Evidence of an In Vitro Coupled Diffusion Mechanism of Lesion Formation within Microcosm Dental Plaque
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Abstract
The purpose of this study was to determine whether or not the dual constant-depth film fermenter (dCDFF) is able to produce caries-like enamel lesions and to ascertain further information regarding the performance of this fully-functional biological caries model. Conditions were defined by the continuation (CF) or cessation (FF) of a saliva-type growth medium (STGM) supply during 50 mM sucrose exposures (8 times daily). Hydroxyapatite (n= 3) and bovine enamel (n = 3) substrata were included within each condition and samples extracted after 2, 4, 8 and 16 days. Community profiles were generated for fastidious anaerobes (FA), Lactobacillus spp., Streptococcus spp., Mutans streptococci (MS) and Veillonella spp. using selective culture techniques and enamel demineralisation assessed by transverse microradiography (TMR). Results demonstrated that the dCDFF model is able to produce caries-like enamel lesions with a high degree of sensitivity where reduced ionic strength (I) within the FF condition increased surface layer (SL) mineral deposition. Between conditions, biofilm communities did not differ significantly although MS in the biofilms extracted from the FF condition rose to a higher proportion (by 1.5 Log10 units) and Veillonella spp. were initially greater within the CF condition (by 2.5 Log10 units) indicating an enhanced ability for the clearance of low-pKa acids following exposures to sucrose. However, both conditions retained the ability for caries-like lesion formation.
Introduction
Dental caries results from complex interactions between oral biofilms, the enamel or dentine substratum, and host-specific factors (such as dietary intake of carbohydrates and hygiene) [Fejerskov and Manji, 1990]. Members of the biofilm community are able to ferment sugars and, as a by-product of this process, produce acids which dissolve the underlying hard tissue. If demineralising conditions offset intermediate periods of remineralisation, the net result is mineral loss and a carious lesion will develop. The interplay between these factors have been reviewed extensively and an ecological plaque hypothesis [Marsh and Bradshaw, 1997] has been extended to encompass current understanding of the process [Takahashi and Nyvad, 2008].
Although the microbial component is central to the disease process, research on non-biological models have led to far greater understanding of the mechanisms behind lesion progression [NIH, 2001]. The forefront of caries research therefore remains in investigating systems integrate physiochemical information within a biological context [Cochrane et al., 2010; Lynch, 2011; Rao and Maihotra, 2011; Robinson, 2011]; a feat which when applied in situ is generally confounded by a high degree of inter-individual variation [Larsen et al., 1999; Sullivan et al., 1995]. Exploring the effects of agents that modulate biofilm cariogenicity in vitro is therefore an attractive alternative and in this sense the Constant Depth Film Fermenter (CDFF) has emerged as a powerful tool to meet the needs of current in vitro research.
The CDFF has previously been used to model the growth of various microbial biofilms [Peters and Wimpenny, 1988] including the formation of dental plaque [Kinniment et al., 1996]. Essentially, there are three ecological modes of operation which are typically employed: single-species [Deng and ten Cate, 2004; Pratten et al., 1998b], defined multispecies [Kinniment et al., 1996; Shu et al., 2003], or microcosm multispecies communities [Hope and Wilson, 2003]. Whilst single-species biofilms allow experiments to be focused on a particular organism of interest, the lack of interaction between members of the wider microbial community limits their ability to mimic the clinical situation. Alternatively, defined communities provide a distinct advantage in that they can be used to replicate complex interactions within the oral ecosystem [Kolenbrander, 2011; Periasamy and Kolenbrander, 2009]. Ultimately, the microcosm biofilm model can be considered the most comprehensive since it represents the natural microflora in their entirety [Wimpenny, 1988]. In addition, the CDFF also affords an interface between solid, liquid and atmospheric media enabling a highly specific environment for biofilm growth when compared with microbial life in the planktonic state [Davies, 2003; Gilbert et al., 2002]. 
Biofilms grown in the CDFF have been used to model various response variables implicated in the caries process [Dibdin and Wimpenny, 1999; McLean et al., 2007; Pratten et al., 1998a; Wilson, 1999] including responses to fluoride and sucrose [Deng et al., 2005; Embleton et al., 1998]. However, those biofilms resulting from a microcosm inoculum have yet to be explored. Furthermore, whilst the CDFF has seen significant applications within caries research, carious lesions have yet to be produced within the model itself. Applications thus far have instead focused on oral biofilm production [Dibdin and Wimpenny, 1999; Hope et al., 2012; Kinniment et al., 1996], internal lesion formation on dentine [Cenci et al., 2009; Deng and ten Cate, 2004; Zaura et al., 2011], or ex situ enamel demineralisation [Aires et al., 2006].
Several theories which attempt to explain the architecture of natural caries lesions have also been put forward [Arends and Christoffersen, 1986]. In situ, the predominant cause of this characteristic has been attributed to the presence of fluorides during cyclic de- and re-mineralisation episodes. However, any mechanism which can exert some effect in vitro is likely to influence caries progression in vivo. To this end, direct evidence of the mechanisms which dictate carious lesion formation has yet to be provided through the use of biological caries model. The aim of the present study was therefore to demonstrate the ability of the CDFF model to produce caries-like lesions within bovine enamel tissue under exposure to sucrose as a cariogenic challenge. Additionally, the effect of varying operating conditions was explored by altering the supply of saliva-type growth medium (STGM) during sucrose exposures. 
Materials and Methods
Inoculum Preparation
A saliva pool was created by collecting whole, unstimulated saliva samples from a random subset of healthy volunteers as described by Hope et al. [2012]. The saliva pool was split into a number of 1.8 mL aliquots and frozen at -80°C until required.
CDFF Set-Up
For the purposes of this study, the dCDFF model [Hope et al., 2012] was adopted with some minor modifications (Figure 1). All liquid and silicone tubing was sterilised by autoclaving at 121°C for 15 min except sucrose-containing solutions, which were autoclaved at 116°C for 15 min. HA or enamel disks were placed into PTFE sample pans atop PTFE plugs and recessed to a depth of 200 µm thus providing a finite area for biofilm growth. Pans were then inserted into available spaces in the dCDFF turntable and the entire unit sterilised at 140°C for 4 h in a fan oven (Memmert UFB500; Memmert GmbH, Heilbronn, DE). Enamel disks were sourced from Modus Laboratories (Reading, UK) and stored in 0.1% w/w thymol solution before being sterilised external to the dCDFF units by gamma irradiation at 4080 Gy for 18 h [Amaechi et al., 1999]. Once sterile, the enamel samples were inserted into each dCDFF unit under laminar airflow.
Media Preparation and Sucrose Exposures
An inoculation flask was prepared with 1 L of a mucin-containing saliva-type growth medium (STGM) [Pratten et al., 1998a] consisting of Lab-lemco 1 g.L-1 (Oxoid, Basingstoke, UK), yeast extract 2 g.L-1 (Oxoid), bacteriological peptone 5 g.L-1 (Oxoid), type III hog gastric mucin 2.5 g.L-1 (Sigma-Aldrich, Poole, UK), sodium chloride 0.2 g.L-1 (Sigma-Aldrich), potassium chloride 0.2 g.L-1 (Sigma-Aldrich), and calcium chloride di-hydrate 0.3 g L-1 (Thermo-Fisher Scientific, Geel, BE). Once cooled, the inoculum flask was located in an incubator at 37°C for 2 h before a single aliquot of the saliva pool was added. Whilst the contents were continuously stirred, peristaltic pumps (Watson Marlow, Falmouth, UK) were used to draw the inoculum though the tubing to enter each dCDFF unit at a flow rate of 0.5 mL.min-1. The inoculum was exhausted after approximately 16 h at which point a separate 10 L supply of STGM was pumped into each dCDFF unit by the same means but at a flow rate of 0.38 mL.min-1.
The sucrose pulsing regime described previously [Deng and ten Cate, 2004; Deng et al., 2005] was chosen as a template for this investigation with a revision to the procedure as illustrated in Figure 2. In brief, a 50 mM sucrose solution was pulsed into each CDFF unit at a rate of 0.38 mL.min-1, for 15 min x8 times daily over a 16 h period of a 24 h cycle. The study was continued for a period of 16 days. However, in one unit the supply of STGM remained continuous during exposures to the 50 mM sucrose solution (continuous-flow condition; CF) whereas in the other, the supply of STGM was halted at times when sucrose exposures occurred (feast-famine condition; FF).
Analysis of the Salivary Type Growth Medium (STGM)
The native pH of the STGM was first measured from six 10 mL aliquots extracted from sterile STGM and the samples passed through a 0.2 µm Minisart syringe filter (Sigma-Aldrich) before being analysed by capillary electrophoresis (CE). Using the kits provided by the manufacturer (Beckman-Coulter Ltd., High Wycombe, UK), the concentration of chloride, sulphate, formate, succinate, acetate, lactate, phosphate, propionate, and butyrate (for anionic species) and ammonium, sodium, potassium, magnesium and calcium (for cationic species) was calculated relative to external standards set across 4 calibration levels. Lithium and azide were used as internal standards with sodium and chloride salts employed for all anionic and cationic separations respectively (Sigma-Aldrich). Fluoride was measured in each of the 6 filtrates using a calibrated (across concentrations in a predicted range of 1-1000µM of F standard from Sigma-Aldrich, r2 = 0.999) ion-selective electrode (ELIT 8221; Nico2000 Ltd., Middlesex, UK) with a 50:50 dilution in TISAB III buffer (Sigma-Aldrich).
Recovery and Enumeration of Oral Bacteria 
Following the extraction of each PTFE sample pan and immediately following the 4th sucrose exposure on the given sampling day, 3 of the HA disks supporting biofilms were removed and each placed in a sterile Bijou (Sterilin Ltd., Newport, UK) containing 5 mL PBS solution (Sigma-Aldrich) along with 3 sterile glass beads (3.5 - 4.5 mm diameter; BDH-Merk Ltd., Poole, UK) and vortex mixing for 30 sec. Serial 10-fold dilutions were then made in 1 mL PBS solution and 25 µL spread onto the following agars and incubated anaerobically for 48 h before determining viable counts by the number of colony forming units per unit area of supping biofilm growth (CFU.mm-2). 
Viable counts of fastidious anaerobes (FA) were collected on fastidious anaerobic agar (Bioconnections, Leeds, UK) supplemented with 5 % (v/v) defibrinated horse blood (TCS Biosciences, Botolph Claydon, UK). Mutans streptococci were culture on a modified TYC medium (Lab M Ltd., Lancashire, UK) supplemented with 150 mg.L-1 sucrose (Sigma-Aldrich) and 3.5 mg.L-1of Bacitracin (Sigma-Aldrich) [van Palenstein Helderman et al., 1983]. Viable counts of Streptococcus spp. counts were obtained on MSA agar (BD Difco Co., Sparks, MD. USA) supplemented with 1 mL of 1 % (w/v) potassium tellurite solution (Sigma-Aldrich) and Lactobacillus spp. were enumerated using Rogosa agar (Oxoid).
Veillonella spp. were also quantified using an adaption of the method described by Rogosa [1956]. A base consisting of 15 g bacto agar (Oxoid), 5 g bacto peptone (Oxoid), 5 g yeast extract (Oxoid), 0.75 g sodium thioglycollate (Sigma-Aldrich), 2 mg basic fuchsin (Sigma-Aldrich) was weighed out and made up to a volume of 500 mL with dH2O. Twenty-one mL of 60% (v/v) sodium lactate (Sigma-Aldrich) was then added and the volume brought up to 1 L with further dH2O with the pH was adjusted to 7.5 with 1 M NaOH (Sigma-Aldrich) before autoclaving at 121°C for 15 min. Once cooled to approximately 48°C, 7.5 mg of filter sterilised vancomycin (Sigma-Aldrich) was added via filter sterilisation in 5 mL dH2O
Enamel Lesion Quantification
Following the removal of biofilm, the enamel disks were subject to analysis by transverse microradiography (TMR). Thin (900 µm) sections were cut at an angle transverse to the exposed enamel surface using a precision diamond wire saw (Model 3241; Well Diamantdrahtsagen GmbH., Mannheim, Germany). Samples were then polished on both sides with a custom-made diamond-impregnated grinding disc (15 µm particles size; Buehler, Illinois, USA) to yield planar-parallel sections 80 µm in thickness.
Each thin section was then mounted on an acetate sample frame and placed film-side down on high-resolution x-ray film plates (Kodak type 1A High-Resolution Plates; Kodak, Rochester, USA) along with a 13-piece aluminium step-wedge and exposed to a CuKα X-ray source operating at 10 mA and 30 kV. Exposure time was 25 min and the distance from source to sample frame was 300 mm. X-ray sensitive films were developed in solutions provided by the manufacturer (Kodak D-19 Professional Developer; Kodak, Rochester, UK and Kodak Unifix; Kodak, Rochester, UK) following the instructions provided
Radiographic images were analysed using an optical microscope (Leica, Wetzlar, Germany) fitted with a CCD camera (Sony, Tokyo, Japan). Between 5 and 6 images capturing an area of 600µm acquired using the TMR 2000 software (Version 2.0.27.16; Inspektor Research Systems BV., Amsterdam) and parameters of integrated mineral loss (∆Z), lesion depth (LD), average mineral loss (R) and the degree of surface layer mineralization (SZMax) were measured using the TMR 2006 software package (Version 3.0.0.10; Inspektor Research Systems BV.).
Statistical Analysis
Analysis of data was performed using SPSS Statistics 20 (Version 20.0.0.1; IBM UK Ltd., Portsmouth, UK). Results for viable counts were transformed (Log10) before statistical analysis and an Analysis of Variance (ANOVA) applied to all data collected. In the event that significant differences were found within groups containing more than 2 sets, Tukey’s HSD post-hoc test was applied. For all statistical tests, confidence intervals of 95 % certainty were applied (α = 0.05). 
Results
Biofilm Composition between Substrata and dCDFF Conditions
Between dCDFF conditions, statistically significant differences were observed on each sampling occasion with respect to FA (P ≤ 0.014). FA reached a maximum on the 8th sample day in the FF condition although growth curves appeared non-district form those observed within the CF condition. Likewise, Lactobacillus spp. demonstrated remarkably similar trends between both dCDFF conditions. However, Streptococcus spp. did not show this same level of clarity. In this instance, a greater degree of variation was observed although no major differences were determined between either conditions (Table 2).
Viable counts of MS rose to a comparatively greater magnitude (by 1.5 Log10 units) within the FF condition similar to that seen for FA. Ultimately, both conditions exhibited a sharp increase in growth which terminated at similar values (6.25 ± 0.5 Log10 units). However, viable counts determined for Veillonella spp. were dissimilar between dCDFF conditions. In the CF condition viable counts were initially far greater (by 2.5 Log10 units) and proceeded to experience a decrease toward the end of the experiment. In the FF condition, this response appeared delayed, consistent with a late community bloom. For all microbial groups sampled, counts obtained from biofilms grown on either HA or enamel were also compared and no difference between the choice of either substrate could be found for the vast majority of possible combinations (P ≥ 0.053) with the expiation of 5 individual cases (P ≤ 0.026).
STGM Ionic Composition
Analysis of the STGM determined absolute concentrations of each of the 12 analytes listed in Table 1. Formate and Ammonium were not detected in any of the samples measured. Likewise, fluoride was below the detection limits set by the analysis method (< 0.01 ppm). STGM pH was measured as 6.92 ± 0.07 SD therefore enabling the ionic strength (I) to be calculated as I = 0.3118 mM [Shellis, 1988].
Enamel Lesion Formation
In the FF condition a well-defined SL was evident in each of the samples analysed. However, in the CF condition, the SL was far less evident (Figure 3). Interestingly, lamination zones were apparent in some of the enamel sections taken from the latter condition (data not shown) as indicated by the large degree of variation observed in the samples extracted on the 8th sample day. Interestingly, adjacent enamel disks did not show this same variation in lesion character.
In comparing groups directly, it was not possible to accurately extract SZMax measurements on sample day 2 (due to the lack of any distinct SL structure) however parameters for ΔZ, LD and R were able to be analysed fully. Comparing these results found that, between dCDFF conditions, a significant difference was found with respect to ΔZ (P ≤ 0.013), LD (P ≤ 0.048) and R (P ≤ 0.009) on days 2, 4 and 16. However, on day 8, no significant difference (P ≥ 0.560) between any of these parameters were determined.    
In the FF condition a progressive increase in ΔZ was seen over time (Figure 3). However, this same delineation could not be applied to CF condition. Here a significant increase in ΔZ was seen initially (P = 0.012) with no further increase following the 4th sample day (P ≥ 0.161). LD also demonstrated an extremely similar trend to ΔZ; measurements increased progressively over time and reached a maximum of 63.12 µm ± 4.90 µm SD by day 16 in the FF condition. Conversely, in the CF condition, LD was greatest in lesions removed on day 8. Trends in R showed some similarities to those for ΔZ and LD in that significant differences existed between dCDFF conditions at days 2, 4 and 16. However, when considering the data longitudinally, the trends were much less distinct. In the CF condition, no significant difference (P ≥ 0.146) between any of the time points sampled although in the FF conditions, some statistically significant differences were found to exist (Table 3).
As noted above, lesions created within the CF condition lacked obvious SLs but in the FF condition these areas were discernible on day 4, 8 and 16. Examination of the data collected found no difference between values for SZMax in the CF condition (P = 0.077). However a statistically significant difference was detected within measurements taken from the FF condition (P = 0.011).
Discussion
In addressing the initial aim of this study, it can be concluded that the dCDFF model is able to produce caries-like enamel lesions under simulated sucrose exposures. Examining results further revealed that clear SLs occurred in lesions which were produced under the FF cycle whereas this feature appeared absent in the lesions taken from the CF condition. A possible basis for this observation may lie in chemical parameters at the interface between the enamel surface and biofilm PF. Coupled-diffusion has been identified as playing a significant role in the formation of the SL [Anderson and Elliott, 1987] and a factor which is able to augment this process is the ionic strength (I) of the medium at the interface [Anderson et al., 2004]. The combined introduction of STGM and the sucrose solution (ie. in CF condition) would, presumably, result in the biofilms being exposed to a medium of higher I than if they were exposed to sucrose in the absence of the STGM (FF condition). When mixed 50:50 within sucrose solution the bulk solution in contact with the biofilm during a cariogenic challenge would have a higher I in the CF condition than in the FF condition. It is therefore reasonable to assume that the PF would also be affected [Margolis and Moreno, 1994]. If theI of PF was significantly reduced in the FF condition then this would increase the effects of diffusive coupling within the system [Anderson et al., 2004] and therefore could explain the enhanced SL feature in lesions which were created under these conditions.
However, as a biological caries model, alterations to the collective physiological state of the biofilms within could be a factor that contributed to the lesions produced. Carbohydrates present in the STGM might not be high enough to result in significant levels of acid production to enable the selection of acidogenic species and ultimately create a cariogenic state. However, based on the assertion that adjunct sucrose is sufficient for this process [Aires et al., 2006; Arthur et al., 2013; Pratten et al., 2000], the reduction in sucrose concentration which occurs with the effect of mixing STGM and sucrose solution in the CF condition may have some influence on the lesions that are created. In effect, a 50 mM sucrose challenge in the FF condition would equate to approximately a 25 mM challenge in the CF conditions. Although a positive correlation was indicated, Aries et al. [2006] found no difference between these concentration ranges with their in situ model.
Bacterial enumeration showed only minor differences in viable counts between either of the dCDFF conditions. Such a degree of variation can be expected as a result of natural fluctuations known to occur within such multispecies consortia [Sissons, 1997; Skopek et al., 1993]. The lack of any real distinction between FA, Lactobacillus spp. and Streptococcus spp. demonstrates the efficacy of the dCDFF model. However, in the FF condition the proportion of MS rose higher whereas the proportion of Veillonella spp. remained lower. As highly acidogenic species [Marsh and Martin, 2009], a higher proportion of MS can be associated within a greater cariogenicity [Hamada and Slade, 1980; Loesche, 1986]. On the other hand, Veillonella spp. possess the ability to metabolise lactate as an energy source [Rogosa and Bishop, 1964]. Their presence within a biofilm may therefore aid in the removal of the acids following production [Mikx et al., 1976]. This would point to a less cariogenic plaque within the CF condition. However, assertions made on the basis of selective culture are limited as more than one community structure may be stable under a certain set of environmental conditions [Sissons, 1997]. In addition, any alteration to the environment is most likely to exert an effect on the biofilm phenotype whereas changes in the composition are likely to be secondary [Kinniment et al., 1996]. Consequently, quantification of the metabolic activity would provide a much greater degree of insight.
The lamination zones [Palamara et al., 1986] apparent in some of the samples taken from the CF condition may have resulted from exposures of purely chemical source [Damato et al., 1990; Lippert et al., 2012] but within dCDFF system, the environmental conditions are highly controlled [Pratten, 2005]. It is therefore more likely that these structures resulted from some deviation from the uninterrupted state of biofilm growth. Biofilms which form progressively would, in theory, react to a cariogenic challenge in a way dependent on their state of maturity. Lamination zones may also result from the successive formation of 2 SLs (the deeper of which being the remnants of an earlier lesion which penetrated further). In a logical progression, this histological feature may have formed through damage or removal of a mature cariogenic biofilm and the re-colonisation with less cariogenic growth. If such a disturbance was to occur in vivo, subsequent re-growth would require passage through the stages defined by the ecological plaque hypothesis [Marsh, 1994]. Alternatively continuous re-inoculation with a fully aciduric community would arise within the CDFF by the action of the scraper blades but re-establishment of the biofilm structure would still be expected to reduce cariogenic potential somewhat. Therefore, although the substrate would be re-inoculated with a cariogenic community, full cariogenicity would not immediately develop. It is therefore important to note the samples size used within the present work as this would have to potential to influence findings. Within the current design of the dCDFF model, the number of sample pans is limited which in turn limits the number of sampling occasions. In order to produce a data set reflective of both biofilm growth and enamel demineralisation through the period of operation, a compromise in sample number is unavoidable given the current design of dCDFF units.
Lesion progression in the FF condition showed the greatest development over time whereas the progression appeared to be hindered in the CF condition (Table 3). Heightened proportions of Veillonella spp. could have contributed to lower cariogenicity [Mikx et al., 1976] nevertheless variation was also seen in the lesions created under the CF conditions. To this end, the lamination zones could have contributed but their magnitude alone would not account for the observed degree of variation. If mechanical disturbance of the biofilm occurred at least once in the CF condition, then it is possible that this may have occurred several times. Depending on the extent of such a disruption, the biofilms may have been prevented from reaching their full cariogenic potential. Thus, mechanistic influences may have confounded results to some extent. However, a reduced cariogenic challenge resulting from mixing the sucrose solution with the STGM in the CF condition may also have contributed as was indicated by the higher proportion of MS and lower content of Veillonella spp. in the biofilms which received a greater exposure to fermentable carbohydrates.
Enamel lesion progression was also demonstrated to be non-linear within this model. These observations raise interesting questions over the dangers associated with stagnation sites and the removal of plaque biofilms as, from these data, cariogenicity was greatest in the earlier stages of the experiment; as biofilm maturation progressed, further demineralisation was limited (Table 3). This observation therefore questions the completeness of the extended ecological plaque hypothesis [Takahashi and Nyvad, 2008] as what would be observed is a biofilm which had reached a highly cariogenic state but following which a reversion had also occurred. Alterations in the structure and composition of the mature biofilm and the retention of inorganic mineral ions [Cury et al., 1997; Tenuta et al., 2006] could have contributed to the reduction in rate of mineral loss detected.
In conclusion, the CDFF model is able to produce caries-like enamel lesions internally. There is also supporting evidence that biofilms produced within the CDFF may be more highly cariogenic in the earlier stages of formation. Methods which are able to directly capture their metabolic activity should also be employed [Nyvad et al., 2013] in order to provide additional assessment of metabolic activity. Nevertheless, the nature of the dCDFF model was shown to be highly responsive with the degree of control available.
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Legends
Table 1: Saliva-Type Growth Medium (STGM) composition as measured by CE. Formate and ammonium were not detected in any of the samples analysed (n = 6). 
Table 2: Biofilm community profiles generated by selective culture for the microbial groups indicated (n = 6).
Table 3: Lesion parameters of integrated mineral loss (ΔZ; %Vol.µm), lesion depth (LD; µm), average mineral loss (R; %Vol) and SL mineralisation (SZMax; %Vol)
Figure 1: dCDFF Schematic Set-Up; a: Sterile Saliva-Type Growth Medium (STGM); b: Sterile 50 mM Sucrose Solution; c: Peristaltic Pump 0.38 mL.min-1; d: Peristaltic Pump 0.38mL.min-1 (CF);  e: Peristaltic Pump 0.38 mL.min-1; f: Grow-Back Trap; g: Peristaltic Pump 0.5mL.min-1; h: Inoculum Flask with Magnetic Stirrer; i: CDFF Unit A; j: CDFF Unit B; k: Effluent; *: 0.3 µm Air Filter. Note that “d” was responsible for the STGM supply to Unit A and therefore this pump functioned continuously whereas “e” functioned only at times when “c” pumps were inactive.
Figure 2: Saliva-Type Growth Medium (STGM) supply and sucrose pulsing strategy between dCDFF conditions; CF Condition = Continuous Flow Condition, FF Condition = Feast-Famine Condition.
Figure 3 (Enamel Lesion Scan Profiles): a) Lesions created within the CF condition. “Cont-Flow / Day 2”, “Cont-Flow / Day 4”, “Cont-Flow / Day 8” and “Cont-Flow / Day 16” conditions n = 27, n = 44, n = 37 and n = 37 respectively; b) Lesions created within the FF condition. “Fast-Famine / Day 2”, “Fast-Famine / Day 4”, “Fast-Famine / Day 8” and “Fast-Famine / Day 16” conditions n = 34, n = 32, n = 26 and n = 26 respectively. Error bars represent the sample SD.


Tables

Table 1 
	Analyte
	Concentration ± SD
	Analyte
	Concentration ± SD

	Chloride (mM)
	1.098 ± 1.154
	Propionate (µM)
	362.58 ± 99.17

	Sulphate (µM)
	417.49 ± 59.49
	Butyrate (µM)
	264.11 ± 246.47

	Succinate (µM)
	336.74 ± 88.23
	Sodium (mM)
	7.749 ± 0.903

	Acetate (µM)
	359.90 ± 31.17
	Potassium (mM)
	8.543 ± 0.616

	Lactate (mM)
	1.273 ± 0.382
	Magnesium (µM)
	277.40 ± 69.47

	Phosphate (mM)
	1.442 ± 0.320
	Calcium (mM)
	2.930 ± 0.463





Table 2 
	Microbial Group
	Sample Day
	Viable Counts (Log10CFU.mm-2) ± SD

	
	
	CF Condition
	FF Condition

	FA
	2
	8.15 ± 0.19
	7.70 ± 0.14

	FA
	4
	9.15 ± 0.18
	8.36 ± 0.21

	FA
	8
	9.54 ± 0.10
	9.94 ± 0.21

	FA
	16
	9.51 ± 0.17
	9.24 ± 0.15

	Lactobacillus spp.
	2
	4.62 ± 0.16
	3.55 ± 0.18

	Lactobacillus spp.
	4
	6.13 ± 0.06
	6.26 ± 0.15

	Lactobacillus spp.
	8
	6.76 ± 0.12
	6.50 ± 0.11

	Lactobacillus spp.
	16
	5.00 ± 0.23
	5.86 ± 0.09

	Streptococcus spp.
	2
	6.60 ± 0.40
	6.44 ± 0.13

	Streptococcus spp.
	4
	8.07 ± 0.11
	7.26 ± 0.44

	Streptococcus spp.
	8
	7.92 ± 0.14
	8.20 ± 0.12

	Streptococcus spp.
	16
	7.91 ± 0.18
	7.45 ± 0.26

	MS
	2
	5.17 ± 0.07
	4.06 ± 0.43

	MS
	4
	7.08 ± 0.06
	6.23 ± 0.10

	MS
	8
	6.69 ± 0.17
	8.01 ± 0.14

	MS
	16
	6.36 ± 0.11
	6.04 ± 0.11

	Veillonella spp.
	2
	4.82 ± 0.14
	2.77 ± 1.36

	Veillonella spp.
	4
	5.94 ± 0.11
	3.51 ± 0.20

	Veillonella spp.
	8
	6.22 ± 0.10
	5.31 ± 0.18

	Veillonella spp.
	16
	4.63 ± 0.21
	5.33 ± 0.20






Table 3 
	Condition
	Sample Day
	n (Enamel Disks)
	ΔZ ± SD
	LD ± SD
	R ± SD
	SZMax ± SD

	CF
	2
	3
	282.23 ± 43.89
	14.10 ± 2.02
	19.70 ± 0.68
	62.96 ± 2.88

	FF
	2
	3
	124.57 ± 45.75
	7.96 ± 3.18
	15.59 ± 1.32
	71.39 ± 5.43

	CF
	4
	3
	483.75 ± 67.10
	23.21 ± 3.40
	21.14 ± 1.48
	62.14 ± 2.97

	FF
	4
	3
	988.81 ± 138.22
	34.92 ± 4.35
	28.62 ± 1.48
	51.42 ± 7.57

	CF
	8
	3
	1483.47 ± 1004.4
	46.31 ± 21.96
	28.14 ± 6.73
	54.02 ± 5.37

	FF
	8
	3
	1602.00 ± 212.93
	54.60 ± 5.37
	28.20 ± 1.79
	60.24 ± 6.24

	CF
	16
	3
	802.21 ± 91.40
	38.86 ± 2.43
	20.31 ± 3.39
	62.99 ± 4.74

	FF
	16
	3
	2359.86 ± 291.96
	63.12 ± 4.90
	37.09 ± 2.87
	50.63 ± 5.22
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STGM (Saliva-Type Growth Medium) \ 50 mM Sucrose Solution





