

We used WGCNA to cluster the 39 rat brain samples based on correlation between them. 

These 39 samples consist of 13 sample groups, each containing 3 biological replicates. We 

expected replicates to cluster together most closely, but in multiple occasions this did not 

appear to be the case (Figure 4.1). 



Correlation of expression of miRNAs with their targets and Weighted Gene Co-expression 
Network Analysis (WGCNA) of aging rat brain and thymus data

 

Page 142 of 233 

 

Figure 4.1: Hierarchical clustering of the rat brain samples 
Each 3 consecutively numbered samples represent a group defined in table 4.1. For example, 
p1, p2 and p3 are 3 replicates in the same group and are expected to cluster together. 
Similarly p4, p5 and p6 are expected to cluster together and so on. Replicates do not always 
appear to cluster together indicating that individual differences may have a larger effect than 
certain treatments or that these treatments affect the different individuals differently. 
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We attribute this unexpected clustering to individual differences, leading to different effects of 

the treatment and aging in these individuals. Most rats that were fed lipids at any point 

clustered separately from caloric restricted and ad libitum fed rats. The number of genes 

differentially expressed with age in this tissue (cerebral cortex), was limited (between 8 and 

180 in most of the relevant comparisons [47]).  

4.4.3. Clustering of modules with traits 

Next, we used WGCNA's hierarchical clustering algorithm to determine the different modules 

present in the co-expression network (Figure 4.2).  We observe that several modules behave 

differently at 28 month old age in those rats that are long lived compared to  the normal aging 

rats (Figure 4.3).  
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Figure 4.2: Gene clustering dendrogram based on gene expression in 32 rat brain aging 
samples 
Clusters/modules are indicated by the different colors as determined by WGCNA's hierarchical 
clustering. Each leaf (vertical lines) represents a gene and the y-axis indicates how well the 
gene is connected to the rest of the genes in the module, as measured by the topological 
overlap [301], explained in [302]. Branches of the dendrogram represent densely 
interconnected, highly co-expressed genes. Each of these modules are summarized by the 
eigengene, a linear variable for which the correlation can be calculated with different traits as 
shown in figure 4.3. 
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Figure 4.3: Correlation between modules and treatments 
The y-axis represents the modules, as derived from the dendrogram depicted in figure 4.2. 
Treatments are indicated at the bottom. Each cell represents whether the activity of a module 
is correlated to a particular treatment. Interestingly the blue and red module are increasing in 
expression with age (AL6M,AL12M,AL28M), but have a lower expression in aged long-lived rats 
(LongevitySig) (indicated by the green color). Although some of the treatments contribute to 
the longer lived rats (AL.LA,CR.LA and CRswLA.AL), individually the treatments have no 
significant correlation with the different modules, suggesting the sample size is too small. 
CR - Caloric restriction 
Cal - Caloric restriction 
AD - Ad libitum  
LA - Lipoic acid  
sw - switch to 
M - months 
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This effect, however, is only observed when all long lived rat groups are combined suggesting 

that the sample size is to small to draw conclusive results for the individual treatment groups 

for these modules. Nontheless, it is interesting that the blue and red module have an opposing 

correlation in the long lived rats compared to the normally aged rats (Figure 4.3: longevitySig 

versus AL28M). This suggests that these modules are involved in the aging process. Next, we 

used DAVID [72] to identify functional enrichment within these modules (Table 4.2). 
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Module color Functional enrichment FDR Enrichment score 
Red GO:0001654~eye development 0.11 3.2 
Blue GO:0043005~neuron projection 2.44E-06 6.2 
Yellow GO:0005739~mitochondrion 5.11E-49 28.9 
Pink GO:0019899~enzyme binding 2.37E-04 4.8 

 
Table 4.2: Functional enrichment of clusters that are differentially expressed with age, but in 
an opposite manner to rats with extended life spawn through dietary intervention 
We were interested in the biological process underlying the modules that appear to behave 
differently in normally aged rats versus those that are longer lived. We tested this using DAVID 
functional enrichment analysis [72]. We found the functional enrichment for the yellow 
module to be most significant for mitochondrion, which are known to play a crucial role in 
aging [303]. It could be interesting to further investigate the hub genes within this module. 
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We observe that the functional enrichment for the yellow module is very strong for 

mitochondrion. It is known that energy metabolism changes with age and that mitochondrial 

activity decreases with age [304]. Interestingly, we observe that this module is behaving 

differently in the long lives rats compared to the normally aged rats.  

To further narrow down the genes that are interesting in this context, we identified the 

transcription factors that have a high module membership, indicating they are hub genes. 

Hubs in networks are known to be more important and this concept also applies to genes in a 

network  [134, 305-307], albeit this only appears to apply to intra-modular hubs, as opposed to 

inter-modular hubs [98, 135, 136] (Figure 1.4).  Transcription factors with a high module 

membership behave similar to the eigengene of the module. Transcription factors are known 

to regulate the expression of other genes. As such one would expect to find those that are 

responsible for the activation/deactivation of these modules to behave similar to the module 

and thus the eigengene of the module. For each module, we selected the three transcription 

factors that have the highest module membership and investigated whether they have been 

previously associated with aging or related pathologies. We found that, except for Nfyc, all the 

transcription factors with the most similar behavior to the eigengenes of the module were also 

the most connected transcription factors of the module. One of the transcription factors in the 

pink module, Camta1, has previously been associated with neuropsychological effects in older 

adults with cardiovascular disease [308]. Another transcription factor, Atf4,  in the yellow 

module has been associated with neurodegeneration [309]. These and other transcription 

factors, Atf2 [310, 311], Trerf1 [312, 313], Tfap2b [314], have previously been associated with 

cancer. Furthermore, Atf2 was previously also associated with osteoarthritis [315]. A large 

number of these genes have thus been associated with either aging related diseases and/or 

affect neuropsychology. 
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4.4.4. WGCNA analysis thymus data 

The Foxn1 gene only had a low expression, averaging 34 reads per sample, which is expected 

since transcription factors tend to have a lower expression level than other genes [316]. This 

gene is known to decrease in expression with age, although we only observed a mild decrease 

in this particular dataset (one-way ANOVA (F(1,30) = 11, p = 0.002)) (Figure 4.4).  
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Figure 4.4. Expression of Foxn1 at different time points 
Foxn1 has been previously reported to decrease in expression with age [317]. In this dataset, 
we also observe this, although the decrease only mild (one-way ANOVA (F(1,30) = 11, p = 
0.002)). It has been reported that the effects of this gene are extremely dose-sensitive [318], 
which supports the notion that the small observed changes in expression can have a significant 
impact on the observed phenotype.  
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It has been reported that the effects of this gene are extremely dose-sensitive [318], which 

supports the notion that the small observed changes in expression can have a significant 

impact on the phenotype . The clustering dendrogram indicates that samples largely tend to 

cluster by age group as expected (Figure 4.5). 
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Figure 4.5: Hierarchical clustering of the samples using WGCNA 
The first number in each identifier indicates the age of the individual rat (in days) and the 
second number is the replicate number for that age group. Colors at the bottom also indicate 
the age group to which the sample belongs. As expected, samples tend to cluster by age 
group.  
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Next, we used the same clustering algorithm on genes, rather than the samples. We used the 

dynamic tree cut algorithm to determine the clusters (Figure 4.6) and observed one very large 

module. 
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Figure 4.6: Cluster dendrogram indicating the different modules 
Colors at the bottom indicate the different clusters, as determined by the dynamic tree cut 
algorithm. There is one very large module (turqoise), which is enriched for cell cycle and 
transcription processes. A possible explanation for this module may be a overal decreased 
gene expression of thymic cells, in particular epithelial cells, which have reduced proliferative 
capacity, involving many genes [319]. 
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The expression pattern of this large module, as defined by the expression of the eigengene 

(eigenvalue of the first principal component), has a negative correlation with age (Figure 4.7). 

There also is a module showing a strong positive correlation with age. Genes in the turqoise 

module are enriched for the GO terms cell division and transcription (Bonferroni corrected p-

value < 0.01), as determined by DAVID's functional enrichment analysis [72]. 
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Figure 4.7: Correlation of modules with age, replicate number and sex 
The upper value in each box is the correlation of the module (y-axis) with the trait (x-axis). The lower 
value (in brackets) represent the p-value. Several modules correlate with age and some with sex. To 
validate that this method does not randomly introduces correlations with uncorrelated variables, we 
included the correlation between the arbitrary replicate index number and the modules. As expected, 
there is no correlation between this arbitrary number and any of the modules.  
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The Foxn1 gene is part of the turqoise module. This module has a negative correlation with 

age, which is in accordance with our expectations, since this gene is known to decrease in 

expression with age [318]. However, we expected this transcription factor to be one of the 

most strongly connected transcription factors in the module, but this wasnot the case. There 

are 144 transcription that are more strongly connected within this module and there are 132 

other transcription factors with a higher module membership than the Foxn1 transcription 

factor. This indicates that this type of analysis does not necessarily highlight all genes that play 

a large role in the aging process. However, this does not necessarily mean that those genes 

that do have a high connectivity and module membership are irrelevant. As such, it would be 

interesting to further investigate the genes that have a high module membership in this 

module, in other datasets. If these genes behave similar in other datasets, it increases the 

confidence that these genes are associated with aging and it will be interesting to follow up 

with experimental validation. 

 Discussion 
4.5.1. MicroRNA target repression is not clear from the co-expression network 

There are several possible explanations for the absence of miRNAs targets in the negatively co-

expressed list of miRNAs. An explanation may be that miRNAs behave differently in different 

tissues. The miRNAs could be targeting different targets [320], such as different isoforms of 

the same gene that have different functions, due to the presence of different domains whilst 

maintaining the same miRNA binding domain. As such, the negative correlation in certain 

tissues may not be observed in brain specific tissue.  Also, although speculative, it may be 

possible that miRNAs work as a negative feedback loop to assure expression of  a gene cannot 
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spiral out of control [321]. In such a case no negative correlation between expression of the 

miRNA and their targets would be expected.  

4.5.2. WGCNA analysis 

Eigengenes are defined as the first principal component of a module [66]and by definition 

explain the largest amount of variation possible, which in our samples is expected to be the 

variation caused by the different ages. Additionally, we aimed to identify which genes are most 

central to these networks as central genes are more likely to be important [322]. 

The goal was to identify the genes that are most central to those networks that are 

differentially expressed with age, but also behave differently under different feeding regimes. 

The eigengenes can be used to identify if these modules are differentially expressed in 

particular samples. In our case, we used an approach to identify which modules behave 

different under the different treatments. We observed that several modules were significantly 

differently expressed under ad libitum feeding and that some of these modules behave in the 

opposite manner under caloric restriction.  We aimed to identify modules that were behaving 

in a similar or opposing manner when treated with full caloric restriction as well as when 

swapped to or from a different diet. However, the results suggest that the sample size is too 

small to identify significant differential expression of these modules when inspecting groups 

that consist of only 6 rats (pooled into 3 samples before the RNA-seq step). However, if 

multiple different treatments are combined we do observe significant effects, which, we feel, 

is the result of the different lipoic acid and caloric restriction treatment patterns having a 

similar effect. Since the group size increases, whilst the observed effect on these modules 

appears to remain similar, the resulting correlation becomes significant. However, it remains 

impossible to conclude which treatment is most strongly influencing these changes and we can 
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thus only conclude that lipoic acid and or caloric restriction does appear to have an effect on 

the expression patterns of these modules. 

It would be interesting to further study the Camta1 and Atf4 genes in the context of other 

species, to identify if they are also behaving differently under caloric restriction in mice. Since 

such experiments have been widely conducted, it should be possible to retrieve this data from 

RNA-seq databases and conduct such a study. 

 Conclusion 
Our co-expression networks created from different tissues and conditions, is not able to 

identify targets of miRNAs based on co-expression partners, as evident from the fact that only 

3% of the targets are among the 1% most negatively correlated expression partners. 

Although our data suggest that lipoic acid treatment has an opposing effect on the expression 

of modules that are normally increasing expression at older ages, the sample size of the study 

appears to be too small to draw significant conclusions as to which treatments best mimic 

caloric restriction, if at all.  

The WGCNA analysis we conducted to identify hub genes in modules differentially expressed 

with age, can help identify transcription factors relevant to the aging process. This conclusion 

is based on the observation that several of the most well connected transcription factors are 

associated with neurodegeneration or other aging related diseases. However, it does not 

guarantee to identify the most interesting transcription factor in the context of aging, as 

determined by our analysis of thymus data and the co-expression network behavior of the 

Foxn1 gene.  This gene is arguably the most crucial single factor to the aging process of the 

thymus, as evident by its able to regenerate the thymus to its younger state [151]. Although 
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present in a module of which the activity decreases during the aging process, it is not one of 

the most well connected hub genes in its module. 
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 Discussion 

In this thesis, we set out to achieve a number of aims, as defined in Section 1.11. Here, we 

discuss to what extent we have accomplished our aims and put our results in perspective with 

reports on other co-expression analyses, such as co-expression databases created by other 

research groups as well as tissue-specific and differential co-expression analyses reported in 

the literature. 

 Co-expression databases 
In biological research there is a bias toward well studies genes. Researchers tend to focus 

more on well annotated genes, which then become better annotated and more focused on. In 

this vicious circle, new potential targets for follow-up studies are less likely to be discovered. In 

part, this problem can be attributed to the fact that it is hard to study a gene for which no 

functional information is available. In Chapter 2 and 3, we describe our database, which can be 

queried through a web interface by other researchers to quickly identify biological functions to 

which a poorly annotated gene is associated. Additionally, this database allows for the 

identification of new genes that may be relevant to a disease or biological process under 

study.  

The fact that the predictions from our co-expression network correspond to the annotation for 

well annotated genes (Section 2.3.2 and 3.3.3) supports the notion that our tool can be used 

to predict the biological process the gene plays its primary role in. That co-expression analysis 

is effective at associating genes with biological functions has been reported by others as well 

[4-6]. To put our database into perspective with other databases readily available, we have 

compiled a list of similar databases (Table 5.1).  These databases allow users to obtain gene co-
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expression partners of seed gene(s) and modules without having to go through the time 

consuming procedure of constructing a network and conducting clustering analyses. Our co-

expression database is not the first, but is novel in the sense that it is the first constructed 

from RNA-seq data and includes the option to query for co-expression partners on a transcript 

level. With the emerging of RNA-seq technology, many new genes have been annotated, 

including many ncRNAs, most of which are not present in existing co-expression databases. For 

most of these no knowledge is available and co-expression analysis will help predict the 

biological process it plays its primary role in. We constructed a database and web interface, 

described in Chapter 2. This allowed us to acquire experience with the construction of a 

relatively large co-expression database. This was later expanded into a much larger version 

required for our RNA-seq based co-expression networks, as detailed in Chapter 3. 

We aim to aid researchers in the interpretation of their results, for which purpose GeneFriends 

has already been reportedly used [153-157]. With the wider use of RNA-seq data for 

differential expression analysis, non-coding genes and alternatively spliced transcripts are 

more commonly observed as differentially expressed. The interpretation of these observations 

is hampered by the absence of information on potential functions for such genes and splice 

variants. Our database will help reduce the bias toward more well studied genes, as it allow 

researchers to include poorly annotated genes in the interpretation of these results. 

Additionally, it may aid in the design of validation experiments, by supplying the co-expression 

based functional predictions. These unidentified genes may be the missing pieces in the puzzle 

and could potentially serve as targets to, for example, cure disease.  
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Species Database name 

1. Integrated netw
orks  

2. M
icroarray Based 

3. RN
A-seq Based 

4. Conserved co-expression 

5. Tissue-specific 

6. TFBS 

7. Em
ail address Required 

8. Functional enrichm
ent 

9. N
um

ber of   Sam
ples  

Citations 

Hamster CGCDB [323]   X     X       295 7 
Human HGCA [324]   X           X 2,000 4 
Human Transitional network 

[325] 
  X           X 1,000 1 

Human 
Mouse 

TS-CoExp [326]   X   X X   X X 7,500 23 

Human 
Mouse 

ImmuCo [327]   X     X       12,500 - 

Human 
Mouse 
rat 

dGCR [328]   X   X       X 200,000|5,000 - 

Human 
Mouse 
Rat 

Genenetwork [17, 329]   X X X       X 80,000 502 

5 Species GeneFriends [20, 50]   X X         X 60,000|8,000  17 
9 Species GeneMANIA [330, 331] X X     X     X 175* 350 
17 Species GENEVESTIGATOR [245, 

332] 
X X X   X   X X 130,000|? 2382 

12 Species COXPRESdb [6, 86]   X X X   X   X 157,000|10,000 195 
11 Species MaxLink [333, 334] X X   X       X 31* 38 
10 Species STARNET [246, 335]   X           X 13,000 67 
> 20 Species MEM [336] X       X Many 89 

> 20 Species STRING [261, 337] X X           X Many 4819 

A.T.# CressExpress [338]  X   X  X X 1800 94 

A.T.# CORNET [339] X X   X   X 3000 77 

7 Species PlaNet  [340] X X      X >1400 104 

Grapevine VTCdb [341]  X   X   X 500 6 
Rice RiceFREND [342]  X    X  X 800 14 

Rice RiceArrayDatabase 
[343] 

 X      X 1900 34 

A.T.# 
Rice 
Brassica 

RiceArrayNet [344]  X       1311 60 
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Table 5.1: Different databases and included features 
We have compiled a list of available databases. Although this table includes many databases, 
more exist. Columns: 
1. Combined with other networks (i.e. Protein-protein interaction) 
2. Microarray based 
3. RNA-seq based 
4. Conserved co-expression 
5. Tissue-specific 
6. TFBS 
7. Requires registration with an email address 
8. Gene Ontology/Functional enrichment 
9. Samples microarrays|RNA-seq (* refers to number of datasets rather than samples) 
# Arabidopsis thaliana 

  

A.T.#  
Worm 
Human 
Mouse 

FunctionalNet [345] X X      X 2200 188 

7 Species ATTED-II [346, 347]  X X X X X  X 12500 682 

8 Plant species PLANEX [348] X X      X 12000 9 
8 Plant species CoP [349] X X  X    X 10000 47 

11 Species BAR [350]  X   X    >406 477 

4 Plant species GeneCat  X  X     536 96 
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 RNA-seq co-expression networks 
As outlined in this thesis, co-expression can be utilized to predict the biological processes a 

gene plays its primary role in. These co-expression based predictions have previously 

commonly been used to predict functions of coding genes, but to a far lesser extent for non-

coding genes. In Chapter 3, we have created a tool that allows such co-expression based 

function predictions on a genome wide scale not only for coding genes, but also non-coding 

genes, as well as on a transcript level. The latter allows users to query different splice variants, 

which was not previously possible in any online web-tools and is the main novelty of our work.  

The addition of ncRNAs to the database, in conjunction with the ability to query a set of genes 

allows users to input a list of genes that is annotated to a particular disease or a biological 

pathway to identify ncRNAs that are co-expressed with this set of genes. This approach can 

potentially be used to identify ncRNAs that play a role in a particular disease or pathway.  

Annotating genes as having a disease association may prompt researchers to investigate such 

genes in more detail, if they, for example, find it differentially expressed or mutated in a 

disease sample they study. 

A benefit of the transcript specific co-expression network is that it allows isoforms with 

different co-expression partners to be identified relatively easy. This may be used to elucidate 

potential additional functions that genes may have beside the function to which they have 

previously been annotated. Genes that have transcripts that are co-expressed with different 

sets of transcripts may play different roles in different tissues. These different roles can be 

determined by the functional enrichment of each of the co-expressed gene sets. If a 

researcher were to find a different isoform expressed in a sample under study he or she could 
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query our database to test if this transcript likely has a different function from the canonical 

transcript.  

 Tissue specific genes and co-expression  
One limitation of the co-expression network we build is that it is tissue-naïve. Some genes play 

different roles in different tissues. For these genes, co-expression analysis conducted on a 

wide range of tissues will associate these genes with multiple functions, but losing the 

information in which tissue it plays either of these roles. This can be deceptive as the most 

relevant process to the tissue of interest may not be ranked in the top of the enrichment 

analysis results. This could set a researcher on the wrong track, designing ineffective 

experiments. To solve this issue, it is possible to conduct a co-expression analysis simply using 

data originating from one tissue, similar to what we did in Chapter 4. However, this does 

reduce the number of datasets available and co-expression performs better on larger datasets, 

provided the same quality control measures are used [326]. Additionally, if more datasets are 

available, it allows for the luxury of higher quality control standards further improving the 

accuracy of co-expression analyses [326]. Since the number of publicly available datasets is 

growing exponentially, the possibility for tissue-specific conserved co-expression analyses will 

expand to include more tissues and species, increasing both the applicability and the accuracy 

of such specialized co-expression analyses. We are currently working on building tissue-specific 

co-expression networks, as well as including information about expression of different 

transcripts originating from the same gene. For this purpose, we are utilizing RNA-seq data, 

like in Chapter 3. Below we highlight available literature on tissue specific co-expression 

networks and note the benefits and drawbacks of such networks. 
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5.3.1. Whole organism versus tissue-specific co-expression maps 

Some types of co-expression networks are more successful at associating genes to certain 

diseases and biological processes than others. Abnormalities like mental retardation or 

Xeroderma Pigmentosum  have tissue-specific phenotypes, even though the mutation is 

present in the whole organism [351], suggesting that a tissue-specific network is disrupted and 

that processes active in all other tissues are unaffected. As such, the network module 

underlying this tissue-specific phenotype is expected to be apparent in a tissue-specific co-

expression network, but not necessarily in co-expression network constructed from different 

types of tissues [249]. In case of a tissue-specific phenotype, it would thus be more 

appropriate to study tissue-specific co-expression to identify key player(s) in the disease under 

study.  

Tissue-specific co-expression analysis has led to the experimentally validated association of 

Mybl1 to spermatogenesis, as well as associations between genes and ataxia [249]. Other 

examples include the association between decreased expression of brain developmental genes 

in schizophrenia [13] and the identification of molecular networks underlying other complex 

phenotypes [136]. Tissue-specific co-expression identifies important genes in these tissue-

specific diseases and is a better predictor of functional relatedness between genes [249], as 

well as it being crucial for identification of regulating genes that control tissue-specific co-

expression modules. 

Since the aim of our project was to construct a database that would be of use to a wide range 

of researchers, we opted to construct a co-expression network including data from different 

tissue and cell types. This allows researchers to query poorly annotated genes and obtain the 

predicted function in a tissue independent manner. We are currently working on constructing 
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tissue specific networks, which will allow users to identify the tissues in which different 

transcripts are expressed and what function they associate with in these tissues. 

 Conserved co-expression 
Whilst we show that a number of the co-expression derived predictions are in agreement with 

known annotations for a number of coding and non-coding genes, there are a number of 

biases that exist, which are discussed in this section. Additionally, we highlight co-expression 

works focussed on conserved co-expression networks and what the benefits and downsides 

are of such networks. 

5.4.1. Guilt-by-association caveats 

The expression of genes that do not have a biologically relevant function, can occur as a result 

of coincidental co-location of these genes on a chromosome. Because they are co-expressed 

they are more likely to share cis-regulatory DNA motifs, increasing the chances they are co-

expressed with a particular module even though they play no role in it. This may lead to the 

incorrect association of these non-functional genes to a process they play no role in. This is 

important to consider when using our database and a solution is supplied in the next section, 

discussing conserved co-expression networks.  

When using a GBA approach, it is important to remember that not every gene in a co-

expression module necessarily is associated with a function or disease association for which its 

partner’s annotations are enriched. Since co-expression modules often consist of a large 

number of genes, any overrepresentation of a functional process or group of disease-

associated genes quickly becomes statistically significant, as often indicated by deceivingly low 

p-values. Misinterpretation of these low p-values may lead to the incorrect conclusion that all 

genes in a module play an important part in a particular process or disease. In reality, the 
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fraction of genes in a module that relate to its main biological function is often under 20% 

[352], and module-trait correlations can be relatively low (R < 0.5) even when statistically 

significant [353].  To tackle this issue we have therefore also calculated the AUC, which is 

described in the second paragraph of Section 1.5.1. 

Although the GBA approach has been shown to perform well, issues have been raised. In 

particular biases or deficiencies in gene annotation, like the widely used gene ontologies [354], 

will be reflected in GBA. Three issues are of particular interest to network analysis: 

1. Circular reasoning: Many genes are annotated via associations based on networks. As a 

result, when doing a GBA analysis, the functional enrichment is strong since there may be, for 

example, 10 genes annotated to the same category in the network. However, if these 10 genes 

were annotated based on the fact that they associate with a single gene for which the function 

has been validated, the functional enrichment effectively originates from only 1 gene in the 

network. This gene itself may even be an outlier in the network or not present at all [352].  

2. Broadly annotated genes: There is a large number of genes that are annotated to a broad 

range of functions [322], rather than the functions they play their primary role in. As a result, 

the GBA approach can lead to associations to a large list of functions caused by a number of 

co-expressed genes associating to many categories. Then the enrichment following from genes 

assigned to single categories may be underrepresented in the flood of enriched categories 

identified through genes annotated to many categories. One solution is to weigh gene 

interactions in functional enrichment analysis by the number of categories they are assigned 

to [322, 355]. In this thesis, we have not added such weighting to our functional enrichment 

analysis. Motivation for this choice is that we wish to assign a putative function to every gene 

even if the assigned functions are very general (genes that are assigned to detailed/specific 
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terms are usually also annotated to more general) and the more detailed categories do not 

rank on top. A downside to this method is that the more detailed function a gene is associated 

with may not rank in the top, but we leave this up to the user’s interpretation. Even though 

these issues exist, in the context of co-expression, GBA still proves effective at correctly 

associating genes to functional categories and diseases as evident by several experimentally 

validated results [8, 13, 14, 20, 249].  

3. Some genes may be incorrectly annotated to a category. As a result, the GBA approach we 

use incorrectly associates the gene of interest to a particular biological process. False 

predictions caused by incorrect annotation of genes will, to an extent, be compensated for by 

the large number of gene co-expression associations making it more likely to identify 

functional enrichment for the correct annotation (unless the majority of the hundreds of co-

expressed genes is incorrectly annotated, which is unlikely). The issue of incorrect gene 

function predictions through GBA, due to incorrect annotation of genes, will be bigger in 

poorly annotated species, where more associations are based on solely computational 

predictions which are more likely to be inaccurate [352]. Conserved co-expression across 

related species may help separate true associations from those resulting from annotation 

biases and identify those genes that likely have a different role in particular species. 

5.4.2. Conserved co-expression and species specific differences  

One approach to uncover if co-expression likely occurs as a result of functional relatedness, is 

to test if co-expression with genes annotated to the same biological function is conserved in 

different species. If the gene is not co-expressed with other genes in a different species, it is 

likely not functioning in the same biological process. Genes whose function is unrelated to 

their neighbors are more likely to translocate [16] throughout evolution and are thus less likely 
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to be co-expressed in multiple species [356]. Identifying conserved co-expression partners to 

determine functional co-expression is particularly useful for ncRNAs, which tend to be less 

conserved [357]. Supporting the notion that genes that are co-expressed in multiple species 

are indeed more likely to be functionally related, is the fact that they are more likely to be 

physical interaction partners [358]. Uncovering genes that are co-expressed with genes 

annotated to the same functional category in multiple species can thus reveal functionally 

related genes with a higher confidence.  

One landmark paper in the co-expression field showed that conserved networks are indeed 

more effective at assigning putative functions to genes than single species networks [4]. Many 

other papers followed, allowing for a more accurate functional classification of genes [24], as 

well as associations to diseases [19], in particular brain related diseases [326, 359]. Not only 

does conserved co-expression analysis help identify disease related genes much more 

accurately [19], it also identifies only those targets that have a similar co-expression network 

in both species, making them more likely to function similarly in, for instance, a given model 

organism and humans. This is particularly interesting in the context of drug target discovery for 

which extensive and expensive trials are required and the vast majority of these trials report 

negative results after proving successful in model organisms [360]. Conserved co-expression 

analysis could help select those targets that are most likely key players in both human and 

model organisms, effectively reducing the cost and time requirement of experiments and trials 

by reducing the number of compounds that require testing. 

One drawback of conserved co-expression analysis is that those genes that do not exist in both 

species are automatically excluded from the analysis. For example, if one were to compare 

conserved co-expression in both human and yeast  the vast majority of genes would be 
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excluded since the yeast genome contains only approximately 6,000 genes compared to the 

approximate 20,000 protein encoding genes in humans. Furthermore, it has been reported 

that the number of conserved co-expressed genes between mouse and human is less than 

30%, highlighting the limitation of this approach [361] [148, 356]. This low percentage is 

explained by the differences in regulatory programs in different species, which varies between 

different biological processes [148]. Moreover, the use of different tissue types from different 

species to construct the co-expression map may further contribute to this.  

Lastly, even though functionally related genes are part of the same co-expression modules in 

different species, connections between genes of these modules often differ, implying that the 

regulatory networks are wired differently in different species [24, 356].  This is a likely a 

contributing factor for the large phenotypic differences observed in different species despite 

the fact that their gene sequences are largely the same [362]. 

Conserved co-expression is an avenue that could be explored using the co-expression 

networks that we have constructed. It is possible to test if a gene’s co-expression partner’s 

functional enrichment is similar in our mouse based co-expression network, which we added 

after this project was finished. Conservation in general is also of interest in context of different 

splice variants, which may emerge through mutations. If functional, these splice variants will 

be preserved, but those that are not are less likely to be preserved. Investigating the 

preservation of splice variants can aid the identification of those splice variants that are more 

likely to be functional and add or reduce the confidence in the co-expression based predictions 

based on only one species. 
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5.4.3. Conserved tissue-specific co-expression 

As suggested earlier, the use of different tissue types may affect the accuracy of co-expression 

networks. As such, the combination of conserved co-expression with the use of tissue-specific 

data may result in the most accurate networks. By contrast, as this requires tissue-specific data 

from multiple species, the amount of data available and thereby the accuracy will be 

significantly lower, reducing the quality of the resulting co-expression network [326]. It 

appears that tissue-specific conserved co-expression networks identify disease gene 

relationships that are not found in multi-tissue conserved co-expression networks [326]. This 

was determined by Piro et al. by removing all edges between genes that are not related to 

diseases. The remaining edges were considered as disease gene relationships. When the 

conserved co-expression network was constructed from specific tissues, different disease gene 

associations surfaced compared to when the network was constructed from multiple tissues. 

Each of the 13 tissue-specific co-expression network had its own unique disease gene 

association. Combining these 13 lists of disease associations, obtained from the tissue-specific 

networks resulted, in 3 fold more disease genes associations as compared to those uncovered 

in the multi-tissue network [326]. Thus many disease gene associations are found in tissue-

specific networks that are not uncovered in multi-tissue networks. This suggests tissue-specific 

conserved co-expression is a powerful approach to identify disease related genes. 

Since there are not many works available in the literature that has compared tissue-specific 

conserved co-expression to non-tissue-specific conserved co-expression, its potential is not 

clear yet. This can be ascribed to the fact that this type of analysis requires tissue-specific 

expression data from multiple species, which is not always be available in large numbers. With 

the decreasing cost of genome-wide expression analysis and the increasing amount of data 

publicly available, this issue may resolve, allowing more conserved tissue-specific co-
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expression analyses to be conducted. Our view is that, since both conserved and tissue-specific 

co-expression networks are more accurate than individual species co-expression networks, the 

most accurate network is most likely obtained from conserved tissue-specific co-expression 

networks, but at the cost of available samples. In Chapter 4 of this thesis, we have conducted a 

tissue specific analysis on aging rat brain data and identified 4 gene co-expression modules 

that are altering in expression with age. Gene annotations within one of these modules were 

enriched for mitochondrial processes, which have been reported to affect the rate of aging in 

numerous occasions [303, 363-365]. It would be interesting to test if this same module would 

be present in other species and if the hub genes within this module are similar. If this is the 

case it would support the notion that these genes are indeed playing an essential role in the 

aging process.  

As opposed to a conserved co-expression analysis, identifying networks conserved in multiple 

species, it is also possible to conduct a differential co-expression analysis. This can be used to 

identify genes that are differentially co-expressed and thus have different co-expression 

partners between different sample groups, such as two samples derived from different tissues. 

These genes appear to play a regulatory role in the difference of the phenotype observed 

between two sample groups [139, 140, 142]. This can be also used to acquire more detailed 

information about which genes are more likely to be essential in a biological process or 

disease. For example, if a gene is differentially co-expressed between individuals with a 

disease and a group of healthy individuals, it may play a regulatory part in the processes 

leading to the disease. Differential co-expression analyses have been more widely conducted 

in the past few years and are discussed below. Further to differential co-expression analyses, 

advances in other genome wide technologies are allowing for integrative analyses, which are, 

in our opinion, the future of genomics and other omics research.  
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 Differential co-expression analysis 
In Section 4.4.3, we have conducted a differential co-expression analysis, identifying a number 

of modules that behave differently in long lived rats compared to rats with a normal lifespan 

and identified the genes that best represent these modules. We wondered if the hub genes we 

identified in Section 4.4.3 would potentially include some of the most interesting targets for 

intervention of the rat brain aging phenotype. Unfortunately no targets with great potential 

for intervention studies in brain tissue had been identified yet, to our knowledge. However, in 

another tissue it was found that Foxn1 plays a major role in the aging process.  If this gene is 

activated in an aged thymus, it regenerates this tissue and restores the expression profile to 

one much more similar to the one observed in a young thymus [151]. We used this 

information, in conjunction with a rat thymus aging dataset, to test if this TF would be part of 

an aging related module and if it would be a central gene in this module. This did not appear to 

be the case showing that this approach does not necessarily detect all of the targets with a 

great potential for intervention studies (Section 4.4.4). 

It may be interesting to use a different method that identifies genes that are co-expressed 

with different modules in different sample groups, such as DiffCoEx [67]. This method 

identifies genes that are co-expressed with different modules in different groups, as described 

in Section 1.9. Such genes may be regulators of the different activity of these modules 

between the long lived and rats with a normal lifespan. This change is not detected by WGCNA 

as it represents a different form of differential co-expression; that of the whole co-expression 

module, rather than genes that change between modules. It first identifies co-expression 

modules across a number of sample groups and then determines the activity of these modules 

within each of these groups. If this activity varies between the sample groups, this module is 

said to be differentially co-expressed. 
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Differentially connected genes can play a regulatory part in the difference in the observed 

phenotype between two groups (Figure 1.5d) [139, 140, 142]. For example, one study 

compared co-expression in mutant cattle with increased muscle growth to co-expression in 

non-mutants, using a method similar to DiffCoEx. By identifying the most differentially 

expressed genes and TFs showing the highest differential connection to these genes [142] 

(Figure 1.5d), the TF containing the causal mutation (myostatin) was identified. Interestingly, 

the Mstn gene, which encodes this TF, hardly changed in expression itself, providing an 

example of how differential co-expression analysis can uncover biologically important findings 

that are not revealed by differential expression analysis alone. 

The fact that the Foxn1 gene was not identified as a key player indicates that this analysis can 

miss targets that are likely to be highly relevant for intervention studies. We showed that this 

gene is part of a module that is differentially co-expressed between long lived rats and those 

that have a normal lifespan, although it was not an important hub gene within this module. It 

may be interesting to use a different method that identifies genes which are co-expressed with 

different modules such as DiffCoEx [67]. It may be that Foxn1 plays a role in a particular 

module in rats with a normal lifespan, but becomes part of a different co-expression module in 

long lived rats. This change is not detected by WGCNA as it represents a different form of 

differential co-expression; that of the whole co-expression module, rather than changes within 

the module. 

 Identification of genes associating with disease 
Although it is interesting we can use co-expression to associate genes to functional categories, 

as previously shown in literature [108-113] and in Chapter 2 and 3 of this thesis, we also aimed 

to identify genes that play an important role in disease. Our results show that it is possible to 
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uncover genes that are likely to play a role in diseases, such as the Bc055324 gene in cancer 

and the Cebp genes in aging.  This is in-line with literature [197, 198], which shows that 

altering the expression of these Cebp genes indeed leads to an extension in lifespan in mice. 

The Bc055324 gene experiments conducted in our lab show that this gene is important for the 

proliferation of HeLa cells (Section 2.3.6). A double knockout of this gene is not viable as 

determined by a double knockout of this gene in mice (personal communication Paul Potter at 

MRC Harwell). The fact that conditional knockout mice, initiating knockdown of this gene after 

birth, show no obvious phenotype after 2 years suggests that this gene is not vitally important 

for survival (unpublished results) past birth. Although it is not expressed under normal 

circumstances and proves not to be important for survival,  this gene showed to be increased 

in expression in cancer, which may require this gene for its rapid proliferation, as supported by 

our knockout experiment in Hela cells [20]. As such, the Bc055324 gene would make an 

interesting target to study further in the context of cancer. Follow up studies are warranted 

and collaborators are currently investigating the localization of this protein to be able to better 

determine its role in the cell cycle. 

 Transcription factors and co-expression 
In Section 2.3.4, we conducted a co-expression analysis and identified co-expressed co-

expression partners with a set of aging related genes. It is interesting to identify transcription 

factors that regulate this set of genes. As TFs are known to activate the expression of a target 

set of genes, we expected that these are strongly co-expressed with their targets. As such, co-

expression would seem like the perfect way to identify these targets, which has proven 

successful in E. coli and S. cerevisiae in a number of cases [90, 128, 366, 367]. Although 

regulatory mechanisms are more complex in higher organisms, co-expression has also been 
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used to identify regulators in these type of networks [90]. However, transcription factor 

activity is often controlled by factors other than expression, such as a wide range of post-

translational modifications like phosphorylation [117], acetylation [118] and methylation [119] 

as well as ligand binding [120]. Also, the activation of a gene is often controlled by multiple 

transcription factors, meaning the activation of a single transcription factor is often not 

sufficient to increase the expression of its target [368]. Furthermore, there can be competitive 

binding of other proteins and transcription factors, not allowing a transcription factor to bind 

and promote transcription [369]. These mechanisms ultimately cause noise in the co-

expression of targets with their transcription factors. As such, one would not expect co-

expression to be very effective at assigning every target based on the transcription factor's co-

expression pattern. Therefore, this approach is, by itself, likely unsuitable to unravel the 

regulatory network underlying most diseases and biological processes. It also implies that 

there may be other regulators of the genes that are co-expressed with the aging genes than 

those reported in table 2.3. The observation that multiple C/ebp genes are co-expressed with 

the aging related genes does remain interesting. Alteration in isoform expression of these 

genes has been shown to improve metabolic health in mice [370] and to have positive effects 

on lifespan (personal communication with Cor Kalkhoven)[197], supporting the notion these 

genes can be targeted to increase the lifespan of mice. This supports the notion that our co-

expression database can indeed be used to acquire supporting evidence for genes that could 

be interesting targets for intervention studies. 

 MicroRNA-target expression correlation. 
Most of the work discussed in this thesis has focused on the positive correlation between 

genes. However, negative correlation between genes can also be biologically meaningful as it 



Discussion
 

Page 179 of 233 

may indicate inhibitory functions of a gene on another gene’s expression. This is particularly 

interesting in the context of miRNAs, which are known to suppress the expression of their 

targets as also mentioned in the introduction of this thesis (Section 1.6.1). One challenge with 

miRNAs is that they have a short length, which means they are often removed in the RNA 

purification step, often utilizing a ribosomal depletion protocol, which removes short RNAs. In 

Chapter 4, we have therefore used an in-house generated dataset in which the miRNAs were 

isolated using a protocol specifically tailored to this purpose [294]. Contrary to our 

expectation, we did not find a significant negative correlation between miRNAs and their 

annotated targets. This observation supports the notion that the expression of miRNAs and 

their targets is not necessarily negatively correlated in brain tissue derived datasets and that 

identifying such correlation relationships will likely not help to identify the targets of miRNAs. 

We acknowledge that these results have limited meaning as they are based on a single 

dataset, but unfortunately at the time of this analysis, the availability of datasets with high 

quality measurements for both total RNA and miRNAs was limited. A different study did find 

both negative and positive correlation between miRNAs and their targets in human data, but 

found that neuronal specific miRNAs tend to be co-expressed, rather than negatively correlate, 

with their targets. Authors suggest that these miRNAs play a role in neuronal homeostasis 

[321].  

The poor annotation of datasets in public databases increases the difficulty of acquiring such 

datasets. Once a larger number of datasets, including accurate miRNA expression data, 

become available, it may be worthwhile to conduct a co-expression analysis on such a dataset 

to more reliably assess the expression correlation patterns between miRNAs and their targets. 

Although the power of this study was limited, this finding adds support to the notion that 
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miRNAs and their targets do not necessarily show a negative expression correlation, which is 

an observation that we feel is valuable to the research community. 

 Integrated network analysis 
In this thesis, we have focused on co-expression analysis mostly, but we feel a lot of 

opportunity to better understand mechanisms behind regulation of biological processes and 

diseases resides in combining co-expression networks with other the types of networks, some 

of which we highlight below. 

Experimental validation often focuses on single genes. As these experiments are costly and 

time consuming, high confidence predictions of causal genes are of great importance. An 

analysis based solely on co-expression does not (yet) provide this level of confidence. 

Incorporation of information from other types of data can help prioritize which genes may 

underlie a phenotype. This can be achieved, for example, using information describing which 

genes are TFs, such as for regulatory predictions using GENIE3 [371]. However, a focus on TFs 

is rarely sufficient, and integration of multiple data types is often required to increase the 

accuracy and usefulness of the resulting networks [372, 373]. 

5.9.1. Transcription factor binding site analysis.  

Genome-wide TFBS analysis was introduced in the beginning of this millennium using 

chromatin immunoprecipitation followed by microarray analysis, also known as Chromatin 

Immunoprecipitation (ChIP)-chip [374], which was later replaced by more accurate ChIP-seq 

[375], in which the microarray analysis step is replace by RNA-sequencing. This data was used 

to create a genome-wide integrated regulatory network from gene expression and TFBS data 

[376]. Combined analysis of ChIP-chip-based TFBSs and expression data initially showed that, 

in 58% of the cases, the TFs bound to the promoter region of the gene were indeed regulated 
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by the corresponding TF [377]. A partial least squares approach (a well-known tool for analysis 

of high-dimensional data with many continuous response variables) was later proposed to 

identify false positives and distinguish the activation and repression activities of TFs [378]. A 

more recent method harnesses the rapidly increasing availability of ChIP-seq data in 

combination with expression data to rank the genes bound by a TF, which can be used to 

prioritize the most likely TF targets [379]. Tools to conduct similar analyses, integrating 

expression and ChIP data, have also been published [380].  

Multilayer integrated networks. Independent from the approach used to identify them, 

network modules can be further investigated for shared eQTL gene targets, TF/miRNA targets 

or enriched binding motifs [148, 381]. Several computational methods and publicly available 

datasets are available for multi-omics data integration. For example, information about eQTLs 

can be acquired from recent a large-scale blood-based trans-eQTL meta-analysis [382] or eQTL 

studies conducted in other tissue types [383]. TFBSs can be collected from databases, such as 

JASPAR and DeepBind [384], which consist of transcription factor binding motifs inferred from 

experimental data. Binding sites can be further prioritized by investigating tissue-specific ChIP-

seq peaks from ENCODE [148]. Finally, miRNA-target interactions can be identified using 

several in silico target prediction tools [385, 386] or utilizing manually-curated databases of 

experimentally supported target interactions [297, 387, 388]. 

Combining information from different layers of data may lead to new biologically interpretable 

associations in a number of ways. If intra-modular hub genes are TFs or targets of a TF, this TF 

is more likely to have a causal role in the phenotype under study [142]. If multiple Genome 

Wide Association Study (GWAS) hits exist in the same module, their cumulative presence can 

explain disease development [381, 389, 390]. Differential methylation states of genes within a 
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co-expression module can elucidate methylation patterns underlying disease [391]. Finally, if 

multiple genes are regulated by the same genetic variant (under a trans-eQTL effect), it may 

be possible to identify the gene responsible for the alterations of the network by identifying 

the cis-eQTL gene driving the trans-eQTL effects (Figure 4). This is supported by the fact that 

genes under trans-regulation of disease-associated genomic variants are sometimes annotated 

to the processes or pathways associated with the corresponding disease. Good examples of 

this are IFN-α and complement pathways in which several genes were under trans-regulation 

of a systemic lupus erythematosus-associated variant, possibly via cis-regulation of IKZF1 

[382]. The integration of regulatory genetic variant information into co-expression network 

analysis with cis-eQTLs used as causal anchors, identified TYROBP as the most likely causal 

factor in late onset Alzheimer disease patients, a finding supported by the observation that 

mutations in this gene are known to cause Nasu-Hakola disease [353]. 

Overall, integration of multiple data types increases the accuracy of the resulting predictions 

[372, 373]. For example, modules unique to different subtypes of cancer were identified by 

integrating tumor genome sequences with gene networks [392], and these modules may be 

useful for prognosis and identification of putative targets for personalized medicine-based 

treatments. A recently published tool, CoRegNet, allows the integration of different types of 

data in a co-expression analysis by identifying co-operative regulators of genes from different 

data types [393]. Another established approach, cMonkey, achieves similar data integration by 

calculating the joint bicluster membership probability from different data types by identifying 

groups of genes that group together in multiple data types [394]. 

To systematically asses the performance of different tools and methods, projects such as the 

Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenges, specifically 
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DREAM4 and DREAM5 [395], have been invaluable. These challenged researchers to construct 

regulatory networks from simulated and in vivo benchmark datasets. However, these 

challenges were last posed in 2010 and many new methods and tools have been developed 

since. 

  

 Future prospects  
In recent years, differential co-expression analyses have been increasingly used to analyze 

large datasets. This may be attributed to decreases in the cost of large-scale gene expression 

profiling, in particular RNA-seq, leading to increased sample sizes, and to the greater 

availability of tissue-specific data from perturbation experiments, which are required for 

fruitful differential co-expression analyses [396, 397]. 

Large-scale single-cell sequencing technology is increasingly used and the first co-expression 

studies have uncovered cell-type-specific co-expression modules that would have gone 

undetected in multi-cell-type co-expression analyses [144, 398]. Since the latter represent the 

aggregated signals of multiple cell types, they usually cannot detect alterations in cell 

subpopulations between different experimental groups. This is supported by the observation 

that the expression of cell cycle genes associated with aging decreased in the analysis of non-

cell-type-specific data [399]. However, data from single-cell experiments indicated that this 

observation was caused by a decreased proportion of the G1/S cells that highly express these 

genes rather than changing expression within the cells [400].  

An additional prospect is the detection of mutations from RNA-seq data [401]. As mutations 

accumulate with age in different cells, these can be used to identify the origin of the cell. 
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Mutation accumulation has been used to study cancer development and the origin of 

metastases [402]. In large-scale single-cell RNA-seq experiments, mutations could be used to 

separate cells based on their origin, or to group cells based on the mutations they harbour 

[403]. Cells harbouring the same mutations can be investigated for co-expression patterns, and 

modules unique to cells with a specific mutation may be detected. This may allow the direct 

linking of mutations to expression modules, with the limitation that only mutations in coding 

regions are detectable in RNA-seq data.  

Although there are many exciting new possibilities with the increasing availability of single-cell 

RNA-seq data, many challenges still remain. With single-cell RNA-seq, typically a low number 

of reads per cell are sequenced and then the signal from multiple cells of the same type is 

aggregated to acquire a cell-type specific gene expression profile. It is hard to acquire 

sufficient data for rarer cell populations, such as stem cells, currently limiting specific analyses 

on these cell types when using these datasets. Additionally, the low number of reads per cell 

lead to sparse expression matrixes to which normalization methods currently used in canonical 

RNA-seq analyses are not attuned. These normalization methods often also assume the 

majority of genes do not alter in expression between different samples, which is not 

necessarily the case in single-cell RNA-seq, due to the heterogeneous expression across 

different cells. This is further exacerbated by the low quantity and difficulty of obtaining high 

quality RNA from single cells. These and other issues are further discussed in [404].  

In addition to the normalization issues that exist in single-cell sequencing, the optimal method 

for normalizing bulk RNA-seq data is also still not clear. The widely used Fragment/Reads Per 

Kilobase Million (FPKM) normalization has been debated [80] and although alternatives have 

and are being created, each method has its limitations. Additionally, from our experience, the 
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use of different mapping tools can in some cases lead to very different results. Although some 

comparisons between different tools and methods have been made [405], a large-scale 

comparison, using e.g., public data, would identify such cases and define best practices for 

pursuing each research question.   

With the increased availability of different data types, such as RNA-seq, genome sequences, 

ChIP-seq, methylome and proteome data, it will become possible to integrate these datasets 

to more accurately predict regulatory genes. Projects from large consortia, like GTEx [383], the 

Epigenome Roadmap [406], and ENCODE [148], are already generating data from multiple 

omics levels that facilitate these integrated analyses. To identify regulatory relationships, 

perturbation data is preferable, as canonical data cannot distinguish between true and false 

positive regulatory relationships [396, 397]. Furthermore, regulatory relationships can be 

highly cell-type, tissue- or developmental stage-specific [397]. Only a handful of tools and 

methods are currently available, mostly integrating only 2 layers of omics data [407]. 

Integrated network analyses come with additional mathematical challenges and best practices 

are far from established. Further research on this topic is of great interest to the research 

community, as it will allow for a better understanding of regulatory mechanisms explaining co-

expression patterns and underlying disease, facilitating the identification of appropriate 

targets for intervention studies. 

5.10.1. Prioritization of causal disease mutations with GeneFriends 

Integration of different types of omics data is another interesting avenue we also wish to 

pursue with GeneFriends. One particular avenue we are interested in is to make GeneFriends 

more applicable in the clinical setting. It may potentially be interesting to use our co-

expression database to prioritize potential disease causing genes by combining disease gene 
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predictions with information on potential pathogenic mutations harbored by a particular 

patient. Sequencing is emerging not only in research, but is also slowly starting to get used in 

the clinic. When a patient has a disease phenotype, in some cases exome sequencing or even 

whole genome sequencing is used to identify Single Nucleotide Polymorphisms (SNPs) that 

could possibly explain the phenotype. In most cases the causal mutation is not apparent as 

multiple risk SNPs are detected and identifying the causal one can be a challenging exercise. In 

most cases disease annotations have been determined for patients (for example, defined in 

Human Phenotype Ontology terms further explained in [408]), which have often also been 

associated with a number of genes. An obvious approach is to first identify mutations in those 

genes, but if these are not present it may help to prioritize other genes based on their co-

expression with the disease term associated genes. These prioritized genes can then be 

investigated for pathogenic mutations, possibly explaining the observed phenotype in the 

patient. This prioritization may thereby help identify the causal mutation more rapidly. We 

could extend our tool to allow researchers to supply 1. Lists of genes containing mutations to 

our tool, from which we could identify the pathogenic mutations and 2. Phenotypes, which are 

often associated with lists of genes, from which we could derive a list of predicted disease 

genes using our already established GeneFriends tool. Identifying those predicted disease 

genes that also contain a pathogenic mutation, may elucidate potential causal disease genes in 

patients.   
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 Summary 

In Section 1.11 of this thesis, we outlined a number of aims and here we reflect on these. We 

summarize the achievements described in this thesis and how it advances the state-of-the-art. 

Our first aim was to construct a co-expression network from a large number of microarray 

samples, and to create a user friendly website that can be queried with individual or multiple 

genes, such as a group of genes previously associated to a disease. We have created a user 

friendly website that allows users to download full lists of co-expressed genes with their query, 

as well as the entire co-expression network per species. This also laid the ground work for our 

second aim. Additionally, in Chapter 2, we showed that our co-expression networks can be 

used to associate new genes to diseases using a GBA approach on known disease genes. These 

associations help identify interesting targets for follow up studies, such as the C/ebp 

transcription factors for aging and the Bc055324 gene for cancer. GeneFriends has been used 

in multiple occasions for these purposes, supporting the notion that we have created a 

resource that is useful to other researchers [153-157]. 

The second goal achieved, described in Chapter 3, was the expansion of our co-expression 

database to include ncRNAs and add these to our existing website. Here, we have shown that 

co-expression analysis can also be used to predict gene functions for ncRNAs. We do note that 

there appears to be a relatively high abundance of predictions for the Olfactory Receptor 

category, which warrants further investigation. Accompanied with the web interface, this is 

the first co-expression database that allows users to query a large number of ncRNAs and 

obtain predictions on the biological process they play a role in.  
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Our third aim was to further expand our database to also include predictions for transcripts, 

which was also achieved, as described in Chapter 3. We have shown that this co-expression 

network allows identification of splice variants that are strongly co-expressed with different 

sets of transcripts that are enriched for different functions. The possibility to query the 

database for transcripts allows researchers to inspect if transcripts, from differentially spliced 

genes in their dataset of interest, likely have a different function. Identifying such transcripts 

will allow researchers to identify transcripts potentially explaining phenotypic differences, 

thereby allowing better interpretation of their results in the context of their study. 

In Chapter 4, we tested if it is possible to identify miRNA targets by identifying genes with a 

negatively correlated expression pattern, the fourth aim of this thesis project. Contrary to our 

expectations, we showed that in rat brain dataset of rats with different ages miRNAs do not 

show a significant negative correlation with their targets. Although this is a study on a 

relatively small dataset, this supports the notion that miRNA targets cannot be identified solely 

from negative correlation patterns. 

Our fifth aim was to identify modules that are altering in activity during aging, as well as 

identifying modules that counter this effect through dietary interventions. Conducting a tissue 

specific co-expression analysis on an aging rat brain dataset, we showed that it is possible to 

identify a module of genes that are altering in expression with age. We could identify a 

number of transcription factors previously annotated as players in neurodegeneration and 

other aging related diseases. However, we failed to identify modules that are correlated to 

specific dietary interventions, possibly due to the small sample size.  

Our last aim was to test if hub genes are include all of the most interesting targets for 

intervention studies. We conducted our analysis, using WGCNA, on an aging thymus dataset to 
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test if this analysis would identify Foxn1, a gene showing massive regenerative potential in 

aged thymi, as an important gene in the aging module. This appeared not to be the case 

proving that hub gene selection of modules associated with a trait of interest does not 

necessarily uncover all promising gene targets.  
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Appendix I - ReadCounter: A tool to determine the expression 

levels of genetic features based on reads mapped to a genome 

In the Chapter 3 we constructed a co-expression map from over 4000 samples for which we 

downloaded the raw data. To convert these samples from sequencing data to read counts per 

gene it was necessary to count how many reads overlap each gene region. At the time of the 

construction of our RNA-seq based co-expression network, the fastest tool available to count 

this was HTSeq, which was too slow and became a bottleneck in the analysis. To solve this 

issue we aimed to create a tool that supplies the exact same output as HTSeq but in a much 

faster fashion. Additionally, we aimed to count the reads per exon and intron regions in 

addition to the entire exonic gene region as determined by HTSeq. 

Abstract 
With the growing use of RNA-seq to determine gene expression, it is important that the 

analysis of such data is supported by tools to analyze this type of data. Over the years the 

sequencing depth in RNA-seq has increased, resulting in a larger amount of data per sample. 

To make the analysis of such data easier we have written a small walkthrough of the analysis 

(www.GeneFriends.org/RNA-seqForDummies). Additionally, we wrote a script that will 

automatically convert raw sequencing data into read counts per gene. As a result of the 

increase in the number of samples per dataset and the amount of data per sample, analyses 

can be hampered by slow conversion of sequencing data to read counts per gene. For this 

reason it is important efficient analysis tools are written. We created a tool that determines 

the overlap between genomic co-ordinates of reads with genes ultimately allowing to 

determine the number of read counts per gene from mapped sequencing data. We wrote a 

tool that is 4 times faster than HTSeq on a single core. Additionally, contrary to HTSeq, our tool 
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allows for multithreaded processing of data allowing the same analysis taking 15 times less 

time on whilst producing identical results. Lastly, our tool reports the number of reads per 

exon and intron. This information can give indications about different transcripts that may be 

transcribed and if there is possible regulatory components, such as unknown miRNAs, being 

transcribed from within the introns. 

Introduction 
The ability to measure gene expression in parallel using microarrays has proven useful in 

linking genetic factors to specific biological processes [409, 410]. However, the exact 

mechanisms often remain unclear. This may be due to the exclusion of many ncRNA (ncRNA) 

and the lack of differentiation between the various transcripts arising from the same genes in 

microarray analyses. The role of ncRNAs is poorly understood and may be crucial in 

understanding these mechanisms. It is now possible to investigate the expression of these 

ncRNAs, thanks to the rapidly expanding sequencing technology [411, 412]. Additionally, RNA-

seq technology has the benefit over microarray chips [413] that it allows the measurement of 

intron and exon specific expression. This allows us to differentiate between expression of 

different transcripts originating from the same gene [252]. 

To support the analysis of RNA-seq data a number of tools have been created, but even a 

simple gene expression analysis often proves challenging. Analyzing expression of non-

commonly investigated features such as intron or gene flanking regions would require 

additional effort. As such, the additional advantages of exon and intron specific read counts 

are often completely ignored. Moreover, it is common for researchers to opt for microarray 

technology over RNA-seq technology to avoid of the complexity that comes with it. To address 

this issue we have created a freely downloadable script that automatically installs and runs the 
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necessary tools to convert data obtained from the RNA sequencing machine into read counts 

per gene/transcript (available from: http://www.GeneFriends.org/RNA-seqForDummies/). 

Additionally, we have created and included a tool, which we coined ReadCounter (available 

from: http://www.GeneFriends.org/ReadCounter/), This tool reports read counts for whole 

gene/transcript counts, intron and exon specific counts as well as ambiguous and non-

ambiguous counts for every gene simultaneously, requiring no additional effort from the user. 

The analyses of RNA-seq data typically requires several steps. The data obtained from the 

sequencing machine consists of basepair sequences of the genes that were expressed in the 

samples. These need to be mapped to a genome for which several tools are available such as 

Tophat [58],  Burrows-Wheeler Aligner (BWA) [414] and STAR [55] and others [415], resulting 

in a .sam or .bam [416] file depending on the user's preference. These files describe the 

genomic location of the reads on the genome. In many cases researchers want to know how 

many reads overlap with genes. To determine this it is necessary to compare the read 

coordinates to the genomic locations of genes. For this purpose several tools are now 

available. Initially the only widely used tool available was HTSeq [59], but others have become 

available or have been added to existing tools, such as FeatureCounts [60], IRanges [417] and 

GenomicRanges[418]. Using the .sam/.bam file and a General Feature Format (GFF) or General 

Transcript Format (GTF) file (a file defining the genomic regions of genes/features) [419], these 

tools determine the number of reads that map to each gene/feature resulting in a file 

containing  the counts/expression per gene. The .GFF or .GTF file contains predefined regions 

for each feature that can be defined by the user. It would be a tedious procedure to create 

these files, but fortunately these gene annotation files can be acquired from Reference 

Sequences (RefSeq) [420] or Ensembl [255]. Current counting tools use these files to count 
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reads mapping to specific genes or exons. Contrary to ReadCounter these tools do not include 

read counts for alternative regions such as introns or regions flanking a gene, which can have 

regulatory roles on gene expression.  

After read counts per gene have been determined, normalization is often required to be able 

to compare the expression of one sample against the expression in other samples. For RNA-

seq analysis the appropriate approach to normalize data has been heavily debated. The most 

widely used approach, calculating FPKM/RPKM values, has been strongly debated and 

alternatives have been suggested [289]. The use of The trimmed mean of M-values 

normalization method (TMM) [64] or Biological scaling normalization (BSN) [290] values have 

been suggested.  

An additional issue that arises from the size of RNA-seq data is that the computational step of 

the analysis becomes more time consuming. In an effort to minimize the time spend, our script 

utilizes STAR [55] to map the reads, which has been shown to map up to 50 times as fast as 

Bowtie/Tophat [421, 422] whilst matching results of other tools more consistently [55] .  

Furthermore, ReadCounter utilizes multi-threaded technology leading to a 10 to 20 fold faster 

counting rate than HTSeq, whilst producing identical results. To identify the benefits and 

downsides of ReadCounter, we have compared the performance and results obtained from 

ReadCounter with those of HTSeq and featureCounts in this paper. ReadCounter is written in 

Java and is run using a UNIX command, does not require installation and is available from 

http://www.GeneFriends.org/ReadCounter/. 

Methods 
To assign reads to genes/features, ReadCounter requires (1) a GTF or GFF file [419], defining 

the gene exon regions and (2) a sam/bam file [416], containing the mapping information of the 
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reads. The reads in the sam/bam file are compared to the GFF file and assigned to the genes 

that contain overlapping exons. ReadCounter has a series of options that are similar to other 

tools to give researchers the freedom to adjust count settings to their preferences. These 

options can be found on http://www.GeneFriends.org/ReadCounter/about/. ReadCounter 

automatically accounts for pair end files as well as the need for sorting. 

The output of ReadCounter consists of a number of files: 

1. A file containing the same format as  the result file that would be obtained from HTSeq, for 

the purpose of working with currently available downstream tools. 

2. An extensive results file containing reads per gene as in the file described above, but 

additionally, the ambiguous counts per gene, intron counts per gene, ambiguous intron counts 

per gene. Furthermore, it contains the number of reads mapping to the regions flanking the 

gene (default = 10,000 base pairs before and after). And lastly, it contains the counts per exon 

and per intron as well as the ambiguous counts per intron and exon and number of different 

exons/introns these counts overlap with.  

3. A file containing warnings generated by the tool. 

4. A file defining all intron and exon regions for each gene obtained from the GTF file. To 

reduce ambiguity, if the GTF file defines different exons overlapping each other, they are 

redefined as 1 exon. 

5. In case of unsorted paired-end input files, an extra folder is created containing a list of 

sorted sam lines, eliminating the requirement of re-sorting the file in future runs (using 

ReadCounter only). 
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At the end of the script the tool reports the percentage of reads mapping to genes, introns and 

exons for ambiguous (overlapping gene regions of multiple genes, present at a particular 

genomic region genes, equally) and non-ambiguously overlapping reads,  as well as an 

estimate of the average fragment size. 

ReadCounter follows the list of steps below to count the number of reads mapping to each 

gene, intron and exon. 

Loading GTF/GFF File: 

1. Read and reformat the GTF file removing any ambiguity and save the reformatted file for 

any future use. 

2. Split the genome up into bins, where each bin represents a region of the genome. Its index 

is related to the region it contains. This can then be used to instantly identify the bin(s) that is 

relevant to any particular read. 

3. Read the reformatted file and assign any genes overlapping the regions represented by 

these bins (Figure 1). 

Reading Sam File & assigning reads 

4. For each read or read pair, retrieve the genes from the relevant bin(s). 

5. Compare for each read/pair the size of the overlap with all retrieved genes. 

6. Assign the read to the gene it overlaps with the following priorities if multiple genes are 

overlapping: 

 - The gene/feature that overlaps with both sides of a read pair 
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 - The gene/feature with the biggest overlap size 

 - Exons over introns (unless the exonsOverIntrons option is set to false) 
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Figure A1: Graphical representation of the bin-system employed by ReadCounter 
The following features are in the following bins:  
Gene A: Bin 199,200,201,202 
Pre-gene-regio: Bin 200,201 
Exon 1, Intron 1: Bin 200 
Exon 2 Bin: 200,201 
Post-gene region: Bin 201 
  



Appendix I - ReadCounter: A tool to determine the expression levels of genetic features based 
on reads mapped to a genome

 

Page 201 of 233 

ReadCounter employs multi-threading technology to optimize speed, however at high core 

numbers hard drive or memory speed may become rate limiting. Additional to determining the 

gene the read overlaps, the specific exon is also identified. Furthermore, overlap with introns 

is also identified and reported. 

Results 
To test and validate our tool we compared it to 2 other tools: FeatureCounts and HTSeq. To be 

able to compare ReadCounter to HTSeq, ReadCounter has an option to disregard the overlap 

size when assigning reads to genes/features, as well as subtracting 1 basepair from each exon 

as HTSeq does not seem to consider the last basepair of each exon as inclusive. Also the 

"beSmart" option is disabled, which normally counts paired-end reads that map to both 

introns flanking an exon to the exon rather than the two flanking introns. This allows 

ReadCounter to obtain identical results to HTSeq, which we consider the current standard for 

counting reads.  

Performance 

We tested all three tools using an 83 gigabyte (GB) .sam file containing approximately 222 

million read pairs. First we tested the time each tool required to count the reads using the 

same settings (Table A1). Contrary to HTSeq both ReadCounter and featureCounts have the 

ability to run multi-threaded, for which reason we compared the multi-threaded performances 

for both these tools. We think it is reasonable to assume most computers used for RNA-seq 

analyses have at least 4 and most of the times will have 8 cores and used this number for our 

tests (Table A1). 
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Since both ReadCounter and featureCounts can deal with unsorted files, we also tested this. To 

do so, we scrambled the lines in the initial .sam file and saved the results. This scrambled file 

was then used with each tool (Table A1). 
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 1 Core Sorted 
File 

4 Cores 
Sorted File 

8 Core  
Sorted File 

4 Core  
Unsorted File 

ReadCounter 55 Minutes 14 Minutes 10 minutes 29 minutes 
FeatureCounts 9 Minutes 9 Minutes 9 Minutes 127 Minutes 
HTSeq  161 minutes - - - 

 
Table A1: Runtime comparison between different tools using the same options on an 83 GB 
file containing 222 million read pairs 
We tested our tool counting the number of reads that overlap each gene with each of the 3 
tools on 2 samples, one that in which the reads have been sorted and one that is not sorted. 
HTSeq requires the reads to be sorted, in order to assess expression per gene and was 
therefore excluded from the comparison for the unsorted files.  
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ReadCounter unique output 

As stated before, ReadCounter obtains the results for regions flanking a gene as well as intron 

specific read counts. Furthermore, it reports the number of reads mapping ambiguously. To 

investigate the relevance and occurrence of these additional results, we tested ReadCounter 

on 2393 mouse samples and identified the number of reads mapping to these regions on 

average (Table A2). ReadCounter has a series of options that are similar to other tools to allow 

researchers the freedom to adjust count settings to their likings. This includes a number of 

options on how and when reads are counted to introns and how ambiguous maps are 

determined. These options can be found on www.GeneFriends.org/ReadCounter/about/. 
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Average 
read counts 

Standard 
deviation 

compared to 
exonic maps 

Standard 
deviation 

Exon 14.199.675 7.193.162 100% - 
Exon Ambiguous 1.254.605 658.260 9.63%* 5.89% 
Intron 1.520.837 1.591.286 15.01% 13.33% 
Flanking gene 
regions (10KB) 

99777 
 

80213 
 

0.84% 1.24% 

 
Table A2: Number of reads mapping to additional regions 
To estimate the percentage of reads that would be ignored if all ambiguously overlapping 
reads would be ignored, we counted how many reads ambiguously overlapped multiple genes 
(9.63%). Similarly we counted the number of reads that mapped to introns, which could be 
biologically relevant (15.01%).  Lastly the number of reads mapping in close proximity (1000 
basepairs) to a gene (not overlapping other genes), representing reads mapping to regions 
such as promotors and enhancers in close proximity to the gene, which appeared relatively 
low at 0.84 %. 
Samples with less than 1 million reads overlapping any intron/exon or with more uniquely 
overlapping reads to introns than exons were excluded (224 samples). 
*Outliers, those with more ambiguous reads then specific reads, were excluded (5 samples). 
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Exon reads 

On average 14714 (Standard deviation: 4033) features have more than 10 reads mapping to 

them. Of those features with more than 10 reads mapping to them on average 37.83 % of the 

exons  are expressed (expression higher then 0) with a standard deviation of 12.54%, 

indicating that a large number of exons is not in expressed at all even if the gene is. On 

average 707 features only had ambiguous reads. And 1109 features had 10 times more 

ambiguously mapping reads then specific mapping reads.  

In case reads are mapped to transcripts rather than gene identifiers (ID), the ambiguous 

proportion vastly increases with 299% (Standard deviation: 82%) more reads mapping 

ambiguously than uniquely. 

Intronic reads 

On average 3512 genes had 10 fold more reads mapping to introns then to exons. This may 

indicate that the expression of the introns is affecting the expression of the exons, since 

intronic regions can contain antisense and or miRNAs for proximal genes. 

Flanking reads  

One of the extra options that ReadCounter has is the option to count reads mapping to regions 

prior or post a gene. This option was added since we believe expression of this region can be 

biologically relevant. For 2 features the number of reads mapping on the flanking side were 

exceptionally high: Linc00273 and Mir3687 accounting for 73% of the reads mapping on the 

right flanking gene region indicating these regions may contain un-annotated features. 

Excluding these 2 features on average 0.84% of the reads overlapped each of these regions. 
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Differences due to considering overlap size and ambiguity 

To validate the results obtained from our tool we added an option to disregard the overlap 

size of reads with genes/features. When we enable this option the results are identical to 

those of HTSeq. However, we were curious to the extent of the difference if we do consider 

the overlap size, meaning we map reads to the genes that have the biggest overlap with a 

preference for genes mapping both sides of a read pair. We found that for the dataset we used 

in the speed test, 1.2% more reads were mapped (approximately 1.7 million reads). These 

reads would have otherwise been considered mapping ambiguously and now map specifically 

to one gene. Even though this percentage is seemingly low, for 499 features it meant an at 

least 2 fold higher number of  overlapping read counts including 143 features that would have 

otherwise had no expression at all (features with less than 10 overlapping reads were excluded 

in this calculation).  

Exon specific counts 

It is possible for 2 reads of the same pair to map to the introns flanking both sides of an exon. 

In this case the fragment is overlapping the exon, even though the reads are not. As a result, 

the current tools available would not count the fragment to the gene it is overlapping. 

ReadCounter correctly counts this fragment to the exon it is overlapping. On the particular 

dataset we tested the difference using this option. The difference in this particular dataset 

appeared to be negligible, which is possibly due to the limited fragment size (742 reads in this 

sample (out of a total of approximately 222 million reads)).  

Discussion 
As stated before, RNA-seq has the unique ability to measure expression levels of specific exons 

and introns [252]. Shifts in exon expression within one gene can be detected with this 
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information. This will indicate that a different transcript is being transcribed, which would go 

unnoticed if one would solely count whole gene expression. Intronic expression is relevant 

because  reported intergenic regions can be transcribed [423] and have been indicated to play 

an important role in transcription regulation [423-425]. A reasonable number of reads solely 

overlaps intronic region and the relevance of these transcripts may be larger than their 

numbers suggest. It is not uncommon for miRNAs to be present in the intronic regions of a 

gene, which are transcribed and can produce mature miRNAs [426]. We expect gene flanking 

regions to have a similar relevance to that of intronic regions. Expression of these regions may 

influence the expression and translation levels of the transcripts obtained from the connected 

genes.  

One common problem with counting reads is that a read can overlap multiple features located 

on the same region of the genome. This creates the problem that reads occasionally overlap 

multiple features, making it impossible to determine the origin of the read. Using default 

options, other tools will count the read toward none of the features. As a result, genes that are 

in a region that is fully overlapped by another gene, will be considered as never expressed. 

This problem significantly increases when counting reads toward transcripts rather than genes, 

as multiple transcripts originating from the same gene often utilize overlapping exons. This 

occurs at a very high rate and thus creates strong biases resulting in a false representation of 

the data. Most current tools have an option that allows ambiguously mapped reads to be 

counted to multiple genes, but in this case it remains unclear whether a gene is mapping to 

multiple genes or just one. ReadCounter solves this problem by reporting both ambiguous and 

non-ambiguous reads in separate columns. Under default options these reads are not counted 

toward any of the transcripts using regular tools, but with ReadCounter it is possible to 

determine the number of reads that are unique to that transcript as well as the number of 
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reads that is also part of other transcripts. Combined with the additional exon specific 

information this will give a clearer indication of the transcript created, as well as allowing for 

the possibility of identifying un-annotated transcripts. This allows researchers to reduce this 

bias, with minimal extra effort. 

To further reduce the number of ambiguous reads, ReadCounter considers the overlap size of 

each read with all genes its overlaps. The read is then counted toward the largest overlapping 

gene, ultimately reducing the number of ambiguously mapping reads. Other tools merely 

consider whether there is an overlap and ignore the size of the overlap. One feature that is 

available when using RNA-seq is paired-end sequencing. This leads to two sequences from 

each end of the fragment being created. This pair can then be employed to more accurately 

assess the position/gene the read originated from. In case of paired-end reads, FeatureCounts 

prioritizes features that overlap both reads of the pair, but does not consider the sizes of the 

overlap. Like featureCounts, ReadCounter gives priority to features overlapping both sides of 

the pair even if the size of the overlap is smaller with another gene that only overlaps with one 

of the sides.  

To accurately determine the overlapping features with paired-end reads it is necessary for 

both reads of the same pair to be evaluated simultaneously. However, in unsorted files, reads 

of the same pair cannot be accessed simultaneously efficiently. For this reason other tools 

require files to be sorted. ReadCounter employs the fact that each read contains information 

about its partner to minimize time required for sorting files. This makes ReadCounter analyze 

unsorted files at an unprecedented speed. 

Another feature that is available with ReadCounter is the option to calculate Transcripts Per 

Million (TPM) values [289] rather than absolute read counts. This unit represents the relative 
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molar RNA concentration and is a normalized value that can be used for comparison against 

other samples. We added this option since we feel most users would prefer normalized read 

counts over absolute read counts. We opted for TPM values rather than FPKM/RPKM values, 

since the validity of these values has been debated and the use of TPM values is recommended 

instead [289]. 

Lastly, when we initially created ReadCounter there were no tools available that counted reads 

significantly faster than HTSeq. Since we required faster counting we aimed to create a faster 

tool, which we did by using a more efficient approach as well as employing multi-threaded 

technology. Meanwhile featureCounts was published which also utilizes this technology and is 

faster than ReadCounter albeit not supplying the additional intron and exon specific read 

count information obtained from ReadCounter. FeatureCounts is more efficient than 

ReadCounter, however if multiple cores are used the difference is negligible. We would like to 

note that featureCounts uses significantly less memory, using no more than 100 Megabyte at 

any time, where both HTSeq and ReadCounter exceed 1 GB. We do not expect this to be an 

issue since we anticipate computers assigned to RNA-seq analyses to have at least 8 GB of 

RAM memory (although 2 GB should be sufficient). 

We believe this tool will help researchers utilize the additional information obtained from 

RNA-seq experiments. Especially once a particular gene of interest has been identified, the 

additional exon and intron information, could give crucial hints into the mechanisms 

underlying their functionality. However, since the extra information adds another layer of 

complexity to an already complicated procedure, to fully optimize the use of the intron, exon 

and gene flanking region as well as ambiguous reads  information, we believe additional tools 

are required that supply researchers with a differential expression analysis employing this 
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luxurious information. Ultimately these tools would highlight interesting changes in these 

features, so users no longer have to spend time on the tedious procedure of identifying and 

extracting the relevant information from the vast amount of numbers resulting from this type 

of analysis.  
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Conclusion 
We created a tool that determines the overlap between genomic co-ordinates and genes, 

allowing for the determination of expression of genes defined by read counts per gene. 

ReadCounter can counts reads mapping to each intron and each exon as well as whole genes. 

Furthermore, it reduces the number of ambiguously overlapping reads compared to other 

tools. Contrary to other tools, those reads that do map ambiguously are reported in a separate 

column.  This tool does so at an at least 10 fold faster rate than HTSeq. Additionally, this tool 

counts reads for unsorted files at an unprecedented speed. ReadCounter is available online at 

www.GeneFriends.org/ReadCounter/ and is free to use. To further facilitate RNA-seq 

expression analysis we documented a walkthrough that allows researchers that are completely 

new to RNA-seq analysis to convert RNA-seq data into read counts per gene files 

(www.GeneFriends.org/RNA-seqForDummies). Lastly, a script is available that runs through 

these steps automatically. 
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