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Abstract In this paper a new strategy for modeling uncertainties in the substructures and interfaces of a
dynamical system is presented. This strategy is based on (1)the reduction of the dynamical model of each
substructure using the Craig-Bampton method and (2) the useof the nonparametric probabilistic approach
for the global modeling of uncertainties in each substructure. As an improvement with respect to existing
nonparametric methods, the methodology proposed here constructs separated models of uncertainties for the
inner and interface degrees of freedom, which allows to control separately the levels of fluctuation induced
by these two sources of uncertainties. This methodology is applied for the analysis of the random vibration
of a drill-string. Three strategies are compared: (1) a fullnonparametric probabilistic approach on all the
system, (2) the existing nonparametric probabilistic approach together with the Craig-Bampton substructuring
method, and (3) the new nonparametric probabilistic approach proposed here with the separation of the inner
and interface degrees of freedom uncertainties. It turns out that, for the same level of uncertainty, the three
approaches give similar results but the new approach gives more flexibility for the control of the probabilistic
model.

Keywords structural dynamics· stochastic dynamics· substructuring· Craig-Bampton Method· uncertainty
quantification

1 Introduction

In the presence of uncertainties in a dynamical system, the probabilistic methods allow the assessment of the
safety region for the quantities of interest. In this context, uncertainties in the parameters of the system can be
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taken into account using a classical parametric probabilistic approach [8; 23; 24], which consists in replacing
the uncertain parameters by random variables. This method is very efficient if the computational model is
a good representation of the dynamical systems. However, ithas some limitations: (1) in case of numerous
uncertain parameters, the identification of the hyperparameters related to the joint distribution of the random
variable induces an intractable stochastic inverse problem; (2) by definition, this method is not capable to take
into account uncertainties induced by modeling choices (constitutive laws, boundary conditions, etc).

The nonparametric probabilistic approach [25] is an attempt to overcome these limitations of the para-
metric probabilistic approach. In the nonparametric probabilistic approach, the uncertainties are taken into
account globally at the operator level, by modeling the reduced-order matrices of a dynamical system as
random matrices. The constructed stochastic model is controlled by a few number of dispersion parameters
which make their experimental identification feasible [1; 2; 5; 6; 7; 28]. Furthermore, by randomizing the
reduced-order operators, this approach allows to extend the range of prediction of the computational model
without modifying the reduced displacement subspace.

The Craig-Bampton substructuring method [4; 14] is a popular method used to develop a reduced-order
model from a full finite element model by decomposing it into substructures. Soize and Chebli [26] combined
the nonparameric probabilistic approach with the Craig-Bampton substructuring method and, for each sub-
structure, a nonparametric model of uncertainties was introduced. The present paper extends the development
of [26] proposing a new strategy, which combines (1) the nonparametric probabilistic approach, (2) the Craig-
Bampton substructuring method, and (3) the separation of the inner and interface degrees of freedom (DOFs)
uncertainties. The idea of separating the interface DOFs allows more flexibility for the stochastic model,
which means that there is a specific parameter to control the uncertainties in the interface. An alternative
approach has been addressed in [13], where the authors addedan extra fictitious random coupling stiffness
matrix. The approach proposed in the present paper uses the inner/interface DOFs decomposition introduced
in the Craig-Bampton method directly.

This new method is applied to the linear torsional drill-string problem. The purpose of this application
is that the drill-string is composed by (1) drillpipes (DP) and (2) the Bottom-Hole-Assembly (BHA). This
two substructures might have different levels of uncertainties. The drill-string dynamics might be complex
[9; 11; 22; 30; 31; 15] and there are many sources of uncertainty in this problem. For instance, Spanos
et al. [29] considered uncertainties in the lateral forces applied at the drill-bit. Ritto et al. [15] developed
a nonparametric probabilistic approach to take into account model uncertainties in the bit-rock non-linear
interaction model of a drill-string. In [16] the nonparametric probabilistic approach is employed to model
uncertainties in the coupled axial-torsional drill-string dynamics. Other uncertainties aspects of the the drill-
string problem were tackled in [17; 18; 19; 20].

In this paper three nonparametric probabilistic strategies are presented and compared to: (1) a full non-
parametric probabilistic approach on all the system [25], (2) the existing nonparametric probabilistic approach
together with the Craig-Bampton substructuring method [26], and (3) the new nonparametric probabilistic ap-
proach proposed here with the separation of the inner and interface DOFs uncertainties.

The paper is organized as follows. In section 2, the deterministic finite element model and the Craig-
Bampton substructuring method are presented. In section 3,the three strategies to model uncertainties are
developed. The numerical results are presented in section 4, and the concluding remarks are made in section
5.

2 Deterministic Model

2.1 Full finite element model

As mentioned before, drill-strings are composed mainly by two substructures: DP and BHA. The DP are
slender tubes that can reach kilometres, while the BHA is composed by thicker tubes (drill collars) together
with the drill bit at the bottom and its length can reach thousands meters. Figure 1 shows a general scheme
of a drill-string. In this paper, we are only interested in the steady-state small torsional vibration of the drill-
string due to a torque applied at the bottom-end of the BHA. The inertial effects due to the global rotation of
the drill-string and the gyroscopic effects induced by the transverse displacements (see [3]) are not taken into
account here. The linear undamped torsional dynamics of a drill-string is descriped by the equation

ρIp
∂ 2θx(x, t)

∂ t2 −GIp
∂ 2θx(x, t)

∂ x2 = T (t) , (1)
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Fig. 1 General scheme of a drill-string.

whereθx is the angular rotation about thex-axis (longitudinal axis),Ip is the cross sectional polar moment
of inertia,G is the shear modulus,T is the imposed torque per unit length. The above equation is discretized
by means of the finite element method. After assembling the finite element matrices and adding a damping
model, the vectoru of the rotational DOFs is the solution in the frequency domain of the matrix equation

(−ω2[M]+ jω[C]+ [K])u(ω) = f(ω), (2)

whereω is the angular frequency,f is the external force vector,j is the imaginary unit, while[M], [C], and[K]
are then × n mass, damping, and stiffness matrices, respectively.

2.2 Reduced-order modeling using elastic modes

In this section the full finite element model is reduced usingthe classical elastic modes. Them first eigenvalues
0 < λ1 ≤ λ2 ≤ . . . ≤ λm associated with the elastic modes{φ 1,φ2, . . . ,φ m} are solutions of the following
generalized eigenvalue problem

[K]φ = λ [M]φ . (3)

The reduced-order model is obtained by projecting the full computational model on the subspace spanned by
them first elastic modes calculated using Eq. (3). Let[Φ ] be then×m matrix whose columns are them first
elastic modes. We then introduce the approximation

u(ω) = [Φ ]q(ω) , (4)

in which q(ω) is the vector of them generalized coordinates obtained from the following reduced matrix
equation

(−ω2[M̃]+ jω[C̃]+ [K̃])q(ω) = f̃(ω) , (5)

in which [M̃] = [Φ ]T [M] [Φ ], [C̃] = [Φ ]T [C] [Φ ] and [K̃] = [Φ ]T [K] [Φ ] are them×m mass, damping and
stiffness generalized matrices, and wheref̃(ω) = [Φ ]T f(ω) ∈ R

n is the vector of the generalized forces.

2.3 Craig-Bampton substructuring method

It is assumed that the structure is decomposed intons substructuresS1,S2, . . . ,Sns . For instance, for the drill-
string shown in the figure 1, there are two substructures (DP +BHA). For k = 1, . . . ,ns, the displacementuk
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of Sk consists innI,k inner DOFsuI
k and innΓ,k interface DOFsuΓ

k , i.e.,

uk =




uI

k

uΓ
k



 . (6)

For A = M,C or K, let [Ak] be the mass, damping or stiffness matrix of substructureSk and letfk be the force
vector of substructureSk. We then have

[Ak] =




[AII
k ] [AIΓ

k ]

[AΓI
k ] [AΓΓ

k ]


 and fk =




fI
k

fc
k


 , (7)

in which fI
k is the inner force andfc

k is the coupling force at the interface. In Eq. (5), it is assumed that there is
no external force applied on the interfaces. The Craig-Bampton substructuring method [4] consists in reducing
the number of inner DOFs by using fixed-interface elastic andstatic modes such that




uI
k

uΓ
k


=




[Φ I
k] [RI

k]

[0] [I nΓ,k ]






qI
k

uΓ
k


 (8)

where[Φ I
k] is the matrix of themk fixed-interface elastic modes,RI

k are the matrix of the static modes described
such thatRI

k = −[KII
k ]

−1[KIΓ
k ] and[InΓ,k ] is the(nΓ,k × nΓ,k) identity matrix. In Eq.(8),qI

k is the vector of the
mk generalized coordinates related to the fixed-interface elastic modes. The Eq. (9) can be rewritten as

uk = [Ψk]qk (9)

with

[Ψk] =




[Φ I

k] [RI
k]

[0] [ InΓ,k ]



 and qk =




qI

k

uΓ
k



 . (10)

Let nk = mk +nΓ,k. ForA = M,C or K, let [Ãk] be(nk ×nk) such that

[Ãk] = [Ψk]
T [Ak][Ψk] =




[ÃII

k ] [ ÃIΓ
k ]

[ÃΓI
k ] [ ÃΓΓ

k ]



 . (11)

Let [PI
k ] = ([Imk ] [0]) and[PΓ

k ] = ([0] [InΓ,k ]) be the projection matrices on the inner and interface coordinates,
respectively. We then have

[ÃII
k ] = [PI

k ]
T [Ãk][P

I
k ], [ÃIΓ] = [PI

k ]
T [Ãk][P

Γ
k ], [ÃΓΓ

k ] = [PΓ
k ]

T [Ãk][P
Γ
k ], (12)

For the stiffness matrices, the coupling blocks are algebraically equal to zero. For readability, let assume that
there are onlyns = 2 substructures. Taking into account the continuity of the displacement at the interface, the
force equilibrium at the interface and the relation Eq. (9) for each substructure, the dynamical matrix equation
of the assembled structure for the substructuring Craig-Bampton method are written with lower subscript CB
as follow

(−ω2[MCB]+ jω [CCB]+ [KCB])qCB = fCB, (13)

in which

qCB =




qI
1

qI
2

uΓ


 , fCB =




[Ψ1]T fI
1

[Ψ2]T fI
2

[RI
1]T fI

1+[RI
2]T fI

2




, (14)
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and where forA = M,C or K,

[ACB] =




[ÃII
1 ] [0] [ ÃIΓ

1 ]

[0] [ ÃII
2 ] [ ÃIΓ

2 ]

[ÃΓI
1 ] [ ÃΓI

2 ] [ ÃΓΓ
1 ]+[ÃΓΓ

2 ]


 (15)

The displacement vectoru(ω) is finally calculated as

u(ω) = [Ψ ]qCB(ω) , (16)

where[Ψ ] is constructed by assembling matrices[Ψ1], . . . , [Ψns ].

3 Contruction of the Stochastic Models

3.1 Brief overview of the nonparametric probabilistic formulation for random matrices

The nonparametric probabilistic approach [25] is based on the random matrix theory [12]. It consists in replac-
ing the deterministic reduced-order matrices of the deterministic computational model by random matrices.
Thus, it acts directly at the reduced operator level. It is assumed that there are no rigid body modes and
consequently the deterministic reduced matrices are symmetric positive-definite. This approach consists in
replacing any deterministic matrix[A] of the computational model by a random matrix[A] which is written as

[A] = [LA][GA][LA]
T , (17)

where [GA] is a normalized random matrix and[LA] is a lower triangular matrix related to the Cholesky
factorization of matrix[Ã], i.e.,

[A] = [LA][LA]
T . (18)

The probability density function of random matrix[GA] is constructed using the maximum entropy principle
[10] and depends on a dispersion parameterδA, which controls the level of the statistical fluctuations ofthe
random matrix[GA] around its mean value that is the unit matrix[Im]. We then have

δA =

(
E{||[GA]− [Im]||

2
F}

||[Im]||2

)1/2

, (19)

where|| · ||F is the Frobenius norm andE{·} is the mathematical expectation. A generator of independent
realizations of random matrix[GA] has been proposed in [25].

3.2 Stochastic model SMfull : Nonparametric probabilistic approach for the reduced order computational
model without substructuring method

The stochastic model SMfull is constructed in replacing each deterministic matrices[M], [C] and[K] in Eq. (5)
by random matrices[M], [C] and[K]. We then have

(−ω2[M]+ jω[C]+ [K])Q = f̃. (20)

For A = M,C or K, the probabilistic model of the random reduced-order matrix [A] is constructed by using
the nonparametric probabilistic approach that is briefly presented in section 3.1. Hence, the stochastic model
SMfull is completely defined by three dispersion coefficientsδM, δC, δK .
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3.3 Stochastic model SMCB1: Nonparametric formulation of uncertainties for each substructure

In [26], a probabilistic model for taking into account different levels of uncertainties in each substructure
has been proposed. For each substructureSk , the reduced random mass, damping, and stiffness matrices
were replaced by random matrices whose probabilistic models were constructed by using the nonparametric
probabilistic approach that has been briefly presented in section 3.1. Hence, forA = M,C or K and for each
substructureSk, deterministic matrices[ÃII

k ], [Ã
ΓI
k ], [ÃΓΓ

k ] introduced in section 2.3 and involved in the assem-
bling of the deterministic matrix[ACB], are replaced by the random matrices[ÃII

k ], [Ã
ΓI
k ] and [ÃΓΓ

k ] defined
as

[ÃII
k ] = [PI

k ]
T [Ãk][P

I
k ], [ÃIΓ] = [PI

k ]
T [Ãk][P

Γ
k ], [ÃΓΓ

k ] = [PΓ
k ]

T [Ãk][P
Γ
k ], (21)

where [Ãk] is a random matrix that statistical fluctuation due to the uncertainties related to[Ãk] (see sec-
tion 2.3), and whose probabilistic model is constructed by using the nonparametric approach that is briefly
presented in section 3.1. The assembling of those random matrices yield a random matrix[ACB1] that models
the statistical fluctuation related to uncertainties on[ACB]. For instance, forns = 2, and forA = M,C or K,
we obtain

[ACB1] =




[Ã
II
1 ] [0] [ Ã

IΓ
1 ]

[0] [Ã
II
2 ] [Ã

IΓ
2 ]

[Ã
ΓI
1 ] [Ã

ΓI
2 ] [Ã

ΓΓ
1 ]+[Ã

ΓΓ
2 ]




(22)

The stochastic model SMCB1 allows different levels of uncertainties to be modeled in each substructure and
here are 3×ns parameters which control the uncertainties of the system:δM,1,δC,1,δK,1, . . . ,δM,ns , δC,ns , δK,ns .

3.4 New stochastic model SMCB2: Nonparametric formulation of uncertainties for each substructure with
separation of the statistical fluctuations related to the inner and interface DOFs

In stochastic model SMCB1, for each substructure, every components of a given random matrix [Ãk] with
A = M,C or K is related to the same dispersion coefficient. Nevertheless, each component of random matrice
[Ãk] is involved in a linear system of stochastic second order ordinary differential equations in terms of
random generalized coordinates and random displacements on the interfaces between two substructures. The
stochastic model SMCB1 does not allow to take into account different levels of statistical fluctuation on those
coefficients. In order to circumvent such a limitation, a newstochastic model SMCB2 is proposed in the
present paper. For each substructureSk and forA = M,C or K, two statistically independent random matrices
[ÃI

k] and [ÃΓ
k ] are introduced to model the statistical fluctuations that are related to each matrix[ÃI

k]. Their
probabilistic model is constructed using the nonparametric probabilistic approach that is briefly presented in
section (3.1) and for two different dispersion cofficientsδA,I,k andδA,Γ,k. The Cholesky factorisation of these
random matrices yields two random lower triangular matrices [LI

A,k] and[LΓ
A,k] such that

[ÃI
k] = [LI

A,k][L
I
A,k]

T , [ÃΓ
k ] = [LΓ

A,k][L
Γ
A,k]

T . (23)

Hence, forA = M,C or K and for each substructureSk, deterministic matrices[ÃII
k ], [Ã

ΓI
k ], [ÃΓΓ

k ] introduced
in section 2.3 and involved in the assembling of the deterministic matrix [ACB], are replaced by the random
matrices[ÃII

k ], [Ã
ΓI
k ] and[ÃΓΓ

k ] defined as

[ÃII
k ] = [PI

k ]
T [ÃI

k][P
I
k ], [ÃIΓ

k ] = [PI
k ]

T [L̃I
A,k][L

Γ
A,k]

T [PΓ
k ], and [ÃΓ Γ

k ] = [PΓ
k ]T [ÃΓ

k ][P
Γ
k ]. (24)

The assembling of those random matrices yields a random matrix [ACB2] that models the statistical fluctuation
related to uncertainties on[ACB2]. For instance, forns = 2, and forA = M,C or K, we have

[ACB2] =




[ÃII
1 ] [0] [ ÃIΓ

1 ]

[0] [ÃII
2 ] [ÃIΓ

2 ]

[ÃΓI
1 ] [ÃΓI

2 ] [ÃΓΓ
1 ]+[ÃΓΓ

2 ]


 (25)
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For A = M,C or K, the levels of the statistical fluctuations of random matrix[ACB2] is controlled by two
dispersion coefficientsδA,I,k andδA,Γ,k, which are related to the nonparametric models of[ÃI

k] and[ÃΓ
k ], re-

spectively. Then, for each substructure, the probabilistic model of uncertainties is controlled by six dispersion
coefficients, that allow controlling the level of statistical fluctuations of the inner and interface coordinates
separately for each random matrices, giving more flexibility than the stochastic model SMCB1.

Finally, for the full structure, the probabilistic model ofuncertainties is controlled by 6× ns dispersion
coefficients:δM,I,1, δM,Γ,1, δC,I,1, δC,Γ,1, δK,I,1, δK,Γ,1, . . . , δM,I,ns , δM,Γ,ns , δC,I,ns , δC,Γ,ns , δK,I,ns , δK,Γ,ns .

3.5 Presence of floating substructures

Some of the substructures of the systems may not be attached to a fixed frame. This is the case, for instance,
for the BHA of the drill-string shown in figure 1. These floating substructures present rigid body modes
yielding a positive semi-definite stiffness matrix[K̃k] and then the nonparametric construction presented in
the previous section cannot be applied directly. To circumvent this difficulty, the projection of the stiffness
matrix into the rigid body subspace is kept equal to zero almost surely while the projection into the subspace
of the flexible displacements are randomized. Such a construction makes sense since the rigid body subspace
is not perturbed by the presence of uncertainties. The construction proposed here corresponds to the ensemble
of random matrices SE+0 introduced in [27]. Let[Prb,k] be the matrix whose columns are vectors that span the
null space of[K̃k] and let[Pflex,k] be the matrix whose columns are vectors that spans the range space of[K̃k].
It is assumed that the columns of[Prb,k] and [Pflex,k] are normalized. We then have[Prb,k]

T [Pflex,k] = [I]. Let
[Pk] = ([Prb,k][Pflex,k]), then

[K̃k] = [Pk]




[0] [0]

[0] [Dk]


 [Pk]

T , (26)

in which [Dk] is the diagonal matrix of the nonzero eigenvalues of[K̃k]. The stochastic models SMCB1 and
SMCB2 are then constructed by replacing the deterministic matrix[Dk] by the random matrix[Dk] for which
the probabilistic model is constructed by using the nonparametric approach presented in section 3.1. Finally,
for [Kk] = [K̃k] (for the stochastic model SMCB1), [K̃I

k] and[K̃Γ
k ] (for Stochastic Model SMCB2), we have

[Kk] = [Pk]

(
[0] [0]
[0] [Dk]

)
[Pk]

T . (27)

4 Application

There are many sources of uncertainties related to the computational model of the drill-string presented in
section 2. First, concerning each substructure, some parameters such as the material properties, the geometry
and not perfectly known or present some variabilities alongthe axial axis. Then, the linear torsional model
used for each substructure is a very simple representation of the torsional vibration of the drill-string yielding
some model-form uncertainties in the model. Finally, the modeling of the interfaces for the present model
is very simple compared to complex mechanical real link between the DP and the BHA. For this reasons,
a probabilistic model of uncertainties is implemented in order to quantify the sensitivity of the outputs with
respect to these uncertainties. The new probabilistic model presented in the previous section allows to study
this sensitivity efficiently.

In this section, the three stochastic models SMfull , SMCB1 and SMCB2, presented in section 3, are imple-
mented in order to take into account the uncertainties related to the computational model of the drill-string
presented in section 2.

First, the stochastic model SMCB2 is compared with the stochastic models SMfull and SMCB1. Then, the
stochastic model SMCB2 is analyzed in order to evaluate the impact of the different sources of uncertainties:
DP versus BHA, mass versus damping versus stiffness, and inner versus interface DOFs.
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4.1 Parameters of the model

Concerning the DP, the shear modulus is 70 GPa, the mass density is 7850 kg/m3, the length is 1800 m, the
inner radius is 0.0475 m and the outer radius is 0.060 m. The mass and stiffness matrices for this substructure
are constructed using 100 elements with linear shape functions. The top-end of the DP is clamped.

Concerning the BHA, the shear modulus is 70 GPa, the mass density is 7850 kg/m3, the length is 200 m,
the inner radius is 0.0475 m and the outer radius is 0.075 m. The mass and stiffness matrices for this substruc-
ture are constructed using 100 elements with linear shape functions. A unit torque is applied to the bottom-end
of the BHA for all the frequency range of analysis. The top-end of the BHA is coupled with the bottom-end
of the DP. Therefore, there is only one interface DOF. It should be noted that the applied torque here is
not representative of the real bit-rock interaction torque. The objective here is just to validate and illustrate
the proposed methodology using a simple torque model which allows to perform a comparison between the
stochastic models.

The response (random rotation) is observed at three points:Pobs,1, which corresponds to the first non-
clamped node at the top of the DP, Pobs,2, which corresponds to the interface node, and Pobs,3, which corre-
sponds to the bottom node of the BHA. The statistical envelope with probability level 0.95 is estimated using
2500 Monte Carlo simulations.

As stated before, only two substructures are considered in the analyses: DP and BHA. The Craig-Bampton
projection matrices[Φ I

1] and [Φ I
2] are both constructed using the number of modes obtained after a conver-

gence analysis:m1 = m2 = 25 fixed-interface elastic modes. The reduced damping matrices[C̃1] and[C̃2] are
both constructed using a Rayleigh model, i.e.,[C̃1] = a1[M̃1] + b1[K̃1] and[C̃2] = a2[M̃2] + b2[K̃2] wherea1,
b1, a2 andb2 are calculated such that the damping ratios are 0.05 and 0.01 at frequencies 1 Hz and 10 Hz for
each substructure, respectively.

4.2 Comparison of the three stochastic models

In this first analysis, allδ ’s are set equal to 0.1. For the full model, SMfull , δM = δC = δK = 0.1. For model
SMCB1, δM,1 = δM,2 = δC,1 = δC,2 = δK,1 = δK,2 = 0.1. Finally, for model SMCB2, δM,I,1 = δM,Γ,1 = δM,I,2 =
δM,Γ,2 = δC,I,1 = δC,Γ,1 = δC,I,2 = δC,Γ,2 = δK,I,1 = δK,Γ,1 = δK,I,2 = δK,Γ,2 = 0.1.

Figures 2, 3 and 4 show the comparison of the statistical envelopes at the three observed points, of each
stochastic model. The continuous lines represents SMfull , the dashed lines SMCB1, and the dotted lines SMCB2.
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Fig. 2 Comparison of three stochastic models: Frequency responsein acceleration for point Pobs,1.
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Fig. 3 Comparison of three stochastic models: Frequency responsein acceleration for point Pobs,2.
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Fig. 4 Comparison of three stochastic models: Frequency responsein acceleration for point Pobs,3.

It can be observed that the statistical envelopes get wider as the frequency increases, especially for the
response in the interface node, Fig. 3. The three figures present similar results, except for a region around
3.7Hz, where Fig. 3 presents a small statistical envelope.

The bottom line is that the SMCB2 behavior is very similar to SMfull and SMCB1, using the same values for
dispersion parameter. This result indicates that the strategy proposed in the present paper is consistent with
the other strategies. However, the new strategy allows moreparameters to control uncertainties.

Next section will explore the results of the new stochastic model for different levels of uncertainties, which
allows the control of uncertainties for each operator, eachsubstructure and each inner or interface DOF.

4.3 Random response of stochastic model SMCB2

4.3.1 Mass versus damping versus stiffness

i- Case study 1: mass uncertainty, Table 1.
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DP-inner DP-interface BHA-inner BHA-interface
Mass δM,I,1 = 0.1 δM,Γ,1 = 0.1 δM,I,2 = 0.1 δM,Γ,2 = 0.1
Damping δC,I,1 = 0 δC,Γ,1 = 0 δC,I,2 = 0 δC,Γ,2 = 0
Stiffness δK,I,1 = 0 δK,Γ,1 = 0 δK,I,2 = 0 δK,Γ,2 = 0

Table 1 Case study 1: Values of the dispersion parameters.

ii- Case study 2: damping uncertainty, Table 2.

DP-inner DP-interface BHA-inner BHA-interface
Mass δM,I,1 = 0 δM,Γ,1 = 0 δM,I,2 = 0 δM,Γ,2 = 0
Damping δC,I,1 = 0.1 δC,Γ,1 = 0.1 δC,I,2 = 0.1 δC,Γ,2 = 0.1
Stiffness δK,I,1 = 0 δK,Γ,1 = 0 δK,I,2 = 0 δK,Γ,2 = 0

Table 2 Case study 2: Values of the dispersion parameters.

iii- Case study 3: stiffness uncertainty, Table 3.

DP-inner DP-interface BHA-inner BHA-interface
Mass δM,I,1 = 0 δM,Γ,1 = 0 δM,I,2 = 0 δM,Γ,2 = 0
Damping δC,I,1 = 0 δC,Γ,1 = 0 δC,I,2 = 0 δC,Γ,2 = 0
Stiffness δK,I,1 = 0.1 δK,Γ,1 = 0.1 δK,I,2 = 0.1 δK,Γ,2 = 0.1

Table 3 Case study 3: Values of the dispersion parameters.

Figures 5, 6 and 7 show the random responses comparing uncertainties in the mass, damping and stiffness
matrices. The results are very similar for uncertain mass and stiffness matrices, except at very low frequen-
cies, where stiffness uncertainties are predominant. Also, overall, the statistical envelopes increase with the
frequency.

On the other hand, the cited figures show that the sensitivityof the response for an uncertain damping
model is very low (very thin statistical envelopes). In other words, the system is robust to damping model
uncertainties, considering the dispersion parameters used.
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Fig. 5 Case study 1, 2 and 3: Frequency response in acceleration forpoint Pobs,1.
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Fig. 6 Case study 1, 2 and 3: Frequency response in acceleration forpoint Pobs,2.
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Fig. 7 Case study 1, 2 and 3: Frequency response in acceleration forpoint Pobs,3.

4.3.2 DP versus BHA

i- Case study 4: DP uncertainty, Table 4.

DP-inner DP-interface BHA-inner BHA-interface
Mass δM,I,1 = 0.1 δM,Γ,1 = 0.1 δM,I,2 = 0 δM,Γ,2 = 0
Damping δC,I,1 = 0.1 δC,Γ,1 = 0.1 δC,I,2 = 0 δC,Γ,2 = 0
Stiffness δK,I,1 = 0.1 δK,Γ,1 = 0.1 δK,I,2 = 0 δK,Γ,2 = 0

Table 4 Case study 4: Values of the dispersion parameters.

ii- Case study 5: BHA uncertainty, Table 5.
Figures 8, 9 and 10 show the random responses comparing uncertainties in the DP and in the BHA. The

statistical envelopes for uncertain DP increase significantly when frequency increases, except around 3.7 Hz,
where they become thinner.
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DP-inner DP-interface BHA-inner BHA-interface
Mass δM,I,1 = 0 δM,Γ,1 = 0 δM,I,2 = 0.1 δM,Γ,2 = 0.1
Damping δC,I,1 = 0 δC,Γ,1 = 0 δC,I,2 = 0.1 δC,Γ,2 = 0.1
Stiffness δK,I,1 = 0 δK,Γ,1 = 0 δK,I,2 = 0.1 δK,Γ,2 = 0.1

Table 5 Case study 5: Values of the dispersion parameters.
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Fig. 8 Case study 4 and 5: Frequency response in acceleration for point Pobs,1.
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Fig. 9 Case study 4 and 5: Frequency response in acceleration for point Pobs,2.

For uncertain BHA, the envelopes increase more significantly from 5 Hz until 7 Hz, but they are much
thinner than the response of the system for an uncertain DP. It can be concluded that the DP uncertainties
affects more the response of the system for the frequency range analyzed. This is due to the DP high structural
flexibility, or low stiffness, compared to BHA stiffness.

4.3.3 Inner DOFs versus interface DOFS

i- Case study 6: Inner DOFs uncertainty, Table 6.
ii- Case study 7: Interface DOFs uncertainty, Table 7.
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Fig. 10 Case study 4 and 5: Frequency response in acceleration for point Pobs,3.

DP-inner DP-interface BHA-inner BHA-interface
Mass δM,I,1 = 0.1 δM,Γ,1 = 0 δM,I,2 = 0.1 δM,Γ,2 = 0
Damping δC,I,1 = 0.1 δC,Γ,1 = 0 δC,I,2 = 0.1 δC,Γ,2 = 0
Stiffness δK,I,1 = 0.1 δK,Γ,1 = 0 δK,I,2 = 0.1 δK,Γ,2 = 0

Table 6 Case study 6: Values of the dispersion parameters.

DP-inner DP-interface BHA-inner BHA-interface
Mass δM,I,1 = 0 δM,Γ,1 = 0.1 δM,I,2 = 0 δM,Γ,2 = 0.1
Damping δC,I,1 = 0 δC,Γ,1 = 0.1 δC,I,2 = 0 δC,Γ,2 = 0.1
Stiffness δK,I,1 = 0 δK,Γ,1 = 0.1 δK,I,2 = 0 δK,Γ,2 = 0.1

Table 7 Case study 7: Values of the dispersion parameters.
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Fig. 11 Case study 6 and 7: Frequency response in acceleration for point Pobs,1.

Figures 11, 12 and 13 show the random responses comparing inner and interface uncertainties. Both
statistical envelopes increase when frequency increases,except in the region around 3.7Hz for Pobs,2. However,
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Fig. 12 Case study 6 and 7: Frequency response in acceleration for point Pobs,2.
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Fig. 13 Case study 6 and 7: Frequency response in acceleration for point Pobs,3.

the statistical envelopes for uncertain interface DOFs aremuch thinner comparing to the statistical envelopes
for uncertain inner DOFs. In the present analysis there is only 1 DOF in the interface, and the response is
robust to uncertainties in this interface DOF, although it has a clear impact in the random response of the
system.

5 Concluding Remarks

This paper dealt with modeling uncertainties in the substructures and interfaces of a dynamical system. The
strategy proposed was based on the Craig-Bampton substructuring method and the use of the nonparametric
probabilistic approach for the global modeling of uncertainties in each substructures. The random vibrations
of the torsional drill-string were analyzed, where the column is divided in two substructures (1) Drill-Pipe
(DP) and (2)Bottom-Hole-Assembly (BHA).

It was reported that (1) the full nonparametric probabilistic approach, (2) the existing nonparametric prob-
abilistic approach together with the Craig-Bampton substructuring method, and (3) the new strategy proposed
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in this paper give similar results for the same level of uncertainty. Therefore, these approaches are consistent,
and the new strategy allows, for each substructure, to construct separated models of uncertainties for the inner
and the interface DOFs. Thus, it permits to control separately the levels of fluctuation induced by these two
sources of uncertainties. From experimental data, it is possible to identify the dispersion parameters according
to the operators level and according to the inner or interface DOFs.

Concerning the response of the system analyzed, it can be highlighted that the random torsional vibration
of the drill-string is (1) little affected by uncertaintiesin the damping operator, (2) more affected by uncer-
tainties in the DP substructure, compared to uncertaintiesin the BHA, (3) similarly affected by uncertainties
in the mass and the stiffness operators, and (4) little affected by uncertainties in the interface DOF.
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