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Abstract

This thesis examines the problem of large computational loads generated by safety re-
lated algorithms for Unmanned Aircraft Systems (UAS). Efficient and accurate methods
for multiple sensor fault detection and Sense-And-Avoid systems for UAS are proposed.

A novel sensor fault detection method is proposed and tested by simulation. The
method detects multiple sensor faults by evaluating normal and faulty hypotheses for
each sensor sequentially using measurements obtained from sensors on-board the air-
craft. A Six-Degrees-of-Freedom flight model for a Navion aircraft is used to simulate
faulty sensor data to test the fault detection method. The proposed sequential fault
detection method detects faulty sensors, the update process is fast and maintains a
more accurate state-estimate than the parallel fault detection method.

For Sense-And-Avoid systems, an efficient method for estimating the probability of
conflict between traffic in a non-cooperative environment is proposed. Estimating low
probabilities of conflict using ‘naive’ Direct Monte Carlo method generates a significant
computational load. The proposed method uses a technique called Subset Simulation
where small failure probabilities are computed as a product of larger conditional failure
probabilities – reducing the computational load whilst improving the accuracy of the
probability estimates. The utility of the approach is demonstrated by modelling a series
of conflicting and potentially conflicting scenarios based on the standard Rules of the
Air specified by the International Civil Aviation Organization.
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Chapter 1

Introduction

The operation of Unmanned Aircraft Systems (UAS) is restricted to segregated airspace
unless an equivalent level of safety to manned aviation can be demonstrated [8]. Segre-
gated airspace are blocks of airspace that are designated for UAS to operate within [9].
The restriction of UAS to operate within segregated airspace limits potential applica-
tions of UAS. Over the last decade numerous Aviation Authorities from around the
world have expressed an interest in integrating UAS operations into non-segregated
airspace [10]. However, issues related to safety, security and regulations prevent this
from occurring [11,12]. Regulatory bodies have expressed that the safety standards of
UAS should be no less demanding than current standards that are applied to manned
aircraft. An approach is to satisfy ‘equivalence’ to existing safety standards that ap-
ply to manned aviation. However, conducting manned aviation consists of interacting
with various entities, for example, operating in different classes of airspace and com-
municating with air traffic controllers. At the same time, the operation of UAS should
be transparent to other airspace users and Air traffic controllers. To clarify, the UAS
operation should not impose any extra service requirements than ones already imposed
in manned aviation [8].

The restriction of UAS to operate within segregated airspace has motivated research
into and the development of automated safety systems to ensure that UAS can operate
in non-segregated airspace safely. Such systems are reliant on algorithms that are
computationally demanding to ensure that adequate levels of safety are achieved. This
computational demand requires fast hardware that is more expensive and leads to an
increase in size, weight and cost of Unmanned Aircraft Systems.

Collision Avoidance has been identified as the most important issue that needs to
be addressed since it concerns the safety of the aircraft and other airspace users [11,13].
This is to prevent collision between aircraft and ensure survivability of the platform.
The ability to ensure that collisions between the Unmanned Aircraft (UA) and other
airspace users are avoided, is an essential safety requirement. Although the lack of a

1



pilot or flight crew on-board the aircraft means that the aircraft is somewhat expend-
able, collision with other airspace users is unacceptable. In the event of a collision,
the secondary effect of falling debris might also lead to ground casualties or (worse)
fatalities [14]. Therefore, a collision must be avoided at all cost. Perhaps, the quality
for any Unmanned Aircraft is to demonstrate the ability to follow the Rules of the Air
mandated by the Aviation Authority. To be specific, all airspace users are expected
to follow the ‘Right of Way’ rules. More importantly, safe separation between aircraft
must be maintained even if the Right of Way rules are not strictly followed. The lack of
a pilot on-board the aircraft creates the requirement for a ‘Sense-And-Avoid’ capability.
The Sense-And-Avoid (SAA) capability of the UAS consists of two functions - Conflict
Detection (CD) and Resolution (R). The conflict detection stage involves determin-
ing if a conflict exists using data obtained from sensors. This requires calculating the
probability of conflict from the probability distribution of the state of traffic inferred
from sensor data. Often the magnitude of this probability is very low and requires
significant computational load for this to be estimated. Despite the low magnitude of
the probability, it is important that it is estimated accurately since the resolution stage
is reliant on this and given the catastrophic outcome of a possible collision – the ability
to estimate the probability is essential, as it affects the safe operations of the UAS.

Before capabilities, such as Sense-And-Avoid can be considered, an essential pre-
requisite for any aircraft (manned or unmanned) is the ability to maintain accurate
information defining the current heading, speed and attitude of the aircraft. This is
an estimate of the aircraft’s state and is inferred from the measurements obtained
from sensors on-board the aircraft. Maintaining accurate state information is essential
since the aircraft’s capabilities such as Navigation, Manoeuvring and Sense-And-Avoid
are reliant on this information. False sensor data obtained from faulty sensors can
lead to inaccurate state information that causes incorrect actions to be executed by
the aircraft and result in a failure to accomplish the mission, or worse - loss of the
aircraft and fatalities. For manned aircraft, operating in good visibility under Visual
Flight Rules, the problem of faulty sensors might be a mere inconvenience. In such
an event, the pilot could land the aircraft at the nearest airfield by looking out of the
window. However, in the case of Unmanned Aircraft, the lack of a pilot or flight crew
on-board the aircraft means that the operator is reliant on state-estimates deduced
from data obtained from sensors. Fault Detection and Diagnosis (FDD) methods are
essential to detect faulty data obtained from faulty sensors to preserve the accuracy
of the state-estimate. Such methods involve processing data obtained from multiple
sensors to determine whether they are faulty or normal. Processing data from multiple
sensors increases the computational load associated with maintaining accurate state
information in a time-sensitive situation.

This thesis seeks to reduce the computational overheads associated with automated

2



safety systems such as Sense and Avoid and Fault Detection systems by providing
efficient algorithms which will lead to reductions in Size, Weight, and Power – and
reduced Cost (SWAP-C) of Unmanned Aircraft Systems [15].

1.1 Thesis Structure

The thesis examines the problem of large computational requirements by developing
efficient algorithms that address the collision avoidance and multiple sensor fault detec-
tion problems. Chapter 2 familiarises the reader with background information related
to this area of research and describes the associated problems. Chapter 3 and 4 de-
velop a Six-Degrees-of-Freedom (SixDoF) flight model for an aircraft that represents a
generic Unmanned Aircraft. This is used as a test-bed to generate sensor data during
common flight modes. Chapter 5 introduces simulations for multiple sensor faults that
could occur on-board an aircraft or UAS. An efficient sensor fault detection method
is demonstrated during common flight scenarios. Chapter 6 and 7 explore rare-event
simulation with applications to collision avoidance. Chapter 6 describes the theory of
Subset Simulation. Chapter 7 applies Subset Simulation to estimate the probability of
conflict for conflicting and potentially conflicting scenarios based on the Right of Way
Rules (defined in Annex 2 - Rules of the Air issued by the International Civil Aviation
Organization [16]). Chapter 8 concludes the thesis and suggests possible future work.

1.2 Novel Contributions of the Thesis

• The development of an autopilot for a Six-Degrees-of-Freedom (SixDoF) flight
model that can be used as a test-bed during common flight scenarios.

• The development of sensor simulation models on-board the aircraft to provide
observations for deducing the state of the aircraft. For example, sensor data
from Pitot-static, Angle-of-Attack and Inertial Measurement Unit sensors during
faulty and normal sensor operation are generated.

• A new Multiple Sensor Fault detection method using Generalized Pseudo Bayes
- 1 (GPB-1) is developed. This method detects faulty sensors by evaluating
the hypotheses for each sensor sequentially, which results in a faster and more
accurate update method than evaluating the hypotheses in parallel.

• The accuracy and computational load required for estimating low probabilities of
conflict between air traffic in non-cooperative scenarios is improved by the appli-
cation of Subset Simulation. Estimating low probabilities of conflict accurately
using Direct Monte Carlo method requires a large number of samples that gener-
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ates large computational load. The Subset Simulation method uses a fraction of
the samples required by Direct Monte Carlo to achieve the same level of accuracy.

• A benchmarking method based on the Right of Way rules is defined that can be
used for future comparison of efficiency and accuracy in estimating the probability
of conflict between air traffic.

1.3 Publications

• Doing the Right Thing: Collision Avoidance for Autonomous Air Vehicles, C.
Mishra, M. Mehta, E. J. Griffith and J. F. Ralph, 2013 IEEE International Con-
ference on Systems, Man, and Cybernetics, Manchester 2013

• Efficient Estimation of probability of conflict between air traffic using Subset Sim-
ulation, Chinmaya Mishra, Simon Maskell, Siu-Kui Au, Jason F.Ralph. Submit-
ted to IEEE Transactions on Aerospace and Electronic Systems.

http://arxiv.org/pdf/1604.07363.pdf
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Chapter 2

Background

Currently, Unmanned Aircraft Systems (UAS) are restricted to operate within segre-
gated airspace unless an adequate level of safety is satisfied. Segregated airspace are
temporary blocks of airspace that UAS operate within [8]. This is to protect other
aircraft that might be operating within the vicinity from hazards, such as the risk
of collision with the UAS. However, restricting UAS operations to segregated airspace
limits users in benefiting from the potential applications of UAS such as assisting emer-
gency services, establishing communication between remote locations and monitoring
environmental changes [17,18]. It also inconveniences existing manned flight operations.
For example, manned flights must modify there usual flight plans and navigate around
to ensure that segregated airspace is not breached. These alterations increase the ex-
penditure of flight operations [12]. Manned flights are notified of the regions where and
when UAS operations are occurring by NOTAMs (NOtice To AirMen) that are issued
by the Aviation Authority governing the country’s airspace [19]. Within the United
Kingdom, UAS operate under the provision of Civil Aviation Publication (CAP) 722
issued by the Civil Aviation Authority (CAA) [8]. The Air Navigation Order issued by
the CAA is followed by manned aviation and takes precedence over any operation [20].

This chapter outlines the issues arising from increased computational load gener-
ated by satisfying safety related requirements such as collision avoidance and sensor
fault detection for Unmanned Aircraft Systems. This chapter begins by familiarising
the reader with the existing Rules and Regulations followed by manned aviation in
section 2.1. The problem of satisfying UAS safety ‘equivalence’ to existing manned
aviation is discussed in section 2.2. Collision Avoidance and Sensor Fault detection
are essential safety requirements for UAS and are discussed in sections 2.3 and 2.4
respectively.
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2.1 Rules and Regulations

The Rules and Regulations for civilian flight date back to the 1920s that began with
a series of conventions such as the 1919 Paris Convention [21, 22], the 1926 Iibero-
American Convention [23] and the 1926 Havana Convention [24]. The most significant
convention is the 1944 Chicago Convention which had 52 signatory states [25]. The con-
vention established the foundation for aviation safety, procedures, rules and regulation
with International cooperation that is currently enforced. Since then, the number of
signatory states has grown to 191 and is now known as the International Civil Aviation
Organization (ICAO) [25]. The Rules and Regulations issued by each state’s Aviation
Authority, such as the Civil Aviation Authority (CAA) in the United Kingdom (UK)
and the Federal Aviation Administration (FAA) in the United States (US), are based on
the Rules and Regulations published by the ICAO, which consist of 18 Annexes [26,27].
This section sets out some of the relevant Rules and Regulations that govern General
Aviation.

2.1.1 Flight Rules

According to Annex 2 to the Convention on International Civil Aviation - Rules of the
Air, a flight is conducted under one of three different flight rules [6, 16]. These are:

• Visual Flight Rules (VFR): flights conducted under VFR are reliant on the flight
crew’s ability to perform tasks such as navigation; and maintain safe separation
between traffic and terrain by visual reference. Therefore, VFR flight can only
be conducted when the Visual Meteorological Conditions (VMC) minima are met
and the weather conditions are suitable for the flight crew to maintain sufficient
situational awareness while relying on visual cues only. The VMC minima vary
depending on the flight level of the aircraft. For example, while flying at or above
3050m Above Mean Sea Level (AMSL), visibility of 8km must be maintained,
below this but above 900m (AMSL) or 300m which ever is higher, flight visibility
of 3km needs to be maintained [16].

• Instrument Flight Rules (IFR): flights are conducted when the weather conditions
are below the VMC minima – otherwise known as Instrument Meteorological Con-
ditions (IMC) and a VFR flight cannot be conducted. Such weather conditions
are known as Instrument Meteorological Conditions (IMC) and the pilot or flight
crew are reliant on instruments to navigate – a combination of Collision Avoid-
ance systems and advisories from Air traffic Service Units (ATSU) are used to
maintain safe separation [16].

• Special Visual Flight Rules (SVFR): is a provision for VFR flight that needs
to access restricted airspace where VFR is prohibited. This is useful for specific
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scenarios; for example, when an aircraft is operating under VFR and needs access
to an airfield that requires transiting through restricted airspace [16].

2.1.2 Right of Way

The Right of Way rules stated in Annex 2 are followed by traffic to resolve conflict(s)
that might be encountered between aircraft during flight. A conflict exists in a scenario
where a collision or loss of minimum separation between aircraft is imminent and no
action is taken. The element(s) of traffic that are involved in the conflict need to execute
manoeuvres to ensure the conflict is resolved. The type of manoeuvre and the element
of traffic that needs to execute it, depends on the geometry of the encounter. The
geometry of three different types of conflicts are shown in Figure 2.1 and are defined
as:

• Head-on: A Head-on conflict exists when an aircraft is approaching another
aircraft on a Head-on (or approximately Head-on) collision course. In such a
case, each aircraft must alter course to the right to avoid collision as shown in
Figure 2.1(a).

• Overtaking: An Overtaking conflict occurs when an aircraft is approaching an-
other aircraft from behind as shown in Figure 2.1(b). To be specific, an overtaking
condition exists when the overtaking aircraft is approaching the rear of the aircraft
to be overtaken within an angle less than 70 degrees from the extended centreline.
In such a scenario, the aircraft being overtaken has the Right of Way and should
maintain speed and heading as shown in Figure 2.1(b). The overtaking aircraft
must alter course right and keep clear of the aircraft to be overtaken.

• Converging: A converging conflict occurs when two aircraft are converging and
a conflict is imminent as shown in Figure 2.1(c) – the aircraft on the right has
the right of way and should maintain speed and heading as shown in the figure.
The aircraft on the left must alter its course right to resolve the collision.

Annex 2 also states that regardless of the Right of Way rules above, it is essen-
tial that a collision is avoided. The Pilot-in-Command of the respective aircraft is
responsible to ensure that a collision does not occur.

A minimum threshold has not been defined explicitly by the ICAO [28–30]. How-
ever, Aviation Authorities and Regulatory Bodies implicitly understand that a mini-
mum threshold of 500 ft must be maintained in all directions. For example the ‘Low
Flying Rule’ issued by the CAA states that no aircraft should be flown closer than 500
ft to any person, vessel, vehicle or structure except with written permission from the
CAA [20]. The FAA defines a separation of 500 ft as ‘well clear’ [31].
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Figure 2.1: These figures illustrate the geometric configuration of the different conflicts that

might be encountered within a block of airspace. This includes different manoeuvres required to

be executed by the respective parties to resolve the conflict.

2.1.3 Air Traffic Service Unit

Air Traffic Service Units (ATSU) are ground based Units that monitor and communicate
with flights with the primary goal of ensuring safe operations. There are different types
of Air Traffic Control, each type has different callsigns and responsibilities [6]:

• Air Traffic Control Unit types: Tower, Radar, Approach, Ground, Director, Con-
trol - These units can be only operated by licensed air traffic controllers. The call
sign describes the area of responsibility. These types of units are authorised to
issue instructions or advise pilots.

• Aerodrome Flight Information Service (AFIS): Information - This unit provides
flight information service regarding traffic in the vicinity.

• Aerodrome Air/Ground Communication Service: Radio - This type of unit assists
pilots by providing information only.

2.1.4 Airspace

The airspace is divided into regions and further subdivided into classes. Annex 11
to the convention on International Civil Aviation – Air Traffic Services defines the
different classes of airspace designated A to G in order of most restrictive to least
restrictive, where airspaces A to E are controlled airspace and F to G are uncontrolled
airspace [32]. The restrictions and limitations of the different classes of airspace are
defined in Table 2.1.
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Airspace

Class

Clearance IFR/VFR Separation Traffic In-

formation

A required IFR and

SVFR only

between all air-

craft

For all air-

craft

B required IFR/VFR between all air-

craft

For all air-

craft

C required IFR/VFR IFR/IFR and

IFR/VFR

VFR/VFR

D required IFR/VFR IFR/IFR IFR - VFR

E required for

IFR only

IFR/IFR IFR - IFR/SVFR All aircraft

if possible

F not required IFR/VFR not provided Available for

all aircraft if

possible

G not required IFR/VFR not provided Available for

all aircraft if

possible

Table 2.1: The different classes of airspace and restrictions [6]

It is apparent from Table 2.1 that the different restrictions, limitations and services
a flight is subject to, vary according to the class of airspace it is operating within and
the flight rules that it operates under. In order for a UAS to be allowed to operate
within controlled airspace alongside its manned equivalent, it must satisfy the same
safety standards as its manned equivalent. However, applying a single standard of
safety to all Unmanned Aircraft is not practical and might be unnecessary [33]. For
example, an Unmanned Aircraft used for communications – operating above a densely
populated city must satisfy a higher level of safety than an Unmanned Aircraft used for
surveying caves in a remote location [11]. There are different types of UAS with varying
levels of autonomy, depending on the type of mission, some are more suited than others.
A mission might require access to controlled airspace that has a higher level of safety
than uncontrolled airspace [34]. Additionally, accessing controlled airspace requires
communicating with ATSU. For manned flight, it is the flight crew’s responsibility
to ensure communication with the appropriate ATSU. However, the absence of a flight
crew for an Unmanned Aircraft means it is the remote operator’s responsibility to ensure
communications during the mission [8]. A sensible approach to satisfy the safety level
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of a UAS is to follow a ‘Concept of Operation’ (CONops) on a ‘mission-by-mission’
basis where safety analysis can be conducted that considers factors such as the type of
aircraft, the class of airspace that needs to be accessed to accomplish the mission, and
the responsibilities of the operator [13,35,36].

2.2 Equivalent Level of Safety

The operation of UAS flights needs to be treated with the same level of importance as
current manned flight [28]. The Aviation Authorities state that interaction with a UAS
should be no less demanding than its manned equivalent. A proposed method is to
derive an ‘Equivalent Level Of Safety’ (ELOS) to existing manned standards [10] [28].
Dalamagidkis et al. approach the problem of deriving system requirements to be able
to meet the ELOS for Unmanned Aircraft Systems by proposing safety risk models [10].
A safety risk model is used for estimating fatalities that could occur due to accidents
involving Unmanned Aircraft Systems. This is approached by evaluating the current
level of safety of manned aviation using statistics of fatalities that have occurred due
to manned air accidents between 1983 and 2006, obtained from the National Transport
Safety Board (NTSB) [12,37]. A risk model for estimating the fatalities after accidents
due Ground Impact and mid-air Collisions are derived based on fatalities that have
occurred in the past due to manned aviation [38]. The model considers factors such as
the population density of area affected by the accident, the size, mass, orientation of
the aircraft and kinetic energy dissipated on impact is also considered. In some cases,
the estimated fatality rate is mentioned as over conservative for UAS since it is derived
using statistics of casualties and fatalities of mid-air collision between manned aircraft.

Zeitlin and Larcher have expressed the problem of demonstrating ELOS for UAS
Collision Avoidance [13]. The problem exists in establishing a baseline performance
of Collision Avoidance for manned flight that is required to demonstrate ELOS. The
performance is dependent on the pilot or flight crew’s ability to visually acquire the
hazard (traffic or obstacle) and react in time to resolve the conflict by selecting the
appropriate manoeuvre. Although it is possible to estimate the human ability to vi-
sually acquire hazards such as traffic – estimating other factors such as reaction time,
the ability to select the appropriate resolution manoeuvre and the ability to adapt to
the changing situation is difficult [13]. Furthermore, the collision risk in manned avi-
ation varies depending on the class of airspace it is operating within. For example,
operating in controlled airspace has low risk of collision than operating in uncontrolled
airspace [13].
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2.3 Sense and Avoid

Collision Avoidance has been identified as a critical requirement to enable the inte-
gration of UAS operations in non-segregated airspace [13, 39]. Aviation in controlled
airspace involves following a combination of procedures and communicating with Air
Traffic Control as outlined by respective Aviation Authorities to ensure safety [40]. For
manned aviation, it is the pilot’s responsibility to maintain safe separation and avoid
collision with traffic [16]. The same applies in the case of Unmanned Aircraft – it is the
responsibility of the remote operator to maintain situational awareness of the aircraft
and the vicinity it is operating within to avoid any collision [41]. The lack of pilot or
flight crew on-board the Unmanned Aircraft requires the operator to rely on sensors
to be aware of its own aircraft and the immediate environment, which could contain
hazards such as birds, terrain, traffic and other obstacles. For such capability the term
‘Sense-And-Avoid’ (SAA) is more appropriate than ‘See-And-Avoid’. The SAA capabil-
ity for UAS is composed of two main functions [33]. Firstly, ‘Separation Assurance’ –
this is a pre-emptive measure to reduce probability of collision by following procedures
such as maintaining minimum separation as instructed by ATSU. Usually, at this stage
the aircraft will make small corrections to its course that result in gentle manoeuvres
to ensure that the required separation minima are maintained and the aircraft remains
‘well clear’ of traffic and hazards [20]. Secondly, ‘Collision Avoidance’ – this is the last
level of protection where aggressive manoeuvres might be required to ensure that a col-
lision is prevented. The Collision Avoidance stage consists of two functions – Conflict
Detection (CD) and Resolution (R). The Conflict Detection phase consists of detect-
ing traffic, terrain or obstacles. In the case of detected traffic, it needs to be tracked
accurately. This means determining that the detection is valid according to current
state-space (position and trajectory). The projected trajectory of the tracked object
must be evaluated to determine if it conflicts with the Unmanned Aircraft [33]. If a
conflict exists, the Resolution (R) stage involves executing the appropriate manoeuvre
to resolve the conflict. The appropriate manoeuvre is one that the Unmanned Aircraft
is capable of executing and is compliant with the Right of Way Rules according to the
geometry of the encounter. More importantly, the resolution manoeuvre must prevent
a collision [33].

Initial work on CD&R in the early 1980’s can be found in robotics where the collision
avoidance problem has been treated as a path planning task [42] and an early approach
to the problem involved using artificial potential fields [43]. Such methods are suitable
for scenarios where movement of the vehicles may be relatively slow, restricted in space
or in scope. However, over the following decades, the increased use of UAS has created
demand for autonomous CD&R solutions which are more suitable for the dynamic
aerospace environment. A large number of CD&R methods have been proposed during
this period and comprehensive surveys have been conducted by Kuchar and Yang [44],
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Krozel et al. [45], Warren [46] and Zeghal [47]. Kuchar and Yang have proposed a
taxonomy of methods useful in identifying gaps and directing future efforts within the
SAA community [44]. More recently, Albaker and Rahim have presented an up to date
survey of CD&R methods for UAS [48]. The CD&R methods can be categorised into
two main groups known as Cooperative and Non-Cooperative CD&R. The following
sub-sections give a brief overview of Cooperative and Non-cooperative CD&R.

2.3.1 Cooperative CD&R

Cooperative CD&R methods require coordination between traffic to resolve the con-
flict. For example, following the Right of Way rules is a form of cooperative resolution.
In order to ensure successful conflict resolution, the resolution manoeuvre needs to be
coordinated with the conflicting traffic. This requires sharing information such as the
current altitude, speed and heading of the aircraft by communication via radio or by
using cooperative equipment such as Automatic Dependent Surveillance - Broadcast
(ADS-B), Transponders and Traffic Collision Avoidance System (TCAS). This infor-
mation is known as the state of the aircraft. The intended altitude, speed and heading
is also shared with traffic. The traffic is expected to share similar information to ensure
coordination.

Automatic Dependent Surveillance - Broadcast

This is a cooperative surveillance technology that consists of equipment on-board an
aircraft that broadcasts the current state of its own aircraft (position, velocity and
heading). The state information is obtained from a Navigation system on-board the
aircraft, such as GPS [49].

Transponders

Some aircraft carry transponders that respond to interrogation from ground based units
such as ATSU and Secondary Surveillance Radar (SSR). Airborne equipment is reliant
on transponders carried by traffic to be aware of the traffic operating in the vicinity
and resolve potential conflicts. An example of airborne equipment is Traffic Collision
Avoidance System (TCAS).

Traffic Collision Avoidance System

Traffic Collision Avoidance System (TCAS) is a Collision Avoidance system that was
first deployed on-board commercial aircraft in the US during the 1990s [50–52]. Cur-
rently, the system is mandated by the ICAO to be carried by all aircraft that exceed a
maximum take-off weight of 5700 kg or carrying more than 19 passengers. The TCAS
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system issues Traffic Advisories (TA) when traffic is detected and is projected to breach
the aircraft’s protected zone. Resolution Advisories (RA) are issued to the pilot or flight
crew by TCAS to resolve the conflicts.

The TCAS solution is infeasible for UAS for number of reasons:

• TCAS operates under the assumption that traffic encountered is capable of achiev-
ing climb rates of 1500 ft/min to 2500 ft/min. However, not all Unmanned Air-
craft platforms can achieve this sort of performance [53].

• TCAS is reliant on all aircraft carrying transponders to be detected. Not all
traffic are equipped with transponders.

In a situation where a manned flight operating in uncontrolled airspace (F and G) in
VFR without traffic alerting service and without TCAS, is reliant on the pilot looking
out of the window to See-And-Avoid any hazards or possible conflicts. In the case of an
Unmanned Aircraft, the lack of pilot or flight crew means that the operator is reliant
on sensors on-board the aircraft to satisfy the See-And-Avoid requirement. For such
cases, non-cooperative methods need to be used to satisfy CD&R.

2.3.2 Non-Cooperative CD&R

Non-Cooperative CD&R assumes that no information related to the current state or
future intent has been shared between aircraft (i.e. there is no flight plan exchange or
radio/data link). This is a far more challenging problem since information related to
traffic state and intentions must be measured or inferred from the behaviour of non-
cooperative aircraft. Normally, this will be due to the lack of appropriate technology
on-board the aircraft: for example, a lightweight commercial of-the-shelf (COTS) UAS,
obtained by the general public and used for recreational purposes. Problems occur
when these aircraft are operated within non-segregated airspace. This type of airspace
contains aircraft (manned or unmanned) that adhere to the Rules of the Air and expect
traffic to do so as well. The lack of cooperative technology on-board a lightweight UAS
prevents awareness of traffic and increases the risk of a mid-air collision. This problem
needs to be addressed due to the increased number of near miss incidents involving
such UAS operating within non-segregated airspace [54]. The problem of the lack
of information is addressed by using on-board sensors. Information related to state of
traffic is obtained from observations using sensors such as Radar, Lidar and/or cameras.
For example, Mcfadyen et al. have considered using visual predictive control with a
spherical camera model to create a collision avoidance controller [55]. Recently, Huh
et al. have proposed a vision based Sense-and-Avoid framework that utilizes a camera
to detect and avoid approaching airborne intruders [56]. A collision avoidance system
that uses a combination of Radar and electro-optical sensors have been prototyped and
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tested by Accardo et al [57]. Measurement data obtained from sensors are inherently
noisy. This gives rise to uncertainties in the observed state and predicted motion of the
non-cooperative aircraft. In an environment where future trajectories are uncertain,
the likelihood of a conflict is an essential metric. Obtaining an accurate estimate for
the Probability of Conflict (Pc), given the sensor data, is a key parameter required to
resolve traffic conflicts.

Probabilistic methods for conflict resolution that require the calculation of metrics
like the probability of conflict (Pc) have been discussed in [44]. Nordlund and Gustafs-
son [58] noted the huge number of simulations required to get sufficient reliability for
small risks, and suggested an approach that reduced the three dimensional problem to
a one dimensional integral along piecewise straight paths [59,60]. More recently, Jilkov
et al. have extended a method developed by Blom and Bakker [61] and estimated
Pc using multiple models for aircraft trajectory prediction [62]. Many probabilistic
CD&R methods use Monte Carlo methods where uncertainties exist [52,62–68]. Unfor-
tunately, for scenarios where the expected Pc is low, a Monte Carlo method will require
a very large number of samples to estimate Pc with any accuracy. The large number
of samples generate an increased computational load. Despite the low probability, the
catastrophic outcome of a collision makes it essential to estimate the probability of
conflict accurately. The computational demand requires the computation capacity to
be large, which results in increased size, weight and power requirements. This might
not be feasible due to limited resources and size, weight and power restrictions. Chap-
ters 6 and 7 focus on the problem of estimating low probability of conflict between Air
traffic efficiently and accurately.

2.4 Fault Detection

As mentioned previously, accurate awareness of the state of the aircraft is an important
requirement for safe operation of any aircraft. Systems on-board the aircraft that
handle crucial functions such as Collision Avoidance, Navigation and Flight Controls
are reliant on accurate state estimation. The state of the aircraft is estimated by fusing
data obtained from multiple sensors on-board the aircraft. The accuracy of the data is
dependent on the integrity of the sensors. If false data are obtained from faulty sensor
then the state-estimate is corrupted and that misleads the aircraft and the flight crew.

Fatalities due to faulty sensor readings have occurred in the recent past on com-
mercial flights such as the Air France (AF447) and XL Airways Germany Flight 888T
accidents. On the 1st of June 2009, Air France Flight AF447 departed from Rio de
Janeiro, Brazil and was en route to Paris, France. The aircraft crashed into the Atlantic
Ocean when it was unable to recover from an aerodynamic stall. The investigation of
the flight AF447 accident by Bureau d’Enquêtes et d’Analyses pour la sécurité de lávia-
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tion civile (BEA) concluded that inconsistent airspeed and altitude readings due to the
suspected formation of ice crystals in the pitot tubes caused the autopilot to disconnect
and reconfigure to an alternate law [69]. This faulty data obtained from the sensors
contributed to misleading the flight crew and caused incorrect reactions [4]. This is
an example of an instance where false state awareness has misled the flight crew and
caused an accident. On 27th of November 2008, XL Airways Germany Flight 888T
departed from Perpignan-Rivesaltes Airport in France, on an acceptance flight test,
prior to the aircraft being handed back to Air New Zealand [70]. Two hours later, the
aircraft crashed into the Mediterranean sea. The final report by BEA concluded that
one of the factors contributing to the accident was improper maintenance procedures,
which caused water to enter the Angle-of-Attack (AoA) sensors [70]. The water froze
during the flight and caused the Angle-of-Attack sensor to output incorrect AoA data.
The accident occurred when the flight crew improvised a demonstration of the Angle-
of-Attack protections. However, the frozen AoA sensor made it impossible to trigger
the protection and this led to improper handling by the flight crew and resulted in a
crash.

A sensor fault detection capability is required for all aircraft to maintain state
awareness. This capability is essential in the case of Unmanned Aircraft, where there
is no pilot or flight crew on-board the aircraft. The operator is reliant on sensors to
determine the state of the aircraft. The typical output of a fault detection system is
a binary indication – either the sensor has failed or it is operating normally [71]. Nu-
merous fault detection methods have been proposed with various different modelling
methods [72, 73]. The two main groups of Fault Detection and Isolation (FDI) meth-
ods can be categorised as Hardware Redundancy and Analytical Redundancy [72, 73].
Hardware Redundancy is where multiple sensors measure and compare the same type
of signal to deduce if a fault exists. The difference between the measurements is known
as a residual [74]. For sensors operating normally, the magnitude of the residual is very
small. The system is deigned so that a fault will generate a significant residual. A
residual above a defined threshold is detected as a fault. Hardware Redundancy is a
common approach for fault detection and is currently in practice within industry [73].
For instance, Boeing uses a voting scheme on its aircraft, where multiple measurements
obtained from the same type of sensor are compared and erroneous ones are omit-
ted [75]. This sort of voting scheme operates under the assumption that the majority
of signals that are similar represent the truth and any signal that is significantly differ-
ent to the majority is the result of a failure and must be discarded [76]. However, this is
not a robust approach and catastrophic failures have occurred [75]. For example, in the
event that all sensors exhibit similar faults, the residual will still remain as zero despite
a fault having occurred – a false negative. Also, multiple sensors lead to an increase in
weight and cost, this might not be feasible due to payload restrictions [72,77]. For such
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cases, Analytical Redundancy is required where the residual is generated by comparing
the sensor measurement against the estimated sensor measurement obtained from a
mathematical model of the system [78]. The mathematical model is typically derived
from first principles, such as Newton’s Laws of motion for mechanical systems [72].

A popular approach to fault detection using analytical redundancy involves running
a bank of models, where the different models match particular behaviour of the system.
In other words, each model is a hypothesis that represents the behaviour of the system
in normal or faulty mode. For example, a system with one sensor has a bank with 2
models – one representing the hypothesis that the sensor is operating normally and the
other representing the hypothesis that the sensor is faulty. The bank of models are
run in parallel and the estimated measurement generated from each model is compared
with the actual measurement obtained from the sensor to generate a residual [79].
This residual is used to determine the probability that the hypotheses are true. The
probability of the hypotheses is used to deduce the state of the system (normal or
faulty). This approach is an adaptation of Multiple Models, an approach that is popular
in the Target Tracking community [79].

A combination of both Hardware and Analytical redundancy methods needs to be
used for aircraft. This is because an aircraft requires many different types of sensors,
because each type of sensor provides a different measurement needed to deduce an ele-
ment of the state information for the aircraft. For example, the pressure measurements
obtained from a Pitot-static system are used to deduce the barometric altitude and
speed of the aircraft [80] – but this sensor cannot be used to deduce the orientation
of the aircraft. Instead, the rotational rate measurements obtained from the Inertial
Measurement System (IMU) are used to deduce the orientation of the aircraft. The
different types of sensor commonly found on aircraft and the measurements they pro-
vide are discussed later in Chapter 4. Hardware redundancy is often required to meet
safety requirements outlined by Aviation Authority to ensure that the level of accept-
able probability of failure is met. For example, the safety analysis of the Electronic
Flight Instrument System (EFIS) conducted in [80], consists of a fault tree analysis of
the EFIS that shows a failure rate 10−12 per flight hour by including multiple hard-
ware redundancies for instruments. This meets the acceptable probability of failure
rate stated by the FAA of 10−9 per flight hour [81]. However, this increase in the
number of sensors leads to an increase in the hypotheses for normal and faulty sensors.
The increase in hypotheses results in an increased number of models that need to be
evaluated, which causes an increase in the computational load.
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2.5 Summary

This chapter has familiarised the reader with some of the existing rules and regulations
followed by manned aircraft. Such rules and regulations are expected to be observed
by Unmanned Aircraft in order to share the same airspace as manned flight. Collision
Avoidance and Sensor Fault Detection capabilities are essential safety requirements
for the safe operation of Unmanned Aircraft Systems alongside manned flight. Non-
cooperative Collision Avoidance requires calculating the probability of a conflict using
Monte Carlo methods. For scenarios where the probability of conflict is low, a large
number of samples are required to estimate the probability of conflict accurately. Sensor
Fault Detection is an essential requirement since core UAS functionalities are reliant on
sensor data. Multiple sensors on-board the aircraft result in high computational load
for sensor fault detection.
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Chapter 3

Navion Flight Model

A Six-Degrees-of-Freedom flight model for an aircraft is required to represent an Un-
manned Aircraft that can be used to generate flight data for testing collision avoidance
and fault detection algorithms. A flight model for a Navion aircraft defined in [7] is
suitable since it is a standard flight model and can be used to compare future algo-
rithms for benchmarking purposes. This flight model has been used in the past for
various research related applications such as estimating the state of the aircraft by
visual cues [82] and testing aircraft flight control systems [83].

The flight data generated by simulation allows the capabilities of the aircraft such
as turn rates and climb rates during common flight modes to be considered. The
most common flight modes that aircraft spend time operating within are in level flight,
climbing, descending and turning. A basic autopilot system will allow the operator to
specify a heading and altitude to be maintained.

This chapter presents a standard flight model for a Navion aircraft with an autopilot
that represents the Unmanned Aircraft to be studied in later chapters. A series of test
scenarios are simulated using the autopilot.

3.1 Axes Systems

Before a flight model is derived, the axes systems needs to be established to define the
state of the aircraft. The three types of right handed axes systems commonly used are
Earth-axes, Body-axes and Wind-axes [84].

• Earth-axes: Figure 3.1 shows the Earth-axes as the fixed frame of reference where
Oe is the origin of the axis, Xe points North and is orthogonal to Ye which points
East. The Ze axis points Down towards the centre of the earth and is aligned with
the gravity vector [85]. The Ze axis is orthogonal to the XeYe plane. The XeYe

horizontal plane is tangential to the surface of the earth, assuming a flat Earth
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non-rotating approximation [86]. This approximation is suitable for defining the
aircraft’s trajectory that is operating locally within distances of 20 km [85,87]. In
the case of vehicles operating over longer distances, more complex axes systems,
such as spherical Earth-Axes with the rotating Earth assumption, need to be
considered. For example, the trajectory of a long rage missile or the orbital path
of a satellite are cases where the curvature and rotation of the earth needs to be
considered [88]. However, the flat earth approximation is suitable for simulating
low speed aircraft, such as the Navion aircraft. All simulations considered within
this thesis assume non-rotating flat Earth-axes since the Navion aircraft typically
flies at 150 knots (77.2ms−1) and the period of the simulation does not exceed
120 seconds. This results in a maximum distance of approximately 9km, which
is suitable for non-rotating flat Earth-axes.

• Body-axes: The Forces and Moments experienced by the aircraft are calculated
in Body-axes. Figure 3.1 show the Body-axes fixed to the body of the aircraft
where the origin Ob is located at the aircraft’s centre of gravity, the Xb axis
extends forward along the aircraft centre line and is known as the longitudinal
axis. This is orthogonal to the Yb axis, which extends along the right wing and
is known as the lateral axis [88]. The Zb axis extends Down and is orthogonal to
the XbYb plane.

• Wind-axes: The aerodynamic forces and moments exerted on the aircraft are
defined in the Wind-axes. This system of axes is included to allow for motion
in a non-stationary air mass. The Wind-axes are oriented with respect to the
aircraft Body-axes. The Xw axis points in the direction of the aircraft true speed
Va. The Yw is orthogonal to the Xw axis. The Zw is orthogonal to the XwYw

plane.

Figure 3.1 illustrates the aircraft’s Body-axes system and the Earth-axes system. The
Body-axes are used to define the Forces and Moments experienced by the aircraft. The
origin of the aircraft axis system defines the orientation and position of the aircraft
with respect to the fixed earth co-ordinates.

3.2 Equations of Motion

The equations of motion for a Six-Degrees-of-Freedom (SixDoF) aircraft are derived
from Newton’s Second law of motion and stated as: The summation of all external
forces acting on a body is equal to the time rate of change of the momentum of the body;
and the summation of all external moments acting on the body is equal to the time rate
of change of the moment of momentum (angular momentum) [7]. The summation of
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Figure 3.1: The Earth-axes and aircraft Body-axes

forces F acting on a body with mass m due to the change in momentum is expressed
in vector form as

F = d

dt
(mV) (3.1)

where V is the velocity of the body with respect to the Body-axes. The force and
velocity are vector quantities and are expressed as F = [FXb

, FYb
, FZb

] and V = [u, v, w]
respectively in the Body-axes, where FXb

, FYb
, FZb

and u, v, w are forces and speeds
acting along the Xb, Yb, Zb directions respectively. Consider an element of mass δm
that has a position vector r from the centre of mass in the aircraft and V is the
velocity of δm relative to the inertial frame of reference. Then, the force acting on the
element of mass is δF. This is expressed as

δF = δm
dV
dt

(3.2)

The velocity of the element of mass is
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V = Vc + dr
dt

= Vc + ω × r (3.3)

where Vc is the velocity of the centre of mass, dr
dt is the velocity of the element of mass

relative to the centre of mass and ω is the angular velocity about the centre of mass.
The position vector r and angular velocity ω are expressed as

r = xi + yj + zk (3.4)

ω = pi + qj + rk (3.5)

The summation of the forces acting on the total mass is total force experienced by
the body. This is expressed as

F =
∑

δF =
∑ d

dt

(
Vc + dr

dt

)
δm (3.6)

F = d

dt

∑
Vcδm+ dr

dt

∑ d

dt
δm (3.7)

assuming the total mass remains constant the above can be rewritten as

F = dVc

dt
m+ d2

dt2

∑
r δm (3.8)

Since r is measured from the centre of mass, the summation
∑

r δm = 0. This simplifies
to

F = dVc

dt
m (3.9)

The derivative of an arbitrary vector A referred to a rotating body frame having
an angular velocity ω can be represented by the following vector identity [7]:

dA
dt

∣∣∣∣
I

= dA
dt

∣∣∣∣
B

+ ω ×A (3.10)

This identity is applied to equation (3.1)

F = m

(
dVc

dt

∣∣∣∣
B

+ ω ×Vc

)
(3.11)

where ω ×Vc is given by

ω ×Vc =

i j k

p q r

u v w

= i(qw − rv) + j(ru− pw) + k(pv − qu) (3.12)
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F = m

[
i(u̇+ qw − rv) + j(v̇ + ru− pw) + k(ẇ + pv − qu)

]
(3.13)

The equations for the individual components are

Fxb
= m(u̇+ qw − rv) (3.14)

Fyb
= m(v̇ + ru− pw) (3.15)

Fzb
= m(ẇ + pv − qu) (3.16)

Similarly, the total moment of the body M is the time rate of change of the moment
of momentum H. This is expressed as

M = d

dt
H (3.17)

where M is the total moment of the body and H is the moment of momentum. Both
are vector quantities and are expressed in the Body-axes; M = [L,M,N ]T where L is
the rolling moment about the Xb axis, M is the pitching moment about the Yb axis and
N is the yaw moment about the Zb axis in the Body-axes. The moment of momentum
H = [HX ,HY ,HZ ]T where HX ,HY ,HZ are components of H about the Xb, Yb, Zb axis
respectively.

The equations for the individual components are

L = d

dt
HX (3.18)

M = d

dt
HY (3.19)

N = d

dt
HZ (3.20)

The moment δM of an element of mass δm is expressed as

δM = d

dt
δH = d

dt
(r×V)δm (3.21)

The velocity of the mass element can be expressed in terms of the velocity of the centre
of mass and the relative velocity of the mass element to the centre of mass

V = Vc + ω × r (3.22)

where ω is the angular velocity of the vehicle and r is the position of the element of the
mass relative to the centre of mass. The total moment of momentum can be written as

H =
∑

δH =
∑

(r×Vc)δm+
∑

[r× (ω × r)]δm (3.23)
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The velocity is constant with respect to the summation and can be taken outside

H = Vc

∑
rδm+

∑
[r× (ω × r)]δm (3.24)

Since
∑

rδm = 0 the expression simplifies to

H =
∑

[r× (ω × r)]δm (3.25)

ω × r =

i j k

p q r

x y z

= i(qz − ry) + j(rx− pz) + k(py − qx) (3.26)

r× (ω × r) =

i j k

x y z

(qz − ry) (rx− pz) (py − qx)

(3.27)

= i[y(py − qx)− z(rx− pz)] (3.28)

+ j[z(qz − ry)− x(py − qx)] (3.29)

+ k[x(rx− pz)− y(qz − ry)] (3.30)

H =
∑

i[y(py−qx)−z(rx−pz)]+j[z(qz−ry)−x(py−qx)]+k[x(rx−pz)−y(qz−ry)]δm
(3.31)

The equations for the individual components expressed in the Body-axes are

Hx =
∑

[y(py − qx)− z(rx− pz)]δm (3.32)

=
∑

(py2 − qxy − zrx+ pz2)δm

=
∑

[p(y2 + z2)− xyq − xzr]δm

Hy =
∑

[z(qz − ry)− x(py − qx)]δm (3.33)

=
∑

[qz2 − ryz − pyx+ qx2)]δm

=
∑

[q(x2 + z2)− yzr − yxp]δm
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Hz =
∑

[x(rx− pz)− y(qz − ry)]δm (3.34)

=
∑

[rx2 − pzx− yqz + ry2]δm

=
∑

[r(x2 + y2)− zxp− zyq]δm

The summations in the above equations are the mass moments and products of inertia
of the aeroplane that are defined by the following expressions [7].

Ix =
∫ ∫ ∫

(y2 + z2) δm (3.35)

Iy =
∫ ∫ ∫

(x2 + z2) δm (3.36)

Iz =
∫ ∫ ∫

(x2 + y2) δm (3.37)

Ixy =
∫ ∫ ∫

xy δm (3.38)

Ixz =
∫ ∫ ∫

xz δm (3.39)

Iyz =
∫ ∫ ∫

yz δm (3.40)

The expressions are applied to equations (3.33), (3.34) and (3.35).

Hx = p
∑

(y2 + z2) δm− q
∑

xy δm− r
∑

xz δm = pIx − qIxy − rIxz (3.41)

Hy = q
∑

(x2 + z2) δm− r
∑

yz δm− p
∑

xy δm = qIy − rIyz − pIxy (3.42)

Hz = r
∑

(x2 + y2) δm− p
∑

xz δm− q
∑

yz δm = rIz − pIxz − qIyz (3.43)

Expression (3.10) is applied to equation (3.21) the angular moments

M = dH
dt

∣∣∣∣
B

+ ω ×H (3.44)


L

M

N

 = d

dt


Hx

Hy

Hz

 + ω ×H =


Ḣx

Ḣy

Ḣz

 +

i j k

p q r

Hx Hy Hz

(3.45)
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where ω ×H is given by

ω ×H =

i j k

p q r

Hx Hy Hz

= iqHz − rHy

+ jrHx − pHz

+ kpHy − qHx


L

M

N

 =


Ḣx

Ḣy

Ḣz

 +


qHz − rHy

rHx − pHz

pHy − qHx

 (3.46)


L

M

N

 =


ṗIx − q̇Ixy − ṙIxz

q̇Iy − ṙIyz − ṗIxy

ṙIz − ṗIxz − q̇Iyz

 +


q(rIz − pIxz − qIyz)− r(qIy − rIyz − pIxy)

r(pIx − qIxy − rIxz)− p(rIz − pIxz − qIyz)

p(qIy − rIyz − pIxy)− q(pIx − qIxy − rIxz)

 (3.47)

Assuming the aircraft is symmetrical in the XbZb plane, the moments of Inertia on
both sides are equal, therefore Iyz = Ixy = 0. The moment equations reduces to


L

M

N

 =


ṗIx − ṙIxz

q̇Iy

ṙIz − ṗIxz

 +


q(rIz − pIxz)− rqIy

r(pIx − rIxz)− p(rIz − pIxz)

pqIy − q(pIx − rIxz)

 (3.48)

L = ṗIx − ṙIxz + qr(Iz − Iy)− qpIxz (3.49)

M = q̇Iy + rp(Ix − Iz) + Ixz(p2 − r2) (3.50)

N = ṙIz − ṗIxz + pq(Iy − Ix) + qrIxz (3.51)

Another assumption is that the aircraft is symmetrical in XbYb plane, in practice this
might not be the case but the difference in inertia on both side of the plane is small
enough to be negligible and is approximated as Ixz = 0

L = ṗIx + qr(Iz − Iy) (3.52)

M = q̇Iy + rp(Ix − Iz) (3.53)

N = ṙIz + pq(Iy − Ix) (3.54)
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3.2.1 Aircraft Orientation

The location and orientation of the aircraft cannot be defined in the aircraft’s Body-
axes and needs to be expressed in the Earth-axes. This requires transforming the values
expressing the Body-axes with respect to Earth-axes by applying a series of rotations
known as Euler angles. The order that the rotations are applied in is important [7,89].

1. The first rotation is the roll ϕ about the Xe axis.

2. The second rotation is the pitch θ about the Ye axis.

3. The third rotation is the heading ψ about the Ze axis.

3.2.2 Body-axes to Earth-axes transformation

T e
B(ψ, θ, ϕ) =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ




1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ

 (3.55)

3.2.3 Earth-axes to Body-axes transformation

TB
e (ψ, θ, ϕ) =


1 0 0

0 cosϕ sinϕ

0 − sinϕ cosϕ




cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ




cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (3.56)

3.2.4 Gravitational and Thrust Forces

The forces F exerted on the aircraft are composed of the aerodynamic forces of the
aircraft, earth’s gravity and the thrust produced by the aircraft’s engine. This is
expressed as

F = Faw + Fge + Fp (3.57)

where F is the total force exerted on the aircraft. The aerodynamic force contributions
are defined in the Wind-axes Faw = [−D,Y,−Llift]T where D is the drag force, Y is the
side force and Llift is the lift force. The gravitational force contributions are defined in
Earth-axes as Fge = [0, 0,mg]T. The thrust force Fp = [T, 0, 0]T is aligned along the Xb

axis of the aircraft’s Body-axes. This can be different for other types of aircraft since
it is dependent on the type and geometric position of the power-plant on the aircraft.
Some aircraft have power-plants that are offset from the Xb axis and have a Yb and
Zb component resulting in offset thrust that contribute to the moment of the aircraft.
This is common on large passenger aircraft that have multiple power-plants such as
Boeing 747 [90] and the Airbus A320. More sophisticated power-plants have Thrust
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Vectoring capabilities where the direction of thrust can be changed during flight [85].
This is a common feature for Fast Jets used for combat such as the Lockheed Martin
F-22 and the Sukhoi Su-37. For all examples considered in this thesis, it is assumed
that the aircraft’s thrust is aligned along the Xb axis in the aircraft’s Body-axes.

The force components Faw and Fge need to be expressed in the Body-axes. The
aerodynamic forces are rotated about the z axis by side-slip angle β to the stability axis
followed by a rotation about the y axis by the Angle-of-Attack α to the Wind-axes. The
Angle-of-Attack α is the angle between the mean chord line of the wing and the relative
airflow [84]. The side-slip angle β is the angle between the horizontal component of the
velocity vector v and the total velocity Va [7].


Fax

Fay

Faz

 =


cosα 0 − sinα

0 1 0

sinα 0 cosα




cosβ − sin β 0

sin β cosβ 0

0 0 1



−D

Y

−Llift

 (3.58)


Fax

Fay

Faz

 =


cosα cosβ − cosα sin β − sinα

sin β cosβ 0

sinα cosβ − sinα sin β cosα



−D

Y

−Llift

 (3.59)

Fax = −D cosα cosβ − Y cosα sin β + Llift sinα (3.60)

Fay = −D sin β + Y cosβ (3.61)

Faz = −D sinα cosβ − Y sinα sin β − Llift cosα (3.62)

where the Angle-of-Attack and the angle of side-slip are computed as

α = tan−1
(
u− ug

w

)
(3.63)

β = sin−1
(
v − vg

Va

)
(3.64)

where Va is defined as

Va =
√

(u− ug)2 + (v − vg)2 + (w − wg)2 (3.65)

Gravitational Force

The gravitational force is expressed in earth frame of axis. This is converted to body
frame of axis by using the Euler angle rotations.

27



mg cos( )

yb zb

(a)

mg

mg cos( )

x
b

z
b

(b)

Figure 3.2: Aircraft bank 3.2(a) and pitch 3.2(a) orientations


Fgxb

Fgyb

Fgzb

 =


1 0 0

0 cosϕ sinϕ

0 − sinϕ cosϕ




cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ




0

0

mg

 (3.66)


Fgxb

Fgyb

Fgzb

 =


−mg sin θ

mg cos θ sinϕ

mg cos θ cosϕ

 (3.67)

Equations (3.14), (3.15), (3.16) are substituted into the total force equation (3.57)


m(u̇+ qw − rv)

m(v̇ + ru− pw)

m(ẇ + pv − qu)

 =


−D cosα cosβ − Y cosα sin β + Llift sinα

−D sin β + Y cosβ

−D sinα cosβ − Y sinα sin β − Llift cosα

+


−mg sin θ

mg cos θ sinϕ

mg cos θ cosϕ

+


T

0

0


(3.68)

The Drag D, Lift Llift and side forces Y are a function of dynamic pressure Q, wing
surface area of the aircraft S and various other factors such as the attitude rates and
control surface state. The forces can be defined as

D = QSCD (3.69)

Y = QSCY (3.70)

Llift = QSCL (3.71)

The Drag, Lift and Side force coefficient are CD, CL and CY respectively. These
coefficients are dimensionless and a function of the aircraft’s geometric features such
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as wingspan b, wing chord length c and wing surface area S. The coefficients are
determined experimentally by using a scale model of the aircraft in a wind tunnel and
varying parameters such as α and measuring effect this has on the Force and Moments
exerted on the aircraft [7]. The aerodynamic coefficients are composed of stability
derivatives. The stability derivatives are determined by taking Taylor series expansion
about the trim condition of the aircraft, where all the forces and moments acting on
the aircraft are zero. The change in forces and moments acting on the aircraft due to
change in variables such as control surface deflections are represented by the stability
derivatives.

CL = CL0 + CLαα+ CLβ
β + c

2Va
CLqq + CLδe

δe (3.72)

CY = CYαα+ CYβ
β + b

2Va
(CYpp+ CYrr) + CYδa

δa + CYδe
δe + CYδr

δr (3.73)

CD = CD0 + CkC
2
L (3.74)

where δa, δe and δr are the control surface deflections of the aircraft’s ailerons, elevator
and rudder respectively. The translation equations of motion are defined as:

u̇ = −Q S

m
(CD cosα cosβ + CY cosα sin β − CL sinα)− g sin θ + T

m
− qw + rv

(3.75)

v̇ = −Q S

m
(CD sin β − CY cosβ) + g cos θ sinϕ− ru+ pw (3.76)

ẇ = −Q S

m
(CD sinα cosβ + CY sinα sin β + CL cosα) + g cos θ cosϕ− pv + qu (3.77)

The moment equations are

L = QSbCl (3.78)

M = QScCm (3.79)

N = QSbCn (3.80)

where Cl, Cm and Cn are the rolling, pitching and yawing moment coefficients.

Cm = Cm0 + Cmαα+ Cmβ
β + c

2Va
(Cmα̇α̇+ Cmqq) + Cmδe

δe (3.81)

Cl = Clαα+ Clββ + b

2Va
(Clpp+ Clrr) + Clδa

δa + Clδe
δe + Clδr

δr (3.82)

Cn = Cnαα+ Cnβ
β + b

2Va
(Cnpp+ Clqq) + Clδa

δa + Clδe
δe + Clδr

δr (3.83)

The dynamic pressure Q is a function of the air density ρ and the speed Va of the
aircraft. This is defined as
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Q = 1
2
ρV 2

a (3.84)

ṗ = − 1
Ix

[qr(Iz − Iy)−QSbCl] (3.85)

q̇ = − 1
Iy

[rp(Ix − Iz)−QScCm] (3.86)

ṙ = − 1
Iz

[pq(Iy − Ix)−QSbCn] (3.87)

(3.88)
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3.2.5 Navion Aerodynamic coefficients

Table 3.1: Navion aerodynamic coefficients [7]

CL CY Cl Cm Cn

CLo = 0 CY0 = 0 Clo = 0 Cmo = 0 Cno = 0

CLα = 4.44 CYα = 0 Clα = 0 Cmα = −0.683 Cnα = 0

CLβ
= 0 CYβ

= −0.564 Clβ = −0.074 Cmβ
= 0 Cnβ

= 0.071

CLα̇ = 0 CYα̇ = 0 Clα̇ = 0 Cmα̇ = −4.36 Cnα̇ = 0

CLp = 0 CYp = 0 Clp = −0.41 Cmp = 0 Cnp = −0.0575

CLq = 3.8 CYq = 0 Clq = 0 Cmq = −9.96 Cnq = 0

CLr = 0 CYr = 0 Clr = 0.107 Cmr = 0 Cnr = −0.125

CLδa
= 0 CYδa

= 0 Clδa
= −0.134 Cmδa

= 0 Cnδa
= −0.0035

CLδe
= 0.355 CYδe

= 0 Clδe
= 0 Cmδe

= −0.923 Cnδe
= 0

CLδr
= 0 CYδr

= 0.157 Clδr
= 0.107 Cmδr

= 0 Cnδr
= −0.072

3.3 Flight Simulation

3.3.1 Level flight conditions

A reference operating point is trimmed level flight where the flight path angle (γ = 0).
The flight path angle is the angle between the aircraft velocity vector in the earth axis
and local horizon (Xe, Ye plane in the earth-axis). In this flight mode the aircraft is at
constant speed (u̇ = v̇ = ẇ = 0) and maintains a constant attitude (ṗ = q̇ = ṙ = p =
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q = r = 0) and wings are level (ϕ = 0) and side-slip angle (β = 0). The elevator angle
δe and engine thrust T needs to be determined to maintain this flight condition at a
given altitude z at a constant airspeed Va. The Angle-of-Attack is constant (α̇ = 0).
Since flight path angle (γ = θ − α = 0) then (θ = α). The lift Llift and weight of the
aircraft are balanced

Llift = mg = QSCL (3.89)

CL = mg

QS
(3.90)

CL = CL0 + CLαα+ CLδe
δe (3.91)

equation (3.91) is rearranged for Angle-of-Attack α to be the subject as

α = CL

CLα

− CL0

CLα

−
CLδe

δe

CLα

(3.92)

The pitching moment coefficient Cm = 0 equation (3.81) reduces to

0 = Cm0 + Cmαα+ Cmδe
δe (3.93)

which is rearranged for the elevator δe to be the subject

δe = − Cm0

Cmδe

− Cmα

Cmδe

α (3.94)

Equation (3.92) is substituted into equation (3.94) to form

δe = − Cm0

Cmδe

− Cmα

Cmδe

(
CL

CLα

− CL0

CLα

−
CLδe

δe

CLα

)
(3.95)

δe = −Cm0CLα − CmαCL + CmαCL0

Cmδe
CLα − CmαCLδe

(3.96)

The required elevator angle to maintain level flight is determined and applied to
equation (3.92) to determine the Angle-of-Attack for the aircraft. The CL is used to
compute CD using equation (3.74). The thrust is determined by equation (3.75) by

T = QSCD cosα (3.97)

3.3.2 Aircraft State Vector

The state of the aircraft is defined by the state vector

X = [x, u, ax, z, w, az, θ, q, q̇, y, v, ay, ψ, p, ṗ, ϕ, r, ṙ]T (3.98)
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that defines the state of the aircraft mathematically. The elements x, u, u̇, z, w, ẇ,
θ, q, q̇ are longitudinal states of the aircraft and y, v, ay, ψ, p, ṗ, ϕ, r, ṙ are lateral
states of the aircraft defined by convention [85]. The state elements x, y and z are the
displacements of the aircraft in the Xe, Ye and Ze directions respectively in the Earth-
axes. The state elements u, v and w are the speeds of the aircraft in the Xb, Yb and
Zb directions respectively in the aircraft Body-axes. The state elements ax, ay and az

are the accelerations of the aircraft in the Xb, Yb and Zb directions respectively in the
Body-axes. The state elements ψ, θ and ϕ are relative attitudes of the aircraft body
about the Ze, Ye and Xe axes respectively of the Earth-axes. The state elements p, q and
r are the angular rates of the aircraft body about the Xb, Yb and Zb axes respectively
in the aircraft Body-axes. The state elements ṗ, q̇ and ṙ are the angular rates of the
aircraft body about the Xb, Yb and Zb axes respectively in Body-axes.

3.3.3 Level Flight Results

An example of the level fight simulation of the SixDoF model is presented below. The
simulation begins in the trimmed condition at an altitude of 5000 ft (1524m) and at a
speed of 150 knots (77.2ms−1).

33



-10 0  10 20 30 40 50 60 70 80 90 100 110 120
time (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

x
(m

)

x

(a) Displacement in the Xe di-

rection

-10 0  10 20 30 40 50 60 70 80 90 100 110 120
time (s)

75

75.5

76

76.5

77

77.5

u
(m

s
−
1
)

u

(b) Speed u in the Xe direction

-10 0  10 20 30 40 50 60 70 80 90 100 110 120
time (s)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

a
x
(m

s
−
2
)

ax

(c) Acceleration ax in the Xe di-

rection

-10 0  10 20 30 40 50 60 70 80 90 100 110 120
time (s)

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

z
(m

)

z

(d) Displacement in the Ze di-

rection

-10 0  10 20 30 40 50 60 
time (s)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

w
(m

s
−
1
)

w

(e) Speed v in the Ze direction

-2 0  2  4  6  8  10 
time (s)

-2

0

2

4

6

8

10

12

a
z
(m

s
−
2
)

az

(f) Acceleration az in the Ze di-

rection

-10 0  10 20 30 40 50 60 70 80 90 100 110 120
time (s)

2

2.5

3

3.5

4

4.5

5

5.5

θ
◦

θ

(g) Pitch attitude θ about the

Xb axis

-10 0  10 20 30 40 50 60 70 80 90 100 110 120
time (s)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

q
◦
s
−
1

q

(h) Pitch rate q about the Xb

axis

-2 0  2  4  6  8  10 
time (s)

-10

0

10

20

30

40

50

q̇
◦
s
−
2

q̇

(i) Pitch acceleration q̇ about

the Xb axis

Figure 3.3: Longitudinal states for Navion during level flight at 5000 ft (1524m).

Level flight is simulated for 120 seconds. Figure 3.3 show the longitudinal states x,
u, ax, z, w, az, θ, q and q̇ of the aircraft during the simulation. The lateral states y, v,
ay, ψ, p, ṗ, ϕ, r and ṙ remain zero since level flight does not induce side force, rolling
and yaw moments. The longitudinal states ax, ay and q̇ show an oscillations at the start
of the simulation that gradually dissipates during the period of the simulation. The
duration of the oscillation is large and causes dependent states to fluctuate. A control
system is required to dampen the oscillation and achieve the target flight condition. The
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acceleration ax oscillates for the period of the simulation. This causes the speed u to
oscillate for the period of the simulation. The flight model needs to be dampened along
the longitudinal axis to reach the desired flight condition quickly. This requirement is
addressed in the next section.

3.4 Autopilot

The objective of the autopilot is to simulate common aircraft flight modes such as level,
climbing, descending and turning flight. This allows test scenarios to be specified that
will generate flight data for testing fault detection algorithms. The autopilot inputs
are the desired heading ψc and altitude zc to be maintained. The change in altitude
and heading is achieved by using a displacement autopilot shown in [7].

To maintain the desired altitude zc, the aircraft needs to be dampened along the
longitudinal axis. Figure 3.3(d) shows an increase in altitude ∆z during the simulation.
This occurs due to the change in displacement accelerations (ax, az) and pitch acceler-
ation q̇. These changes cause oscillation in the speeds u, w and rotational rates q that
result in change in displacements ∆x, ∆z and ∆θ. During level flight the Angle-of-
Attack α needs to be constant to maintain the desired altitude. The α is proportional
to the elevator angle δe to maintain level flight as defined by equation 3.94. However,
the change in pitch rate causes a change in α.

αϵ = α− αk (3.99)

where αϵ is the error, α is the desired Angle-of-Attack and αk is current Angle-of-Attack.
The error in altitude is proportional to the error in the Angle-of-Attack

∆z ∝ tan(αϵ) (3.100)

the small angle approximation tan a ≈ a reduces the equation to

∆z ∝ αϵ (3.101)

∆z = K1αϵ (3.102)

where K1 is a gain.

αϵ = 1
K1

∆z (3.103)

The elevator angle δe required to minimize αϵ is determined

δek+1 = δek
+ sign(αϵ)

min(Kδe |αϵ|, qmax)
qδe

(3.104)
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where sign(αϵ) =


−1 if αϵ < 0

0 if αϵ = 0

+1 if αϵ > 0


where q

δe
= qδe is the pitch rate per degree of the elevator angle, δek+1 is the required

elevator angle, δek
is the current angle of the elevator for αk. The elevator gain is Kδe .

The pitch rate is limited to qmax.
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Figure 3.4: Longitudinal states for Navion in level flight at 5000ft (1524m) with a dampened

system.

Figure 3.4 shows the damped longitudinal states during level flight.
The heading of the aircraft is controlled by inducing a roll rate p using ailerons.

Inducing a roll causes a bank angle ϕ that changes the heading of the aircraft. The
difference between the current heading ψ and the desired heading ψc is ∆ψ. This is
the angle between the unit vector of the velocity vector of the aircraft V̂earth and the
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desired heading vector uc defined

V̂earth = T e
B(ψ, θ, ϕ)Vbody (3.105)

where Vbody = [u, v, w]T is the velocity of the aircraft in the body axis.

uc = T e
B(ψc, 0, 0)u (3.106)

where u = [1, 0, 0]T is a unit vector aligned along the X axis of the aircraft body
axis that is rotated by ψc with respect the earth axis. The difference in heading is
proportional to the required bank angle ϕd

ϕd = sign(∆ψ)min(Kϕ|∆ψ|, ϕmax) (3.107)

where sign(∆ψ) =


−1 if ∆ψ < 0

0 if ∆ψ = 0

+1 if ∆ψ > 0


Kϕ is a gradient and ϕmax is the maximum bank angle limit for the aircraft. This is
determined according to the maximum load factor nmax that the aircraft is capable
of sustaining n = 1

cos ϕ [91]. For aircraft such as Navion the maximum load factor is
expected to remain between 1 and 2. Assuming nmax = 1.5, a bank limit of ϕmax =
±45◦ is appropriate. The aileron control surface deflection δak+1 is determined by

δak+1 = δak
+ sign(∆ϕ)min(Kδa |ϕd|, pmax)

pδa

(3.108)

where sign(∆ϕ) =


−1 if ∆ϕ < 0

0 if ∆ϕ = 0

+1 if ∆ϕ > 0


δak

is the current aileron angle of deflection, Kδa is the aileron gain, the roll rate is
limited to pmax and p

δa
= pδa is the roll rate per degree of the aileron angle.

The aileron deflection also induces a yaw rate that contributes to the side-slip angle
β of the aircraft [85]. The rudder control surface δr is used to minimize the side-slip
angle. The rudder control deflection δrk+1 is determined

δrk+1 = δrk
+ sign(βk)min(Kδr |βk|, rmax)

rδr

(3.109)

where sign(βk) =


−1 if βk < 0

0 if βk = 0

+1 if βk > 0
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δrk
is the current rudder angle of deflection, Kδr is the rudder gain, rmax is the maximum

yaw rate limit and r
δr

= rδr is the yaw rate per degree of the aileron angle.
The parameters for the autopilot are:

• K1 = 200

• Kδe = 0.9

• qmax = 10◦s−1

• Kϕ = 5

• ϕmax = 45◦

• Kδa = 1.75

• pmax = 10◦s−1

• Kδr = 10

• rmax = 5◦s−1

3.4.1 Climbing flight
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Figure 3.5: The aircraft climbs and maintains altitude of 1828.8m (6000ft) and heading 0◦.
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3.4.2 Descending flight
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Figure 3.6: The aircraft descends and maintains altitude of 1219.2m (4000ft) and heading 0◦.

3.4.3 Turning flight
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Figure 3.7: The aircraft turns and maintains a heading of 90◦ and altitude of 1219.2m (4000ft).
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3.5 Summary

This chapter has demonstrated the development of a Navion flight model with an
autopilot that represents an Unmanned Aircraft. This will be used as a test platform
in simulation of common flight scenarios. The autopilot is useful for initialising different
flight phases such as climbing, descending, turning and level flight. The model can be
used as a test platform to generate data for fault detection algorithms.
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Chapter 4

Sensors and State Estimation

Aircraft systems are reliant on data obtained from on-board sensors to deduce their
state and the state of the environment they are operating within. The measurements
obtained from sensors are inherently noisy and they limit the accuracy of the state
estimate of the aircraft. State estimation methods are used to filter the noise from the
measurements and maintain an accurate estimate of the aircraft’s state, such as the
current altitude, speed and heading of the aircraft. There are different types of sensors,
each type of sensor is used to provide specific information related to the state of the
aircraft [80].

Sensors can be categorised as dependent and independent. Dependent sensors are
reliant on distributed systems. For example, the Global Positioning System (GPS)
receivers on-board an aircraft are reliant on the GPS satellite constellation to determine
the aircraft position [92]. This type system is vulnerable, to attacks such as spoofing
and jamming. In contrast, independent sensors are not dependent on external systems
to provide measurements. For example Angle-of-Attack (AoA) sensors are on-board
the aircraft and provide the measurement of the angle between the mean chord of the
wing and the relative airflow. This angle is denoted by α.

The three different types of independent sensors that are commonly found on-board
aircraft and are considered for this flight model are an Inertial Measurement Unit, an
Angle-of-Attack sensor and a Pitot-static sensor.

• Inertial Measurement Unit (IMU): Measures the accelerations (ax, ay and az)
and rotation rates (p, q and r) of the aircraft. These are integrated with respect
to time to produce the displacement, velocity, attitude and rotation rate of the
aircraft.

• Angle-of-Attack (AoA) sensor: Measures the angle α between the mean chord of
the aerofoil wing and the relative airflow.

• Pitot-static (PS) sensor: Measures the static pressure Ps and total pressure PT
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encountered during the flight. The static pressure is used determine the baromet-
ric altitude. The total pressure is a sum of the static pressure and the Dynamic
pressure Q. This is used infer the local airspeed aircraft.

This chapter begins by defining the measurement models for the above sensors
based on [80]. Noisy sensor data are simulated by adding zero-mean Gaussian white
noise to the expected measurement determined using the Navion flight model defined
in the previous chapter. White noise is a process where the autocovariance for two
different times is zero, ie. the noise is uncorrelated in time [93]. Gaussian noise is used
because of the Central Limit Theorem, where the sum of many noise sources always
(or nearly always) approximates to a Gaussian distribution. Therefore, a Gaussian
distribution is a good model for sensors. However, in practice sensors have bias due to
factors such as imperfect manufacturing processes or coupling effects due to interference
between instruments [94]. The examples in this thesis do not consider such errors. This
approach of using additive white noise has been used in reference [75] and is common
in simulation and modelling. Section 4.2 considers popular state estimation methods
such as Kalman Filter, Extended Kalman Filter and Unscented Kalman Filter to filter
the noise and maintain an accurate estimate of the aircraft state.

4.1 Sensor simulation

4.1.1 Inertial Measurement Unit

Figure 4.1: Inertial Measurement Unit [1]
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The Inertial Measurement Unit (IMU) is located inside the aircraft commonly at or near
the aircraft’s centre of gravity. The IMU is composed of accelerometers and gyroscope
sensors that measure the accelerations and rotational rates of the aircraft respectively.
The position, velocity and orientation of the aircraft are deduced by integrating the
measurements obtained from the IMU over time. This sensor’s measurements are sim-
ulated by adding white noise to the expected output of the sensor. The measurements
obtained at time-step k from the Inertial Measurement Unit (IMU) are simulated as

Y(IMU)
k = h(IMU)([ax, ay, az, p, q, r]T,VIMU) = [ax, ay, az, p, q, r]T + VIMU (4.1)

where VIMU ∼ N (0, σ2
IMU) is the measurement noise and

σ2
IMU =



σ2
ax

0 0 0 0 0

0 σ2
ay

0 0 0 0

0 0 σ2
az

0 0 0

0 0 0 σ2
p 0 0

0 0 0 0 σ2
q 0

0 0 0 0 0 σ2
r


(4.2)

The variance of the measured accelerations ax,ay and az are σ2
ax

, σ2
ay

and σ2
az

respec-
tively. The variance of rotation rates p, q and r are σ2

p, σ2
q and σ2

r . The covariance have
been assumed negligible. In practice, the magnitude of cross-couplings are non-zero
but the magnitude of these terms are significantly smaller than the diagonal terms and
can be assumed negligible for the purposes of this thesis.
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4.1.2 Angle-of-Attack Sensor

Figure 4.2: Two Angle-of-Attack Sensors on Airbus A330 [2]

This is an external sensor that is mounted on the side of side of the aircraft. It consists
of a vane that rotates as the aircraft pitches. The Angle-of-Attack (AoA) α is the angle
between the mean chord of the aerofoil and the relative airflow. The data from this
sensor are simulated by determining the expected value for α based on the equations
of motion and adding noise terms.

Y
(α)

k = h(AoA)(uk, wk, Vα) = tan−1
(
uk

wk

)
+ Vα (4.3)

where Vα ∼ N (0, σ2
α) and σ2

α is the variance of the angle of attack, uk and wk are the
speed aircraft along the X-axis and Z-axis in the aircraft body-axis respectively.

4.1.3 Pitot-static Sensor

The Pitot-static (PS) sensor is an external sensor mounted on the fuselage of the air-
craft. This sensor measures the total pressure PT and static pressure Ps encountered
during flight. These measurements are used to determine the current speed and baro-
metric altitude of the aircraft. The dynamic pressure Q is the difference between the
total pressure PT and the static pressure Ps; (Q = PT − Ps). The airspeed Va is
proportional to the dynamic pressure and the air density ρ at the current altitude.

The International Standard Atmosphere (ISA) model is used to approximate the air
density ρ and static pressure Ps encountered at a specific altitude [84]. This is a stan-
dard model that has been commonly used for applications such as simulating missiles.
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Figure 4.3: Two Static ports on Airbus A330 [3]

The ISA atmosphere model is constructed by averaging the atmospheric conditions over
the globe and over the seasons, in practice meteorological variations in temperatures
can be modelled by using up to date weather data [84]. Such variations in temperature
are not considered in examples in this thesis.

The air density ρ at a given altitude z is determined

ρ = ρ0

(
1− lz

T0

)( g
lR

−1)
(4.4)

where the air density at sea level is ρ0 = 1.225 kgm−3. The lapse rate l = 6.49 Kkm−1.
The temperature at sea level T0 = 288.15 K. The acceleration due to gravity g =
9.81 ms−2. The specific gas constant is R = 287 Jkg−1 K−1. The static pressure Ps at
the current altitude z is simulated

Ps = P0

(
1− lz

T0

)( g
lR )

(4.5)

where the static pressure at sea level is P0 = 101.325 kPa. The dynamic pressure Q is
calculated using

Q = 1
2
ρV 2

a = 1
2
ρ0

(
1− lz

T0

)( g
lR

−1)
V 2

a (4.6)

and the total pressure encountered during flight is given by

PT = 1
2
ρ0

(
1− lz

T0

)( g
lR

−1)
V 2

a + P0

(
1− lz

T0

)( g
lR )

(4.7)

The static pressure Y (Ps)
k and the total pressure Y (PT )

k of the sensor are simulated by
adding noise to the expected total pressure PT and static pressure for the current speed
Va at altitude z.
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Figure 4.4: Pitot tubes on A330 [4]

Y
(Ps)

k = h(Ps)(z, VPs) = P0

(
1− lz

T0

)( g
lR )

+ VPs (4.8)

Y
(PT )

k = h(PT )(u, v, w, z, VPT
) (4.9)

= PT + VPT

= 1
2
ρ0

(
1− lz

T0

)( g
lR

−1)
(u2 + v2 + w2) + P0

(
1− lz

T0

)( g
lR )

+ VPT

where VPs ∼ N (0, σ2
Ps

) and VPT
∼ N (0, σ2

PT
)

4.2 State Estimation

The noisy sensor outputs must be filtered to obtain an accurate estimate of the aircraft
state. The accuracy such information must be preserved since it affects the actions of
the autopilot.

4.2.1 Kalman Filter

The Kalman Filter (KF) is a popular state estimation method that was proposed by
Rudolf Kalman in 1960 [95]. This method has been used for various applications such
as Navigation [96], Finance [97] and Medicine [98]. The Kalman filter is a recursive
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filter that provides an optimal minimum mean-squared error (MMSE) estimate of the
current state when estimating the state of linear dynamic systems with Gaussian White
noise [93]. A description of the Kalman filter algorithm for a linear dynamic system is
given below [93].

A discrete-time linear system is defined in state-space form

Xk+1|k = FXk + W̃ + Bηk (4.10)

where Xk is the state vector that defines the state of the system at time-step k, F is the
transition matrix that is known and defines the linear system process. The process noise
is W̃. The B matrix is the control gain and ηk is the control vector. The measurement
equation is

Yk+1 = HXk + V (4.11)

where Yk+1 is the measurement, H is the measurement matrix and V is the measure-
ment noise. The Kalman filter is initialised with an initial estimate X̂0 and initial
error covariance S0 obtained from a series of preliminary measurements at k = 0. The
estimated state of the system at time-step k is X̂k and is time-updated by

X̂k+1|k = F X̂k + Bηk (4.12)

where X̂k+1|k is the estimated state. The estimated error covariance at time-step k is
Sk and is time-updated by

Sk+1|k = FSkF
T + Q̃ (4.13)

where Sk+1 is the predicted error covariance and Q̃ is the process noise covariance. The
Kalman gain G is determined by

G = Sk+1|kH
T ([HSk+1|kH

T ] +R)−1 (4.14)

where R is the measurement noise covariance. This is followed by updating the state-
estimate X̂k+1 and error covariance Sk+1 respectively.

X̂k+1|k+1 = X̂k+1|k +Gϵ (4.15)

where ϵ is the innovation

ϵ = Yk+1 − [HX̂k+1|k] (4.16)

Sk+1|k+1 = [I −GH]Sk+1|k (4.17)
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The Kalman Filter is optimal for estimating the state of linear systems with linear mea-
surements and Gaussian noise. However, many practical problems require estimating
the state of nonlinear systems and processes. For example, tracking the trajectory of a
ballistic object re-entering the Earth’s atmosphere is very nonlinear [99].

4.2.2 Extended Kalman filter

In the case of nonlinear systems, an extended version of the Kalman Filter known as
the Extended Kalman Filter (EKF) [100] is often used. This is where the nonlinear
function is linearised around an estimated point using a Taylor series expansion and the
linearised terms are substituted into the Kalman Filter. The algorithm for a nonlinear
discrete EKF using first-order Taylor series expansion is shown below [93,101,102].

A discrete-time nonlinear system that is defined by

Xk+1|k = f(Xk) + W̃ + Bηk (4.18)

where f(...) is a known nonlinear function that propagates the current state Xk to the
next state Xk+1. The measurement equation is

Yk+1 = h(Xk) + V (4.19)

where h(...) is the nonlinear measurement function. To estimate the predicted state
X̂k+1|k the nonlinear function f(...) is expanded around the most recent estimate X̂k

using vector Taylor series expansion up to the first-order terms as shown in [101] to
yield

f(X) + W̃ ≈ f(X̂k) +∇f(X̂k)(X− X̂k) + W̃ + Bηk (4.20)

where ∇f is the gradient of the function f(X)

∇f(X̂k) =


∂f

∂X1
...

∂f
∂Xn

 (4.21)

the Jacobian matrix is

Fk =


∂f1
∂X1

... ∂f1
∂Xn

... . . . ...
∂fm

∂X1
... ∂fm

∂Xn

 (4.22)

The predicted state X̂k+1|k is determined by

X̂k+1|k = f(X̂k) + Bηk (4.23)
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The predicted error covariance Sk+1|k is determined by equation

Sk+1|k = FkSkF
T
k + Q̃ (4.24)

The measurement function is expanded around X = X̂k+1|k

h(X) + V ≈ h(X̂k+1|k) +∇h(X̂k+1|k)(X− X̂k+1|k) + V (4.25)

where ∇h is the gradient of the function h(X̂k+1|k)

∇h(X̂k+1|k) =


∂h

∂X1
...

∂h
∂Xn

 (4.26)

the Jacobian measurement matrix is given by

Hk =


∂h1
∂X1

... ∂h1
∂Xn

... . . . ...
∂hm
∂X1

... ∂hm
∂Xn

 (4.27)

The measurement matrix is used to calculate the Kalman gain

G = Sk+1|kH
T
k ([HkSk+1|kH

T
k ] +R)−1 (4.28)

where R is the measurement noise covariance. This is followed by updating the time-
updated estimate X̂k+1|k and error covariance Ŝk+1 respectively.

X̂k+1|k+1 = X̂k+1|k +G{Yk+1 − [h(X̂k+1|k)]} (4.29)

where Yk+1 is the measurement vector.

Sk+1|k+1 = [I −GHk]Sk+1|k (4.30)

The main difference between the Kalman Filter and Extended Kalman Filter is the
evaluation of the Jacobian matrices that are used within the Kalman Filter. In the
case of second-order or a ‘Higher-order’ EKF – the second or higher order terms of
the Taylor series expansion are used which require computing the Hessian matrices
that are the derivatives of the Jacobian matrices. However, including higher order
terms does not guarantee accuracy of the estimate since the linearisation is conducted
around the latest estimate because the actual state is not available, therefore errors in
the estimated state are propagated to the linearised approximation of the system [93].
Unless the EKF is initialised with accurate measurements and the error propagation is
well approximated, the error increases and the estimate departs from the true state of
the system [93]. This is a well known problem within the target tracking community
that has been encountered for applications such as estimating the ballistic parameters
of missiles [103,104].
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4.2.3 Unscented Transformation

The Unscented Transformation (UT) proposed by Julier et al. addresses the lineari-
sation issues faced by the Extended Kalman Filter (EKF) [105]. The UT is founded
on the intuition that it is easier to approximate a probability distribution than it is to
approximate an arbitrary nonlinear function or transformation [5]. The UT method
draws a set of sigma points with mean X̂k and covariance Sk. A nonlinear function
is applied to each of the sigma points. The mean and covariance of the transformed
sigma points represent the mean and covariance of the nonlinear transformation.

Figure 4.5: The Unscented Transform – a nonlinear function is applied to a set of sigma

points [5]

Consider the nonlinear measurement equation (4.19). The measurement Yk+1 with
dimension ny × 1 is observed for the current state of the system Xk+1 with dimension
nx × 1. The sigma points are determined by

X(0) = Xk (4.31)

X(i) = Xk +
(√

nxS

)
i

i = 1, ..., nx (4.32)

X(i+nx) = Xk −
(√

nxS

)
i

i = 1, ..., nx (4.33)

where
√
nxS is the square root of the matrix nxS and S is the error covariance. The

subscript i in
(√

nxS

)
i

within equations 4.32 and 4.33 refers to the ith column in

the matrix nxS. The sigma points are propagated using the non-linear measurement
function h(...).
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Y (i) = h(X(i)
k ) i = 0, ..., 2nx (4.34)

The mean of the transformed sigma points are calculated

Ŷ =
nY∑
i=0

W (i)Y (i) (4.35)

where W (i) = 1
2nx

are the weights of the sigma points. The weight (gain) matrix is
chosen to minimise the trace of the updated covariance [5]. The covariance of the sigma
points, S, is calculated as

S =
nY∑
i=0

W(i)(Y (i) − Ŷ)(Y (i) − Ŷ)T i = 0, ..., 2ny (4.36)

This approach captures the second order linearisation information of the nonlinear
transformation without the need for a second order Taylor series expansion. The Un-
scented Transformation can be generalised in the Unscented Kalman Filter [101]. The
Unscented Kalman Filter provides an improved performance in state estimation when
compared to Extended Kalman Filter for nonlinear systems [101]. The EKF requires
the computation of the Jacobian and in some cases – Hessian matrices, the derivative of
Jacobian matrices. It is therefore suited to analytical process and measurement equa-
tions [101]. However, in practice, some systems cannot be defined analytically and it is
numerically difficult to compute Jacobian matrices [101]. For example, the Navion flight
model defined in the previous chapter consists of nonlinear dynamics. Such nonlinear
problems have been known to cause increased complexity when computing Jacobian or
Hessian Matrices [5].

The general form of the Unscented Kalman filter assumes that process and mea-
surement noise is additive and that the covariance is constant. However, estimating
the state of nonlinear systems where the noise covariance changes and/or is within
the nonlinear function (not additive) requires the simulation of the noise within the
nonlinear function.

4.2.4 Augmented Unscented Kalman Filter Algorithm

The augmented form of the UKF [5, 106] is suitable for the estimation of the state of
nonlinear systems where the noise is within the nonlinear function and the covariance
of the noise changes. It provides a method to estimate the properties of the noise
alongside the state estimates.

The augmented state vector Xa is defined as

Xak
= [X̂k W̃ V]T (4.37)
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where X̂k = [x̂, û, âx, ẑ, ŵ, âz, θ̂, q̂, ˆ̇q, ŷ, v̂, ây, ψ̂, p̂, ˆ̇p, ϕ̂, r̂, ˆ̇r]T is the estimated state of the
aircraft and the state elements are as mentioned in the previous chapter section 3.3.2.
The process noise is W̃ and the measurement noise is V. The total dimension of the
augmented state vector is na = nx + nw + nv where nx, nw and nv are the dimensions
of the state-estimate, process noise and measurement noise vectors respectively. The
augmented covariance matrix is defined as:

Sak
=


Sk 0 0

0 Q̃ 0

0 0 R

 (4.38)

where Sk, Q̃ and R are the error, process noise and measurement noise covariances
respectively.

Q̃ =



Q̃σ
σax
∆T 0 0 0 0 0

0 Q̃σ
σay

∆T 0 0 0 0

0 0 Q̃σ
σaz
∆T 0 0 0

0 0 0 Q̃σ
σṗ

∆T 0 0

0 0 0 0 Q̃σ
σq̇

∆T 0

0 0 0 0 0 Q̃σ
σṙ
∆T


(4.39)

where Q̃σ is

Q̃σ =


∆T 5

20
∆T 4

8
∆T 3

6
∆T 4

8
∆T 3

3
∆T 2

2
∆T 3

6
∆T 2

2 ∆T

 (4.40)

R =



σ2
IMU 0 0 0

0 σ2
α 0 0

0 0 σ2
Ps

0

0 0 0 σ2
PT

 (4.41)

The 2na sigma vectors Xak
are composed as

X(0)
ak

= [X̂T
k 01×nw 01×nv ]T (4.42)

X(i)
ak

= X(0)
ak

+
√

(na + λ)Sak
i = 1, ..., na (4.43)

X(i)
ak

= X(0)
ak
−

√
(na + λ)Sak

i = (na + 1), ..., 2na (4.44)
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where the scaling parameter λ is

λ = (na + κ)ζ2 − na (4.45)

where ζ defined the spread of the sigma points from X(0)
ak

and κ. To clarify, the structure
of the ith sigma point is X(i)

ak
= [XT

aX̂
k

,XT
aW ,XT

aV ]T where XT
aX̂

k

is the current state-

estimate of the aircraft, XT
aW is the process noise component of the sigma point and

XT
aV is the sensor noise component of the sigma point.

The Weightings Wm and Wc are composed as:

Wm0 = λ

na + λ
(4.46)

Wc0 = (1− ζ2 + ξ) +Wm0 (4.47)

Wmi = Wci = 1
2(na + λ)

i = 1, ..., 2na (4.48)

Time update

The sigma points are propagated using the Navion dynamics function fnavion(...) (rep-
resented by algorithm 3 in Appendix A)

X(i)
aX̂

k+1|k
= fnavion(X(i)

aX̂
k

,X(i)
aW

k

, ηk) i = 1, ..., 2na (4.49)

where X(i)
aX̂

k

is the current state-estimate of the aircraft, X(i)
aW

k

is the process noise and

ηk = [δa, δe, δr, T ]T is the control vector. The aircraft state estimate is given by

X̂
aX̂

k+1|k
=

2na∑
i=0

WmiX
(i)
aX̂

k+1|k
(4.50)

where X̂
aX̂

k+1|k
is the current state-estimate of the aircraft. The error covariance of the

estimate is given by

Sxxk+1|k =
2na∑
i=0

Wci [X̂aX̂
k+1|k

−X(i)
aX̂

k+1|k
][X̂

aX̂
k+1|k

−X(i)
aX̂

k+1|k
]T (4.51)

Measurement update

The update stage begins by determining the expected measurements of the time up-
dated sigma points X(i)

aX̂
k+1|k

. The sigma points are input into the sensor measurement

functions defined in section 4.1.
The expected measurement for the IMU is determined by equation (4.1)
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Y(IMU,i)
k = h(IMU)([a(i)

z , a(i)
y , a(i)

z , p(i), q(i), r(i)]T,X(i)
a

VIMU
k+1|k

) i = 0, ..., 2na (4.52)

where Y(IMU,i)
k is the expected measurement of the IMU sensor for the ith sigma point,

the elements a(i)
x , a(i)

y , a(i)
z p(i) q(i) and r(i) are obtained from the X(i)

aX
k+1|k

vector and

X(i)
a

VIMU
k+1|k

are the elements of the sigma point representing the IMU measurement noise.

The expected measurement for the AoA is determined by equation (4.3)

Y
(AoA,i)

k = h(AoA)(u(i), w(i),X(i)
a

VAoA
k+1|k

) i = 0, ..., 2na (4.53)

where Y (AoA,i)
k is the expected measurement of the AoA sensor for the ith sigma point,

the elements u(i) and w(i) are the elements obtained from the X(i)
aX

k+1|k
vector and X(i)

a
VAoA
k+1|k

are the elements of the sigma point representing the AoA measurement noise.

Y
(Ps,i)

k = h(Ps)(z(i),X(i)
a

VPs
k+1|k

) i = 0, ..., 2na (4.54)

where Y (Ps,i)
k is the expected measurement of the static pressure from the pitot static

sensor for the ith sigma point, the element z(i) is obtained from the X(i)
aX

k+1|k
vector and

X(i)
a

VPs
k+1|k

are the elements of the propagated sigma point representing the static pressure

measurement noise.

Y
(PT ,i)

k = h(PT )(u(i), v(i), w(i), z(i),X(i)

a
VPT
k+1|k

) i = 0, ..., 2na (4.55)

where Y (PT ,i)
k is the expected measurement of the total pressure from the pitot static

sensor for the ith sigma point, the elements u(i), v(i), w(i) and z(i) are obtained from the
X(i)

aX
k+1|k

vector and X(i)

a
VPT
k+1|k

are the elements of the propagated sigma point representing

the total pressure measurement noise.
The expected measurement Ŷk+1 is composed of the expected measurements ob-

tained from each sensor. This is

Ŷ(i)
k+1 = [Y(IMU,i)T

k , Y
(AoA,i)

k , Y
(Ps,i)

k , Y
(PT ,i)

k ]T i = 0, ..., 2na (4.56)

Ŷk+1 =
2na∑
i=0

WmiY
(i)
k+1 (4.57)

where Ŷk+1 is the estimated measurement of the sensors. The measurement covariance
is calculated by

Syyk+1 =
2na∑
i=0

Wci [Ŷk+1 −Y(i)
k+1][Ŷk+1 −Y(i)

k+1]T (4.58)
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The cross covariance between the estimated state and measurement estimate is calcu-
lated

Sxyk+1 =
2na∑
i=0

Wci [X̂k+1|k −X(i)
aX̂

k+1|k
][Ŷk+1 −Y(i)

k+1]T (4.59)

where Sxyk+1 and Syyk+1 are the measured state and innovation covariances respectively.
The Kalman Gain K is calculated as

K = Sxyk+1S
−1
yyk+1

(4.60)

The state-estimate X̂k+1|k+1 and error covariance Sxxk+1|k+1 are updated using Kalman
gain K. The measurement innovation is

ϵ = Yk − Ŷk+1 (4.61)

where Yk is the measurement obtained from the sensor. The state-estimate is updated

X̂k+1|k+1,yk
= X̂k+1|k +Kϵ (4.62)

The error covariance is updated

Sxxk+1|k+1,yk
= Sxxk+1 +KSyyk+1K

T (4.63)

The updated state-estimate X̂k+1|k+1 obtained from the UKF algorithm is provided to
the autopilot.

4.3 Simulation

The sensors are added to the flight model and tested by simulating a series of common
flight scenarios as presented in the previous chapter. The Navion SixDoF flight model
is assumed to have 3 Pitot-static, 2 Angle-of-attack and an Inertial Measurement Unit.
Noisy sensor data is generated by simulation. The Augmented Unscented Kalman
Filter is used filter the noise and provide a state-estimate to the autopilot. Figure 4.6
illustrates simulation flow diagram where X̂0 is the initial state estimate of the aircraft,
X0 is the initial state of the aircraft, C = [ψc, zc]T is the control input to the autopilot
and ηk+1 are the controls from the autopilot to the aircraft.

The four common flight scenarios are simulated with aircraft’s initial conditions of
an altitude of 5000 ft (1524m), heading 000◦ and speed of 150 knots(77.2ms−1). The
simulation is initialised with the following parameters:

• True state of aircraft X0 = [0, 77.2, 0, 1524,01×14]T

• Aircraft controls at trimmed state η = [0, −2.3◦, 0, 3600N ]T
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Figure 4.6: Simulation Flow diagram

• Initial aircraft estimate X̂0: initialised by three sets of measurements obtained
from the Pitot-static, Angle-of-Attack and Inertial Measurement Unit sensors.

• Inertial Measurement Unit [107]

VIMU ∼ N (0, σ2
IMU)

σ2
IMU =



0.22 0 0 0 0 0

0 0.22 0 0 0 0

0 0 0.22 0 0 0

0 0 0 0.012 0 0

0 0 0 0 0.012 0

0 0 0 0 0 0.012


(4.64)

• Angle of attack sensor [108]

Vα ∼ N (0, 0.25◦)

• Pitot-static sensor [75]

VPs ∼ N (0, 0.1)

VPT
∼ N (0, 0.1)

b = 0.01

• Process noise parameters
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σax = 0.1686

σay = 0.175

σq̇ = 0.0321

σaz = 0.1686

σṗ = 0.0683

σṙ = 0.0026

4.3.1 Level flight

Figure 4.7 shows the altitude and heading of the aircraft during the level flight test.
The aircraft maintains an altitude of 5000ft (1524m) (as shown in Figure 4.7a) and a
heading of 0◦ as expected (as shown in Figure 4.7b).
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Figure 4.7: Altitude and Heading during level flight

4.3.2 Climbing flight

Figure 4.8 shows the altitude and heading of the aircraft during the climbing flight test.
The aircraft climbs to and maintains an altitude of 6000ft (1828.8m) as expected (as
shown in Figure 4.8a). The aircraft maintains a heading of 0◦ as expected (as shown
in Figure 4.8b).
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Figure 4.8: Altitude and Heading during climbing flight

4.3.3 Descending flight

Figure 4.9 shows the altitude and heading of the aircraft during the descending flight
test. The aircraft descends to and maintains an altitude of 4000ft (1219.2m) as expected
(as shown in Figure 4.9a). The aircraft maintains a heading of 0◦ as expected (as shown
in Figure 4.9b).
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Figure 4.9: Altitude and Heading during Descending flight
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4.3.4 Turning flight

Figure 4.10 shows the altitude and heading of the aircraft during the turning flight test.
The aircraft maintains an altitude of 5000ft (1524m) (as shown in Figure 4.10a) and
turns towards a heading of 090◦ as expected (as shown in Figure 4.10b).
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Figure 4.10: Altitude and Heading during turning flight

During the four test scenarios the aircraft is able to successfully reach and maintain
the desired flight conditions as specified by the autopilot.

4.4 Summary

This chapter has defined sensor models that simulate noisy measurements based on the
Navion flight model developed in the previous chapter. The noisy measurements are
filtered using the Augmented Unscented Kalman Filter to maintain an accurate state-
estimate of the aircraft. The state-estimate of the aircraft is input into the autopilot
and a series of common flight scenarios are demonstrated successfully. A Six-Degrees-
of-Freedom flight model for a Navion aircraft with sensors and an Autopilot has been
developed to be used as a test bed.
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Chapter 5

Sensor Fault Detection

The ability to maintain accurate awareness of the current state of the aircraft and
its immediate environment is a crucial requirement for Unmanned Aircraft Systems
(UAS). This awareness is dependent on data obtained from sensors on-board the UAS.
Faulty sensor data leads to a false sense of awareness of the state of the aircraft and
this causes incorrect actions to be commanded. This leads to a failure in accomplishing
the mission, or worse results in the loss of the aircraft which could cause collateral
damage. The absence of flight crew on-board UAS requires a robust fault detection
system, since there can be no manual override on-board the aircraft.

A popular fault detection method is the use of stochastic state estimation methods
where the innovation is used as residual for fault detection [73]. Initial fault detection
and isolation using the innovation from the Kalman Filter was proposed by Mehra and
Peschon [109], where faults were detected by statistical testing of the mean and co-
variance. For example, in normal (fault-free) conditions, the innovation of the Kalman
Filter is expected to be white noise with zero-mean and known covariance [73,109].

The Multiple Model Adaptive Estimation (MMAE) is an extension of this approach
where a bank of Kalman filters are run in parallel and each filter represents a hypothesis
for the behaviour of the system being estimated [72]. Each filter is based on the
expected behaviour of the system when a fault has occurred or has not occurred. The
measurement obtained from a sensor is used to determine the innovation for each filter.
The innovations of each of the filters are used to determine the probabilities that each
model matches the current state of the system. This is modelled on a particular type of
fault and is used to deduce whether a particular fault has occurred and the confidence
for that fault is the probability determined for the model. The overall state-estimate
of the system is the weighted sum of the estimates output by each filter in the bank.
The weights are proportional to the filter probability [79]. Each filter is initialised
and re-initialised using its own estimate and each filter is running independently and
there is no interaction between filters. This approach has been found to be suitable
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for fault detection problems with unknown structure or parameter [79]. But this is not
suitable for FDD scenarios where the system structure or parameter changes. The lack
of interaction between the models causes faults to be miss-identified and/or false alarms
due to degradation of the state-estimate [79]. This problem is addressed by allowing
interaction between the models. In its simplest form, each model is re-initialised at
every time-step by the overall state-estimate obtained from the previous iteration [79].
This is known as the Generalized Pseudo Bayes-1 [110]. A more complex form of this is
the Interacting Multiple Model (IMM) that ‘switches’ between models in a probabilistic
manner [79]. The ‘switching’ feature preserves the accuracy of the estimate since the
filter switches to the model that best represents the current state of the system due to
the change in system structure and/or parameter changes.

For nonlinear problems the Kalman Filter is known to be non-optimal and the
EKF and UKF have been used instead. For example, Cork and Walker have imple-
mented a fault detection method for detecting IMU faults on-board an aircraft using
an IMM [111]. The nonlinear dynamics of the aircraft were estimated using a bank of
UKFs. The filters represent the behaviour of different combinations of IMU failures.
To clarify, an IMU consists of six sensors (three accelerometers and three gyroscopes
as described in chapter 4). There are 26 different combinations of sensor faults. This is
modelled by a combination of 64 parallel UKF filters that represent the hypotheses of
the combination of different failures. The increased number of sensors incurs increased
computational load to model all possible failures [111]. If additional sensors are in-
cluded, such as the Angle-of-Attack and Pitot-static sensors considered in the previous
chapter, this will result in increased computational load due to the increased number
of filters (28 = 256).

Another approach is to evaluate the hypothesis of each sensor in sequence. This
reduces the number of models required for detecting multiple sensor faults. For situ-
ations where the hypotheses for a large number of sensors is required; particle filters
are suitable to evaluate the sensor hypotheses in parallel. Cheng Qi et al. present
a distributed fault detection method using particle filters based on state estimation
theory for multiple sensor platforms [112]. Each detector for each sensor makes a local
decision for the individual sensor. Each sensor on the platform evaluates a hypothesis
based on its observations to determine the likelihood that it is operating in normal or
faulty mode. The local decision obtained from each detector attached to the sensor is
passed to the global decision centre, where all decisions are fused to carry out a global
decision.

Liu et al. have proposed multiple sensor fault detection for surveillance in Air
Traffic Control using hybrid estimation algorithms [113]. The two types of sensors
are considered in this work are Automatic Dependent Surveillance - Broadcast (ADS-
B) [49] and Multilateration [114,115]. Multilateration is a form of navigation that uses
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radio beacons to determine the position of the aircraft based on the time difference
of arrival (TDOA). Successful implementation of Multilateration are LORAN [116]
and OMEGA [113]. Both ADS-B and Multilateration sensors in reference [113] have
an estimation algorithm running in parallel, the estimate obtained from each sensor
is fused together using a hybrid algorithm inspired by the IMM algorithm [93]. The
proposed algorithm was tested with a linearised aircraft model in common flight modes.
These modes are: coordinated turn, constant velocity and constant descent. This
method’s feature of running estimation algorithms in parallel might not be feasible for
an increased number of sensors because this will increase the amount of time required
to update the state-estimate.

Here, an approach is adopted where each sensor’s data is considered in sequence
using a Generalized Pseudo Bayes-1 (GPB-1) method which consider the hypotheses
for each sensor in sequence. This approach is likely to reduce the accuracy relative
to an IMM, but the use of a GPB-1 offers a compromise between performance and
computational expense [93].

This chapter begins by defining the fault simulation model for each sensor on-board
the Navion aircraft model mentioned in chapter 4. A multiple sensor fault detection
method using Generalized Pseudo Bayes-1 (GPB-1) is proposed which updates the
state-estimate of the aircraft with measurements obtained from each sensor sequentially
in section 5.2. The fault detection method is tested by simulating a series of common
flight modes in section 5.3. The accuracy and time taken to update the state-estimate is
compared with a parallel implementation of the GPB-1 multiple sensor fault detection
method in section 5.4.

5.1 Sensor Fault simulation

5.1.1 Inertial Measurement Unit

The fault mode of this sensor is simulated by zeroing the acceleration and rotational
rates of the sensor and adding extra noise as shown in [111]. This is a standard form
of fault simulation.

Y
(IMU∗)

k = VIMU∗ (5.1)

This represents the IMU measuring ax = ay = az = p = q = r = 0 and VIMU∗ >> VIMU.
The ‘*’ symbol indicates the faulty sensor measurements.

5.1.2 Angle-of-Attack

This sensor is susceptible to faults such as freezing due to adverse weather conditions.
One fault mode is where the sensor is frozen. In this mode, the vane will be in a stuck
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position despite a change in the Angle-of-Attack of the aircraft. This type of fault is
simulated as

Y
(α∗)

k = αF + Vα∗ (5.2)

where αF is the expected value of the Angle-of-Attack α (chapter 4) when the fault
event occurs and Vα∗ >> Vα. Another fault mode is when the sensor is partially frozen.
This affects the angular rate of rotation of the vane by a delay. This type of fault can
be simulated using

Y
(α∗)

k = αk−1 + ∆t
c

(αk − αk−1) + Vα∗ (5.3)

where c is a delay constant and ∆t is the period of the time step between consecutive
states. This fault replicates a delay effect due to partial freezing.

5.1.3 Pitot-static Sensor

This sensor is susceptible to blockages caused by debris and ice during operations in
adverse weather conditions. Such blockages causes the sensor to output faulty mea-
surements. The data output from a system with a blocked pitot inlet is an abrupt
increase or decrease in pressure due to the blockage.

Y
(PT ∗)

k = PT + VPT ∗ + b (5.4)

Y
(Ps∗)

k = Ps + VPs∗ + b (5.5)

where b is the bias [75]. A partially blocked pitot inlet and a static source will show
gradual variations in speed, it is simulated using the equation

Y
(PT ∼)

k = PT + VPT ∗ + b sin(2πft) (5.6)

Y
(Ps∼)

k = Ps + VPs∗ + b sin(2πft) (5.7)

where f is the frequency of the time-varying effect in the partial fault mode. This
replicates the effect of water and ice crystals partially blocking the pitot tube within
the sensors and is based on reference [75]. VPT ∗ >> VPT

and VPs∗ >> VPs
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Table 5.1: Simulated Sensor Faults

Event Sensor Sensor Fault Fault Start

ID i index j type type e equation(s) Time (s) ts

1 1 Pitot Partial Block 5.6,5.7 1

2 4 AoA Partial Block 5.3 1.5

3 2 Pitot Partial Block 5.6,5.7 1.5

4 5 AoA Partial Block 5.3 2.5

5 3 Pitot Partial Block 5.6,5.7 3

6 1 Pitot Block 5.4,5.5 2

7 4 AoA Block 5.3 3

8 2 Pitot Block 5.4,5.5 2.5

9 5 AoA Block 5.3 3.5

10 3 Pitot Block 5.4,5.5 4

11 6 IMU fault 5.1 12

5.1.4 Faulty sensor test scenarios

The problem of faulty sensor data misleading the aircraft’s autopilot is demonstrated
by simulating the sensor faults shown in Table 5.1. The faults are simulated during the
four common (Level, Climbing, Descending and Turning) flight modes demonstrated
in the previous chapters using the Navion SixDoF simulation.

Figure 5.1 shows the altitude of the aircraft (AC1) during the four common flight
scenarios. Figure 5.1(e) shows the heading during the turning flight scenario. The
vertical red lines represents the instant that a sensor fault occurs and corresponds
to the faults in Table 5.1. In all four scenarios the aircraft is unable to achieve the
autopilot’s target state. This is because faulty sensor data corrupt the state-estimate
of the aircraft.

5.2 Multiple sensor fault detection using sequential UKF

Generalized Pseudo Bayes-1

To prevent the state-estimate from being corrupted, the hypotheses that the sensor is
operating normally or faulty must be verified from a series of measurements obtained
from the sensor. The Generalized Pseudo Bayes-1 approach to detect a faulty sensor is
to calculate the likelihood that the measurement is normal (fault-free) L and the like-
lihood that it is faulty L(∗) and update the state-estimate according to the proportion
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(b) Ascending Flight
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(c) Descending Flight
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(d) Turning Flight
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Figure 5.1: The effect of sensor faults on the altitude of the aircraft during the four common

flight modes: Level flight, Ascending flight, Descending flight and Turning flight.
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Figure 5.2: Flow diagram for UKF-GPB-1 multiple sensor fault detection evaluating hypotheses

sequentially
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of the likelihoods [117].
Figure 5.2 shows a flow diagram for the UKF-GPB-1 sequential multiple sensor fault

detection process that is used to preserve the accuracy of state-estimate of the aircraft.
The process begins with the ‘UKF Predict’ stage, where the current state-estimate
X̂k+1 and error covariance Sk+1 are time updated to X̂k+1|k and Sxxk+1|k respectively
as defined by equation (4.49) in the previous chapter. The measurement update stage
consists of two update models – one represents the hypothesis that the sensor is oper-
ating normally and is shown as ‘UKF-Update: Normal Mode’ the other represents the
hypothesis that it is faulty and is shown as ‘UKF-Update: Faulty Mode’. Both models
update the state-estimate and error covariance with the measurement obtained from
the sensor. The state-estimate and error covariance output from the normal model is
X̂(j)

k+1|k+1, and S(j)
xxk+1 respectively. The state-estimate and error covariance output from

the faulty model is X̂(j∗)
k+1|k+1 and S

(j∗)
xxk+1 respectively. The estimates and covariances

from both models are fused proportional to the likelihood that the sensor is operating
normally or faulty. The likelihood is determined by evaluating the probability density
of the sensor measurement within a Gaussian approximated probability distribution
defined by the estimated measurement and measurement covariance determined during
the update stage. The likelihood L(j) for ‘UKF-Update: Normal Mode’ is determined
by

L(j) = p(Y(j)
k |Ŷ

(j)
k+1, S

(j)
yyk+1

) (5.8)

where Y(j)
k is the measurement obtained from the jth sensor. The estimated measure-

ment is Ŷ(j)
k+1 and the measurement covariance S(j)

yyk+1 is calculated during the normal
sensor update model by using equations (4.57) and (4.58) respectively. The likelihood
L(j∗) for ’UKF-Update: Faulty Mode’ is determined

L(j∗) = p(Y(j)
k |Ŷ

(j∗)
k+1, S

(j∗)
yyk+1

) (5.9)

where Ŷ(j∗)
k+1 and S

(j∗)
yyk+1 are the estimated measurement and measurement covariance

calculated during the faulty sensor update by equations (4.57) and (4.58) respectively.
The likelihoods are normalised

L̂(j) = L(j)

L(j) + L(j∗) (5.10)

L̂(j∗) = L(j∗)

L(j) + L(j∗) (5.11)

The normalised likelihoods are used to indicate whether the sensor that provided the
measurement Y(j) is normal or faulty. When L̂(j) > L̂(j∗) the sensor is operating
normally and when L̂(j∗) > L̂(j) the sensor is faulty [73]. In practice, when L̂(j∗) > 0
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this indicates a faulty sensor. The state-estimate and error covariance obtained from
both models are fused

X̂k+1|k+1 = aL̂(j)X̂(j)
k+1|k+1 + (1− a)L̂(j∗)X̂(j∗)

k+1|k+1 (5.12)

D1 = [X̂(j)
k+1|k+1 − X̂k+1|k+1][X̂(j)

k+1|k+1 − X̂k+1|k+1]T (5.13)

D2 = [X̂(j∗)
k+1|k+1 − X̂k+1|k+1][X̂(j∗)

k+1|k+1 − X̂k+1|k+1]T (5.14)

Sxxk+1 = L̂(j)S(j)
xxk+1

D1 + L̂(j∗)S(j∗)
xxk+1

D2 (5.15)

where a is the probability that the sensor is functioning normally – this has to be
estimated empirically by the sensor manufacturer through rigorous testing [80].

The difference between the normal and faulty update models is the measurement
covariance R. The faulty sensor UKF model is assumed to have a significantly larger
measurement covariance R∗ than the measurement covariance used in the normal UKF
(R∗ >> R). This is to detect the erratic and inconsistent nature of faulty sensor
measurements that have a large variance. This can be observed in the black box data
recovered from the AF477 crash – that shows large abrupt variations in airspeed prior
to the crash [4]. This update process is repeated for each sensor until the nth sensor
has been reached as shown in Figure 5.2.

5.3 Results

The UKF-GPB-1 fault detection method is tested for the same flight scenarios with the
same faults as the previous section. The aircraft without fault detection is designated
AC1 and the aircraft with the GPB-1 sensor fault detector is designated AC2.

5.3.1 Level Flight

Figure 5.3 shows the altitude of both aircraft during the level flight scenario. AC2
compared to AC1 loses altitude at a lower rate after all the sensors have failed. The
GPB-1 fault detection method is able to detect the likelihood of faults and preserve
the accuracy of the state-estimate.

Figure 5.4 are fault likelihood plots for each sensor on the aircraft during the level
flight scenario. The fault likelihood plots are used to detect the occurrence of a fault
within a sensor. The sensor’s normalised likelihoods for normal mode L̂(j) and faulty
mode L̂(j∗) are plotted as blue and red lines respectively. This is used to indicate if a
fault has been detected in the sensor. A fault is detected when the red line increases
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Figure 5.3: Altitude of aircraft using UKF-GPB-1 sensor fault detection during level flight

scenario.
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Figure 5.4: Fault likelihood for sensors during Level Flight
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and the blue line decreases. A series of black markers at 0.5 have been plotted to
indicate the period when the sensor is producing faulty measurements. The vertical
red lines mark the instant a sensor fault event begins as mentioned in Table 5.1.

The fault likelihood plots for the pitot sensors shown in Figures 5.4(a), 5.4(b)
and 5.4(c) indicate that the faults are detected promptly. This is because of the nature
of the fault encountered – a partially blocked or blocked pitot-static shows an abrupt
offset from the expected measurement of a sensor operating normally. This is detected
as an outlier of the innovation distribution.

In contrast the fault likelihood plots for the AoA sensors shown in Figures 5.4(d)
and 5.4(e) indicate that the AoA faults take time to be detected. This is because the
expected AoA measurement is near constant and doesn’t change very much during the
course of the flight. This is similar to the output of a frozen or partially frozen sensor.
It takes time for the faulty sensor measurements to accumulate for it to be detected as
an outlier of the innovation distribution. The abrupt fluctuations between faulty and
normal are due to the measurements being close to the faulty and normal estimated
sensor measurement distribution, where as time increases some measurements are close
to both distributions. Similarly, the fault likelihood for the IMU sensor shown in
Figure 5.4(f) takes time to be detected since the expected rotational rates (p, q, r) and
accelerations (ax, ay, az) during level flight are close to zero. This coincides with the
nature of the fault encountered.

5.3.2 Climbing flight

The climbing flight scenario shows the altitude of both aircraft, climbing at approxi-
mately the same rate. AC1 has a brief increase in the climb rate due to the increased
error in the state-estimate after the IMU fault event. The final trajectory of AC1 shows
the beginning of a descent. In comparison, AC2 shows a slight reduction in the climb
rate.

The sensor fault likelihood plots in figure 5.6 shows that all faults are detected for
AC2 within the duration that each sensor is faulty. The fault likelihood plots for pitot
sensors 2 and 3 shown in Figures 5.6(b) and 5.6(c) respectively, indicate a false alarm
at t = 1 which coincides with true detection for sensor 1. This is because the aircraft is
in transient mode as the aircraft enters the climb. The abrupt change in speed caused
an abrupt change in total pressure, resulting in a false alarm.

The fault likelihood plots for AoA Sensors 4 and 5 (AoA) shown in Figures 5.6(d)
and Figures 5.6(e) respectively takes time to indicate a fault, this is due to similar
reasons as noted in level flight scenario where the AoA is near constant. The fault
likelihood plots for the IMU sensor are detected instantaneously since the expected
accelerations and rotation rates are near zero. The measurements obtained from the
IMU are close to normal and faulty mode distributions where some of the fault ob-
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Figure 5.5: Altitude of aircraft using UKF-GPB-1 sensor fault detection during climbing flight

scenario.
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Figure 5.6: Fault likelihood for sensors during Climbing Flight
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Figure 5.7: Altitude of aircraft using UKF-GPB-1 sensor fault detection during descending

flight scenario.

servations coincide with the expected normal sensor observations these cause abrupt
changes between normal and faulty detections.

5.3.3 Descending flight

The descending flight scenario shows both AC1 and AC2 descending to the target
altitude as shown in Figure 5.7. AC1 continues to descend below the target altitude,
whereas AC2 is able to descend and maintain the target altitude. The sensor fault
detection shown in Figure 5.8 is similar to previous scenarios, where the pitot and IMU
sensor fault detection is instantaneous and the AoA sensor takes time to detect the
fault. This is to be expected, for the same reasons as the previous scenario.

5.3.4 Turning flight

The turning flight scenario shows AC1 is unable to maintain altitude during the right
turn, whereas AC2 maintains level flight during the turn. Furthermore, Figure 5.9
shows AC1 making an abrupt change in heading which is not the same as the target
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Figure 5.8: Fault likelihood for sensors during descending Flight
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Figure 5.9: Altitude of aircraft using UKF-GPB-1 sensor fault detection during turning flight

scenario.

heading. AC2’s change in heading is constant and on course to the target heading.
The sensor fault detection during this scenario is shown in Figure 5.10. The pitot

sensor fault detection is instantaneous for the same reasons as explained in the level
flight scenario. The AoA sensor fault takes time to be detected, as seen in the previous
scenario. However, the AoA has fewer fluctuations than in the previous scenarios. This
is because the AoA is changing during the turn due to the change in speed. The faulty
observations obtained as time increases is closer to the faulty sensor distribution and
further from the normal expected sensor distribution. As time increases the number of
fluctuations reduce. The IMU sensor faults are detected instantaneously and has fewer
fluctuations than the previous scenarios this is expected since the expected accelerations
and rotations during a turn is non-zero. The faulty sensor observations are zero mean
and are closer to the fault distribution and further from the expected distribution for
normal sensor. This increases the fault likelihood (L̂(IMU∗) >> L̂(IMU)) indicating a
fault.

5.4 Multiple sensor fault detection using parallel UKF

Generalized Pseudo Bayes-1

The previous section implemented a UKF-GPB-1 fault detection method by evaluating
the hypotheses for each sensor sequentially. This section compares the accuracy of the
state-estimate and time taken to update the state-estimate with sensor measurements
when the hypotheses are evaluated in parallel as shown in Figure 5.11. Each hypothesis
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(d) Turning Flight
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Figure 5.10: Fault likelihood for sensors during turning flight
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Figure 5.11: Flow diagram for UKF-GPB-1 multiple sensor fault detection using parallel hy-

potheses
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Table 5.2: Parallel GPB-1 fault detection hypothesis for n sensors

H(1) H(2) . . . H(2n)

S(1) 0 1 . . . 1

S(2) 0 0 . . . 1
...

...
... . . .

...

S(n) 0 0 . . . 1

Table 5.3: Filter comparison

Filter-1 (Input to Autopilot) Filter-2

Parallel Parallel

Parallel Sequential

Sequential Sequential

Sequential Parallel

consists of a combination of multiple sensors in normal or faulty mode. Given n sensors
there are 2n combinations of hypotheses to be evaluated. Table 5.2 shows the general
form of the permutations for example hypothesis H(2) assumes sensor S(1) is the only
sensor that is faulty.

The simulation is modified to compare the accuracy and time taken to update
the state-estimate using both sequential and parallel implementations. Both imple-
mentations are executed within the same loop as shown in Figure 5.12. The outputs
of Filter-1 and Filter-2 are X̂(1)

k+1 and X̂
(2)
k+1 respectively. The output of Filter-1 is the

state-estimate used for the autopilot. The time taken to update the UKF state-estimate
using the parallel and sequential implementation at each time-step throughout the du-
ration of the simulation is shown in Figure 5.13. The sequential implementation is
approximately 37 times faster than the parallel implementation. This is as expected
since the sequential implementation executes 2n hypotheses where as the parallel im-
plementation executes 2n hypotheses; a significantly larger number of hypotheses than
the sequential implementation.

The accuracy of a state-estimator is determined by evaluating Root-Mean-Square-
Error (RMSE) metric between the true state of the aircraft and the state-estimate

80



Figure 5.12: Simulation flow diagram for sequential and parallel GPB-1
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Figure 5.14: RMSE of parallel and sequential implementation of GPB-1 sensor fault detection

obtained from the estimator. In the above scenarios, the true state of the aircraft is
influenced by the estimator since the state-estimate is input to the autopilot and the
autopilot controls the actions of the aircraft that affects the true state of the aircraft.
A comparison of accuracy for both methods requires a common true state. This is done
by executing the combination shown in Table 5.3. Row 1 is compared with row 2 and
row 3 is compared with row 4 since they share the aircraft’s true state information.

Figure 5.14 shows the accuracy of using the parallel UKF-GPB-1 and sequential
UKF-GPB-1 by determining the RMSE between the true state of the aircraft and the
state-estimates generated by the parallel UKF-GPB-1 and the sequential UKF-GPB-1.

RMSE =

√√√√ 1
k

( ∑
X− X̂

)2
(5.16)

Prior to conducting this research, the parallel UKF-GPB-1 was expected to outper-
form the sequential UKF-GPB-1 in terms of accuracy. It was anticipated that one of
the combinations of models used in the parallel UKF-GPB-1 would match the true state
and there would be less corruption of the estimates than the sequential UKF-GPB-1.

83



0 5 10 15 20 25

time (s)

0

0.5

1

1.5

2

R
M

S
E

RMSE for combination of parallel and sequential UKF update - 3 sensors - 100 realisations

parallel parallel
parallel sequential
sequential sequential
sequential parallel
fault event

Figure 5.15: RMSE of Parallel and Sequential UKF-GPB-1 sensor fault detection for 100

realisations

84



However, Figure 5.14 shows that this is not the case and the sequential implementation
is more accurate (as well as faster – see Figure 5.13). To understand why this comes
about, it is helpful to note that the error-statistics are deliberately mis-modelled. The
errors associated with a fault (as described in section 5.1) are, in reality and in the
simulation, correlated over time but the correlation is relatively small. The fault mode
in the UKF-GPB-1 filters assumes that the errors associated with a fault are uncor-
related and independent over time but relatively large. Theoretically, a model could
be used to represent every type of faults for estimating the biases present within ev-
ery sensor, but this is not practical to implement since it would require defining every
single fault that could occur to within a sensor which is not feasible. This intentional
mis-modelling has a detrimental effect on the parallel UKF-GPB-1’s accuracy relative
to that of the sequential UKF-GPB-1. This comes about because the sequential UKF-
GPB-1 is better able to interpolate between the faulty and normal models. In contrast,
the parallel UKF-GPB-1 makes a stronger implicit assumption that one of the combi-
nations of sensors is faulty and that those faulty sensors are generating errors that are
independent (over time) and large. This is not the case, since at some instances during
the simulation some of the sensors in the combination is faulty not all of them.

5.5 Summary

This chapter has developed and demonstrated a Multiple Sensor Fault detector using
Unscented Kalman Filter Generalized Pseudo Bayes-1 (GPB-1) that evaluates each
sensors hypotheses sequentially. The filter successfully detects multiple sensor faults
during a series of common flight scenarios. The sequential implementation of GPB-1
updates the state-estimate faster and maintains a more accurate state-estimate than
the parallel implementation of GPB-1.
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Chapter 6

Rare Event simulation

Collision Avoidance is an essential safety feature required for Unmanned Aircraft Sys-
tems to operate alongside manned aircraft within non-segregated airspace. The Col-
lision Avoidance capability consists of two functions known as Conflict Detection and
Resolution (CD&R). The Cooperative CD&R scenario assumes that the current state
and future intent is shared between traffic and any conflict encountered is resolved
cooperatively. In contrast, non-cooperative scenarios assume that no information is
shared between traffic. Instead, such information is deduced or inferred from mea-
surements of the non-cooperative traffic obtained from the sensors on-board the UAS.
However, the measurements obtained from sensors are inherently noisy, which give rise
to uncertainties in the observed state and predicted motion of non-cooperative traffic.
In an environment where future trajectories are uncertain, the probability of conflict
(Pc) is an essential metric since it serves as an indicator for Conflict Detection in a
non-cooperative environment. The accuracy of the metric is important since the per-
formance of the Resolution stage of the Collision Avoidance system is dependent on the
accuracy of the Conflict Detection stage.

Fortunately, conflicts between air traffic are typically low. However, despite the low
probability, the catastrophic outcome of a collision makes it essential to estimate the
probability of conflict accurately. Estimating low probabilities of conflict accurately
using Direct Monte Carlo method requires a large number of samples which leads to
large computational load. A rare event simulation method called Subset Simulation is
explored to be applied to the problem of estimating low probabilities.

Subset Simulation is a Rare Event simulation method that was proposed by Au and
Beck in 2001 [118]. The method calculates the probability of rare events occurring as the
product of the probabilities of less-rare events. Such an approach is less computation-
ally expensive than ‘brute force’ Direct Monte Carlo. The Subset Simulation method
has mostly been used for applications in Civil Engineering discipline. It was initially
used to estimate small probabilities of failure PF in structures due to seismic risk [119].
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Specifically, Reliability sensitivity analysis is a requirement within Civil Engineering
that relies on Monte Carlo methods to address the problem of estimating probabili-
ties where uncertainties exist. Subset Simulation has been applied to the problem of
estimating low failure probability as product of larger probabilities [120, 121]. Com-
posite system reliability has been estimated using Subset Simulation in reference [122].
Bourinet et al. use the Subset Simulation method from the perspective of Support
Vector Machine Classification to estimate the probability associated with structural
reliability [123].

A general outline of the Subset Simulation method is presented in this chapter
and the interested reader is referred to [124] for more details. The Subset Simulation
method uses a combination of the Direct Monte Carlo and the Metropolis Hastings
methods, a description of these methods are presented in sections 6.1 and 6.2 respec-
tively. Section 6.3 describes the Subset Simulation method. The algorithms mentioned
in this chapter are presented in Appendix A.

6.1 Direct Monte Carlo

The Direct Monte Carlo (DMC) method is a sampling method that can be used to
characterise a distribution of interest [125]. The objective of this section is to estimate
the probability of a type of event to occur. Therefore, the DMC method is used as a
‘statistical averaging’ tool, where the probability of failure PF is estimated as the ratio
of failure responses to the total number of trials [124].

A set of N independent identically distributed (i.i.d) inputs {Xn : n = 1, ..., N}
are drawn from the proposal distribution q(X|µ, σ2) of the input parameter space.
The proposal distribution can be any known distribution that can be used to generate
samples. A Normal distribution that is centred at the mean µ and has a variance of
σ2. A set of system responses are observed {Yn = hr(Xn) : n = 1, ..., N}, where hr(...)
is the system process. The occurrence of a failure event F is indicated when a scalar
quantity bF (threshold) is exceeded. The number of samples that exceed the threshold
is YF . Therefore the probability of failure is estimated as PF = P (Y ≥ bF ) = YF

N . Such
an approach is suitable for large probabilities (such as P > 0.1) where a small number
of samples can be used to estimate the probability. However for small probabilities
(such as the tail region of the pdf, where P ≤ 10−3) a large number of samples must
be drawn to estimate the probability accurately. This is illustrated by the following
example.

6.1.1 Estimating probability of drawing samples from region F

Figure 6.1 shows a 10× 10 square centred at O = [0, 0]T . The region F is a circle with
radius rc = 1, centred at C = [3,−3]T within this square. The objective is to estimate
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(a) Direct Monte Carlo with 100 samples
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(b) Direct Monte Carlo with 105 samples

Figure 6.1: The probability of drawing samples from the region F is estimated using Direct

Monte Carlo. Figure 6.1(a) estimates the PF = 0 with 100 samples. Figure 6.1(b) estimates

the PF = 1.5× 10−4 with 105 samples.

the probability of drawing samples from this region. The probability distribution of the
overall area is represented by a Gaussian distribution centred at O = [0, 0]T . A set of N
samples {Xn : n = 1, ..., N} are drawn where each sample is a vector; Xn = [xn, yn]T .
The x and y values of each sample are the x-coordinate and y-coordinates of the position
respectively. To clarify, X1 = [x1, x2]T where x1 ∼ N (0, 1) and y1 ∼ N (0, 1). The
distance between the position of each sample and centre of circle C is {Rn = H(Xn, C) :
n = 1, ...N} as defined by Algorithm 5. To clarify, the distance between sample X1

and C is R1 = H(X1, C). Algorithm 6 is used to estimate the probability of drawing
samples from the region F .

Figure 6.1(a) shows 100 samples drawn from the distribution. Note no samples are
drawn from the area F . The probability is estimated PF = 0. The number of samples
are increased to N = 105. Figure 6.1(b) shows some samples are drawn from the region
F and the probability is estimated PF = 1.5× 10−4 This illustrates that Direct Monte
Carlo requires a significantly large number of samples to estimate the probability of
drawing samples from the region F .

This method estimates PF by attempting to realise the entire pdf centred at O that
includes the area F. As the area F reduces the number of samples required to esti-
mate PF increases making such an approach computationally demanding. A different
algorithm is needed.
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6.2 Metropolis Hastings

Metropolis-Hastings (MH) is a Markov Chain Monte Carlo (MCMC) method used to
characterise a distribution of interest by sampling from a known distribution. This
distribution of interest is known as the target distribution. The MH algorithm origi-
nates from the Metropolis algorithm first used in statistical physics by Metropolis and
co-workers (Metropolis et al, 1953) [126]. Hastings proposed a generalised form of this
algorithm leading to the Metropolis Hastings (MH) algorithm [127].

The MH method generates samples from the proposal distribution q(X|x0, σ
2) by

starting from a seed value x0. A chain of n samples is then generated, starting with
x0. The sample xk+1 is generated from the current sample xk using the following
steps [124]:

1. Generate a candidate sample x∗ ∼ q(x∗|xk, σ
2).

2. Calculate an acceptance ratio: α = q(xk|x∗,σ2)f(x∗)
q(x∗|xk,σ2)f(xk)

3. Draw a sample e from a uniform distribution [0,1]

4. Set xk+1 =

 x∗ if e < α

xk otherwise

5. Repeat steps 1 to 4 until n samples have been generated.

The function f(...) defines the target density for the input sample. While, n→∞, this
process is guaranteed to accept samples from q that leads to the realisation of the target
distribution [128]. To help ensure that all regions of the target density are explored,
multiple seeds can be used to generate multiple chains of samples in parallel [124].

6.2.1 Drawing samples from the region F

The Metropolis Hastings method is defined in algorithm 7 and it is applied to the
example of estimating the probability of drawing samples from region F as shown in
the previous section. The covariance of the proposal σ2 is a 2× 2 identity matrix I2×2

and the covariance of the distribution of interest σ2
rc

= r2
c × I2×2 where rc is the radius

of the region F . For this example rc = 1, therefore σ2
rc

= I2×2.
Figure 6.2 illustrates the chains of samples generated by the Metropolis Hastings

algorithm. This Figure shows 10 samples drawn from the proposal distribution using
the DMC method. These samples are seeds s = {X1, ..., X10}. The MH algorithm is
applied using the seeds s. Each seed generates a chain of 10 samples. Note that many
sample chains do not reach the region F . It is clear that it might be more efficient to
generate more samples for chains with seeds that are closer to the region F since they
have higher likelihood of generating samples that are within the region F or closer to
the region F . Subset Simulation achieves this and is described in the next section.
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Figure 6.2: Drawing samples from the region F using Metropolis Hastings algorithm to generate

chains of conditional samples. The initial samples used as seeds are drawn using Direct Monte

Carlo.

6.3 Subset Simulation

Subset Simulation generates a Complimentary Cumulative Distribution Function (CCDF)
of the response quantity of interest Y . The probability of failure PF can be directly es-
timated from the CCDF. This CCDF is constructed by generating samples that satisfy
a series of intermediate thresholds b1 > b2 > b3 > ... > bm−1 that divide the space into
m nested regions. These thresholds are defined adaptively as the simulation progresses.
This is described later on in this section. The threshold bm−1 is the required failure
threshold bF (bm−1 = bF ). The intermediate thresholds allow the probability of failure
to be estimated using a classical conditional structure given by

PF = P (Y < bm−1|Y < bm−2)P (Y < bm−2) (6.1)

Samples are generated to satisfy the threshold for each level. The total number of
levels m is dependent on the magnitude of the target probability PF . Subset Simulation
uses ‘level probability’ p0 ∈ (0, 1) to control how quickly the simulation reaches the
target event of interest [124]. The target probability is used to approximate the number
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Level 0 Level i Level m− 1

P(0)
n B(0)

n X̃(0)
n P(i)

n B(i)
n X̃(i)

n ..... P(m−1)
n B(m−1)

n X̃(m−1)
n

P
(0)
1 B

(0)
1 X̃

(0)
1

...
...

...

P
(0)
N−Nc

B
(0)
N−Nc

X̃
(0)
N−Nc

P
(0)
N−Nc+1 B

(0)
N−Nc+1 X̃

(0)
N−Nc+1 P

(i)
1 B

(i)
1 X̃

(i)
1

...
...

...
...

...
...

P
(0)
N B

(0)
N X̃

(0)
N P

(i)
N−Nc

B
(i)
N−Nc

X̃
(i)
N−Nc

P
(i)
N−Nc+1 B

(i)
N−Nc+1 X̃

(i)
N−Nc+1 ..... P

(m−1)
1 B

(m−1)
1 X̃

(m−1)
1

...
...

... .....
...

...
...

P
(i)
N B

(i)
N X̃

(i)
N ..... P

(m−1)
N−Nc

B
(m−1)
N−Nc

X̃
(m−1)
N−Nc

..... P
(m−1)
N−Nc+1 B

(m−1)
N−Nc+1 X̃

(m−1)
N−Nc+1

...
...

...

P
(m−1)
N B

(m−1)
N X̃

(m−1)
N

Table 6.1: A table of samples, response values and probability intervals generated at various

levels during Subset Simulation.

of levels m required by evaluating PF = (p0)m. To clarify, if the target probability is
PF = 10−5 and p0 = 0.1 then the total number of levels required will be m = 5.

6.3.1 Level 0

Subset Simulation begins at level i = 0 with Direct Monte Carlo (DMC) sampling from
the entire region of interest. A set of N samples {X(0)

n : n = 1, ..., N} are drawn from
a proposal distribution q(X(0)

n |µ, σ2) (as described in section 6.1). The set of output
responses Y (0)

n are evaluated {Y (0)
n = hr(X(0)

n ) : n = 1, ..., N}. The function hr(...)
defines the system response to the input sample. In the context of SS, the responses
Y

(0)
n are also known as the quantity of interest. The set Y (0)

n is sorted in descending
order to create the set {B(0)

n : n = 1, ..., N}. The input samples X(0)
n are reordered

X̃
(0)
n and correspond to the sorted quantity of interest B(0)

n . To clarify, X̃(0)
1 is the

input sample that generates the largest output B(0)
1 . A CCDF is generated by plotting

B
(0)
n against the probability intervals P (0)

n . The probability intervals P (0)
n are generated

using the following equation:

P (i)
n = pi

0
N − n
N

n = 1......N (6.2)

The vector of probability intervals P (0)
n is concatenated with the sorted quantity of

interest B(0)
n and their respective samples X̃(0)

n as illustrated in Table 6.1 by the column
titled ‘Level 0’.

The set of probability intervals P (0)
n are plotted against B(0)

n to generate the CCDF.
Level 0 makes it possible to accurately approximate CCDF values from 1 − N−1 to
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Pn Bn X̃n
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1 B

(0)
1 X̃

(0)
1
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... Level 0

P
(0)
N−Nc

B
(0)
N−Nc

X̃
(0)
N−Nc

samples retained

P
(i)
1 B

(i)
1 X̃

(i)
1

...
...

... Level i

P
(i)
N−Nc

B
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N−Nc

X̃
(i)
N−Nc

samples retained
...

...
...

P
(m−1)
1 B

(m−1)
1 X̃

(m−1)
1

...
...

...

P
(m−1)
N−Nc

B
(m−1)
N−Nc

X̃
(m−1)
N−Nc

P
(m−1)
N−Nc+1 B

(m−1)
N−Nc+1 X̃

(m−1)
N−Nc+1

...
...

... Level m− 1

P
(m−1)
N B

(m−1)
N X̃

(m−1)
N samples retained

Table 6.2: The probabilities and response values of samples generated at various levels of sub-

set simulation are concatenated. Note that the seeds used generate samples at each level are

discarded and replaced with there respective conditional samples.
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p0. Typically the region of interest within the pdf is outside this range (since SS is
typically used to realise rare events). To explore probabilities below p0, further levels
of simulation must be conducted.

6.3.2 Level i > 0

The subsequent levels of SS where, i > 0 explore the rarer regions of the probability
distribution. This is achieved by generating multiple chains of conditional samples
using the MH method as discussed in the previous section. The number of chains and
number of samples per chain are Nc and Ns respectively. They are determined as

Nc = p0N (6.3)

Ns = p−1
0 (6.4)

Each level of subset simulation maintains N samples (N = NcNs). The response values
of conditional samples generated for the current level i must not exceed the intermediate
threshold bi for this level. This threshold is determined by

bi = B
(i−1)
N−Nc

i is the current subset level (6.5)

The intermediate threshold for level i = 1 is b1 = B
(0)
N−Nc

. To clarify the intermediate
threshold is the (N −Nc)th element of the sorted set of response values B(0)

n . The set
of seeds s(i)

j are used to generate samples for the current level i are samples generated
from the previous level (i− 1) are defined by

s
(i)
j = X̃(i−1)

n (6.6)

where 1 ≤ j ≤ Nc, (N −Nc + 1) ≤ n ≤ N and i > 0.
The set of seeds used to generate conditional samples for level i = 1 is s(1) =

{X̃(0)
N−Nc+1, ..., X̃

(0)
N }. The N conditional samples X(1)

n are generated using the MH
method. The quantities of interest for X(1)

n are determined {Y (1)
n = hr(X(1)

n ) : n =
1, ..., N} and are sorted in the same manner as the previous level B(1)

n . The set B(1)
n

and respective samples X̃(1)
n are concatenated with the probability intervals P (1)

n as illus-
trated in Table 6.1 by the column titled ‘Level i’. Note the samples {X̃(0)

N−Nc+1, ..., X̃
(0)
N }

shown in the column titled ‘Level 0’ are used as seeds to generate the conditional sam-
ples {X̃(i)

1 , ..., X̃
(i)
N } in column titled ‘Level i’.

This process is continued until the target level of probability (p0)m is reached at
level i = m − 1; as shown by the column titled ‘Level m − 1’. The samples used as
seeds to generate samples for the consecutive level are discarded and replaced with the
generated samples. This is illustrated in Table 6.2. The column of probability intervals
Pn are plotted against the respective quantities of interest Bn to generate a CCDF.
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This method is continued until the target level of probability PF = (p0)m is reached.
By generating and evaluating conditional samples, the output samples tend towards the
target distribution with significantly less trials than are needed when using the DMC
method. The progressive nature of the algorithm can be demonstrated in the example
problem of estimating the probability of drawing samples from the region F .

6.3.3 Estimating Probability of drawing samples from region F

The example of estimating the probability of drawing samples from the region F shown
in the previous sections is used to illustrate the Subset Simulation method (using algo-
rithm 9). The radius of the circle bounding the region F is rc = 1. The SS parameters
used for this example are: p0 = 0.1, N = 100, Ns = 10, Nc = 10, m = 2. Subset
Simulation is typically used to realise rare events (for PF ≤ 10−3 therefore m > 3).
However for the purpose of this example the number of levels is kept low (m = 2).

The simulation begins with level 0 Direct Monte Carlo where a set of N = 100
samples {X(0)

n : n = 1, ..., 100} are drawn from a Gaussian distribution centred at
O = [0, 0]T as shown in Figure 6.3(a). The quantity of interest {R(0)

n = H(X(0)
n , C) :

n = 1, ..., 100} is the distance between each sample X(0)
n and the centre of the circle

C = [3,−3]T (this is the equivalent of Y (0)
n used previously). This is determined by

process H(...) as defined by algorithm 5. If the condition R
(0)
n ≤ r

(0)
c is satisfied then

the nth sample X(0)
n is within the region F . This condition is used to determine if a

sample is within the region F . The quantity of interest R(0)
n is sorted in descending

order {B(0)
n : n = 1, ..., 100}. This is because the samples with the lowest distances

will be closest to the region F and have a higher likelihood of generating conditional
samples closer to or within the region F than other samples as the simulation progresses
to higher levels (i > 0). The input samples X(0)

n are reordered X̃
(0)
n and correspond to

the sorted quantity of interest B(0)
n ; to clarify, the distance between the sample X̃(0)

1

and C is B(0)
1 . The probability intervals P (0)

n are determined by equation (6.2). The
sorted quantity of interest B(0)

n and respective samples X̃(0)
n are concatenated with the

probability intervals P (0)
n as shown in the column titled ‘Level 0’ in Table 6.3a. The

CCDF shown in Figure 6.3(b) is generated by plotting the probability intervals P (0)
n

against B(0)
n . This CCDF shows that no samples have a distance less than the radius

rc therefore no samples have been drawn from the region F .
The SS method continues to the next level (i = 1) and generates N conditional

samples using the MH method. The conditional samples {X(1)
n : n = 1, ..., 100} are

generated from a set of seeds s(1)
j = {X̃(0)

91 , ..., X̃
(0)
100} that correspond to the sorted

distances {B(0)
n : n = 91, ..., 100} from the previous level 0. The intermediate threshold

b1 = B
(0)
90 determined by equation (6.5) is used to ensure the conditional samples

X
(1)
n generated by each seed satisfies the condition R

(1)
n ≤ b1. The respective sample

distances R(1)
n from C are less than or equal to the level 1 threshold b1. This is to enable
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(d) Subset Simulation Level 1 CCDF

Figure 6.3: Subset Simulation is applied to the problem of estimating the probability of drawing

samples from the region F . Subset Simulation begins with level 0 by drawing N = 100 sam-

ples from a Gaussian distribution centred at O = [0, 0] using the DMC method as shown in

Figure 6.3(a). The quantity of interest is the distance between each sample and C. These are

plotted against probability intervals to generate a CCDF as shown in Figure 6.3(b). No samples

are within the region F . The SS method proceeds to level 1 and conditional samples are gener-

ated using the MH method. The Nc level 0 samples are used to generate the conditional samples

shown in Figure 6.3(c). These conditional samples are drawn progressively closer to the region

F until some samples are drawn from the region F. This is achieved by drawing samples from

intermediate thresholds closer to the boundary of F . The quantity of interest for the samples

are determined and plotted against the probability intervals for the current level. This CCDF is

appended to the previous CCDF by replacing the samples used as seeds from the previous level

as shown in Figure 6.3(d).
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Table 6.3: Samples generated during both levels of Subset Simulation.

a progressive nature of drawing samples that are closer to the region F . The conditional
samples are generated using algorithm 8. This will eventually lead to samples being
drawn from the region F as SS proceeds to higher number of levels in the future. The
level 1 threshold is marked by the dotted arc in Figure 6.3(c). The figure shows chains
of samples that lead to the region F . The distances R(1)

n of samples X(1)
n generated in

level 1 are sorted in descending order {B(1)
n : n = 1, ..., 100}. The input samples X(1)

n are
reordered X̃

(1)
n and correspond to the sorted distances B(1)

n . The probability intervals
P

(1)
n are generated using equation (6.2) and concatenated with the sorted distances B(1)

n

and their corresponding samples X̃(1)
n . Table 6.3a illustrates the conditional samples

generated in level 1 using samples from level 0. The seeds used to generate samples
in level 1 are discarded and replaced with the generated level 1 samples as illustrated
in Table 6.3b. Note the probability intervals {P (0)

n : n = 91, ..., 100}, sorted distances
{B(1)

n : n = 91, ..., 100} and the corresponding input samples {X̃(1)
n : n = 91, ..., 100}

from level 0 that were used as seeds to generate the samples for level 1 are discarded and
replaced with level 1 samples X̃(1)

n and their respective distances B(1)
n and probability

intervals P (1)
n . This process is repeated until the maximum number of levels m is

reached. This is when i = m−1. Figure 6.3(d) shows the overall CCDF at level 1. The
overall CCDF is used to estimate the probability of drawing samples from the region
F as approximately PF = 0.02.

This example demonstrates the progressive nature of Subset Simulation when used
to generate conditional samples to realise the rare ‘tail’ region of the pdf. This feature
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of SS results in the empirical observation that SS requires significantly fewer samples
when compared to naive DMC to obtain estimates with the same accuracy. Subset
Simulation is useful for generating samples that progress to the distribution of interest.

6.4 Summary

This chapter has familiarised the reader with the Subset Simulation method and its
utility of estimating low probabilities as a product of larger probabilities. The Direct
Monte Carlo and Metropolis Hastings methods that the Subset Simulation method is
based on, has been explained.
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Chapter 7

Application of Subset Simulation

for Airborne Conflict detection

The estimation of the probability of conflict Pc between air traffic is a useful metric
for Conflict Detection & Resolution (CD&R) methods. Such methods can be used in
piloted aircraft but are useful for UAS where an automated method for CD&R will be
required as part of a Sense-and-Avoid system [44].

The safe operation of Unmanned Aircraft System alongside manned aircraft within
non-segregated airspace requires the ability to maintain safe separation between traf-
fic. Although a minimum threshold has not been defined by the International Civil
Aviation Organization (ICAO), Aviation Authorities and Regulatory Bodies implicitly
understand that a minimum threshold of 500 ft must be maintained in all directions.
A conflict event occurs when two or more aircraft collide or if there is a loss of this
separation between them within a block of airspace. The conflict type depends on the
geometry of the encounter between traffic, as defined in reference [20] (mentioned in
chapter 2). If a conflict is detected, the conflict type needs to be identified so that
the appropriate resolution manoeuvre can be executed by the CD&R system to resolve
the conflict. This chapter addresses a key component of a detection of a conflict by
estimating the probability of conflict Pc using Subset Simulation.

This chapter begins by defining the test scenarios used to estimate the Pc between
air traffic using the Subset Simulation method in section 7.1. Section 7.2 defines the ap-
plication of Subset Simulation for estimating the probability of conflict between traffic.
Section 7.3 estimate the probability of conflict between traffic during a series of con-
flicting and potentially conflicting scenarios using Subset Simulation and Direct Monte
Carlo methods. Section 7.4 compares the accuracy and efficiency of estimating low
probabilities of conflict Pc using Subset Simulation and Direct Monte Carlo method.
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(b) Intruder overtaking Observer

Figure 7.1: The potentially conflicting scenarios based on the different conflicts shown in Fig-

ure 2.1

7.1 Test scenarios

A non-cooperative scenario is assumed, where the traffic does not share information.
This is a challenging situation since the information related to the state and intentions
of the traffic might be unknown or incorrect. The only information available regarding
the state of traffic is from measurements or inference using sensors. In such a scenario,
CD&R system must allow for the possibility that the non-cooperative traffic may take
inappropriate actions or may not adhere to the Rules of the Air. This type of situation
requires a UAS to react and take appropriate action to ensure safe separation. To
achieve this the Pc needs to be continuously evaluated against the behaviour of the
observed traffic so that the likelihood of the traffic causing a conflict can be calcu-
lated. Figure 7.1 illustrates some potentially conflicting scenarios based on Figure 2.1.
During some phases of the scenario, the expected Pc can be very low; such as a mag-
nitude of 10−8 (this is demonstrated later in this section). The previous sections have
demonstrated that estimating low probabilities using the Direct Monte Carlo method is
inefficient and this motivates the use of Subset Simulation (SS). Assessing the full pdf
may not be feasible and may not be required. Subset Simulation provides an efficient
method of determining the probability associated with all predicted conflicts thereby
estimating Pc. In applying SS to this problem, Pc plays the role of the threshold of
failure PF .

The Subset Simulation method is used to estimate the probability of conflict Pc dur-
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ing the simulation of the potentially conflicting scenarios of the Observer and Intruder
aircraft in the Head-on and Overtaking situations as shown in figures 7.1(a) and 7.1(b)
respectively. Both scenarios show the Observer and Intruder in a non-conflicting a state,
where the Intruder is not within the Observer’s protected zone. The Observer’s pro-
tected zone is marked as a circle around the Observer with radius rt = 152.4m (500ft).
Although the current state is non-conflicting there is a potential for future conflict.
For example from the Observer’s perspective the Intruder could continue on its course
or turn right or turn left. The latter could cause a loss of separation or worse – a
collision between the Observer and the Intruder. Also in the situation when the lateral
separation La between the Observer and Intruder is lower than or equal to the radius
of the Observer’s protected zone rt; (rt ≤ La) a conflict occurs due to loss of separation
or collision between the Observer and the Intruder. Therefore, the likelihood of such
conflict needs to be realised by estimating Pc.

The Subset Simulation method is used by the Observer to determine the probability
of conflict Pc between itself and the approaching Intruder for the potentially conflicting
scenarios shown in Figure 7.1. However, since some parameters are not available this
requires the method to be adapted. The order of magnitude for the target probability
(conflict) region (p0)m is unknown. The solution to this problem is addressed later
in this section. Therefore the number of subset levels m required to reach the target
probability level with a fixed p0 is unknown. The Intruder and Observer are simu-
lated as nearly constant acceleration point models [129]. This is a simple model that is
used to illustrate the use of Subset Simulation. It can be augmented by more complex
dynamic models such as Six-Degrees-of-Freedom (SixDoF) aircraft model presented in
chapter 3. This would not affect the use of Subset Simulation and the computational
advantages that it provides. The dynamics of the Intruder and Observer are modelled
in state space form as U(K + 1) = AU(K) and O(K + 1) = AO(K) respectively in
two-dimensional Cartesian space, where K is the time–step index. The Intruder and
Observer statevectors are U(K) = [x, u, ax, y, v, ay]T and O(K) = [x, u, ax, y, v, ay]T

respectively. The displacement, velocity and acceleration in the x-direction are repre-
sented by x, u and ax respectively. The displacement, velocity and acceleration in the
y direction are represented by y, v and ay respectively. The state transition matrix A

is defined
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A =



1 ∆T 1
2∆T 2 0 0 0

0 1 ∆T 0 0 0

0 0 1 0 0 0

0 0 0 1 ∆T 1
2∆T 2

0 0 0 0 1 ∆T

0 0 0 0 0 1


(7.1)

where ∆T is the period of discretized time-step. The sampling frequency f = 1
∆T .

The Observer estimates the state of the Intruder Û(K) using a Kalman Filter [93].
The periodic measurements of the Intruder’s position Z = [x, y] is defined by the
measurement equation as

Z = HU(K) + [wx, wy]′ (7.2)

where H is the measurement matrix.

H =

1 0 0 0 0 0

0 0 0 1 0 0

 (7.3)

wx ∼ N (0, σx) (7.4)

wy ∼ N (0, σy) (7.5)

The periodic position measurements are simulated by adding noise as wx and wy to
the x and y directions respectively. The standard deviation of the of the measurement
error in the x and y directions are σx and σy respectively. For the sake of simplicity the
measurement noise is uncorrelated. The instantaneous state-estimate of the Intruder
is determined using a Kalman Filter. The Intruder’s state-estimate Û(K + 1) and
covariance Ŝ(K + 1) is predicted using equations

Û(K + 1) = AÛ(K) (7.6)

Ŝ(K + 1) = AŜ(K)AT +Q (7.7)

The process noise covariance is Q. This is the white-noise jerk version of the Wiener-
Process Acceleration model [129].

Q =

Qσ
σ2

ax
∆T 0

0 Qσ
σ2

ay

∆T

 (7.8)
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Qσ =


1
20∆T 5 1

8∆T 4 1
6∆T 3

1
8∆T 4 1

3∆T 3 1
2∆T 2

1
6∆T 3 1

2∆T 2 ∆T

 (7.9)

The parameters σ2
ax

and σ2
ay

are the variance of acceleration parameters in the x and
y directions respectively. The Kalman gain G is evaluated during the update stage:

G = Ŝ(K + 1)HT ([HŜ(K + 1)HT ] +R)−1 (7.10)

where R is the measurement covariance.

R =

σ2
x 0

0 σ2
y

 (7.11)

This is followed by updating the Intruder estimate Û(K + 1) and error covariance
Ŝ(K + 1) respectively.

Û(K + 1) = Û(K + 1) +G{Z(K)− [HÛ(K + 1)]} (7.12)

Ŝ(K + 1) = [I −GH]Ŝ(K + 1) (7.13)

7.2 Estimating Probability of Conflict using Subset Sim-

ulation

The Subset Simulation method is applied to the Head-on pass scenario with lateral
separation La = 1000m and longitudinal separation Lo = 2000m. The duration
of the simulation t = 20s with sampling frequency f = 20Hz and the measure-
ment frequency fM = 2Hz. The initial conditions of the Intruder and Observer are
O(0) = [0, 77.2ms−1, 0, 0, 0, 0]T and U(0) = [2000m,−77.2ms−1, 0, 1000m, 0, 0]T . The
Observer’s protected zone radius rt = 152.4m.

Kalman Filter parameters:

• σx = 0.1m

• σy = 0.1m

• σ2
ax

= 0.01m2s−4

• σ2
ay

= 0.01m2s−4

Subset Simulation parameters:
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Figure 7.2: Head-on pass scenario with 1000m Lateral Separation

• N = 100

• p0 = 0.1

• Nc = 10

• Ns = 10

• m = 7

Ideally the SS method should continue to higher levels of simulation until conflicting
samples are encountered and Pc can be estimated using the CCDF. This is assuming
infinite simulation resources are available. This is impractical for implementation since
simulation capacity is limited due to limited resources available. Therefore the SS
method implemented requires a limited number of levels1 to be defined m.

Subset Simulation estimates Pc(K + 1) where K + 1 is the time-step of an instance
during the simulation as shown in Figure 7.2. Subset Simulation begins with level 0
Direct Monte Carlo sampling. A set of 100 samples {U (0)

n : n = 1, ..., 100} representing
1An alternative implementation: During the process of SS estimating the Pc; the SS method con-

tinues to higher levels until conflicting samples are found. If new information is received (such as a

new Intruder measurement that updates the Intruder state-estimate) and the SS method has not found

conflicting samples, then the calculation for the current time-step should be abandoned and restarted

with the new information. Restarting is necessary since the information used to calculate Pc becomes

obsolete once more recent information is obtained. This approach would be useful for situations where

real-time computation is enforced. Note that this chapter does not enforce constraints associated with

real-time computation.
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the Intruder’s pdf are drawn from the distribution that is centred at the Intruder’s
mean Û(K + 1) and covariance Ŝ(K + 1). The mean and covariance are obtained from
the Kalman filter defined in algorithm 13.

The set of samples U (0)
n and the intended vector of the Observer O(K) are prop-

agated to generate trajectories J (0)
Un

and JO respectively. A trajectory J is a set of
consecutive state vectors indexed by the time-step k where k = 1, ..., tf = 1, ..., 400
and f = 20Hz is the sampling frequency (as defined in algorithm 10). For example
the Observer trajectory JO = [O(1), ..., O(tf)] = [O(1), ..., O(400)], where O(1) is the
state vector of the Observer at time-step k = 1. The propagation time t = 20s. This
is also the period of the simulation. Figure 7.3(a) shows the Intruder samples and the
respective trajectories generated with the projected position of the Observer during
level 0 for a Head-on pass scenario with lateral separation La = 1000m. No conflicting
samples have been encountered yet. A conflicting sample is an Intruder sample U (i)

n

generated in level i with a trajectory J
(i)
n that has a miss-distance r(i)

n between the
Observer trajectory JO and satisfies the conflict condition r

(i)
n ≤ rt. The number of

conflicting samples encountered in a level is D.
The quantities of interest are the miss-distances {r(0)

n : n = 1, ..., 100}. These are the
minimum distances between the Intruder samples’ trajectories {J (0)

Un
: n = 1, ..., 100}

and the Observer trajectory JO. Algorithm 11 defines the procedure to determine the
miss-distances between the Observer and Intruder trajectories. A conflict is projected
to occur when there is a loss of minimum separation between any sample in set JUn and
the Observer trajectory JO at any instance. The set of miss-distances r(0)

n are sorted
in descending order {B(0)

n : n = 1, ..., 100}. The input samples U (0)
n are reordered Ũ

(0)
n

to correspond to the sorted miss-distances B(0)
n . To clarify, the sample Ũ (0)

1 produces
a trajectory JŨ1

that has the largest miss-distance B(0)
1 between itself the trajectory

produced by the Observer JO. The samples with lower miss-distances in the current
level have a higher likelihood of generating conditional samples that satisfy the conflict
condition than other samples in the current level. The vector of probability intervals
P

(0)
n are generated by

P
(i)
n+1 = pi

0
N − n
N

n = 0, ..., (N − 1) (7.14)

Note that the range of n in this equation is different to equation 6.2. This is due to
the maximum number of levels limit m. In the event that SS reaches the maximum
number of levels without encountering conflicting samples the probability of conflict will
be estimated Pc = P

(m−1)
N = P

(m−1)
100 = 0 (the last probability interval in the P (m−1)

n

vector that is generated by equation 6.2) and this does not reflect the low magnitude of
the probability. In contrast, the probability interval generated by equation 7.14 allows
the probability of conflict to be estimated Pc < P

(m−1)
100 ; P (m−1)

100 = 1 × 10−8. This
information means that although no conflicting samples have been encountered despite
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exhausting all levels of SS the expected Pc is estimated to be lower than (p0)m, the
lowest probability level realisable due to the maximum number of levels limit reached by
SS. Such information is more useful than the estimate Pc = 0 evaluated by equation 6.2.
The level 0 CCDF is constructed by plotting the probabilities P (0)

n against B(0)
n as shown

in Figure 7.3(c). No conflicting samples have been drawn in level 0 since no miss-
distances satisfy the conflict condition. If the number of conflicting samples D > Nc

then the probability of conflict is estimated Pc = P
(i)
(N−D+1). This also applies for the

situation where the maximum number of levels has been reached (i = m− 1) and some
conflicts have been encountered where the number of conflicts encountered is less than
or equal to Nc; (Nc ≥ D > 0). The DMC method estimates the probability of conflict
Pc = D

N as defined by algorithm 12.
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Figure 7.3: These figures illustrate the application of SS to estimate the Pc(K + 1) at the

time-step K + 1 during a Head-on pass between an Observer O(K) and Intruder U(K) with

lateral separation of 1000m. SS begins with level 0 (DMC) where N = 100 samples are drawn

from a distribution centred at the Intruder’s state-estimate Û(K + 1) with a covariance of

Ŝ(K+1) obtained from the Kalman Filter. Figure 7.3(a) shows trajectories generated by level 0

samples, no conflicting samples have been encountered. The simulation proceeds to level 1 where

conditional samples are generated using Nc samples from level 0 as seeds. The trajectories of

the level 0 samples used as seeds are highlighted in Figure 7.3(a). The MH method is applied

to generate conditional samples from the seeds. The trajectories of generated samples for level

1 are shown in Figure 7.3(b). This process is continued to generates more trajectories as the

number of levels increase. The method continues until conflicting samples are encountered at

higher levels as shown in Figure 7.4.
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Figure 7.4: The above figures show trajectories of conditional samples generated as the simu-

lation continues to higher levels. Subset Simulation continues until the number of conflicting

samples D found in a level is greater than Nc within a level as shown in Figure 7.4(b). The

probability of conflict is estimated as Pc(K + 1) = 0.52× 10−4 as shown in Figure 7.4(d).

However if the condition D > Nc is not satisfied and i < m − 1; SS proceeds to
the next level (i > 0) and continues until the condition is satisfied or if the maximum
number of levels is reached. This is because the conflict region of the pdf is not repre-
sented accurately enough due to the lack of sufficient samples representing the conflict
region in the current level. Therefore it is necessary generate more conditional samples
at higher levels of SS to progress towards representing the conflict region of the pdf
more accurately.

The following subset levels (i > 0) generate N conditional Intruder samples Ũ (i)
n

using the Metropolis Hastings method as defined in algorithm 14. The set of seeds s(i)
j

107



required to generate the samples are selected from samples in the previous level using

s
(i)
j = Ũ (i−1)

n (7.15)

where 1 ≤ j ≤ Nc, (N −Nc + 1) ≤ n ≤ N and i > 0.
Figure 7.3(a) highlights the trajectories of level 0 samples selected as seeds to gener-

ate level 1 conditional samples. Figure 7.3(b) shows the trajectories of the conditional
samples generated in level 1. The set s(i)

j contains Nc seeds; one for each chain. Each
chain generates Ns samples. This maintains the total number of samples as N for each
level. The MH method uses an indicator d (as shown in algorithm 14) to ensure the
miss-distance r(i)∗ between the Observer’s trajectory JO and Intruder trajectory J (i)∗ of
the proposed sample U (i)∗ is less than the intermediate threshold bi set by equation 6.5.
If r(i)∗ > bi then the proposed sample is rejected and the current sample of the Intruder
is maintained.

The miss-distances {r(1)
n : n = 1, ..., 100} of the conditional samples U (1)

n generated
in level 1 are determined and sorted in descending order B(1)

n using the same method
as level 0. The input samples U (1)

n are reordered Ũ (1)
n to correspond to the sorted miss-

distances B(1)
n . The probability intervals P (1)

n for the current level are generated and
plotted against B(1)

n to construct a CCDF. Figure 7.3(d) shows the CCDF generated
up to level 1. Note the miss-distances of the samples used as seeds from the previous
level 0 (that are highlighted in Figure 7.3(c)) are discarded and replaced with the
miss-distances of the conditional samples generated in level 1. This illustrates that
the samples used as seeds are discarded and replaced with the conditional samples
generated in the current level. This process is repeated as SS progresses to higher levels
until the condition D > Nc is satisfied or the maximum number of levels is reached as
defined in algorithm 15. Figure 7.4(a) shows the trajectories of the conflicting samples
encountered in level 3. However the condition D > Nc had not been satisfied. This
required SS to proceed to level 4 and generate conditional samples that satisfy the
condition D > Nc as shown in Figure 7.4(b). The CCDF generated up to level 4 is
shown in Figure 7.4(c). The CCDF is used to estimate the Pc(K + 1) = 0.52 × 10−4

as shown in Figure 7.4(d). This process is repeated through out the duration of the
simulation to determine the probability of conflict for each time-step using samples
from the prediction of the Intruder’s estimate Û(K + 1) and covariance Ŝ(K + 1).

7.3 Results

The Subset Simulation method has been tested and compared with the Direct Monte
Carlo (DMC) method to estimate the probability of conflict Pc between the Observer
and Intruder by simulating the scenarios shown in Figure 7.1. The Observer and
Intruder were modelled as points with nearly constant velocity in a geometric configu-
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ration based on the three different types of conflict shown in Figure 2.1. The Pc metric
was estimated as an average of 50 Monte Carlo simulation during the Head-on and
Overtaking conflicts as shown in figures 7.1(a) and 7.1(b) respectively. The tests were
repeated with varying lateral separations La = {0, 100, 152, 500, 1000, 1100}m.

The following Subset Simulation parameters were used for all scenarios: N = 100;
Level probability: p0 = 0.1; Nc = p0N = 10; Ns = 1

p0
= 10; m = 7; Observer mini-

mum separation threshold rt = 500ft = 152.4m. Algorithm 16 defines the simulation
conducted.

The number of samples used for each level of SS remain constant. However the
number of levels required at a given time-step vary depending on the magnitude of
Pc. Therefore the total number of samples NT required to realise a conflict at a given
time-step varies as a function of time-step. In the interest of a fair comparison of
the computational effort between the two methods, an equal number of samples are
evaluated for both methods. The estimation using DMC is conducted with NT samples,
where NT is the number of samples that are used in the SS method at the same time-
step. To clarify, if the SS method reaches level i = 4 to satisfy the conflict condition
for estimating the P (SS)

c (K) at time-step K, then NT = 100 × 5 = 500 samples have
been used by the SS method. Therefore DMC estimates the P (DMC)

c (K) for the same
time-step with 500 samples only.

7.3.1 Estimation of Pc for Head-on Pass scenario

The Intruder and Observer parameters used for the Head-on pass scenario are as follows:
The Intruder and Observer maintain a constant speed of 150 knots (77.17ms−1). The
Observer maintains a constant heading of 0◦; the Intruder maintains a constant heading
of 180◦. The Observer’s minimum separation threshold is rt = 500ft = 152.4m. The
Longitudinal separation is Lo = 2000m

Figures 7.5(a), 7.5(b) and 7.5(c) show the estimation of Pc for the Head-on pass
scenario using SS and DMC methods with lateral separations of 0m, 100m and 152m
respectively. The scenarios are conflicting because the geometric configuration and
initial conditions of both the Observer and Intruder are conflicting and remain as such
throughout the duration of the simulation. When t ≤ 12s the Intruder and Observer
are approaching each other the estimated Pc increases. This is as expected because
a conflict is imminent. Both estimation methods show approximately the same Pc as
expected, since the first level of the SS method is DMC sampling. At this stage the
conflict region of the pdf is large and the probability of drawing a sample which leads
to a conflict is high. The conflict occurs at t ≈ 12.5s due to the loss of separation
between the Observer and Intruder. Figure 7.5(c) shows the estimation of Pc with
lateral separation La = 152.4m = rt. This is a conflicting scenario since the Intruder
skims Observer’s protected boundary at t ≈ 12.5s as the Observer and Intruder pass
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(b) Pc during Head-on conflict

with 100m Lateral separation
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(c) Pc during Head-on conflict

with 152.4m Lateral separation
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1000m Lateral separation
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(f) Pc during Head-on pass with

1100m Lateral separation

Figure 7.5: The estimated Pc using the Subset Simulation and Direct Monte Carlo meth-

ods during the Head-on pass as shown in Figure 7.1a with varying lateral separation La =

{0, 100, 152, 500, 1000, 1100}m.
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Figure 7.6: SS and DMC trajectories for Head-on pass with lateral separation 1000m

each other. The oscillations during t ≤ 12s are due to La = rt. This is a borderline
situation.

The Intruder and Observer pass each other at t ≈ 13s. The Pc estimated by both
methods is still 1 until t > 14s where the Intruder has exited the Observer’s protected
zone. At this stage the Observer and Intruder have receding relative velocities and are
moving away from each other. Pc is expected to reduce at this stage as shown in the
log-y plot. The conflict region of the pdf reduces since both Intruder and Observer
are moving away from each other. The SS method estimates the Pc as being close to
zero at an order of magnitude of 10−7. The lowest probability which can be realised is
Pc = 10−8. This is due to a maximum level restriction imposed in the simulation. In
such instances the probability of conflict can be considered to be less than the order
of 10−8. At this stage the DMC method draws the same number of samples as SS
but is unable to find conflicting samples and estimates Pc = 0. This is because the
region of conflict within the pdf has reduced and the probability of drawing a conflicting
sample is rare. This requires the DMC method to draw and evaluate a larger number
of samples at this stage before a conflicting sample is drawn from the rare region of
conflict within the pdf. The SS method is able to obtain the conflicting samples from
the rare region of the pdf by generating samples conditionally in such a way that the
samples satisfy the intermediate thresholds leading to the rare region using the MH
method. Each subset level corresponds to an intermediate threshold. This progressive
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feature of the SS method allows a more efficient approach to reach the rare ‘tail’ region
of the pdf.

As the lateral separation of the scenario is increased, the expected Pc decreases. The
scenario is simulated with a lateral separation of 500m, 1000m and 1100m as shown in
figures 7.5(d), 7.5(e) and 7.5(f) respectively. These are non-conflicting scenarios. The
figures show abrupt variations in Pc. These are caused by the Monte Carlo nature of
our algorithm. Note that, since the sampling frequency is high relative to the thickness
of the line in the figure, the variations in Pc are particularly readily perceived. The
conflict region of the pdf is smaller than the previous scenarios. The SS estimation
method is able to estimate low Pc throughout the duration of the simulation, whereas
with an equivalent number of samples the DMC method is unable to find conflicting or
near conflicting samples of the Intruder in most instances. Figure 7.5(d) shows abrupt
variations in the Pc estimated by the DMC method when t < 1s where the estimate
tends to zero. These are instances where the DMC method is unable for find any
conflicting samples and estimates Pc = 0.

Figures 7.6(a) and 7.6(b) show the trajectories of the samples evaluated by SS and
DMC methods at an instance before and after the Intruder and Observer pass each
other respectively. The progressive nature of the SS method can be observed as a
concentration of trajectories leading to the conflict trajectory. In contrast the DMC
method has drawn the same number of samples (most are overlapping) without realising
any conflicts.

7.3.2 Estimation of Pc for Intruder Overtaking Observer

The scenario parameters used are as follows: The Intruder speed is 300knots = 154.3ms−1

and the Observer speed is 150knots = 77.17ms−1. Both Intruder and Observer main-
tain a constant heading of a constant heading of 180◦. The longitudinal distance Lo

between the Intruder and Observer is Lo = 1000m.
Both SS and DMC methods have been applied to the Overtaking scenario as shown

in Figure 7.1(b). Similar to the previous scenario, the SS method is able to obtain
samples from the rare conflicting region of the pdf consistently throughout the duration
of the simulation for this scenario. As the lateral separation increases, the Pc decreases
(as expected). Figures 7.7(e) and 7.7(f) show the Pc when the lateral separation is
1000m and 1100m respectively. The change in Pc is less abrupt compared to the 100m
lateral separation after the Intruder as passed the Observer when t > 13s. The Pc is
approximately the same throughout the duration of the simulation. This is because the
increased lateral separation includes samples with low turn rates in the conflict category
and these are common enough to be drawn by the DMC method and SS method. With
low lateral separation the conflicting samples will need high turn rates. These are rare
and are realised by using SS method. In contrast the DMC method is unable to realise
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(c) Pc during Intruder overtak-

ing Observer conflict with 152m
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(e) Pc during Intruder overtak-

ing Observer with 1000m Lateral

separation
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(f) Pc during Intruder overtak-

ing Observer with 1100m Lateral

separation

Figure 7.7: The Pc is estimated using the SS and DMC methods during the Intruder Over-

taking the Observer scenario as shown in Figure 7.1(b) with varying lateral separation La =

{0, 100, 152, 500, 1000, 1100}m.
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them. Also throughout the simulation, the relative change in angle of the Intruder
from the Observer’s perspective reduces as the lateral separation is increased. The
conflicting samples can have lower turn rates despite the Intruder having passed the
Observer. Such samples are common and can be realised by both methods.

7.4 Accuracy and Efficiency of Subset Simulation

A range of magnitudes of probabilities have been evaluated within the simulated sce-
narios shown in the previous section. This section analyses the accuracy and efficiency
of using the Subset Simulation and Direct Monte Carlo methods to estimate probabil-
ities at each of a number of orders of magnitude. In order for a fair comparison to be
conducted – a common phase within a simulation scenario must be found where both
methods are able to realise conflicting samples and estimate the probability of conflict.

The first order of magnitude considered for comparison is Pc1 ≈ 10−1. A suitable
phase to conduct the comparison is at t = 1s during the Head-on scenario with lateral
separation La = 152.4 and longitudinal separation Lo = 2000m where a conflict is
inevitable. At this phase p0 ≤ Pc1 < 1 and both methods estimate a similar probability
of conflict. This is as expected since the probability is large enough to generate sufficient
conflicting samples in the first level of Subset Simulation and it does not progress to
higher levels of Subset Simulation. The first level of Subset Simulation is Direct Monte
Carlo so the performance is the same.

The second order of magnitude considered is Pc2 . This probability needs to be
lower than Pc1 where Pc2 < p0. Such phases occur frequently in the Head-on pass and
Overtaking scenarios, typically when t > 14s as shown in figures 7.5 and 7.7 respectively.
Note, during such phases the Subset Simulation method is able to obtain conflicting
samples and provide a good estimate for Pc. However, the Direct Monte Carlo method
fails to find conflicting samples and is unable to estimate the probability of conflict
accurately (other than in a trivial case, Pc = 0 that is inaccurate). For example the
Head-on pass scenarios in Figure 7.5 shows abrupt changes in Pc in some cases from a
magnitude of 10−1 to 10−8 at approximately 13s as the Observer and Intruder pass each
other. This change in magnitude of probability is very large and abrupt (steep). The
magnitude 10−8 is very rare. For such probabilities the Subset Simulation method is
able to obtain conflicting samples and estimate the Pc but Direct Monte Carlo method
fails to obtain conflicting samples and results in estimating Pc = 0. The Direct Monte
Carlo method requires a large number of samples to estimate probabilities of such
magnitude (10−8). This might not be practical due to limited simulation resources.
Therefore, this order of magnitude of probability is impractical for comparison since
although the Subset Simulation method is able to find conflicting samples and estimate
the Pc, the Direct Monte Carlo method is unable to find conflicting samples and fails
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Figure 7.9: A comparison of accuracy and efficiency between DMC and SS methods for esti-

mating the Pc during the Head-on pass scenario.

to estimate the Pc.
In order to find a phase where Pc2 can be evaluated by both methods the simulation

of the Head-on pass scenario with lateral separation of 1000m was repeated once with
increased longitudinal separation Lo = 20000m for an increased period of t = 200s.
This allowed the change in Pc to occur less abruptly. Figure 7.8 shows Pc estimated by
Subset Simulation and Direct Monte Carlo methods during this scenario. Note, during
the period 80s < t < 120s, there are frequent abrupt variations in the Pc estimated
by the Direct Monte Carlo method as zero. These are phases where the method was
unable to find a conflicting sample and estimated the probability of conflict as zero.
A suitable phase for Pc2 is at t = 100s where the probability of conflict estimated by
Subset Simulation has reduced to approximately 10−2; (Pc2 ≈ 10−2). This satisfies
the p0 > Pc2 criteria. Also, it is the last phase after which the frequency of the Direct
Monte Carlo method finding conflicting samples to estimate the Pc diminishes. In other
words, it is the last phase where both methods are able to generate conflicting samples
to estimate the probability of conflict for a comparison to be conducted.

The accuracy and efficiency are compared by calculating the coefficient of variance
(c.o.v.) δ = σ

µ for estimating the probabilities of conflict Pc1 and Pc2 using both Subset
Simulation and Direct Monte Carlo methods for varying samples sizes N . The mean µ
and standard deviation σ is calculated over 50 Monte Carlo runs. The sample intervals
for Direct Monte Carlo are Ndmc = {102, 103, 104, 105, 106} and the sample intervals

116



for Subset Simulation are NSS = {100n : n = 1, ..., 100}. Note, that NSS is the number
of samples at each level of Subset Simulation. The total number of levels can vary for
each Monte Carlo run of Subset Simulation. This causes a total number of samples
to vary for each Monte Carlo run. To allow a fair comparison an average of the total
number of samples for each Monte Carlo run of Subset Simulation is used.

The c.o.v. for estimating Pc1 using Subset Simulation and Direct Monte Carlo
methods at varying sample sizes N is shown by Figure 7.9(a). Note, both methods
have similar c.o.v. as the average sample size increases. This is expected since the
probability is large enough to be realised in level 0 of Subset Simulation that is Direct
Monte Carlo. In Figure 7.9(b) the c.o.v. of Subset Simulation for the lower probability
of conflict Pc2 becomes significantly lower than the c.o.v. of DMC as the average number
of samples is increased. A point of comparison between both methods can be made
where the number of samples N = 104. Note that the c.o.v for Direct Monte Carlo is
approximately 0.48 and the c.o.v for Subset Simulation is approximately 0.04. Also note
that in order for the DMC method to achieve similar c.o.v as the Subset Simulation
method it must use N = 106 samples. Therefore the Subset Simulation estimates
probabilities of magnitude 10−2 approximately ten times more accurately than the
Direct Monte Carlo method while using a fraction of the samples (approximately 1

100)
that are required by the Direct Monte Carlo method to achieve similar levels of accuracy.

7.5 Summary

This chapter has demonstrated the utility of the Subset Simulation method to estimate
the probability of conflict (Pc) between air traffic within a block of airspace during
conflicting and potentially conflicting scenarios based on the Rules of the Air defined
by the International Civil Aviation Organization. These scenarios can be used to con-
duct benchmarks for comparing future algorithms. The Subset Simulation method has
demonstrated the ability to seek samples from the rare conflict region of interest in
an effort to estimate the probability of conflict with lower computational effort than
Direct Monte Carlo method. For the equivalent number of samples, the Direct Monte
Carlo method fails to consistently obtain samples from the region of interest within
the probability distribution function. The ability of Subset Simulation to estimate low
probability of conflict (of magnitude 10−2) approximately ten times more accurately
than the Direct Monte Carlo method while using approximately 1

100 of the total samples
used by the Direct Monte Carlo method to achieve the same level of accuracy as Sub-
set Simulation. This has been demonstrated at a phase during a potentially conflicting
scenario based on the Rules of the Air. This example situation has demonstrated that
the Subset Simulation method is able to estimate low probabilities more accurately
than Direct Monte Carlo method while using less samples than the Direct Monte Carlo
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method. The Subset Simulation method is more accurate and efficient than the Direct
Monte Carlo method for estimating low probability of conflict between air traffic.
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Chapter 8

Conclusion and Future Work

This thesis has examined the problem of large computational requirements for safety
related algorithms on-board Unmanned Aircraft Systems. Multiple sensor fault de-
tection and Sense-and-Avoid are such essential safety requirements that generate large
computational load that have been explored in this thesis.

For multiple sensor fault detection, a Generalized Pseudo Bayes-1 (GPB-1) method,
consisting of Unscented Kalman Filters, that represent normal and faulty hypotheses
of aircraft sensors, are used to detect faulty sensors and update the aircraft’s state-
estimate. The hypotheses for each sensor are evaluated sequentially using measure-
ments obtained from the aircraft’s sensors. This method is referred to as the sequential
UKF-GPB-1 and has been tested successfully by simulation. A Six-degrees-of-Freedom
flight model for a Navion aircraft with multiple sensors (three Pitot-static, two Angle-
of-Attack and an Inertial Measurement Unit) and an autopilot has been developed to
simulate common flight scenarios. This is a standard flight model that can be used for
benchmarking purposes to compare future algorithms. The fault detection method has
been tested by simulating multiple sensor faults during common flight scenarios such
as level, climbing, descending and turning flight. The fault detection method success-
fully detected multiple sensor faults during the different flight scenarios. The sequential
UKF-GPB-1 is compared against the parallel UKF-GPB-1 where each hypotheses are a
combination of sensor failures. The sequential UKF-GPB-1 updates the aircraft state-
estimate faster and maintains a more accurate state-estimate of the aircraft than the
parallel UKF-GPB-1.

For Sense-And-Avoid, the Subset Simulation method has been used to estimate the
probability of conflict, Pc, between air traffic in non-cooperative scenarios. This method
has been tested by simulating a series of conflicting and potentially conflicting scenarios
based on the Rules of the Air defined by the International Civil Aviation Organization.
These scenarios can be used to conduct benchmarks for comparing future algorithms.
For scenarios with low probabilities of conflict (of magnitude 10−2) the Subset Sim-
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ulation method estimates the Pc to be approximately ten times more accurate than
the Direct Monte Carlo method. The Subset Simulation method achieves this while
using approximately 1

100 of the total samples used by the Direct Monte Carlo method
to achieve the same level of accuracy as Subset Simulation.

The efficient and accurate methods for multiple sensor fault detection and estimat-
ing low probabilities of conflict can benefit Sensor Fault Detection and Sense-And-Avoid
systems on-board the UAS respectively. The computational capacity required for such
systems on-board the UAS can be reduced using the algorithms proposed in this thesis
– leading to reduced Size, Weight, Power – and reduced Cost (SWAP-C) of Unmanned
Aircraft Systems.

8.1 Future Work

The Subset Simulation method is scalable to involve multiple Intruders where the Pc

is estimated for each intruder. This is useful for the resolution stage, where Intruders
can be prioritised based on the respective Pc and an optimised resolution to manoeuvre
is determined to minimise the new Pc after the resolution manoeuvre. A more effi-
cient method of estimating the Pc would be to modify the Subset Simulation method
to use Sequential Monte Carlo Samplers instead of the Markov Chain Monte Carlo
method [130]. This will allow the implementation to be parallelised in the seed selec-
tion stage and will give rise to improved statistical efficiency.
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Appendix A

Pseudo Code

A.1 Navion
Algorithm 1 Level Flight Condition

1: function NavionLevelFlight(X,Vc,hc)

2: ρ = ρ0
(
1− lhc

T0

)( g
lR

−1)
◃ Compute Air density

3: Q = 1
2ρV

2
c

4: CL = mg
QS

5: δe = −Cm0 CLα −Cmα CL+Cmα CL0
Cmδe

CLα −Cmα CLδe

6: α = CL
CLα
− CL0

CLα
−

CLδe
δe

CLα

7: CD = CD0 + CkC
2
L

8: T = QSCD cosα
9: return T, δe

10: end function

Algorithm 2 Navion Aircraft simulation
1: function NavionDynamics(∆t, K, I(x,y,z), Xk, ηk)

◃Extract current state elements and constants
2: [Ix, Iy, Iz] = I(x,y,z)

3: [b, c, S, CL0 , CLα , CLβ
, CLq , CLδe

, CYα , CYβ
, CYp , CYrCYδa

, CYδe
, CYδr

, CD0 , Ck,

Clα , Clβ , Clp , Clr , Clr , Clδa
, Clδe

, Clδr
, Cm0 , Cmα , Cmβ

, Cmα̇ , Cmq , Cmδe

Cnα , Cnβ
, Cnp , Clqq, Clδa

, Clδe
, Clδr

] = K
4: [x, u, ax, z, w, az, θ, q, q̇, y, v, ay, ψ, p, ṗ, ϕ, r, ṙ]T = Xk ◃ Current state elements
5: [δa, δe, δr, T ]T = ηk ◃ Current control elements
6: Va =

√
u2 + v2 + w2 ◃ Compute aircraft speed

7: α = tan−1(w
u ) ◃ compute angle-of-attack

8: β = sin−1( v
Va

) ◃ compute sideslip angle

9: ρ = ρ0
(
1− lz

T0

)( g
lR

−1)
◃ Compute Air density
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10: Q = 1
2ρV

2
a ◃ Compute Dynamic pressure

11: α̇ = uẇ−wu̇
u2+w2

◃Compute Force coefficients
12: CL = CL0 + CLαα+ CLβ

β + c
2Va

CLqq + CLδe
δe

13: CY = CYαα+ CYβ
β + b

2Va
(CYpp+ CYrr) + CYδa

δa + CYδe
δe + CYδr

δr

14: CD = CD0 + CkC
2
L

◃Compute Accelerations

15: u̇ = −Q
(

S
m

)
(CD cosα cosβ+CY cosα sin β−CL sinα) + T

m − g sin θ− qw+ rv

16: v̇ = −Q
(

S
m

)
(CD sin β − CY cosβ) + g sinϕ cos θ − ru+ pw

17: ẇ = −Q
(

S
m

)
(CD sinα cosβ+CY sinα sin β+CL cosα) + g cos θ cosϕ−pv+ qu

◃Compute Moment coefficients
18: Cl = Clαα+ Clββ + b

2Va
(Clpp+ Clrr) + Clδa

δa + Clδe
δe + Clδr

δr

19: Cm = Cm0 + Cmαα+ Cmβ
β + c

2Va
(Cmα̇α̇+ Cmqq) + Cmδe

δe

20: Cn = Cnαα+ Cnβ
β + b

2Va
(Cnpp+ Clqq) + Clδa

δa + Clδe
δe + Clδr

δr

◃Compute angular accelerations
21: ṗ = − 1

Ix
[qr(Iz − Iy)−QSbCl]

22: q̇ = − 1
Iy

[rp(Ix − Iz)−QScCm]
23: ṙ = − 1

Iz
[pq(Iy − Ix)−QSbCn]

24: return u̇, v̇, ẇ, ṗ, q̇, ṙ

25: end function

Algorithm 3 The SixDoF function
1: function NavionSixDoF(∆t, K, I(x,y,z), Xk, ηk)
2: [u̇k+1, v̇k+1, ẇk+1, ṗk+1, q̇k+1, ṙk+1]T = NavionDynamics(∆t, K, I(x,y,z), Xk,
ηk)

3: [∆u,∆v,∆w]T = [u̇k+1, v̇k+1, ẇk+1]T∆t ◃ Integrate acceleration to determine
change in speed

4: [uk+1, vk+1, wk+1]T = [uk, vk, wk]T + [∆u,∆v,∆w]T

◃Rotate to earth oriented axis

5:


ẋk+1

ẏk+1

żk+1

 =


cosψk − sinψk 0

sinψk cosψk 0

0 0 1




cos θk 0 sin θk

0 1 0

− sin θk 0 cos θk




1 0 0

0 cosϕk − sinϕk

0 sinϕk cosϕk



uk+1

vk+1

wk+1


6: [∆x,∆y,∆z]T = [ẋk+1, ẏk+1, żk+1]T∆t
7: [xk+1, yk+1, zk+1]T = [xk, yk, zk]T + [∆x,∆y,∆z]T

8:


ψ̇

θ̇

ϕ̇

 =


1 sinϕk tan θk cosϕk tan θk

0 cosϕk − sinϕk

0 sinϕk sec θk cosϕk sec θk



pk+1

qk+1

rk+1


9: [∆ψ,∆θ,∆ϕ]T = [ψ̇, θ̇, ϕ̇]T∆t
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10: [ψk+1, θk+1, ϕk+1]T = [ψk, θk, ϕk]T+[∆ψ,∆θ,∆ϕ]T ◃ Determine aircraft attitude
11: [∆p,∆q,∆r] = [ṗ, q̇, ṙ]T∆t ◃ Integrate angular acceleration to determine change

in angular speed
12: [pk+1, qk+1, rk+1]T = [pk, qk, rk]T + [∆p,∆q,∆r]T ◃ Aircraft angular rates
13: Xk+1 = [xk+1, uk+1, u̇k+1, zk+1, wk+1, ẇk+1, θk+1, qk+1, q̇k+1,

yk+1, vk+1, v̇k+1, ψk+1, pk+1, ṗk+1, ϕk+1, rk+1, ṙk+1]T

14: return Xk+1

15: end function

Algorithm 4 Aircraft Autopilot
1: function AutoPilot(X, ψC , zC)
2: [x, u, ax, z, w, az, θ, q, q̇, y, v, ay, ψ, p, ṗ, ϕ, r, ṙ]T = Xk ◃ Current state elements
3: ∆z = z − zc

4: αϵ = 1
K1

∆z
5: δek+1 = δek

+ sign(αϵ)min(Kδe |αϵ|,qmax)
qδe

6: Vbody = [u, v, w]T

7: V̂earth = T e
B(ψ, θ, ϕ)Vbody

8: uc = T e
B(ψc, 0, 0)u

9: ϕd = sign(∆ψ)min(Kϕ|∆ψ|, ϕmax)
10: δak+1 = δak

+ sign(∆ϕ)min(Kδa |ϕd|,pmax)
pδa

11: δrk+1 = δrk
+ sign(βk)min(Kδr |βk|,rmax)

rδr

12: return [δak+1 , δek+1 , δrk+1 ]
13: end function

A.2 Direct Monte Carlo
Algorithm 5 Determine distance between samples X and C

1: function h(X,C)
2: V = X − C
3: R =

√
V 2

x + V 2
y

4: return R

5: end function

Algorithm 6 Direct Monte Carlo
1: function DMC(N , C, rc)
2: D = 0
3: for n = 1 : N do
4: x ∼ N (0, 1)
5: y ∼ N (0, 1)
6: Xn = [x, y]T

7: Rn = H(Xn, C)
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8: if Rn ≤ rc then
9: D = D + 1

10: end if
11: end for
12: PF = D

N

13: return PF

14: end function

A.3 Metropolis Hastings
Algorithm 7 Generate conditional chains of samples using Metropolis Hastings
algorithm

1: function MH(s, n, C, rc)
2: σ2

rc
= r2

cI2×2

3: for j = 1 : |s| do ◃ For each seed
4: X0 = sj ◃Select seed sample
5: for k = 0 : n− 1 do

◃Generate Candidate sample X∗

6: g ∼ N (0, 1)
7: X∗ = Xk + g

◃Calculate acceptance ratio

8: β = q(X∗|Xk,σ2)
q(Xk|X∗,σ2)

p(X∗|C,σ2
rc

)
p(Xk|C,σ2

rc
)

9: α = min {1, β}
10: e ∼ [0, 1]

11: X
(j)
k+1 =

 X∗ if e < α

Xk if e ≥ α
12: end for
13: end for
14: return X(j)

15: end function

A.4 Subset Simulation
Algorithm 8 Generate conditional chains of samples of Subset Simulation using
Metropolis Hastings algorithm

1: function MH_I(s, n, C, rc)
2: σ2

rc
= r2

cI2×2

3: for j = 1 : |s| do ◃ For each seed
4: X0 = sj ◃Select seed sample
5: for k = 0 : n− 1 do

◃Generate Candidate sample X∗

124



6: g ∼ N (0, 1)
7: X∗ = Xk + g

◃Determine distance between X∗ and C
8: R∗ = H(X∗, C)

◃Determine distance between Xk and C
9: Rk = H(Xk, C)

◃Indicator function for range

10: d =

 1 if R∗ ≤ rc

0 if R∗ > rc

◃Calculate acceptance ratio

11: β = q(X∗|Xk,σ2)
q(Xk|X∗,σ2)

p(X∗|C,σ2
rc

)
p(Xk|C,σ2

rc
)

12: α = min {1, β}
13: e ∼ [0, 1]

14: X
(j)
k+1 =

 X∗ if e < α

Xk if e ≥ α

15: R
(j)
k+1 =

 R∗ if e < α

Rk if e ≥ α
16: end for
17: end for
18: return X(j), R(j)

19: end function

Algorithm 9 Subset Simulation
1: function SS(C, N , p0, m)
2: Nc = p0N

3: Ns = p−1
0

4: i = 0 Set current level
◃Direct Monte Carlo: Draw N samples and determine quantity of interest

5: for n = 1 : N do
6: X

(i)
n ∼ N (0, 1)

◃Quantity of interest: Determine distance between samples X(i)
n and C

7: R
(i)
n = H(X(i)

n , C)
8: end for
9: B

(i)
n ← R

(i)
n Sort distances in descending order

10: X̃
(i)
n ← X

(i)
n Reorder the input samples to correspond to the sorted quantity of

interest B(i)
n

◃Generate probability intervals; equation 6.2
11: for n = 1 : N do
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12: P
(i)
n = pi

0
N−n

N

13: end for
◃CCDF: Concatenate vectors P (i)

n , B(i)
n and sample X̃(i)

n

14: En = [P (i)
n , B

(i)
n , X̃

(i)
n ]

◃Begin lower levels of subset simulation
15: for i = 1 : m− 1 do

◃Set threshold

16: bi = B
(i−1)
N−Nc

◃Set seeds using equation 6.6
17: for j = 1 : Nc do
18: n = N −Nc + j

19: s
(i)
j = X̃

(i−1)
n

20: end for
◃Generate conditional samples using Metropolis Hastings algorithm

21: [X(i)
n , R

(i)
n ] = MH_I(s(i)

j , Ns, C, bi)
22: B

(i)
n ← R

(i)
n Sort distances in descending order

23: X̃
(i)
n ← X

(i)
n Reorder the input samples to correspond to the sorted quantity

of interest B(i)
n

◃Generate probability intervals; equation 6.2
24: for n = 1 : N do
25: P

(i)
n = pi

0
N−n

N

26: end for
◃CCDF: Discard all rows after Ei(N−Nc)

◃Concatenate P (i)
n , B(i)

n , X̃(i)
n and append to E

27: for n = 1 : N do
28: Ei(N−Nc+n) = [P (i)

n , B
(i)
n , X̃

(i)
n ]

29: end for
30: end for
31: return E

32: end function

A.5 Estimating Probability of Conflict between Air traffic
Algorithm 10 Propagate State to generate trajectory

1: function SampleTrajectory(U0, f, t, A)
2: J0 = U0

3: for k = 0 : tf do
4: U(k + 1) = AU(k)
5: J(k + 1) = U(k + 1)
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6: end for
7: return J

8: end function

Algorithm 11 Determine miss-distance r and minimum points Ûxy, Oxy between
observer trajectory JO and Intruder trajectory JÛ

1: function MinDistance(JO, JU )
◃Difference between Observer and Intruder trajectory

2: JOU = JU − JO

◃Distance between each point on trajectories

3: rOU =
√
J2

OUx
+ J2

OUy

◃Minimum distance
4: rOUmin = min(rOU )

◃Index of minimum distance
5: k = {rOUn |n = rOUmin}
6: JOmin = JOxy (k)
7: JUmin = JUxy (k)
8: return rOÛmin

, JOmin , JÛmin

9: end function

Algorithm 12 Estimating Probability of Conflict using Direct Monte Carlo

1: function PC_DMC(f, t, A,O, Û , Ŝ, N, rt)
2: D = 0

◃Propagate Observer for t seconds
3: JO = SampleTrajectory(O, f , t, A)
4: for n = 1 : N do

◃Draw sample
5: Un ∼ N (Û , Ŝ)

◃Propagate Intruder Samples for t seconds
6: Jn = SampleTrajectory(Un, f, t, A)

◃Determine miss-distance between Observer and Sample Trajectories
7: rn = MinDistance(JO, Jn)
8: if rn ≤ rs then
9: D = D + 1

10: end if
11: end for
12: Pc = D

N

13: return Pc, D, Un, JO, Jn, rn

14: end function
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Algorithm 13 Kalman Filter

1: function KF(Û(K), Ŝ(K), Z, H, Q, R, MZ)
◃Predict

2: Û(K + 1) = AÛ(K)
3: Ŝ(K + 1) = AŜ(K)AT +Q

◃Update if new measurement is available
4: if MZ = true then
5: G = Ŝ(K + 1)HT {[HŜ(K + 1)HT ] +R}−1

6: Û(K + 1) = Û(K + 1) +G{Z − [HÛ(K + 1)]}
7: Ŝ(K + 1) = [I −GH]Ŝ(K + 1)
8: end if
9: return Û(K + 1), Ŝ(K + 1)

10: end function

Algorithm 14 Generate conditional samples using Metropolis Hastings

1: function MH_ConflictSamples(f , t, A, O, Û , Ŝ, sj , Ns, rt)
2: σ2

rt
= r2

t I2×2

3: JO = SampleTrajectory(O, f, t, A)
4: for j = 1 : Nc do
5: U0 = sj ◃Select seed sample

◃For each seed generate Ns samples
6: for k = 0 : Ns − 1 do

◃Draw acceleration sample from mean
7: a∗

x ∼ N (0, 1)
8: a∗

y ∼ N (0, 1)
9: g = [0, 0, a∗

x, 0, 0, a∗
y]T

◃Generate Candidate sample U∗

10: U∗ = Uk + g

◃Propagate Samples for t seconds
11: J∗

U = SampleTrajectory(U∗, f, t, A)
12: JUk

= SampleTrajectory(Uk, f, t, A)
◃Determine minimum miss-distance and (x, y) coordinates of minimum

points between Observer and Sample Trajectories
13: [rk, JOmin , JUkmin

] = MinDistance(JO, JUk
)

14: [r∗, J∗
Omin

, J∗
Umin

] = MinDistance(JO, J
∗
U )

◃Indicator function for miss-distance

15: d =

 1 if r∗ < rt

0 if r∗ ≥ rt
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◃Calculate acceptance ratio

16: β =
p(J∗

Ûmin
|J∗

Omin
,σ2

rt
)q(U∗|Û ,Ŝ)

p(JUkmin
|JOmin ,σ2

rt
)q(Uk|Û ,Ŝ)d

17: α = min {1, β}
18: e ∼ [0, 1]

◃Accept candidate sample, trajectory and miss-distance if e < a

19: U
(j)
k+1 =

 U∗ if e < α

Uk if e ≥ α

20: J
(j)
k+1 =

 J∗ if e < α

Jk if e ≥ α

21: r
(j)
k+1 =

 r∗ if e < α

rk if e ≥ α
22: end for
23: end for
24: return U (j), J (j), r(j)

25: end function

Algorithm 15 Estimate Probability of Conflict Using Subset Simulation

1: function PC_SS(f , t, A, O, Û , Ŝ, N , rt, p0, m)
2: Nc = p0N

3: Ns = p−1
0

4: i = 0 ◃Set current level
◃Direct Monte Carlo

5: [D,U (i)
n , r

(i)
n ] = PC_DMC(f, t, A,O, Û , Ŝ, N, rt)

6: B
(i)
n ← r

(i)
n Sort distances in descending order

7: Ũ
(i)
n ← U

(i)
n Reorder the input samples to correspond to the sorted quantity of

interest B(i)
n

◃Generate probability intervals; equation 7.14
8: for n = 0 : N − 1 do
9: P

(i)
n+1 = pi

0
N−n

N

10: end for
◃CCDF: Concatenate vectors P (i)

n , B(i)
n and samples Ũ (i)

n

11: En = [P (i)
n , B

(i)
n , Ũ

(i)
n ]

12: while D < Nc and i < m do
13: i = i+ 1
14: bi = B

(i−1)
N−Nc

◃Set threshold

◃Set seeds using equation 6.6
15: for j = 1 : Nc do
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16: n = N −Nc + j

17: s
(i)
j = Ũ

(i−1)
n

18: end for
◃Metropolis Hastings to obtain conflicting samples

19: [U (i)
n , r

(i)
n ] = MH_ConflictSamples(f , t, A, O, Û , Ŝ, sj , Ns, bi)

20: B
(i)
n ← r

(i)
n Sort distances in descending order

21: Ũ
(i)
n ← U

(i)
n Reorder the input samples to correspond to the sorted quantity

of interest B(i)
n

◃Generate probability intervals; equation 7.14
22: for n = 0 : N − 1 do
23: P

(i)
n+1 = pi

0
N−n

N

24: end for
◃CCDF: Discard all rows after Ei(N−Nc)

◃Concatenate P (i)
n , B(i)

n , Ũ (i)
n and append to E

25: for n = 1 : N do
26: Ei(N−Nc+n) = [P (i)

n , B
(i)
n , Ũ

(i)
n ]

27: end for
28: D = |B(i)

n ≤ rt| ◃Number of conflicts D
29: end while
30: if D > 0 then
31: Pc = P

(i)
(N−D+1)

32: else
33: Pc = P

(i)
N ◃No conflicting samples were found select lowest probability inter-

val
34: end if
35: return Pc, E
36: end function

Algorithm 16 Determine Probability of Conflict using SS and DMC
1: O(0) ◃Initialise Observer
2: U(0) ◃Initialise Intruder
3: Û(0) ◃Initialise Intruder Estimate
4: Ŝ(0) ◃Initialise Intruder Covariance
5: Mc = 0 ◃Measurement counter
6: for K = 0 : tf do
7: O(K + 1) = AO(K) ◃Propagate Observer
8: U(K + 1) = AU(K) ◃Propagate Intruder
9: MZ = false ◃Flag to indicate new measurement

10: if Mc = f
fM

then ◃Conduct Intruder position measurement
11: Z = HU(K + 1) + [wx, wy]T
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12: MZ = true ◃Set flag to indicate that new measurement is available for
Kalman filter Update

13: Mc = 0 ◃ Reset measurement counter
14: end if
15: Mc = Mc + 1 ◃Increment measurement counter

◃Predict/Update estimate of Intruder with Kalman filter
16: [Û(K + 1), Ŝ(K + 1)] = KF(Û(K), Ŝ(K), Z,H,Q,R, MZ)

◃Estimate Probability of Conflict using Subset Simulation

17: P
(SS)
c (K + 1) =PC_SS(f , t, A, O, Û(K + 1), Ŝ(K + 1), N , rt, p0, m)
◃Estimate Probability of Conflict using Direct Monte Carlo

18: P
(DMC)
c (K + 1) =PC_DMC(f, t, A,O, Û(K + 1), Ŝ(K + 1), N, rt)

19: end for
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