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Abstract

In this thesis we study the space L = L(M,N) of all Lagrangian mappings

of a fixed closed surface or 3-manifold M to respectively another surface or

3-manifold N . In most cases we are assuming both M and N oriented. We

are looking for local (order 1) invariants of such generic maps, that is, for

those whose increments along generic paths in L are completely determined

by di↵eomorphism types of the local bifurcations of the caustics in N. Such

invariants are dual to trivial cycles supported on the discriminantal hypersur-

face ⌅ in L. The duality here is in the sense of the increment of an invariant

along a generic path � in L is the index of intersection of � with the cycle,

and the triviality means that if � is a loop then its index of intersection with

the cycle must vanish.

For surfaces, we obtain a complete description of the spaces of discrimi-

nantal cycles, possibly non-trivial. For N = R2 and the subset of maps in L

without corank 2 singularities, this description implies that any rational local

invariant itself is a linear combinations of the numbers of various singular

points of the caustics and of the Ohmoto-Aicardi linking invariant of ordi-

nary maps between surfaces. Using our discriminantal cycles, we also prove

Ohmoto’s conjecture about non-contractability of a certain loop in L(S2,R2).

Our surface results are now published in [16].

For oriented 3-manifolds, we prove that the space of all rational local

invariants is ten-dimensional and spanned by the numbers of various isolated-



type singularities of the caustics and the Euler characteristic of the critical

point set. We also show that the rank of the space of the mod2 invariants has

dimension 16.

The results of the thesis are based on our study of generic one- and two-

parameter families of caustics. In our 3-dimensional constructions, we had to

analyse generic projections of the D
6

and E
6

caustics to the plane. Nothing

anyhow close to this rather delicate analysis has been done before, and it

occupies nearly half the thesis.
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Chapter 0

Introduction

Vassiliev’s famous singularity theory approach to knot invariants [22] has been

successfully applied to the study of invariants of generic maps in some other

low-dimensional problems.

The interest in this direction was initiated by Arnold’s introduction in

[5] of three order 1 Vassiliev-type invariants of regular planar curves. Two

of Arnold’s invariants, those dual to triple point and direct self-tangency

bifurcations, were then generalised to the higher order settings [23, 18, 12].

Arnold gave also a classification of order 1 invariants of planar wave fronts

[6], which was refined by Aicardi in [1]. A few years later followed Chernov’s

classification of similar invariants of fronts on arbitrary surfaces [21].

Victor Goryunov classified the local invariants of mappings of oriented

surfaces into R3 in [11] and local invariants of mappings between 3-manifolds

in [13].
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To add to this list, we must mention the Ohmoto-Aicardi classification

of local invariants of maps of surfaces to a plane done in [19] in terms of

bifurcations of the critical value curves.

The locality of the invariants in the papers quoted and in this thesis means

that the values of the invariants in generic one-parameter families of maps

change at the moments of bifurcations by the amounts completely defined by

the local types of the bifurcations.

In this thesis we classify local invariants of two other natural sets of low-

dimensional maps, namely, of Lagrangian maps between surfaces and between

3-manifolds. We do this in terms of the geometry of their caustics, that is,

of their critical value sets. In this sense the main themes of the thesis are

the Lagrangian analogues of papers [19] and [13]. However, the Lagrangian

geometry turns out to be much richer and more complicated than that of

ordinary smooth maps.

To allow comparison of our results with those from papers [19] and [13],

we recall in the next two sections the main results of these papers, and some

ideas they used.

0.1 Mappings between surfaces

In [19], Toru Ohmoto and Francesca Aicardi considered C1 maps of a closed

(i.e. compact without boundary) surface M to oriented R2. For a generic such

map, its critical value set (also called the apparent contour) has local shapes

2



depicted in Figure 1. The co-orientation of the branches there are towards

the sides with more preimages, and it induces the orientation of the apparent

contour as shown in the figure.

Figure 1: Local singularities of the apparent contour of a generic map from a

surface to R2

Figure 1 immediately suggests two invariants of generic maps in this case:

numbers d and v of respectively double points and cusps of the apparent

contour.

One can also define a third invariant: the self-linking number ` of the

Legendrian lift of the contour to PT ⇤R2. However, we prefer to postpone its

exact definition till Section 1.2.

The main result of [19] is

Theorem 0.1.1. The invariants d, v and ` form a basis of the space of

rational-valued local invariants of smooth maps of a non-oriented surface to

R2

.

Introduction of orientation on the source surface allows one to introduce

the local degrees, +1 or �1, at the cusp points. This splits the invariant v

into two, v+ and v�, the numbers of positive and negative cusps.

The approach used in [19] for proving Theorem 0.1.1 is based � similar

3



to other papers on local invariants � on the detailed study of generic one-

parameter families of maps and of their interactions in generic two-parameter

families.

For a non-oriented source surface, one distinguishes ten generic one-para-

meter local bifurcations of apparent contours. They are all shown in Figure

2. The notations there are of a mixed English-Russian origin: Lips, Beaks,

2

T0 T1

C0 1

BL

S K0

K1 K

C

Figure 2: Bifurcations in generic one-parameter families of maps of a surface

to R2.
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Swallowtail, Kasanie (translation of the word ‘tangency’ to Russian), Triple

point and Cusp crossing. In each case the middle picture is for a non-generic

map which belongs to the discriminantal hypersurface � in the space ⌦ of all

smooth maps from M to R2.

It is convenient to denote the strata of � of codimension 1 in ⌦ by the

letters used for the corresponding bifurcations. Each of these strata is co-

oriented in the direction where the number of cusps, double points or the

preimages of a newly formed region is higher. The increments of the local

invariants at crossings of the ten strata in the co-orienting directions are the

values to find if we want to construct the invariants.

The increments are subject to equations known as the consistency or co-

herence equations. To add to the list of synonyms, we call them roundabout

equations. Their meaning is that the total increment of an invariant along

a generic loop in ⌦ must be zero. Since ⌦ is contractible, it is su�cient to

consider here only small loops around strata of � having codimension 2 in ⌦.

Therefore, one has to consider bifurcations in generic two-parameter families

of maps and take small loops around the origin in the parameter spaces.

As an example, we show in Figure 3 the bifurcation diagrams for a few

generic two-parameter families of maps. These particular diagrams give us

respectively the following equations on the increments of our invariants

I. `� b = 0, II. 0 = 0, III. s� k
1

+ s = 0.

5



I

BL

CC

SS

0

II

0

S

B B

SK1

III

Figure 3: Some bifurcation diagrams from [19].

We denote here by x the increment of a local invariant across the stratum X

at its crossing in the direction of its co-orientation.

The first equation here allows us to ‘glue up’ the strata L and B in one ‘big

stratum’ LB and carry it as a whole through all our further analysis. This is a

simplification method we shall use later in the thesis. The second equation is

trivial and we will have similar outcomes for quite a few bifurcation diagrams

throughout the thesis. Finally, the third equation is a typical example of the

constraints we will be dealing with.

In [19], the analysis of all possible generic 2-parameter families of maps

yields a rank 7 system of linear equations on the 10 unknown increments. The

solution space is therefore of dimension 3. It can be checked that the sets of

the increments of the invariants d, v and ` form a basis of this space over the

rationals. This proves Theorem 0.1.1.

The versions of the three invariants for the Lagrangian case will appear in

our Chapter 1.
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0.2 Maps between 3-manifolds

Another set of results that we should quote in detail are those from [13] on

local invariants of smooth maps between oriented 3-manifolds. Similar to the

previous section, we continue to assume the source M closed and target N

having no boundary. Once again, we are looking for invariants expressed in

terms of the geometry of the critical value sets.

The local geometry of a generic critical value set in the current setting is

depicted in Figure 4. Following the pattern of the previous section, we define

this time the discriminantal hypersurface � in the space ⌦ of all smooth maps

from M to N as the set of all maps with more complicated critical sets.

− − +
+ −

σ

σ

+

Figure 4: Local singularities of the critical value sets of generic maps between

3-manifolds. The value � = ± indicates the local degree ±1 of the map at

the cuspidal edge.

Figure 4 immediately suggests five local invariants in the current setting,

7



all of them counting the numbers of various points of the critical value sets:

i) I
t

, the number of triple points;

ii) I
s+ , the number of positive swallowtails;

iii) I
s� , the number of negative swallowtails;

iv) I
c+ , the number of intersection points of a positive cuspidal edge with

a smooth sheet;

v) I
c� , the number of intersection points of a negative cuspidal edge with

a smooth sheet.

We also have another obvious invariant:

vi) I
�

, half of the Euler characteristic of the critical locus.

Moreover, one more local invariant was introduced in [13]:

vii) I
⌃

2 , the linking number in J1(M,N) of the image of the 1-jet extension

of a map with the set of all 1-jets of corank � 2.

The main result of [13] is:

Theorem 0.2.1. The space of integer local invariants of C1
maps between

oriented 3-manifolds is seven-dimensional. It is spanned by the invariants

(I
s+ ± I

s�)/2, (I
c+ + I

c�)/2, I
t

, (I
t

+ I
c+)/2, I

�

, I
⌃

2 .
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The theorem is proved in [13] by the methods described in Section 0.1

for the 2-dimensional case: via analysis of generic one- and two-parameter

families of maps. The main di↵erence is that such families and bifurcations

of them are much more complicated in dimension three.

Notice that the theorem is valid for any connected component of the space

of all maps, and the invariants are considered up to an arbitrary choice of

individual additive constants ‘of integration’ on such connected components.

All original results of this thesis about dimensions of spaces of local invariants

will be formulated within the same approach.

A mod2 analogue of the last theorem obtained in [13] is more convenient

to state for R3 as the target. This is because the space ⌦ of all maps is

contractible in this case, and hence any solution of the system of roundabout

equations coming from generic 2-parameter bifurcations can be integrated (see

Section 0.3 for the integrability notion). So, we have in [13]

Theorem 0.2.2. The space of mod2 local invariants of C1
maps from a

closed oriented 3-manifold to oriented R3

has dimension 11.

Of course, the mod2 reduction of the integer invariants from the previous

theorem provides a seven-dimensional subspace in this mod2 space. It has

also been possible to define three further linearly independent Z
2

-invariants.

Introduced in [13] and [2], each of these three invariants combines the number

of components and the self-linking of one of the three framed links in R3

constructed from the cuspidal edge and self-intersection locus of the critical

9



value set. An integral interpretation of an eleventh basic invariant is still

missing.

Paper [13] also considers cases of non-oriented source and/or target. How-

ever, we do not recall the results of this since we are not going to consider

their Lagrangian analogues in this thesis.

Except for its main theorems, paper [13] is quite useful for this dissertation

since there is basically no di↵erence between ordinary and Lagrangian maps

as long as their coranks are at most one. Therefore the bifurcations considered

in [13] partly cover the range we have to analyse in Chapter 2.

0.3 Results of the thesis

In this dissertation we study the space L = L(M,E,N) of all Lagrangian

immersions of a closed (that is, compact without boundary) surface or 3-

manifold M to the total space E of a Lagrangian fibration E ! N, where N

is respectively another surface or 3-manifold. In most cases we are assuming

both the source and target oriented. We are looking for invariants of such

Lagrangian maps whose increments along generic paths in L are completely

determined by di↵eomorphism types of the local bifurcations of the caustics

in N . These are what should be called local order 1 invariants of the caustics

(cf. [22]), but we call them just local since no higher-order invariants will be

considered. We denote by ⌅ ⇢ L the set of Lagrangian maps at which the

caustics bifurcate, and call this set the discriminant. We should remark that

10



⌅ is not what one would consider as a complete discriminant in the space of

all Lagrangian maps since it ignores bifurcations of self-intersection points in

E of the immersed manifolds M. Respectively, our space of local invariants of

caustics is a subset of the space of all local order 1 invariants of Lagrangian

maps.

Up to a choice of an additive constant (individual for each connected

component of L), any numerical local invariant I is defined by its derivative

I 0 =
P

x
i

X
i

, where the X
i

⇢ ⌅ are discriminantal strata of codimension 1 in

L, and the x
i

are the increments of I across them. This linear combination is

a trivial codimension 1 cycle in L, that is, its index of intersection with any

loop in L vanishes since this index is the total increment of the invariant along

a closed path. Therefore, construction of such linear combinations (without

an a priori knowledge of the invariants) splits into two parts:

i) establishing conditions on linear combinations of the codimension 1

strata to be cycles (we call them discriminantal cycles), and

ii) checking the triviality of the discriminantal cycles.

The first part is approachable via an appropriate development of singularity

theory methods, and does not depend on the choice of M,E and N (except

for the orientability) and of a particular connected component of L(M,E,N).

The second part is either su�ciently straightforward (when an integral, that

is, homotopy-free interpretation of a relevant invariant is available), or quite

hard (when there is no such interpretation, and this is a general situation). In

11



the latter case, knowledge of the fundamental group of a particular connected

component of L(M,E,N) could be helpful, but calculation of this group is

an even more complicated task. On the other hand, discriminantal cycles

themselves may be used for testing non-contractibility of certain loops in L,

and we give examples of this in Section 1.5.

In this thesis we describe the integer and mod2 invariants for Lagrangian

maps between 2-manifolds followed by maps between 3-manifolds. In the two-

dimensional case we also describe the rational invariants. These two cases are

presented in separate chapters, followed by three additional chapters that

look at in-depth calculations regarding the D
6

and E
6

singularities in the

3-dimensional case.

The first main result of this thesis, Theorem 1.3.3, is a complete descrip-

tion of the spaces of discriminantal cycles for caustics on surfaces. Translation

of this description to the local invariants themselves has turned out to be the

most complete for the target N = R2 and the subset L
1

of L(M,T ⇤R2,R2)

consisting of maps without corank 2 singularities. According to Theorem

1.3.6, for such a setting, up to a choice of additive constants on connected

components of L
1

, all rational local invariants of caustics are linear combi-

nations of the numbers of various singular points of the caustics and of the

linking invariant ` of ordinary maps between surfaces mentioned in Section

0.1. For other targets, the question of triviality of certain discriminantal cycles

is open, which allows to only bound the dimensions of the invariant spaces.

The second main result of this thesis, Theorem 2.2.3, states that the space

12



of rational discriminantal cycles in L(M,T ⇤N,N), where M and N are ori-

ented 3-manifolds, has rank 10. All discriminantal cycles turn out to be

integrable, and generators of the rank 10 lattice of integer local invariants are

described in Corollary 2.2.6. The mod2 analogue of Theorem 2.2.3 is Theorem

2.2.7 which states that the space of Z
2

discriminantal cycles in L(M,T ⇤N,N)

has rank 16. This contains the ten dimensional space spanned by the mod2

reductions of the invariants in Corollary 2.2.2, however in the case of ordinary

maps between 3-manifolds with the target R3 or S3 there are three further

invariants which results in a 13 dimensional space inside our rank 16 space.

Hence the corresponding space of Z
2

-invariants has dimension at most 16, and

at least 10 since it contains the 10-dimensional subspace spanned by the mod2

reductions of the invariants from Corollary 2.2.6. For the target manifold R3

or S3, one can increase the lower bound on the dimension to 13 by adding

Lagrangian generalizations of the three link invariants from [13] and [2] men-

tioned in Section 0.2. However, we are not including these generalisations in

this thesis.

The thesis is organised as follows:

Chapter 1: the local invariants in two dimensions are studied. In Section

1.1 we recall basic definitions regarding Lagrangian mappings. The singu-

larities of a generic caustic are the same as those in [19]. Section 1.2 lists

discriminantal strata of codimension 1 in L, and formulates the first main

results, Theorems 1.3.3, 1.3.4 and 1.3.6, stated in Subsection 1.3.4. Section

1.4 proves our main theorems via analysis of generic 2-parameter families of

13



caustics. Its Subsection 1.4.4 considers adjustments needed if at least one of

the source and target surfaces is not oriented. Finally, in Section 1.5, we use

the discriminantal cycles corresponding to corank 2 degenerations of maps to

prove non-contractibility of certain loops in the spaces of Lagrangian maps of

the 2-sphere. It would be very interesting to see to what extent the results of

this section could be generalised to loops in other connected components of

L(S2, E,N) and to the source di↵erent from S2.

Chapter 2: we consider the local invariants in three dimensions. Section

2.1 gives a description of strata we distinguish in the singular locus of the

caustic of a generic Lagrangian map between two oriented 3-manifolds follow-

ing page 18 of [4]. We also introduce there some obvious invariants. Section

2.2 lists the discriminantal strata of codimensional 1 in L, and formulates

the second set of main results, Theorem 2.2.3 and 2.2.7, stated in Subsection

2.2.4. Section 2.3 lists the generic 2-parameter families of caustics which are

then analysed in Section 2.4 to prove our main Theorems from this chapter.

Chapters 3 - 5 are devoted to a proof of Theorem 2.3.3 from Section 2.3.2.7

on the roundabout equations coming from the D
6

and E
6

isolated function

singularities. To obtain these equations, one considers the ‘big’ caustics C̃ ⇢

R5 of D
6

and E
6

, and analyse their generic projections ⇡ to R2. The critical

value sets of various ⇡’s give rise to the equations we are looking for. The

analysis of each of the three cases (D+

6

, D�
6

and E
6

) turns out to be rather

lengthy and delicate, and occupies Chapters 3, 4 and 5 respectively. The main

di�culty there is that the principal quasihomogeneous part ⇡
0

of a generic ⇡

14



is not a generic map of C̃ on its own. Therefore we have to consider terms of ⇡

of a few further quasi-homogeneous degrees to extract the su�ciently generic

information needed. The expositions in Chapters 3 - 5 are very similar: they

all start with checking the behaviour of the relevant ⇡
0

on various strata of C̃,

and then add to the consideration new terms degree by degree. In our analysis,

we are using parametrisations of various strata of C̃. In the D±
6

cases such

parametrisations come from the well-known reduction to the polynomials in

one variable (see, for example [26] and [14]). In the E
6

case, such a universal

approach does not exist, and we resort to construction of rather individual

parametrisations of di↵erent strata of C̃. Chapter 5 on the E
6

caustic is

perhaps the most technical part of the thesis. We should remark that the

only study of the E
6

caustic is somehow (but rather distantly) relevant to our

needs that is known to us is [9].
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Chapter 1

Local invariants of Lagrangian

mappings between surfaces

1.1 Lagrangian mappings: general definitions

We start with recalling a series of standard definitions which may be found,

for example, in [7] or [4].

A symplectic structure on a manifold E2n is a closed non-degenerate dif-

ferential 2-form !.

A Lagrangian submanifold of a symplectic manifold (E2n,!) is an n-

dimensional submanifold on which the pullback of the symplectic form van-

ishes.

A fibration p : E2n ! Nn of a symplectic manifold E over a base N is

called Lagrangian if all its fibres are Lagrangian submanifolds. A composition

16



M
i! E

p! N where i is an embedding of a manifold Mn into E2n as a

Lagrangian submanifold is what is usually called a Lagrangian map. However,

we allow i to be a Lagrangian immersion.

The critical value set C ⇢ N of a Lagrangian map p� i is called the caustic

of the map.

All Lagrangian fibrations of the same dimension are locally isomorphic. In

this chapter we will be mostly considering the n = 2 case, and in all our local

normal forms, we will be using the standard local model of T ⇤R2 fibred over

R2. The symplectic form here is ! = dU ^ du+ dV ^ dv, where u, v and U, V

are coordinates respectively on the plane and along the fibres of the fibration.

A germ of a Lagrangian surface L ⇢ T ⇤R2

u,v

is defined by its generating

family of functions F (x, u, v):

L = {(u, v, U, V ) | 9 x 2 Rk : F
x

= 0, U = F
u

, V = F
v

} .

The minimal dimension k of the variable x here is the corank of the derivative

of the projection L ! R2

u,v

at the base point. The smoothness of L requires

that the rank of the matrix (F
x

)
x,u,v

of the second derivatives at the base

point must be equal to the dimension of x. The caustic C ⇢ R2

u,v

consists of

those points (u, v) for which the member F (·, u, v) of the generating family

has non-Morse critical points.

An equivalence of two Lagrangian maps L
j

! E
j

! N
j

, j = 1, 2, is a

17



commutative diagram

L
1

! E
1

! N
1

# ' # #

L
2

! E
2

! N
2

in which all vertical arrows are di↵eomorphisms, and '⇤(!
2

) = !
1

holds for

the corresponding symplectic structures. In terms of the local generating

families F (x, u, v) of functions this corresponds to the stable R
+

-equivalence

preserving the fibration (x, u, v) 7! (u, v) (see [7]). The stability here is in the

sense of addition of non-degenerate quadratic forms in extra x-variables.

In this chapter, we will be usingN = R2 for the target surface and T ⇤R2 !

R2 for the Lagrangian fibration. The di↵erences existing with more general

settings will be addressed in the remarks. All the local normal forms of maps

or families of maps that we will be using will be considered near the origins

of the source, target and parameter spaces.

1.2 Generic planar caustics and their local

invariants

According to the classical result of Whitney [25], the critical point set of a

generic C1 map (not necessarily Lagrangian) between surfaces is a smooth

curve. At isolated points on this curve the map has the pleat singularity,

18



for which one can choose local coordinates in the source and target so that

the map is (z
1

, z
2

) 7! (t
1

, t
2

) = (z3
1

+ z
1

z
2

, z
2

). At all other points of the

critical curve, the map has the fold singularity, with the local normal form

(z
1

, z
2

) 7! (z2
1

, z
2

). See Figure 5. Fold singularities correspond to regular

branches of the critical value set, while pleat points provide semi-cubical cusps

of this set. If both the source and target surfaces are oriented, we distinguish

two types of pleats, of local degrees +1 and �1. Regular branches of a generic

critical value set meet transversally.

z2

t
1

z1

z2

t
1

t
2

t
1

t
2

t
1

1z

Figure 5: Pleat and fold singularities.

Similarly, in the case of Lagrangian maps from surfaces to the plane, a

generic caustic C (that is, the critical value set) is a planar curve whose only

singularities are points of transversal self-intersection and semi-cubical cusps.

Translating the above normal forms of maps to the Lagrangian language of lo-

cal generating families and using the standard notations of the corresponding

function singularities (see page 32 of [4]), we introduce the following notations
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for the points of C:

A
2

, regular points of a caustic, with a local generating family x3 + ux;

A2

2

, points of transversal intersection of two regular local branches;

As,�

3

, s = ±, � = ±, semi-cubical cusps, with a local generating family sx4 +

ux2+vx, and the sign � indicating the local degree ±1 of the Lagrangian

map.

Remark 1.2.1. We emphasise that the Lagrangian pleats A
3

with di↵erent

choices of the sign s = ± are not Lagrangian equivalent, in spite of being

equivalent in the oriented Whitney setting. The reason is that the function

x4 cannot be transformed to �x4 by a change of the real coordinate x (see

page 18 of [4] for details).

Following [19], we co-orient a caustic C ⇢ R2 to its side with a higher num-

ber of local pre-images. We will also show the same information by orienting

C so that its (orientation, co-orientation) frame gives the orientation of the

plane, as in Figure 6.

s,σ

2 2
A

2

3
A

s,σ
A

Figure 6: Singularities of generic caustics.

Consider the space L = L(M,T ⇤R2,R2) of all Lagrangian maps M #

T ⇤R2 ! R2, where the first arrow is a Lagrangian immersion of a compact

20



surface and the second the canonical projection. Maps whose caustics have

more complicated singularities than those described above form the discrim-

inantal hypersurface ⌅ in L.

Consider connected components of L \ ⌅. A numerical invariant is a way

to assign numbers to each of them. Along a generic path in L, the values of

an invariant change at the moments of discriminant crossings.

Definition 1.2.2. We say that an invariant is local if every increment of the

invariant is completely determined by the di↵eomorphism type of the local

bifurcation of the caustic at the crossing.

For non-Z
2

-valued invariants, the discriminant should be locally co-oriented.

A local invariant I defines its derivative I 0 =
P

i

x
i

X
i

, where the X
i

⇢ ⌅

are the strata of codimension 1 in L we are able to distinguish for the needs of

Definition 1.2.2, and the x
i

are the local increments of I along generic paths

in L crossing the X
i

in the co-orienting direction. On the other hand, I is

defined by I 0 on each connected component L
j

of L up to an arbitrary choice

of the value of I at a non-discriminantal base point in L
j

.

Since the total increment of I along any loop in L
j

vanishes, the derivative
P

i

x
i

X
i

must be a trivial codimension 1 cycle in L
j

. The vanishing of the

total increment on contractible loops (that is, the derivative being a cycle,

maybe non-trivial) is equivalent to its vanishing on small loops in L around

codimension 2 strata of the discriminant. Finding the relevant cyclicity con-

straints on the increments x
i

is the problem we are mainly concentrating on

in this thesis. Cycles of the form
P

i

x
i

X
i

will be called discriminantal .
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To establish the non-triviality of a discriminantal cycle, one should point

out a loop in L with a non-zero index of intersection with the cycle. The loop

itself is then non-contractible. We will give examples of this in Section 1.5.

On the other hand, one of the ways to establish the triviality of a cycle

I 0 =
P

i

x
i

X
i

is to find an integral (that is, path-independent) interpretation

of its antiderivative I in terms of the geometry of individual caustics.

Examples 1.2.3. The number of isolated singularities of a caustic C of a

particular type is, of course, a local invariant. We have five such invariants:

I
d

, the number of double points A2

2

;

Ic
s,�

, s, � = ±, the numbers of (s, �)-cusps.

For Lagrangian maps to a plane but not to a more complicated surface, we

have a sixth local invariant. It is the restriction to the set of Lagrangian maps

L(M,T ⇤R2,R2) of the self-linking invariant of the critical value sets of generic

smooth maps from M to the plane, as introduced by Ohmoto and Aicardi in

[19]. Basically, this Bennequin-type invariant is the writhe of a ribbon defined

by the critical value set in PT ⇤R2 which is then embedded into R3. We recall

its exact definition now.

Let C be this time the critical value set of a generic C1 map from a surface

M to oriented R2. The curve C is oriented in the way we oriented caustics

earlier. Considering each point of C with its normal direction to the curve, we

lift C to a link eC in PT ⇤R2 ' R2 ⇥ S1. Now, for a fixed small " > 0 and each

point c 2 C, take the two points on the normal to C at c at the distance "

22



from c. Let C
"

⇢ R2 be the curve formed by all such points, and eC
"

⇢ PT ⇤R2

the corresponding link. Choose a small "
0

> 0. The union eC of all the eC
"

for

0  "  "
0

is an oriented multi-component ribbon in PT ⇤R2 with the core eC.

We orient the solid torus PT ⇤R2 as R2 ⇥ S1, with the circular factor

oriented by the positive rotational direction in the plane. We embed PT ⇤R2

unknottedly into R3 which we take with the orientation coming from the solid

torus, and define the linking number `(C) as the writhe of the ribbon eC ⇢ R3.

Following the standard algorithmical definition of the writhe of a framed knot

(see for example [17]), we consider the diagram of eC obtained from a generic

projection of the R3 to a plane. We calculate the linking number `
0

(eC) as the

usual algebraic sum of positive and negative crossings in the link diagram of

eC, and we also calculate the algebraic number `
1

( eC) of signed half-twists by

which the ribbon diagram di↵ers from the blackboard one, that is, from the

ribbon following the link diagram of C̃ and lying flat on the plane. Finally,

`(C) := `
0

(eC) + `
1

( eC)/2.

1.3 Generic codimension 1 bifurcations

of planar caustics

We will now describe the strata from which we will be building up discrimi-

nantal cycles in L = L(M,T ⇤R2,R2). They correspond to bifurcations met in

generic one-parameter families of caustics. Wherever the letters s or � appear

in the notations below, they always mean ± like in the previous section. The
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indices e and h distinguish between the elliptic and hyperbolic versions of

similar bifurcations.

1.3.1 Corank 1 multi- and uni-germs

First of all we list all (see [4], pages 32 and 33) bifurcations in generic 1-

parameter families which involve only corank 1 singularities of the correspond-

ing Lagrangian maps. By this we mean that the corank of the derivative of a

map at any critical point is 1.

We start with bifurcations of multi-germs. In each of them, one of the

participating local components is a smooth A
2

branch of the caustic. We

illustrate such a bifurcation in Figure 7 only with the final curve (that is,

the one to the positive side of the corresponding discriminantal stratum in

L) and indicate the shift of the smooth branch during the transition. The

notations we are introducing are self-explanatory, with the letter T standing

for the tangency of the caustic components.

We have (see Figure 7):

A3,k

2

, k = 2, 3, triple point of a caustic. The post-bifurcational triangular

region has k sides co-oriented outwards. Respectively, for the pre-

bifurcational triangle, this number is 3� k.

TA2,k

2

, k = 0, 1, 2, tangency of two smooth branches. Here k is the number of

sides of the new-born bi-gon co-oriented outwards.

As,�

3

Ak

2

, k = 0, 1, an (s, �)-cusp passes through a smooth branch of a caustic.
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Here the value of k distinguishes between the two co-orientation possi-

bilities of the regular curve.

s,σ s,σ

2

3,3

2,1

s,σ 0

3

2

TA

2
A

3,2

2

2,2

A
s,σ

2
A

TA
2

2,0

2
A

1

3
A

TA

A

Figure 7: Generic bifurcations of multi-germ caustics.

For the uni-germs, we have the following transformations of the caustics

(see Figure 8 where the directions of the positive moves are from the left to

the right):

As,�;e

3

, birth of a lips component, with two (s, �)-cusps.

As,�;h

3

, a beaks bifurcation of the caustic, with two (s, �)-cusps appearing.

As,�

4

, a swallowtail bifurcation. The (s, �)-cusp is the first of the two cusps

on the local post-bifurcational curve if we follow its conventional orien-

tation.

Normal forms of the generating family bifurcations in the last three cases
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respectively are

s(x4+(v2��)x2)+ux , s(x4+(��v2)x2)+ux , x5��x3+vx2+ux ,

where � is the parameter increasing in the bifurcation (see [3, 26]).

s,σ

s,σ

σ−s,−
s,σ

s,σ
s,σ

4

s,σ

3
A

s,  ;eσ

3
A

s,  ;hσ

A

Figure 8: Generic corank 1 bifurcations of uni-germ caustics.

1.3.2 Corank 2 bifurcations in one-parameter families

We now allow the derivatives of the maps to have corank 2 at some critical

points. According to [26], any local bifurcation of caustics in this case may be

obtained as a generic one-parameter family of planar sections of the spatial

caustics of the R
+

-miniversal deformations of the D±
4

function singularities:

F (x, y; u, v, w) = ±x2y +
1

3
y3 +

1

2
wy2 + vy + ux .
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These two caustics are shown in Figure 9. The parameter of such a sectional

family reduces to � = w + ↵u + �v, ↵, � 2 R, ↵2 ⌥ �2 6= 0. The presence

of w in this expression for � implies that the sections are transversal to the

cuspidal edges. On the other hand, the inequality condition here means that

the sectional surface passing through the origin should not be tangent to

the self-intersection locus (real for D+

4

and imaginary for D�
4

) of the spatial

caustic. The families are actually uni-modular: if one of the coe�cients ↵

and � is not zero, it may be normalised to ±1, the other staying arbitrary.

D
4

+ −

4
D

Figure 9: The D±
4

caustics in R3.

We co-orient the corresponding discriminantal strata in L by the decrease

of the above parameter �, which means that in the sectional planar caus-

tics the (�, �)-cusps change to the (+, �)-cusps. We distinguish five pairs of

corank 2 bifurcations shown in Figure 10. The subscripts in the notations of

the first four of them store the information about the post-bifurcational dou-

ble points: either their number, or the right/left position of the only point.
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+;σ

4,2

D

D
+;σ

4,

−;σ

D
+;σ

D
+;σ

4,0

4,r

D

4

Figure 10: Generic corank 2 bifurcations of caustics. All cusps of the curves

on the left are (�, �), and all of the curves on the right are (+, �).
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1.3.3 Derivatives of the standard invariants

In what follows, it will be convenient for us to operate with sums of the

above elementary discriminantal strata di↵ering only in certain indices in

their notation. In such cases we will omit the corresponding signs or letter

and assume that the summation is done across the whole range of the omitted

symbols, for example:

A3

2

= A3,3

2

+ A3,2

2

, A
3

A
2

=
X

s,�=±
(As,�

3

A1

2

+ As,�

3

A0

2

) , D+

4,2

= D+;+

4,2

+D+;�
4,2

.

However, to avoid notational confusion, we will use

A
s,�;e/h

3

= As,�;e

3

+ As,�;h

3

and A
e/h

3

= Ae

3

+ Ah

3

.

Within these settings we have the following summary of the increments of

the invariants introduced in Section 1.2.

Lemma 1.3.1. The derivatives of the invariants counting the double points

and various cusps of planar caustics, and of their linking invariant are

I 0
d

= 2TA2

2

+ 2A
3

A
2

+ A
4

+ 2D+

4,2

� 2D+

4,0

,

Ic
s,�

0 = 2As,�;e/h

3

+ As,�

4

+ A�s,��
4

+ sD+;�

4

+ 3sD�;�

4

,

I 0
`

= 2TA2,2

2

� 2TA2,1

2

+ 2TA2,0

2

+ A
e/h

3

� 2D+

4,2

+ 2D+

4,0

.

Proof. The expressions for the first five derivatives, I 0
d

and Ic
s,�

0, are pro-

vided by a simple inspection of the bifurcation figures.
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The A-part of the linking derivative I 0
`

, is a translation to our notations

of the increment count done in [19] for the linking invariant of critical value

sets of maps from surfaces to the plane.

To obtain the D-part, we consider the set of all Lagrangian maps M #

T ⇤R2 ! R2 as a subset of the space ⌦(M,R2) of all smooth maps from M to

R2. In ⌦, the bifurcations of Figure 10 are no longer stable as one-parameter

families, and we deform them into generic paths along which the planar critical

value sets undergo sequences of local corank 1 transitions shown in Figure 11

(deformed D+

4,0

and D+

4,`

paths are opposite to the two in the Figure). Now

the D-part of the expression follows from its A-part. ⇤

A
+;σ

A
h

A
4

3

A
h

3

4,2
D

A
4

A

A
h

3

h

3

D
+;σ

4,r

A
44

Figure 11: The D-moves of the caustics as sequences of transitions of the

critical value sets of arbitrary (not necessarily Lagrangian) smooth maps.

The notation of the steps is in terms of their Lagrangian analogues. Notice

that the s signs of the cusps should not be used now since they are not defined

in ⌦(M,R2) (see Remark 1.2.1).

Remark 1.3.2. The D±
4

caustics of Figure 9 are stable as critical value sets

of Lagrangian maps between 3-manifolds. However, the corresponding local

singularities of maps are of codimension 1 in the space of all smooth maps
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between these manifolds. In particular, a small generic perturbation within

smooth maps deforms the D+

4

caustic to the left surface in Figure 12 [8, 13].

The sequences in Figure 11 are generic 1-parameter families of planar sections

of this surface.

Figure 12: Stable perturbation of theD+

4

caustic via a smooth non-Lagrangian

deformation of a map between 3-manifolds. The surface has the axial sym-

metry which produces the whole surface from its swallowtail half shown on

the right.

1.3.4 Classification of the discriminantal cycles and

invariants

All statements in this section refer to any closed oriented surface M and any

connected component of L(M,T ⇤R2,R2). The target plane is oriented. All

invariants are considered up to a choice of additive constants on connected

components of the spaces of maps.

The main result of this chapter is
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Theorem 1.3.3. The space of rational discriminantal cycles in L(M,T ⇤R2,R2)

has rank 8. It is spanned by the derivatives of the six invariants I
d

, Ic
s,�

, I
`

and

the two cycles

D±;�

4

= D+;�

4,2

+D+;�

4,0

+D+;�

4,r

+D+;�

4,`

+D�;�

4

, � = ± .

For a basis of the discriminantal cycles in L(M,T ⇤R2,R2) in the integer

case one can, for example, take the derivatives of

Ic/2 = (Ic
+,+

+ Ic
+,� + Ic�,+

+ Ic�,�)/2, (I
d

� Ic
+,+

� Ic�,+

)/2,

(I
`

� Ic/2 + Ic
+,+

+ Ic�,+

)/2, Ic
+,+

, Ic
+,�,

(1)

and the cycles

((Ic
+,� � Ic�,+

)0 �D±;+

4

�D±;�
4

)/2, D±;+

4

, D±;�
4

. (2)

Passing to the mod2 coe�cients, we have

Theorem 1.3.4. The space of Z
2

discriminantal cycles in L(M,T ⇤R2,R2)

has rank 9. It is spanned by the mod2 reductions of the above 8 integer cycles

and A3

2

+ A±,+

3

A
2

.

Among the cycles appearing in these two theorems, the triviality of the

D±;�

4

and A3

2

+A±,+

3

A
2

is not known. Their triviality may also depend on the

choice of a particular connected component of L(M,T ⇤R2,R2). Therefore,
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passing from discriminantal cycles to invariants, we have only estimates:

Corollary 1.3.5. The rank of the space of integer local invariants on a par-

ticular connected component of L(M,T ⇤R2,R2) is at least 6 and at most 8.

For mod2-valued invariants, the bounds are respectively 6 and 9.

In Section 1.5 we will have an example when the rank in the integer case

is less than 8.

The minimal invariant spaces guaranteed by the corollary are spanned, for

example, by the five invariants in (1) and Ic�,+

.

Let L
1

(M,T ⇤R2,R2) ⇢ L(M,T ⇤R2,R2) be the set of all Lagrangian maps

without corank 2 points. Discriminantal cycles in L
1

do not contain any

D-summands.

Theorem 1.3.6. The space of integer discriminantal cycles in L
1

(M,T ⇤R2,R2)

has rank 6. Its basis is formed, for example, by the derivatives of the invari-

ants (1) and (Ic
+,� � Ic�,+

)/2. Respectively, these six invariants form a basis

of the space of all integer local invariants on L
1

(M,T ⇤R2,R2).

The mod2 setting adds here two linearly independent cycles, A3

2

+A±,+

3

A
2

and A+,+

3

A
2

+ A�,�
3

A
2

, whose triviality is not known.

Remark 1.3.7. All the statements of the above three theorems about the

discriminantal cycles stay valid if we replace Lagrangian maps M # T ⇤R2 !

R2 with Lagrangian maps M # E4 ! N, where N is an arbitrary oriented

surface. The upper bounds for the ranks of the invariant spaces stated in
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the corollary and last theorem also stay true, but the lower bounds should be

reduced by 1 since the cycle I 0
`

may no longer be trivial.

Theorems 1.3.3, 1.3.4 and 1.3.6 are proved in Section 1.4.3, with the prepa-

rations occupying Sections 1.4.1 and 1.4.2.

1.4 Bifurcations in 2-parameter families

of Lagrangian maps

Our proof of the classification theorems of the previous section is based on

the study of bifurcations in generic 2-parameter families of caustics in the

next two subsections. The bifurcation diagram of each family yields a linear

equation on the increments of our local invariants across the codimension 1

strata: the equation states that the total increment along a small generic

loop in L around the codimension 2 stratum must vanish. The whole system

of these equations guarantees that the corresponding linear combination of

codimension 1 strata is a discriminantal cycle in L.

The generating families will now depend on four parameters: local coor-

dinates u and v on the target plane, and bifurcational parameters �
1

and

�
2

. The value range for the variables s and � is always {+,�}, tracing the

(s, �)-types of the cusps in the bifurcations.

We follow the general approach to the study of bifurcations in families of

caustics developed in [26]. Namely, a local family of caustics in Rn depending
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on k bifurcational parameters collects to one big caustic C̃ ⇢ Rn+k. If the fam-

ily is generic, C̃ is the caustic of a generic Lagrangian map germ to Rn+k. If the

germ is actually a uni-germ, then within the dimensional range considered in

this thesis such a map is stable and C̃ is the caustic of an R
+

-versal deforma-

tion of one of the A
µ

, D
µ

, E
µ

isolated function singularities with µ  n+k+1.

To understand all possible k-parameter bifurcations of uni-germ caustics, we

must understand all generic maps ⇡ of the pair (Rn+k, C̃) to Rk. Of course,

such maps are submersive on Rn+k, and therefore we frequently call them

projections. The critical value set of ⇡ on C̃ is the bifurcation diagram of the

corresponding family of caustics in Rn.

The k = 1 case, as far as we need it, has been considered completely in

[26], and we have already quoted some of the relevant results from there. The

k = 2 case is what we will need to analyse in this section, Section 2.3 and

Chapters 3 - 5. We would like to notice that our genuine aim in the analysis

is to obtain the incremental equations. This does not require exact normal

forms of the projections ⇡. The most we need is a qualitative bifurcation

diagram for ⇡. In some later cases we will not even need the relative positions

of all the branches of the diagram - only relative positions in certain subsets

of these branches will be crucial.

In Section 1.3 we singled out 35 discriminantal strata which we will call

elementary. A part of our strategy to choose a particular sequence of bifur-

cations will be to show as soon as possible that the increments across some of

them must coincide and, therefore, such strata may be united into sums like
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those used in Lemma 1.3.1. We call these sums big strata. We denote the

increment across a particular elementary or big stratum as the stratum itself,

but in small characters.

Quite a few bifurcations in our analysis will be of the form S·A
2

, by which

we mean a generic A
2

line passing through a generic codimension 1 bifurcation

S. The co-orientation of the A
2

line will not be important.

1.4.1 Corank 1 maps

The bifurcations we are considering in this subsection di↵er from those con-

sidered in [19] for non-Lagrangian maps by the involvement of the sign � of

the cusps.

a) The simplest S ·A
2

bifurcations have the diagram shown in the left of

Figure 13, which gives us the equation g = h. In particular, this happens if

the codimension 1 bifurcation S is of types 1 or 2 of the table below. Our

conclusion in case 1 is that the triple point stratum A3

2

may participate in

discriminantal cycles only over Z
2

, which will be noted by the square brackets

in the formulas (but not in the diagrams).

The middle bifurcation diagram in Figure 13 is of the As,�

4

·A
2

degeneration,

corresponding to case 3 of the table.

The last diagram of Figure 13 serves the codimension 2 cubic versions of

the codimension 1 ‘quadratic’ degenerations As,�;e

3

and TA2,1

2

. Namely, the

first cubic bifurcation has generating family sx4 + (v3 + �
2

v + �
1

)x2 + ux,

while the second is the interaction of the curves v = 0 and v = u3 + �
2

u+ �
1
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2

4
A

s,σ

4
A

s,σS S

HG G3 HA
σ−s,−

2
A

0
2

A
1

3
A

s,σ A
3

Figure 13: The diagrams of the simplest S ·A
2

singularities, of the As,�

4

·A
2

bifurcations, and of the simplest cubic degenerations. They correspond to the

equations 1–5.

with opposite co-orientations. The conclusions derived from these two cases

are in lines 4 and 5 of the table. The superscripts opp and dir are used there

for opposite and direct tangencies.

S Equation Big stratum

1. TA2,2

2

a3,3
2

= a3,2
2

TA2,1

2

2a3,2
2

= 0 [A3

2

] = A3.3

2

+ A3,2

2

2. As,�;e

3

as,�
3

a1
2

= as,�
3

a0
2

As,�

3

A
2

= As,�

3

A1

2

+ As,�

3

A0

2

3. As,�

4

as,�
3

a
2

� a�s,��
3

a
2

= [a3
2

] A
±(+,�)

3

A
2

= A+,�

3

A
2

+ A�,��
3

A
2

over Z

4. As,�;e

3

as,�;e
3

= as,�;h
3

A
s,�;e/h

3

= As,�;e

3

+ As,�;h

3

5. TA2,0

2

ta2,2
2

= ta2,0
2

TA2,opp

2

= TA2,2

2

+ TA2,0

2

TA2,1

2

TA2,dir

2

= TA2,1

2

b) In Figures 14 and 15, we show bifurcation diagrams of three more

codimension 2 degeneration. The corresponding incremental equations are
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6–8 below.

s,σ

σ

A
s,σ

4
A

σ−s,−

2
A

1

3
A

s,σ

2

3
A

s,σ

2
A

3
A

s,σ

2
A

A
1TA

2

2,2

TA
2

2,1

3
A

s,

4

Figure 14: The line-and-cusp tangency bifurcation, and a family F =

sx6 + �
1

x4 + �
2

x3 + vx2 + ux of planar sections of the A
5

caustic in R4.

Trying to normalize the map (R4

�,u,v

, 3-dimensional caustic) ) R2

�

, similar to

[26], we would get coe�cients of x3 and x4 not just the �
i

, but also involv-

ing certain dependence on u, v. However, the dependence will not a↵ect the

“roundabout” equation.

Equation Big stratum

6. 2as,�
3

a
2

= ta2,opp
2

+ ta2,dir
2

A
3

A
2

=
P

s,�=± As,�

3

A
2

over Z

7. as,�
4

= a�s,��
4

A
±(+,�)

4

= A+,�

4

+ A�,��
4

8. 2a±(+,�)

4

= a+,�;h

3

+ a�,��;h
3

+ ta2,dir
2
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σ−s,−σ s,

3

s,  ;h
A

3
A

σ−s,−   ;h

2,1
TA

2

4
A

s,σ

4
A

σ−s,−

σ

Figure 15: Bifurcations of a swallowtail section by a smooth surface tangent

to the self-intersection line and generic in any other sense [13].

1.4.2 Corank 2 bifurcations

a) The D+;�

4,r

·A
2

family. Comparing the events on the left and on the right

in Figure 16 during the motion of the additional A
2

component and recall-

ing from equations 1 above that 2a3
2

= 0, we conclude that the incremental

equation here reduces to

9. a�,�

3

a
2

= a+,�

3

a
2

.

This provides us with a big stratum A±,�

3

A
2

= A+,�

3

A
2

+A�,�

3

A
2

over Z
2

. (We

already have A
3

A
2

over the integers.) All the other versions of the D+

4

·A
2

bifurcations yield the same.

D
+,σ

4,r
A

2
+,σ−,σ

λ 2

1

λ

λ0

2

Figure 16: The D+;�

4,r

·A
2

bifurcation.
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b) Degenerate sections of the D+

4

caustic. In Section 1.3.2 we quoted the

normal form of a generic function on R3 in presence of the D+

4

caustic. We will

now denote this caustic C(D+

4

). A standard argument using the description

from [26] of the vector fields tangent to C(D+

4

) shows that the functions next

in the hierarchy in this case can be reduced to the normal forms

w ± u± v + �v2 , � 2 R \ {0} .

Here � is a modular coe�cient. The zero level of such a function is tangent

at the origin to one of the two rays of the self-intersection locus of C(D+

4

).

Making use of a natural notion of a versal deformation of a function germ on

R3 with respect to the group of di↵eomorphisms preserving the caustic, we

see that the functions above give us two-parameter families of caustics defined

by generating families of functions depending on two additional parameters

(�
1

,�
2

):

x2y +
1

3
y3 +

1

2
(±u± v + �v2 + �

2

v + �
1

)y2 + vy + ux . (3)

Various choices of the signs in this formula (including the sign of �) give us the

bifurcation diagrams in the (�
1

,�
2

)-plane shown in Figure 17. Comparison of

the first two diagrams there implies d+;�

4,r

= d+;�

4,`

, which allows us to introduce

a big stratum

D+;�

4,r/`

= D+;�

4,r

+D+;�

4,`

.

40



2 2

4,r
D

+;σ

D

+;σ

TA
2

2,1

D
+;σ

4,2

+;σ

D
+;σ

4,

4,

4,0

TA
2

+;σ

2,1
TA

D

2,1

DD
4,2

+;σ

4,r

D
+;σ

4,0

TA
2,1

Figure 17: Bifurcation diagrams of the families (3). In each diagram, the

cusp on the left of the vertical strata is (�, �) and the cusps on the right are

(+, �). The opposite cusp option is not shown since it yields the same set of

four incremental equations.

Now Figure 17 provides two linearly independent incremental equations

for each � = ±:

10. ta2,1
2

= d+;�

4,r/`

� d+;�

4,0

= d+;�

4,2

� d+;�

4,r/`

We remark that we are not considering here functions on (R3, C(D
4

)) whose

zero level is tangent at the origin to the cuspidal edge of the caustic since such

functions would correspond to the change of topology of the source surface

of our Lagrangian maps. However, such functions will appear in Section 1.5

where they will be used for constructing non-contractible loops in the spaces

of Lagrangian maps.

c) The D
5

family. In Figure 18 we are showing the bifurcation diagrams

of two-parameter families of caustics coming from the deformations

x2y ± y4 + �
1

y3 + �
2

y2 + vy + ux
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of the D±
5

function singularities. Since each diagram has two pairs of double

strata, these two-parameter families of planar caustics are infinitely degen-

erate. However, these families are the principal quasi-homogeneous parts of

generic two-parameter slicings of the big D±
5

caustics in R4, and yield the

same incremental equations as such generic slicings do, namely:

11. d+;�

4,2

� d�;�

4

+ a+,�;e

3

+ a+.��;h
3

� 2a+,��
4

= 0

�d+;�

4,0

+ d�;�

4

+ a�,�;e

3

+ a�.��;h
3

� 2a�,��
4

= 0

2

λ

λ1

2λ

1λ

2

2

3
A

+,−   ;hσ
4

A    ,
−,σ

4
A

σ

A
2

A
3

−,σ A
2

A
3

−,σ

σ+;
D

4,2

σ−;
D

4

3
A

σ+,  ;e

A
2

+,σ
A

3

+,−

A
2

A
3

−,σ

A
2

A
3

+,σ

A
2

A
3

+,σ

σ−;
D

4
σ+;

D
4,0

3
A

σ−,  ;e

3
A

−,−   ;hσ
4

A    ,
+,σ

4

−,−
A

σ

Figure 18: The D+

5

and D�
5

bifurcation diagrams.

This finishes the process of deriving the incremental equations. It is not

very di�cult to show that no other stable codimension 2 bifurcation of planar

caustics delivers an equation linearly independent (both mod2 and over the

integers) from the equations already listed.

1.4.3 Proofs of the classification theorems

We initially had 35 elementary discriminantal strata. Over the previous two

subsections we have been able to join them, both over Z and Z
2

, into 19
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bigger. Equations on the increments of the invariants across these 19 strata

obtained during the bifurcation analysis are collected in the columns of Table

1e below. Equations which are integer linear combinations of the others are

not included there. That is why only one of the equations 6 and only the first

pair of the equations 11 are in the table. We are using dots instead of zeros.

With 11 linearly independent equations in 19 unknowns, we have a rank

8 solution space. The 8 columns of Table 1s contain the coe�cients of the

discriminantal cycles mentioned in Theorem 1.3.3. They are easily seen to

form a basis of the solution space over the rationals, which proves the theorem.

The rank of the mod2 solutions matrix in Table 1s is 5. This yields a few

parity conservation laws for appropriate linear combinations of numbers of

double points and various cusps of caustics in homotopies. The most obvious

one is that the parity of the total number of cusps stays the same.

To produce an integer solution basis from the rational one we can, for

example, consider its modification (1–2) from Section 1.3.4.

The mod2 reduction of the incremental equations drops the rank of the

coe�cient matrix by 1, due to the elimination of equation 1. Therefore, a

mod2 solution basis may be obtained by addition to the reduced basis (1–

2) of one cycle, for example, A3

2

+ A±,+

3

A
2

(or A3

2

+ A±,�
3

A
2

). This proves

Theorem 1.3.4.
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Table 1e 1 3 6 8 8 10 10 10 10 11 11

A3

2

2 1 . . . . . . . . .

TA2,opp

2

. . �1 . . . . . . . .

TA2,dir

2

. . �1 �1 �1 1 1 1 1 . .

A±,+

3

A
2

. 1 2 . . . . . . . .

A±,�
3

A
2

. �1 . . . . . . . . .

A
+,+;e/h

3

. . . �1 . . . . . 1 1

A
+,�;e/h

3

. . . . �1 . . . . 1 1

A
�,+;e/h

3

. . . . �1 . . . . . .

A
�,�;e/h

3

. . . �1 . . . . . . .

A
±(+,+)

4

. . . 2 . . . . . . �2

A
±(+,�)

4

. . . . 2 . . . . �2 .

D+;+

4,2

. . . . . . . �1 . 1 .

D+;�
4,2

. . . . . . . . �1 . 1

D+;+

4,r/`

. . . . . �1 . 1 . . .

D+;�
4,r/`

. . . . . . �1 . 1 . .

D+;+

4,0

. . . . . 1 . . . . .

D+;�
4,0

. . . . . . 1 . . . .

D�;+

4

. . . . . . . . . �1 .

D�;�
4

. . . . . . . . . . �1
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Table 1s I 0
d

Ic
+,+

0 Ic
+,�

0 Ic�,+

0 Ic�,�
0 I 0

`

D±;+

4

D±;�
4

A3

2

. . . . . . . .

TA2,opp

2

2 . . . . 2 . .

TA2,dir

2

2 . . . . �2 . .

A±,+

3

A
2

2 . . . . . . .

A±,�
3

A
2

2 . . . . . . .

A
+,+;e/h

3

. 2 . . . 1 . .

A
+,�;e/h

3

. . 2 . . 1 . .

A
�,+;e/h

3

. . . 2 . 1 . .

A
�,�;e/h

3

. . . . 2 1 . .

A
±(+,+)

4

1 1 . . 1 . . .

A
±(+,�)

4

1 . 1 1 . . . .

D+;+

4,2

2 1 . �1 . �2 1 .

D+;�
4,2

2 . 1 . �1 �2 . 1

D+;+

4,r/`

. 1 . �1 . . 1 .

D+;�
4,r/`

. . 1 . �1 . . 1

D+;+

4,0

�2 1 . �1 . 2 1 .

D+;�
4,0

�2 . 1 . �1 2 . 1

D�;+

4

. 3 . �3 . . 1 .

D�;�
4

. . 3 . �3 . . 1

For Theorem 1.3.6, avoiding corank 2 maps, we have to restrict our atten-
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tion to the A-strata and equations 1–8 only. To cover the integer and mod2

options simultaneously we have to consider this time all four strata As,�

3

A
2

individually. The equation-cycle table for this case is Table 2 below. We have

7 linearly independent equations in 13 unknowns. The set of the discriminan-

tal cycles suggested for an integer basis in the theorem occupies the second

half of the table, and is indeed linearly independent. In the table we set

Î
d

= (I
d

� Ic
+,+

� Ic�,+

)/2,

Îc�,+

= (Ic�,+

� Ic
+,�)/2,

Ic/2 = (Ic
+,+

+ Ic
+,� + Ic�,+

+ Ic�,�)/2,

Î
`

= (I
`

� Ic/2 + Îc
+,+

+ Ic�,+

)/2.

The mod2 reduction reduces this time the rank of the equation matrix by

2. Therefore, two extra basic cycles should be added to obtained a Z
2

-basis,

for example, A3

2

+ A±,+

3

A
2

and A+,+

3

A
2

+ A�,�
3

A
2

. This finishes our proofs.
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Table 2 (L1) 1 3 3 6 6 8 8 Î 0
d

Ic+,+
0 Ic+,�

0 Îc�,+
0 Ic 0/2 Î 0

`

A3
2 2 1 1 . . . . . . . . . .

TA2,opp
2 . . . �1 �1 . . 1 . . . . 1

TA2,dir
2 . . . �1 �1 �1 �1 1 . . . . �1

A+,+
3 A2 . 1 . 2 . . . 1 . . . . .

A+,�
3 A2 . . 1 . 2 . . 1 . . . . .

A�,+
3 A2 . . �1 . . . . 1 . . . . .

A�,�
3 A2 . �1 . . . . . 1 . . . . .

A+,+;e/h
3 . . . . . �1 . �1 2 . . 1 1

A+,�;e/h
3 . . . . . . �1 . . 2 �1 1 .

A�,+;e/h
3 . . . . . . �1 �1 . . 1 1 1

A�,�;e/h
3 . . . . . �1 . . . . . 1 .

A±(+,+)
4 . . . . . 2 . . 1 . . 1 .

A±(+,�)
4 . . . . . . 2 . . 1 . 1 .

1.4.4 Non-oriented source or target

Assume first of all that the source surface M is not oriented while the target

plane has an orientation chosen. This means gluing together discriminantal

strata of codimension 1 in L(M,T ⇤R2,R2) di↵ering only by the sign � in their

notation. The modified equations and basic cycles are collected in Table 3.
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The sign � is now gone from the notations.

Table 3 1 3 6 8 10 10 11 I 0
d

Ic
+

0 Ic�
0 I 0

`

D±
4

A3

2

2 1 . . . . . . . . . .

TA2,opp

2

. . �1 . . . . 2 . . 2 .

TA2,dir

2

. . �1 �1 1 1 . 2 . . �2 .

A+

3

A
2

. 1 2 . . . . 2 . . . .

A�
3

A
2

. �1 . . . . . 2 . . . .

A
+;e/h

3

. . . �1 . . 2 . 2 . 1 .

A
�;e/h

3

. . . �1 . . . . . 2 1 .

A
4

. . . 2 . . �2 1 1 1 . .

D+

4,2

. . . . . �1 1 2 1 �1 �2 1

D+

4,r/`

. . . . �1 1 . . 1 �1 . 1

D+

4,0

. . . . 1 . . �2 1 �1 2 1

D�
4

. . . . . . �1 . 3 �3 . 1

Analysis of Table 3 and comparison with the oriented case show that in

the space L(M,E,N) for non-oriented source M and oriented target N ,

i) a rational basis of discriminantal cycles is formed by the cycles in the

second half of Table 3;

ii) for a basis over the integers one can take

Ic 0/2, Ic
+

0, (I 0
d

+ I 0
`

� Ic 0/2)/2, (I 0
d

� Ic
+

0 +D±
4

)/2, D±
4

;
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iii) to obtain a Z
2

-basis one should add A3

2

+A+

3

A
2

to the mod2 reductions

of the integer basis.

We see that, depending on the triviality of the linear combinations of the

I 0
`

, D±
4

and A3

2

+ A+

3

A
2

cycles, the rational or integer local invariant spaces

have ranks at least 3 and at most 5, with the upper bound goes up to 6 over

Z
2

.

Switching to the space L
1

(M,E,N) of corank at most 1 maps, we need

to drop every mentioning of the D±
4

cycle in the above items. In particular,

this reduces all the rank bounds by 1. In particular, we have

Proposition 1.4.1. The space of integer local invariants of Lagrangian maps

of a non-oriented surface M to oriented R2

is 4-dimensional. Its basis is

formed by the invariants

Ic/2, Ic
+

, (I
d

+ I
`

� Ic/2)/2 and (I
d

� Ic
+

)/2.

Assume now the target surface N non-oriented making no assumption on

orientability of the source M. In addition to the loss of the local degree index

� in the notations of the strata in Section 1.3 we have had so far in the

current section, this condition allows for only one type of the A
4

bifurcation

and also makes no di↵erence between the D+

4,r

and D+

4,`

transitions. However,

this does not imply any further amendment to Table 3. Therefore, all our

observations about the spaces of discriminantal cycles stay true if at least one

of the surfaces M and N is not oriented.
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1.5 Non-trivial discriminantal cycles

In this section we are showing that some of the integer discriminantal cy-

cles we have found are non-trivial in perhaps the simplest possible situations,

namely in the space of Lagrangian mappings of a 2-sphere, in its component of

contractible maps (the contractibility requirement includes the contractibility

of the induced map to the Lagrangian Grassmannian). The idea is to con-

struct a loop in a space of Lagrangian maps having a non-zero intersection

number with a cycle. The loop in its turn will be non-contractible.

We start with a two-parameter family of caustics formed by the bifurca-

tions of the section of the D+

4

caustic in R3 by a smooth sheet tangent to the

cuspidal edge at the D+

4

point, as illustrated in Figure 19. The corresponding

generating family depending on two additional parameters � is

F (x, y, u, v,�) = x2y +
1

3
y3 + (v + �

1

)y2 + (av2 + �
2

)y + ux ,

where a > 1 is a constant. The equation F
y

= 0 shows that the source

bifurcates between a sphere in the xyv-coordinate space and the empty set.

The local degrees of the Lagrangian maps at all pleat points are the same,

and we are assuming them to be +1 at this moment.

A more complicated version of the homotopy � of planar caustics in Figure

19 appeared in [20] (without any relation to the sections of the D+

4

caustic)

as a candidate for a non-trivial loop in L(S2, T ⇤R2,R2) in assumption that

the orientation of S2 is ignored. We are going to show that � is indeed a
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non-trivial loop in such a setting provided the space of the Lagrangian maps

is interpreted correctly.

γ

λ1
λ2

u
v

A
+,+;e

4,0

+;+
D+

D
4

3

−,+;e
A

4,2

+;+
D

3

Figure 19: Sections of the D+

4

caustic by a smooth sheet non-transversal to

its cuspidal edge and generic in any other sense. In the bifurcation diagram,

all the cusps in its left half are of (�,+)-type, while all those in the right half

are (+,+)-cusps.

A Lagrangian map of a surface M ! T ⇤R2 ! R2

u,v

, defined by a global

generating family F of functions in the way considered for map germs in

Section 1.1, lifts to a map M ! R3

u,v,F

if we use the values of the family as

the third coordinate in the target. The image of such a map is called a wave

front (see [4] or [7] for the theory of Legendrian maps and other related topics).

Using this lifting, the homotopy of the Lagrangian maps in L(S2, T ⇤R2,R2)

corresponding to the path � in Figure 19 may be understood via the homotopy

of the corresponding wave fronts in R2

u,v,F

. The latter is an eversion of a flying

saucer front: starting � with the saucer with the inward co-orientation, we

are changing it to the outward one. See Figure 20.

From Figure 20 we see that the final Lagrangian map �
1

of the path � is a

composition �
0

�j of the initial map with the reflection j : (x, y, v) 7! (�x, y, v)
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γ

F

Figure 20: Eversion of a flying saucer front, and the sequence of bifurcations

of its sections by the planes v = const during the homotopy of the planar

caustics along the path � in Figure 19.

of the sphere. Up to a homotopy on S2, j may be taken to be any orientation-

reversing involution of the sphere.

Let �̄ be a path in L(S2, T ⇤R2,R2) formed by all the compositions �
t

� j,

where � = {�
t

, 0  t  1}. The path � = �̄� is a loop in L(S2, T ⇤R2,R2).

Proposition 1.5.1. (conjectured by Ohmoto) The loop � is not contractible.

Proof. According to Figure 19, the indices of intersection of � with the

discriminantal cycles D±,+

4

and D±,�
4

, contributed respectively by � and �̄,

are both +2. ⇤

Corollary 1.5.2. Consider the space of integer discriminantal cycles in the

connected component of L(S2, T ⇤R2,R2) containing maps for which the in-

duced maps of S2

to the Lagrangian Grassmannian of 2-planes in R4

are

contractible. In its subspace spanned by the cycles D±,+

4

and D±,�
4

, only the

di↵erence D±,+

4

� D±,�
4

may be the derivative of an integer-valued local in-

variant.
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The version of the above for a non-oriented sphere is as follows. Elim-

ination of the orientation of S2 means that we do not distinguish between

the two orientation options, that is, the space L(S2

nonor

, T ⇤R2,R2) is the quo-

tient L(S2, T ⇤R2,R2)/Z
2

where the Z
2

-action is by composing with any fixed

orientation-reversing involution of the sphere. Within such a setting, the path

� in Figure 19 is closed in this quotient. As it was noticed in Section 1.4.4,

the strata in Figure 19 lose now the second superscript in their notation, and

we see that the intersection index of � with the D±
4

discriminantal cycle is 2.

Hence this cycle may be the derivative of a mod2 local invariant, but not of

an integer or rational one. This addresses the question from [20].

Due to the local nature of all the constructions of this section, all the

claims we have done here stay valid for any Legendrian fibration E4 ! N2,

not just for the cotangent bundle of R2.
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Chapter 2

Local invariants of Lagrangian

mappings between 3-manifolds

In this chapter we consider the three-dimensional analogue of the theory de-

veloped in Chapter 1 for surfaces. The only concession we are making in

this substantially more complicated case is that we now do not distinguish

between the A+

3

and A�
3

singularities. As a whole, the exposition in this chap-

ter progresses in the order similar to that of Chapter 1. Everything said in

Section 1.1 specifically for two dimensions translates now in the obvious way

to three dimensions.

We carry on using the abbreviation L, but this time in the three-dimensional

sense, for the space L(M,T ⇤N,N) of all Lagrangian maps M # T ⇤N ! N

between fixed 3-manifolds M and N. Both M and N are oriented and without

boundaries. Moreover, M is compact.
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Some of the diagrams appearing in this Chapter are borrowed from [13]

and amended for the Lagrangian setting.

2.1 Stratification and some invariants of

generic caustics in three dimensions

Let f be a generic Lagrangian map between two oriented 3-manifolds, and

C(f) its caustic. Similar to the 2-dimensional case, we co-orient the regular

part A
2

of C(f) to the side where the number of local preimages of a point

is greater. Below is the list of the strata we distinguish in the singular locus

of C(f) following [4], page 18. The names of the strata correspond to the

uni- and multi-germ function singularities whose deformations serve as local

generating families for f (see [7]).

So, singularites of a generic caustic in three dimensions are:

A2

2

, transversal intersections of two smooth sheets (as shown in Figure 21);

A3

2

, transversal intersections of three smooth sheets (as shown in Figure 21);

A�

3

, cuspidal edges, consisting of values of f at its pleat points, that is,

points near which f has the generating family F (x, u, v, w) = ±x4 +

vx2+ux. The sign � = ± denotes the local degree ±1 of the Lagrangian

map. Since we have decided not to distinguish between functions x4 and

�x4 in the 3-dimensional case, we now include both sign options in the

generating family into the same equivalence class. Formally this means
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that we are enlarging our R
+

-equivalence by allowing to multiply the

functions by �1 (as shown in Figure 21);

A�

3

A
2

, transversal intersections of edges with regular sheets (as shown in Figure

21);

m

m

Figure 21: The A2

2

, A3

2

, A�

3

and A�

3

A
2

singularities of generic caustics

A�

4

, � = ± points, with the generating family F (x, u, v, w) = x5 + wx3 +

vx2 + ux. Figure 22 defines the choice of the index �. We assume there

that the target is taken with the standard right orientation which may

di↵er from du ^ dv ^ dw;

σ = −
A3
−A3

+ A3
− A3

+
σ = +

Figure 22: Positive and negative swallowtails, A�

4

.

D±,�

4

, the central points of the two caustics shown in Figure 23. The local

generating families are the R
+

-versal deformations

F (x, y, u, v, w) = ±x2y + y3 + wy2 + vy + ux (4)
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of the D±
4

function singularities. Here � = ± indicates the local degree

±1 of the map along the cuspidal edges (which is not the same as the

choice of the sign of x2y).

D
4

+ −

4
D

Figure 23: The D±
4

caustics in R3 also known as the ‘purse’ and ‘pyramid’

respectively.

In the Figures 21� 27 the thicker line represents a cuspidal edge.

Similar to Section 1.2 the most obvious way to define an invariant of

generic Lagrangian maps is to count the numbers of isolated singularities of

their caustics.

Examples 2.1.1. The number of isolated singularities of C(f) of a particular

type is, a local invariant. We have nine such invariants:

I
t

, the number of triple points A3

2

;

I
s± , the numbers of positive and negative swallowtails;

I
c± , the numbers of A±

3

A
2

points;

I
d

�
±
, the numbers of D�,±

4

points;
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I
d

+
±
, the numbers of D+,±

4

points.

Another obvious invariant is of a mapping.

I
�

, half of the Euler characteristic of the critical locus of a mapping.

2.2 Bifurcations in generic one-parameter

families of caustics

2.2.1 Corank 1 bifurcation

The classification below is extracted from [26] and Chapter 2 of [4]. Our

illustrations to the transitions define the co-orientations of the correspond-

ing strata in L, completely following the understanding introduced in the

2-dimesional case.

2.2.1.1 Multi-germs

Here we describe multi-germs without corank 2 points. As before we are using

the letter T to denote tangency of the participating components. The letters e

and h distinguish between elliptic and hyperbolic versions of bifurcations. We

let r represent the number of faces of the bounded regions after the bifurcation

to be co-oriented outwards. In some cases we still use r even if there is no

bounded region, in this case we shall comment on what this represents. Figure

24 provides the illustrations, some of them just for particular choices of the

indices.
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A4,r

2

, r = 2, 3, 4, intersection of four smooth sheets. The pre-bifurcation tetra-

hedral region has 4� r faces co-oriented outwards. Therefore, the r = 2

stratum A4,2

2

is not co-orientable in L by local means.

TA3,r

2

, r = 0, 1, 2, 3, three smooth sheets are pairwise transversal to each other,

but the line of intersection of any two of them is tangent to the third

sheet at the moment of bifurcation.

TA2,e,r

2

, r = 0, 1, 2, elliptic tangency of two smooth sheets.

TA2,h,r

2

, r = 0, 1, same, but hyperbolic. We write r = 1 if the sheets have the

same co-orientation, and r = 0 if the co-orientations are opposite. For

r = 1, we fail to locally co-orient the stratum in L.

A±
3

A2,r

2

, r = 0, 1, 2, cuspidal edge meets the intersection of two smooth sheets.

A2,e,±,±
3

, two cuspidal edges of given signs meet face-to-face. We will use A2,e,+,�
3

,

not A2,e,�,+

3

.

A2,h,±,±
3

, one of the cuspidal edges is overtaking the other. If the signs of the

edges coincide, we fail to co-orient the stratum in L by local means. For

A2,h,+,�
3

, we set the positive side of the bifurcation to be that with two

A+

3

A
2

points.

A±
4

Ar

2

, r = 0, 1, a smooth sheet passes through a swallowtail.

TA±
3

Ae,r

2

, r = 0, 1, cuspidal edge becomes tangent to a smooth sheet so that

the two local components of the caustic do not intersect before the
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bifurcation.

TA±
3

Ah,r

2

, r = 0, 1, the hyperbolic version of the previous. For r = 1, the co-

orientation of the A
2

sheet is towards the cuspidal edge before the bi-

furcation. For r = 0, it is opposite.

2.2.1.2 Uni-germs

For corank 1 uni-germs we have the following transformations of the caus-

tics (see Figure 25) along with the normal forms of the generating family

bifurcations.

A�,+,+

3

, ±F = x4 + (v2 + w2 � �)x2 + ux, birth of a flying saucer. Here �

is the sign of the edge, and the two pluses in the notation are the

signs of the squares in the coe�cient of x2.

A�,+,�
3

, ±F = x4 + (v2 � w2 + �)x2 + ux, hyperbolic transformation of an

edge.

A�,�,�
3

, ±F = x4 � (v2 + w2 + �)x2 + ux, death of a compact component of an

edge.

Ae

4

, F = x5 + (w2 � �)x3 + vx2 + ux, birth of cuspidal lips.

Ah

4

, F = x5 + (�� w2)x3 + vx2 + ux, beaks bifurcation on the edge.

A�,s

5

, �, s = ± : ±F = x6 � �x4 + vx3 + wx2 + ux. Here � is the local

degree of the whole map, while s is the sign of the two

swallowtails born in the bifurcation.
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m+

<

m m

m,s

m

4A

TA2
2,e,2

2

m

3A
2,e,

3

A2,h,+,ï3

2

m

A

m

2,1

s

TA2
3,1

2A3
e,1TA

A

3A2
h,1TA

0

m

4,3

TA2
2,h,0

A

A

m

2

Figure 24: Generic one-parameter families of corank 1 multi-germs of caustics
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2.2.2 Corank two bifurcations

This time we allow one of the critical points involved to have corank 2.

2.2.2.1 Multi-germs

Below is the list of multi-germ bifurcations in this case. The illustrations are

in Figure 26. The planar families in Figure 10 are the families of sections of

the purse and pyramid by the moving A
2

sheet we are seeing now.

D�,�

4

A
2

, a smooth sheet passing through the pyramid in the direction of its co-

orientation.

D+,�

4,1

A+

2

, a smooth sheet passing through the purse so that the number of triple

points increases. The sheet is moving in the direction of its co-orientation.

D+,�

4,1

A�
2

, a smooth sheet passing through the purse so that the number of triple

points increases. The sheet is moving in the direction opposite to its

co-orientation.

D+,�

4,2

A+

2

, a smooth sheet passing through the purse so that the triple point passes

from the left to the right if we are looking in the direction of the move-

ment which in this case coincides with the co-orientation of the sheet.

D+,�

4,2

A�
2

, a smooth sheet passing through the purse so that the triple point passes

from the right to the left if we are looking in the direction of the move-

ment which is now opposite to the co-orientation of the sheet.
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writhe = 

A
5

  ,sσ

σ

A
3

s

σ

s

  ,+,−

σ  ,−,−

σ

σ

σ

  ,+,+σ

3
A

A

A
4

e

A
4

h

σ

3

s

Figure 25: Generic one-parameter bifurcations of caustics of corank 1 maps.
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+,σ

A

A−

+,σA+

4,2

 2

 2

−

−,σ

+

D

 2A

4

 2

A

D

 2

4,1

+,σD4,1

+,σD4,2

D

σ

σ

σ

σ

σ

Figure 26: Generic one-parameter bifurcations of multi-germ caustics involv-

ing corank 2 points of the maps.
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2.2.2.2 Uni-germs

All such bifurcations are shown in Figure 27 and taken from [4], pages 32 and

33. According to [26], the generating families for the first four transitions are

induced from (4) and have the form

F = ±x2y +
1

3
y3 + '

y2

2
+ vy + ux, (5)

where, is in the line order, ' respectively is:

• D�,�

4,q

: �� w2 ± v + au

• D+,�

4,a

: �� w2 + v + au, |a| < 1

• D+,�

4,b

: �� w2 ± v + au, |a| > 1

• D+,�

4,c

: �� w2 � v + au, |a| < 1

Here a 2 R is a modulus. In D�,�

4,q

, q is for ‘quadratic’.

The D�

5

generating family is

±F = x2y + y4 � (�± w + au)y3 + wy2 + vy + ux, a 2 R.

2.2.3 Derivatives of the basic invariants

Direct analysis of the illustrations to our lists of bifurcations in generic one-

parameter families yields
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<,mD4,q

+,mD4,a

+,mD4,b

+,mD4,c

mD5

m

m

m

m

Figure 27: Generic one-parameter bifurcations of uni-germ caustics near

corank 2 points of the maps.
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Lemma 2.2.1. The derivatives of the 10 invariants introduced in Example

2.1.1 are

I 0
t

: 2TA3

2

+ 2A
3

A2

2

+ A
4

A
2

+ 2D+

4,1

A
2

I 0
s+

: A
e/h

4

+ 2A+,+

5

+ 2A�,+

5

+D
5

I 0
s� : A

e/h

4

+ 2A+,�
5

+ 2A�,�
5

+D
5

I 0
c+

: 2TA+

3

A
2

+ 4A2,e,+,+

3

+ 2A2,e,+,�
3

+ 2A2,h,+,�
3

+ A
4

A
2

+2A+

5

� 2D�
5

I 0
c� : 2TA�

3

A
2

+ 2A2,e,+,�
3

+ 4A2,e,�,�
3

� 2A2,h,+,�
3

+ A
4

A
2

+2A�
5

� 2D+

5

I 0
d

+
+

: 2D+,+

4,q

�D+

5

I 0
d

+
�

: 2D+,�
4,q

�D�
5

I 0
d

�
+

: 2D�,+

4,q

+D+

5

I 0
d

�
�

: 2D�,�
4,q

+D�
5

I 0
�

: �D+

4,q

+D�
4,q

+ Aq

3

Here, similar to the conventions introduced in Section 1.3.3, omission of an

index means summation along all possible values of this index. Also A
e/h

4

=

Ae

4

+ Ah

4

. and D+

4,q

= D+

4,a

+D+

4,b

+D+

4,c

.

It is easy to check that the ten derivatives in the last Lemma are linearly

independent over R. Let I 0 be the linear space spanned over R by these 10

derivatives. We have

Corollary 2.2.2. For an integer basis of the lattice I 0
Z of integer discrimi-
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nantal cycles in the space I 0
one can take the derivatives of the invariants

�
I
t

� I
c�

�
/2 : TA3

2

+ A
3

A2

2

� TA�
3

A
2

� A2,e,+,�
3

� 2A2,e,�,�
3

+ A2,h,+,�
3

�A�
5

+D+

4,1

A
2

+D+

5

I
s+ : A

e/h

4

+ 2A+,+

5

+ 2A�,+

5

+D
5

�
I
s+ � I

s�

�
/2 : A+,+

5

� A+,�
5

+ A�,+

5

� A�,�
5

�
I
c+ � I

c�

�
/2 : TA+

3

A
2

� TA�
3

A
2

+ 2A2,e,+,+

3

� 2A2,e,�,�
3

+ 2A2,h,+,�
3

+A+

5

� A�
5

+D+

5

�D�
5

I
c� : 2TA�

3

A
2

+ 2A2,e,+,�
3

+ 4A2,e,�,�
3

� 2A2,h,+,�
3

+ A
4

A
2

+2A�
5

� 2D+

5

I
d

+
+

: 2D+,+

4,q

�D+

5

I
d

+
�

: 2D+,�
4,q

�D�
5⇣

I
d

�
+
+ I

d

+
+

⌘
/2 : D+,+

4,q

+D�,+

4,q

⇣
I
d

�
�
+ I

d

+
�

⌘
/2 : D+,�

4,q

+D�,�
4,q

I
�

: �D+

4,q

+D�
4,q

+ Aq

3

2.2.4 Classification of the discriminantal cycles and

invariants

All statements in this section, unless specified, refer to any connected com-

ponent of L(M,T ⇤N,N). The source and target 3-manifolds M and N are

oriented. All invariants are considered up to a choice of additive constants on

connected components of the spaces of maps.

The main result of this chapter is
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Theorem 2.2.3. The space of rational discriminantal cycles in L(M,T ⇤N,N)

has rank 10.

This Theorem immediately implies the following two corollaries.

Corollary 2.2.4. The space of rational discriminantal cycles in L(M,T ⇤N,N)

is spanned by the ten derivatives from Lemma 2.2.1.

Corollary 2.2.5. The space of integer discriminantal cycles in L(M,T ⇤N,N)

has rank 10. It is spanned by the ten derivatives from Corollary 2.2.2.

An immediate translation of the last two corollaries to the language of

local invariants is

Corollary 2.2.6. The dimension of the space of the integer invariants on

L(M,T ⇤N,N) is 10, and it is spanned over the integers by the invariants

from Corollary 2.2.2. For the 10-dimensional space of the rational invariants

one can take a simpler basis consisting of the ten invariants from Example

2.1.1.

We also prove the mod2 analogue of Theorem 2.2.3:

Theorem 2.2.7. The space of Z
2

discriminantal cycles in L(M,T ⇤N,N) has

rank 16.

This contains the ten dimensional space spanned by the mod2 reductions

of the invariants in Corollary 2.2.2. For the case of ordinary maps between

3-manifolds with the target R3 or S3, papers [13] and [2] introduced mod2
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invariants I
fe

, dc+ and dc�. Each of these invariants combines the number

of components and the self-linking number of one of three framed links con-

structed from the cuspidal edge and self-intersection locus of the critical value

set of a map. We have modified the three invariants to the Lagrangian set-

ting, and the corresponding derivatives are linearly independent modulo the

ten-dimensional space mentioned above. This also provides the knowledge of

13 mod2 linearly independent Lagrangian invariants for the special targets.

However, we are not giving any details of the three invariants in this thesis in

order not to increase its length any further. This results in three more linearly

independent generators for the mod2 discriminantal cycles. This results in a

13 dimensional space inside our rank 16 space.

Theorems 2.2.3 and 2.2.7 are proved in Section 2.4.

2.3 Bifurcations in 2-parameter families

To derive equations on the increments of the invariants across the codimension

1 strata in L listed in the previous section, we shall now study – similar to

what was done in Section 1.4 – bifurcations of codimension two singularities

of Lagrangian maps between 3-manifolds.

We have 68 strata, four of which (A4,2

2

, TA2,h,1

2

, A2,h,+,+

3

, A2,h,�,�
3

) we have

failed to co-orient. One of our main concerns in deriving the equations will

be the reduction of the number of unknown increments.
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2.3.1 Corank one bifurcations

There is basically no di↵erence within corank 1 singularities between La-

grangian and ordinary maps of 3-manifolds, especially after our decision to

put functions x4 and �x4 within the same equivalence class. Therefore, the

main task of this section is to adjust the relevant considerations of [13] to the

Lagrangian setting.

2.3.1.1 Extra A
2

component

Firstly we shall consider passing an extra generic A
2

sheet of C through a point

of codimension 1 bifurcation S. Figure 28 shows three types of bifurcation

diagrams. The left gives the equations 1-5 in the following table which reduces

to the equation u = v. The middle and right are for the cases 6 and 7. From

the equations obtained from this we are able to introduce bigger strata, like we

did in Section 1.4.1. In the cases when one of the summands in a big stratum

is non-co-orientable, then we have the increment of any integer invariant over

the big stratum be zero.

3

A
1

2
A

+

4

A
+,+

5
A

2,e,+,−

3

A
2

2
A

+

3

A
2

2
A

+
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2
A

−

3

A
2

2
A

−

A
2,e,+,−

3

3
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A
+,+

5

A
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2
A

+

4

A
2

2
A

+

3
A

2

2
A

+

Figure 28: Discriminants of the families obtained from interaction of a generic

smooth sheet with a codimension 1 bifurcation.
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S r Equation Big stratum

1. TA3,r

2

2, 3 [a4,2
2

] = a4,3
2

= a4,4
2

[A4

2

]

2. TA2,e,r

2

0, 1, 2 ta3,r+1

2

= ta3,r
2

TA3

2

3. TA�

3

Ae,r

2

0, 1 a�
3

a2,r+1

2

= a�
3

a2,r
2

A�

3

A2

2

4. A�,+,+

3

ta�
3

ae,0
2

= ta�
3

ae,1
2

TA�

3

Ae

2

A�,�,�
3

ta�
3

ah,0
2

= ta�
3

ah,1
2

TA�

3

Ah

2

5. Ae

4

a+
4

a0
2

= a�
4

a1
2

a+
4

a1
2

= a�
4

a0
2

6. A+,+

5

a+
4

a0
2

= a+
4

a1
2

A
4

A
2

7. A2,e,+,�
3

2a+
3

a2
2

= 2a�
3

a2
2

A
3

A2

2

over Z

2.3.1.2 Cubic Bifurcations

The Ae

3

singularity has generating family x5 + w2x3 + vx2 + ux. Writing w3

instead of w2, we obtain a codimension 2 uni-germ, with a Lagrangian versal-

deformation x5 + (w3 + �
1

w + �
2

)x3 + vx2 + ux. (See [3] for the details.) Its

discriminant is a semi-cubical parabola 4�3
1

+27�2
2

= 0, and yields coincidence

of the increments across its half-branches. Similarly replacing quadratic con-

figurations by cubic in some other codimension 1 bifurcations S, we obtain a

list like in the previous subsection:
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S Equation Big stratum

8. Ae

4

ae
4

= ah
4

A
e/h

4

= Ae

4

+ Ah

4

9. A�,+,±
3

a�,+,+

3

= a�,+,�
3

= a�,�,�
3

A�,q

3

= A�,+,+

3

+ A�,+,�
3

+ A�,�,�
3

10. TA�

3

Ae

2

ta�
3

ae
2

= ta�
3

ah
2

TA�

3

A
2

= TA�

3

Ae

2

+ TA�

3

Ah

2

11. TA2,e,r

2

, TA2,h,r

2

ta2,e,2
2

= �ta2,e,0
2

= ta2,h,0
2

TA2,opp

2

= TA2,e,2

2

� TA2,e,0

2

+ TA2,h,0

2

ta2,e,1
2

= [ta2,h,1
2

] [TA2,dir

2

] = TA2,e,1

2

+ [TA2,h,1

2

]

We do not omit the indices in the big strata here but introduce new no-

tation. Let q stand for quadratic, dir = direct for the tangency between two

sheets with coinciding co-orientations and opp = opposite for the tangency

between two sheets of opposite co-orientation.

So far we have reduced the number of unknown increments to 46.

2.3.1.3 Multi-germ families: Non-transversal interactions with a

cuspidal edge

Consider three codimension 2 events that occur when the plane tangent to the

critical point set at its edge point is in a special position with the other local

components of C. These are when the plane coincides with the plane tangent

to a smooth A
2

sheet, the plane contains the tangent direction of the line of

intersection of two A
2

sheets and the plane contains the tangent direction of

another cuspidal edge. These three events are shown in Figure 29.

Respectively we obtain the equations,
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Figure 29: Codimension 2 degenerations due to special positions with respect

to the tangent plane at an edge point.

12. ta2,opp
2

= [ta2,dir
2

]

13. 2ta3
2

= 2a+
3

a2
2

= 2a�
3

a+
2

14. 2ta+
3

a
2

= a2,e,+,+

3

+ [a2,h,+,+

3

]

= a2,e,+,�
3

+ a2,h,+,�
3

2ta�
3

a
2

= a2,e,+,�
3

� a2,h,+,�
3

= a2,e,�,�
3

+ [a2,h,�,�
3

]

Equation 12 enables us to create the big stratum, [TA2

2

] = TA2,opp

2

+

[TA2,dir

2

] over mod2 invariants only.
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Figure 30: Codimension 2 degenerations involving swallowtails.

2.3.1.4 Multi-germ families: Interaction with a swallowtail

Similar to before we now consider how the swallowtail interacts with other

local components of C. In Figure 30 left, we have at the most degenerate

moment, the incoming smooth sheet tangent to the direction of the self-

intersection curve at the swallowtail point. The two remaining cases in Figure

30 are clear. These give us the equations:

15. 2a
4

a
2

= ta+
3

a
2

+ ta�
3

a
2

+ ta3
2

16. a�
3

a2
2

= a+
3

a2
2

+ [a4
2

]

17. 2a
4

a
2

= a+
3

a2
2

+ a2,e,+,+

3

� a2,h,+,�
3

= a+
3

a2
2

+ a2,e,+,�
3

+ [a2,h,+,+

3

]

= a�
3

a2
2

+ a2,e,+,�
3

+ [a2,h,�,�
3

]

= a�
3

a2
2

+ a2,e,�,�
3

+ a2,h,+,�
3
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2.3.1.5 Uni-germs of codimension 2

Putting generating functions x4 and �x4 into the same class reduces classifi-

cation of uni-germs of corank 1 to the classification of similar singularities of

ordinary maps. Translation of the corresponding normal forms from [13] to

the Lagrangian language of generating functions provides us with the normal

forms given in the caption of 31 and the bifurcation diagrams shown in that

Figure. The diagrams in the first and second lines there are coming from

di↵erent orientation choices.
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Figure 31: Discriminants of the families

x7 + (�
1

± w + ↵v)x5 + �
2

x4 + wx3 + vx2 + ux, ↵ 2 R;

(±x6 + wx4 + (±w2 + �
1

w + �
2

)x3 + vx2 + ux;

x5 + vx3 + (±v2 + �
1

v + �
2

± w2)x2 + ux.
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18. a2,h,+�
3

= a+,+

5

� a�,+

5

= a+,�
5

� a�,�
5

19. 2ae/h
4

= a+,+

5

+ a+,�
5

� 2ta+
3

a
2

= a�,+

5

+ a�,�
5

� 2ta�
3

a
2

20. a+,q

3

� a�,q

3

= [ta2
2

]

Equation 20 gives us the big stratum Aq

3

= A+,q

3

+ A�,q

3

over Z.

2.3.2 Corank two bifurcations

So far we have decreased the number of unknown increments to 42 out of

which five may be non-trivial only in the mod2 case. We shall now consider

the corank two bifurcations to reduce this number further and to add to our

system of equations on the increments.

2.3.2.1 Uni-germs: D
4

We start with the cubic version of the one-parameter quadratic bifurcation

of the D±
4

singularities introduced in Section 2.2.2.2. Namely, in the D±
4

R
+

-miniversal family

F = ±x2y +
1

3
y3 +

'

2
y2 + �y + �x

we now set

' = ↵3 + s↵ + t± � + a�, a 2 R, a 6= ±1. (6)
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This gives us an st-family of caustics in R3

↵,�,�

with the big caustic in the

5-space being a direct product of either purse or pyramid with R2.

What follows is equally valid for deforming with s↵ + t of any function

'|
s=t=0

in ↵, �, � with the same terms ↵3 ± � + a� of the two lowest quasi-

homogenous weights. The bifurcation diagrams in the parameter st-plane are

shown in Figure 32.

t

4,c
+,m

D4,a
+,m

D4,b
+,m

D4,b
+,m

D4,q
<,m

D4,q
<,m

s

D

Figure 32: The bifurcations diagrams in the st-plane for the (6) settings: the

left is for D�
4

, the final two are for D+

4

with the middle when |a| < 1 and the

right when |a| > 1.

In Figure 32, the left and right diagrams produce the trivial roundabout

equation whereas the middle yields

Equation Big stratum

21. d+,�

4,a

= d+,�

4,c

D+,�

4,a/c

We shall now inspect a reason for the constraint a 6= ±1 in Section 2.2.2.2.
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So, for D+

4

, set in (5) (same as in F at the start of this section)

' = ±↵2 ± � ± � + q(�, �) + t+ s`(�, �) + higher quasi-homogeneous terms.

Here q is a quadratic form not divisible by ±� ± � (with the signs chosen in

a particular '), and ` is a linear form which is not a multiple of ±� ± �.

Function ', as described is such that for t = s = 0 its restriction to one

of the lines � = ±� in ↵ = 0 has a Morse point at the origin and this point

moves along this line o↵ the origin if s 6= 0.

For example, set

' = ↵2 + � + � ± �2 + 2s� + t. (7)

Restriction of ' onto � = �� < 0 = ↵ is ±�2 + 2s� + t. It has critical point

on its zero level (that is, a double root in �) i↵ s2 = ±t. Since we want it to

be only on � < 0, we take just half of this parabola: � = ⌥s < 0. Such a

critical point on one of the arms of the ‘V’ self-intersection locus of the purse

corresponds to a TA2

2

degeneration (it may be checked that it is TA2,dir

2

). The

bifurcation diagrams for the sign choices in (7) are shown in Figure 33.

The TA2

2

stratum in both diagrams contributes mod2 only, due to the

equations 11 and 12. In both of the diagrams here, one of the q
i

’s is b and
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Figure 33: Bifurcation diagrams for the settings (7)

the other is a/c. Here the roundabout equations in both cases are,

22. d+,+

4,a/c

� d+,+

4,b

+ [ta2
2

] = 0

d+,�
4,a/c

� d+,�
4,b

+ [ta2
2

] = 0

All other sign choices in ' (for ↵2, �, �) yield the same equations.

2.3.2.2 Uni-germs: D
5

Following [26], we have only one codimension 2 singularity induced from the

R
+

-miniversal deformation of the D
5

function. The corresponding generating

family is

±G = x2y +
1

4
y4 +

1

3
↵y3 +

1

2
 y2 + �y + �x,

assuming our 3-dimensional caustics are in R3

↵,�,�

, s and t are the parameters,

and  |
s=t=0

:=  
0

(↵, �, �) is k↵2, k = const 6= 0, modulo terms of higher

quasi-homogeneous order. We take  = k↵2 + s↵ + t which is su�cient for

our considerations.

Similar to what we will be doing later in Chapters 3 and 4 (all the ideas for
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our current considerations are detailed there) for D±
6

caustics, it is convenient

to introduce the function,

 = y2(y3 + ↵y2 +  y + �) +
�2

4

and describe all degenerations in G in terms of those in  . Our approach

will be as follows. Take a stratum X ⇢ R4

↵, ,�,�

parametrized in terms of  .

Consider its preimage X̃ ⇢ R5

↵,�,�,s,t

under the map

(↵, �, �, s, t) 7! (↵, (↵, �, �, s, t), �, �),

where dimX̃ = dim X + 1. The critical value set Y ⇢ R2

s,t

of the restriction

of the projection ⇡ : R5

↵,�,�,s,t

! R2

s,t

to X̃ is one of 1-dimensional strata in

the bifurcation diagram we need.

The correspondence X ⇠ Y is:

dimX = 0 : D
5

⇠ D
5

dimX = 1 : D±
4

⇠ D±
4,q

A
4

⇠ A
e/h

4

A
3

A
2

⇠ TA
3

A
2

D
3

A
2

⇠ TD
3

A
2

dimX = 2 : A2

2

⇠ TA2

2

A
3

⇠ Aq

3

dimX = 3 : A
2

, the regular part of the caustic, cannot have any critical

values under ⇡ as long as we assume our Lagrangian sub-

manifold G
x

|
s=t=0

= G
y

|
s=t=0

= 0 smooth (and this is so for

the family we are considering).
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We will mostly be working with closures X of the strata. Therefore, we will

be getting � along with the strata Y � also the critical value sets for the

strata of X\X.

The D�

5

stratum in R5

↵,�,�,s,t

is ↵ =  = � = � = 0, that is, the s-axis.

Hence the D�

5

stratum in the parameter plane R2

s,t

is t = 0.

The D�

4

stratum in R5 is � = � =  = 0 ) k↵2 + s↵+ t = 0. This surface

projects to R2

s,t

with a fold. The critical value set is the discriminant of the

polynomial in ↵: s2� 4kt = 0. This is the D±,�

4,q

stratum, which is co-oriented

towards the positivity of the discriminant.

<

5
σ D5

σ

D4,q
−,σ D4,a/c

+,σ

t

s
D4,a/c
+,σ D4,q

−,σ

D5
σD5

σ

k>0 k 0

D

Figure 34: The D
5

and D
4,q

strata of the bifurcation diagram

The mutual position of the bifurcational strata found so far is shown in

Figure 34. The co-orientations of the D�

5

half-branches here will be explained

in the A
4

part below. The +/� choice in the D±,�

4,q

coincides with the sign of

the double root ↵ of the equations k↵2+ s↵+ t = 0 for the (s, t) taken on the

half-branch. For D+

4

, only the a/c option occurs.

The A
4

stratum. Take  = (y � u)4(y + u

4

). This is a parametrization of
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the A
4

curve in the ordinary D
5

caustic in R4 = R4

↵, ,�,�

. This gives us,

↵ = �15

4
u =) u = � 4

15
↵

� = �5

2
u3

�2 = u5 =) u > 0 =) ↵ < 0

 = 5u2 =) k↵2 + s↵ + t =
16

45
↵2, ↵ < 0, �2 ⇠ �↵5.

Projection of the surface
�
k↵2 + s↵ + t = 16

45

↵2

 
to R2

s,t

has critical locus
�
s = �2(k � 16

45

)↵,↵ < 0
 
doubled in the �-direction. The critical value set is

the stratum 2Ae/h

4

defined by the vanishing of the discriminant of the quadrat-

ics and co-oriented towards positivity of the discriminant: s2� 4t(k� 16

45

) = 0

(only the ↵ < 0 half is needed). See Figure 35.

A reason behind our co-orientations of the D
5

half-branches in Figure 35

is as follows. At the Ae/h

4

strata we create two A
4

points. Same happens when

we cross a D
5

stratum in the positive direction. These are the only strata at

which the number of A
4

points changes. Since we know the co-orientation of

A
e/h

4

, and the total roundabout increment of the number of A
4

points must

be zero, this gives us the co-orientations of the D�

5

half-branches.

The A
3

A
2

stratum of the D
5

caustic in R4 is parametrised using

 =
⇣
y � u

2

⌘
3

⇣
y +

u

3

⌘
2

.
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Figure 35: The A
4

surface in R5

↵,�,�,s,t

with the fold locus on it. Its edge is the

D
5

stratum. Projection to R2

s,t

provides the bifurcational strata.

Hence,

↵ = �5

6
u

 = � 5

36
u2 )  = �↵

2

5
) ↵2

✓
k +

1

5

◆
+ s↵ + t = 0

� =
5

24
u3

�2 = � 1

18
u5 ) u < 0 ) ↵ > 0.

The critical locus of projecting the surface
�
↵2

�
k + 1

5

�
+ s↵ + t = 0

 
to R2

s,t

is s = �2
�
k + 1

5

�
↵ (doubled by �). The critical value set is 2TA��

3

A
2

: s2 �

4
�
k + 1

5

�
t = 0 co-oriented to the positivity of the left hand side. Similar to

the A
4

case we obtain the bifurcation curves in Figure 36.
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Figure 36: Obtaining the TA
3

A
2

strata of the bifurcation diagram

The D
3

A
2

stratum of the D
5

caustic is parametrised by

 = y3(y � u)2.

Hence we have,

� = � = 0

↵ = �2u )  � ↵2

4
= 0 )

✓
k � 1

4

◆
↵2 + s↵ + t = 0

 = u2

This time we are mapping the whole surface,

✓
k � 1

4

◆
↵2 + s↵ + t = 0, (8)
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without any constraint on ↵ to R2

s,t

. The critical value set is TD�

3

A
2

given by

the discriminant of (8) is s2 � 4
�
k � 1

4

�
t = 0. It is co-oriented in R2

s,t

by the

positivity of the left hand side of the equation. See Figure 37.
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σ
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σ
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σ
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σ
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D
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σ

k > k

D

Figure 37: The TD
3

A
2

strata

Consider now the A2

2

stratum of the D
5

caustic, with the parametrization,

 = (y2 + uy + v)2(y + w). (9)

The vanishing of the coe�cient of y in the expansion gives,

v2 = �2uw. (10)

Positivity of the constant term �

2

4

implies v2w = 4u2w3 > 0 ) w > 0.

For the quadratic factor in (9) to have two real roots: u2 � 4v > 0. One

can show that the 3-dimensional variety in R5

↵,�,�,s,t

which is the preimage of

the parametrized 2-dimensional surface (9,10) from R4

↵, ,�,�

projects to R2

s,t

with the critical value set being the discriminant of the quadratic equation
�
k + 1

5

�
↵2+s↵+t = 0, that is, exactly the 2A

3

A
2

stratum. Hence the stratum
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TA2

2

for our 2-parameter deformation is empty.

The A
3

stratum. This time we are searching for Aq

3

points which corre-

spond (along with D±
4,q

points) to the transformations of the critical point set.

The critical point set of the map (x, y,↵) 7! (↵, �, �) is given by

Hessian(G)
x,y

=

�������

2y 2x

2x 3y2 + 2↵y +  

�������
= 0,

that is, it doubly covers the set y(3y2 + 2↵y +  ) � 0 in R2

y,↵

, that is, the set

y

0

@3
⇣
y +

↵

3

⌘
2

+

✓
k � 1

3

◆ 
↵ +

s

2
�
k � 1

3

�
!

2

+ t� s2

4
�
k � 1

3

�

1

A � 0.

Therefore the Aq

3

stratum in R2

s,t

is s2 = 4
�
k � 1

3

�
t, while the D±

4,q

is s2 = 4kt.

The mutual position of these strata in R2

s,t

is shown in Figure 38.

0

4,a/c

+

A3
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−

A3
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+
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−

A3
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+D4,q
−
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k 1
3

<<0 k<

D

Figure 38: The Aq

3

and D±
4,q

strata

The Euler characteristic of the critical point set jumps at a positive cross-

87



ing by 2 on D�
4,q

, by �2 on D+

4,a/c

and by 2 on Aq

3

. Due to that, our earlier

knowledge of the D±
4,q

co-orientations gives us now the co-orientation of the Aq

3

half-branches. It may also be easily checked that one of these half-branches

is A+,q

3

and the other A�,q

3

.

Collecting all the information obtained in this section, we obtain

Lemma 2.3.1. The two-parameter bifurcations with the big caustic D
5

yield

the following roundabout equations:

23. 2d+
5

+ d+,+

4,a/c

� d�,+

4,q

� 2ae/h
4

+ 2ta+
3

a
2

+ a+,q

3

+ a�,q

3

= 0

2d�
5

+ d+,�
4,a/c

� d�,�
4,q

� 2ae/h
4

+ 2ta�
3

a
2

+ a+,q

3

+ a�,q

3

= 0

2.3.2.3 Extra A
2

component

We now consider passing a generic smooth sheet through the codimension

one bifurcations S listed in Figure 27. Sending an A
2

sheet through the D
4

sigularities of Figure 27 gives us the bifurcation diagrams shown in Figure 39

(cf Figure 28, left), and the equation and big strata in the table below.

−,σ

4,q

A2D4
−,σ

A2D4
−,σ

D
−,σ

4,q D
+,σ

4,a/c D
+,σ

4,a/c D
+,σ

4,b D
+,σ

4,b

D4,1
+,σ

A2
+

A2
−

D4,1
+,σD4,2

+,σ
A2

−

D

D
+,σ

4,2 A2
+

Figure 39: The bifurcation diagrams for a generic A
2

sheet passing through

the D
4

caustics in Figure 27.
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S Equations Big stratum

24. D�,�

4,q

2d�,�

4

a
2

= 0 [D�,�

4

A
2

]

25. D+,+

4,a

or D+,+

4,c

d+,+

4,1

a+
2

= d+,+

4,1

a�
2

D+,+

4,1

A
2

D+,�
4,a

or D+,�
4,c

d+,�
4,1

a+
2

= d+,�
4,1

a�
2

D+,�
4,1

A
2

26. D+,+

4,b

d+,+

4,2

a�
2

= d+,+

4,2

a+
2

D+,+

4,2

A
2

D+,�
4,b

d+,�
4,2

a�
2

= d+,�
4,2

a+
2

D+,�
4,2

A
2

Due to equation 24, we are considering from this moment the strata D�,�

4

as

non-co-orientable.

Consider now S = D�

5

. Restrict our attention to the sections by the smooth

A
2

sheets of the caustics in the last line of Figure 27. This way the 2-parameter

bifurcation of the 3-dimensional caustics we are considering now induces a

generic 2-parameter bifurcation of planar caustics whose diagram we had in

Figure 18. Forgetting the di↵erence between x4 and �x4 function singularities

and adding the D�

5

stratum to that earlier bifurcation diagram, we obtain

Figure 40. This gives us the equations,

27. 2a
4

a
2

� ta�
3

a
2

� ta+
3

a
2

� d+,+

4,1

a
2

+ [d�,+

4

a
2

] = 0

2a
4

a
2

� ta+
3

a
2

� ta�
3

a
2

� d+,�
4,1

a
2

+ [d�,�
4

a
2

] = 0

2.3.2.4 Extra A
3

component

This and the next two subsections are in a sense similar to Section 2.3.1.4

where the interaction of a swallowtail with other local components of a caustic
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5
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Figure 40: Bifurcation diagram of passing a smooth sheet through D
5

.

was studied. We now replace the swallowtail with either purse or pyramid.

All through these three subsections we are taking the pyramid as it is

shown in Figure 23 and assume that its ‘top’ edge is a flat curve. Let ⇧

be the plane of this edge. Every additional component C of the caustic will

be a cylinder with its generators assumed to be perpendicular to ⇧. All our

two-parameter bifurcations will be obtained by parallel translations of C. In

each case C will have a distinguished generator `. The bifurcation diagram of

the family will be drawn in ⇧ and will be the set of the meeting points of `

with ⇧ at the moments of bifurcations.

Similar approach will be taken to the bifurcations involving a purse: the

role of ⇧ will be taken by a plane containing its only cuspidal edge and dividing

the purse in Figure 23 into two di↵eomorphic (but not necessarily symmetric)

halves.

So, we start with a cuspidal surface as a component C in this section, and

90



look first at its bifurcations with a pyramid. The distinguished generator of

C this time is the cuspidal edge line.

There are two ways to place the cuspidal surface relative to the pyramid.

One is shown in Figure 41 which gives the left bifurcation diagram in the

same figure. The second is obtained by rotating the cuspidal surface by 180�

about its edge which gives the right bifurcation diagram.

2

s

m

A3
2,e A3

2,e

A3
2,h

A3
2,h

A3
2,h

A2D<
4
,m A2D<

4
,m

A2D<
4
,m A2D<

4
,m

A3
2,h A3

2,h

A3
2,e

A3
2,e A3

2,e
A3
2,e

A3
2,h

s
3 A

TAs3 A2 TAs3 A2

TAs3 A2 TA

Figure 41: A cuspidal edge surface passing through a pyramid along with the

corresponding bifurcation diagram (left) and the bifurcation diagram when

the surface is rotated by 180� about its edge (right).

We are not specifying all the indices in the notations of the strata in the

diagrams of Figure 41, but it is clear that the symmetric pairs of half-branches

in each case have the same names and are co-oriented in opposite ways (in
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the clock-wise sense) if they are co-orientable. This yields trivial roundabout

equations for the pyramid.

Consider now a cuspidal surface and a purse, in a relative position as in

Figure 42, and also with the cuspidal surface upside down. We have two

subcases in each situation: at the most degenerate moment, the two self-

intersection rays of the purse may be either to the same side or to di↵erent

sides of the plane tangent to the cuspidal surface at its edge. As we can see

from the diagrams in Figure 42, the one-side option gives us the equations

28. �2d+,+

4,1

a
2

+ 2a+
3

a2
2

= 0

�2d+,�
4,1

a
2

+ 2a�
3

a2
2

= 0

Figure 42 also shows that the di↵erent-sides option gives the trivial equa-

tions, due to the symmetry of the bifurcation diagrams.

2.3.2.5 Extra A2

2

component

We now replace the cuspidal surface of the previous subsection with two

transversal smooth sheets. Assuming that their self-intersection line passes

through the vertex of a pyramid at the most degenerate moment, we obtain

the bifurcation diagram shown in Figure 43. Since we are now treating the

D�,�

4

A
2

strata as non-co-orientable, the diagram yields the trivial roundabout

equation.
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m,s
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+,mA2 D4,1

+,mA2
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+,mA2
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A22
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A22 A22
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A2,e,3
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sTA A2TA3
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TA3
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sA3

TA3
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sA3

sA3

TA3
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s

sA3

TA3
s

sA3

TA3

Figure 42: Bifurcations of a cuspidal surface around a purse. The left pair

of the diagrams corresponds to the relative position of the surface as shown

at the top of the figure, and the right pair is for the cuspidal surface rotated

by 180 degrees about its edge. The top pair of the diagrams is for the self-

intersection rays of the purse being to the same side of the plane tangent to

the cuspidal surface at its edge at the most critical moment, and the bottom

pair is for the two rays being on its di↵erent sides.
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4
<,mA2 D4

<,mA2
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D

A23
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A23
m  AA23
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A23

m  A

D4
<,mA2A2D4

<,m

A23
m  A
TA2

3
TA2

3

A23
m  A

Figure 43: Bifurcations of a pair of transversal A
2

sheets with a pyramid.

Consider now similar bifurcations of a pair of transversal A
2

sheets with

a purse.

There are quite a few possible configurations due to the relative positions

of the purse and the sheets at the most degenerate moment. Assume that

at such a moment one of the four connected components into which the two

sheets cut the ambient space contains both self-intersection rays of the purse

and one of its cuspidal half-branches. Figure 44 shows the bifurcation diagram

we have in this case. It clearly gives us the trivial equation.

In each of other combinatorially possible situations, we will also have sim-

ilar components in the bifurcation diagram

• two [A4

2

] half-branches;

• symmetric pair of TA3

2

half-branches contributing zero to the round-

about equation;
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• similar A�

3

A2

2

pair;

• two lines of D+�

4

A
2

strata each contributing zero to the equation.

Hence the equation is always trivial.

σ

TA
3

2
TA

3

2

A
σ

3 A
2

2

A2D
+,σ

4,1

A2D
+,σ

4,1

A
σ

3 A
2

2

A2D
+,σ

4,1

A2D
+,σ

4,1
A

4

2
A

4

2

Figure 44: Bifurcations of a pair of transversal sheets with a purse.

2.3.2.6 Tangent A
2

component

There remains only one set of generic two-parameter multi-germ bifurcations

to consider: tangencies of smooth sheets to the one-dimensional strata of a

purse and a pyramid at the D
4

points.

We start with the tangencies to the cuspidal edges and treat them in

the spirit of the previous two subsections. For a model A
2

sheet we take a

parabolic cylinder.

The bifurcation diagram for a rather steep A
2

sheet and a pyramid is shown

in Figure 45. Due to its symmetry about the vertical axis, the equation it

provides is trivial.
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Reducing the steepness of our parabolic A
2

sheet and continuing this pro-

cess for the sheet in the upside-down position, we get a series of bifurcation

diagrams with the D�,�

4

A
2

curve situated successively in pairs of the sectors

between the other strata in Figure 45. In each case the diagram is symmetric

and yields the trivial equation. Switching the co-orientation of the A
2

sheet

to the opposite does not a↵ect the result.

−,σ
4 A2 D−,σ

4 A2
TA3

σA2 TA3
σA2

TA3
σA2 TA3

σA2

σ

TA2
2

TA3
σA2

TA2
2

TA3
σA2

D

Figure 45: Bifurcations of an A
2

sheet tangent to a cuspidal edge of a pyramid

Now consider similar interaction of a steep parabolic A
2

sheet with a purse,

as in Figure 46. The corresponding bifurcation diagram shown there implies

the trivial equation again. Changing the coe�cient of the parabola in the A
2

sheet (like it was done in presence of a purse) and of its co-orientation does

not change the equation.

We remark that TA3

2

bifurcations do not appear in Figure 46 since the A
2

sheet in its most degenerate position is not tangent to the self-intersection

rays of the purse.
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2
m

D+,m
4,1A2D+,m

4,1A2

TA2 TA2
2

TA3
mA2TA3

mA2

Figure 46: Bifurcations of a purse and a smooth A
2

sheet of a caustic tangent

to the cuspidal edge of the purse at the D+

4

point

Finally, consider a codimension 2 degeneration of tangency of a smooth A
2

sheet to one of self-intersection rays at aD+

4

point. Recall that in Section 1.4.2

we considered two-parameter bifurcations of a section of a purse by a surface

which was in the same relative position to the purse at the distinguished

moment. We can now assume that the diagrams in Figure 17 there are actually

sections of the purse by an A
2

sheet co-oriented away from us. This gives us

the bifurcation diagrams shown in Figure 47 and the equations

A2
D4,1

+,σ
A2

D4,1

+,σ

A2
D4,1

+,σ
A2

D4,1

+,σ

A2 A2
D4,2

+,σ
D4,2

+,σ

A2
D4,2

+,σ
A2

D4,2

+,σ

A
3

AT T
2

3
AT

2

3
A T

2

3

2

Figure 47: Bifurcation diagrams an A
2

sheet of a caustic tangent to a self-

intersection ray of a purse at its D+

4

point
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29. d+,+

4,1

a
2

+ d+,+

4,2

a
2

� ta3
2

= 0

d+,�
4,1

a
2

+ d+,�
4,2

a
2

� ta3
2

= 0

30. d+,+

4,1

a
2

� d+,+

4,2

a
2

� ta3
2

= 0

d+,�
4,1

a
2

� d+,�
4,2

a
2

� ta3
2

= 0

If we consider the opposite co-orientation of the smooth sheet it gives us

the same equations.

Remark 2.3.2. The last four equations imply that the strata D+,�

4,2

A
2

should

be treated as non-co-orientable.

2.3.2.7 D
6

and E
6

bifurcations

The three remaining possible big caustics of generic two-parameter families

are D+

6

, D�
6

and E
6

. About them we claim

Theorem 2.3.3. Generic two-parameter families of three-dimensional caus-

tics with big caustics D+

6

and E
6

add to the system of equations 1–30 equations

31 and 32 respectively:

31. �2d+,+

4,1

a
2

+ 4a
4

a
2

� 2ta+
3

a
2

� 2ta�
3

a
2

= 0

�2d+,�
4,1

a
2

+ 4a
4

a
2

� 2ta+
3

a
2

� 2ta�
3

a
2

= 0

32. �2a2,h,+,�
3

+ 2ta+
3

a
2

� 2ta�
3

a
2

= 0
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Generic families with big caustics D�
6

add nothing.

Our proof of this theorem is lengthy, and we devote to it the next three

chapters while using the statement in the rest of the current chapter.

2.4 Proofs of Theorems 2.2.3 and 2.2.7

The proofs are now reduced to the analysis of the system of equations 1–32

obtained in Section 2.3.

We initially had 68 elementary discriminantal strata. In Section 2.3 we

have been able to join them, both over Z and Z
2

, into respectively 23 and

30 bigger strata. Equations on the increments of the invariants across these

select strata obtained during the bifurcation analysis, over Z, are collected in

columns in Table 4e below. Similar to Section 1.4.3, the equations which are

integer linear combinations of the others are not included there. We are using

dots instead of zeros.
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Table 4e 13 14 14 14 14 15 17 18 18 23 23 27 27

TA

3
2 2 . . . . 1 . . . . . . .

A3A
2
2 �2 . . . . . 1 . . . . . .

TA

+
3 A2 . �2 �2 . . 1 . . . . 2 �1 �1

TA

�
3 A2 . . . �2 �2 1 . . . 2 . �1 �1

A

2,e,+,+
3 . 1 . . . . 1 . . . . . .

A

2,e,+,�
3 . . 1 1 . . . . . . . . .

A

2,e,�,�
3 . . . . 1 . . . . . . . .

A

2,h,+,�
3 . . 1 �1 . . �1 �1 �1 . . . .

A4A2 . . . . . �2 �2 . . . . 2 2

A

e/h
4 . . . . . . . . . �2 �2 . .

A

+,+
5 . . . . . . . 1 . . . . .

A

+,�
5 . . . . . . . . 1 . . . .

A

�,+
5 . . . . . . . �1 . . . . .

A

�,�
5 . . . . . . . . �1 . . . .

D

+,+
4,1 A2 . . . . . . . . . . . �1 .

D

+,�
4,1 A2 . . . . . . . . . . . . �1

D

+,+
4,abc . . . . . . . . . 1 . . . .

D

+,�
4,abc . . . . . . . . . . 1 . . .

D

+,+
4,q . . . . . . . . . �1 . . .

D

+,�
4,q . . . . . . . . . . �1 . .

D

+
5 . . . . . . . . . 2 . . .

D

�
5 . . . . . . . . . . 2 . .

A

q
3 . . . . . . . . . 2 2 . .

With 13 linearly independent equations in 23 unknowns, we have a ten-

dimensional solution space. This finishes our proof of Theorem 2.2.3.

For completeness of the picture and to allow an easier verification that

the derivatives of the invariants from Example 2.1.1 indeed satisfy all the

equations obtained in Section 2.3, we have collected in Table 4s the coe�cients

of these derivatives. The table also helps to spot the linear independence of
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the derivatives.

Table 4s t s+ s� c+ c� d++ d+� d�+ d�� �

TA3
2 2 . . . . . . . . .

A3A2
2 2 . . . . . . . . .

TA+
3 A2 . . . 2 . . . . . .

TA�
3 A2 . . . . 2 . . . . .

A2,e,+,+
3 . . . 4 . . . . . .

A2,e,+,�
3 . . . 2 2 . . . . .

A2,e,�,�
3 . . . . 4 . . . . .

A2,h,+,�
3 . . . 2 �2 . . . . .

A4A2 1 . . 1 1 . . . . .

Ae/h

4 . 1 1 . . . . . . .

A+,+
5 . 2 . 2 . . . . . .

A+,�
5 . . 2 2 . . . . . .

A�,+
5 . 2 . . 2 . . . . .

A�,�
5 . . 2 . 2 . . . . .

D+,+
4,1 A2 2 . . . . . . . . .

D+,�
4,1 A2 2 . . . . . . . . .

D+,+
4,abc . . . . . 2 . . . �1

D+,�
4,abc . . . . . . 2 . . �1

D+,+
4,q . . . . . . . 2 . 1

D+,�
4,q . . . . . . . . 2 1

D+
5 . 1 1 . �2 �1 . 1 . .

D�
5 . 1 1 �2 . . �1 . 1 .

Aq

3 . . . . . . . . . 1
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We now similarly collect in Table 5e Z
2

linearly independent mod2 reduc-

tions of the equations on the increments of the invariants across the select

obtained during the bifurcation analysis.

With 14 linearly independent equations in 30 unknowns, we have a rank

16 solution space. This completes our proof of Theorem 2.2.7.

Table 5s contains the coe�cients of the mod2 reductions of the derivatives

mentioned in Corollary 2.2.2. Comparison of this table with Table 5e allows

one to easily check that the derivatives indeed satisfy the mod2 equations.
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Table 5e 15 16 17 17 18 20 22 22 23 23 27 27 29 29

A

4
2 . 1 . . . . . . . . . . . .

TA

3
2 1 . . . . . . . . . . . 1 1

A

+
3 A

2
2 . 1 1 . . . . . . . . . . .

A

�
3 A

2
2 . 1 . 1 . . . . . . . . . .

TA

+
3 A2 1 . . . . . . . . . 1 1 . .

TA

�
3 A2 1 . . . . . . . . . 1 1 . .

A

2,e/h,+,+
3 . . 1 . . . . . . . . . . .

A

2,e/h,+,�
3 . . 1 1 1 . . . . . . . . .

A

2,e/h,�,�
3 . . . 1 . . . . . . . . . .

A4A2 . . . . . . . . . . . . . .

A

e/h
4 . . . . . . . . . . . . . .

A

+,±
5 . . . . 1 . . . . . . . . .

A

�,±
5 . . . . 1 . . . . . . . . .

A

+,q
3 . . . . . 1 . . . . . . . .

A

�,q
3 . . . . . 1 . . . . . . . .

TA

2
2 . . . . . 1 1 1 . . . . . .

D

+,+
4,1 A2 . . . . . . . . . . 1 . 1 .

D

+,�
4,1 A2 . . . . . . . . . . . 1 . 1

D

+,+
4,2 A2 . . . . . . . . . . . . 1 .

D

+,�
4,2 A2 . . . . . . . . . . . . . 1

D

�,+
4 A2 . . . . . . . . . . 1 . . .

D

�,�
4 A2 . . . . . . . . . . . 1 . .

D

+,+
4,a/c . . . . . . 1 . 1 . . . . .

D

+,�
4,a/c . . . . . . . 1 . 1 . . . .

D

+,+
4,b . . . . . . 1 . . . . . . .

D

+,�
4,b . . . . . . . 1 . . . . . .

D

+,+
4,q . . . . . . . . 1 . . . . .

D

+,�
4,q . . . . . . . . . 1 . . . .

D

+
5 . . . . . . . . . . . . . .

D

�
5 . . . . . . . . . . . . . .
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Table 5s (t� c�) /2 s+ (s� � s+) /2 (c+ � c�) /2 c

A

4
2 . . . . .

TA

3
2 1 . . . .

A

+
3 A

2
2 1 . . . .

A

�
3 A

2
2 1 . . . .

TA

+
3 A2 . . . 1 .

TA

�
3 A2 1 . . 1 .

A

2,e/h,+,+
3 . . . . .

A

2,e/h,+,�
3 1 . . . .

A

2,e/h,�,�
3 . . . . .

A4A2 . . . . 1

A

e/h
4 . 1 . . .

A

+,±
5 . . 1 1 .

A

�,±
5 1 . 1 1 .

A

+,q
3 . . . . .

A

�,q
3 . . . . .

TA

2
2 . . . . .

D

+,+
4,1 A2 1 . . . .

D

+,�
4,1 A2 1 . . . .

D

+,+
4,2 A2 . . . . .

D

+,�
4,2 A2 . . . . .

D

�,+
4 A2 . . . . .

D

�,�
4 A2 . . . . .

D

+,+
4,a/c . . . . .

D

+,�
4,a/c . . . . .

D

+,+
4,b . . . . .

D

+,�
4,b . . . . .

D

+,+
4,q . . . . .

D

+,�
4,q . . . . .

D

+
5 1 1 . 1 .

D

�
5 . 1 . 1 .
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Table 5s (continued) d

+
+ d

+
�

⇣
d

�
+ + d

+
+

⌘
/2

⇣
d

�
+ + d

+
�

⌘
/2 �

A

4
2 . . . . .

TA

3
2 . . . . .

A

+
3 A

2
2 . . . . .

A

�
3 A

2
2 . . . . .

TA

+
3 A2 . . . . .

TA

�
3 A2 . . . . .

A

2,e/h,+,+
3 . . . . .

A

2,e/h,+,�
3 . . . . .

A

2,e/h,�,�
3 . . . . .

A4A2 . . . . .

A

e/h
4 . . . . .

A

+,±
5 . . . . .

A

�,±
5 . . . . .

A

+,q
3 . . . . 1

A

�,q
3 . . . . 1

TA

2
2 . . . . .

D

+,+
4,1 A2 . . . . .

D

+,�
4,1 A2 . . . . .

D

+,+
4,2 A2 . . . . .

D

+,�
4,2 A2 . . . . .

D

�,+
4 A2 . . . . .

D

�,�
4 A2 . . . . .

D

+,+
4,a/c . . 1 . 1

D

+,�
4,a/c . . . 1 1

D

+,+
4,b . . 1 . 1

D

+,�
4,b . . . 1 1

D

+,+
4,q . . 1 . 1

D

+,�
4,q . . . 1 1

D

+
5 1 . . . .

D

�
5 . 1 . . .
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Chapter 3

D+

6

bifurcations

The aim of this chapter is to prove the D+

6

part of Theorem 2.3.3 from Section

2.3.2.7. We will derive the equations 31 claimed there. This result will

require the list of adjacencies of the most generic 3-dimensional section of

the ‘big’ caustic C(D+

6

) ⇢ R5 to the codimension 1 degenerations of caustics

we had in Section 2.2. Our calculations below show that such codimension 1

degenerations are

D
5

, D
4

A
2

, A2

3

, A
4

A
2

, TA
3

A
2

, Ae

4

(see Figures 53 and 55).
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3.1 Reduction to a polynomial in one variable

We will be working with a R
+

-miniversal deformation of the D+

6

function

singularity in the form

F = x2y +
1

5
y5 +

1

4
↵y4 +

1

3
�y3 +

1

2
�y2 + �y + ✏x (11)

= x2y + ✏x+ p(y).

One of its helpful features is the quasi-homogeneity. We fix the weights of the

variables as

x ⇠ 2 y ⇠ 1 ↵ ⇠ 1 � ⇠ 2 � ⇠ 3 � ⇠ 4 ✏ ⇠ 3.

The D+

6

caustic, C(D+

6

), in R5 is the set of all parameters (↵, �, �, �, ✏) for

which the equations

F
x

= F
y

=

�������

F
xx

F
xy

F
yx

F
yy

�������
= 0

have common solutions in x, y. Eliminating x from the equations

F
x

= 2xy + ✏ = 0

F
y

= x2 + y4 + ↵y3 + �y2 + �y + �

= x2 + p0(y) = 0
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gives us a polynomial equation in just one variable, y:

Q := y2p0(y) +
✏2

4
= 0. (12)

The determinant of the Hessian matrix of F is

H :=

�������

F
xx

F
xy

F
yx

F
yy

�������
=

�������

2y 2x

2x p00(y)

�������
= 2yp00(y)� 4x2 = 0.

Using F
y

to eliminate x from this yields

0 = yp00(y) + 2p0(y) =
(y2p0(y))0

y
.

That is,
Q0

y
= 0 or simply Q0 = 0.

Here y = 0 may be considered as is a special root of Q and Q0, when Q =

y2p0(y).

The big D+

6

caustic C(D+

6

) in the 5-dimensional parameter space corre-

sponds to those polynomials Q which have either root y 6= 0 of multiplicity

r > 1 or root y = 0 of multiplicity k > 2. These two options mean that

the big caustic and its transversal sections have singularities A
r

or D
k

(see

[26] for the details). It is convenient here to consider the D
3

singularity of

a function in this particular 5-parameter family as the A
3

singularity at the

origin x = y = 0.
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In the following subsections we analyse how C(D+

6

) may be represented

as a collection of a generic 2-parameter family of 3-dimensional caustics. For

this we study generic projections ⇡ of the pair (R5, C(D+

6

)) onto a plane. The

problem is highly modular in the C1 setting (see [26]), but we need only

know the planar bifurcation diagram B(D+

6

), and even in that we more or

less need only the order of the branches of the curves corresponding to the

codimension 1 degenerations.

Our approach to this task is via consideration of successive approximations

to a generic projection. The approximations will be done in the weighted-

homogeneous sense. Namely, the lowest weight part of a generic mapping

⇡, R5

↵,�,�,�,✏

! R2

A,B

reduces to (A,B) = (↵, �), and we will refer to this as

the straight projection, and denote it ⇡
s

. The next order approximation is

addition of the terms C� + E✏, with arbitrary real coe�cients C and E, to

the second component of the straight projection. We call this approximation

a tilted projection and denote ⇡
t

. It turns out – see the rest of this chapter

– that these two approximations give us all the information about B(D+

6

)

for the roundabout equations. The helping observation here is that if two

strata in the bifurcation diagram of ⇡
s

(respectively ⇡
t

) are distinct then

they stay distinct and have the same order of tangency in the bifurcation

diagram of ⇡
t

(respectively ⇡): consideration of projection terms of higher

quasihomogeneous degree a↵ects only those terms in the parametrizations of

the strata which do not a↵ect the tangency orders.

The bifurcation curves in R2 are the images of all possible 1-dimensional
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strata of C(D+

6

) and the critical value sets of the restriction of the projection

to its higher-dimensional strata. We will show that only 2-dimensional strata

provide non-trivial contributions in the latter case, see Section 3.6.

So, in the following subsections we analyse the contributions of the one and

two dimensional strata of the big caustic to the planar bifurcation diagrams

for the straight and (if need) tilted projections. These two diagrams will be

denoted B
s

(D+

6

) and B
t

(D+

6

).

3.2 One-dimensional strata

According to the multiplicity options for the roots of Q mentioned above, we

have the following parametrizations of one-dimensional strata in C(D+

6

):

• D
5

where Q = y5(y � t)

• D
4

A
2

where Q = y4(y � t)2

• D
3

A
3

where Q = y3(y � t)3

• A
5

where Q = (y � t)5(y � s)

• A
4

A
2

where Q = (y � t)4(y � s)2

• A2

3

where Q = (y � t)3(y � s)3

In the first three cases t 2 R, t 6= 0, and in the last three, the real parameters

t, s are subject to the constraint of the coe�cient of y in Q being zero. Recall
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that

Q := y2p0(y) +
✏2

4
= y2(y4 + ↵y3 + �y2 + �y + �) +

✏2

4
(13)

Firstly we shall consider the D strata. The D
5

parametrization

Q = y5(y � t)

gives us

↵ = �t � = � = � = ✏ = 0.

Therefore, the D
5

stratum in B
s

(D+

6

) ⇢ R2

A,B

is

B = 0.

Next we take D
4

A
2

, with the parametrization

Q = y4(y � t)2 = y2(y4 � 2ty3 + t2y2).

Similar to above we obtain,

↵ = �2t and � = t2.

This gives the equation

A2 = 4B
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of the D
4

A
2

stratum in B
s

(D+

6

).

Finally consider D
3

A
3

, with the parametrization

Q = y3(y � t)3 = y2(y4 � 3ty3 + 3t2y2 � t3y).

Similarly we compare this with (13) to obtain

↵ = �3t and � = 3t2.

This results in the equation

A2 = 3B.

Now we deal with the possibleA
k

strata. Firstly takeA
5

, with the parametriza-

tion (where t 6= 0)

(y � t)5(y � s) = y6 + (�s� 5t) y5 + (10t2 + 5ts) y4

+(�10t2s� 10t3) y3 + (5t4 + 10t3s) y2

+(�5t4s� t5) y + t5s.

Comparing the constant terms with (13),

✏2

4
= t5s. (14)
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Since (13) does not have a y term we set our y coe�cient to zero

�5t4s� t5 = 0 , �t4(5s+ t) = 0 ) s = � t

5
.

Due to (14) we have
✏2

4
= �t6

5
.

Since it is not possible to have a real value of ✏, the A
5

stratum is empty in

C(D+

6

) and hence in B(D+

6

).

Consider the A
4

A
2

parametrization (where s, t 6= 0)

(y � t)4(y � s)2 = y6 + (�4t� 2s) y5 + (s2 + 6t2 + 8ts) y4

+(�4ts2 � 12t2s� 4t3) y3 + (8t3s+ 6t2s2 + t4) y2

+(�2t4s� 4t3s2) y + t4s2.

Comparing the constant terms with (13) we see that ✏

2

4

= t4s2 is satisfied for

any values of t, s. Now setting the coe�cient of y to be zero we have

�2t4s� 4t3s2 = 0 , �2t3s(t+ 2s) = 0 ) s = � t

2
.

We substitute this value into

↵ = �4t� 2s and � = s2 + 6t2 + 8ts.
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Elimination of t yields

4� = ↵2.

Therefore the equation of the A
4

A
2

stratum in B
s

(D+

6

) is 4B = A2.

Finally we consider A2

3

with the parametrization (where s, t 6= 0)

(y � t)3(y � s)3 = y6 + (�3t� 3s) y5 + (3t2 + 9ts+ 3s2) y4

+(�t3 � 9t2s� 9ts2 � s3) y3

+(3t3s+ 9t2s2 + 3ts3) y2 + (�3t3s2 � 3t2s3) y

+t3s3.

Comparison of the constant term shows that

✏2

4
= t3s3.

Considering the y coe�cient we have

�3t3s2 � 3t2s3 = 0 , �3t2s2(t+ s) = 0 , s = �t.

Thus from the previous display

✏2

4
= �t6.

114



Due to the minus sign here, the A2

3

stratum is empty in C(D+

6

) and hence in

B(D+

6

).

In conclusion we so far have the following co-dimension one strata in B(D+

6

)

(shown in Figure 48):

• D
4

A
2

: A2 = 4B

• D
3

A
3

: A2 = 3B

• D
5

: B = 0

• A
4

A
2

: A2 = 4B

B

3A3 D3A3

D4A2 A4A2, D4A2 A4A2,
D5 D5 A

D

Figure 48: The part of B
s

(D+

6

) coming from the one-dimensional strata of

C(D+

6

)
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3.3 Contribution of the one-dimensional strata

of Bs(D
+
6 ) to the roundabout equations

Lemma 3.3.1. Contributions of the strata D
5

and D
3

A
3

to the D+

6

round-

about equations are trivial.

Proof. The family F in (11) defines an (↵, �)-family of Lagrangian maps

(x, y, �) 7! (�, �, ✏) = (�,�x2 � y4 � ↵y3 � �y2,�2xy) (15)

The symmetry (↵, �) 7! (�↵, �) of the parameter plane lifts to the symmetry

(x, y, �, �, ✏) 7! (x,�y,��, �,�✏) that defines orientation-preserving di↵eo-

morphisms of the source and target 3-spaces in (15) under which the family

of maps is equivariant. Therefore, 1-parameter families of Lagrangian maps

induced from F along pairs of oriented curves in the (↵, �)-plane symmetric

about the �-axis are orientation-preserving di↵eomorphic. Hence the pair of

half-branches of the D
5

stratum in Figure 48 are either both co-oriented up-

wards or both downwards. (One should notice at this point that a germ of

a path in R2

↵,�

in the �-direction across the D
5

stratum provides a generic

D
5

transition as listed in Section 2.2.2.2. This is due to the D
5

stratum of

C(D+

5

) ⇢ R5

↵,�,�,�,✏

being transversal to the corresponding 4-plane ↵ = const).

Hence the contributions of the two D
5

half-branches of the planar bifurcation

diagram to the roundabout equations cancel. Same is true for D
3

A
3

.
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3.4 Two-dimensional strata of the D+
6 caustic

and their straight projection

Our aim now is to construct parametrizations of the closures of two-dimensional

strata of C(D+

6

) and check if the projection ⇡
s

has any critical points on the

open two-dimensional strata.

There are several 2-dimensional strata in C(D+

6

) to consider, these include:

• A
4

where Q = (y � t)4(y2 + uy + v)

• D
4

where Q = y4(y2 + uy + v)

• D
3

A
2

where Q = y3(y � c)2(y � d)

• A3

2

where Q = (y3 + ay2 + b)2

• A
3

A
2

where Q = (y � t)3(y � s)2(y � r)

Similar to the previous subsection, three parameters in the A
4

and A
3

A
2

cases

are subject to the constraint of the coe�cient of y in Q being zero.

The first stratum we will consider is A
4

where

Q = (y � t)4(y2 + uy + v)

= y6 + y5(u� 4t) + y4(v � 4tu+ 6t2) + y3(�4tv + 6t2u� 4t3)

+y2(6t2v � 4t3u+ t4) + y(�4t3v + t4u) + t4v.
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Similar to what we did earlier, we shall compare this with the equation (13).

Setting the y coe�cient to zero we find v in terms of u, t:

�4t3v + t4u = 0 , t3(�4v + tu) = 0 ) v =
ut

4
.

We then substitute this v into the Q for A
4

:

y6 + y5(u� 4t) + y4(�15

4
tu+ 6t2) + y3(5t2u� 4t3) + y2(�5

2
t3u+ t4) +

t5u

4
.

Comparing the coe�cients we get

↵ = u� 4t and � = �15

4
tu+ 6t2.

Consider this as a map (t, u) 7! (↵, �) associated with ⇡
s

and find its critical

points, and critical values which are a part of B
s

(D+

6

). The Jacobian of this

map is �������

↵
t

↵
u

�
t

�
u

�������
=

�������

�4 1

�15

4

u+ 12t �15

4

t

�������
= 3t+

15

4
u.

Hence the critical points of ⇡
s

are on the line

u = �4

5
t. (16)
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Comparing the constant terms

✏2

4
=

t5u

4
, ✏2 = t5u ) u and t must be of the same sign.

However (16) states that the signs of u and t must be opposite to each other,

therefore the critical value set of the map (which would form the Ae

4

and Ah

4

strata) in B(D+

6

) is empty.

The next stratum to consider is D
4

:

Q = y4(y2 + uy + v) = y6 + uy5 + vy4

Thus ↵ = u, � = v and ✏ = � = � = 0. Hence a generic mapping ⇡ maps the

closure of the D
4

stratum of C(D+

6

) isomorphically onto R2

A,B

. Therefore the

D�,�

4,q

, D+,�

4,a

, D+,�

4,b

and D+,�

4,c

strata of B(D+

6

) are empty.

Consider the stratum D
3

A
2

in C(D+

6

):

Q = y3(y � c)2(y � d)

= y6 + y5(�d� 2c) + y4(2cd+ c2)� y3c2d.
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Compare the coe�cients

↵ = �d� 2c

� = 2cd+ c2

� = �c2d

� = ✏ = 0

The Jacobi matrix of ↵, �, � with respect to c, d has rank 1 exactly on the

line c = d. Substituting c = d into Q we obtain

y3(y � c)3.

Thus the D
3

A
2

stratum of C(D+

6

) in R5 is a curved cuspidal edge surface in

the coordinate space R3

↵,�,�

, which is 1-to-1 parametrized by the (c, d)-plane

so that the c = d line is sent to the cuspidal edge curve D
3

A
3

. Since the

Jacobian of the map ⇡
s

, (A,B) = (↵, �) composed with this parametrization

is �2(c � d) we see that the D
3

A
2

stratum of the D+

6

caustic is mapped by

⇡
s

onto the AB-plane so that ‘half’ of the plane is covered twice, the other

half not at all. These halves are separated by the image of the cuspidal curve

D
3

A
3

(see Figure 48).
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Next we look at A3

2

:

Q = (y3 + ay2 + b)2

= y6 + 2ay5 + a2y4 + 2by3 + 2aby2 + b2.

Comparing the coe�cients we have

↵ = 2a

� = a2

✏2 = 4b2

Thus the whole two-dimensional stratum A3

2

of C(D+

6

) sent by the straight

projection ⇡
s

: R5 ! R2

A,B

just to the curve 4B = A2, that is, to the stratum

D
4

A
2

(same as A
4

A
2

under this projection) of the bifurcation diagram B(D+

6

).

Finally we consider A
3

A
2

:

Q = (y � t)3(y � s)2(y � r)

= y6 + y5(�r � 2s� 3t) + y4(2sr + s2 + 3tr + 6ts+ 3t2)

+y3(�s2r � 6tsr � 3ts2 � 3t2r � 6t2s� t3)

+y2(3ts2r + 6t2sr + 3t2s2 + t3r + 2t3s)

+y(�3t2s2r � 2t3sr � t3s2) + t3s2r.
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Since the coe�cient of y must be zero, we have,

�3t2s2r � 2t3sr � t3s2 = �t2s(3sr + 2tr + ts) = 0. (17)

We introduce the notation

q
1

(t, s, r) := 3sr + 2tr + ts.

The meanings of the factors in (17) are as follows:

• t = 0 corresponds to the D
3

A
2

stratum of the big caustic;

• s = 0 corresponds to the members of the family F (equation (11)) which

in general have an A
3

point at (x, y) = (0, t), a Morse point at (0, r), and

two further Morse points at (±
p
�t3r, 0). The vanishing of s reflects

the vanishing of the y-coordinates of the last two points;

• q
1

= 0 is directly related to the description of the A
3

A
2

.

Comparing the coe�cients,

0 = ✏2 � 4t3s2r := q
2

↵ = �r � 2s� 3t

� = 2sr + s2 + 3tr + 6ts+ 3t2

Thus the A
3

A
2

stratum of C(D+

6

) ⇢ R5

↵,�,�,�,✏

is parametrised by the surface

{q
1

= q
2

= 0} ⇢ R4

r,s,t,✏

.
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Critical points of ⇡
s

on the open A
3

A
2

stratum of C(D+

6

) are contained

in the set of zeros on q
1

= q
2

= 0 of the determinant of Jacobi matrix of

q
1

, q
2

,↵, � with respect to r, s, t, ✏. This determinantal equation is

✏(5r2 + 2rs� 6rt� 16s2 + 6st+ 9t2) = 0 .

The expression in the brackets here will be denoted by q
3

.

Vanishing of the factor ✏ in the last equation implies (via q
2

= 0) that

at least one of the r, s, t must be zero, which then implies (via q
1

= 0) that

actually at least two of the r, s, t are zero. Such points are in the union of the

strata D
5

, D
4

A
2

and D
3

A
3

of the C(D+

6

), not in the open stratum A
3

A
2

.

Further, the intersection of two quadratics q
1

= 0 and q
2

= 0 in R3

r,s,t

consists of the double line A
4

A
2

: r = t = �2s, and simple lines A2

3

: r = s =

�t and A
5

: s = t = �5r.

So, we see that ⇡
s

has no critical points on the open A
3

A
2

stratum of the

D+

6

caustic.

We summarise our observations of this section about the two-dimensional

strata of the D+

6

caustic as

Lemma 3.4.1. The behaviour of the two-dimensional strata of C(D+

6

) ⇢

R5

↵,�,�,�,✏

under the mappings ⇡ or ⇡
s

is as follows

• ⇡ is a di↵eomorphism on the closure of the D
4

stratum;

• ⇡ has no critical points on the open A
4

and D
3

A
2

strata;
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• the ⇡
s

-image of the A3

2

stratum is just a curve, that is, it coincides with

the strata A
4

A
2

and D
4

A
2

of B
s

(D+

6

);

• ⇡
s

is a local di↵eomorphism on the open stratum A
3

A
2

.

Therefore we surely must consider tilted projections of the A3

2

stratum.

Having a double curve in the critical point set of ⇡
s

in the regular part of

the closure of the A
3

A
2

stratum calls for similar considerations too. We are

addressing these two issues in the next section.

3.5 Tilting the two-dimensional strata

3.5.1 The A3
2 stratum

So, we take

Q = (y3 + ay2 + b)2

= y6 + 2ay5 + a2y4 + 2by3 + 2aby2 + b2.

We have

↵ = 2a, � = a2, � = 2b, � = 2ab, ✏ = ±2b. (18)

Only those regions of the ab-plane in which the polynomial q = y3 + ay2 + b

has three real roots correspond to real A3

2

points. To determine them, we
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notice that q has a multiple root on their boundaries:

q = y3 + ay2 + b = 0

q
y

= y(3y + 2a) = 0

From q
y

= 0 we have two options:

y = 0 and y = �2

3
a,

for which q = 0 yields respectively

b = 0 and b = � 4

27
a3,

and therefore

Q = y4(y + a)2 and Q =

✓
y +

2a

3

◆
4 ⇣

y � a

3

⌘
2

which belong to respectively the D
4

A
2

and A
4

A
2

strata of C(D+

6

). From the

parametrization (18), this gives us Figure 49 in 3-dimensions with ✏ = ±2b =

±�. Here the ↵-axis is the D+

4

A
2

stratum (not the D�
4

A
2

stratum since the

D+

6

caustic has A3

2

points next to it) and the two cubic curves are A
4

A
2

.

Now consider the possible images of the A3

2

stratum to the plane under

the map

⇡
t

: (↵, �, �, �, ✏) 7! (A,B) = (↵, � + C� + E✏).
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γ

ε

α

Figure 49: Projection of the A3

2

stratum of C(D+

6

) ⇢ R5

↵,�,�,�,✏

to the ↵�✏-

space. The image of the A3

2

consists of the regions of the planes ✏ = ±�

between the D
4

A
2

line � = 0 and the A
4

A
2

curves � = � 4

27

a3.

In the ab-charts, this is

(a, b) 7! (↵, �, �, �, ✏) = (2a, a2, 2b, 2ab,±2b) 7! (A,B) = (2a, a2+2Cb±2Eb).

Thus ⇡
t

has no critical points on the open stratum A3

2

in C 6= ⌥E.

For any choice of the coe�cients C and E, the D
4

A
2

stratum b = 0 is

mapped by ⇡
t

to the same parabola

B =
A4

4
.

This is the D
4

A
2

stratum of B
t

(D+

6

).

The ⇡
t

-images of the cubic curves A
4

A
2

from Figure 39 give us the A
4

A
2
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strata of B
t

(D+

6

) :

B =
A2

4
� A3

27
(C ± E).

Now we must consider what happens at specific values for (C,E) for the

A
4

A
2

strata. The idea here is that topologically there are two di↵erent ways

of looking at the surface in Figure 49: either from roughly (but not exactly)

the ✏-direction or from the �-direction. We do these options in this order.

Firstly consider the case (C,E) = (2, 1), this gives the two A
4

A
2

curves

in B
t

(D+

6

):

B =
A2

4
� A3

9
and B =

A2

4
� A3

27
.

Therefore we obtain the bifurcation diagram shown in Figure 50. The co-

orientation of the D+,�

4,1

A
2

stratum is to the right. The co-orientation of the

A
4

A
2

strata is towards the D+,�

4,1

A
2

strata. This is due to where the two triple

points exist, as shown on Figure 49. Since the regions are bounded by the

strata D+,�

4,1

A
2

on one side and A
4

A
2

on the other hence the co-orientation of

these are inside these regions.

Next we consider the case when (C,E) = (0, 1) with the A
4

A
2

strata in

B
t

(D+

6

):

B =
A2

4
± A3

27
.

This gives us the bifurcation diagram shown in Figure 51. We know that the

D+

4

A
2

half-branches are actually D+,�

4,2

A
2

since there are triple points on either

side. We cannot co-orient this stratum due to equations 29 and 30 (see page

98). The co-orientation of the A
4

A
2

strata is towards the D+,�

4,2

A
2

stratum.
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4A2

A4A2

A2D4,1

+,σ

A2D4,1

+,σ

A4A2

A4A2

α

B

A

Figure 50: The bifurcation diagram coming from the tilted projection of the

stratum A3

2

for (C,E) = (2, 1). The D
4

A
2

and A
4

A
2

strata here split those

in Figure 48.

4A2

A2D4,2

+,σ

A4A2A4A2

A4A2

A2D4,2

+,σ

α

B

A

Figure 51: The bifurcation diagram coming from the tilted projection of A3

2

for (C,E) = (0, 1).
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3.5.2 The A3A2 stratum

We now have

Q = (y � t)3(y � s)2(y � r),

with r, s, t subject to the relations

q
1

= 3sr + 2tr + ts = 0 and q
2

= ✏2 � 4t3s2r = 0,

and with the expressions for the coe�cients of Q

↵ = �r � 2s� 3t

� = 2sr + s2 + 3tr + 6ts+ 3t2

� = �s2r � 6tsr � 3ts2 � 3t2r � 6t2s� t3 (19)

� = 3ts2r + 6t2sr + 3t2s2 + t3r + 2t3s

In particular, q
2

= 0 tell us that r and t must be of the same sign.

We consider the A
3

A
2

stratum of C(D+

6

) ⇢ R5

↵,�,�,�,✏

as parametrized by

the surface S = {q
1

= q
2

= 0} ⇢ R4

r,s,t,✏

, and look for critical points of ⇡
t

|
A3A2

as critical points on S of ⇡
t

composed with the parametrization map, that is,

of

(r, s, t, ✏) 7! (↵, �, �, �, ✏) 7! (A,B) = (↵, � + C� + E✏),
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where C and E are arbitrary real constants so far. Similar to what we had in

Sections 3.4, vanishing of the determinant of the Jacobi matrix of q
1

, q
2

,↵, B

with respect to r, s, t, ✏ gives on the surface S an equation for the critical point

set of the projection of the closure of the A
3

A
2

stratum to the AB-plane (its

fold locus values form the stratum TA
3

A
2

of the bifurcation diagram, and the

critical value set as a whole contains also some other strata). However, it turns

out that replacing q
1

in this determinant by the total coe�cient q = �t2sq
1

of y in Q simplifies the calculations. So, we take this root and obtain the

determinant of thus modified Jacobi matrix:

�3t(�t+ s)(r � t)(r � s)(2s2Et3 + 2✏Cs2 + 4✏Cts� 2✏s+ 2✏Ct2 � ✏t).

The last factor in this expression will be denoted by D. Similar to our earlier

observations about the straight projection of the closed A
3

A
2

stratum, we see

that vanishing of all the other factors here singles out the curves on S which

correspond to the following strata of the D+

6

caustic contained in the closure

of the A
3

A
2

stratum:

t = 0, union of D
5

and D
4

A
2

;

s = t, A
5

;

t = r, A
4

A
2

;

r = s, A2

3

None of these is currently of interest for us.
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Our aim at the moment is to understand the curve D = 0 on the surface

S = {q
1

= q
2

= 0} and its ⇡
t

-image.

We now eliminate ✏ from the system q
1

= q
2

= D = 0 by replacing q
2

and

D with their resultant in ✏:

t3s2 (4C2rs4 + 16C2rs3t+ 24C2rs2t2 + 16C2rst3 + 4C2rt4 (20)

�E2s2t3 � 8Crs3 � 20Crs2t� 16Crst2 � 4Crt3 + 4rs2 + 4rst+ rt2) = 0.

Similar to the previous, the factors t and s here have no relation to the open

A
3

A
2

stratum. We denote the long factor in (20) by R
1

.

Now take the resultant of R
1

and q
1

with respect to s:

r2t12 (2Ct� 1)2 (4C2r4t2 + 16C2r3t3 + 24C2r2t4 + 16C2rt5 (21)

+4C2t6 � 36E2r3t3 � 24E2r2t4 � 4E2rt5 + 12Cr4t+ 16Cr3t2 � 8Cr2t3

�16Crt4 � 4Ct5 + 9r4 � 12r3t� 2r2t2 + 4rt3 + t4) = 0.

We can dismiss all the factors here except for the longest one which we denote

R
2

.

The quartic (lowest degree) part of R
2

factorises as (t � r)2(t + 3r)2.

Therefore, the equation D = 0 defines on the surface S four curves: for

two of them their projections to the rt-plane have tangent line t = r at the

origin, and for two others the tangent line is t = �3r. The equation q
2

= 0 tell

us that the second pair of curves is complex, and we can forget about them
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here.

From R
2

= 0 we find the quadratic parts of the Taylor expansions t = t(r)

of the first pair of curves:

t = r + 2(C ± E)r2 + · · · (22)

We substitute this back into q
1

= 0 to obtain s in terms of r:

s = �1

2
r � 3

4
(C ± E)r2 + · · · .

Substituting these into D = 0 to obtain ✏ yields

✏ = ±r3 + · · ·

Thus the parametrisations of the ⇡
t

-images of the two critical curves are

A = ↵ = �3r � 9

2
(C ± E) r2 + · · · ,

B =
9

4
r2 +

31

4
(C ± E)r3 + · · · .

Eliminating r from the the last two expansions, we obtain the expansions for

the TA
3

A
2

strata in B
t

(D+

6

):

B =
1

4
A2 � 1

27
(C ± E)A3 + · · ·
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Let us now compare the TA
3

A
2

strata obtained with the A
4

A
2

strata of

the B
t

(D+

6

) coming from the curves t = r on our surface S ⇢ R4

r,s,t,✏

. For

t = r, the equation q
1

= 0 gives s = �r/2. after which q
2

= 0 yields ✏ = ±r3.

So, we have two A
4

A
2

curves on S, whose ⇡
t

-images are given by

A = �3r B =
9

4
r2 + (C ± E)r3.

Hence the A
4

A
2

strata in B(D+

6

) are

B =
1

4
A2 � 1

27
(C ± E)A3.

Thus we see that, in the ⇡
t

-bifurcation diagram, the TA
3

A
2

and A
4

A
2

strata

have at least order 4 tangency. This stays true for a generic mapping ⇡.

We now want to try and visualise the bifurcation diagram for D+

6

. To do

this we start with the projection S 0 ⇢ R3

t,r,✏

of our surface S parametrizing

the closure of the A
3

A
2

stratum in C(D+

6

). From q
1

= 0, s = � 2tr

3r+t

on S, and

the condition 0 = q
2

= � ✏

2

4

+ t3s2r guarantees that the denominator 3r + t

vanishes on S just at its vertex 0 = r = t = s = ✏. Therefore, S projects onto

S 0 bijectively. From 0 = p = � ✏

2

4

+ t3s2r, we see that S 0 has no points with

tr < 0, covers the tr > 0 region twice and contains the r- and t-axes. See

Figure 52.

According to our earlier calculations, the following strata of C(D+

6

) and

critical curves show up on S 0 in Figure 52:
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• D
5

, t = s = 0 = ✏, the r-axis;

• D
3

A
3

, r = s = 0 = ✏, the t-axis;

• A
4

A
2

, t = r;

• TA
3

A
2

, the pre-images of the TA
3

A
2

strata of B
t

(D+

6

).

As we have seen previously the TA
3

A
2

strata coincide with the A
4

A
2

strata

for ⇡
s

, in the 0-order approximation to a generic mapping ⇡. In the next order

approximation ⇡
t

, the TA
3

A
2

have quadratic tangency on S 0 with A
4

A
2

(the

sides depend on the signs of (C ± E)).

3
<m

D3
mA3

<m

A4 A2

A4 A2

D5
m

D5
m

A2TA3 m
A2TA3 p

A2TA3 m

A4 A2
A2TA3 p

A2A4
¡

r

D
t

3
mA

Figure 52: The strata on the surface S 0 ⇢ R3

r,t,✏

parametrizing the closure of

the stratum A
3

A
2

in B(D+

6

) when C = 2 and E = 1

In consistency with our particular case studies of the previous subsection,

Figure 52 illustrates the TA
3

A
2

situation for the first of those cases, when
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C = 2 and E = 1. In the diagram, the p in the notation of the TA
3

A
2

strata

is for the component with (C + E) in the parametrization (22) whereas m is

for the (C � E) component.

Let us now figure out how the surface S 0 is mapped, via the stratum

A
3

A
2

of C(D+

6

) by ⇡
t

to the AB-plane. Consider, for example, its quarter S 0
+

within the octant where all the r, t, ✏ are non-negative. According to (19) the

boundary of S 0
+

formed by the positive r- and t-rays is mapped to respectively

the negative A-ray and the left half of the dashed parabola D
3

A
3

in Figure

53. The image of S 0
+

covers the small sector of the AB-plane between these

two branches, and the only singularities this covering has are folds along the

A
4

A
2

and TA
3

A
2

p curves on S 0
+

. These folds give us the two strata of B
t

(D+

6

)

shown in the top of the left insert in Figure 53. Similar considerations for the

other quarters of S 0 explain the rest of the inserts in Figure 53. The strata

there are co-oriented to the sides on which the folding of S 0 has more pre-

images. The co-orientations of the A
4

A
2

strata (towards the nearest D
4

A
2

branches) are already known from the A
3

A
2

work done in Section 3.5.1.

We will assume now and till the end of this section that open strata of our

D+

6

caustic of dimension higher than 2 do not contribute to the bifurcation

diagrams. In such case, Figure 53 and Lemma 3.3.1 yield the equation that

has appeared as equation 31 in Theorem 2.3.3:

�2d+,�

4,1

a
2

+ 4a
4

a
2

� 2ta+
3

a
2

� 2ta�
3

a
2

= 0.
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A

A
e

D3
σ
A3

−σ

D4,1
+,σ

A2

D5
σ

A2A4

A2A4

A2A4

A23TA m

TA3A2 p

D3
σ
A3

−σ

4A
e

D4,1
+,σ

A2

D5
σ

D6
+,σ

A2A4

TA3A2 p

A23TA m

B
4

Figure 53: Part of the bifurcation diagram B(D+

6

) when C = 2 and E = 1.

Positions of the A
4

A
2

and D
4

A
2

curves follow Figure 50

The reason that out of the four half-branches of TA
3

A
2

in Figure 53, two

must involve A+

3

and two A�
3

, is to keep the total roundabout increments of

the A+

3

A
2

and A�
3

A
2

points zero.

The only other topologically di↵erent option for the TA
3

A
2

curves on S 0

may be achieved by taking C = 1 and E = 2. It is illustrated in Figure 54. In

this case S 0 is mapped via ⇡
t

down to the AB-plane creating B
t

(D+

6

) shown in

Figure 55. The last figure gives us the roundabout equation 2d+,�

4,2

a
2

= 0 which

we actually have already obtained from Figure 47. Hence no new equations

are coming from this type of B
t

(D+

6

).

The outcome of this section is

Lemma 3.5.1. Assume that generic mappings ⇡ are submersive on all open

strata of the D+

6

caustic of dimension higher than 2. Then the D+

6

part of

Theorem 2.3.3 is true.
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r

Figure 54: The surface S 0 for C = 1 and E = 2.

B

6

+,σD5

σ D5

σ

A2A4 A2A4

A2A4
4A
e

A2D4,2

+,σ

A23TAA23TA

A2D4,2

+,σ

A23TA
D3

σ
A3

−σ

4A
e D3

σ
A3

−σ

A23TA
A2A4

AD

Figure 55: The bifurcation diagram B
t

(D+

6

) when C = 1 and E = 2, with the

contribution from Figure 51.
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3.6 Higher dimensional strata

In this section we prove

Lemma 3.6.1. The submersion assumption made in Lemma 3.5.1 is correct.

Proof. The strata to consider are A
3

, D
3

, A2

2

and the regular part A
2

of

the whole D+

6

caustic. We consider them in this order.

We start with the stratum A
3

and the corresponding polynomials

Q = (y � t)3
✓
y3 + uy2 + vy +

vt

3

◆
(23)

= y6 + (�3t+ u) y5 + (3t2 � 3tu+ v) y4

+

✓
�t3 + 3t2u� 8

3
tv

◆
y3 + (�t3u+ 2t2v) y2 � 1

3
t4v

We have the constant-term relation

R
A3 :=

✏2

4
+

t4v

3
= 0.

Thus the A
3

stratum of C(D+

6

) is parametrised by the hypersurface R
A3 = 0

in R4

u,v,t,✏

. Consider the straight projection ⇡
0

, (A,B) = (↵, �) composed with

this parametrisation, that is, the restriction on R
A3 = 0 of the map

(A,B) =
�
�3t+ u, 3t2 � 3tu+ v

�
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Its critical point set on R
A3 = 0 is the set of common zeros of all order 3

minors of the Jacobi matrix of ↵, �, R
A3 with respect to t, u, v, ✏. In particular,

consider

J =

����������

↵
t

↵
u

↵
v

�
t

�
u

�
v

(R
A3)

t

(R
A3)

u

(R
A3)

v

����������

= �1

3
t3(3t2 + 3tu+ 4v)

Let us check the vanishing of the factors in J . If t = 0, then the polynomial

Q in (23) is general of the D
4

type. Vanishing of the long factor can be easily

seen to be equivalent to t being a root of the cubic factor in (23) meaning

that Q is of type A
4

. Hence ⇡
0

does not have any critical points on the open

A
3

stratum of the D+

6

caustic.

MAPLE calculations easily verify that, replacing ↵ and � in the determi-

nantal expression of J by any pair of functions out of ↵, �, �, �, ✏ we obtain

polynomial multiples of J with the coe�cients vanishing at the origin. There-

fore, not just ⇡
s

but any mapping ⇡ with the principal quasihomogeneous part

⇡
s

is submersive on the open stratum A
3

.

Consider now the stratumD
3

: ✏ = � = 0. It is clear that a generic mapping

⇡ of the ↵��-coordinate plane from R5 to R2 is a submersion (the genericity

condition is that the linear part of ⇡ must have rank 2). In particular, the D
3

stratum of any 3-dimensional caustic in this case is a smooth one-component

curve.
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It is turn of the A2

2

stratum of C(D+

6

) now. So, we have

Q = (y2 + ry + s)2(y2 + ty + u) (24)

= y6 + (2r + t) y5 + (2s+ r2 + 2rt+ u) y4 + (2sr + (2s+ r2)t+ 2ru) y3

+ (s2 + 2srt+ (2s+ r2)u) y2 + (s2t+ 2sru) y + s2u

One of the options for the coe�cient of y here to vanish is s = 0. However,

such polynomials Q correspond in general to functions of family (11) with

an A
2

point and two Morse points on the y-axis of the xy-plane, and two

Morse points on the x-axis. This is a subset of the regular locus of the D+

6

caustic. Therefore, the closure of the A2

2

stratum is actually parametrised by

the 3-dimensional variety V ⇢ R5

r,s,t,u,✏

defined by the equations

Ry := st+ 2ru = 0 and Rc := ✏2 � 4s2u = 0.

Our treatment of the current case will now follow the approach used for the

A
3

stratum. Namely, we start with the straight projection ⇡
s

, (A,B) = (↵, �)

composed with the parametrising map that sends V to the closure of A2

2

.

Looking for critical points of this composition, we notice that the deter-

minant of the Jacobi matrix of ↵, �, Ry, Rc with respect to r, s, t, u is

J = �2s(4r2u� rst� 4rtu+ st2 + 2s2 � 4su+ 2u2).

The long factor in J here di↵ers from the resultant of the quadratic factors
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in (24) by a multiple of Ry. Therefore its zeros on V correspond to the stratum

A
3

A
2

, and are not sent by the parametrisation map to the open stratum A2

2

.

On the other hand, s = 0 implies (via Ry = 0) that either r = 0 or u = 0,

which provide in (24) polynomials Q of types D
4

or D
3

A
2

respectively.

From this we conclude that ⇡
s

is submersive on the open stratum A2

2

.

Consider now the matrix of partial derivatives of ↵, �, �, �, ✏ (all defined

via (24)) and Ry, Rc with respect to r, s, t, u. Consider all its order 4 minors

containing the derivatives of Ry and Rc. It turns out that all such minors are

sums of polynomial multiples of J and Qy, with the coe�cients vanishing at

the origin. This observation implies that any mapping ⇡ with the principal

quasihomogeneous part ⇡
s

is submersive on the open A2

2

stratum of the D+

6

caustic.

The final case to consider is A
2

, the set of all regular points of C(D+

6

).

This time

Q = (y � t)2
✓
y4 + uy3 + vy2 + wy +

tw

2

◆

= y6 + (�2t+ u) y5 + (t2 � 2tu+ v) y4 + (t2u� 2tv + w) y3

+

✓
t2v � 3tw

2

◆
y2 +

t3w

2
,

and we have the constant-term equation

R
A2 :=

✏2

4
� t3w

2
= 0.
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Repeating the consideration for ⇡
s

done in the A
3

case, we now notice that

the Jacobi minor of ↵, �, R
A2 with respect to u, v, w is �t3/6. Its vanishing

implies that in general the polynomial Q above is of the A
3

type. Therefore,

⇡
s

is a submersion on the open stratum A
2

.

Similar to the A
3

case again, we notice that replacing ↵ and � in the minor

by any two functions out of ↵, �, �, �, ✏ yields minors that are polynomial

multiples of t4. We conclude from this that any mapping ⇡ with the principal

part ⇡
s

is submersive on the regular part of the D+

6

caustic.

This finishes our proof of the Lemma and thus of the D+

6

part of Theorem

2.2.3. ⇤
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Chapter 4

D�
6

bifurcations

In this chapter we study generic mappings to a 2-dimensional plane of the D�
6

caustic, that is, of the caustic of the generating family

F = �x2y +
1

5
y5 +

1

4
↵y4 +

1

3
�y3 +

1

2
�y2 + �y + ✏x (25)

= �x2y + ✏x+ p(y)

This family di↵ers just by the sign of the x2y term from the D+

6

family con-

sidered thoroughly in the previous chapter. This similarity allows us to omit

many details and only highlight the di↵erences which are due to some strata

being previously real going now complex and vice versa. In particular, we

show that the most generic 3-dimensional section of C(D�
6

) ⇢ R5 is adjacent
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to the codimension 1 degenerations

D
5

, D
4

A
2

, A
5

, A2

3

, A
e/h

4

(see Figure 56 and Section 4.2).

Repeating the argument used for D+

6

, we relate our analysis of the family

(25) to a slightly modified version of the one-variable polynomial used in

Chapter 3:

Q := y2p0(y)� ✏2

4
= y2(y4 + ↵y3 + �y2 + �y + �)� ✏2

4
(26)

From this expression we can, for example, immediately see that all our obser-

vations done in Chapter 4 about strata containing D�3

in their notation stay

true for D�
6

.

4.1 One-dimensional strata in C(D�
6 )

These strata are

• D
5

with Q = y5(y � t)

• D
4

A
2

with Q = y4(y � t)2

• D
3

A
3

with Q = y3(y � t)3

• A
5

with Q = (y � t)5(y + t/5) is not empty now, due to the negative
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sign of ✏2/4 in (26)

• A
4

A
2

with Q = (y� t)4(y� t/2)2 is empty this time for the same reason

• A2

3

with Q = (y � t)3(y + t)3 is not empty this time, also for the same

reason

The images of these strata under the mapping ⇡
s

, (A,B) = (↵, �) (the

one already used in Chapter 3) are shown in Figure 56:

• D
4

A
2

: A2 = 4B

• D
3

A
3

: A2 = 3B

• D
5

: B = 0

• A
5

: 64B = 25A2

• 2A2

3

: A = 0, B  0

Similar to Lemma 3.3.1 we now have:

Lemma 4.1.1. Contributions of the strata D
3

A
3

, D
5

, A
5

and A2

3

to the D�
6

roundabout equations are trivial.

Proof. The symmetry used in the proof of Lemma 4.1.1 yields the claim for

the first 3 strata immediately. For the 2A2

3

stratum consider a short path

crossing it in the positive ↵-direction. Then the same symmetry shows that

if one of the A2

3

moves along it is positive, the other A2

3

move is exactly of the

same type but going in its negative way.
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A52A52
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22

B

D

Figure 56: The part of B
s

(D�
6

) coming from the one-dimensional strata of

C(D�
6

)

4.2 Two-dimensional strata

These strata are:

• A
4

, with Q = (y � t)4(y2 + uy + ut

4

) and ✏2 + ut4 = 0

• D
4

, with Q = y4(y2 + uy + v)

• D
3

A
2

, with Q = y3(y � c)2(y � d)

• A3

2

, with Q = (y3 + ay2 + b)2, is empty now due to the requirement

b2 = �✏2/4

• A
3

A
2

, with Q = (y � t)3(y � s)2(y � r), where q
1

= 3sr + 2tr + ts = 0

and q
2

= ✏2 + 4t3s2r = 0

A
4

. Consider the A
4

stratum in C(D�
6

), parametrized by the surface V =

{✏2 + ut5 = 0} in R3

u,t,✏

which is then projected by ⇡
s

onto the parameter

146



plane R2

A,B

. The complete map is

(A,B) =

✓
u� 4t,�15

4
tu+ 6t2

◆
.

The 3⇥3 determinant formed by the Jacobi matrix of the composite map and

the gradient of the equation of V is a non-zero constant multiple of ✏
�
u+ 4t

5

�
.

Hence the map of V to R2

↵,�

has ordinary folds along the lines u = �4t

5

and

✏ = 0 on V .

On u = �4t

5

we have

Q = (y � t)4
✓
y2 � 4t

5
y � t2

5

◆
= (y � t)5

✓
y +

t

5

◆
,

that is, this corresponds to the A
5

stratum of C(D�
6

) and does not contribute

to the critical points of ⇡
s

on the open A
4

stratum.

Now ✏ = 0 means ut = 0. For t = 0, we get Q = y5(y + u) which is in the

D
5

stratum of the caustic, not A
4

. And for u = 0, we have Q = (y � t)4y2

which at last is in the open A
4

stratum. In this case ↵ = �4t, � = 6t2. Hence

� = 3

8

↵2 is the A
e/h

4

stratum in B
s

(D�
6

).

D
4

and D
3

A
2

. Since since ✏ = 0 here and therefore there is no di↵erence

with the D+

6

situation, we have exactly the same as we found for D+

6

: the

open strata D
4

and D
3

A
2

of C(D�
6

) contribute nothing to B(D�
6

).

A
3

A
2

. The closure of the stratum in C(D�
6

) is parametrized by the surface

S = {q
1

= q
2

= 0} ⇢ R4

r,s,t,✏

.
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The critical points of the projection ⇡
s

of the closure are zeros of the

determinant of the Jacobi matrix of ↵, �, q
1

, q
2

with respect to r, s, t, ✏. This

determinant is a non-zero constant multiple of ✏q
c

, where q
c

= 5r2 + 2rs �

6rt � 16s2 + 6st + 9t2. Let us show that zeros of this product are all in the

closure of the A
3

A
2

stratum of C(D�
6

), not in the open stratum itself.

So we have:

a) ✏ = 0 implies, via q
2

= 0, that at least one of the r, s, t is zero, from

which q
1

= 0 implies that at least two of them are zeros. This gives us

points of the D
5

(r 6= 0), D
4

A
2

(s 6= 0) and D
3

A
3

(t 6= 0) strata.

b) The intersection of the two quadrics q
1

= 0 and q
c

= 0 in R3

r,s,t

consists

of three lines, two ordinary (s = t = �5r and s = �t = r) and one

double (t = �2s = r). The double line lifts to an empty set in S, due to

R = 0 becoming ✏

2

4

+16s6 = 0 on it. The line s = t = �5r provides two

curves in S that are mapped to two A
5

curves in C(D�
6

), and then both

sent to the same curve in B
s

(D�
6

) which is therefore the 2A
5

stratum in

the bifurcation diagram. The line s = �t = r gives us just one A2

3

curve

in C(D�
6

) which is then folded in two to the 2A2

3

ray by ⇡
s

(see Figure

56),

Thus, indeed the projection ⇡
s

has no critical points on the open stratum

A
3

A
2

of C(D�
6

).
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4.3 The D�
6 roundabout equation

Repeating what was done in Section 3.6 about the higher dimensional strata

of C(D+

6

) (with the change of the sign of ✏2 in the Q) one shows that such

strata do not contribute to B(D�
6

). We have already shown in Lemma 4.1.1

that the ⇡
s

-images of one-dimensional strata of C(D�
6

) do not contribute to the

D�
6

equation. The only other stratum in B
s

(D�
6

) is Ae/h

4

(see page 147). The

symmetry argument used in the proof of Lemma 4.1.1 shows that this stratum

also does not contribute to the equation. Hence the equation is trivial: 0 = 0.

Our proof of the D�
6

part of Theorem 2.2.3 is now finished.
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Chapter 5

E
6

bifurcations

The last caustic that may appear as a big caustic of a generic two-parameter

family of Lagrangian maps between 3-manifolds is the caustic C(E
6

) of the

E
6

isolated function singularity, that is, the caustic of the R
+

-miniversal

deformation

F :=
1

3
x3 + ↵xy2 + �xy + �x+

1

4
y4 +

1

2
�y2 + ✏y (27)

of the E
6

function. The aim of this chapter is to show that the most generic 3-

dimensional section of C(E
6

) is adjacent to the codimension one singularities

D
5

, D
4

, D
4

A
2

, A
5

, A2

3

, A
e/h

4

, A
4

A
2

, TA3

2

, TA
3

A
2

of Section 2.2 (see Table 6 in Section 5.1). This will help us to obtain equations

32 of Section 2.3.2.7.
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We notice that the family (27) is quasi-homogeneous, with the weights

x ⇠ 4, y ⇠ 3, ↵ ⇠ 2, � ⇠ 5, � ⇠ 8, � ⇠ 6, ✏ ⇠ 9.

In particular, this means that the straight projection ⇡
0

is (↵, �, �, �, ✏) 7!

(↵, �). The tilted projections are denoted by ⇡
k

where k is how much higher

the weights of the additional monomials participating in the maps may be

comparing with the weights of the components of the principal part ⇡
0

. For

instance the projections ⇡
1

: (↵, �, �, �, ✏) 7! (↵, � + d�) depend on one extra

real parameter d 6= 0.

5.1 Stratification of the big caustic

In the previous two chapters, the D±
6

caustics were conveniently described

in terms of not very complicated polynomials Q in just one variable, and

various strata of the caustics corresponded to real roots of Q of appropriate

multiplicities. This is no longer the case for E
6

, and we will be constructing

parametrizations of the strata in C(E
6

) using the general singularity theory

approach to finding adjacencies of a uni-germ of an isolated function singular-

ity Z to various (multi-)singularities Y . Namely, assume the most degenerate

singularity X of a multi-singularity Y we want to obtain is at the origin. Then

such a function has zero linear terms, but may contain a bit more monomials

than those appearing in the R
+

-miniversal family G of Z. We may try and
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bring the singularity X to its normal form, which would on one hand reduce

the number of the monomials we have been using in G, but on the other hand

may introduce some new. After such modifications and taking care of the

other elementary singularities in Y , we should be able to obtain a family of

functions that have the multi-singularity desired. A mapping of this family

into the initial R
+

-miniversal deformation of Z, gives us a parametrization of

the stratum Y of the caustic of Z.

Let us see how this works in the E
6

case.

We will be operating with families of polynomials in x and y. To visualize

them we will be showing their supports, that is, the sets of the monomials

xayb participating in the families with non-zero coe�cients, on the grid of the

exponents (a, b) which we will call the Newton lattice. For example, Figure 57

shows the support of the family (27). When we want to emphasize the value

of a coe�cient we write it next to the node.

x

1

y

_
3

δ2
_1ε

β α

1
4
_

γ

Figure 57: Newton diagram of the E
6

R
+

-miniversal deformation

Moving a critical point (x
0

, y
0

) to the origin, we are replacing each existing
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monomial xayb by (x+x
0

)a(y+y
0

)b which results in amending the coe�cients

of all the xayb. The result of this procedure for a member of the family

(27) is shown in Figure 58. Due to the nature of the R
+

-equivalence that

considers functions up to an additive constant, we will be always assuming

that the constant term is zero.

y

_
3

4
_1

x

1

Figure 58: Members of the E
6

family (27) with a critical point shifted to the

origin

5.1.1 The D strata of C(E6)

We start our parametrizations of strata of the E
6

caustic with the functions

having at least one D
k

point.

Firstly consider deforming E
6

to D
4

. Under the assumption of the D
4

point being at the origin, we must have the 2-jet of the function at origin

zero. Therefore the diagram of Figure 58 simplifies to that of Figure 59,

where u and v are real parameters.

If the zero set of the cubic terms in Figure 59 is three distinct lines in the
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x

4
_

1
3
_

u

v

y1

Figure 59: The Newton diagram of the deformation from E
6

to D
4

complex plane, that is 4v3 + 9u2 6= 0, we have exactly a D
4

singularity at the

origin. Therefore, the closure of the D
4

stratum in the E
6

caustic may be

parametrised by R2

u,v

. To obtain this parametrization, we ‘inscribe’ the family

of Figure 59 back into that of Figure 57. For this we must eliminate the y3

term, which is done via the setting y := y � u. The result is in Figure 60.

2

v

x

u
y

2u3 2
_3−

−2uv
vu2

1_
4

1_
3

Figure 60: Parametrization of the D
4

stratum of the E
6

caustic.

Comparing Figures 57 and 60, we have

↵ = v, � = �2uv, � = vu2, � = �3u2, ✏ = 2u3. (28)
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In particular, the D
4

stratum projects to R3

↵,�,�

as the Whitney umbrella.

3�2 + 4↵2� = 0.

We notice that the self-intersection ray of the umbrella splits into a cuspidal

curve if the ✏ coordinate is restored.

Another observation to make here is about the regions on the uv-parameter

plane. Namely, the region 4v3+9u2 < 0, where the zero set of the cubic form

consists of three di↵erent real lines, corresponds to functions with one D�
4

point. On the other hand, the region 4v3 + 9u2 > 0, where the zero set of

the cubic terms contains two di↵erent non-real lines, corresponds to functions

with one D+

4

point.

The cuspidal curve 4v3 + 9u2 = 0 itself corresponds to cubic terms that

factorize as 1

3

(x�cy)2(x+2cy), c 2 R. Setting x := x�cy, brings our function

to the form shown in Figure 61. This is a D
5

singularity at the origin.

y

_
3 w

4
_1

x

1

Figure 61: Deforming E
6

to D
5

To get a parametrization of the D
5

stratum in our big caustic, we set
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x := x � w in Figure 61, which gives Figure 62, that is, Figure 59 with

u = 2

3

w3, v = �w2. Therefore, the formulas (28) give us a parametrization of

the D
5

stratum in the E
6

caustic:

↵ = �w2, � =
4

3
w5, � = �4

9
w8, � = �4

3
w6, ✏ =

16

27
w9. (29)

2−w

w 1_

x

32
3
_

1_
3

y

4

Figure 62: Result of elimination of the x2y term in Figure 61

Another stratum to look for within the uv-plane of Figure 59 (parametriz-

ing the closure of the D
4

stratum of the big caustic) is D
4

A
2

. For this, we

must find out a condition on (u, v) for the functions, as in Figure 59, to have

a non-Morse critical point o↵ the origin. Thus we need the three equations

F
x

= x2 + vy2 = 0

F
y

= 2vxy + 3uy2 + y3 = 0

H =

�������

F
xx

F
xy

F
yx

F
yy

�������
= 4vx2 + 12uxy + 6xy2 � 4v2y2 = 0
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to have a common solution di↵erent from x = y = 0.

Elimination of x and y from this system of three equations (for example,

by calculating appropriate resultants in MAPLE), and taking care of avoiding

the x = y = 0 solution, we see that the D
4

A
2

stratum corresponds to v = 0.

So, we obtain a parametrisation of the stratum in the E
6

caustic by setting

v = 0 either in (28) or Figure 66:

↵ = � = � = 0, � = �3u2, ✏ = 2u3. (30)

5.1.2 The A-only strata of C(E6)

Next we are going to consider A
k

singularities in E
6

, assuming that A
k

with

the highest k is at the origin. We are interested in functions in the family in

Figure 58 with singularities more complicated than A
1

. Then the quadratic

part of a function at the origin must be a rank 1 quadratic form. That is,

±(ax+ by)2 where either a 6= 0 or b 6= 0.

5.1.2.1 Special quadratic part

We will first consider the short a = 0 case, the Newton diagram of which is

shown in Figure 63, and v 6= 0 there. Therefore we have an A
2

point at the

origin. The subfamilies we are looking for within this family are A2

2

and A3

2

.

In particular, it is easy to see that the plane u = 0 corresponds to A3

2

functions, with the two o↵-origin critical points either both real (if 8v < 9w2)

or both complex. The members of the subfamily are of the D
4

A
2

type if either
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v

u

w

3
1

4
1

x

y

_

_

Figure 63: Functions with the special quadratic part.

v = 0 or 8v = 9w2. The setting y := y � w maps the 8v < 9w2 region 3-to-1

onto (one of the components of) the A3

2

stratum of the big caustic:

↵ = � = � = 0, � = 2v � 3w2, ✏ = 2w3 � 2vw.

The boundary 4�3 + 27✏2 = 0 of the image is covered once by each of the

D
4

A
2

curves v = 0 and 8v = 9w2. We notice that this boundary is exactly

the D
4

A
2

stratum obtained in (30). The corresponding A3

2

stratum of the E
6

caustic is the 4�3 + 27✏2 < 0 region of the �✏-coordinate plane in R5.

In our search for the A2

2

functions in Figure 63, we equate to zeros the

gradient and Hessian in x and y of this family, and eliminating x and y with

the help of MAPLE obtain the equation

(8v � 9w2 + 4u3)2 + 144w2u3 = 0. (31)

This surface is what is called the folded Whitney umbrella. Its singularities
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are the transversal self-intersection along the A3

2

branch w = 2v+u3 = 0 > u,

and the cuspidal edge along the D
4

A
2

curve u = 8v�9w2 = 0 (we are already

familiar with the latter). The dimensions of the A2

2

and A3

2

strata here are

respectively 2 and 1, that is, 1 less than anticipated. This means our strata

are in the closures of similar strata (of the correct dimensions 3 and 2) existing

in the a 6= 0 case of Section 5.1.2.2. The A3

2

stratum of C(E
6

) is considered

in detail in Section 5.3.1.

5.1.2.2 General quadratic part

We can now start rather long considerations of functions with the quadratic

part in Figure 58 being ±(ax + by)2, where a 6= 0. To collect the square in

the quadratic part, we set

x
new

:= x+
b

a
y and y

new

:= y.

This ‘kills’ our xy and y2 terms, but introduces xy2 as shown in Figure 64.

y

_
3
a~

4
_1

x
1

Figure 64: Singularity A
>1

at the origin, ã = 0
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If the coe�cient of y3 is non-zero in Figure 64, then we have the A
2

singu-

larity at the origin. However if the coe�cient of y3 is zero then we have A�3

at the origin. In this case we rotate our ‘ruler’ (currently positioned through

x2, xy, y2) about x2 until we meet another node of the grid participating in

the support of our function. First of all this may happen at xy2 and y4, see

Figure 65.

y

~

1_
3
a

4
_1

x

Figure 65: The Newton diagram that shows if we do not have a perfect square

along the ruler then we have an A
3

point at the origin, otherwise we have A�4

If the ruler terms in Figure 65 do not form a perfect square, then the origin

is an A
3

point. If they form a perfect square the we collect the ruler terms at

x2 using the substitution

x
new

:= x+ cy2 and y
new

:= y,

where c is large. This substitution is shown on Figure 66 where the terms

xy2 and y4 have been ‘killed’. Several new terms have been introduced due

to this substitution.
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~

a

x

y

Figure 66: The Newton diagram that gives us A
4

at the origin if the coe�cient

of x2y in Figure 65 is non-zero since then the coe�cient of y5 here is also non-

zero

If the coe�cient of x2y in Figure 65 was non-zero then we have in Figure

66 a non-zero coe�cient at y5, and hence singularity A
4

at the origin. If the

coe�cient of x2y was zero, then the terms xy3 and y5 in Figure 66 are absent,

and we rotate the ruler about x2 further until it hits y6 whose coe�cient

cannot be zero (see Figure 67). This means an A
5

point at the origin.

~

a

x

y

Figure 67: The Newton diagram of A
5

provided the coe�cient of x2y in Figure

65 was zero

The result of our ruler rotation exercise is that (the closures of) the A
3

,

A
4

and A
5

strata in the E
6

caustic may be parametrized by respectively the

three families of functions shown in Figure 68.

The mapping of the first family ‘packing it into the box’ of Figure 57 and
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1_
3

1_
y

x

4

vu
w

v
w2

w
y

_
3

4
_1

1

x

w
w2

x

_
3

4
_1

1

y

Figure 68: Families parametrising the A
3

, A
4

and A
5

strata of the E
6

caustic

thus giving an A
3

parametrization is

A
3

: ↵ = �v2 + w (32)

� =
4

3
v5 � 2uv + 2w2v � 10

3
v3w

� = �u2 + v2w3 � 2uv2w � 7

3
v4w2 +

4

3
uv4 +

16

9
v6w � 4

9
v8

� = �2uw � 3w2v2 + 4v4w � 4

3
v6 + 4uv2

✏ = �8

3
v7w � 2w2uv +

16

27
v9 + 2u2v � 2w3v3 +

16

3
uv3w

�8

3
uv5 + 4v5w2

Restrictions of these formulas to the other two families parametrize the other
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two strata:

A
4

: ↵ = �v2 + w

� =
4

3
v5 � 10

3
v3w

� = �w3v2 � w4 +
16

9
v6w � v4w2 � 4

9
v8

� = �4

3
v6 + 4v4w + v2w2 � 2w3

✏ =
2

27
v(8v8 � 36v6w + 18v4w2 + 45v2w3)

A
5

: ↵ = w (33)

� = 0

� = �w4

� = �2w3

✏ = 0

In the A
3

parametrization on the left of Figure 68, we recognize the u = 0

plane as the one we have used earlier for the D
4

parametrization. Let us now

find some other strata within this A
3

family.

In particular, we can carry out a search for A
3

A
2

. Repeating the ap-

proach used in the D
4

A
2

case by the end of Section 5.1.1 and for obtaining

equation (31) for a part of the A2

2

stratum, as well as ignoring certain factors
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corresponding to the strata we already know, we arrive at the A
3

A
2

equation

�12w2uv2 � 16v6u� 40v2w4 � 9v6w2 � 16uw3 + 33v4w3 (34)

+27v2u2 + 42v4wu+ 16w5 = 0

This surface is shown in Figure 69.

Figure 69: The 3D picture of the A
3

A
2

surface given by the equation (34)

The A
4

A
2

strata in R3

u,v,w

are of course the intersections of the A
3

A
2

and

A
4

, that is, are common zeros of the equations (34) and u � w2 = 0 from

Figure 68. Substitution of the second into the first gives us

v2w2(v4 � 3v2w + w2) = 0. (35)

As we already know, the v = 0 here is the A
5

and w = 0 = u is D
5

. The

quadratic’s solutions w = (3 ±
p
5)v2/2, u = w2 are the A

4

A
2

curves we are

looking for and are shown in Figure 70 by the black dots. The parametriza-
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tions of the A
4

A
2

strata in C(E
6

) are is given by

↵ =
1

2

⇣
1±

p
5
⌘
v2

� = �1

3

⇣
11± 5

p
5
⌘
v5

� = �8

9

⇣
38± 17

p
5
⌘
v8

� = �1

6

⇣
59± 27

p
5
⌘
v6

✏ =
2

27

⇣
422± 189

p
5
⌘
v2

The last stratum to consider in the uvw-space is A2

3

which is the cuspidal

edge of the A
3

A
2

surface. Therefore we have to find singular points of the

surface (34). Denote its left hand side by Q and equate to zero all components

of its gradient:

Q
u

= �16v6 + 42v4w � 12v2w2 + 54uv2 � 16w3 = 0

Q
v

= 2v(�27v4w2 � 48uv4 + 66v2w3 + 84uv2w � 40w4 � 12uw2 + 27u2) = 0

Q
w

= �18v6w + 99v4w2 + 42uv4 � 160v2w3 � 24uv2w + 80w4 � 48uw2 = 0

Taking v = 0 from Q
v

, we obtain w = 0 from Q
u

, which gives zero in Q
w

.

Therefore, the u-axis is in the singular locus of Q = 0. On the other hand

v = w = 0 in Figure 68, left, gives us a one-parameter family of functions

with two real A2

3

points.

Now we want to see if we can find anything further. The pair-wise resul-

tants of the above three derivatives of Q (however dividing Q
v

through by 2v)
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−2
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2
v

0
0

u

D

A5

−2
2

0

w

2

0
u

−2 2

0
v

−2

Figure 70: The R3

u,v,w

parametrizing the A
3

stratum of the big E
6

caustic. The

components D
4

when u = 0, A
4

when u = w2 and A
3

A
2

when �12w2uv2 �

16v6u � 40v2w4 � 9v6w2 � 16uw3 + 33v4w3 + 27v2u2 + 42v4wu + 16w5 = 0

(cf. Figure 59). To make the diagram less busy, some of the one-dimensional

strata are not shown as curves but are represented by their endpoints on the

boundary of the cube.

166



with respect to u contain only one common factor,

4w2 � 7v2w + 4v4.

Its zero set is two complex parabolas,

w =
1

8
v2
⇣
7± i

p
15
⌘
.

From Q
u

= 0 this yields

u =
1

36
v4
⇣
�9± i

p
15
⌘
.

Now ‘boxing’ back into our R
+

-miniversal deformation of E
6

we obtain the

coe�cients,

↵ =
1

8

⇣
�1± i

p
15
⌘
v2

� = � 1

144

⇣
3 + 5i

p
15
⌘
v5

� =
17

3456

⇣
17± 7i

p
15
⌘
v8

� =
1

96

⇣
11⌥ 3i

p
15
⌘
v6

✏ =
1

576

⇣
27⌥ 19i

p
15
⌘
v9

These are complex expressions, and therefore do not contribute to the strati-

fication of the real E
6

caustic.

The only curve in Figure 70 not described so far is non-straight D
5

com-
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ponent. It is a part of the intersection of the A
3

A
2

and D
4

surfaces. The

whole intersection is obtained by setting u = 0 in (34), which yields 4w = 3v2

as an equation for this D
5

curve.

We have collected in Table 6 all the information obtained in this section

about all one-dimensional strata of Figure 70. We should notice that the two

D
5

curves of Figure 70 provide two di↵erent parametrizations of the same D
5

curve in the E
6

caustic: setting v := �v/2 in the first D
5

case in Table 6 we

get the second D
5

there.

Table 6 Strata in Figure 70 Parametrizations of

the strata in C(E
6

)

A
5

↵ = w

� = 0

� = �w4

� = �2w3

✏ = 0

D
5

↵ = �v2

(u = w = 0) � = 4

3

v5

� = �4

9

v8

� = �4

3

v6

✏ = 16

27

v6
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Table 6 Strata in Figure 70 Parametrizations of

(continued) the strata in C(E
6

)

D
5

↵ = �1

4

v2

�
u = 0, w = 3

4

v2
�

� = � 1

24

v5

� = � 1

576

v8

� = � 1

48

v6

✏ = � 1

864

v6

D
4

A
2

↵ = 0

(w = v2, u = 0) � = 0

� = 0

� = �1

3

v6

✏ = � 2

27

v9

A
4

A
2

↵ = 1

2

�
1 +

p
5
�
v2

�
u = w2, w = 1

2

v2
�
3 +

p
5
��

� = �1

3

�
11 + 5

p
5
�
v5

� = �8

9

�
38 + 17

p
5
�
v8

� = �1

6

�
59 + 27

p
5
�
v6

✏ = 2

27

�
422 + 189

p
5
�
v9

A
4

A
2

↵ = 1

2

�
1�

p
5
�
v2

�
u = w2, w = 1

2

v2
�
3�

p
5
��

� = �1

3

�
11� 5

p
5
�
v5

� = �8

9

�
38� 17

p
5
�
v8

� = �1

6

�
59� 27

p
5
�
v6

✏ = 2

27

�
422� 189

p
5
�
v9
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Table 6 Strata in Figure 70 Parametrizations of

(continued) the strata in C(E
6

)

A2

3

↵ = 0

� = 0

� = �u2

� = 0

✏ = 0

5.2 The Straight Projection

We now start analysing contributions of various strata of the E
6

caustic to

the roundabout equations corresponding to various generic mappings ⇡ of

this caustic to a plane. Our plan is to use the maps ⇡
k

(see page 150) with

increasing k as a sequence of approximations to ⇡. Similar to the situation

we had in the D±
6

cases, the planar bifurcations diagrams B
k

(E
6

) of the ⇡
k

will serve as successive approximations to the bifurcation diagram B(E
6

) of

⇡. It will be clear from our calculations that once certain strata of the B(E
6

)

appear in a su�ciently generic way in certain B
k

(E
6

), their co-orientations

and contributions to the roundabout equations stay the same for higher k, in

spite of possible changes in the circular order of the strata within huge range

of the arbitrary coe�cients involved.

First of all we will use Table 6 to understand the images of the one-
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dimensional strata listed there under the straight projection

⇡
0

: (↵, �, �, �, ✏) 7! (A,B) = (↵ , �) .

Eliminating the parameter (w or v) where needed, we obtain the following

curves in B
0

(E
6

) (see Figure 71):

A
5

: B = 0

D
5

: 9B2 = �16A5

A
4

A
2

: 9B2 = (22 + 10
p
5)A5 (the dashed curve in Figure 71)

A
4

A
2

: 9B2 = (22� 10
p
5)A5

Finally, the Table 6 strata D
4

A
2

and A2

3

of the E
6

caustic are mapped

by ⇡
0

just to the origin in R2

A,B

. This emphasises that ⇡
0

is a rather special

mapping on C(E
6

).

Lemma 5.2.1. Contributions of the strata D
5

and A
4

A
2

to the E
6

roundabout

equations are trivial.

Proof. The family F in (27) defines an (↵, �)-family of Lagrangian maps

(x, y, �) 7! (�, �, ✏) = (�x2 � ↵y2 � �y, �,�2↵xy � �x� y3 � �y) (36)

The symmetry i : (A,B) 7! (A,�B), that is (↵, �) 7! (↵,��), of the target

plane of ⇡
0

lifts to the symmetry (x, y, �, �, ✏) 7! (x,�y, �, �,�✏) that defines
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A5A5

A A4 2

A A4 2

A A4 2

A A4 2
D5

D5

B

A

Figure 71: The strata of the bifurcation diagram B
0

(E
6

) coming from the

Table 6 strata of C(E
6

)

orientation-reversing di↵eomorphisms of the source and target 3-spaces in

(36) under which the family of maps is equivariant. The local degrees of

the Lagrangian maps are not changed by such a pair of di↵eomorphisms. In

particular, this means that both D
5

half-branches in Figure 71 are of the

same D�

5

type. Moreover, the equivariance also means that the bifurcations

in the 1-parameter families of our maps corresponding to a pair of oriented

i-symmetric path-germs in R2

A,B

crossing either the D
5

or A
4

A
2

strata are

isomorphic. Hence the co-orientations of any pair of i-symmetric half-branches

in Figure 71 by the same either positive or negative A-direction. This implies

the claim of the Lemma at least on the level of the diagram B
0

(E
6

).

Our later calculations will show that, for a generic ⇡ : R5

↵,�,�,�,✏

! R2

A,B

(which may be assumed to have the principal part ⇡
0

), the D
5

and A
4

A
2

strata are the only strata of B(E
6

) with the asymptotics A2 = cB5 + . . . ,

where the non-zero coe�cients c are di↵erent for all three curves and defined
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already by ⇡
0

. Therefore, validity of the Lemma for ⇡
0

implies its validity for

generic ⇡.

5.3 Tilted Projections

In the previous section we considered the non-tilted projection ⇡
0

for one-

dimensional strata of the E
6

caustic. We have noticed that some of these

strata behave badly under ⇡
0

. For example ⇡
0

(D
4

A
2

) = {0} ⇢ R2

A,B

. More-

over, calculations that we are omitting here demonstrate that critical points

of generic projections on certain open two-dimensional strata of C(E
6

) do not

show up in ⇡
0

.

In this section we shall consider generic tiltings of ⇡
0

individually for the

closures of the A3

2

, A
4

, D
4

and A
3

A
2

strata. For the notational convenience, we

are assuming that in the space R3

u,v,w

of Figure 70 parametrizing the closure of

the A
3

stratum of the E
6

caustic, the region u < w2 corresponds to A�

3

points,

while the u > w2 region corresponds to A��
3

. This convention implies that all

D±
4

points we come across are of the D±,�

4

types, and all D
5

bifurcations are

of the D�

5

type.

Counting contributions of the individual strata of the bifurcation diagram

to our roundabout equations, we will always assume that these equations are

read in the R2

A,B

anti-clock-wise.

Remark 5.3.1. Most of our calculations will be restricted to generic maps
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⇡ of the E
6

caustic to a plane with the extra-weight 1 part ⇡
1

, (A,B) =

(↵, � + d�) having the coe�cient d positive. Indeed the extension of the

planar symmetry i : (A,B) 7! (A,�B) introduced in Lemma 5.2.1 may be

extended even further by adding the sign change of d. This implies that –

as long as no A�,s

5

strata of the bifurcation diagram are involved – all the

strata contributions to the equations for d < 0 are the negatives of those for

d > 0. The occurrences of the A�,s

5

for d < 0 will be accompanied by special

comments.

5.3.1 The A3
2 stratum of the E6 caustic

Consider the three- and four-dimensional diagrams of A3

2

in R3

↵,�,�

and R4

↵,�,�,✏

in Figures 72 and 73. MAPLE calculations show that the projection of the

A3

2

stratum of C(E
6

) to the ↵��-space has equation 3�2 + 4↵2� + 4↵5 = 0.

This is a Whitney umbrella. However, only a part of the umbrella corresponds

to genuine triple points of the caustic: the remaining part is due to a pair of

points in a triplet being complex. The calculations for ⇡
1

, (A,B) = (↵, �+d�),

d > 0, reveal the TA3

2

stratum {3↵� = 4↵2,↵ > 0} on the A3

2

surface which

maps to the TA3

2

stratum of B
1

(E
6

) : 3dB = A2�3↵2A3. Further tilting does

not a↵ect the cubic part of this expression B = B(A).

On the other hand, the asymptotics of the A
4

A
2

strata in B
1

(E
6

) (as well

as the result of any further tilting) stays the same as in B
0

(E
6

): B ⇠ A
5
2 , see

Figure 71.

The part of the A3

2

stratum contained in the �✏-coordinate plane has two-
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folded
4
h

A4
e

TA2
3D4 A2

nearby
triple points here

+ − A

+ +

+ +
− − no triple points here

β

δ

α

nearby

Figure 72: The 3-dimensional plot of 3�2+4↵2�+4↵5 = 0. The signs ++ and

+� mark the A
4

A
2

half-branches in C(E
6

) parametrized by respectively v > 0

and v < 0 parts of the A
4

A
2

curve w = 1

2

v2
�
3 +

p
5
�
of Figure 70. Similarly,

�+ and �� mark the A
4

A
2

half-branches w = 1

2

v2
�
3�

p
5
�
. These A

4

A
2

strata bound the regions of genuine triple points.
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β

δε−plane

D4 A2
D4 A2 TA2

3

ΙΙΙ
+ +

+ −

no triple points here

δ α

ε

in the

Figure 73: The result of introduction of the 4th coordinate, ✏, in the ↵ � 0

part of the previous Figure: the flat component of the A3

2

stratum described

in Section 5.1.2.1 is inserted.

dimensional image under ⇡
4

, (A,B) = (↵+ k�, � + d� + g� + e✏) the earliest.

Positions of the ⇡
4

-images of the half-branches I and II of the D
4

A
2

stratum

of C(E
6

) for d > 0 and various choices of signs of k and e are shown in Figure

74. The way the part of the A3

2

stratum of C(E
6

) in Figure 73 is mapped by ⇡
4

is shown in Figure 75 for d > 0, k > 0, e < 0. The contribution of this figure

(as well as of each of the other three sign cases) to the roundabout equations

is

d+,�

4,1

a
2

� ta3
2

+ [d+,�

4,2

a
2

]

which is zero according to the equations 29 and 30.

The left part of the A3

2

stratum of C(E
6

) in Figure 72 maps di↵eomorphi-

cally onto its image in R2

A,B

(the cuspidal sector bounded by the A
4

A
2

curve

176



B

A

B

Ae<0 e<0ΙΙ

Ι

ΙΙ

Ι

k<0 k >0

B

k<0
e >0

ΙΙ

A
Ι

B

A
Ι

ΙΙ

e >0
k >0

Figure 74: The ⇡
4

images of the flat A3

2

region in Figure 73 for various pa-

rameter options.

I

2
3

A A4 2

A A4 2

AD +,σ
24,1 

AD +,σ
24,2 

B

A

II

TA

Figure 75: The image of the lower cut of the A3

2

surface of Figure 73 under

generic ⇡
4

(and hence under generic ⇡) for d > 0. The way the image folds

detects the co-orientations of the bifurcational strata.
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in the left part of Figure 71), and contributes nothing to the roundabout

equations.

Summarising the results of this subsection we have

Lemma 5.3.2. The total contribution of the closure of the A3

2

stratum of

C(E
6

) to any roundabout equation is zero.

5.3.2 The A4 stratum in the E6 caustic

In this and two following subsections we will be using the parametrizations

of the strata of the E
6

caustic constructed in Section 5.1.2.2 and illustrated

in Figure 70. Such a parametrization of a stratum S will be denoted p
S

.

The earliest of all the features of B(E
6

) emerging from the closure of the

A
4

stratum of C(E
6

) are seen clearly in the projection ⇡
3

,

(A,B) = (↵, � + d� + g�).

To demonstrate this, we now consider what formulae (32) give for ⇡
3

after the

A
4

setting u = w2:

⇡
3

� p
A4 : (v, w) 7! (↵, � + d� + g�)
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where

↵ = w � v2

� =
4

3
v5 � 10

3
wv3

� = �w4 � w3v2 � w2v4 +
16

9
wv6 � 4

9
v8

� = w2v2 + 4wv4 � 4

3
v6 � 2w3

The critical point set of ⇡
3

is

vw

✓
v + d(w � 2v2) + g

✓
w2 + wv2 � 2

3
v4
◆◆

= 0.

The factors here correspond in the E
6

caustic to the strata A
5

, D
5

and A
e/h

4

.

The ⇡
3

� p
A4-images of these curve give us the strata of the planar bifurcation

diagram:

A
5

: B = �2dA3 � gA4 (see (33) on page 163)

D
5

: B2 ⇠ �16

9
A5 (see (29) on page 156)

A
e/h

4

: B = �2dA3 �
✓
g +

5

3
d3
◆
A4 + · · ·

To obtain the last expansion, we determine a few first terms of the Taylor

expansion v = v(w) of the solution to the last equation, and use it to obtain

the Taylor expansions A = A(w) andB = B(w), from which we then eliminate

w. The way the ⇡
3

� p
A4 map folds the vw-plane if d > 0 is shown in Figure
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76. The folding defines the co-orientations of the strata in the AB-plane.

5
−σ,s

Ae/h4

A5
σ,s

Ae/h4A5
−σ,s

Ae/h4

Ae/h4
A5
σ,s D5

σ

D5
σ D5

σ

D5
σ

w

4
3

2
1

7
6

5

6

7

5
2 4

3

1

A

v

B

A

Figure 76: The folding of the uv-plane by the ⇡
3

� p
A4 map when d > 0

The MAPLE calculations demonstrate that the decorations of the A
5

half-

branches are as shown in Figure 77. The orientation sign of the frame ��✏ (of

γ

σ s

ε

δ

Figure 77: The result of calculations of the local shape of the cuspidal edge

of the caustic in R3

�,�,✏

for the parameter values (A,B) just below point 3 in

the right diagram of Figure 76

the three-space where our caustics live) is then �s. Therefore the contribution
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of the A
4

closure to the roundabout equations is

a��,s
5

� a�,s
5

.

According to equation 18, over R, is equal to ��a2,h,+,�
3

.

As it was promised at the start of Section 5.3, we now check what happens

if we take d < 0. In this case, the symmetry mentioned there basically reflects

the right diagram in Figure 76 in the horizontal axis. The strata names follow

their half-branches, with only one adjustment: the s in the A
5

strata notations

becomes �s. Thus, the new diagram has total contribution

a�,�s

5

� a��,�s

5

to the anti-clock-wise equation. Similar to the previous this is equal to

�a2,h,+,�
3

. This is absolutely consistent with our general principle that the

anti-clock-wise equations for d < 0 should be the negatives of those for d > 0.

Therefore, consideration of the d > 0 case only provides all possible equations

coming from the big E
6

caustic.

We conclude this section with a summary of its results:

Lemma 5.3.3. The total contribution of the closure of the A
4

stratum of

C(E
6

) to any roundabout equation is equal to �sign(d)�a2,h,+,�
3

.
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5.3.3 The D4 stratum in the E6 caustic

Figure 78 shows the two parametrizations of the closure of the D
4

stratum of

C(E
6

) we have considered earlier. They are are related by the pleat map

3
_
3

1_1

1_
4

x

y y
4
1_

x

w

v

t

s

Figure 78: The two parametrizations of the closure of the D
4

stratum of C(E
6

)

(s, t) =

✓
w � v2,

2

3
v3 � vw

◆
.

The participating strata are mapped by it as shown in Figure 79. In this

Figure we distinguish the critical point set D+

4,q

of the fold map

⇡
1

� p
D4 : (s, t) 7! (A,B) = (↵, � + d�) = (s,�2st� 3dt2), d > 0,

which is 0 = @B

@t

= �2(s+3dt). The corresponding part of the B
1

(E
6

) coming

from the closure of the D
4

stratum of C(E
6

) is given in Figure 80. MAPLE

calculations show that both half-branches of the D+,�

4,q

strata are D+,�

4,a

. We

see from this diagram that the D
5

and D
4,q

contributions to the roundabout

equations are zero. Since the D
4

A
2

contribution has already been included in
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4 
D+

4

D<
4

D5

D5

D+
4,q

D+
4,q

AD+
2

AD+
24 

AD+
24 AD+

24 D+
4,q

D+
4,q

D5D5

t

D v s
5D5

4

6

1

52

4
6

31

2

3

5

w

Figure 79: Mapping one parameter space of Figure 78 to the other. The

shaded regions represent D�,�

4

points, and the non-shaded regions D+,�

4

A

A22D

D5
m

D5
m

D+,m
4,a D+,m

4,a

B

4 

Figure 80: The part of B
1

(E
6

) coming from the closure of the D
4

stratum of

C(E
6

)
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the A3

2

case, we have

Lemma 5.3.4. Modulo the total contributions to the roundabout equations

coming from the closure of the A3

2

stratum of C(E
6

), similar contributions of

the closure of the D
4

stratum are zero.

5.3.4 The A3A2 stratum of the E6 caustic

Take the map

⇡
1

: (↵, �, �, �, ✏) 7! (A,B) = (↵, � + d�) (37)

where ↵, �, � are given by formulas (32). We recall that the equation of the

A
3

A
2

surface is

Q := �12w2uv2 � 16v6u� 40v2w4 � 9v6w2 � 16uw3 + 33v4w3 + 27v2u2

+42v4wu+ 16w5 = 0.

Let us find critical points of ⇡
1

on the A
3

A
2

stratum (the open one, without

closing that adds A
5

, D
5

etc). The critical values corresponding to such

critical points are the TA
3

A
2

strata of the B
1

(E
6

). Taking the determinant of
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the Jacobi matrix of ↵, B and Q with respect to u, v, w results in the equation

J :=

����������

↵
u

↵
v

↵
w

B
u

B
v

B
w

Q
u

Q
v

Q
w

����������

= �48uv4w + 108uv2w2 + 32w5 � 168v2w4 � 32uw3 � 172v6w2 � 8uv6

+268v4w3 + 120dwuv5 � 348dw2uv3 + 304dw3uv � 108dwu2v

�80dv9w � 740dw3v5 + 384dw2v7 + 688dw4v3 � 256dw5v + 16dv7u

+40v8w = 0

The resultant of J and Q with respect to u yields

�2160 v2 w (w2 � 3v2w + v4) (4v4 � 7v2w + 4w2)3 (4d2v6 � 4dv5 (38)

�16v4d2w + v4 + 10dv3w + 21v2d2w2 � v2w � 8dw2v � 12d2w3) = 0.

There is no need to consider v = 0, w = 0 or w2 � 3v2w + v4 = 0 since these

have previously been considered in (35). Similarly we have already found

that 4v4 � 7v2w + 4w2 = 0 has a negative discriminant therefore we only

consider the remaining bracket. Its Newton diagram is given in Figure 81.

The monomials on the faces provide us with the asymptotics of the TA
3

A
2
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w

v

Figure 81: The support of longest bracket in (38)

branches:

w(�v2 � 8dvw � 12d2w2) = 0 ) v = �2dw + · · · , v = �6dw + · · ·

v2(�w + v2) = 0 ) w = v2 + · · ·

Extending these Taylor expansions, and using them to find the corresponding

Taylor expansions for the solutions u of the equations Q = J = 0, we obtain

the following three TA
3

A
2

curves:

i) v = �2dw + 5d3w2 � 133

4

d5w3 + · · · , u = 4w

27d

2 +
5w

2

27

� 229

108

d2w3 + · · ·

ii) v = �6dw + 27d3w2 � 8667

4

d5w3 + · · · , u = w2 � 225

4

d2w3 + · · ·

iii) w = v2 � 2dv3 + 9d2v4 + · · · , u = �dv5 + 8d2v6 + · · ·

emerging respectively from the A2

3

, A
5

and D
4

A
2

strata in Figure 70. For

d > 0, their half-branches are represented by the grey circles in Figure 82.

Four of the half-branches are TA�

3

A
2

and the two others are TA��
3

A
2

.

Our last task about the closure of the A
3

A
2

stratum of C(E
6

) is to under-

stand the A2

3

stratum in B(E
6

). The A2

3

stratum in Figure 70 is the u-axis, and

186



5

D5

D5

D5

A4 2D

A4 2D

A23

ï2

0

2

ï2

2
v

0
0

u

w

D

A5

ï2
2

0

w

2

0
u

ï2 2

0
v

ï2

D5

D5 A4 2D

A A24

A A24
A A24

A5

A4 2D

D5

A A24 A5

A23

Figure 82: The R3

u,v,w

parametrizing the closure of the A
3

stratum of C(E
6

)

with the emerging TA
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A
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1

projection when d > 0.

The TA
3

A
2

strata are denoted by grey circles.
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it maps 2-to-1, u 7! � = �u2, to the negative �-coordinate ray in R5

↵,�,�,�,✏

.

This ray is the A2

3

stratum of C(E
6

). Therefore, the earliest it shows up in

the bifurcation diagram of E
6

is under the projection ⇡
3

:

(A,B) = (↵, � + d� + g�).

We have B
3

(E
6

) � A2

3

= {(A,B) = (0,�gu2)} ⇢ R2

A,B

(see Figure 83).

Consider the point (0,��) 2 A2

3

⇢ R2

A,B

. Its preimages in A2

3

⇢ R3

u,v,w

(which

g<0

2
3

A
2
3

A

B B

A

g>0

A

Figure 83: The A2

3

stratum in B
3

(E
6

)

parametrizes the A
3

stratum of C(E
6

)) are (±1, 0, 0), and its total ⇡
3

-preimage

in R3

u,v,w

consists of the two A
3

curves

⇢
u = ±1� v

g
+ · · · , w = v2.

�

The u = +1� · · · curve is A��
3

, and the u = �1� · · · is A�

3

. They parametrize

the two edges of the three-dimensional caustic meeting at the A2

3

point. Their

vw-projections are shown in Figure 84 by dashed curves. Now take a point

(A,B) = (a,�g) with small a 6= 0, and check how the dashed curves of Figure

84 move. Since A = ↵ = w � v2 their meeting points with the w-axis v = 0

188



v

v

w

A
−σ

3 A
−σ

3

A
23 

A
−σ

A
23 

A
−σ A

σ

3 A
σ

3

AA
23 

σ

AA
23 

σ

w

Figure 84: Curves parametrizing edges meeting at an A2
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point. Near (1, 0, 0)

and (�1, 0, 0) respectively

will move to w = a, that is, for a > 0 the three-dimensional caustic will have

two A��
3

A
2

points, and for a < 0 it will have two A�

3

A
2

points. Therefore, our

A2

3

point was of the A2,h,+,�
3

type, and (since the positive side of an A2,h,+,�
3

stratum is where two A+

3

A
2

points exist) the co-orientations of the strata are

as in Figure 85.

+,−

A

B B

A

g>0 g<0

σ

σ

A3

A3

2,h,

2,h,

+,−

Figure 85: Co-orientation of the A2

3

stratum of B
3

(E
6

).

We summarise the results of this section as

Lemma 5.3.5. Modulo the contributions to the B(E
6

) coming from the clo-

sures of the strata A3

2

, A
4

and D
4

of C(E
6

), similar contributions of the closure
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of the A
3

A
2

stratum for d > 0 consist of the A2,h,+,�
3

stratum as shown in Fig-

ure 85, and of four TA�

3

A
2

and two TA��
3

A
2

half-branches.

5.4 Deriving the E6 roundabout equations

MAPLE calculations demonstrate that a generic mapping ⇡ has no critical

points on the open strata A2

2

and A
3

of C(E
6

). Therefore the strata TA2

2

and

Aq

3

of the bifurcation diagram B(E
6

) are empty.

This reduces the participants of the roundabout equations for d > 0 just

to the summand ��a2,h,+,�
3

(see Lemma 5.3.3) and the contributions due to

Lemma 5.3.5. From Figure 85, we see that the a2,h,+,�
3

enters the roundabout

equations with the coe�cient �2� if g > 0, and 0 if g < 0. The jumps ta±
3

a
2

must enter the equations with the coe�cients reflecting the fact that the total

increments of the numbers of A±
3

A
2

points along a loop around the origin in

R2

A,B

must be zeros.

Thus the equation for g < 0 reduces to 0 = 0, while for g > 0 it is

�2�a2,h,+,�
3

+ 2�ta+
3

a
2

� 2�ta�
3

a
2

= 0.

This completes the derivation of the equation 32 from Section 2.3.2.7 and

thus our proof of Theorem 2.3.3.
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Boston, Boston, MA, 1997, 1–76.

[2] F.Aicardi, ‘On mod2 local invariants of maps between 3-manifolds’, Re-

searchGate publication 259189520.

[3] V.I.Arnold, ‘Wave front evolution and equivariant Morse lemma’, Comm.

Pure Appl. Math. 29 (1976) no. 6, 557–582.

[4] V.I.Arnold, Singularities of caustics and wave fronts, Mathematics and

its Applications (Soviet Series) 62, Kluwer, Dordrecht, 1990, xiv+259

pp.

[5] V.I.Arnol’d, ‘Plane curves, their invariants, perestroikas and classifica-

tions’. With an appendix by F. Aicardi, Advances in Soviet Mathematics

21, Singularities and bifurcations, 33–91, Amer. Math. Soc., Providence,

RI, 1994.

200



[6] V.I. Arnold, ‘Invarianty i perestroiki ploskih frontov’, Osobennosti glad-

kikh otobrazheniy s dopolnitel’nymi strukturami, Trudy Mat. Inst.

Steklov. 209 (1995) 14–64. English translation: ‘Invariants and pere-

stroikas of wave fronts on the plane’, Singularities of smooth mappings

with additional structures, Proc. Steklov Inst. Math. 209 (1995) 11–56.

[7] V.I.Arnold, S.M.Gusein-Zade, and A.N.Varchenko, Singularities of dif-

ferentiable maps. Vol. I. The classification of critical points, caustics and

wave fronts, Monographs in Mathematics 82, Birkhäuser Boston, Boston,
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