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Abstract  
 
Background:  
Severe bacterial infections and sepsis are a major global cause of mortality 
and morbidity and with the number of antibiotic resistance cases on the rise. 
Despite the introduction of treatment guidelines such as those implemented 
by the surviving sepsis campaign mortality remains high and new therapies 
are desperately needed. One new therapy, which may be of benefit, is P4 
therapy – the combination of the immunomodulating peptide P4 and 
intravenous immunoglobulin (IVIG). The ability of P4 to augment 
phagocytosis in models of pneumococcal infections, decreasing bacterial 
burden and improving survival has previously been shown. This thesis goes 
on to investigate the efficacy of P4 therapy in models of Gram-negative 
infections, with and without antibiotics and in ex vivo studies from patients 
with severe community acquired pneumonia (CAP).  
Methods:  
Murine models of Escherichia coli and Klebsiella pneumoniae infection were 
used to evaluate the efficacy of P4 peptide with IVIG in the treatment of 
severe Gram-negative infections. Flow cytometry and ELISA were used to 
assessed immune responses to infection with P4 treatment.  
Neutrophils from patients with severe CAP were isolated and their responses 
to P4 assessed with ex vivo phagocytosis assays and flow cytometry. In vivo 
and ex vivo studies were performed with naïve mice and tissue culture cell 
lines to evaluate the effect of P4 on neutrophil receptor expression and the 
binding of P4 peptide to cells. 
Results: 
Treatment with P4 and IVIG in combination with antibiotics led to significant 
improvements in survival and bacterial burden in Klebsiella pneumoniae 
infection. Treatment of Escherichia.coli infection with P4 and IVIG in 
combination with antibiotics showed no benefits over treatment with antibiotic 
with IVIG, this was likely due to the infection being too severe.  
In neutrophils from CAP patients increases in bacterial killing when treated 
with P4 in phagocytosis assays were seen in 60% of patient. Patients who 
did not respond to the P4 treatment showed higher levels of IL-8 and IL-10 in 
their serum and higher disease severity scores.  
Conclusions:  
P4 treatment showed efficacy in the treatment of Klebsiella infection but data 
from E. coli infections and ex vivo treatment of CAP patient neutrophils 
suggest that infection severity and levels of IL-8 and IL-10 may effect 
treatment success. P4 could be a potential new treatment option for patients 
with severe bacterial infections but further studies are needed to better 
establish which patients would benefit from this treatment and the influence 
of host immune status on treatment efficacy.   
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Chapter I. Introduction 
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A. Sepsis 

The word sepsis dates back over 2000 years to ancient Greece, when 

Hippocrates defined sepsis, σήψις, as a process similar to putrefaction, the 

festering of wounds (1). Since that date sepsis has varied in meaning as 

understanding of the condition has developed, arriving at its current clinical 

definition as: a life-threatening organ dysfunction caused by a dysregulated 

host response to infection and septic shock defined as sepsis with persisting 

hypotension despite adequate volume resuscitation (2). 

1. Disease burden  

 

Sepsis presents a significant burden on healthcare systems; global annual 

cases are documented at 1.8 million although due to low rates of recognition 

this is likely an underestimate (3). In England alone there were 122,822 

cases between 2013 and 2014 and the number of cases is rising at a rate of 

around 10% year on year, this is likely due to people living longer with more 

chronic illnesses (4). Case-fatality rates for sepsis vary depending on 

severity: sepsis has a mortality of 30%, whereas severe sepsis and septic 

shock have mortality rates of 50 and 80% respectively (5). Mortality and 

incidence of sepsis also vary greatly with age; below 40 years in hospital 

mortality is between less than 5% and 15% whereas in those above 40 years 

there is a linear relationship between age and mortality. Incidence is highest 

in those under five years, is low between five and 40 years and then 

increases with age (6). Severe infections can progress into sepsis due to 

factors such as treatment failure and patient immune status; the most 
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common source of infection in sepsis is the respiratory tract followed by the 

genitourinary and gastrointestinal tracts (7). 

 Figure 1. Incidence of sepsis according to source of infection, stratified by 
sex. From Moss et al. 2005  (7) 

2. Diagnosis 

Until this year (2016) sepsis diagnosis followed fairly rigid criteria: evidence 

of suspected infection and 2 or more SIRS criteria: 

 Temperature >38°C or <36°C 

 Heart rate >90/min 

 Respiratory rate >20/min or PaCO2 <32 mm Hg (4.3 kPa) 

 White blood cell count >12 000/mm3 or <4000/mm3 or >10% immature 

bands  

This definition, which focused in on excess inflammation was deemed to be 

unhelpful in diagnosis as it had poor discriminant and concurrent validity 
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when identifying potential sepsis patients and fails to take into account the 

role of anti-inflammatory processes in disease progression (2).  

The new guidelines for the identifying of sepsis patients (workflow detailed in 

figure 2) are intended to ease early diagnosis of a condition which is protean 

in nature and in which a myriad of clinical signs and symptoms can be used 

for identification, many of which can be influenced by both pathogen and host 

heterogeneity. The quick SOFA (qSOFA) score was introduced to help 

highlight patients that were likely to have sepsis and are in need of further 

investigation (2). 

  



 

 22 

  

  

F
ig

u
re

 2
 S

e
p

s
is

 d
ia

g
n

o
s

is
 –

 F
ro

m
 S

in
g

e
r 

e
t 

a
l 

2
0
1
6
 

 



 

 23 

3. Costs of sepsis  

Sepsis is associated with high costs, both to healthcare systems and to the 

patients themselves. Sepsis patients account for almost one third of ICU 

admissions in the UK and almost half of these patients die in hospital (8). 

The cost of a single day in ICU in a European hospital ranges from €1168 - 

€2025 with ICU departments estimated to consume 20% of the total hospital 

budget (9). Figure 3 shows the breakdown of these direct costs, with the 

biggest expensive being staffing. 

Figure 3 Direct costs of sepsis in German ICUs 
Direct costs in German intensive care units (ICUs). Medication = drugs, fluids, 
nutrition. Invasive procedures includes diagnostic procedures, renal replacement 
therapy, and mechanical ventilation. Adapted from (10). 
 

With sepsis patients making up such a high proportion of ICU patients they 

present a significant financial burden and are estimated to cost the NHS £2 

billion a year. Direct cost of treatment per case of severe sepsis range from 

€23,000 to €29,000 in Europe and €34,000 in the US; this cost only 

represents 20-30 % of the total cost with 70-80 % of costs being indirect, 

mainly due to productivity losses (11).        
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As well as high fiscal costs patients can also suffer from long term sequela 

such as cognitive and physical impairments, muscle weakness, wasting and 

fatigue as well as the worsening of existing chronic conditions (12-14). 

Sepsis patients are 1.5 times more likely to be readmitted to hospital within 

30 days of discharge than non-sepsis patients and are also more likely to die 

or move into hospice care (15).     
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B. Gram negative infections 

Although Gram-positive infections are the most common cause of sepsis, 

having superseded Gram-negative infections as the leading cause in the 

mid-late 1980s, Gram-negative infections still constitute a high proportion of 

cases (16). Gram-negative infections account for only 38% of reported cases 

sepsis (Gram-positive cases constitute 52% of cases, while fungal infections 

constitute 10%) but they are highly prevalent as bloodstream infections and 

infections with Escherichia coli and Klebsiella spp. are on the rise (17). 

Figure 4 Blood infection-causing organisms  
In adults England, Wales and Northern Ireland April 2011 – May 2012. Source: 
Department of Health 
 

1. Escherichia coli 

E. coli is an extremely versatile microorganism and is the most prevalent 

commensal in the gut of humans and warm-blooded animals. As well as 

being a harmless commensal, E. coli also exists as a number of pathotypes 

capable of causing disease in health humans. Of these pathotypes (listed in 

Table 1) the extra-intestinal E.coli: uropathogenic (UPEC) and neonatal 
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meningitis (NMEC) are of particular interest as the causative agents of 

urosepsis and neonatal meningitis and sepsis.  

a) Urosepsis  

Urinary tract infections (UTI) are extremely common with approximately 150 

million cases globally per year and they are the second most common 

reason for antibiotic prescription (19). In elderly patients, diabetics and 

immunosuppressed patients there is a higher risk of UTIs developing into 

urosepsis, this risk is multiplied further by hospitalisation where interventions 

Table 1 E. coli pathotypes 

Pathotype (acronym) Diseases 

Enteric E.coli 

EnteroPathogenic E. coli (EPEC) Diarrhoea in children 

EnteroHaemorrhagic E. coli(EHEC) Haemorrhagic colitis, haemolytic-uremic syndrome 

EnteroToxigenic E. coli (ETEC) Traveller’s diarrhoea 

EnteroAggregative E. coli (EAEC) Diarrhoea in children 

Diffusely Adherent E. coli(DAEC) Acute diarrhoea in children 

EnteroInvasive E. coli (EIEC) Shigellosis-like 

Adherent Invasive E. coli (AIEC) Associated with Crohn disease 

Extraintestinal E. coli (ExPEC) 

UroPathogenic E. coli (UPEC) Lower UTI and systemic infections 

Neonatal Meningitis E. coli (NMEC) Neonatal meningitis 

Avian Pathogenic E. coli (APEC) Probable source of food-borne disease 

From Allocati et al. 2013 (18)  
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such as the placement of indwelling urethral catheter, ureteric stents and 

nephrostomy tubes further increase risk (20). Catheter-associated UTIs 

account for 40% of hospital acquired infections (19). E. coli is the most 

common cause of UTI and UPEC isolates account for 75-95% of total cases 

and 65% of hospital acquired UTIs (Klebsiella spp, Pseudomonas 

aeruginosa and Proteus spp have higher incidence in a hospital setting than 

the community) (21). Urosepsis constitutes 5% of sepsis cases overall with E. 

coli the causative agent in 50% of these cases (21). Urosepsis is becoming 

an increasing public health issues with the aging population and increases in 

antibiotic resistance, which is highly prevalent in UPEC strains due to their 

propensity to cause occult chronic infections.    

b) Neonatal sepsis and meningitis 

Infection remains a major cause of mortality in neonates with 7% of all 

deaths in children under five year old caused by neonatal sepsis (Figure 5). 

Neonatal sepsis can be divided into two groups: early-onset sepsis (EOS), 

within one week of birth (some studies state 72 hours) and late-onset sepsis 

(LOS), after one week from birth. EOS is thought to be due to maternal 

intrapartum transmission of infectious organisms whilst LOS is thought to be 

due to postnatal infection with preterm infants being particularly at risk as a 

result of prolonged hospitalization and use of indwelling catheters, 

endotracheal tubes, and other invasive procedures (22).  
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Figure 5. Cause of death in children under 5 years, 2015 
Adapted from WHO 2016 (23) 

Neonatal sepsis due to E. coli has increased in recent years and is the most 

common cause of early on-set sepsis in very low birth weight neonates 

(VLBW); those weighing less than 1500 grams. E. coli is often associated 

with more severe infections and meningitis and it has become the principal 

cause of sepsis-related mortality among VLBW infants (24.5%) and the 

second most common cause in infants at term (22). 

Premature births are more susceptible to infection due to their immature 

immune systems; compared with adults, neonate cells have lower pro-

inflammatory cytokine production, lower expression of neutrophil adhesion 

molecules, decreased response to chemoattractants and increased induction 

of IL-10 (24-26). The majority of transplacental passage of IgG occurs in the 

later stages of pregnancy with IgG concentrations only reaching 50% 

between weeks 28-32 of gestation, which means premature births have a 

reduced level of humoral immunity compared with term births (27). 
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Complement levels increase with age but are still significantly lower than 

adult levels at term, with a marked deficiency in the levels of C9 limiting the 

formation of the membrane attack complex (28).  

Neonatal meningitis is primarily caused by E. coli isolates belonging to the 

NMEC pathotype, the condition has a high mortality rate of between 15 and 

40% and is associated with severe long term neurological defects in 

survivors (29). Bacteraemia is a prerequisite to meningeal infection with the 

infection being spread haematogenously; 80% of NMEC isolates possess a 

K1 capsule, which although not necessary for traversing the blood-brain 

barrier is essential for survival (29, 30). Invasion of the blood-brain barrier by 

E. coli is a function of bacterial burden with the risk of invasion increasing 

with bacterial counts of more than 103 per ml of blood (31). 

Treatment of neonatal infections are complicated as the drug dosing 

schedules and concentrations are based on the pharmacokinetics and 

pharmacodynamics data from adult trials. Intrapartum interventions for the 

prevention of Group B Streptococcus (GBS) infection (antibiotics for 

prophylaxis or suspected chorioamnionitis) have shown great benefits in 

reducing the incidence of EOS caused by GBS – no such intervention exists 

of E. coli and prevention remains a challenge (32). Improvements in the 

recognition of EOS are needed in order to help prevent the unnecessary 

treatment of neonates with antibiotics (33).   
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c) Peritonitis and intra-abdominal sepsis  

The term intra-abdominal infection covers an array of different etiologies (see 

Table 2) and abdominal infection is the third most common cause of sepsis 

after pulmonary and genitourinary infection (34).  

Table 2 Potential etiology of intra-abdominal infections (35) 

Gastrointestinal Anastomotic leak Iatrogenic perforations 

 Appendicitis Inflammatory bowel disease  

 Clostridium difficile colitis Meckel diverticulum 

 Diverticulitis Peptic ulcer disease 

 Fistula formation Perforated neoplasm 

 Gastrointestinal malignancy Perforating trauma 

 Biliary Acalculous cholecystitis Ascending cholangitis 

 Acute calculous cholecystitis Intrahepatic abscess 

Retroperitoneal Acute pancreatitis  

 Kidney abscess  

 Pyelonephritis  

Pelvic Endometritis Parametritis 

 Extrauterine pregnancy Pelvic inflammatory disease 

 Oophoritis Salpingitis 

 Ovarial abscess Tubal abscess 

Others Blunt trauma  Spontaneous bacterial peritonitis 

 Intrasplenic abscess   

Peritonitis can be categorised into primary, secondary or tertiary peritonitis. 

Primary peritonitis is defined as peritonitis with no obvious cause (such as 

breach of the GI tract), is usually monobacterial and its most frequent 

presentation is spontaneous bacterial peritonitis in patients with cirrhosis or 

ascites (35). Secondary peritonitis is caused by perforations of a hollow 

viscus due to inflammation or malignancy, less common causes include 

superinfection of ischemic necrosis, fistulas, trauma, or iatrogenic causes 

such as leakage from anastomotic sites (35). Tertiary peritonitis is defined as 

a persistent or recurrent peritoneal infection, usually the result of failed 
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treatment of a secondary peritonitis, 20% of secondary peritonitis patients 

progress to tertiary peritonitis and it is associated with a high incidence of 

nosocomial and multidrug resistant infections, high mortality, immune 

dysfunction and more severe organ dysfunction (35). Enterobacteriaceae are 

by far the most commonly isolated pathogens from peritoneal infections 

within which E. coli and K. pneumoniae predominate, although infections 

from secondary peritonitis are often polymicrobial (seeTable 3).  

Table 3 Aerobic bacteria identified from intra-operative peritoneal fluid (36) 

Total 1330 (100%) 

Aerobic Gram-negative bacteria 957 (71.9%) 

E. coli 548 (41.2%) 

(E. coli resistant to third generation cephalosporins) 75 (5.6%) 

K. pneuumoniae 140 (10.5%) 

(K. pneumoniae resistant to third generation cephalosporins) 26 (1.4%) 

K. oxytoca 11 (0.8%) 

(Klebsiella oxytoca resistant to third generation cephalosporins) 2 (0.1) 

Enterobacter 64 (4.8%) 

Proteus 47 (3.5%) 

Pseudomonas 74 (5.6%) 

Others 73 (5.6%) 

Aerobic Gram-positive bacteria 373 (29.1%) 

Enterococcus faecalis 153 (11.5%) 

Enterococcus faecium 58 (4.4%) 

Staphylococcus Aureus 38 (2.8%) 

Streptococcus spp. 85 (6,4%) 

Others 39 (2.9%) 

Patients older than 18 years undergoing surgery or interventional drainage to 
address  

  



 

 32 

2. Klebsiella pneumoniae 

Klebsiella spp. are ubiquitous in the environment as well as being a common 

commensal in the human and animal gastrointestinal tract. K pneumoniae 

and K oxytoca are the two species responsible for most human infections.  

a) K. pneumoniae in community acquired pneumonia 

Although thought to be an important cause of community acquired 

pneumonia between the 1920s-1960s K. pneumoniae is now a relatively 

uncommon cause of CAP with incidence in the US estimated at less than 

1%. It should be noted however that diagnosis rates in CAP are low with 

failure to identify the etiological agent being as high as 65% (37, 38). In some 

regions (Taiwan and South Africa) and in specific patient groups (alcoholics 

and males with leukopenia) K. pneumoniae does still cause a significant 

proportion of CAP (39). These cases of primary CAP, caused by 

hypervirulent K. pneumoniae isolates (discussed further below) have higher 

mortality rates (55.1%) and marginally higher incidence (31%) than CAP 

caused by S. pneumoniae (mortality 27.3%) in these regions (39, 40). 

K. pneumoniae in western countries is however still an important cause of 

nosocomial infections accounting for around 10% of hospital-acquired and 

ventilator-acquired bacterial pneumonias as well as being a common cause 

of hospital-acquired UTI and is also commonly found in the lungs of chronic 

pulmonary obstructive disorder (COPD) patients (38, 39, 41).   
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b) Hypervirulent Klebsiella pneumoniae 

In addition to K. pneumoniae causing respiratory infections and UTIs, 

invasive liver abscess syndrome (defined as K. pneumoniae liver abscess 

with extrahepatic complications, particularly CNS involvement, necrotising 

fasciitis, or endophthalmitis) has become a significant problem, spreading out 

from Southeast Asia over the last 20 years and being increasingly identified 

in the west (42, 43). This infectious syndrome is of particular concern as it is 

caused by hypervirulent (also referred to as hypermucoviscous) isolates of K. 

pneumoniae capable of causing infection in healthy adults in the community 

and has mortality ranging from 3-42% despite infecting a relatively healthy 

group of patients compared with those infected with the “classical” K. 

pneumoniae isolates common in respiratory infections (44).  

The reason for the increased virulence of these isolates is not well defined 

although higher production of siderophores (resulting in improved iron 

acquisition) compared to “classical” isolates is thought to play an important 

role (45). The hypermucoviscous phenotype is also thought to be significant 

factor, with the trait being used to provisionally identify hypervirulent isolates 

via a “string test” (Figure 6). Whether this phenotype is a result of increased 

capsule production or due to the presence of extracapsular polysaccharide is 

contested, although it has been shown that the majority of hypervirulent 

isolates possess copies (both chromosomally and on plasmids) of both the 

rmpA and rmpA2 genes (positive regulators of capsule production). The 

presence of both these genes is uncommon in capsular serotypes not 

associated with hypervirulent isolates (46).     
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Figure 6 Positive “string test” on a hypervirulent strain of K. pneumoniae 
String test is deemed positive if the dipping of a loop into a culture can produce a 
viscous string of more than 5 mm (44). 

Hypervirulent K. pneumoniae isolates, in general, are more susceptible to 

antibiotics than their “classical” counterparts, with speculation that their 

higher levels of capsule expression make them less able to acquire plasmids 

or that antibiotic resistance genes have been lost in these isolates when they 

become hypervirulent (47). However, studies from China have shown 

resistance to antibiotics is increasing over time, with carbapenems being the 

only antibiotic some hypervirulent isolates show sensitivity to (47). With this 

in mind, hypervirulent K. pneumoniae has the potential to become the next 

“super-bug”.            

3. Antibiotic resistance 

Antibiotics have been in use for over 60 years and have long been 

considered the panacea for infectious disease and hence have been 

extensively misused in the treatment of both humans and in food-producing 

animals. In Alexander Fleming’s Nobel Prize speech in 1945, awarded for the 

discovery of penicillin, he warned of the development of antimicrobial 
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resistance and already by the 1950s penicillin resistant Staphylococcus 

aureus was common place in hospitals (48). Since that time antibiotic 

resistance has increased to the extent that bacteria commonly causing 

infections in hospitals and the community show resistance of 50% or more to 

commonly used antibiotics across the globe (Table 4).  

  
 
Table 4 Bacteria commonly causing infections in hospitals and communities 
From WHO Antimicrobial Resistance Global Report on Surveillance 2014 
 

Along with increasing antibiotic resistance there has been a paucity of new 

antibiotics coming into use, with no new antibiotic classes discovered since 

the late 1980s (Figure 7). The development of new antimicrobials is high cost 

and antimicrobials do not constitute a good investment for pharmaceutical 

companies as the public health policy to limit the usage of antibiotics in order 

to preserve their efficacy runs in direct opposition of traditional sales-based 

models of cost recovery (49).  
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Figure 7 Dates of discovery of distinct classes of antibacterial drugs 
From Silver et al. 2011  (50) 

The evidence that antibiotic resistance exists in the environment and is hard 

wired into the microbial pangenome is increasing with studies from isolated 

environments such as the Lechugiilla caves in New Mexico showing 65% of 

Gram-negative isolates were already resistant to 3-4 commonly used 

antibiotics (51). With this in mind, development of resistance seems 

inevitable with the inappropriate use of antibiotics helping drive selection of 

genes mediating resistance.  

Antibiotic resistance is becoming an increasing issue for both E. coli and 

Klebsiella spp.  
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4. Antibiotic failure 

Inappropriate antibiotic treatment (i.e. where the pathogen shows no 

sensitivity in vitro to the prescribed agent) is a significant issue in the 

management of infection. Inappropriate antibiotic treatment is estimated to 

be between 15 % for community-acquired infections and reaching as high as 

35 % in nosocomial infections admitted to ICU (52). When initial empirical 

antimicrobial therapy fails in patients in septic shock there is an associated 

reduction in survival of approximately five-fold (55% to 11%); this rise in 

mortality risk applies to both Gram-positive, Gram-negative and Candida 

species (53). 

With the spread of antibiotic resistance treatment failure is likely to become a 

more frequent occurrence. Resistance to last line antibiotics such as colistin 

and tigecycline is emerging and infections for which there is no treatment 

option available are starting to occur, especially in E. coli and Klebsiella 

infections (54-56).  

The possibility of a “post-antibiotic era” speculated about in the media over 

the last few years might soon become a reality if new treatment options are 

not developed.  
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C. Neutrophils and phagocytosis  

Elie Metchnikoff, holder of the epithet “the father of natural immunity”, who 

pioneered research in phagocytosis, first coined the term phagocyte in 1883: 

a fusion of the Greek word phago “eating” and the New Latin cyta which 

takes its origin from the ancient greek kútos meaning “vessel or jar”. 

Metchnikoff’s description of the role of phagocytes still holds true to this day: 

“The broad fact that the invasion of the organism by microbes most often 

induces, on the one hand, an inflammatory reaction with its associated 

emigration of leukocytes, and that, on the other hand, the phagocytes are 

capable of including and destroying the invaders, leads us to admit that the 

afflux of phagocytes to the invaded region and their bactericidal properties 

are mechanism which serve to ward off bacterial attack and to maintain the 

integrity of the organism” (57),.  

Neutrophils, a subclass of granulocytes, are professional phagocytes and the 

most abundant of all the leukocytes constituting 40 – 75 % of the circulating 

population of leukocytes in humans. Neutrophils, like all myeloid cells, derive 

from the bone marrow where neutrophil production constitutes the primary 

function (by volume) of the bone marrow, with basal rate estimated at 

5 × 1010–10 × 1010 neutrophils/day. Stages of maturation of neutrophils in 

bone marrow is summarised in Figure 8. Estimates of the half-life of 

neutrophils in the circulation vary significantly and can also be effected by 

disease state; estimates range from a few hours to over five days, although 

the study reporting a value of five days has received some criticism for its 
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techniques used, and a more conservative estimate sits at around six to eight 

hours (58, 59).  

Figure 8 Production of the neutrophil lineage in the bone marrow.  
Numbers in brackets represent total amount of each cell type per kg bodyweight. 
From Tak 2013 (58). 
 

1. Neutrophils during infection  

Neutrophils are a crucial component of the host immune defence; patients 

with a neutrophil count of less than 0.5 x 109 /L or defects in phagocytosis 

have an increased risk of recurrent and severe bacterial or fungal infections 

(often from uncommon pathogens) as well as poor wound healing, skin and 

deep visceral abscesses (60, 61).   
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a) Neutrophil recruitment 

The recruitment of neutrophils to the site of infection involves a cascade of 

events initiated by interactions between bacteria and host cells (62). The 

receptors that facilitate neutrophil infiltration are tissue specific; Figure 9 

details the process in the lower respiratory tract and how the actions of the 

neutrophil can be a double-edged sword, facilitating clearance of infection 

but also causing tissue damage to the host (62-64).  

Figure 9 Schematic describing the cascade of events by which bacteria 
induce neutrophil infiltration and tissue damage in the lung  
Bacteria first interact with epithelial cells and macrophages within the respiratory 
airway (1), this induces release of cytokines and neutrophil chemoattractants (2). 
Adhesion molecules on capillary endothelial cells are upregulated (3) and allow the 
transmigration of neutrophils into the alveolar spaces, following the chemotactic 
gradient (4). Neutrophils produce ROS and RNS (5), this can lead to necrotic cell 
death (6) and lung injury. Taken from Craig et al. 2009    
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A myriad of chemoattractants are capable of recruiting neutrophils to the site 

of infect, a list of these is detailed in Table 5. With such an array of 

chemoattractants showing the capacity to recruit neutrophils one may expect 

a degree of redundancy yet studies in inflammatory diseases have shown a 

temporal and spatial pattern of expression and an ability for neutrophils to 

prioritise chemotactic signals for efficient tissue homing; for example C5a, 

C3a and formylated peptides (which are found closer to the foci) are 

prioritised over IL-8 which is found more distally from sites of infection (65, 

66).  

Chemokines 

Systematic Human Murine Human Receptor Murine Receptor 

CXCL1 GROα KC CXCR2 CXCR2 

CXCL2 GROβ MIP-2 CXCR2 CXCR2 

CXCL3 GROγ n/a CXCR2 n/a 

CXCL5 ENA-78 LIX CXCR2 CXCR2 

CXCL6 GCP-2 n/a CXCR1/CXCR2 n/a 

CXCL7 NAP-2 NAP-2 CXCR1/CXCR2 CXCR2 

CXCL8 IL-8 n/a CXCR1/CXCR2 CXCR2 

CCL3 MIP-1α MIP-1α n/a CCR1 

CCL5 RANTES RANTES n/a CCR1 

CCL6 (MPIF-1) C10 n/a CCR1 

CCL7 MCP-3 MARC n/a CCR1 

CCL9 (HCC-2) MIP-1γ n/a CCR1 

CXCL12 SDF-1α SDF-1α CXCR4 CXCR4 

Peptides/Cytokines 

 Receptor 

C5a C5aR 

C3a C3aR 

Formylated peptides (e.g. fMLF) FPR1 

Pro-Gly-Pro (PGP) CXCR2 

LL37 FPR2 

MIF CXCR2 

Eicosanoids 

 Receptor 

Leukotriene B4 (LTB4) BLT1 

Platelet activating factor (PAF) PAFR 

Table 5 Major human and murine neutrophil-active chemoattractants and their 
receptors expressed on neutrophils. Adapted from Sadik 2011 (65) 

Chemoattractants, along with microbial products, chemokines and 

inflammatory cytokines prime neutrophils, increasing phagocytosis efficiency 
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and ROS production in order to respond to infectious insults effectively (67). 

Priming of neutrophils increases expression of CD11b, CD35 FcγRs and 

CD66b, all thought to be released from intracellular stores via the exocytosis 

of secretory vesicles, without the need for de novo synthesis, allowing for 

rapid (10-15 min) responses to infection (68-72). Inflammatory cytokines also 

augment respiratory burst by phosphorylating NADPH oxidase components 

and deployment of flavocytochrome b558 from granules to plasma and 

phagosomal membranes (73-78). There is evidence from inflammatory 

conditions that a truly primed neutrophil also requires the expression of CD54 

dectin-2 and IL-1β promoter activation, which necessitates transcription of 

proteins and therefore is less rapid and takes several hours (67).  

b) Neutrophil – Bacterial killing  

Neutrophils utilise three methods for bacterial killing: phagocytosis, 

degranulation and the release of neutrophil extracellular traps (NETs).  

(1) Degranulation 

Degranulation involves the release of granules containing proteins capable of 

killing microbes and digesting tissue: these are azurophilic (primary) 

granules, which contain myeloperoxidase (MPO), specific (secondary) 

granules, which contain lactoferrin, and gelatinase and (tertiary) granules, 

which contain matrix metalloproteinase 9. The production of granules marks 

the transition from myeloblast to promyelocyte with different granules 

appearing throughout development; specific granules occurring during the 

myelocyte and metamyelocyte stages are followed by the appearance of 

gelatinase granules in band cells (79). Degranulation can be triggered by 
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stimuli such as exposure to microbial products, binding of immune 

complexes, exposure to TNF-α and is regulated by interactions with cellular 

adhesins (80-82).   

(2) Neutrophil extracellular traps 

Neutrophil extracellular traps (NETs) are extracellular strands of 

decondensed DNA in complex with histones and granule proteins released 

by neutrophils. Extracellular trap formation has also been shown in mast 

cells, eosinophils, basophils, fibrocytes, macrophages and monocytes (83-

88). This release of DNA, histones and granule proteins is effective in 

immobilising and killing some bacteria although it has been shown to be 

detrimental in other infections, for example the Pseudomonas aeruginosa 

exotoxin pyocyanin induces NETosis, which has been shown to play a role in 

the chronic inflammatory condition found in the cystic fibrosis lung (89) (90). 

NET formation has also been shown to have some protective effects during 

experimental systemic viral infections (91); whether NETosis is beneficial or 

not to the host depends on the anatomical site and infecting pathogen (90). 

Initially NETosis was considered to be a pathway of neutrophil cellular death, 

distinct from apoptosis and necrosis however a study in Staphylococcus 

aureus infection has now shown that NETosis can occur whilst the neutrophil 

maintains viability (92). NETosis has also been shown to be regulated by the 

size of the pathogen encountered; small pathogens such as bacteria induce 

phagocytosis whereas larger pathogens, which neutrophils would not be able 

to phagocytose, such as fungal hyphae or bacterial aggregates induce 

NETosis (93). Induction of either the phagocytosis or the NETosis pathway 

results in the inhibition of the other pathway (93). Excessive NETosis can 
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have a harmful effect during infection; the levels of cell free DNA (a surrogate 

marker for NET formation) correlates with sepsis severity and organ 

dysfunction as they contribute to tissue damage and histones can disrupt the 

function of some anticoagulants, which could effect the efficacy of 

prophylactic anticoagulants (94) (95). 

(3)  Phagocytosis 

The first step in phagocytosis is recognition of the target to be phagocytosed, 

phagocytes possess an array of receptors for this purpose listed in Table 6. 

Pattern-recognition receptors can bind directly to bacterial and fungal 

proteins and sugars whereas the opsonic receptors recognise an opsonin, 

which is in turn bound to the bacterial or fungal surface (96).  

Table 6 Human phagocytic receptors Adapted from Freeman et al 2014 (96) 

Opsonic receptors Pattern-recognition receptors 
FcγRI (CD64) Dectin-1 (CLEC7A)‡ 

FcγRIIA (CD32a) CD14 

FcγRIIC (CD32c) Mannose receptor 

FcγRIIIA (CD16a) BAI1 

FcαRI (CD89) CD36 

FcεRI MARCO 

CR1 Scavenger receptor A (CD204) 

CRIg  

CR3 (αMb2, CD11b/CD18, Mac-1) 
 

CR4 (αXb2, CD11c/CD18, gp150/95) 
 

α5b1 (VLA-5) 
 

Opsonic and pattern-recognition receptors work in concert to facilitate 

phagocytosis. For successful phagocytosis remodelling of the cytoskeleton is 

required in order to engulf the particle in question; this is influenced by 

signalling from cell surface receptors where a signalling threshold must be 

met, otherwise stalling of phagocytosis can occur. This threshold has been 
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linked to the density of FcγR signalling in the early stages of phagocytic cup 

formation and 3′ phosphoinositide concentrations in later stages but is also 

influenced by properties of the target such as shape and rigidity (97-99).  

Figure 10 Phagosome formation and maturation  
i. Particle engagement, ii. Phagocytic cup formation and iii. Nascent phagosome 
After ligation of FcγRs the first detectabable signalling event occurs: rapid 
phosphorylation of tyrosine residues within an immunoreceptor tyrosine-based 
activation motif (ITAM) domain, these are located either in the cytoplasmic tail of the 
receptor (CD32A) or in the associated homodimeric g-subunit (other FcγR) (100). 
This phosphorylation is mediated by Src- family tyrosine kinases (101). FcγR 
phosphorylation also promotes clustering of FcγR, which improves the efficiency of 
phagocytosis (102). ITAM-domain tyrosine residues form docking sites for Src 
homology 2 (SH2) domain-containing proteins. Syk is of particular importance to 
ITAM-dependent phagocytosis (101). This leads to activation of Rho GTP-binding 
proteins. FcγR-dependent engulfment requires Cdc42 and Rac2 (Rho-family 
proteins), whereas CR3 requires RhoA (without the requirement of tyrosine 
phosphorylation), both require RhoG (103). Arp2/3 is recruited and binds directly 
with WASP (Wiskott-Aldrich Syndrome Protein) and Scar/WAVE (Suppressor of 
cAMP receptor/WASP family Verprolin-homologous) proteins which act as 
nucleation points for actin (104) In addition to actin recruitment the surface area of 
the phagocyte increases during phagosome formation through the recruitment of 
recycling endosomes, late endosomes, endoplasmic reticulum and secretory 
vesicles to the site of phagosome cup (104). The actin forms pseudopod extensions, 
which engulf the particle, followed by the shedding of cytoskeleton proteins leaving 
the phagosome free in the cytosol (105). 
iv. Early phagosome (2-10 min after sealing), v. late phagosome (10–30 min after 
sealing, vi. phagolysosome (>30 min after sealing).  
Adapted from Steinberg et al. 2008 (106) 
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After sealing of the phagosome there is sequential fusion of early (EE), late 

(LE) endosomes and lysosomes (LY) with each step marked by the 

recruitment of specific molecules and a decline in pH: 

Organelle Markers 

early endosome;  
early phagosome 

EEA-1, Rab5, PI(3)P, syntaxin-13, transferrin receptor, 
VAMP3 
pH 6.1 

Late endosome;  
late phagosome 

Rab7, Rab9, mannose-6-phosphate receptor, syntaxin-7, 
LAMPs, LBPA 
pH 5.5 –pH 6.0  

Lysosome;  
phagolysosome 

LAMPs, mature cathepsin D; fluid-phase markers chased 
for ≥2 hr 
pH 4.5 – pH 5.5 

Adapted from Scott et al. 2003 (107) 

This process results in phagoslysosome with a very low pH, hydrolytic 

enzymes for particle digestion, defensins and other bactericidal peptides, and 

the ability to generate toxic oxidative compounds (108).  
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(a)  Fc gamma receptors (FcγRs)  

FcγRs, so named, as these are the receptors that bind to the Fc portion of 

IgG, are key to opsonophagocytosis. FcγRs form the bridge between the 

innate and adaptive immune response, utilising IgG produced via an adaptive 

immune response to react to an infectious insult. In humans there are four 

FcγR types that participate in phagocytosis: FcγRI (CD64), FcγRIIA (CD32a), 

FcγRIIC (CD32c), FcγRIIIA (CD16a) (109). FcγRIIIB (CD16b) is another 

FcγR that does not directly contribute to opsonophagocytosis but is 

constitutively expressed by neutrophils and has a role in cell activation, Ca2+ 

release and cross-linking of this receptor has been shown to induce NETosis 

(110, 111). In mice, only FcγRI (CD64), FcγRIII (CD16) and FcγRIV have 

been identified; receptor affinities for IgG are show in Figure 11(109).  

 
Figure 11 Comparison of human and murine FcγRs  
FcγRs found on both humans and mice cells, their IgG binding affinity and whether 
binding of immune complexes results in activation or inhibition of cell function. 
Adapted from Schwab et al. 2013 (112) 
 

In addition to the receptors mentioned above, FcγRIIB (CD32b), an inhibitory 

receptor, belongs to this class. CD32b is not thought to be expressed on 
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human neutrophils with its expression limited to B cells; CD32b’s role being 

the negative regulation of antibody production (109). In mice, however, 

CD32b is expressed on neutrophils (109).  

(b) Antibodies 

Antibodies are a major component of humoral immunity and are one of the 

most abundant protein components of the blood, making up about 20% of the 

total protein in plasma by weight. Patients with primary antibody deficiencies 

are more susceptible to infection and are often treated with immunoglobulin 

replacement therapy with products such as intravenous immunoglobulin 

(IVIG) (113)   

In humans antibodies exist as 5 classes: IgA, IgD, IgE, IgG and IgM. IgG is 

important in opsonophagocytosis as it can interact with FcγRs (as well as 

glycan binding receptors DC-SIGN and CD23) and is capable of inducing 

antibody-dependent cellular phagocytosis as well as complement-dependent 

cytotoxicity and antibody-dependent cell-mediated cytotoxicity (96). The 

structure of IgG can be split into two parts: the Fc region, which binds to 

FcγRs and the Fab region, which is responsible for recognising and binding 

antigen.  

(c) Complement and complement receptors 

Complement can act as an opsonin or can lyse pathogens directly via the 

membrane attack complex. Complement can become active and interact with 

pathogen surfaces in a number of ways: the classical, alternative or lectin 

pathway, each is briefly detailed in Figure 12. 
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Figure 12 Complement system pathways 
The classical pathway activates with binding of C1q to antibody:antigen immune 
complex; the lectin pathway activates when mannose-binding lectin (MBL) binds to 
conserved microbial carbohydrate motifs resulting in the activation of MBL 
associated serine proteases – both of these pathways lead to in the cleavage of C4 
and C2 to form C3 and C5 convertases. Alternative pathway activation results from 
the spontaneous hydrolysis of C3 forming the alternative pathway C3 convertase. 
C3 and C5 convertases generate the key effectors of the complement system: 
opsonins (C3b), anaphylatoxins (C3a, C4a and C5a) and the membrane attack 
complex. Taken from Dunkelberger et al 2009 (114)  
 

C3b binds to complement receptors CR1, CR3 (CD11b/CD18, integrin aMb2) 

and CR4 (CD11c/CD18, integrin aXb2) and the recently discovered CRIg 

(found primarily on Kupffer cells) (114). As well as participating in 

phagocytosis, the complement and Fcγ receptors can modulate the 

expression of one another, for example: activation of C5aR (CD88) leads to 

an increase in the expression of CD16, which is protective in Pseudomonas 

aeruginosa infection; CD88 knockout mice showing a similar phenotype 
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during P. aeruginosa infection (increased susceptibility) to CD16 knockout 

mice (115).  

2. Immune dysfunction 

Immune dysfunction is a defining feature of sepsis and plays a major role in 

the pathophysiology of the disease. Historically, sepsis has been thought of 

as a condition with two distinct phases: the initial hyper-inflammatory phase 

followed by a hypo-inflammatory/immunosuppressive stage. Recent studies 

now suggest that both occur simultaneously with the net initial effect being 

hyper-inflammatory (116). There are however competing views as to which 

aspect causes death in patients.  

Figure 13 details two theories regarding immune responses in sepsis; theory 

1 describes a model in which early deaths are caused by excessive 

inflammation whereas late deaths are a result of a failure to clear initial 

infection or the acquisition of secondary infection due to persistent 

immunosuppression (117). Theory 2 describes a model in which protracted 

inflammation driven by the innate immune system leads to organ dysfunction 

and that patients who die, although suffering impaired adaptive immunity, die 

due to the longer and more severe organ injury resulting from persistent 

innate immune driven inflammation (118). Data from post-mortems on 

patients who died from sepsis give greater support to theory 1; patients 

showed decreased production of pro- and anti-inflammatory cytokines, up 

regulation of inhibitory receptors (including PD1), increases in regulatory T 

cell and myeloid-derived suppressor cell populations, and down regulation of 

CD28 and HLA-DR-mediated activation pathways (119). It has also been 

http://www.nature.com/nri/journal/v13/n12/full/nri3552.html#df2
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shown that the rate of positive blood cultures increase in late stages of 

sepsis along with an increase in the number of common opportunistic 

pathogens detected (120).  

 

Figure 13 Competing theories of host immunity in sepsis  
From Hotchkiss et al. 2013 (116)  
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Further evidence to support theory 1 includes the results of surgical sepsis 

patient post-mortems, which showed that 80% of patients had evidence of an 

infectious focus still present at death (121). 

The two-year mortality of patients who survive an initial bout of severe sepsis 

is 1.5 fold higher than other hospitalised patients with mortality varying 

between studies from mortality of 44.9 % to as high as 67 % (122). This 

increase in mortality in survivors is attributed to long-term (nine months – five 

years) sepsis-induced impairment of immune responses: exhibiting both a 

low-level inflammatory status and stunted cytokine production in response to 

inflammatory stimuli, leaving patients more susceptible to subsequent 

infections (123). 

a) Neutrophil dysfunction 

Neutrophil dysfunction is an important factor in the pathophysiology of 

sepsis. Many new treatments for sepsis have been aimed at modifying 

neutrophil responses during sepsis. Severe infection leads to release of 

immature weakly active neutrophils from the bone marrow with decreased 

phagocytosis, decreased chemotactic capability, decreased oxidative burst 

and an increased production of IL-10 (124). Chemotaxis of neutrophils in 

sepsis is impaired to the degree that it has been proposed as possible 

means of evaluating sepsis severity and in major burns (>20% body surface 

area, full thickness burns), where sepsis diagnosis is complicated by 

excessive inflammation, changes in neutrophil migration patterns can predict 

sepsis up to two days before sepsis diagnosis is confirmed (125, 126). Some 

of this neutrophil dysfunction has been shown to be mediated by C5a. 
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Neutrophil activation by C5a can result in the blocking of activation of other 

neutrophils by triggering the release of serine proteases; these then cleave 

CD88 from surrounding neutrophils (127). This is thought to prevent 

excessive neutrophil activation in the context of a small, localised infection, 

but has been implicated in neutrophil dysfunction in both sepsis and the 

cystic fibrosis lung (127). As well triggering the cleavage of CD88, C5a 

binding also inhibits the activity of RhoA and hence polymerization of actin 

and phagocytosis (128, 129). CD88 expression is being explored as a 

possible marker of infection severity in sepsis as reduced expression (due 

receptor cleavage or possibly internalisation) correlates with increased 

infection severity and poorer outcomes in patients (130). This reduction in 

CD88 expression was coupled with a reduction in IL-8 production by 

neutrophils in sepsis patients when stimulated with C5a (130). Anti-C5a 

therapies have been trialled in animals with successfully showing protective 

effects in experimental sepsis but none have yet been developed as far as 

human trials (131-133).   

Due to the capability of neutrophils to produce ROS and NETs they also 

pose a risk to the host; NETosis as been associated with organ dysfunction 

and hence therapies to induce IL-10-mediated inhibition of neutrophil 

infiltration into tissue (95, 134)  

3. Sepsis Treatment  

Patients with sepsis and other severe infections present a significant 

challenge to treatment, often presenting with a diverse range of associated 

co-morbidities and identifying the etiologic agent is often unachievable (135). 
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Over recent years steps have been taken to improve the outcome in severe 

CAP (outlined in the Surviving Sepsis Campaign), yet mortality remains high 

(136). New treatment strategies are therefore urgently needed to 

complement the existing options currently available and limited to antibiotics, 

organ support and source control (137). 

a) Antimicrobials  

“Frapper fort et frapper vite” Paul Ehrlich, 1913 

(Hit hard and fast) 

Since 2002 when the Surviving Sepsis Bundles (Table 7) were introduced 

there has been a movement towards early goal-directed therapy (138). Now 

these bundles have been in place for a number of years it has been shown 

that of the measures introduced only rapid administration of antibiotics has 

had an effect on increasing survival above that of normal care, whilst the 

efficacy of the other measures is controversial (138). Each hour of delay in 

administration of antibiotics is associated with a 7% increase in mortality 

(139). These improvements of course depend on the antibiotic being 

administered being effective against the pathogen being treated, with 

antibiotic resistance increasing failure of antibiotics is possibly going to 

become more common.   
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Table 7 Sepsis bundles. 

Resuscitation bundle (to be achieved within 6 hours from severe sepsis/septic shock 
diagnosis) 

1 - Measure blood lactate 

2 - Blood cultures At least 2 sets of blood cultures before administration of 
antibiotics 

3 - Antibiotics Broad-spectrum antibiotics within 3 hours of admission to the 
emergency department or within 1 hour of admission to other 
hospital units 

4 - SvO2 Measure and achieve central venous oxygen saturation >70% 

5 - Fluid 
resuscitation 

If hypotension and/or blood lactate >4 mmol/L, 1 L crystalloids 
(or 0.5 L of colloid equivalent) in 30 minutes 

6 - Central 
Venous Pressure 

If hypotension despite fluid resuscitation and/or blood lactate >4 
mmol/L, achieve CVP >8 mmHg 

7 - Vasopressors If hypotension not responding to fluid resuscitation, maintain a 
mean arterial pressure >65 mmHg 

Management bundle (to be achieved within 24 hours from severe sepsis diagnosis) 

1 - Lung 
protective 
ventilation 

Maintain inspiratory plateau pressures <30 cmH2O for 
mechanically ventilated patients; avoid a tidal volume >6 mL/kg 
for patients with acute respiratory distress syndrome 

2 - Steroids Administer low-dose steroids for septic shock in accordance 
with a standardized hospital policy 

3 - Drotrecogin 
alfa (activated) 

In accordance with a standardized hospital policy 

(drug withdrawn from market (140)) 

4 - Glucose 
control 

> 4 mmol/L but <8.3 mmol/L 

Adapted from Damiani et al 2015 (141)  
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b) Immune modulating treatments  

Attention is now shifting towards the use of immunomodulatory drugs as 

adjunctive therapies in infectious disease (142). Treatments trialled so far in 

both CAP and sepsis have primarily targeted the hyper-inflammatory phase: 

however statins, steroids and activated protein C have all failed to show 

significant clinical benefit (140, 143, 144). Following on from these failures 

more interest has developed in targeting immunosuppression during 

infection: recombinant GM-CSF, IL-7 and anti-programmed cell death 1 

receptor (PD-1) antibodies are all currently undergoing trials (142). The 

results of phase II clinical trials in Germany on the use of GM-CSF in sepsis 

were reported in 2009 and showed patients treated with GM-CSF had 

reduced time of mechanical ventilation and shorter hospital/ICU stays (145). 

Phase III trials in France are currently recruiting for a study investigating the 

effects of GM-CSF on rates of infection in ICUs (146). IL-7 is currently in 

phase II clinical trials in the US investigating the ability of IL-7 to restore 

lymphocyte counts in sepsis patients (147). Anti-PD-1 antibodies are still in 

the pre-clinical stages of development but in vitro studies have shown that 

blockade of the receptor decreases apoptosis and improves immune cell 

function in septic patients (148). The anti-PD-1 antibody pembrolizumab, 

produced by Merck already has FDA approval for treatment of melanoma so 

could quickly progress to human trials (149).   

New treatment strategies are desperately needed to complement the existing 

options available that are currently limited to antibiotics, organ support and 

source control (137).  
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D. P4 therapy 

One possible new immunomodulatory treatment is P4 therapy; a combination 

passive immunotherapy along with the immunoactivating peptide P4.  

1. Passive immunotherapy 

Passive immunotherapy – the transfer of functional antibodies from an 
immunised host to a susceptible host  

a) History 

The transfer of antibodies as a treatment of infection has been used for over 

a century; early preparations used for passive immunotherapy were relatively 

crude, utilising serum from immunised animals and were associated with a 

high incidence of side effects, known as “serum sickness”, in patients (up to 

50%) ranging from relatively mild symptoms such as itching and rashes to 

more serious symptoms such as hypotension and shock (150, 151). Despite 

the severe side effects observed, by the 1930s serum therapy had become 

the standard therapy for pneumococcal pneumonia, although this treatment 

required early administration, having little effect if administered after 4 to 5 

days after the onset of symptoms. Passive immunotherapy, along with 

potentially severe side effects during the treatment of pneumococcal disease, 

was also hindered by serotype specificity - a mixture of serum, from the 

immunisation of animals with different serotypes, was required in order to 

Immunised 
Individual  

Susceptible 
Individual  
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ensure efficacy in the absence of a specific diagnosis with regards to 

pneumococcal serotype, which more often than not was unknown at the time 

of treatment (152). Passive immunotherapy was also an expensive therapy 

to produce, as it required not only the animals used to produce the immune  

serum but also required in vivo testing for efficacy and potency of each batch 

to determine treatment doses (152). Fleming’s discovery of penicillin in 1928 

and subsequent mass production of the drug pioneered by researchers lead 

by Howard Florey in the 1940s resulted in a decline in serum therapy in 

favour of penicillin with its broader specificity, more favourable side effect 

profile and cheaper production (152).  

 
Antibody Therapy  

Chemotherapy Immune Serum Human mAb 

 
Specificity 

 
Narrow Narrow Broad 

Source 
Animals 
Humans 

Tissue culture 

 
Fermentation 

Chemical synthesis 
 

 
Toxicity 

 
High Low Low 

 
Cost 

 
High High Low 

 
Administration 

 
Difficult Easy Easy 

 
Pharmacokinetics 

 
Variable Consistent Consistent 

Mechanism of action 

 
Antimicrobial 

Immune 
enhancement 

Toxin neutralisation 
 

 
Antimicrobial 

Immune 
enhancement 

Toxin neutralisation 
 

Antimicrobial 
 

Table 8. Comparison of immune serum, human monoclonal antibodies and 
chemotherapy for treatment of infection 
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Antibody based therapies have developed over the years as production 

techniques have improved and there are now an immense number of 

monoclonal antibody (MAb) therapies being utilised in other fields such as 

oncology and inflammatory disorders, yet usage in bacterial infection is 

limited. Table 8 compares immune serum, human MAb and chemotherapy 

(such as antibiotics) in the treatment of infection. 

b) Intravenous immunoglobulin in passive immunotherapy  

Intravenous immunoglobulin (IVIG) is already used in the treatment of 

several autoimmune and inflammatory diseases but has potential for use in 

infectious disease (153). Utilising IVIG for the treatment of severe bacterial 

infections has the potential to bridge the gap between human mAb and 

conventional chemotherapy by offering a treatment with broad specificity, low 

toxicity, easy administration, consistent pharmacokinetics and diverse 

antimicrobial actions. Unfortunately the use of IVIG in clinical trials in the 

treatment of sepsis thus far have show conflicting results, with outcomes 

varying depending on the dose and the IVIG preparation used in each study 

(154, 155). As well as inconclusive results in clinical trials, IVIG is an 

expensive drug with a cost of £20,850 per quality adjusted life year, just 

above the £20,000 limit for treatments on the NHS (156). It is also not totally 

understood how IVIG acts during treatment for sepsis as there are numerous 

components of the immune response to infection whose actions can be 

modified by the administration of IVIG (detailed in Figure 14) (112).  
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Figure 14 Fc and Fab mediated IVIG activity 
The top panel shows the Fab mediated mechanisms of immunomodulation: 
antibody-dependent cytotoxicity, blockade of cell surface receptors, the 
neutralisation of cytokines and scavenging of anaphylatoxins. The bottom pane 
show Fc mediated mechanism of immunomodulations: the blocking/saturation of cell 
surface receptors (such as FcγR) , modulation of FcγR expression and expansion of 
Treg cells. Taken from Schwab et al. 2013 (112) 
 

Effectiveness of IVIG as an opsonin during passive immunotherapy is limited 

by the requirement for frequent large doses of antibody (at significant 

financial cost) and the capability of the host’s cellular response to utilise the 

IgG for clearance of pathogens (157).   
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2. P4 peptide 

The P4 is a 28 amino acid peptide derived from the lipoprotein 

pneumococcal surface adhesin A (PsaA), which is being investigated due to 

its immunomodulating effects. 

PsaA is a highly conserved molecule, which is partially exposed on the 

pneumococcal surface, although the majority of the molecule is concealed by 

capsular polysaccharides. PsaA functions as a manganese transporter in the 

pneumococcus and is also a putative adhesin binding to E-cadherin (158).      

Figure 15. P4 peptide  
Crystal structure, molecular weight and amino acid sequence of P4 peptide. 
 

P4 peptide was developed when the Center of Disease Control and 

Protection were looking for the functional epitope within PsaA, which allowed 

binding of the pneumococcus to epithelial cells with the intention of then 

using that epitope to develop treatments targeted at blocking bacterial 

binding through PsaA. A series of peptides were produced based on the 

sequence of PsaA, those of interest were named P4, P6 and P7. P4 is 

homologous to the PsaA sequence with a conservative substitution of two 

amino acid: a pair of aspartic acid to a lysine and arginine (detailed in Figure 

 MW  = 3254.8 Da 

 Amino acid residues 251–278 

 Amino acid sequence:  

L-F-V-E-S-S-V-K-R-R-P-M-K-T-V-S-

Q-D-T-N-I-P-I-Y-A-Q-I-F 
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16) this substitution was outside of areas in the sequence thought to be of 

functional importance (159).  

P6 and P7 are truncations of P4, with P6 being truncated at the N-terminus 

whilst P7 was truncated at the C-terminus (sequences shown in Figure 16). 

They found that fluospheres coated in both P4 and P7 had high binging to 

nasopharyngeal cells (Detroit 562) whereas P6 had low binding (159). They 

went on to treating nasopharyngeal cells with 20 µg/well of P4 peptide before 

adding 1 μm fluorescent polystyrene spheres (fluospheres) coated in rPsaA, 

which resulted in a 95.5% inhibition of the rPsaA fluospheres to 

nasopharyngeal cells (159). 

 

 
Figure 16 Comparison of P4, P6 and P7 sequence with PsaA sequence. 
Amino acid sequences of PsaA, P4, P6 and P7 – orange boxes indicate areas 
thought to be functional domains of PsaA. Blue box indicates location of amino acid 
substitution.    

When treatment with P4 was tried out on nasopharyngeal cells with live S. 

pneumoniae, rather than blocking binding, increased adhesion and invasion, 

electron micrographs of these cells showed that those treated with P4 had 

large vacuoles containing internalised material, which was thought to be 

suggestive of a strong cellular activation. Increases in adhesion/invasion 

were not serotype specific and were also observed with Streptococcus 

pyogenes and Streptococcus mitis (160).  
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Figure 17 Transmission electron micrographs of P4-treated and non-treated 
Detroit 562 cells (1900×) 
Panel A. Non-treated Detroit 562 cells. Panel B. Cells treated with P4. Arrows 
indicate large vacuoles containing internalised material (160).   

This proposed cellular activation was also observed in undifferentiated 

human neutrophils (HL-60), mouse macrophages (RAW 261.4) and freshly 

isolated human blood neutrophils.  In addition to cellular activation it was 

observed that P4 treatment led to an increase in basic fibroblast growth 

factor (FGF-β) and a reduction in IL-6, IL-8 and Vascular endothelial growth 

factor (V-EGF) secretion by nasopharyngeal cells. No differences were 

observed in the secreted levels of cytokines IL-1, IL-10, TNF-α, IFN-γ, and 

GM-CSF (160).  

Following on from these studies P4 was used in opsonophagocytosis assays 

with HL-60, IVIG and complement to look at the effect of the peptide on 

phagocytosis of pneumococci. P4 significantly enhanced the phagocytosis of 

pneumococci by HL-60s in a dose dependent manner but its effect was 

dependent on the presence of antibody and complement as the response 

was mitigated by the removal of either two components (Figure 18) (161).  
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Figure 18 Effect of removing assay components from OPK on P4 
enhancement of phagocytosis in human alveolar macrophages. 
“OPK” = all components are included (macrophage, bacteria, antibody, 
complement), “no antibody” = without the presence of antibody, “no complement” = 
without the presence of complement, and “FcγR block” = where Fcγ receptors were 
occupied by IgG prior to the assay. Taken from (162) 

Table 9. Published P4 in vivo research.  

Year  Main findings 

2008 
(161) 

P4 and antibody treatment via I.P. injection lead to 60% survival, I.V 
injection to 80% survival whilst untreated controls had only 10% 
survival  
 

2009 
(163) 

Treatments with P4 and IVIG in combination with antibiotics reduced 
the dosage of antibiotic required and lead to increased survival when 
compared to antibiotics alone.   
Animals which survived pneumococcal pneumonia after treatment with 
P4 and IVIG were re-infected and treated a second time with P4 and 
IVIG – P4 still showed efficacy in repeat treatments.       
 

2010 
(164) 

P4 treatment in two strains of aged mice was still effective against 
pneumococcal infection. 
  

2011 
(165) 

Treatment with P4 and IVIG rescued mice from fatal Staphylococcus 
aureus infection with survival increased from 20% to 70%. 
 

2011 
(166) 

Mice were challenged with influenza before infection with 
pneumococcus – P4 and IVIG treatment improved survival from 20% to 
80% 
 

2012 
(167) 
 

Mice infected with pneumococcus were treated with P4 and IVIG. Mice 
receiving an intranasal dose at an early time point (12 and 18 hrs) saw 
significant improvements in survival from 0% for controls to 100% for 
treated mice at 48 hours post infection. Mice that received a later dose 
intravenously (24 and 30 hours) saw significant improvements in 
survival from 0% to 60%.  
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Having shown in vitro efficacy at enhancing phagocytosis, studies moved on 

to in vivo models of infection. Animal studies so far have looked at treatment 

of S. pneumoniae (with and with out influenza) and Staphylococcus aureus 

with P4 peptide in combination with antibodies and have shown treatment 

lead to increased survival. These studies are summarized in Table 9. From 

the in vivo work it was established that treatment with P4 peptide led to an 

increase in the surface expression of CD32/16 (FcγRII/III) on both 

neutrophils and macrophages of mice both during infection in in naïve mice 

(167).  

Human ex vivo studies showed that treatment of alveolar macrophages and 

peripheral blood neutrophils with P4 peptide in an OPK assay also resulted in 

increased phagocytosis of pneumococci in healthy volunteers from both the 

UK and Malawi (162). Although populations showed significant increases in 

phagocytosis, the baseline killing of macrophages from UK volunteers was 

higher and treatment led to greater improvements in phagocytosis than were 

seen in Malawian volunteers (162). As well as increased phagocytosis this 

study also showed increased intracellular oxidation; this increase in 

intracellular oxidation was only significantly increased during OPK assay 

however and not in cell treatment directly with P4 only (162). This study also 

showed no increases in inflammatory cytokines or markers of cellular 

activation on alveolar macrophages treated with P4 following an OPK assay 

(162). Based on these in vitro and in vivo studies a hypothesis for P4 

mechanism of action was formed (represented in Figure 19); this hypothesis 

was that the enhancement in FcγR coupled with the administration of 

pathogen specific IgG (in the form of IVIG) leads to increased phagocytosis 
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of bacteria during infection and hence a decreased bacterial burden and 

improvements in survival. As of yet the mechanism by which P4 increases 

FcγR expression is unknown. 

Figure 19 P4 enhances phagocytosis of IVIG opsonised bacteria through 
increased expression of FcγR  

By using P4 with IVIG (P4-IVIG therapy) as the source of IgG, for 

opsonisation of pathogens, this treatment has the potential for use in 

numerous infections as IVIG contains antibodies specific to a wide range of 

common pathogens. This would be beneficial in the treatment of sepsis and 

other severe bacterial infections were the causative agent is often not known 

when treatment is initiated and patients are often suffering from depletion of 

immunoglobulins (168).      
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E. Aims and objectives 

1. Gram negative infections 

Having shown efficacy in the treatment of Gram positive infections (S. 

pneumonia and MRSA) with P4 peptide treatment, the first aim of this study 

was to explore the use of P4 in combination IVIG in the treatment of Gram 

negative infections, namely E. coli and K. pneumoniae most commonly 

associated with severe invasive infections such as sepsis. This will be 

achieved through the development and use of murine models of sepsis from 

which I will determine the effects of P4 treatment on bacterial load, neutrophil 

responses to infection, and overall inflammation and host survival patterns.         

2. Ex vivo CAP  

The second aim of this study was to assess ex vivo, the capacity of P4 

peptide to enhance bacterial phagocytosis by peripheral blood neutrophils 

and alveolar macrophages in a cohort of patients admitted to ICU with 

community acquired pneumonia. As well as looking at phagocytic killing as a 

primary endpoint for the study I aimed to determine the effects of ex vivo P4 

treatment on neutrophil cell surface receptor expression, inflammation and 

whether patient clinical measures would give an indication as to which 

patient groups would most likely benefit from P4 treatment. 

3. Mechanism of P4 action  

The third aim of this study was to investigate the effect of P4 on receptor 

expression on the neutrophils of naïve mice in an attempt to learn more 

about the mechanism of P4 function.   
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Chapter II. In vivo murine study of 

effects of P4 peptide during severe 

E. coli infection 
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A. Introduction 

Previous studies have shown the in vivo efficacy of P4 peptide in the 

treatment of acute pneumonia and sepsis caused by the Gram-positive 

pathogens Streptococcus pneumoniae and Staphylococcus aureus (MRSA) 

(161, 164, 165, 167). This study goes on to look at the efficacy of P4 

treatment in severe Escherichia coli infection.   

1. Animal Model 

For this study an animal model of E. coli peritoneal infection that rapidly 

progresses to sepsis was developed in order to assess treatment efficacy. 

This model was used for both survival and time pointed experiments. Models 

utilised also assessed the efficacy of P4 treatment as an adjunctive therapy 

in combination with antibiotic treatment. An intra-peritoneal infection model 

was chosen as this site is the third most common site of initial infection in 

sepsis, with treatment failure being associated with persistent or recurrent 

infection and high mortality.  

2. Cell surface marker and cytokines 

Tissue and blood from time pointed experiments were collected for flow 

cytometry analysis of cell surface markers and measurement of cytokines in 

order to monitor the effect of treatment on the immune response to infection. 

The cytokines chosen for analysis were CXCL1, IL-10 and C5a. CXCL1 was 

chosen as it regulates the production of a number of cytokines, chemokines 

and adhesion molecules essential for neutrophil recruitment and activation as 

shown in Figure 20. 
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Figure 20 CXCL1 -mediated signaling cascades leading to bacterial clearance 
in the organs in response to polymicrobial sepsis 
(1 and 2) CXCL1 production by hematopoietic and resident cells as a result of 
interaction with pattern recognition receptors. (3, 4 and 5) CXCL1 activates NF-κB, 
MAPK leading to upregulation of cell adhesion molecules (ICAM-1) and 
cytokines/chemokines, which results in neutrophil recruitment to the tissues from the 
bloodstream. (6, 7 and 8) CXCL1 regulates the production of IL-17 (IL-17A), 
resulting in the production of CXCL2/MIP-2 and IL-6 and hence neutrophil 
recruitment. (9) CXCL activates NADPH oxidase leading to the production of ROS, 
eventual NETosis and augmenting phagocytosis.(10) Enhanced neutrophil 
recruitment and activation leads to bacterial clearance. From Jin et al. 2014(169) 

 

IL-10 was chosen as a cytokine of interest due the role it plays in immune 

modulation, both beneficial and detrimental effects have been reported for IL-

10 in sepsis, on the one hand it can blunt the pro-inflammatory response, 
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reducing TNF and IFN-γ whilst on the other hand it has been shown to 

negatively effect splenocyte function (170-172). IL-10 has also been shown 

to play a major role in determining when animals enter a phase of irreversible 

shock and has shown to be protective in models of polymicrobial sepsis, with 

the timing of intervention being important and blocking of IL-10 being 

beneficial in the later stages of infection (173, 174). 

C5a was measured due to the reported role in neutrophil dysfunction which 

was discussed in the introduction (Chapter I.C.2.a).  

Cell surface markers investigated in this study included CD64, CD32/16, and 

CD88. CD64 and CD32/16; the FcγRs were measured as the proposed 

mechanism of P4 function is a modulation of FcγR expression. CD88 is the 

receptor for complement. CD88 is of interest because of the role of C5a-

CD88 binding and its effects on neutrophil function as well as being a 

possible marker of infection severity.  
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B. Methods and Materials 

1. Media Preparation  

a) LB Agar    

400 ml of distilled water was mixed with 8 g of Luria broth powder (Sigma, 

UK L3022) and 6 g of agar (Oxoid, UK LP0011) before autoclaving at 121°C 

for 15 minutes. Plates were poured once agar had cooled to 56°C. Plates 

were stored at 4°C until use.  

b) LB Broth 

400 ml of distilled water was mixed with 8 g of LB broth powder (Sigma, UK 

L3022) before autoclaving at 121°C for 15 minutes. BHI broth was cooled 

before use and stored at room temperature. 

2. Bacterial strain and inoculum preparation  

E. coli RS218, a K1 strain isolated from a case of neonatal meningitis was 

used for all E. coli infection models. This strain was gifted by Dr Stephen 

Smith, Trinity College, Dublin.   

Infections were carried out with mid-log cultures. Strains were streaked on to 

LB agar plates from frozen stocks and incubated at 37°C for 16-18 hours. 

The following day universal tubes containing 5 ml of LB broth were 

inoculated from the plate and incubated at 37°C, 200 rpm for 16-18 hours. 

Following the 16-18 hour incubation 500 μl was subcultured into 20 ml of LB 

broth and adjusted to an OD600 of 0.1. The culture was incubated at for 37°C, 

200 rpm for 1-2 hours until reaching an OD600 of 0.5, cultures were 
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centrifuged at 3000 rpm for 5 minutes, the supernatant discarded and the 

pellet resuspended in PBS, this was repeated and the culture then 

resuspended at 2 x 108 CFU per ml. Doses were plated onto LB agar to 

confirm inoculum CFUs .  

3. Animal model techniques 

All animal work was completed at the University of Liverpool under Home 

Office project licence No.40/3602. Female CD-1 mice aged between 6-7 

weeks were used for all experiments.  

a) Euthanasia and animal monitoring  

During experiments animal behaviour was monitored to assess progression 

of infection and wellbeing of animals, scoring system is described in Table 

10. In accordance with the home office licence under which experiments 

were performed, mice were culled when they reached lethargy ++. 

b) Schedule 1 culls 

Schedule 1 culls were carried out on animals during survival studies. Mice 

were culled by cervical dislocation or alternatively mice were place in an 

anaesthetics box and the CO2 concentration increased slowly over a 6 

minute period until mice stopped breathing and cervical dislocation was 

performed to confirm death.   
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Table 10 Animal model scoring 

Score Description 

Normal Mouse is displaying normal behaviour and coat condition. 

Hunched + Mouse displays slight arching of back. 

Hunched ++ Mouse displays very arched back 

Starry + Coat looks poorly groomed around neck area with upright 
hairs. 

Starry ++ Coat looks poorly groomed over whole animal. 

Lethargy + Mouse is moving slowly around cage. 

Lethargy ++ Mouse does not move without encouragement. 

Moribund Mouse is poorly groomed, not moving and has laboured 
breathing. 

 

c) Cardiac puncture under terminal anaesthesia  

Mice were placed in an anaesthetics box and with oxygen set to 0.8 L/min 

and isofluorane at 5%, mice were monitored, an absence of reflex 

responses, whisker twitching and a decreased respiratory rate confirmed 

anaesthesia. Mice were transferred to an anaesthesia cone and the paws 

and tail firmly pinched to ensure a lack of pain response. A 23 gauge needle 

attached to a syringe was inserted under the rib cage into the heart at a 45° 

angle and the syringe pulled back until 1-2 ml of blood is collect. Mice were 

then immediately culled by cervical dislocation.  
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d) Animal procedures  

(i) Intraperitoneal injection 

Intraperitoneal injections were used for the infection of animals during the E 

coli infection models and for administration of IVIG in all animal studies. Mice 

were manually restrained: held by the scruff with the thumb and forefinger 

non-dominant hand, securing tail with the remaining fingers. Mice were then 

tilted downward at a 45 ° angle and injected in either the left or right the lower 

quadrant of the abdomen, away from the midline to avoid puncturing the 

bladder with a 27 gauge insulin syringe.  

(ii) Intravenous injection 

Mice were warmed for 5-10 minutes prior to injection in a heating box to 

dilate the veins. Mice were secured in a restraint device and the tail held with 

slight traction and a 27 gauge needle inserted parallel to the vein (either of 

the lateral veins shown in Figure 21) and advanced 2-3 mm into the lumen 

before slowly injecting. If the infection is performed correctly the vein should 

blanche as the substance is injected. 

Figure 21 Anatomy of murine tail   

Lateral veins 

Ventral artery  Vertebra   
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e) Infection and monitoring  

The prepared dose was administered by intraperitoneal injection into mice as 

a 50 μl dose, using a 27g insulin syringe (detailed in methods and materials 

chapter).  Because of the extremely rapid onset of disease symptoms mice 

were monitored hourly from administration of infectious dose. Animals were 

culled when they reached ++ lethargy (details of scoring in methods and 

materials).   

f) P4 treatment  

P4 peptide and IVIG were administered at one and three hours post 

infection. P4 peptide was administered via a 50 μl intravenous injection into 

the tail vein at a concentration of 2 mg/ml dissolved in DEPC treated water. 

This dose was chosen as it was what had been previously used successfully 

in the treatment of S. pneumoniae sepsis (167). IVIG was administered by a 

100 μl intraperitoneal injection (I.P.) of Gamunex-C (Grifols, Spain), 100 mg 

of protein per ml. IVIG was injected I.P. as trials carried out at the CDC 

showed that the mice better tolerated it when compared with intravenous 

injection of of IVIG. Control animals received an injection of equivalent 

volume of sterile PBS. 

g) Antibiotic treatment    

Tazocin (Pfizer, USA) – piperacillin/tazobactam – was used in experiments at 

a dose of 9 mg/mouse, which equated to ¼ of the human equivalent dose. 

Tazocin was injected via the tail vein, 50 μl dissolved in DEPC treated water 

at the same time points as P4 treatment. Control animals received an 
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injection of equivalent volume of sterile PBS. Tazocin was chosen as it is a 

broad-spectrum antibiotic, which is commonly used for peritonitis and 

pneumonia.  

4. Tissue collection 

(a) CFUs 

Tissue being processed for the determination of CFUs only was 

homogenised with a T10 homogeniser (IKA, Germany) in 3 ml of PBS, short 

5 second bursts at a high speed were used until the tissue suspension 

appeared homogeneous. The Miles and Misra technique was used to 

determine CFU numbers from mouse tissues. Using a 96 well plate, 20 µl of 

bacterial suspension was serially diluted into wells each containing 180 µl of 

phosphate buffer solution (PBS). Each well was thoroughly mixed before 

transferring 20 µl to the next dilution; a sterile pipette tip was used for each of 

the dilutions. Dilutions were continued from 101 to 106. Agar plates were 

marked into six sections and labelled from 10 to 106, 20 µl of each dilution 

was plated in triplicate onto the corresponding segment. Plates were then 

incubated overnight at 37°C. Colonies were counted in sections containing 

between 30-300 colonies. Colony forming units (CFU) from the original 

samples were calculated using the following equation:  

CFU ml⁄ =  Number of colonies in sector ×  dilution factor ×(1000 60⁄ ) 

b) Flow cytometry  

Tissue being processed for flow cytometry was placed in a 40 μm cell 

strainer on top of a 50 ml tube and forced through the membrane with the 
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plunger from a 2 ml syringe. Cell strainers were rinsed through with 5 ml of 

PBS. Cells were pelleted by centrifuging at 300 g and the supernatant 

discarded (or stored at -80 °C for later cytokine analysis). Red blood cells 

were lysed using red blood cell lysis buffer (eBioscience, UK) according to 

the manufacturers instructions. Cells were centrifuged at 300 g, the 

supernatant discarded and the cells resuspended in PBS, 2 % FBS ready for 

staining for flow cytometry.  

Single cell suspensions were divided equally into the wells of a 96 round 

bottom plate. For each sample there was an unstained well, isotype control 

well and a stained well. Plates were centrifuged at 300 g and the supernatant 

removed. The antibodies detailed in Table 11 with corresponding isotype 

controls (BIolegend, USA), were used for flow cytometry analysis of mouse 

leukocytes. All antibodies were used at a dilution of 1:250 in staining buffer 

(PBS supplemented with 2% FBS).  

Table 11 Mouse flow cytometry antibodies  

Biolegend 
Product 
Code 

Description 

101325 APC anti-mouse CD16/32 

101245 
Brilliant Violet 510™ anti-mouse/human 

CD11b 

135809 PE/Cy7 anti-mouse CD88 (C5aR) 

123417 
APC/Cy7 anti-mouse CD21/CD35 

(CR2/CR1) 

103127 Alexa Fluor® 700 anti-mouse CD45 

139303 PE anti-mouse CD64 (FcγRI) 

108405 FITC anti-mouse Ly-6G/Ly-6C (Gr-1) 
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Each well then had 50 μl of stain (or staining buffer for unstained controls) 

added and the wells were mixed. Cells were incubated for 20 mins at 4°C. 

Cells were then washed 3 times in staining buffer by centrifuging at 300 g, 

discarding supernatant and resuspending in 200 μl of staining buffer. Cells 

were then either immediately analysed by flow cytometry or were fixed with 

Cytofix (BD, UK) according to the manufacturers instructions, for analysis the 

following day. Sample acquisition was performed on the BD LSR II (BD 

Biosciences, USA) and analysis was performed with FlowJo 8.7 (Tree Star, 

USA).     

c) Cytokine analysis  

ELISA assays for CXCL1, IL-10 and C5a (R&D systems, UK) were 

performed according to the manufacturers instructions. Blood was collect in 

heparin and nafamostat mesylate (Sigma, UK) to prevent complement 

activation.  

5. Statistical analysis 

Statistical analysis was performed with Prism 5 (Graphpad Software, USA), 

individual tests are noted in figure legends.  
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C. Model development  

The mouse model of E. coli infection developed for this project, involved 

injection of E. coli RS218 into the peritoneal space of mice. Various doses 

were trialled during the establishment of this model.  

Figure 22 shows the CFUs detectable in the blood of CD-1 mice infected at 

various doses. The dose of 1 x 107 CFU/mouse was chosen as lower 

infectious doses were clear by the mice within 48 hours without treatment.  

Infection with 1 x 107 CFUs progressed rapidly, with CFUs detectable in the 

blood at 3 hours post infection (Figure 22). Untreated mice progressed to 

lethargy quickly with subjects being culled from eight hours post infection. 

Other mouse strains were trialled to see if the model could be extended 

beyond 8 hour survival for untreated animals. No difference was observed in 

survival times between CD-1 mice and Balb/C, C57B6 or MF1 mouse strains.   
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Figure 22 Blood CFUs of mice infected with E. coli over 48 hrs 
Blood CFUS of mice (n=3 per group) infected with E. coli  via I.P. injection at dose 
between 1 x 105 and 1 x 107 CFU/mouse. Blood was collected from the tail vein at 
intervals over a 48 hr period and CFUs determined by  Miles and Misra.   
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D. Results 

1. Single dose P4 treatment  

In order to assess the viability of P4 as a treatment for E. coli infection I 

carried out preliminary experiments aimed at determining if a P4-IVIG 

treatment could reduce the bacterial burden in the blood, lungs and spleen of 

mice. Mice were infected with 107 CFUs of E. coli via I.P. injection followed 

by a single treatment of P4 (50 μl of 2 mg/ml I.V.) and IVIG (100 μl of 100 

mg/ml I.P.) at 1 hour post infection. Experiments tracking bacterial burden in 

the blood during the model development showed that by 3 hours post 

infection mice already had between 106-107 CFU/ml of blood and reached 

the humane endpoint within 8-12 hours (Figure 22); as the model was known 

to progress quickly, the earliest logistically possible time point, 1 hour post 

infection, was chosen for treatment. Animals were then culled at four and 7 

hours post infection in order to collect the blood, lungs and spleen and 

determine the CFUs present. The  hours post infection cull was chosen 

based on the model development data, which showed dissemination of the 

infection into the blood by 3 hours post infection. The 7 hour post infection 

cull was chosen as the last time point at which there was 100% survival of 

untreated animals during model development. Treatment doses of P4 and 

IVIG were based on those used to successfully treat mice in models of S. 

pneumoniae sepsis (167).  

Treatment with a single dose of P4 and IVIG led to substantial decreases (1 

log) in CFUs detected in the blood, lungs and spleen at both the four and 7 

hour time points (Figure 23 and Figure 24), with the seven hour time point 
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showing a 2 log decrease in CFU burden in the blood and spleen (blood 

mean PBS = 4.4 x 108 CFU/ml vs P4-IVIG = 8.6 x 106 CFU/ml, p=0.0004, 

spleen mean PBS = 4.8 x 105 CFU/mg vs P4-IVIG = 3.1 x 105 CFU/mg, 

p=0.02) and a 5 fold decrease in lung CFUs (mean PBS = 5.0 x 104 CFU/mg 

vs P4-IVIG 1.0 x 104 CFU/mg, p=0.007).  

During the model development it was observed that mice infected with lower 

doses of E. coli (106 and 105 CFU/mouse) had 106 CFU/ml of blood or less at 

3 hours post infection and that the bacterial burden would subsequently 

decline to undetectable levels over 48 hours without intervention; those with 

CFUs in the blood over 106 CFU/ml succumbed to their infection. Although 

decreases in CFUs were promising, the number of CFUs in the blood and 

spleen of mice that received P4 treatment was static between the two time 

points, remaining at above 106 CFU/ml in the blood. In addition to this the 

number of CFUs detected in the lung had increased by close to 1 log 

between the two time points (mean four hour = 1.3 x 103 CFU/mg vs 7 hours 

= 1.0 x 104 CFU/mg). With this in mind I concluded that a single dose regime 

was unlikely to lead to significant increases in survival and either concurrent 

treatment with antibiotics or additional treatment doses would be needed.  
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Figure 23 Single dose treatment of P4 peptide in severe E. coli infection model 
– Blood CFUs 
Mice n=10 per group were infected with 1 x 107 CFU E. coli via the intraperitoneal 
route. 1 hour post infection mice were treated I.V. with 50 μl of P4 peptide (2 mg/ml) 
and I.P. with 100 μl of IVIG (100 mg/ml), while control animals received injections of 
PBS of equal volume. Mice were culled 4 and 7 hours post infection and blood 
collected for determination of CFUs. Plotted as mean and SEM. Analysis by two-
way ANOVA p=0.0004 (*** p<0.0001). 
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Figure 24 Single dose treatment of P4 peptide in severe E. coli infection model 
– Tissue CFUs 
Mice n=10 per group were infected with 1 x 107 CFU E. coli via the intraperitoneal 
route. 1 hour post infection mice were treated I.V. with 50 μl of P4 peptide (2 mg/ml) 

and I.P. with 100 μl of IVIG (100 mg/ml), while control animals received injections of 

PBS of equal volume. Mice were culled 4 and 7 hours post infection and tissue 
collected for determination of CFUs. Plotted as mean and SEM. Analysis by two-
way ANOVA, spleen p=0.02, lung p=0.007, ** p<0.005.  
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2. Single dose combination treatment  

a) Tazocin testing 

The single dose P4 treatment experiments showed reductions in CFUs 

detected in the blood, lungs and spleen of P4-IVIG treated mice, however did 

not show reductions that were likely to lead to an increase in survival. 

Following these experiments I then went on to looked at P4 treatment in 

combination with antibiotics. The antibiotic chosen for these experiments was 

Tazocin; a dose of 9 mg/mouse was selected as ¼ of the human equivalent 

dose (based on an average mouse weight of 25 g). To test this dose animals 

were infected with 107 CFU of E. coli before treating one hour post infection 

with 9 mg/mouse of Tazocin via I.V. injection, mice were bled at four hours 

post infection and culled at seven hours post infection to monitor the bacterial 

burden in the blood.  

Treatment with a single dose of Tazocin at 1 hour post infection lead to a  

reduction in CFUs recovered from blood of over 2 log (mean PBS = 6.8x107 

CFU/ml vs Tazocin = 4.3x105 CFU/ml at the four hour time point; PBS = 9.7 

x108 CFU/ml vs Tazocin = 1.6 x106 CFU/ml at the seven hour time point, 

two-way repeated measures ANOVA p<0.0001) (Figure 25).  

Although this antibiotic concentration lead to a significant reduction in CFUs it 

did not clear the infection and the numbers of CFUs detected were 

increasing between the two time points. It was decided to continue with this 

dose in the combination treatment experiments as it was sufficient to reduce 

the numbers of CFUs but not so high that it would mask any potential benefit 

seen with P4 treatment.  
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Figure 25 Blood CFU after single treatment of Tazocin in E. coli infection 
model 
Mice n=5 per group were infected with 1 x 107 CFU E. coli via intraperitoneal route. 
1 hour post infection mice were treated I.V. with 50 μl of Tazocin (9 mg/mouse) or 
50 μl of PBS. Mice were tail bled at four hours post infection and culled at seven 
hours post infection. Plotted as mean and SEM. Blood was collected for 
determination of CFUs. Analysis by two-way ANOVA p=0.0001 (*** p<0.0001) 
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b) Bacterial burden and survival 

Having established that a single dose of P4 treatment was insufficient to treat 

the infection and identified a suitable concentration of Tazocin for use in the 

model I then went on to test the two treatments in combination. Treatment a 

single dose of P4-IVIG alongside Tazocin was trialled in the E. coli mouse 

model with both agents being administered at one hour post infection; P4 

and Tazocin were both administered via I.V. injection whilst the IVIG was 

administered via I.P. injection. Initial experiments sought to establish the 

effect of combination treatment on the bacterial burden at four and seven 

hours post infection as well as survival over a 24 hour period. As in previous 

experiments, animals were infected with 107 CFU of E. coli before treating 

one hour post infection with either PBS, P4-IVIG, Tazocin or the combination 

of P4-IVIG and Tazocin. Mice were bled at four hours post infection and 

culled at seven hours post infection to monitor the bacterial burden in the 

blood and lungs. A second set of mice were monitored over a 24 hour period 

as a survival experiment, with mice being culled when they reached their 

humane end point of lethargy. 

Treatment with the two drugs in combination appeared to have an additive 

effect; the decrease in CFUs being approximately the sum of the decrease in 

CFUs of each of the two treatments individually (Figure 26). There were 

significantly lowers numbers of blood CFUs detected for all three treatments 

at seven hours post infection compared with PBS treated mice: P4-IVIG + 

Tazocin = 1.7 x106 CFU/ml (p<0.005), Tazocin = 1.5 x 108 CFU/ml (p<0.05), 

P4-IVIG = 4.5 x 107 CFU/ml (p<0.005) and PBS = 5.3 x 108 CFU/ml. The four 

hour time point showed the same trend but no individual pairings were 
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statistically significant (two-way ANOVA p=0.04). The lung CFUs showed the 

same trend as the blood CFUs but was not statistically significant (p=0.1, 

one-way ANOVA) (Figure 27).   



 

 90 

Figure 26 Single dose P4 therapy with antibiotics in E. coli infection model – 
Blood CFU 
Mice n=5 per group were infected with 1 x 107 CFU E. coli via the intraperitoneal 
route. 1 hour post infection mice were treated I.V. with 50 μl of P4 peptide (2 mg/ml) 
and/or Tazocin (9 mg/mouse), I.P. with 100 μl of IVIG (100 mg/ml). Control mice 
received PBS injections of equal volume. Mice were tail bled at 4 hours post 
infection and culled at 7 hours post infection. Blood was collected for determination 
of CFUs. Plotted as mean and SEM. Analysis by two-way ANOVA and Bonferroni 
post tests p=0.0491 (** p<0.005, * p<0.05). 
 

Figure 27 Single dose P4 therapy with antibiotics in E. coli infection model – 
Lung CFU 7 hours post infection 
Mice n=5 per group were infected with 1 x 107 CFU E. coli via the intraperitoneal 
route. 1 hour post infection mice were treated I.V. with 50 μl of P4 peptide (2 mg/ml) 
and/or Tazocin (9 mg/mouse), I.P. with 100 μl of IVIG (100 mg/ml). Control mice 
received PBS injections of equal volume. Mice were culled at seven hours post 
infection. Lung tissue was collected for determination of CFUs. Plotted as mean and 
SEM. Analysed by one-way ANOVA and Bonferroni’s multiple comparison test 
p=0.1  

4hrs 7hrs
0

2

4

6

8

10

PBS

Tazocin 9mg / P4-IVIG

Tazocin 9mg

P4-IVIG

***

*

***

*

**

****

***

*

**

*

Lo
g 

C
F

U
/m

l B
lo

od
 

Blood CFU

0

2

4

6

Lo
g 

C
F

U
/m

g 

Lung CFU

4hrs 7hrs
0

2

4

6

8

10

PBS

Tazocin 9mg / P4-IVIG

Tazocin 9mg

P4-IVIG

***

*

***

*

**

****

***

*

**

*

Lo
g 

C
F

U
/m

l B
lo

od
 

Blood CFU

0

2

4

6

Lo
g 

C
F

U
/m

g 

Lung CFU



 

 91 

In the survival model mice were monitored over a 24 hour period. The mean 

survival time was significantly higher for mice treated with either of the three 

treatment groups when compared to the untreated (PBS) control: Tazocin 

alone 15.8 hours (p<0.005), P4-IVIG alone 16.8 hours (p<0.005) and P4-

IVIG + Tazocin 19 hours (p<0.0001) compared with PBS treated mice 8.4 

hours (one-way ANOVA and Bonferroni’s multiple comparison test, 

p=0.0004). There was no difference in mean survival between the three 

treatment groups (Figure 28, Figure 29 and Table 12).  

The survival percentage at the end of the 24 hour period was 40% for the P4-

IVIG + Tazocin treatment group but was 0% for all other treatment groups. 

Blood was collected at the time of death for mice in the survival experiments 

and the CFUs in blood determined; it was observed that some of the mice 

treated with Tazocin and P4-IVIG + Tazocin had lower CFUs than you would 

expect at the time of death (Figure 30). This could suggest that factors such 

as excessive inflammation or high levels of endotoxins could be contributing 

to mortality in addition to the bacterial burden.  

As survival within the P4+IVIG and Tazocin group was still low, at 40% over 

24 hours, I decided to increase the number of doses administered to try and 

improve survival.  
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Figure 28 Single dose P4 therapy with antibiotics in E. coli infection model - 
Survival  
Mice n=5 per group were infected with 1 x 107 CFU E. coli via intraperitoneal 
infection. 1 hour post infection mice were treated I.V. with 50 μl of P4 peptide (2 
mg/ml) and/or Tazocin (9 mg/mouse), I.P. with 100 μl of IVIG (100 mg/ml). Control 
mice received PBS injections of equal volume. Mice were monitored for signs of 
disease and culled when they reached ++ lethargic. 
 
 
Table 12 Single dose P4 therapy with antibiotics in E.coli infection model –
Survival time 

 PBS Tazocin P4-IVIG P4-IVIG + 
Tazocin 

Group size 5 5 5 5 

Mean 8.40 16.80 15.80 19.00 

Minimum 8.00 14.00 15.00 15.00 

Maximum 9.50 24.00 16.00 24.00 
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Figure 29 Single dose P4 therapy with antibiotics in E. coli infection – Survival 
time 
Mice n=5 per group were infected with 1 x 107 CFU E. coli via the intraperitoneal 
route. 1 hour post infection mice were treated I.V. with 50 μl of P4 peptide (1 mg/ml) 
and/or Tazocin (9 mg/mouse), I.P. with 100 μl of IVIG (100 mg/ml). Control mice 
received PBS injections of equal volume. Mice were monitored for signs of disease 
and culled when they reached ++ lethargic. Survival time in hours and the median 
plotted. Analysed by Kruskal-Wallis test and Dunn’s multiple comparison test *** 
p<0.001, ** p<0.005 

 
Figure 30 Time of death blood CFUs 
Mice n=5 per group were infected with 1 x 107 CFU E. coli via the intraperitoneal 
route. 1 hour post infection mice were treated I.V. with 50 μl of P4 peptide (1 mg/ml) 
and/or Tazocin (9 mg/mouse), I.P. with 100 μl of IVIG (100 mg/ml). Control mice 
received PBS injections of equal volume. Mice were monitored for signs of disease 
and culled when they reached ++ lethargic. Blood was collect at time of death and 
CFUs determined.     



 

 94 

3. Double dose P4 and antibiotic combination treatment 

a) Bacterial burden and survival  

The next treatment schedule tested was a double dose P4 and antibiotic 

combination. A second dose was added to the treatment schedule to try and 

improve survival in the model beyond the 40% survival seen with a single 

dose. For this set of experiments the Tazocin + IVIG and IVIG alone groups 

were added after observing that mice in the Tazocin alone treatment group 

which were culled upon reaching ++lethargic often had considerably lower 

CFUs at time of death than PBS groups or treatments that did not include 

Tazocin (Figure 30). The reasoning behind this was that if the mice were 

succumbing to the infection despite clearing significant numbers of bacteria 

then perhaps they were having a severe inflammatory response which could 

be mediated by the via the anti-inflammatory properties of IVIG.  

(1) Survival 

As the single dose experiments (Figure 26 and Figure 27) had shown the 

combination of P4-IVIG and Tazocin were effective at reducing the bacterial 

burden the survival experiments were performed first. As with previous 

experiments mice were infected with 107 CFU/mouse of E. coli, treatments 

were administered at one and four hours post infection with P4 and Tazocin 

administered via I.V. injection and IVIG via I.P. injection. Mice were then 

monitored over a 24 hour period and culled when they reached their humane 

end point.  
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The P4-IVIG + Tazocin group and the Tazocin + IVIG had 24 hour survival of 

55% and 60% respectively Survival for PBS, IVIG, Tazocin and P4-IVIG 

treated mice were 0%, 10%, 11% and 28% respectively (Figure 31). The 

mean, minimum and maximum survival times for each group are detailed in 

Table 13. All treatments bar IVIG alone had significantly longer mean survival 

than PBS controls.. P4-IVIG + Tazocin had significantly longer mean survival 

times than PBS, IVIG and Tazocin alone (p<0.0001). Tazocin + IVIG had 

significantly longer mean survival than IVIG alone (p<0.05) but did not show 

a significant difference compared to Tazocin alone. There was no significant 

difference between mean survival times for P4-IVIG + Tazocin and Tazocin + 

IVIG (Figure 32).  

The mean survival time and survival percentage showed improvements with 

the double dose compared with the single dose; survival percentages over 

24 hours increased from 40% to 55% for P4-IVIG and Tazocin and the 

survival percentage for Tazocin increased from 0% to 60% (Figure 28 and 

Figure 31). However, mean survival times did not show improvements: 

P4+IVIG and Tazocin mean survival time single dose = 19 hours vs. double 

dose = 20.6 hrs, Tazocin mean survival time single dose = 16.8 hours vs. 

double dose = 13.8 hours (Table 12 and Table 13).  

As there was no significant difference between the survival percentages or 

mean survival times of mice treated with P4-IVIG and Tazocin versus those 

treated with Tazocin and IVIG I went on to look at the bacterial load and 

inflammatory markers. 
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Figure 31 Double dose P4 therapy with antibiotics in E. coli infection model – 
Survival 
Mice n=18  (except IVIG and Tazocin + IVIG n=10) per group were infected with 1 x 
107 CFU E. coli via the intraperitoneal route. 1 and 4 hours post infection mice were 
treated I.V. with 50 μl of P4 peptide (2 mg/ml) and/or Tazocin (9 mg/mouse), I.P. 
with 100 μl of IVIG (100 mg/ml). Control mice received PBS injections of equal 
volume. Mice were monitored for signs of disease and culled when they reached ++ 
lethargic. 
 
Table 13 Double dose P4 therapy with antibiotics in E. coli infection model – 
Survival time 
 

 PBS IVIG Tazocin Tazocin 
+ IVIG 

P4-IVIG P4-IVIG 
+ 

Tazocin 

Group size 18 10 18 10 18 18 
Mean 8.972 12.30 13.83 19.19 15.25 20.69 

Minimum 6.000 9.000 9.000 10.50 9.000 12.00 
Maximum 10.50 24.00 24.00 24.00 24.00 24.00 
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Pairing Significance 

PBS vs IVIG ns 

PBS vs Tazocin * 

PBS vs P4-IVIG ** 

PBS vs P4-IVIG + Tazocin *** 

PBS vs Tazocin + IVIG *** 

IVIG vs Tazocin ns 

IVIG vs P4-IVIG ns 

IVIG vs P4-IVIG + Tazocin *** 

IVIG vs Tazocin + IVIG * 

Tazocin vs P4-IVIG ns 

Tazocin vs P4-IVIG + Tazocin *** 

Tazocin vs Tazocin + IVIG ns 

P4-IVIG vs P4-IVIG + Tazocin * 

P4-IVIG vs Tazocin + IVIG ns 

P4-IVIG + Tazocin vs Tazocin + IVIG  ns 

Figure 32 Double dose P4 therapy with antibiotics in E. coli infection model – Survival 
time 
Mice n=18 (except Tazocin + IVIG n=10) per group were infected with 1 x 107 CFU E. coli via 
the intraperitoneal route. 1 and 4 hours post infection mice were treated I.V. with 50 μl of P4 
peptide (2 mg/ml) and/or Tazocin (9 mg/mouse), I.P. with 100 μl of IVIG (100 mg/ml). Control 
mice received PBS injections of equal volume. Mice were monitored for signs of disease and 
culled when they reached ++ lethargic. Survival time in hours and the mean plotted. 
Analysed by one-way ANOVA test, p<0.0001 and Bonferroni’s multiple comparison test – 
right hand table (*** p<0.0001, ** p<0.005, * p<0.05) 
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(2) Bacterial burden 

Having seen an improvement in survival percentages for mice treated with a 

double dose of treatment but not an improvement in mean survival time I 

then went on to look at the bacterial burden. Mice were infected with 107 

CFU/mouse of E. coli via I.P. injection; mice were then treated at one hour 

and four hours post infection with P4 and Tazocin administered via I.V. 

injection and IVIG via I.P. injection. At seven hours post infection mice were 

culled and Blood, lungs and spleen tissue were collected and processed for 

the determination of CFUs. IVIG alone was not included as a group as it 

showed no benefit over PBS treated mice in survival studies. 

(a) Blood CFUs  

All treatments containing Tazocin showed a statistically significant reduction 

in CFUs compared to PBS controls (p value of specific comparisons as 

determined by Dunn’s multiple comparison indicated in Figure 33). 

Differences between the three groups containing Tazocin; Tazocin alone, 

Tazocin-IVIG and P4-IVIG + Tazocin were not statistically significant 

although the differences observed in blood CFUs were far larger than in 

other tissues, with Tazocin + IVIG showing far superior bacterial clearance; 

Tazocin only median = 8.2 x 104, IQR 3.1 x103- 2.9 x 105, Tazocin-IVIG 

median = 0, IQR 0-12, P4-IVIG + Tazocin median = 1.9 x 103 , IQR 77 – 1.5 x 

104 (Figure 33). 
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(b) Lung CFUs 

As was seen in the blood, all treatments containing Tazocin showed a 

statistically significant reduction in CFUs when compared to PBS controls 

and P4-IVIG (p value of specific comparisons as determined by Bonferroni’s 

post test indicated in Figure 34). Differences between the three groups 

containing Tazocin; Tazocin alone, Tazocin + IVIG and P4-IVIG + Tazocin 

were not statistically significant. The numbers of CFUs detected in the lungs 

were far closer for the Tazocin containing groups than was seen in the blood 

with the medians for the three groups ranging from 10 to 30 CFU/ml (Figure 

34). The number of CFU recovered from the lungs of P4-IVIG treated mice 

did not differ greatly between single and double dose treated mice with a 

slight increase in the double dose (mean log CFU single dose = 4.3 vs. 

double dose = 5.2); this could suggest that treatment with P4-IVIG was not 

as effective it penetrating tissues as antibiotics.   

As the bacterial burden was significantly reduced with a double dose of 

treatment when compared to a single dose of treatment and increased the 

percentage of survivors over 24 hours, but did not significantly alter the mean 

survival time of subjects. In an attempt to explain the discordance between 

these three measures I then went on to look at inflammatory markers, cell 

populations and endotoxins. 
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Figure 33 Double dose P4 therapy with antibiotics in E. coli infection model –Blood CFU 
Mice n=18 (except IVIG and Tazocin + IVIG n=10) per group were infected with 1 x 107 CFU E. coli via the intraperitoneal route. 1 and 4 hours 
post infection mice were treated I.V. with 50 μl of P4 peptide (2 mg/ml) and/or Tazocin (9 mg/mouse), I.P. with 100 μl of IVIG (100 mg/ml). 
Control mice received PBS injections of equal volume. Mice were culled at 7 hours post infection and tissue collected for determination of 
CFUs. Analysed by Kruskal-Wallis test and Dunn’s multiple comparison test with median and interquartile range (*** p<0.0001, ** p<0.005, * 
p<0.05).  
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Figure 34 Double dose P4 therapy with antibiotics in E. coli infection model – Lung CFU 
Mice n=18 (except IVIG and Tazocin + IVIG n=10) per group were infected with 1 x 107 CFU E. coli via the intraperitoneal route. 1 and 4 hours 
post infection mice were treated I.V. with 50 μl of P4 peptide (2 mg/ml) and/or Tazocin (9 mg/mouse), I.P. with 100 μl of IVIG (100 mg/ml). 
Control mice received PBS injections of equal volume. Mice were culled at 7 hours post infection and tissue collected for determination of 
CFUs. Analysed by one-way ANOVA and Bonferroni post test with mean and SEM *** p<0.0001 
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b) Inflammatory markers  

I went on to look at the plasma levels of CXCL1, IL-10 and C5a in mice that 

had been infected with E. coli and treated with a double dose of P4-IVIG and 

Tazocin. I looked at the time point of seven hours post infection in line with 

the time point used for assessing bacterial burden. There were two aims to 

these experiments: looking to see if the different treatment combinations 

resulted in differences in inflammatory marker levels and to see if the levels 

of these markers gave any clue as to why mice that had low levels of CFUs 

reached their humane endpoint and had to be culled.  

As with previous experiments mice were infected with 107 CFU/mouse of E. 

coli and treated one and four hours post infection before culling at seven 

hours post infection for blood collection.   

Significantly lower levels of CXCL1 (p<0.005), were detected in mice treated 

with P4-IVIG + Tazocin compared with Tazocin alone (Mean P4-IVIG + 

Tazocin = 181.2 ng/ml vs. Tazocin 824.0 ng/ml, (Figure 35). It should be 

noted however that all the CXCL1 levels were very high.  

The levels of IL-10 detected in plasma were lower in all mice with treatments 

containing IVIG although these differences were only significant between 

PBS and Tazocin only treated mice, which had the highest levels (mean IL-

10 PBS = 609 pg/ml, Tazocin = 499 pg/ml) and P4-IVIG and Tazocin-IVIG 

treated mice which had the lowest levels (mean IL-10 Tazocin-IVIG = 90 

pg/ml, P4-IVIG = 57 pg/ml) (Figure 36).  



 

 103 

There was no difference between groups in the level of C5a detected in 

plasma (Figure 37). These samples were treated with nafamostat mesylate 

(FUT-175, Sigma, UK) a serine protease inhibitor that prevents the activation 

of C5 and production of C5a ex vivo, however it is still possible that ex vivo 

activation has occurred that would effect the reliability of this measurement 

(175). C5a and its corresponding receptors are rapidly internalised upon 

binding so a lack of difference in plasma concentrations could also be a 

result of difference in consumption rate between groups (130). 
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Plasma CXCL1 

 
Figure 35 Double dose P4 therapy with antibiotics in E. coli infection model – Plasma CXCL1 
Mice n=8 per group were infected with 1 x 107 CFU E. coli via the intraperitoneal route. 1 and 4 hours post infection mice were treated I.V. with 
50 μl of P4 peptide (2 mg/ml) and/or Tazocin (9 mg/mouse), I.P. with 100 μl of IVIG (100 mg/ml). Control mice received PBS injections of equal 
volume. Mice were culled at seven hours post infection and blood collected for determination of cytokine concentrations in plasma. Plotted as 
mean and SEM. Analysed by Kruskal-Wallis test and Dunn’s multiple comparison test p=0.0068 ** p<0.005  
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Figure 36 Double dose P4 therapy with antibiotics in E. coli infection model – Plasma IL-10 
Mice (PBS =11, Tazocin= 13, Tazocin+IVIG=8, P4-IVIG=8, P4-IVIG+Tazocin=17 per group) were infected with 1 x 107 CFU E. coli via the 
intraperitoneal route. 1 and 4 hours post infection mice were treated I.V. with 50 μl of P4 peptide (2 mg/ml) and/or Tazocin (9 mg/mouse), I.P. 
with 100 μl of IVIG (100 mg/ml). Control mice received PBS injections of equal volume. Mice were culled at seven hours post infection and 
blood collected for determination of cytokine concentrations in plasma. Plotted as mean and SEM. Analysed by Kruskal-Wallis test and Dunn’s 
multiple comparison test p=0.0008 (*** p<0.0001, ** p<0.005, * p<0.05)  
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Figure 37 Double dose P4 therapy with antibiotics in E. coli infection model – Plasma C5a 
Mice n=8 per group were infected with 1 x 107 CFU E. coli via the intraperitoneal route. 1 and 4 hours post infection mice were treated I.V. with 
50 μl of P4 peptide (2 mg/ml) and/or Tazocin (9 mg/mouse), I.P. with 100 μl of IVIG (100 mg/ml). Control mice received PBS injections of equal 
volume. Mice were culled at seven hours post infection and blood collected for determination of cytokine concentrations in plasma. Plotted as 
mean and SEM. Analysed by Kruskal-Wallis test and Dunn’s multiple comparison test p=0.7613 (*** p<0.0001, ** p<0.005, * p<0.05) 
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c) Cell populations 

Previous work looking at P4 treatment of S. pneumoniae infection and 

administration of P4 to naïve mice has shown that P4 treatment resulted in 

an increase on the percentage of neutrophils found in the blood as well as an 

increase in expression of FcγRs on neutrophils; with this in mind I performed 

experiments to look at the neutrophil populations in the blood of E. coli 

infected mice treated with Tazocin or Tazocin and P4-IVIG in combination 

(167). In addition to FcγR expression I looked at the expression of CD88 

(C5aR) as binding of C5a to this receptor was been linked to neutrophil 

dysfunction as well as modulation of FcγR expression (115, 128). As with 

previous experiments mice were infected with 107 CFU/mouse of E. coli and 

treated one and four hours post infection before culling at seven hours post 

infection for blood collection. Blood samples were washed and stained with 

antibodies before sample acquisition on a BD LSR II flow cytometer. 

Significantly higher percentages of neutrophils were seen in Tazocin (p<0.05, 

median = 60%) and P4-IVIG + Tazocin (p<0.0001, median = 72%) treated 

groups when compared to PBS treated mice (median = 31%) (Figure 38). 

When analysed in isolation the difference between Tazocin and P4-IVIG + 

Tazocin was statistically significant (p<0.03, unpaired t-test). Both high and 

low levels of circulating neutrophils have been associated with poor 

prognosis; low neutrophil count indicates possible immunosuppression 

whereas an overly high neutrophil count is suggestive of excessive 

inflammation (176).   



 

 108 

Figure 38 Double dose P4 therapy with antibiotics in E. coli infection – % 
Neutrophil (CD45+, CD11b+, Gr-1+) of CD45+ cells 
Mice n=10 per group were infected with 1 x 107 CFU E. coli via intraperitoneal route. 
1 and 4 hours post infection mice were treated I.V. with 50 μl of P4 peptide (2 
mg/ml) and/or Tazocin (9 mg/mouse), I.P. with 100 μl of IVIG (100 mg/ml). Control 
mice received PBS injections of equal volume. Mice were culled at seven hours post 
infection and blood collected for staining of neutrophils to determine neutrophil 
(CD45+, CD11b+, Gr-1+) % of CD45+ cells. Plotted as median and IQR. Analysed 
by Kruskal-Wallis test and Dunn’s multiple comparison test *** p<0.0001, * p<0.05  
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In order to look at the expression levels of FcγRs on neutrophils, cells were 

gated using anti-CD45, GR-1 and CD11b antibodies. Expression of CD64 

and CD32/16 were measured on these neutrophil populations. CD32/16 

antibodies were used, as there is no antibody commercially available that 

can distinguish between the CD32 and CD16 receptors in mice. No 

difference was seen in the level of CD64 (FcγRI), between groups although 

there was a trend towards lower expression with PBS<Tazocin<P4-IVIG + 

Tazocin; the median value for CD64 expression was highest in PBS treated 

mice (MFI = 354) followed by Tazocin (MFI = 275) and P4-IVIG + Tazocin 

had the lowest expression (MFI = 225) (Figure  39- top panel). This decrease 

in CD64 expression as opposed to being related directly to augmentation of 

Fc receptor expression by P4 treatment could reflect the severity of infection 

as high CD64 has been shown clinically to be an indicator of infection and 

sepsis (177, 178). Expression of CD64 is also highest in immature cells, 

which could indicate that the PBS treated groups have a higher proportion of 

immature neutrophils in the blood stream compared with treated groups.  

Expression of CD32/16 (FcγRII/III) on neutrophils was significantly higher in 

both the Tazocin (p<0.05, median MFI = 6950) and P4-IVIG + Tazocin 

(p<0.005, median MFI = 7343) groups when compared to the PBS (median 

MFI = 3918) treated group (Figure 39 - bottom panel). These increased 

levels of CD32/16 could be due to augmentation of FcγR by P4 peptide 

treatment but could also be indicative of a more mature neutrophil population 

in Tazocin and P4-IVIG + Tazocin groups or alternatively a result of CD16 

downregulation during sepsis; CD16 decreases with increased infection 

severity, CD32 expression has not been shown to alter during infection (179).   
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Figure 39 Double dose P4 therapy with antibiotics in E. coli infection model  – 
Neutrophil receptor expression FcγRs 
Mice n=10 per group were infected with 1 x 107 CFU E. coli via the intraperitoneal 
route. One and four hours post infection mice were treated I.V. with 50 μl of P4 
peptide (2 mg/ml) and/or Tazocin (9 mg/mouse), I.P. with 100 μl of IVIG (100 
mg/ml). Control mice received PBS injections of equal volume. Mice were culled at 7 
hours post infection and blood collected for staining of neutrophils (CD45+, CD11b+, 

Gr-1+) to determine expression levels of CD32/16 (FcγRII/III) and CD64 (FcγRI). 
Plotted as median and IQR. Analysed by Kruskal-Wallis test and Dunn’s multiple 
comparison test ** p<0.005, * p<0.05  
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Expression of CD88 was also measured; isotype controls were used for 

these experiments as previous studies have reported P4 altering Fc receptor 

expression, which could effect the measurement of non-Fc recptors through 

non specific binding of the Fc region to Fcγ receptors (166, 167). 

CD88 expression was significantly higher in both the Tazocin (p<0.05, 

median MFI = 42668) and P4-IVIG + Tazocin (p<0.05, median MFI = 40609) 

groups when compared to the PBS (median MFI = 24870) treated group 

(Figure 40). Decreased CD88 is a marker of increased severity and binding 

of C5a to its receptor can have negative implications for neutrophil function. 
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Figure 40 Double dose P4 therapy with antibiotics in E. coli infection model  – 
Neutrophil receptor expression CD88  
Mice n=10 per group were infected with 1 x 107 CFU E. coli via the intraperitoneal 
route. One and four hours post infection mice were treated I.V. with 50 μl of P4 
peptide (2 mg/ml) and/or Tazocin (9 mg/mouse), I.P. with 100 μl of IVIG (100 
mg/ml). Control mice received PBS injections of equal volume. Mice were culled at 7 
hours post infection and blood collected for staining of neutrophils (CD45+, CD11b+, 
Gr-1+) to determine expression levels of CD88. Plotted as median and IQR. 
Analysed by Kruskal-Wallis test and Dunn’s multiple comparison test * p<0.05 
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d) Endotoxins – LPS 

After observing that P4-IVIG and Tazocin treatments only lead to a modest 

extension in survival time of around 10 hours, despite significant reductions 

in CFUs in the blood, LPS was measured from the plasma of animals culled 

at seven hours post infection. LPS is a potent driver of inflammation and 

plasma levels can be affected by antibiotic treat meant so this was measured 

to see if it could be a possible factor driving mortality in the model (180).   

Plasma endotoxin levels as measured using a Limulus amebocyte lysate 

assay (LAL). As expected endotoxin levels were elevated in all mice (healthy 

levels should be below detection limit). No significant difference was seen 

between any of the groups (Figure 41).   
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Figure 41 Double dose P4 therapy with antibiotics in E. coli infection model – 
Serum endotoxin levels  
Mice n=5 per group were infected with 1 x 107 CFU E. coli via intraperitoneal route. 
1 and 4 hours post infection mice were treated I.V. with 50 μl of P4 peptide (2 

mg/ml) and/or Tazocin (9 mg/mouse), I.P. with 100 μl of IVIG (100 mg/ml). Control 

mice received PBS injections of equal volume. Mice were culled at seven hours post 
infection and blood collected for determination of endotoxin concentrations in serum. 
Plotted as median and IQR. Analysed by Kruskal-Wallis test and Dunn’s multiple 
comparison test p=0.4.  
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E. Results Summary  

Treatment with a single dose of P4-IVIG one hour post infection lead to 

significant reductions in CFUs in both blood and organs at seven hours post 

infection when compared to PBS treated controls but the number of CFUs in 

the blood were increasing when compared to the 4 hour time point (Figure 

23).  

A combination treatment of Tazocin (25% of human equivalent dose) and P4-

IVIG at one hour post infection lead to a greater decrease in CFUs compared 

to either treatment alone with mean CFUs of 7.5 x 107 for Tazocin alone, 2.5 

x 107 for P4-IVIG and 8.9 x 105 for the combination treatment, compared to 

2.7 x 108 for untreated (PBS) mice (Figure 26). This in turn translated into a 

significant increase in mean survival over a 24 hour period post infection 

rising from 8.4 hours for untreated controls to 19 hours for those treated with 

P4-IVIG + Tazocin, P4-IVIG and Tazocin alone had mean survival times of 

16.8 and 15.8 hours respectively.  An increase in the percentage of animals 

surviving to 24 hours was observed, with survival increasing from 0% for 

untreated controls to 20% for P4-IVIG + Tazocin, survival for P4-IVIG and 

Tazocin alone survival was 0% (Figure 28). 

To determine if host survival could be improved further, an increased dosing 

schedule was trialled with the addition of a second treatment dose: the first 

remaining at one hour post infection with the second at four hours post 

infection.   

Increasing the P4 dosing schedule from a single dose to a double dose did 

not effect the mean survival time over the 24 hours the mice were monitored 
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but it did effect the survival percentage at 24 hours: P4-IVIG survival 

increased from 0% to 27%, Tazocin alone from 0% to 11% and P4-IVIG + 

Tazocin from 20% to 55%, untreated (PBS) survival remained at 0% (Figure 

31). The double dose regime also resulted in a greater reduction in mean 

CFUs in the blood at 7 hours post infection compared with a single dose: 

Tazocin treatment showing a drop of over 3 logs with a second dose (7.5 x 

107 to 2.1 x 104 CFU/ml), P4-IVIG a modest decrease of just under a log (2.5 

x 107 to 5.7 x 106 CFU/ml) and there was a drop of over 3 logs for P4-IVIG + 

Tazocin in combination from (8.9 x 105 to 816 CFU/ml) (Figure 33). 

Treatment with a double dose of P4 peptide in combination with IVIG and 

Tazocin lead to significantly higher 24 hour survival than treatment with 

Tazocin alone. However, this combination treatment had equivalent efficacy 

to Tazocin + IVIG treatment (Figure 31). Between these three treatments 

there was no significant difference in the CFUs in blood or lungs at seven 

hours post infection (Figure 33 and Figure 34). 

Table 14 Comparison of single and double dose treatment of P4-IVIG in 
combination with antibiotics- Blood and lung CFUs 
 

Blood 7hr Log CFU 

Treatment PBS Tazocin P4-IVIG 
P4-IVIG + 
Tazocin 

Tazocin 
IVIG 

Single 
Dose 

8.19 6.31 7.30 5.35 - 

Double 
Dose 

8.50 4.33 6.76 2.91 0.95 

Lung 7hr Log CFU 

Treatment PBS Tazocin P4-IVIG 
P4-IVIG + 
Tazocin 

Tazocin 
IVIG 

Single 
Dose 

4.93 4.32 4.37 1.85 - 

Double 
Dose 

5.44 1.42 5.20 1.10 0.72 



 

 117 

Table 14 shows a comparison of CFUs detected in the blood and lungs at 

seven hours post infection for both single and double doses of treatment. All 

treatments apart from PBS and P4-IVIG showed a decrease in CFUs. This 

could suggest that without the antibiotics present a further dose of P4-IVIG 

does not lead to improvements in bacterial killing, perhaps because the 

immune response has been exhausted.   

Where the three treatments containing Tazocin did differ was the cytokine 

response to infection; treatment with P4-IVIG +Tazocin resulted in the lowest 

levels of CXCL1, significantly lover than treatment Tazocin alone (p=0.005). 

Differences between other pairings of treatment groups were not significant. 

It should be notes that the level of CXCL1 detected was very high for all 

treatment groups.  

IL-10 levels were significantly higher in PBS and Tazocin treated mice than 

those treated with Tazocin-IVIG or P4-IVIG. There was no significant 

difference between IL-10 levels in P4-IVIG + Tazocin treated mice and any 

other group, with levels sitting midway between the two high groups and the 

two low groups.  

There was no difference in the levels of C5a between treatment groups, with 

a large degree of spread in the data. Inflammatory marker data is 

summarised in Table 15. 
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Table 15 Summary of CXCL1, IL-10 and C5a mean plasma levels at seven 
hours post infection for mice treated with a double dose of P4-IVIG and 
antibiotics in combination 
 

Treatment PBS Tazocin 
P4-IVIG + 
Tazocin 

Tazocin + 
IVIG 

P4 + IVIG 

Mean 
CXCL1 
ng/ml 

243.8 824.0 181.2 378.8 583.8 

 IL-10 
pg/ml 

609.2 499.4 257.8 90.01 57.11 

C5a 
pg/ml 

40958 54931 44254 51210 33700 

 

Mice treated with Tazocin or P4-IVIG + Tazocin had a higher percentage of 

neutrophils in the blood than those treated with PBS (p=0.05 and p=0.0001 

respectively) The difference between neutrophil percentages between 

Tazocin and P4-IVIG + Tazocin treated mice was 12%, if analysised in 

isolation this difference was significant (p=0.03 t-test).  

Expression of receptors on neutrophils from Tazocin and P4-VIG + Tazocin 

treated groups showed higher levels of both CD32/16 (FcγRII/III) and CD88 

than in PBS treated groups. The levels of CD64 (FcγRI) expressed on 

neutrophils was not significantly different between groups but was lowest in 

P4-IVIG + Tazocin treated groups followed by Tazocin treated groups, with 

the highest expression in the PBS treated groups.  

To summarise the double dose of P4-IVIG and Tazocin lead to increased 

survival and decreased bacterial burden compared to a single dose but was 

not superior to a double dose of Tazocin and IVIG in combination, which also 
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had high survival over 24 hours (Tazocin-IVIG = 60%, P4-IVIG + Tazocin = 

55%) and superior clearance of bacteria.  

The difference in the levels of IL-10 and CXCL1 are difficult to interrupt 

based on a single time point as it is unknown where they are increasing or 

decreasing as the infection progresses and also how the consumption rate of 

these molecules is effecting levels detectable in the plasma.   

Significant differences in neutrophil percentages and expression of FcγR and 

CD88 on neutrophil were only seen between groups that received treatment 

versus PBS controls which could suggest that these difference reflect a 

difference in infection severity at the given time point as opposed to a drug 

induced change in receptor expression.  

The severity of the model necessitated early sacrifice (in line with the terms 

of the Home Office licence), thus limiting the opportunity of dosing. To better 

assess the efficacy of P4-IVIG a less severe model would be of benefit.   
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F. Discussion  

The model of E. coli systemic infection developed for this project, was 

extremely acute, with quite an aggressive progression into sepsis; CFUs 

were detectable in the blood within one hour of peritoneal infection and PBS 

treated animals reached lethargy (humane endpoint of infection) within ten 

hours.  

1. Survival and bacterial burden 

Single dose treatment with P4 peptide and IVIG lead to a significant 

reduction in the number of CFUs in the blood, lungs and spleen at seven 

hours post infection compared to PBS treated mice however the CFUs 

recovered from these mice was increasing between four and seven hours 

post infection. With a bacterial burden of around 107 CFU/ml in the blood at 

seven hours post infection these mice were unlikely to survive, for this 

reason antibiotics were introduced into the model. This model of P4-IVIG 

treatment in combination with antibiotics is also more in line with how future 

clinical use is envisaged; with P4 therapy being adjunctive to, not replacing, 

conventional antimicrobial therapies. Tazocin was chosen after consultation 

with an ICU physician whom indicated that Tazocin would be the antibiotic of 

choice for an abdominal infection suspected to be due to a Gram-negative 

pathogen. The dose of 9 mg/mouse (25% of the human equivalent dose) was 

selected after initial dose testing confirmed that it was insufficient to clear the 

infection alone therefore still allowing for an effect of P4 therapy to be shown.  

Addition of Tazocin to the model had a synergistic effect with P4-IVIG 

treatment in combination with Tazocin leading to a decline in CFUs greater 



 

 121 

than either of the two separately, with significantly fewer CFUs recovered 

with P4-IVIG + Tazocin than from treatment with Tazocin alone. 

This combination treatment also leads to improvements in survival, all mice 

treated with Tazocin alone reached lethargy (humane endpoint) with 16 

hours post infection, all mice treated with P4-IVIG with 24 hours, whilst 40% 

of mice treated with the combination of P4-IVIG + Tazocin survived to 24 

hours.  

At the end of these experiments it was observed that the number of CFUs 

recovered from Tazocin and P4-IVIG + Tazocin treated mice at the time of 

death where not as high as would be expected considering the degree of 

lethargy and were considerably lower than those treated with PBS or P4-

IVIG. Alongside this, the rapid onset of symptoms during infection led to the 

suspicion that endotoxins (LPS) might be playing a significant role in the 

pathophysiology of the infection. 

A second dose was added to the treatment schedule in an attempt to 

improve outcomes in the model, along with the Tazocin + IVIG, this group 

was added due to the suspicion that LPS was contributing significantly to the 

pathophysiology during infection. 

 Treatment with all three drug combinations that included Tazocin: Tazocin, 

Tazocin + IVIG and P4-IVIG + Tazocin led to significantly lower numbers of 

CFUs in the blood, lungs and spleen when compared to PBS treat mice. 

There wasn’t however a statistically significant difference in the number of 

CFUs recovered the three groups. There was a difference in 24 hour survival 

time between Tazocin and P4-IVIG + Tazocin in combination. However, this 
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difference, albeit non-significant, was also evident when treating with Tazocin 

and IVIG in combination. There was no difference in survival time between 

P4-IVIG + Tazocin and Tazocin + IVIG.  

The reason for a poor survival despite significant reductions in CFUs with 

Tazocin, P4-IVIG + Tazocin and Tazocin + IVIG treatment was likely due to 

animal suffering from septic shock. In septic shock patients suffer from 

intractable vasodilation, microvascular thrombosis, increased adhesion of 

leukocytes to venules and increased vascular permeability as a result of 

excessive inflammation, coagulation dysfunction and endothelial damage; all 

of which lead to impaired tissue perfusion and organ failure (138). These 

patients would receive interventions to support their failing physiology such 

as intravenous fluids, vasopressors, inotropic drugs and mechanical 

ventilation; these measures would be difficult to implement in animal models 

(181).  
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2. Inflammatory Markers 

a) CXCL1  

All mice had very high levels of CXCL1, which has been shown to be 

essential to survival in polymicrobial sepsis models (cecal ligation and 

puncture) (169). The levels of CXCL1 were slightly lower in P4-IVIG + 

Tazocin treated mice than in the other groups, although this difference was 

only significant between P4-IVIG + Tazocin and Tazocin alone. The 

difference in median values was ten fold between the two groups. This 

difference could be interpreted in a number of ways; in experiments with 

human epithelial cells in tissue culture P4 was shown to decrease the 

expression of IL-8 (human homolog of CXCL1), so one could conclude that 

the lower levels of CXCL1 are due to direct modulation of cytokine 

production, this unlikely to be the case though as there was no reduction 

seen in mice treated with just P4-IVIG (182). An alternative hypothesis is that 

there is less CXCL1 because there is a lower bacterial burden in this group, 

again this is unlikely as the Tazocin + IVIG group, which showed the lowest 

bacterial burden still had very high levels of CXCL1. Another possibility is 

that IL-10-mediated attenuation of CXCL1 production, this has been 

observed in with LPS induced CXCL1 and Candida albicans infection, where 

IL-10 destabilises CXCL1 mRNA and de novo synthesis of the protein (183-

185). This could be possible as the P4-IVIG + Tazocin treatment group had 

relatively high of IL-10 and a similar bacterial burden to the Tazocin + IVIG 

group which had lower IL-10 and higher CXCL1. However the Tazocin only 

treated group had the second highest level of IL-10 and the highest level of 

CXCL1. The final theory to explain the lower levels of CXCL1 in the P4-IVIG 
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+ Tazocin is that it is bound to the CXCR2 receptor on neutrophils and that 

the higher proportion of neutrophils in the blood of P4-IVIG + Tazocin has 

resulted in a higher turnover of the cytokine. This could also help explain the 

disparity between the high neutrophil levels and low CXCL1 in this group. All 

of these theories may contribute to the lower CXCL1 levels in P4-IVIG + 

Tazocin but to help delineate which factors are important more time points 

would be needed in order to establish the temporal order of cytokine 

production and their effects.              

b) IL-10 

The highest levels of IL-10 were seen in PBS treated and Tazocin treated 

mice. High levels of IL-10 in the PBS treated mice seems logical as with high 

CFUs you would expect high LPS. In the Tazocin treated mice there was 

also high IL-10 despite these mice having significantly lower numbers of 

CFUs, this could due to treatment with Tazocin leading to endotoxcin release 

(112, 186). The P4-IVIG and Tazocin-IVIG group had significantly lower 

levels of IL-10 than the PBS and Tazocin treated groups, despite the P4-IVIG 

group higher numbers bacterial and the Tazocin treated group having the 

possibility of antibiotic-induced endotoxcin release. One possible theory that 

could explain the lower levels of IL-10 is that the IVIG is mopping up the LPS, 

the problem with this being the IVIG has been shown to increase IL-10 

production by macrophages in response to LPS (187). The intermediate 

levels of IL-10 in P4-IVIG + Tazocin treated mice are also difficult to explain, 

neutrophils can be induced to produce IL-10 after direct contact with LPS-

stimulated regulatory T-cells and this group did have the highest proportions 

of neutrophils (188).  
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With the protective role IL-10 can play in sepsis in mind it would be important 

to establish the timing of IL-10 induction and cell types producing IL1-0 in this 

model as well as levels of IL-10 before and after treatment to determine how 

the various treatments are effecting production (173, 174).  

c) C5a 

C5a has a very short in vivo half-life (2-3 mins) which is thought to be due to 

the rapid binding and internalisation through C5a receptors so plasma levels 

of C5a may not reflect the levels being produced (189) (190). There was little 

difference in plasma C5a between group however the PBS group had 

significantly lower levels of CD88 , which could suggest that it was being 

produced at higher quantities but had a higher turnover rate.  

3. Cell populations 

a) Neutrophil percentages  

Neutrophil percentages were significantly higher in Tazocin and P4-IVIG + 

Tazocin treated mice compared to those treated with PBS, with the highest 

levels being in the P4-IVIG + Tazocin treated group. The factors driving this 

increase in neutrophils is not clear from this study as the levels of CXCL1 

were lowest in the this group and there were no significant differences in the 

levels of C5a. In further studies it would be important to investigate a broader 

range of neutrophil chemoattractants as well as cytokines involved in 

stimulating production of neutrophils such as GM-CSF and G-CSF to see 

how P4 treatment affects these.  
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b) FcγR expression 

Expression of receptors on neutrophils from Tazocin and P4-VIG + Tazocin 

treated groups showed a pattern of receptor expression that is indicative of a 

lower severity of infection compared with the PBS treated group: higher 

levels of CD32/16 (FcγRII/III), which suggests a more mature neutrophil 

population and lower levels of CD64 (FcγRI) which suggests the infection is 

less severe than in PBS treated mice at this time point (178). Decreased 

CD64 expression could also be interpreted as indirect evidence of increased 

phagocytosis as the receptor is internalised during phagocytosis (191). CD64 

expression also deceases during maturation in the bone marrow, so high 

levels could again suggest that the PBS treated neutrophils are less mature 

and those treated with Tazocin and P4-IVIG + Tazocin.  Whether these 

changes can be attributed directly to augmentation of receptor expression by 

the P4 peptide or are the result of a lower infectious burden is less clear. 

c) CD88  

Mice treated with Tazocin or P4-IVIG and Tazocin had higher levels of CD88 

on their neutrophil. Reduced expression of CD88 during infection has been 

shown to correlate with increased infection severity and can be used as 

prognostic markers for survival in sepsis patients (130). Higher levels of 

CD88 in the Tazocin and P4-IVIG + Tazocin treated groups could therefore 

be suggestive of a lower infection severity in these groups.  
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4. Endotoxcin (LPS)  

Endotoxin levels in serum were tested to see if different treatments led to 

different levels of endotoxin being released into the circulation leading to 

altered levels of inflammation. No difference in endotoxin levels was 

observed between any of the treatment groups despite significantly different 

bacterial loads. Although the LAL assay is very sensitive, serum proteins can 

interfere with the assay rendering it less reliable, hence more testing would 

be required to determine whether there is a true difference between 

endotoxin levels (192).  

5. Summary 

To summarise P4 treatment in this model of E. coli infection was successful 

to an extent; treating with P4-IVIG lead to a decrease in CFUs detected in 

mice but significant increases in survival time were only seen with the 

addition of antibiotics and were not superior to treatment with Tazocin and 

IVIG in combination. Considering the swift decline of health in animals after 

infection it may be the case that no intervention could rescue these animals.  
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Chapter III. In vivo murine study of 

effects of P4 peptide during 

pulmonary Klebsiella pneumoniae 

infection 

 

  



 

 129 

A. Introduction 

The previous chapter focused on an animal model of E. coli infection via the 

peritoneal route; this infection model gave an acute, very severe infection, 

this chapter goes on to look at P4 therapy in the treatment of K. pneumoniae 

pulmonary infection. K. pneumoniae was chosen as the pathogen as it is the 

second most common cause of Gram negative bloodstream infection after E. 

coli, accounts for 10% of hospital acquired bacterial pneumonias and in 

regions where it is particularly prevalent (Taiwan and South Africa) it has a 

higher mortality than S. pneumoniae (38-40).  

1. Animal Model 

For this study an animal model of K. pneumoniae respiratory infection (with 

sepsis secondary to pneumonia) was developed in order to assess treatment 

efficacy. This model was similar to the S. pneumoniae model of invasive 

pneumococcal disease published by Bangert et al. with mortality for 

untreated subjects at 80-100% and a progression to sepsis between 24 and 

30 hours post infection. This model was used for both survival and time 

pointed experiments. Models utilised also assessed the efficacy of P4 

treatment as an adjunctive therapy in combination with antibiotic treatment.    

2. Cell surface marker and cytokines 

Tissue and blood from time pointed experiments were collected for flow 

cytometry analysis of cell surface markers and measurement of cytokines in 

order to monitor the effect of the effect of treatment on the immune response 
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to infection. The same cell surface and inflammatory markers were used as 

in Chapter II.  
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B. Methods and Materials 

1. Media preparation 

a) Blood Agar 

400 ml of distilled water was mixed with 16 g of blood agar base 2 (Oxoid 

CM0271) before autoclaving at 121°C for 15 minutes. Once the agar had 

cooled to approximately 56°C, 20 ml of defibrinated horse blood (Oxoid 

SR0050) was added to give a final concentration of 5% blood agar and then 

poured into sterile petri dishes. Plates were stored at 4°C until use. 

b) Brain Heart Infusion Broth 

400 ml of distilled water was mixed with 14 g of brain heart infusion (BHI) 

broth powder (Oxoid CM1135) before autoclaving at 121°C for 15 minutes. 

BHI broth was cooled before use and stored at room temperature.  

For BHI with serum – an aliquot of heat inactivated foetal bovine serum (FBS 

– Sigma F9665) was thawed and added to broth aseptically at the 

appropriate concentration.  

2. Bacterial strain and inoculum preparation  

K. pneumoniae ATCC 43816, a serotype 2 strain was purchased from LGC 

Standards, UK.    

Infections were carried out with mid-log cultures. Strains were streaked on to 

5 % blood agar plates from frozen stocks and incubated at 37°C for 16-18 

hours. The following day universal tubes containing 5 ml of BHI broth were 
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inoculated from the plate and incubated at 37°C, 200 rpm for 16-18 hours. 

Following the 16-18 hour incubation 500 μl was subcultured into 20 ml of LB 

broth and adjusted to an OD600 of 0.1. The culture was incubated at for 37°C, 

200 rpm for 1-2 hours until reaching an OD600 of 0.5, cultures were 

centrifuged at 3000 rpm for 5 minutes, the supernatant discarded and the 

pellet resuspended in PBS, this was repeated and the culture then 

resuspended at 2 x 106 CFU per ml. Doses were plated onto 5 % blood agar 

to confirm inoculum CFUs .  

3. Mouse Strains 

Female CD-1 mice aged between 6-7 weeks were used for all experiments.  

4. Infection and monitoring  

The prepared inoculum was administered by intranasal instillation of 50 μl 

dose distributed evenly between the two nares (detailed in section II.B). Mice 

were monitored at regular intervals from administration of infectious dose. 

Animals were culled when they reached ++ lethargy (details of scoring in 

methods in section II.B).   

5. P4 treatment  

P4 peptide and IVIG were administered at 24 and 30 hours post infection via 

a 50 μl intravenous injection into the tail vein at a concentration of 2 mg/ml 

dissolved in DEPC treated water. IVIG was administered by a 100 μl 

intraperitoneal injection of Gamunex-C (Grifols, Spain), 100 mg of protein per 

ml. Control animals received an injection of equivalent volume of sterile PBS. 
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6. Antibiotic treatment    

Tazocin (Pfizer, USA) – piperacillin/tazobactam – was used in experiments at 

a dose of 9 mg/mouse, which equated to ¼ of the human equivalent dose. 

Tazocin was injected via the tail vein, 50 μl dissolved in DEPC treated water 

at the same time points as P4 treatment. Control animals received an 

injection of equivalent volume of sterile PBS. 

Animal procedures, tissue collection, CFUs and flow cytometry were 

performed as detailed in section II.B 
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C. Results 

1. Survival  

The efficacy of P4 treatment in combination with the antibiotic (Tazocin) was 

investigated during severe pneumonia (with secondary sepsis) caused by K. 

pneumoniae. Disease progression during this infection model is similar to 

that of Streptococcus pneumoniae so I used the same dosing schedule 

described by Bangert et al. (167). Doses of P4, IVIG and Tazocin were 

administered at 24 and 30 hours post infection, with P4 and Tazocin both 

being given intravenously and IVIG via intraperitoneal injection. Survival was 

monitored over a seven day period with surviving mice being culled at this 

point to confirm clearance of infection.   

The P4-IVIG + Tazocin group showed 70% survival at day seven compared 

with 20% for PBS and Tazocin groups and 30% for P4-IVIG and Tazocin-

IVIG groups (Figure 42). 

The mean survival time (p=0.04) Mean survival times for P4-IVIG + Tazocin 

were significantly longer compared to PBS treated mice (PBS mean survival 

= 78.3 hours, P4-IVIG + Tazocin mean survival time = 148.2 hours, p<0.05). 

Survival times for Tazocin (98.2 horus), Tazocin + IVIG (95.4 hours) and P4-

IVIG (93.8 hours) were not significantly higher than PBS treated mice (Figure 

43).  
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Figure 42 Double dose P4 therapy with antibiotics in K. pneumoniae infection 
model - Survival 
Mice n=10 per group were infected with 1 x 105 CFU K. pneumoniae via intranasal 
instillation. 24 and 30 hours post infection mice were treated I.V. with 50 μl of P4 
peptide (2 mg/ml) and/or Tazocin (9 mg/mouse), I.P. with 100 μl of IVIG (100 
mg/ml). Control mice received PBS injections of equal volume. Mice were monitored 
for signs of disease and culled when they reached ++ lethargic. 
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Figure 43. Double dose P4 therapy with antibiotics in K. pneumoniae infection model – Survival 
Mice n=10 per group were infected with 1 x 105 CFU K. pneumoniae via intranasal instillation. 24 and 30 hours post infection mice were treated 
I.V. with 50 μl of P4 peptide (2 mg/ml) and/or Tazocin (9 mg/mouse), I.P. with 100 μl of IVIG (100 mg/ml). Control mice received PBS injections 
of equal volume. Mice were monitored for signs of disease and culled when they reached ++ lethargic. Survival time in hours with mean and 
SEM. Analysed by one-way ANOVA test, p=0.0482 and Bonferroni’s post test * = p<0.05. 
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2. Bacterial Burden  

36 hours was chosen as the time point to assess bacterial burden as it is the 

last point at which there is 100% survival in all treatment groups.  

Both P4-IVIG + Tazocin treated mice (median CFUs = 0.0, IQR = 0 – 1.1 x 

104) and those treated with Tazocin alone (median CFUs = 2.4 x 103, IQR = 

3 x 102 – 8 x 103) showed significant reductions in blood CFUs compared 

with PBS treated mice (median CFUs = 1.6 x 105, IQR = 2.0 x 104 – 3.6 x 

106) (Figure 44- top).  

Both P4-IVIG + Tazocin treated mice (median CFUs = 3.333 x 105, IQR = 1.3 

x 105 – 7.5 x 105) and those treated with Tazocin alone (median CFUs = 4.0 

x 105, IQR = 3.8 x 104 – 3.8 x 106) also showed significant reductions in lung 

CFUs compared with PBS treated mice (median CFUs = 1.3 x 107, IQR = 7.3 

x 106 – 1.6 x 108) (Figure 44 - bottom).  
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Figure 44. Double dose P4 therapy with antibiotics in K. pneumoniae infection 
model – Blood and Lung CFUs 
Mice n=10 per group were infected with 1 x 105 CFU K. pneumoniae via intranasal 
instillation. 24 and 30 hours post infection mice were treated I.V. with 50 μl of P4 
peptide (2 mg/ml) and/or Tazocin (9 mg/mouse), I.P. with 100 μl of IVIG (100 
mg/ml). Control mice received PBS injections of equal volume.  
Top:Mice were monitored for signs of disease and culled at 36 hours post infection. 
Blood was collected for determination of CFUs. Analysed by Kruskal-Wallis test and 
Dunn’s multiple comparison test p=0.002, *** p<0.0001, * p<0.05. 
Bottom: Lung tissue was collected for determination of CFUs. Analysed by Kruskal-
Wallis test and Dunn’s multiple comparison test p=0.0002, *** p<0.0001, ** p<0.005.  

Bloo
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3. Inflammatory Markers  

a) Plasma  

No significant differences were observed in CXCL1 (p=0.5), MIP-2 (p=0.2), or 

C5a (p=0.7) concentrations in plasma between the three groups. Plasma IL-

10 concentration was also measured but was below the level of detection of 

the assay (2 pg/ml) (Figure 45 and Figure 46).   
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Figure 45. Double dose P4 therapy with antibiotics in K. pneumoniae infection 
model  – Inflammatory markers in plasma (CXCL1 and MIP-2) 
Mice n=10 per group were infected with 1 x 105 CFU K. pneumoniae via intranasal 
instillation. 24 and 30 hours post infection mice were treated I.V. with 50 μl of P4 
peptide (2 mg/ml) and/or Tazocin (9 mg/mouse), I.P. with 100 μl of IVIG (100 
mg/ml). Control mice received PBS injections of equal volume. Mice were monitored 
for signs of disease and culled at 36 post infection. Blood was collected for 
determination of plasma cytokine concentrations. Plotted as median and IQR. 
Analysed by Kruskal-Wallis test and Dunn’s multiple comparison test -CXCL1 p=0.5, 
MIP-2 p=0.2  
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Figure 46 Double dose P4 therapy with antibiotics in K. pneumoniae infection 
model  – Inflammatory markers in plasma (C5a) 
Mice n=10 per group were infected with 1 x 105 CFU K. pneumoniae via intranasal 
instillation. Twenty-four and 30 hours post infection mice were treated I.V. with 50 μl 

of P4 peptide (2 mg/ml) and/or Tazocin (9 mg/mouse), I.P. with 100 μl of IVIG (100 

mg/ml). Control mice received PBS injections of equal volume. Mice were monitored 
for signs of disease and culled at 36 post infection. Blood was collected for 
determination of plasma cytokine concentrations. Plotted as median and IQR. 
Analysed by Kruskal-Wallis test and Dunn’s multiple comparison p=0.7 
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b) Lungs 

.No significant differences were seen between CXCL1 concentrations in the 

lungs (p=0.2) however there was a difference for MIP-2. The levels of MIP-2 

in the lungs were significantly higher in PBS treated mice compared to those 

treated with Tazocin (p=0.005), there was not significant difference between 

the levels in P4-IVIG + Tazocin and the other two groups (Figure 47).  

Tazocin treated mice had significantly higher levels of C5a (mean C5a = 373 

pg/ml) than those treated with PBS (mean C5a = 181 pg/ml p<0.05), they 

also had higher levels than P4-IVIG + Tazocin treated mice (mean C5a = 256 

pg/ml) but this difference was not statistically significant (Figure 48).  

IL-10 concentrations in the lung, levels were significantly lower (p<0.05) in 

both P4-IVIG + Tazocin (mean IL-10 = 854 pg/ml) and Tazocin (mean IL-10 = 

875 pg/ml) treated mice when compared to PBS (mean IL-10 = 2747 pg/ml) 

treated mice (Figure 49). 
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Figure 47 Double dose P4 therapy with antibiotics in K. pneumoniae infection 
model – Inflammatory markers in Lung (CXCL1 and MIP-2) 
Mice n=10 per group were infected with 1 x 105 CFU K. pneumoniae via intranasal 
instillation. 24 and 30 hours post infection mice were treated I.V. with 50 μl of P4 
peptide (2 mg/ml) and/or Tazocin (9 mg/mouse), I.P. with 100 μl of IVIG (100 
mg/ml). Control mice received PBS injections of equal volume. Mice were monitored 
for signs of disease and culled at 36 post infection. Lung tissue was collected for 
determination of cytokine concentrations. Plotted as mean and SEM. Analysed by 
one-way ANOVA and Bonferroni post test –CXCL1 p=0.2, MIP-2 p=0.003 ** 
p<0.005.
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Figure 48 Double dose P4 therapy with antibiotics in K. pneumoniae infection 
model – lung (C5a)  
Mice n=10 per group were infected with 1 x 105 CFU K. pneumoniae via intranasal 
instillation. 24 and 30 hours post infection mice were treated I.V. with 50 μl of P4 
peptide (2 mg/ml) and/or Tazocin (9 mg/mouse), I.P. with 100 μl of IVIG (100 
mg/ml). Control mice received PBS injections of equal volume. Mice were monitored 
for signs of disease and culled at 36 and 48 hours post infection. Lung tissue was 
collected for determination of cytokine concentrations. Plotted as mean and SEM. 
Analysed by one-way ANOVA and Bonferroni post test p=0.03, * p<0.05. 

Figure 49 Double dose P4 therapy with antibiotics in K. pneumoniae infection 
model – Lung IL-10 
Mice n=10 per group were infected with 1 x 105 CFU K. pneumoniae via intranasal 
instillation. 24 and 30 hours post infection mice were treated I.V. with 50 μl of P4 
peptide (2 mg/ml) and/or Tazocin (9 mg/mouse), I.P. with 100 μl of IVIG (100 
mg/ml). Control mice received PBS injections of equal volume. Mice were monitored 
for signs of disease and culled at 36 and 48 hours post infection. Lung tissue was 
collected for determination of cytokine concentrations. Plotted as mean and SEM. 
Analysed by one-way ANOVA and Bonferroni post test p=0.006 * p<0.05.  
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4. Cell populations and receptor expression  

a) Neutrophils  

Neutrophils were defined as CD45+, CD11b+ and Gr-1+ cells, neutrophil 

percentages were calculated as percentage of all CD45+ cells.  

A higher percentages of neutrophils were detected in the blood of P4-IVIG + 

Tazocin treated mice (mean = 44.13 %) at 36 hours post infection compared 

to Tazocin (mean - 27.55 %) and PBS  (mean = 30.33 %) treated mice (both 

p<0.005) (Figure 50, top panel). Percentages of neutrophils found in the lung 

tissue at 36 hours post infection showed no significant difference between 

treatment groups (p=0.2145) (Figure 50, bottom panel).  
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Figure 50 Double dose P4 therapy with antibiotics in K. pneumoniae infection 
model – percentage neutrophils in blood and lungs 
Mice n=5 per group were infected with 1 x 105 CFU K. pneumoniae via intranasal 
instillation. 24 and 30 hours post infection mice were treated I.V. with 50 μl of P4 
peptide (2 mg/ml) and/or Tazocin (9 mg/mouse), I.P. with 100 μl of IVIG (100 
mg/ml). Control mice received PBS injections of equal volume. Mice were monitored 
for signs of disease and culled at 36 post infection. 
Top: Blood was collected, red blood cells lysed and cells stained for subsequent 
analysis by flow cytometry, neutrophils were isolated as CD45+, Gr-1+ and CD11b+ 
cells. Plotted as mean and SEM. Analysed by one-way ANOVA and Bonferroni post 
test p=0.0008, ** p<0.005. 
Bottom: Lung tissue was collected, processed to a single cell suspension, red blood 
cells lysed and cells stained for subsequent analysis by flow cytometry, neutrophils 
were isolated as CD45+, Gr-1+ and CD11b+ cells. Plotted as median and IQR. 
Analysed by Kruskal-Wallis test p=0.2  
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b) Receptor expression  

The expression of cell surface receptors on neutrophils in the blood at 36 

hours post infection was measured. No difference was observed in the 

expression of CD64 (FcγRI) (p=0.8) or CD88  (p=0.7) although a statistically 

significant difference (p=0.02) was observed for CD32/16 (FcγRII/III); P4-

IVIG + Tazocin treated mice had higher levels of expression than Tazocin or 

PBS (p=0.05) treated mice (mean MFI for P4-IVIG + Tazocin = 17277, 

Tazocin = 13337 and PBS = 11581) (Figure 51 and Figure 52).   

Receptors CD11b (MAC-1, CR3) and CD35/21 (CR1/2) were also measured 

but displayed no difference in expression between groups (p= 0.8 and p=0.1 

respectively). 
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Figure 51 Double dose P4 therapy with antibiotics in K. pneumoniae infection 

model – blood neutrophil receptor expression (FcγR) 

Mice n=10 per group were infected with 1 x 105 CFU K. pneumoniae via intranasal 
instillation. 24 and 30 hours post infection mice were treated I.V. with 50 μl of P4 
peptide (2 mg/ml) and/or Tazocin (9 mg/mouse), I.P. with 100 μl of IVIG (100 
mg/ml). Control mice received PBS injections of equal volume. Mice were monitored 
for signs of disease and culled at 36 hours post infection. Blood was collected, red 
blood cells lysed and cells stained for subsequent analysis by flow cytometry. 

Analysed by one-way ANOVA and Bonferroni post test –CD64 (FcγRI) p=0.8, 

CD32/16 (FcγRII/III) p=0.02, * p<0.05.  
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Figure 52 Double dose P4 therapy with antibiotics in K. pneumoniae infection 
model – blood neutrophil receptor expression C5aR 
Mice n=10 per group were infected with 1 x 105 CFU K. pneumoniae via intranasal 
instillation. 24 and 30 hours post infection mice were treated I.V. with 50 μl of P4 
peptide (2 mg/ml) and/or Tazocin (9 mg/mouse), I.P. with 100 μl of IVIG (100 
mg/ml). Control mice received PBS injections of equal volume. Mice were monitored 
for signs of disease and culled at 36 post infection. Blood was collected, red blood 
cells lysed and cells stained for subsequent analysis by flow cytometry. Analysed by 
one-way ANOVA and Bonferroni post test p=0.7. 
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D. Results Summary  

Treatment with a double dose of P4-IVIG + Tazocin led to higher percentage 

survival (70%) over 7 days than treatment with Tazocin alone (20%) and 

Tazocin+ IVIG (30%). Mean survival time was also significantly longer in P4-

IVIG + Tazocin treated mice compared with PBS treated mice (p<0.05).  

When CFUs were compared for P4-IVIG + Tazocin, Tazocin and PBS, 

treatment with both P4-IVIG + Tazocin and Tazocin alone led to a significant 

reduction in CFUs compared to control group. While decreases were similar 

in the lungs, the P4-IVIG + Tazocin treated group showed a far greater 

decrease in CFUs in the blood with 50 % of combination treated mice having 

no detectable CFUs in the blood at 36 hours.  

These three treatments showed no difference in plasma cytokine levels the 

levels however the level of C5a in the lungs were significantly higher for mice 

treated with Tazocin alone and the levels of IL-10 in the lung were highest for 

mice treated with PBS.  

The percentage of neutrophils found in the blood of P4-IVIG + Tazocin 

treated mice was significantly higher than for untreated controls and those 

treated with Tazocin alone. 

Expression of receptors on neutrophils from all groups showed similar levels 

of both CD64 and CD88 but differed in their expression of CD32/16. No 

differences were observed in receptor expression levels in the lung nor were 

there any difference in neutrophil percentage observed.  
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E.  Discussion  

1. Survival and bacterial burden 

Treatment with P4 peptide, IVIG and Tazocin lead to an increase in host 

survival (70%) when compared to both infected but non-treated control (20%) 

mice and those that received Tazocin (20%) or Tazocin in combination with 

IVIG (30%). Along with an increase in survival, mice treated with P4-IVIG + 

Tazocin in combination, saw a significant reduction in CFUs, this reduction in 

the lungs was similar to those treated with Tazocin alone but reductions in 

the blood were considerably higher with 50% of mice having no CFUs 

detectable at 36 hours post infection. This reduction in CFUs in blood is likely 

related to the increase in circulating neutrophils along with their higher level 

of CD32/16 expression.  

2. Inflammatory Markers 

a) Plasma 

No differences were observed in the levels of cytokine in the plasma of mice 

at 36 hours post infection. Whether differences would have be observed at 

an earlier time point, closer to the treatment times, is something that should 

be considered for further studies.  

b) Lungs  

Differences were observed in the levels of MIP-2, C5a and IL-10 in lung. The 

levels of CXCL1 in the lungs were not significantly different between 

treatment groups.  
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PBS treated mice had significantly higher levels of MIP-2 compared with 

Tazocin treated mice. This higher level of MIP-2 is likely due to a higher 

bacterial burden in the lung.  

Levels of C5a in the lung were highest for Tazocin treated mice, why this 

would be is unclear, expression of CD88 on lung neutrophils doesn’t suggest 

higher binding of C5a in the PBS or P4-IVIG treatment groups. 

The concentration of IL-10 in the lungs of PBS treated mice was significantly 

higher than in either Tazocin or P4-IVIG + Tazocin treated mice. K. 

pneumoniae capsule is known to induce IL-10 during pulmonary infection so 

the higher levels of bacteria in the lung of PBS treated mice could account for 

the higher levels of IL-10 (193). 

3. Cell populations 

a) Neutrophils percentages 

As seen with the pneumococcal models of invasive disease there was not a 

significant increase in lung neutrophils with intravenous P4 treatment (167).  

There was however a significantly higher percentage of neutrophils in the 

blood with P4-IVIG + Tazocin treatment compared with treatment with 

Tazocin or PBS. This higher proportion of neutrophils in the blood probably 

helped contribute to the reduction in CFUs seen in the blood.  

b) FcγR expression 

No differences were observed in the FcγR expression in the lung neutrophils. 

There was however a difference in the CD32/16 (FcγRII/III) expression in the 
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blood neutrophils, P4-IVIG + Tazocin treated mice had significantly higher 

levels of CD32/16 than PBS treated mice and higher expression than mice 

treated with Tazocin although this difference was not statistically significant. 

Higher levels of CD32/16 suggest more functionally mature cells and the 

potential for higher rates of phagocytosis, which is in line with the lower 

bacterial burden in the blood of these mice; over 50% of the mice had no 

detectable CFUs in the blood at 36 hours post infection. 

c) CD88   

No difference in CD88 expression was observed in either lung or blood 

neutrophils. This fits with the low levels of C5a found in the plasma and lung.  

4. Summary 

In summary treatment with P4-IVIG and Tazocin in combination was a 

successful treatment in the K. pneumoniae infection model where, unlike in 

the E. coli infection model, the combined therapy was superior to Tazocin-

IVIG treatment both in terms of survival and bacterial clearance.  
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Chapter IV. Ex vivo study of the 

effect of P4 peptide on neutrophils 

of patients with severe community 

acquired pneumonia  
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A. Introduction  

1. Community Acquired Pneumoniae (CAP)  

Lower respiratory tract infections (LRTIs) and pneumonia are a major cause 

of mortality or morbidity across the globe; especially prevalent in low and 

middle-income countries, and the leading infectious cause of death in high-

income countries (194, 195). As well as high costs in terms of health, LTRIs 

are also a substantial economic burden on healthcare systems with 

European inpatient care costs for community acquired pneumonia (CAP) 

alone estimated at over €5 billion per year (196).   

Figure 53 Pathogen Detection among U.S. Adults with Community-Acquired 
Pneumonia Requiring Hospitalization, 2010–2012. 
From Jain et al. 2015 (37). 

Streptococcus pneumoniae is the most common cause of bacterial CAP 

requiring hospitalisation in recent reports from the US (Figure 53)(37).  
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The etiology of CAP varies greatly between regions and age groups, and is 

also influenced greatly by socioeconomic factors. Risk factors for CAP in 

adult populations include: including age (>65 years <5 years), smoking, 

alcoholism, immunosuppressive conditions, and other chronic conditions 

such as COPD, cardiovascular disease, cerebrovascular disease, chronic 

liver or renal disease, diabetes mellitus and dementia (197).  

Severe CAP accounts for 6% of UK intensive care unit (ICU) admissions with 

mortality estimated at 35%, representing half of all CAP deaths. Overall 

hospital mortality sits at 50%, with an increasing incidence due to an aging 

population and rising antimicrobial resistance this is set to rise (198).  

Like sepsis, alternative treatments are need for the treatment of severe CAP.  

Previous work, which has shown P4 peptide to be an effective treatment for 

pneumococcal pneumoniae in murine models as well as its capacity to 

augment phagocytosis in both peripheral blood neutrophil and alveolar 

macrophages from differing populations of healthy volunteers(162, 167). This 

study, for the first time, is moving on from animal models and healthy human 

subjects to looks at P4 augmentation of phagocytic responses in peripheral 

blood neutrophils and alveolar macrophages from patients admitted to the 

intensive care unit (ICU) with a primary diagnosis of CAP.   

2. Opsonophagocytosis killing assay  

The primary endpoint of this study was the opsonophagocytosis killing assay 

(OPK). This assay was developed by the Centre for Disease Control and 

Protection CDC and was used to measure killing by phagocytic cells of 

http://thorax.bmj.com/content/68/11/1057.full#ref-7
http://thorax.bmj.com/content/68/11/1057.full#ref-8
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intravenous IgG (IVIG) opsonised pneumococci with and without P4 

stimulation (199). 

3. Clinical data 

In addition to the functional assays performed with patient cells, clinical data 

such as microbiology results, haematological and physiological measures 

were collected for each patient in order to see if there was any relationship 

between these measures and the cellular response to P4 peptide.  

4. Cell surface marker and serum cytokines  

Cell surface markers and serum cytokine levels were measured for each 

patient in order to see if there was any relationship between these measures 

and the cellular response to P4 peptide. 

5. P4 stimulation 

Ex vivo stimulation of peripheral blood neutrophils was performed to 

determine the effects of P4 peptide exposure on cell surface marker 

expression as well and the secretion of cytokines.  
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B. Methods and Materials: 

1. Ethics Statement 

We obtained national research ethics approval (12/NW/0730) for this study. 

Informed consent was obtained from patients.  

2. Power calculations 

It was calculated that 20 samples (α=0.05, β=0.05) would be required to 

demonstrate a 25.5% increase in bacterial killing based on previously 

published data using human alveolar macrophages (162). 

3. Patients 

Patients were recruited between March 2013 – March 2014 from Aintree 

University Hospital and The Royal Liverpool University Hospital.    

Study inclusion criteria:  

I. Adults (>18years)  

II. Admitted to critical care with a diagnosis of severe community-

acquired pneumonia (CAP) in accordance with British Thoracic 

Society Guidelines (136).  

CAP was defined as: symptoms and signs consistent with an acute lower 

respiratory tract infection and new radiographic shadowing for which there 

was no other explanation. CAP was the primary reason for admission to ICU 

in all recruited patients.  

Exclusion criteria: 
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I. Hospital admission within past 14 days 

II. Pregnancy 

III. immunocompromise (e.g. HIV Infection or chemotherapy).  

4. Healthy Volunteers 

Healthy volunteers were recruited to serve as technical controls and 

consented for both bronchoalveolar lavage and blood sampling.  

Inclusion criteria:  

I. Adults aged 18-65 years.  Age chosen to minimise risk of 

bronchoscopy.    

II. Fluent spoken English.   

Exclusion criteria:  

I. Asthma or pre-existing lung disease requiring regular 

immunoregulatory treatment or having any recent ill health    

II. Cigarette smoking of greater than 10 pack years (20 cigarettes per 

day for 10 years)    

III. Chronic illness    

IV. Pregnancy    

5. Sampling 

All patients were recruited within 48 hours of admission to ICU and sampled 

within 7 days of recruitment. When research bronchoscopy was performed, 

blood samples were taken immediately prior to bronchoalveolar lavage. 

Venous blood samples were collected into 9 ml lithium heparin vacutainers. 
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Blood was transported from the hospital to the lab at room temperature in 

order to maintain optimal neutrophil viability. Research bronchoscopy was 

restricted to mechanically ventilated patients to avoid acute hypoxia in 

patients dependent on supportive oxygen therapy.  

Healthy human volunteer bronchoscopy was undertaken using published 

technique (200). This technique was used with modifications for intubated 

critical care patients. Briefly, patients were given adequate intravenous 

sedation (usually a combination of propofol and alfentanil), 100% oxygen and 

monitored closely for the duration of the procedure. Experienced critical care 

physicians undertook bronchoscopy via the endotracheal tube to enable 

anticipation and prompt management of any complications. Bronchoalveolar 

lavage samples were transported from the hospital to the lab on ice.  

6. Data collection 

Relevant patient data was collected prospectively using an a priori case 

report form. This data included basic demographic details, clinical markers of 

severity, microbiology data and patient outcome measures. 

7. Pneumococcal Stocks 

Frozen pneumococcal stocks were prepared for use in OPK assays. 

Serotype 2, strain D39 was streaked on to 5% blood agar plates and 

incubated 16-18 hours at 37°C in gas jars.  

The following day universal tubes containing 5 ml of BHI broth were 

inoculated with D39 from the agar plates and incubated statically for 16-18 

hours. The culture was then centrifuged at 3000 g for 10 minutes, the 
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supernatant discarded and the pellet resuspended in 1 ml of 20% serum BHI 

broth and diluted to give a 10ml culture at OD500 of 0.7. This was incubated 

until the culture reached an OD500 of 1.2-1.4 (max 6 hour growth). This 

culture was then aliquoted into 2 ml screw top tubes and frozen at -80°C. 

Between 24 and 48 hours after freezing aliquots were thawed and the CFU 

determined by Miles and Misra. 

8. Blood Cell Isolation 

Cells were isolated from blood by dextran sedimentation followed by 

centrifugation over a Histopaque 1077 (Sigma-Aldrich, UK).  

Blood was transferred from vacutainers (3 x 9 ml lithium heparin) into a 50 ml 

centrifuge tube containing 50 μl of heparin sodium salt (5 units/μl), (Sigma-

Aldrich, UK). The blood was then mixed 2:1 with 6% dextran (MW >500,000, 

Fisher, UK) and left for 20-30 minutes at room temperature for the red blood 

cells to sediment (see Figure 54, section A). 

Figure 54 Blood cell isolation – dextran sedimentation and density 
centrifugation 
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After 20-30 minutes there should be two distinct phases; a dark red lower 

phase containing the red blood cells and a pale pink upper phase rich in 

leukocytes (see Figure 54 section B).  

The upper phase was collected and layered over 7 ml of Histopaque 1077 in 

a 15 ml centrifuge tube (see Figure 54, section C), 2 -3 tubes were needed 

per patient. Samples were then centrifuging at room temperature, 700g for 

30 minutes with no brake.The neutrophil (PMNs) and monocyte fractions 

were collected into separate 50 ml centrifuge and washed in Hank’s Buffered 

Salt Solution without Magnesium or Calcium (HBSS-/-), residual red blood 

cells were lysed with BD Pharm Lyse (BD Biosciences, USA) as per the 

manufacturer’s instructions. Cells were then counted with a haemocytometer 

and viability assessed by trypan blue exclusion.   

9. Alveolar Macrophage Isolation 

BAL samples were passed through a 100 μm cell strainer (BD Bioscience, 

Germany) before centrifuging at 400g, 4°C. BAL sample supernatants were 

aspirated and aliquoted for storage at -70°C. Cell pellets were washed and 

counted before resuspending in RPMI 1640 supplemented with 10% FBS, 

penicillin and streptomycin. Cells were seeded into flat bottom 96 well plates 

at a density of 1 x 105 alveolar macrophages per well. Cells were incubated 

at 37°C, 5% CO2 for two hours to allow alveolar macrophages to adhere 

before washing with PBS three times to remove non-adherent cells and 

antibiotic containing media.  
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10. Opsonisation of pneumococci 

Pneumococcal stocks were thawed, washed twice by centrifuging at 13,000 

rpm, discarding the supernatant and resuspending in +/+ HBSS, 5% FBS to 

give a final concentration of 5 x 104 CFU/ml (alveolar macrophage assays 

used 5 x 105 CFU/ml). IVIG (Gamunex-C, Grifols, Spain) was diluted 1:1 in  

+/+ HBSS, 5% FBS and then mixed with the diluted pneumococci 1:1 for 

opsonisation - 20 minutes, 37°C at 100rpm. The final concentration of IVIG in 

the assay is 1:16 which equates to 0.5 μg of protein. Un-opsonised controls 

used incubated as above in +/+ HBSS, 5% FBS at the same dilution.  

11. Opsonophagocytosis Assay - neutrophils 

Isolated neutrophils were seeded into 96 well U bottomed plates at a density 

of 5 × 104 neutrophils per well were incubated with 5 × 102 opsonised S. 

pneumoniae (20 μl per well of the pneumococci and IVIG mix from 

Opsonisation of pneumococci), 10 μl baby rabbit complement (Mast Group, 

UK), and P4 solution (10 μg/well) for 45 minutes at 37°C, 175rpm. CFU were 

determined following incubation by Miles and Misra. Wells not being treated 

with P4 received DEPC-treated water. Wells containing no neutrophils, non-

opsonised pneumococci and heat-inactivated complement were used as 

further controls. Killing index was calculated as 1 – dose well/OPA well (dose 

well - opsonised S. pneumoniae and complement, OPA well - phagocytes, 

opsonised S. pneumoniae and complement +/- P4 peptide)  
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12. Opsonophagocytosis Assay – alveolar macrophages  

Alveolar macrophages were seeded into 96 well flat bottomed plates (as 

detailed in Alveolar Macrophage Isolation) at a density of 1 x 105/well. After 

washing 5 × 103 opsonised S. pneumoniae (20 μl per well of the 

pneumococci and IVIG mix from Opsonisation of pneumococci) were added 

to wells along with 10 μl of 3-4 week baby rabbit complement and P4 solution 

(20 μg/well) for 45 minutes at 37°C, 100rpm. CFU were determined following 

incubation by Miles and Misra. Control wells received DEPC-treated water. 

Wells containing no macrophages, non-opsonised pneumococci and heat-

inactivated complement were used as further controls. Results of OPK 

assays were expressed as percentage killing index. 

This was calculated as: 

100 − (
𝑂𝑃𝐾 𝑊𝑒𝑙𝑙

𝐷𝑜𝑠𝑒 𝑊𝑒𝑙𝑙
 𝑥100) 

 Dose well - opsonised S. pneumoniae and complement 

OPK well - phagocytes, opsonised S. pneumoniae and complement +/- P4 

peptide.   

13. P4 Stimulation 

Isolated neutrophils were resuspended in RPMI 1640 (Life Technologies, 

USA) supplemented with 10% FBS (Sigma-Aldrich, UK) and seeded into 96 

well plates at a density of 2 x 105 cells per well. P4 peptide was added to 

wells at a concentration of 20 μg/well. Control wells were made up to equal 

volume with DEPC-treated water.  Cells were incubated at 37°C, 30rpm for 
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45 minutes and 6 hours at which point cell were centrifuged at 300g, 

supernatants collected (stored at -70°C) and cell stained for cell surface 

markers following the procedure detailed below.  

14. Flow-cytometry  

Cell suspensions were stained for 20 minutes at 4°C (detailed in section 

II.B.4.b. The following antibodies were used: 

Ebioscience, UK 

 CD64 (FcγRI, 10.0-FITC) 

 CD32 (FcγRII, 6C4-APC) 

  CD16 (FcγRIII, CB16-PeCy7) 

 CD11b (CR3/Mac-1, CBRM1/5-PE) 

Biolegend, USA 

 CD88 (C5aR, S5/1-PeCy7) 

  CD35 (CR1, E11-FITC) 

 CD66b (CEACAM1, G10F5-PE) 

  CD181 (IL-8RA, 8F1/CXCR1-FITC) 

All cells were incubated with Trustain FcX Fc receptor blocking solution 

(Biolegend, USA) prior to staining with the exception those being stained with 

for CD64, CD32 and CD16. Isotype controls were used to exclude non 

specific binding. Acquisition was carried out using an Accuri C6 (BD 

Biosciences, USA) flow cytometer, and analysis was performed using FlowJo 

8.7 for Macintosh (Tree Star). 
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15. Cytokines 

Serum was collected from each patient in 7.5 ml S-Monovette Z serum tubes 

(Sarstedt, Germany), tubes were centrifuged at 2000 g for 10 minutes and 

the serum aliquoted for storage at -70°C.  

IL-6, IL-8 and IL-10 levels were measured using Ready-SET-Go ELISAs 

(Ebioscience, UK) performed as per manufacturer’s instructions. Plates were 

read with a FLUOStar Omega plate reader and analysised with the MARS 

Data Analysis interface (BMG Labtech, Germany).   

16. Statistical Analysis 

Statistical analysis was performed with Prism 5 (Graphpad Software, USA), 

individual tests are noted in figure legends.   
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C. Results 

1. Healthy Controls  

Five healthy controls were recruited and OPK assays performed on their 

neutrophils throughout the study to help ensure all reagents were functioning 

as expected for the length of the study.  

The neutrophil OPK showed a statistically significant increase in killing index 

with P4 treatment (p=0.04), mean killing was 11% at baseline and increased 

to 28% with P4 treatment (Figure 55).  

The alveolar macrophage OPK showed an increase in mean killing from 24% 

at baseline to 52% with P4 treatment however was no statistically significant 

(p=0.1) (Figure 55).   
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Figure 55 OPKs from blood neutrophils and alveolar macrophages of healthy 
volunteers 
Killing index of untreated and P4 treated peripheral blood neutrophils (top) and 
alveolar macrophages (bottom) from health controls. Neutrophils p=0.04, alveolar 
macrophages p=0.1 paired t-test.     
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2. Patient Characteristics 

25 patients with community-acquired pneumonia (as defined by British 

Thoracic Society criteria [2]) were recruited into the study. All patients had 

severe pneumonia requiring admission to critical care for organ support and 

met the criteria for sepsis (see introduction). Table 16 depicts characteristics 

for 23 patients (two patients were excluded due to technical failure in testing) 

in our cohort.  

Samples were taken at a mean of 52 hours from admission (range 13-110 

hours) and processing began within one hour of sample collection. Fifteen 

(65%) patients were male, median age 54 (IQR 44-72) and median Acute 

Physiology and Chronic Health Evaluation II (APACHE II – disease severity 

score for ICU calculated within 24 hours of admission) score 15, IQR 11-24 

(Table 16). 

The was no relationship between APACHE II score and response to P4 

peptide in the OPK assay observed in our cohort although there was a trend 

towards a higher Sequential Organ Failure Assessment score (SOFA – 

scoring system used to track organ function in ICU, ranges from 0-24) in 

patients that did not respond to P4 in the OPK assay (mean SOFA score 

responders =5, mean SOFA score non responders = 8) (Figure 60).  

The 28 day survival for our cohort was 19/23 (17% mortality), of the four 

patients who died within 28 days, three died in the ICU. Ten patients had a 

causative organism identified (three blood culture positive). The most 

commonly isolated organism was Streptococcus pneumoniae (n=3, 1 blood 

culture, 2 urinary antigen)  (Table 16).  
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Major co-morbidities included: chronic obstructive pulmonary disease (8/23), 

ischaemic heart disease (6/23) and diabetes mellitus (4/23). 

Antimicrobial therapy for the majority of patients was a combination of either 

Piperacillin/Tazobactam (Tazocin) or benzylpenicillin combined with 

clarithromycin (Table 16).  
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Table 16 – Patient Characteristics – Orange = Responders, Blue = Non responders 

ID Age Microbiology APACHE II Antimicrobial therapy SOFA (Sampling) Co-morbidities 28 Day 
Survival 

A 83 E. coli 24 PIP/TAZ, CLAR 10 Asthma, IHD, AF YES 

B 30 S. milleri 11 PIP/TAZ, CLAR 7 Trisomy 21 YES 

C 42 Neg 8 CLAR, BPC 1 SLE, DVT YES 

D 37 H. influenza 8 Co-amoxiclav, CLAR 0 IVDU, Hepatitis C, DVT YES 

E 49 Neg 26 BPC, CLAR 6 COPD, IBD YES 

F 54 Legionella 15 CLAR 2 IBD NO 

G 73 Influenza A 24 PIP/TAZ, Tamiflu, CLAR 8 HTN, Breast cancer (treated) YES 

H 47 Neg 14 CLAR, BPC, Tamiflu 2 T2DM, IHD, CKD3 YES 

I 50 S. pneumoniae 18 Not completed 5 Alcoholism YES 

J 78 S. pneumoniae 14 CLAR, BPC 9 Nil significant YES 

K 61 Neg 9 PIP/TAZ, CLAR 3 COPD, RA NO 

L 72 Neg 22 Ciprofloxacin, PIP/TAZ 9 T2DM, mild dementia YES 

M 60 Neg 15 CLAR, BPC 2 COPD, AS YES 
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ID Age Microbiology APACHE II Antimicrobial therapy SOFA (Sampling) Co-morbidities 28 Day 
Survival 

N 39 Neg 13 CLAR, BPC 5 Asthma, T2DM, HTN YES 

O 31 Parainfluenza type 1 14 PIP/TAZ, Teicoplanin 4 Quadriplegic YES 

P 69 Neg 25 CLAR, BPC 12 IHD, Peripheral neuropathy YES 

Q 75 Neg 25 BPC, CLAR 9 AS, HTN, Stroke NO 

R 44 S. pneumoniae 8 PIP/TAZ, CLAR 3 COPD, IVDU, Asthma YES 

S 72 S. pneumoniae 24 BPC 10 Asthma, HTN Asbestosis, IHD YES 

T 48 Neg 25 CLAR, BPC 6 Paraplegic YES 

U 75 Neg 6 CLAR Vancomycin 10 COPD, HTN, Laryngeal cancer YES 

V 69 E. coli 13 PIP/TAZ, CLAR, 
Gentamicin 

14 COPD, ALD (Child C) NO 

W 49 Neg 2 CLAR, BPC 3 Sleep Apnoea, T2DM, HTN YES 

        
 

APACHE II - Acute physiology and chronic 
health evaluation II 
SOFA – Sequential organ failure 
assessment  
 

Antimicrobial therapy: 
BPC – Benzylpenicillin  
CLAR – Clarithromycin  
PIP/TAZ –Tazocin   

Co-morbidities: 
AF – Atrial fibrillation 
ALD – Alcoholic liver disease  
AS – Aortic stenosis 
CKD – Chronic kidney disease 
COPD – Chronic obstructive pulmonary 
disease 
DVT – Deep vein thrombosis  
 

 
HTN – Hypertension 
IBD – Inflammatory bowel disease 
IHD – Ischaemic heart disease  
IVDU – Intravenous drug user 
RA – Rheumatoid arthritis   
SLE – Systemic lupus erythematosus 
T2DM – Type 2 Diabetes mellitus 
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3. Opsonophagocytosis Assays 

Blood neutrophil OPKs were completed in 23/25 patients (2 excluded due to 

technical failure). Fourteen (60%) samples responded to P4 peptide 

stimulation (fold increase > 1) (Figure 56).  

Treatment with P4 peptide compared to carrier control led to significantly 

improved ex vivo neutrophil phagocytic killing of pneumococci with a mean 

killing index of 32% vs. 20% (mean difference 11.2%, C.I. 4.4-18.0, p=0.002) 

(Figure 57). 
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Figure 56 – Fold increase in killing index of peripheral blood neutrophils 
treated with P4 peptide 
Fold increase in killing index of P4 treated neutrophils when compared to untreated 
neutrophils for each of the 23 ICU patients. 56% (14/23) patients showed an 
increase in killing when treated with P4 peptide. Dotted line indicates a fold increase 
of 1, patients with a fold increase of 1 or less are considered non responders and 
are highlighted in blue (O-W), responders are highlighted in orange (A-N). Letters on 
the X axis correspond with the ID column in Table 16. 
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Figure 57 – Difference in killing index between P4 treated peripheral blood 
neutrophils and untreated neutrophils 
Difference in killing index between P4 treated and untreated peripheral blood 
neutrophils for each of the 23 ICU patients recruited (P4 killing index minus 
untreated killing index in each patient recovered neutrophil sample). 56% (14/23) 
patients showed an increase in killing when exposed to P4 peptide. Letter on the X 
axis correspond with the ID column in Table 16. Non responders and are highlighted 
in blue (O-W), responders are highlighted in orange (A-N). The cut-off for a 
response was set at a difference in killing index of 5 or more.  
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Patients were divided into responders and non responders using the cut off 

of an increase in killing index of 5% or more. Non responders had a mean 

baseline phagocytosis (OPK killing index with carrier control) of 30% this 

remained fairly static with P4 treatment killing index at 27%. The mean 

baseline phagocytosis for responders was 14%, with P4 treatment this 

increased significantly to 34% (p<0.0001 paired t test) (Figure 58). The 

difference between the baseline phagocytosis for responders and non 

responders was approaching significance (p=0.08, Mann Whitney). Figure 59 

shows the killing index before and after P4 treatment for each individual 

patient.   
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Figure 58 Killing index for peripheral blood neutrophils treated with P4 
peptide and untreated neutrophils 
Killing index of untreated and P4 treated peripheral blood neutrophils. Patients are 
divided into responders in orange (increase in killing index of 5 or more with P4 
treatment, n=13) and non responders in blue (increase in killing index of less than 5, 
n=10). Responders showed a significant increase in killing index with P4 treatment 
(p<0.0001, paired t test). P4 treated groups are indicated by crosshatching on bars. 
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Figure 59 Killing index for peripheral blood and untreated neutrophils for 
individual patients neutrophils treated with P4 peptide 
Killing index of untreated and P4 treated peripheral blood neutrophils. Patients are 
divided into responders in orange (increase in killing index of 5 or more with P4 
treatment, n=13) and non responders in blue (increase in killing index of less than 5, 
n=10). When all 23 patients are taken into account treatment with P4 peptide 
resulted in a significant increase in killing index (p=0.004), Wilcoxon signed rank 
test. 
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4. Patient Characteristics – Clinical Parameters  

The APACHE II and SOFA scores for patients and the predicted mortality 

associated with scores. Both the APACHE II and SOFA score are measures 

used in ICUs to assess disease severity. The APACHE II score is calculated 

at the time of admission (or within 24 hours) and is based on 12 physiological 

parameters as well as patient age. Based on the APACHE II score there was 

no significant difference in the disease severity for the two groups at 

admission (Figure 60, top panel).  

The SOFA score is calculated sequentially to monitor organ failure and is 

based on 6 scores assessing function in the respiratory, cardiovascular, 

hepatic, coagulation, renal and neurological systems. The non responder 

group showed a trend towards higher SOFA scores than responders which 

was approaching significance (p=0.06, t-test) (Figure 60, bottom panel).   
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Figure 60 APACHE II and time of sampling SOFA scores 
APACHE II and SOFA scores for CAP patients recruited to study (n=14 responders 
- orange circles, n=9 non responders - blue squares). Patients are divided into 
responders and non responders depending on the response of their peripheral 
blood neutrophils to P4 peptide in the OPK. Top: The acute physiology and chronic 
health evaluation II score (APACHE II) was calculated within 24 hours of admission 
to ICU. There was no significant difference in APACHE II score between groups (t-
test). Bottom: The sequential organ failure assessment was calculated at the time of 
sampling. Non-responders had a higher SOFA score than responders (mean 
responders =5, mean non responders = 8) these values were approaching 
significance (p=0.06, t-test).  
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The time from patient admission to sample collection was kept to a minimum 

but due to logistical reasons (such as admission at night or delays in 

acquiring consent) it was not always possible to acquire samples promptly. 

Sampling times ranged from 13 to 110 hours (mean 52 hours). The sampling 

time did not correlate with the patient SOFA score in our cohort (Figure 61, 

Top). The level of response to P4 peptide treatment also did not show a 

relationship with the time from sampling (Figure 61, Bottom).  
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Figure 61 Effect of sampling time 
Effect of sampling time. Top: Patient SOFA score vs. time of sampling post 
admission – there was no relationship observed between the patient SOFA score 
and the time from admission to sampling in this cohort. Bottom: Difference in killing 
index vs. time of sampling post admission – there was no relationship observed 
between the difference in killing index and the time from admission to sampling in 
this cohort.  
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5. Patient Characteristics – Neutrophils  

White blood cell (WBC) and neutrophil counts were performed by the hospital 

haematology service. When divided into responders and non-responders 

(Figure 62) there was no difference between the two groups in neutrophil or 

WBC count (p=0.1 and p=0.1 respectively).  

It was shown however that there was a weak (R squared value = 0.3) yet 

statistically significant (p=0.001) correlation between neutrophil count and the 

fold increase in killing with P4 peptide treatment in the OPK (Figure 63).  

It was noted that the patients with the highest neutrophil counts tended to 

have some of the lowest baseline phagocytosis values, although not 

statistically significant in this study (p=0.057).  
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Figure 62 Patient neutrophil and WBC count 
Neutrophil counts were provided for each patient by the hospital haematology 
laboratory. Top: Neutrophil count, bottom: white blood cell count (WBC) plotted as 
median and IQR. There was no statistical difference in neutrophil count between 
responders and non responders: neutrophil p=0.1, WBC p=0.1 Mann Whitney test. 
Patients marked in red had a neutrophil count below the detectable level for the 
automated counter – these patients have been recorded as having a neutrophil 
count of 1x109/L for statistical purposes.  
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Figure 63 Neutrophil count vs fold increase in killing index 
Neutrophil count plotted against fold increase in neutrophil killing. Dotted red line 
indicates a fold increase of 1, pink band indicates the normal/health range for 
neutrophil count. R squared value = 0.3, p=0.0019. Patients marked in red had a 
neutrophil count below the detectable level for the automated counter – these 
patients have been recorded as having a neutrophil count of 1x109/L for statistical 
purposes. 
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6. Patient Characteristics - Cytokines 

Serum cytokine levels for each patient were measured by ELISA. The 

detection threshold for the ELISA kits used was 2 pg/ml, where patients had 

cytokine levels lower than the threshold of detection they were recorded as 1 

pg/ml for statistical purposes. Patients were divided into responders and non 

responders for the analysis of serum cytokines.  

Responders had lower levels of IL-8 (median 11 pg/ml vs 88 pg/ml) and IL-10 

(median 1 pg/ml vs 8.62 pg/ml) than non responders (p=0.03 and p=0.01 

respectively, Mann Whitney) (Figure 64).   
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Figure 64. Patient serum cytokines – IL-8 and IL-10 
Serum cytokine levels for each of the 23 ICU patients recruited divided in respoders 
(orange circle) and non-responders (blue squares).  * = p<0.05 Mann Whitney test. 
Top- Serum IL-8 levels for individual patients, 5/23 patients had IL-8 levels below 
the detectable level (2 pg/ml) and were recorded as 1 pg/ml for statistical purposes. 
Median IL-8 level for responders was 11 pg/ml vs  88 pg/ml for non-responders 
(p=0.03, Mann Whitney test). Bottom- Serum IL-10 levels for individual patients, 
13/23 patients had IL-10 levels below the dtectable level (2 pg/ml) and were 
recorded as 1 pg/ml for statistical purposes. Median IL-10 level for responders was 
1 pg/ml (11/14 < 2 pg/ml) vs 8.62 pg/ml for non-responders (p=0.01, Mann Whitney 
test).   
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Figure 65 Patient serum cytokines IL-6 and INF-γ 
Serum cytokine levels for each of the 23 ICU patients recruited divided in respoders 
(orange circle) and non-responders (blue squares). Top: Serum IL-6 levels for 
individual patients – there was no statistical difference between patient levels for 
responders vs non responders (median 92 vs 108 pg/ml, p=0.8, Mann Whitney test). 

Bottom: Serum INF-γ levels for individual patients – there was no statistical 

difference between patient levels for responders vs non responders (median 1.0 vs 
70 pg/ml, p=0.7, Mann Whitney test).  
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Figure 66 shows there was a weak yet significant negative correlation 

between serum IL-8 level and neutrophil count (R squared value = 0.2, 

p=0.02). IL-8 was also observed to have a positive relationship with the 

baseline level of phagocytosis, the higher the IL-8 the higher the baseline 

killing, although not significant for the cohort as whole (p=0.05) this 

relationship was significant when only the non responders were taken into 

account (R squared value =0.4, p=0.04).   
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Figure 66 Patient neutrophil count vs. serum IL-8 
Neutrophil count for each patient was plotted against their serum IL-8 level. R 
squared value = 0.2, p=0.02. Patients marked in red had a neutrophil count below 
the detectable level for the automated counter – these patients have been recorded 
as having a neutrophil count of 1x109/L for statistical purposes – both were non 
responders. 7/23 patients had IL-8 levels below the detectable level (2 pg/ml) and 
were recorded as 1 pg/ml for statistical purposes.  
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7. FcγR Expression  

The expression of CD64, CD32 and CD16 (FcγR I, II and III) on peripheral 

blood neutrophils was measured before as a baseline measurement and 

after a 45 minute stimulation with P4 peptide. There was no difference in 

baseline level of expression between responder and non responder group for 

any of the three receptors (Figure 67).  

CD32 expression on peripheral blood neutrophils of responders was shown 

to decrease by 46% from its baseline value when incubated with P4 peptide 

(p<0.01, Dunn’s multiple comparison following Friedmans test), there was no 

significant change in CD32 expression in the non responder group (Figure 

68).  

There was also no difference in observed in CD64 or CD16 after incubation 

with P4 peptide (Figure 69). 
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Figure 67 Fc gamma receptor expression - CD64 (FcRI), CD32 (FcγRIIA/B)and 

CD16 (FcRIII) 
Fc gamma receptor expression on neutrophils from patients (n=9 responders, n=7 
non responders, n=7 patients lacked sufficient neutrophil numbers for testing or the 
sample was received too late for testing) using flow cytometry. There was no 
significant difference between the two groups in the expression level of CD64 p=0.4, 
CD32 p=0.6 or CD16 p=0.4, - Mann Whitney test.  
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Figure 68 Effect of P4 on expression of CD32 on peripheral blood neutrophils 
Peripheral blood neutrophils were isolated from CAP patients before incubating for 
45 minutes in the presence of the P4 peptide. Cells were washed, stained with anti-
CD32 (FcγRIIA/B) antibodies and expression levels determined by flow cytometry. 
Patients are divided into responders (orange, n=8) and non responders (blue, n=7). 
The responders showed a statistically significant drop from their baseline CD32 
expression after P4 treatment (responders p =0.03, non responders p=0.1, 
Friedman test, **= p<0.01 Dunn’s Multiple Comparison test). The responders saw a 
mean drop from baseline of 46%. Untreated neutrophils showed a drop from 
baseline of 27%.  
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Figure 69 Effect of P4 on expression of CD64 (FcγRI) and CD16 (FcγRIII) on 

peripheral blood neutrophils 
Peripheral blood neutrophils were isolated from CAP patients before incubating for 
45 minutes in the presence of the P4 peptide. Cells were washed, stained with anti-
CD64 and CD16 antibodies and expression levels determined by flow cytometry. 
Patients are divided into responders (orange, n=8) and non responders (blue, n=7). 
There was no significant difference in expression after treatment.  
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8. Complement receptor expression 

No difference was observed in the expression of CD35 (CR1) or CD11b 

(CR3) between groups at baseline or after incubation with P4 peptide (Figure 

70 and Figure 71).   
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Figure 70 Complement receptor expression – CD35 and CD11b (CR1 and CR3) 
Complement receptor expression on neutrophils from patients (n=9 responders, n=7 
non responders, n=7 patients lacked sufficient neutrophil numbers for testing or the 
sample was received too late for testing) using flow cytometry. There was no 
significant difference between the two groups in the expression level of CD35 p=0.4 
or CD11b p=0.1 Mann Whitney test.  
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Figure 71 Effect of P4 on expression of CD35 and CD11b on peripheral blood 
neutrophils 
Peripheral blood neutrophils were isolated from CAP patients before incubating for 
45 minutes in the presence of the P4 peptide. Cells were washed, stained with anti-
CD35 (CR1) and CD11b (CR3) antibodies and expression levels determined by flow 
cytometry. Patients are divided into responders (orange, n=8) and non responders 
(blue, n=7). There was no significant difference in expression after treatment.  
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CD66b is a marker of neutrophil activation, Figure 72 shows no difference 

was observed in the expression of CD66b between groups at baseline or 

after stimulation with P4 peptide as shown in Figure 73. Although it is of note 

that the non responder with the highest MFI (over 30,000) was the patient 

that had reduced killing in response to the P4 peptide which could suggest 

that there is of neutrophil activation after which P4 may have a negative 

effect on killing.   
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Figure 72 CD66b (CEACAM8) expression 
CD66b (CEACAM8) expression on neutrophils from patients (n=9 responders, n=7 
non responders, n=7 patients lacked sufficient neutrophil numbers for testing or the 
sample was received too late for testing) using flow cytometry. There was no 
significant difference between the two groups in the expression level p=0.6 Mann 
Whitney test.  

Figure 73 Effect of P4 on expression of CD66b on peripheral blood neutrophils 
Peripheral blood neutrophils were isolated from CAP patients before incubating for 
45 minutes in the presence of the P4 peptide. Cells were washed, stained with anti-
CD66b antibodies and expression levels determined by flow cytometry. Patients are 
divided into responders (orange, n=8) and non responders (blue, n=7). There was 
no significant difference in expression after treatment.  
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9. IL-8R expression 

Expression of the IL-8R on neutrophils isolated from the CAP patients was 

measured at baseline and after 45 minutes of stimulation with the P4 peptide.  

No difference was observed between responders and non responders in their 

baseline levels of IL-8R expression (Figure 77).  

After 45 minutes of treatment of with P4 peptide both groups saw a 

significant decline in the expression of the IL-8R on the cell surface. 

Responders saw a drop of 53% whilst non responders saw a drop of 33% 

(p<0.001 and p<0.01 respectively) (Figure 74). 
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Figure 74 IL-8 receptor (CXCR1) expression  
IL-8 receptor (CXCR1) expression on neutrophils from patients (n=9 responders, 
n=7 non responders, n=7 patients lacked sufficient neutrophil numbers for testing or 
the sample was received too late for testing) using flow cytometry. There was no 
significant difference between the two groups in the expression level. Mann Whitney 
test p=0.7. 

 
Figure 75 Effect of P4 peptide on IL-8R expression on peripheral blood 
neutrophils 
Peripheral blood neutrophils were isolated from CAP patients before incubating for 
45 minutes in the presence of the P4 peptide. Cells were washed, stained with anti-
IL-8Rα (CD181/CXCR1) antibodies and expression levels determined by flow 
cytometry. Patients are divided into responders (orange, n=8) and non responders 
(blue, n=7). Both the responders and non responders showed a statistically 
significant drop from their baseline IL-8R expression after P4 treatment (responders 
p <0.0001, non responders p<0.001, Friedman test, ***= p<0.001, **= p<0.01 
Dunn’s Multiple Comparison test).   
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10. CD88 Expression 

Expression of the CD88  on neutrophils isolated from the CAP patients was 

measured at baseline and after 45 minutes of stimulation with the P4 peptide.  

No difference was observed between responders and non responders in their 

baseline levels of CD88 expression (Figure 76). After 45 minutes of 

treatment of with P4 peptide both groups saw a significant decline in the 

expression of the CD88 on the cell surface. Responders saw a drop of 36% 

whilst non responders saw a drop of 10% (p<0.01 and p<0.05 respectively) 

(Figure 77).  
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Figure 76 CD88  expression 
CD88 expression neutrophils from patients (n=9 responders, n=7 non responders, 
n=7 patients lacked sufficient neutrophil numbers for testing or the sample was 
received too late for testing) using flow cytometry. There was no significant 
difference between the two groups in the expression level. 
 

Figure 77 Effect of P4 peptide on CD88 expression on peripheral blood 
neutrophils 
Peripheral blood neutrophils were isolated from CAP patients before incubating for 
45 minutes in the presence of the P4 peptide. Cells were washed, stained with anti-
CD88  antibodies and expression levels determined by flow cytometry. Patients are 
divided into responders (orange, n=8) and non responders (blue, n=7). Both the 
responders and non responders showed a statistically significant drop from their 
baseline CD88 expression after P4 treatment (responders p <0.00, non responders 
p<0.01, Friedman test, **= p<0.01, *= p<0.05 Dunn’s Multiple Comparison test). The 
responders saw a mean drop from baseline of 36% whilst the non responders saw a 
drop of 10%. Untreated neutrophils showed a drop from baseline of 20% and an 
increase of 9% for responders and non responders respectively.   
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11. Alveolar Macrophages 

Bronchoalveolar lavage (BAL) samples were collected from 3/23 patients in 

the study. Low sample numbers were due to the patients only receiving a 

research lavage if they needed one clinically. This meant lavages were often 

missed due to them being performed at short notice or overnight.  

Of the three BAL samples collected OPKs were performed successfully on 

two. The first sample received the bacterial dose (500 CFUs per well) was 

too low to show a difference between groups as the macrophages were very 

active, subsequent assays were performed with a ten fold higher dose.  

Figure 78 shows the results of these two OPKs. One patient showed an 

increase in killing index with P4 treatment from 72% to 93%. This patient was 

designated the letter S in the neutrophil studies and was a non responder. 

The other patient, who was designated G in the neutrophils and was a 

responder failed to show an improvement in killing in the alveolar 

macrophage OPK with a killing index of 86% at baseline and 89% with P4 

treatment.   
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Figure 78 Alveolar macrophage OPK from CAP patients 
OPK using alveolar macrophages isolated from patient BAL samples. Patient S is 
indicated in red and patient G in black.   
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D. Summary of results 

Neutrophils and alveolar macrophages from healthy controls showed 

increased phagocytosis after treatment with P4 ex vivo in line with what as 

been demonstrated in previous studies (162).   

Treatment of patient peripheral blood neutrophils with P4 peptide increases 

pneumococcal killing in 60% of the severe community-acquired pneumonia 

patients recruited to our study (p=0.002). A differential effect was observed 

with some patient neutrophils (40%) not showing a response to P4 peptide 

treatment in the OPK assay. However, the study was not sufficiently powered 

enough to fully decipher the reasons for these differences but there was a 

trend towards both a higher level of infection severity in non-responders 

(SOFA score p=0.0687) and a higher baseline level of opsonophagocytosis 

(p=0.0832) reducing the augmentative effect of P4.  

There was a weak yet significant correlation between total blood neutrophil 

count and the difference in pneumococcal killing with P4 treatment (R 

squared value = 0.3, p=0.0019). Patients’ serum cytokine data also showed a 

significantly higher level of both IL-8 and IL-10 in the serum of non 

responders (p=0·03 and 0·01 respectively) indicative of both neutrophil 

recruitment and anti-inflammatory effects.  

Cell surface marker data showed no significant difference in the baseline 

levels of any of the surface receptors measured. When cell surface markers 

were measured after treatment with P4 there was a statistically significant 

decrease from baseline levels in CD88 and IL-8R in both P4 peptide 

responder and non responder groups. CD32 also dropped in expression level 
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with P4 treatment but only in the responder group, non responders 

maintained baseline values.   
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E. Discussion 

This is the first study to look at the ex vivo effects of the P4 peptide on 

human peripheral blood neutrophils during infection. The OPK assay was 

used as our end point for assessing efficacy of the peptide in our patient 

cohort.  

1. OPK 

A significant increase in pneumococcal killing index was seen for 60% of the 

patients studied. This is an encouraging result suggesting that P4 treatment 

could potentially be of benefit to patients suffering from severe CAP and 

sepsis.  

An important factor that must be taken into consideration however is that the 

OPK assay, being an ex vivo assay, may not give the whole picture as to 

which patients may or may not benefit from P4 treatment. The OPK assay 

doesn’t give a realistic representation of the conditions with the patients as 

the neutrophil numbers are adjusted to a standard number and the various 

cytokines, chemokines and other plasma components which could influence 

neutrophil function are removed. A whole blood phagocytosis assay may 

reveal differences between patients which aren’t seen in the neutrophil OKP 

used in this study. Another shortfall of this assay is that the protocol used for 

isolation of neutrophil precludes the isolation of the most immature 

neutrophils as their low density results in them being deposited in the PBMC 

fraction after density centrifugation (201). These immature neutrophils have 

decreased function compared with mature neutrophils and are thought to be 
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more pro-inflammatory, hence would be an important population to study 

(202).   

2. Receptor expression 

a) CD88  and IL-8R 

This study looked at cell surface markers on neutrophils isolated from CAP 

patients and showed decreases in cell surface expression for both CD88 and 

IL-8R: two receptors important to neutrophil activation and chemotaxis, these 

changes occurred in both the responder and non responder group (203-205). 

Due to the short period of P4 stimulation (45 mins) that induced these 

reductions in receptor expression the most likely explanations are that the 

receptors were either internalised or cleaved from the cell surface. This could 

be confirmed by measuring levels of the receptor in the cell culture 

supernatant or with confocal imaging with fluorescently labelled receptors to 

capture receptor internalisation. Release of neutrophil elastase (NE) is 

mediated in part by the binding of C5a to CD88 and results in the cleavage of 

CD88 from other cells (127). It would be interesting to see if NE had been 

released into the supernatant in the presence of P4 and whether or not this is 

affected by the presence of FBS (as a potential source of C5a).   

This augmentation of receptor expression helps support the idea of the 

peptide having effects beyond just enhancing phagocytosis, such as 

augmenting timing and number of neutrophil infiltrating infection sites with P4 

treatment as shown in mouse models of pneumococcal infection treated with 

P4 (167).  
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b) FcγR expression 

An interesting finding from this study was the effect of P4 on the expression 

of CD32 (FcγRII) on patient neutrophils, as one would not expect a decline in 

CD32 to result in increased phagocytosis . CD32B, one of the two isotypes of 

the CD32 molecules that has an inhibitory function, but it is not normally 

thought to be expressed by neutrophils though it can be induced under 

certain conditions (206). The ratio of CD32A:CD32B mRNA has been shown 

to be important in setting the threshold of activation in neutrophils (207). The 

antibodies used to detect CD32 in our study cannot distinguish between 

CD32A and CD32B so it is not possible to say if only one or both of these 

receptors is being affected by P4 treatment but is definitely a line of research 

worth pursuing in future studies.  

Expression levels of CD64 (FcγRI) and CD16 (FcγRIII) were not significantly 

different between responders and non responders, nor were any changes in 

expression observed after stimulation with P4 peptide. As CD64 has very low 

levels of expression in resting neutrophils it not be possible of P4 to induce 

further expression in CAP patients as it is already optimally expressed (177). 

Differences in the level of CD16 between patients may not have been evident 

because of the inability of the neutrophil separation method used to isolate 

the immature neutrophils which would have had lower levels od CD16 

expression (202).  

3. Inflammatory Markers 

Another finding, which could be significant when selecting patients who 

would benefit from P4 therapy, is the relationship between serum IL-8 and IL-
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10 levels and response to treatment. Patients with high levels of IL-8 and IL-

10 were more likely to be non responders. This could be due to IL-8 priming 

neutrophils for phagocytosis and would in turn explain the higher baseline 

level of phagocytosis in non responders (208). Alternatively IL-10 has been 

shown to induce a refractory period in neutrophils during which activation in 

response to bacterial stimuli is blocked after an initial exposure to the stimuli 

in the presence of IL-10, which could explain why the non responders failed 

to show a improvement in phagocytosis with P4 peptide treatment (209). The 

interplay between IL-8, IL-10 and P4 treatment is worth investigating further 

to examine whether these cytokines are having an effect on the ability of P4 

to increase phagocytic activity. 

4. Effect of time 

If P4 therapy went through to clinical trials, its use is envisage as it being 

administered in a similar time frame to initial antibiotic treatment in sepsis i.e. 

within the first hours of sepsis being suspected. In this study samples were 

received from 13 to 110 hours after admission. No effect of time was 

observed in either the patient response to the drug or in severity of disease in 

patients. 

5. Alveolar macrophages 

The results of the alveolar macrophage OPK have too small a sample size to 

draw any definitive conclusions as to whether P4 can improve phagocytosis 

by macrophages in the lungs of CAP patients but they do highlight that it is 

possible that patients who don’t show a response to P4 in their blood 

neutrophils could still benefit from P4 administration directly into the lungs. 
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6. Summary  

In summary this study has shown that treatment with P4 may have benefits 

for patients with severe CAP but as improvements in phagocytosis were not 

seen in all patients it would be important to investigate further what factors 

determine whether or not the neutrophils respond to treatment; patient 

plasma IL-8 and IL-10 levels may be worth investigating further which 

patients would benefit from P4. This study also showed that treatment with 

P4 did alter expression of CD32, CD88 and the IL-8R – it would be essential 

to investigate further what the effect of alter the cell surface expression of 

these receptors has during infection.  



 

213 

 

Chapter V. Mechanism of P4 

action  
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A. Introduction 

The working theory on the mechanism of P4 action is that it increases the 

levels of FcγR expression on phagocytic cells, which in turn leads to an 

increase in phagocytosis (167). This chapter looks at the effect of P4 on 

naïve mice in vivo and ex vivo.   

1. P4 treatment of naïve mice in vivo 

Mice were treat with P4 for 24 hours before being culled and their neutrophils 

analysed by flow cytometry to look at the effects of P4 on expression of 

CD88 , CD35/21 (CR1/2) and IL-8R.  

2. P4 treatment of naïve mouse neutrophils ex vivo 

Neutrophils isolated from naïve mouse bone marrow were treated with P4 in 

OPKs. Expression of CD64 and CD32/16 was measured after P4 treatment. 
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B. Method and Materials 

1. P4 treatment of naïve mice in vivo 

Female CD-1 mice aged 6-8 weeks were treatment with P4 peptide and then 

culled after 24 hours and blood collected for flow cytometry analysis.  

P4 peptide, dissolved in DEPC treated water, was administered via a 50 μl 

intravenous injection into the tail vein at a concentration final concentration 

per mouse of 1 μg, 10 μg and 100 μg. Control animals received an injection 

of equivalent volume of sterile PBS. 

2. P4 treatment of naïve mice ex vivo 

a) Tissue collection and neutrophil isolation 

Naïve mice were culled by cervical dislocation after which the femurs and 

tibias were collected and washed in 70% ethanol. The epiphyses were 

removed and the bone marrow flushed out of with a needle and syringe 

containing RPMI 1640 supplemented with 2 mM EDTA and 10% FBS.  

Cells were pelleted by centrifuging at 400 g, the supernatant removed and 

red blood cells lysed in 0.2% saline. Cells were pelleted again by centrifuging 

at 400 g, the supernatant removed and cells resuspended in 2 ml of RPMI 

1640 supplemented with 2% EDTA and 10% FBS.  

Histopaque 1119 and histopaque 1077 were layered over one another 

(histopaque 1077 on top), 2 ml of each, in a 15 ml centrifuge tube. The cell 

suspension was then layered on top of the histopaque and the tubes 

centrifuged at 800 g for 30 mins with no brake. The PBMC fraction was 
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discarded and the neutrophil fraction collected. Neutrophils were counted 

with a haemocytometer and viability assessed via trypan blue exclusion.  

b) OPK and P4 treatment 

OPKs were performed as described in section IV.B.11. Neutrophils were 

resuspended in RPMI to give a concentration of 1.7 x 106 cells/ml. 

Neutrophils were seeded into 96 well plates, 180 μl per well. Wells were 

treated with either: P4 20 μl of 3 mg/ml dissolved in DEPC treated water or 

with DEPC treated water. Cells were incubated for 1 hour at 37 °C, 5% CO2. 
  

c) Receptor Expression  

Cells for receptor expression analysis were treated with P4 and DEPC 

treated water. The antibodies detailed in Table 17 with corresponding isotype 

controls were used for flow cytometry analysis of mouse tissue and 

leukocytes. Antibodies were used at a dilution of 1:250. Staining procedure is 

detailed in section II.B.4.b. Sample acquisition was performed on the FACS 

Calibur (BD Biosciences, USA) and analysis was performed with FlowJo 8.7 

(Tree Star, USA).    

Table 17 Mouse flow cytometry antibodies  
 

Biolegend 
Product 
Code 

Description 

101325 APC anti-mouse CD16/32 

139303 PE anti-mouse CD64 (FcγRI) 

123417 
APC/Cy7 anti-mouse CD21/CD35 

(CR2/CR1) 

149307 
PerCP/Cy5.5 anti-mouse CD182 

(CXCR2) 

108405 FITC anti-mouse Ly-6G/Ly-6C (Gr-1) 
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C. Results 

1. P4 treatment of naïve mice in vivo  

Previous studies have shown the significant increases in the expression of 

FcγRs in naïve mice treated with P4 but no studies have looked at other 

receptors (167). CD88, CD35/21 (CR1/2) and CD182 (CXCR2) were chosen 

because of the evidence that complement may be an important factor in P4 

function; OPK assays without complement present fail to show an 

improvement in phagocytosis with P4 treatment (162). CD182 (CXCR2) was 

chosen because of the differences observed in the human ex vivo CAP study 

in IL-8R expression with P4 treatment.   

Figure 79 shows the expression of CD88 on neutrophils form mice treated in 

vivo for 24 hours with P4 peptide. The figure shows a dose dependent 

increase in CD88 expression with the highest expression found with 100 μg 

of P4 per mouse. The difference in expression was significantly different for 

control vs. 100 μg of P4 (p=0.005).  

Figure 80 shows the expression of CD35/21 on neutrophils form mice treated 

in vivo for 24 hours with P4 peptide. Levels of CD35/21 expression with P4 

treatment saw a 2 fold increase at a P4 concentration of 1 μg and a modest 

increase with 100 μg, these values were approaching significance (p=0.05).  

Figure 81 shows significantly higher expression of CD182 with 1 μg 

treatment with P4. Increases were not observed with 10 or 100 μg 

treatments.    
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Figure 79 Effect of P4 on expression of CD88  on neutrophils of naïve mice 
Mice n=3-5 per group with injected intravenously with 50 μl of either  P4 or PBS. 
Mice were culled 24 hours after treatment and blood was collected, red blood cells 
were lysed and cells stained with anti-Gr-1, CD11b and CD88 antibodies for 
subsequent analysis by flow cytometry. Neutrophils were identified as GR-1+, 
CD11b+ cells. Plotted as mean and SEM, analysed by one-way ANOVA p=0.0074, 
**p<0.005 

Figure 80 Effect of P4 on expression of CD35/21 (CR1/2) on neutrophils of 
naïve mice 
Mice n=3-5 per group with injected intravenously with 50 μl of either  P4 or PBS. 
Mice were culled 24 hours after treatment and blood was collected, red blood cells 
were lysed and cells stained with anti-Gr-1, CD11b and CD35/21 antibodies for 
subsequent analysis by flow cytometry. Neutrophils were identified as GR-1+, 
CD11b+ cells. Plotted as mean and SEM, analysed by one-way ANOVA p=0.05 
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Figure 81 Effect of P4 on expression of CD182 (CXCR2) on neutrophils of 
naïve mice  
Mice n=3-5 per group with injected intravenously with 50 μl of either  P4 or PBS. 
Mice were culled 24 hours after treatment and blood was collected, red blood cells 
were lysed and cells stained with anti-Gr-1, CD11b and CD182 antibodies for 
subsequent analysis by flow cytometry. Neutrophils were identified as GR-1+, 
CD11b+ cells.  Plotted as mean and SEM, analysed by one-way ANOVA p=0.03, 
*p<0.05  
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2. P4 treatment of bone marrow neutrophils form naïve mice ex vivo 

As neutrophils are released in high numbers from the bone marrow during 

infection it was important to establish whether these neutrophils respond to 

P4 treatment. Figure 82 shows the difference in killing index with P4 treat of 

neutrophils isolated from the bone marrow of naïve mice. The neutrophils 

showed a significant increase in killing with P4 treatment (p=0.007). It was 

not possible to compare killing between blood and bone marrow neutrophils 

because the yields from neutrophils isolation from mouse blood is too low to 

per an OPK assay with. 
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Figure 82 Difference in killing index with P4 treatment - naïve bone marrow 
neutrophils  
Killing index of naïve bone marrow neutrophils in OPK assay with and without P4 
treatment. The neutrophils from the bone marrow of 7 mice were isolated and 
individual OPKs performed for each mouse. Analysed by paired t-test p=0.0075. 
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Figure 83 and Figure 84 show the effect of P4 treatment on expression of 

CD64 (FcγRI) and Cd32/16 (FcγRII/III) on neutrophils isolated from the bone 

marrow of naïve mice. Significant increases in CD64 were seen with P4 

treatment (p=0.03), a 2 fold increase in expression was observed. Increases 

in the expression of CD32/16 were only seen in 3/6 mice with P4 treatment 

(p=0.4). Why the neutrophils from some mice appeared to have a response 

to P4 with regards to CD32/16 expression whilst others did not is unclear.         
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Figure 83 Effect of P4 treatment on expression of CD64 (FcγRI) on naïve bone 
marrow neutrophils 
The bone marrow from 6 mice was collected and neutrophils isolated, neutrophils 
were treated with P4 or DEPC treated water for 1 hour before cells were stained 
with CD64 antibodies for subsequent analysis by flow cytometry. Analysed by paired 
t-test p=0.03. 

Figure 84 Effect of P4 treatment on expression of CD32/16 (FcγRII/III) on naïve 
bone marrow neutrophils 
The bone marrow from 6 mice was collected and neutrophils isolated, neutrophils 
were treated with P4 or DEPC treated water for 1 hour before cells were stained 
with CD32/16 antibodies for subsequent analysis by flow cytometry. Analysed by 
paired t-test p=0.4 
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D. Results summary 

1. P4 treatment of naïve mice in vivo  

Treat of naïve mice in vivo with P4 resulted in significant increases 

expression of CD88  in a dose dependent manner. Increases in CD182 

(CXCR2) and CD35/21 (CR1/2) were also observed but unlike CD88 the 

highest expression was observed with 1 μg treatment and no dose 

dependent relationship was seen.   

2. P4 treatment of bone marrow neutrophils form naïve mice ex vivo 

OPKs with bone marrow neutrophils from naïve mice resulted in significant 

increases in killing index with P4 treatment.  

Ex vivo treatment with P4 of bone marrow neutrophils from naïve mice 

resulted in significant increases in CD64 after 1 hour. Differences in CD32/16 

expression were observed in some mice but not others and overall was not 

significant.  
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E. Discussion  

1. P4 treatment of naïve mice in vivo  

Increased expression of receptors in naïve mice, other the CD32/16, has not 

previously been shown (167). The ability of P4 to modulate the expression of 

other receptors is an important finding with regards the mechanism of P4 

function. CD88 showed significant increases in expression after treatment 

with P4 and the fact that these changes in expression in detectable 24 hours 

after treatment with P4 peptide suggests that the effects of P4 on cells could 

be long lasting. It would be interesting to see how long the effects of P4 last 

in cells and how they change over time as this could effect the dosing 

schedules used in treatment. C5a is an extremely potent neutrophil 

chemoattractant so increased expression of the receptor could explain 

increases in neutrophils seen during infection with P4 treatment. Increases in 

CD182 could also contribute to increases in neutrophils. Binding of C5a to 

the CD88 has also been shown to play a role in regulation of CD16 

expression, so chances is CD16 expression could also be a result of 

changes in the expression CD88 (115). 

Significant increases in CD182 expression were also observed after P4 treat, 

however they did not display a dose dependent effect with the highest 

expression being in the group treated with 1 μg of P4. CD32/16 expression 

showed increases close to significance (p=0.0515) with P4 treatment but like 

the results seen for CD182 expression, levels were highest with 1 μg of P4. 

With this in mind, further studies should be performed looking at the dose 

dependent effects of P4 on receptor expression. 
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2. P4 treatment of bone marrow neutrophils form naïve mice ex vivo 

The ability of neutrophils isolated from the bone marrow of naïve mice to 

respond to P4 in the OPK, which resulted in a significant increase in killing 

index with P4 treatment, is important as during infection large numbers of 

immature neutrophils are released from the bone marrow and in sepsis have 

been show to have reduced function compared with mature neutrophils 

normally found in circulation (202). This result should be followed up with 

studies of the effect of P4 peptide on neutrophil function during infection.  

The neutrophils showed significant increases in expression of CD64 with P4 

treatment. Baseline levels were very low in untreated cells, which helps 

support the theory that CD64 is not increased with P4 treatment during 

infection because it is already optimally expressed.  

Expression of CD32/16 was not significantly increased in all mice treated 

with P4, the mice with the lowest levels of CD32/16 without treatment with P4 

failed to show increases in expression whilst those with higher expression 

levels did show an increase. As an increase in expression this rapid is likely 

to be due to transport of intracellular stores of receptors to the cell surface it 

would be interesting to see if this mice had differed in the levels of stored 

receptors with the cell and hence were not capable of increasing their 

surface expression.  
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Chapter VI. Discussion 

and Future work  
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A. Discussion  

1. Animal models 

The two animal models utilised in this study yielded very different results, 

which are briefly summarised in Table 18. The E. coli infection model was far 

more severe than the K. pneumoniae infection model, with control animals 

progressing to their humane endpoint within eight to ten hours of infection 

whilst controls in the K. pneumoniae model started showing signs of severe 

infection from 36 hours onwards and the mean survival time for controls was 

78 hours. 

The inflammatory response observed in the E.coli model was also markedly 

higher than in the K. pneumoniae model with CXCL1 levels in plasma almost 

300 fold higher and C5a levels 100 fold higher in E. coli infected mice. This 

excessive inflammatory response probably led to the very rapid decline in 

host survival in the E. coli infection model and therefore to see a protective 

effect of P4 treatment on mouse survival time would have needed some form 

of physiological support (such as fluid resuscitation, vasopressors and 

inotropic drugs), which is difficult to implement in animal models. Given the 

very rapid progression of infection it is likely that the high levels of 

inflammation was driven by high levels of LPS in E. coli infected mice. The 

infectious dose in the E. coli model was 100 fold higher than in the K. 

pneumoniae so it is possible that the initial inoculum contained substantial 

amounts of free LPS. In pilot experiments to set the dose for the E. coli 

model mice cleared the infection with doses of 106 CFUs/mouse and less. In 

future studies it would be interesting to establish whether there is a high 
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concentration of LPS in the dose and if removal of this could improve survival 

in the model.   

The relatively slow progression of the K. pneumoniae infection allowed a 

larger window within which treatment could be administered i.e. treatment 

could be given before there was widespread inflammation in the model which 

could possibly counter the effects of P4 treatment. 

Another difference between the two models which may explain disparities in 

the results in the relation to Tazocin + IVIG treatment is the site of infection in 

relation to site of administration of IVIG: in the E. coli model the infectious 

dose and the IVIG were both given via intraperitoneal injection whilst in the 

K. pneumoniae model the infectious dose was given via the intranasal route 

and the IVIG via intraperitoneal injection. With the IVIG being administered 

directly into the initial site of infection in E. coli, improvements were seen in 

survival time of Tazocin + IVIG treated mice when compared to treatment 

with Tazocin alone. This could be because by administering the IVIG in close 

proximity to the infection site it was better able to slow the dissemination of 

infection from the peritoneum into the blood. These differences in survival 

were not observed between Tazocin and Tazocin + IVIG treated mice in the 

K. pneumoniae model where IVIG would have had to cross into the blood 

before circulating into the lungs. Which leads to the question as to whether 

Tazocin + IVIG treatment in E. coli infected mice would have still given a 

survival advantage over Tazocin alone if it had been administered through an 

alternative route such as intravenously, as it would be in humans. It was not 

possible to test this theory in the mice, as intravenous injection of IVIG (as in 

human studies) is not well tolerated by the mice. 
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The K. pneumoniae infection model showed good efficacy of P4 treatment 

with P4-IVIG + Tazocin treatment resulting in 70% survival compared with 

20% survival in Tazocin treated groups and 30% survival in Tazocin + IVIG 

treated groups. This increase in survival was likely due to the lower numbers 

of CFUs in mice treated with P4 compared to control. Increases in CD32/16 

(FcγRII/III) expression in mice treated with P4 supports what has previously 

been published on the effects of P4 treatment on neutrophils and are likely to 

have resulted in in the lower numbers of CFUs (167).  

Whether P4 treatment provides a benefit in E. coli infection is not as clear 

cut; survival times and CFUs recovered from tissue were not significantly 

different for both P4-IVIG + Tazocin and Tazocin + IVIG treated mice. 

Cytokines and neutrophil receptor expression also did not differ significantly 

with P4-IVIG + Tazocin compared to mice treated with just Tazocin. To better 

establish whether P4 treatment is beneficial in E. coli infection, a less severe 

model, that more closely replicates the human progression to sepsis and 

allows longer survival times, such as a cecal ligation and puncture model 

could be used (210).  
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Table 18 Comparison of E. coli and K. pneumoniae in vivo models 

 

 E. coli K. pneumoniae 

Infection Route Intraperitoneal Intranasal 

Inoculum per mouse 
(CFUs) 

107 105 

Dosing schedule post 
infection 

1 and 4 hours 24 and 30 hours 

Mean survival time of 
PBS control 

8 hours 78 hours 

Survival percentage 
in P4-IVIG + Tazocin 

55% at 24 hours 70% at 7 days 

Time pointed cull 7 hours 36 hours 

Plasma Cytokines – 
PBS control 

Very High CXCL1 
Very High C5a 

High IL-10 

High CXCL1 
High C5a 

No detectable IL-10 

Plasma Cytokines – 
P4-IVIG + Tazocin 

Very High CXCL1 
Lower levels of C5a 
Intermediate IL-10 

High CXCL1 
High C5a 

No detectable IL-10 

Neutrophil 
percentage 

Elevated in Tazocin 
and P4-IVIG + Tazocin 

treated mice 

Elevated P4-IVIG + 
Tazocin treated mice 

only 

CD64 expression on 
neutrophils 

No difference No difference 

CD32/16 expression 
on neutrophils 

Elevated in Tazocin 
and P4-IVIG + Tazocin 

treated mice 

Elevated in P4-IVIG + 
Tazocin only 

CD88 expression on 
neutrophils 

Elevated in Tazocin 
and P4-IVIG + Tazocin 

treated mice 
No difference 
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2. Ex vivo CAP study 

The ex vivo study on the effects of P4 on neutrophils from patients with 

severe CAP showed that treatment with P4 significantly increased 

phagocytosis, with 60% of the patients in the study showed an increase in 

killing. The patient sample size of this study limited further conclusions such 

as which patients would benefit from P4 treatment, although the difference in 

SOFA scores between responders and non responders suggested that P4 

efficacy declines as infection severity increases and hence the timing of 

treatment with P4 will likely have a major influence on treatment success. 

This relationship between infection severity and P4 efficacy was also 

demonstrated in the E. coli infection models, where it is likely that the rapid 

progression of the infection masked any benefits of P4 treatment.   

The group of patients that did not respond to P4 treatment in the OPK had 

significantly higher levels of IL-8 and IL-10 in their plasma than those that did 

show a significant response. Further work to establish if and how IL-8 and IL-

10 affect the ability of P4 to augment neutrophil function may help to advance 

understanding of P4’s mechanism of action. High levels of IL-8 may mean 

that the neutrophils are already optimally primed to respond to infection 

whereas high levels of IL-10 are known to attenuate neutrophil responses to 

stimuli such as LPS and this function may not be able to be recovered with 

P4 treatment (208, 209, 211).    

The results from the alveolar macrophage OPKs highlight that phagocytes 

from different sites (e.g. the lung and blood) may respond differently to P4 
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treatment, so for some patients administration of P4 directly into the lungs 

may be beneficial.  

Changes to the expression of CD88 in both the animal models and the CAP 

patients and changes to IL-8R expression in the CAP patients suggest that 

there is more to the P4 mechanism than just increasing phagocytosis from 

augmentation of FcγRs. The fact that these changes were observed in naïve 

mice treated with P4 and not just during infection supports the idea that P4 

may be directly impacting on the expression of CD88 and IL-8Rs and that 

this is not just a by product of reduced infection severity. The implications of 

these changes in receptor expression on neutrophil responses to infection 

need further investigation.  

3. Future Work  

P4 has received funding through the MRC in the form of a Developmental 

Pathway Funding Scheme grant to further development of P4 as a 

therapeutic. As part of this grant P4 is currently undergoing toxicity testing 

(results due September 2016), which will hopefully lead to phase I and II 

clinical trials. With the possibility of P4 being administered to human subjects 

in mind, further work should be performed to better understand the 

mechanism of action of P4. The rapid nature of the up-regulation of FcγRs by 

P4 in vitro supports the idea that the receptors are being released from 

intracellular stores but how this is triggered remains elusive (162).  

Preliminary work utilising fluorescently labelled was performed to investigate 

the binding of P4 to cell surfaces and the possibility of the peptide being 

internalised within the cell (data in appendix). The experiments utilised flow 
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cytometry and confocal microscopy to investigate the fate of P4 during cell-

peptide interactions and showed that P4 binds to cell surfaces and 

suggested that around 13% of P4 that binds to cells is internalised. As part of 

this project PK/PD studies were also attempted, using HPLC to measure P4 

levels in plasma, these were unsuccessful with no P4 being detected in mice 

3 minutes (shortest time it was feasible to inject P4, anaesthetise mouse and 

collect blood) after injection. The fact that the peptide binds to cell surfaces 

and that some it is subsequently internalised may explain why PK/PD 

measurements were unsuccessful.  

Whether internalisation of P4 is necessary for P4 function is unknown. To 

better understand P4 function it would be important to know if P4 is entering 

cells and if so through what mechanism. P4 has an isoelectric point of 9, 

which makes it a cationic peptide. Cationic peptides can enter cells through a 

receptor independent manner as shown in Figure 85.  

Figure 85 Direct translocation of cationic peptide 
Examples of the proposed mechanisms for direct translocation. (A) Inverted micelle 
formation. (B) Pore-formation. (C) Adaptive translocation. From Bechara et al. 2013 
(212) 
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Each of these models is dependent on the net positive charge of the peptide 

disrupting the normal functioning of the cell membrane (212). The confocal 

images of fluorescent P4 in macrophages however show the peptide in 

spherical bodies within the cell, which suggests that direct translocation of 

the peptide may not be the route through which P4 enters cells and that a 

form of endocytosis may be more likely and could be confirmed with assays 

utilising endocytosis inhibitors. The fact that these confocal images do not 

show entry of peptide into all cells should be investigated further to confirm 

that uptake is definitely occurring and whether internalisation of P4 is 

important to P4 function or if binding of P4 to the cell surface is sufficient for 

the peptide to take its effect.  

The work performed so far with fluorescently labelled P4 (fP4) is preliminary 

and there are many more ways that fP4 could be utilised to answer questions 

about the mechanism of function of P4. One way it could be utilised is to 

investigate the fate of the peptide in vivo; using small animal imaging 

systems that can detect fluorescent compounds in live animals the peptide 

could be tracked within the mouse to answers questions such as do 

neutrophils treated with P4 show different patterns of migration within the 

mouse and how long these cells and the peptide itself persists.   

As severe infections occur disproportionately in those under 5 years, the 

elderly and immune-compromised patients it is important that studies 

investigate the efficacy of P4 in these populations are performed. Aging is 

known to result in a reduction in neutrophil function whilst maintaining normal 

neutrophil numbers, so a treatment, which could possibly enhance neutrophil 

function, could be of great benefit to elderly patients (213).  
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Using P4 to treat fungal infections would also be of interest, severe fungal 

infections are increasing in prevalence and are an import cause of infection 

in ICUs (214). Given the difference in the way neutrophils process fungal 

hyphae compared with smaller pathogens it would be important to see if P4 

had an effect of the interaction between neutrophils and fungi (93). Patients 

with fungal infections are also often immune-compromised; HIV infected 

patients, those receiving chemotherapy and recipient of solid organ 

transplants are at particular risk of fungal infection and antifungal drugs often 

have high host toxicity so alternative treatment options would be of great 

benefit to these patients (215, 216).     
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Appendix 

A. Fluorescent P4 – Methods and Materials  

Fluorescently labelled P4 peptide was purchased from Peptide Synthetics 

(UK). The peptide was synthesised with an additional lysine residue labelled 

with TAMRA added to the C-terminal.   

1. Peptide binding 

Mouse neutrophils were isolated from bone marrow and treated with 

fluorescently labelled P4 as described in Chapter V.B.2. Treated cells were 

centrifuged at 300 g to pellet cells, the supernatant was discarded and the 

cells incubated for 5 mins with either PBS or trypsin. Cells were pelleted 

gain, the supernatant discarded and resuspended in RPMI before analysing 

by flow cytometry.   

2. Confocal imaging 

Confocal studies used J774 macrophages as strongly adherent cells were 

needed, when attempted with neutrophils the cells were too loosely adhered 

to allow proper focusing of the microscope.  

Macrophages were seeded into 35 mm glass bottom tissue culture dishes at 

a density of 106 cells per dish. After allowing to adhere for 2 hours cells were 

treated with fluorescently labelled P4 for 20 minutes. Cells were washed with 

PBS 3 times before imaging with LMS 510 multiphoton microscope.  
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B. Results 

1. Fluorescent P4 – flow cytometry 

What happens to P4 once it comes into contact with cells has not previously 

been studied. The following experiments were designed to explore the fate of 

P4 after contact with cells. Cells were washed with trypsin to remove surface 

bound peptide from cell before flow cytometry to establish whether P4 is 

entering cells or remains bound to cell surfaces.  

The top pane of Figure 86 shows fluorescence levels in neutrophils treated 

with fluorescently labelled P4, which have been washed in either PBS or 

trypsin. The bottom pane shows fluorescence levels in neutrophils treated 

with non fluorescent P4 and neutrophils treated with fluorescent P4 then 

washed in trypsin. Washing with trypsin led to a significant reduction in the 

fluorescence of neutrophils treated with fluorescent P4 (p=0.008). However 

the levels of fluorescence in trypsin treated neutrophils was still significantly 

higher than those treated with non fluorescent P4 (p=0.0313). Levels of 

fluorescence in trypsin washed cells were 13% of the levels of neutrophils 

washed in PBS. This suggests that some of the fluorescence could not be 

removed by the trypsin and perhaps had been internalised with the cells.   
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Figure 86 Binding of fluorescent P4 to naïve mouse bone marrow neutrophils 
The bone marrow from 6 mice was collected and neutrophils isolated, neutrophils 
were treated with fluorescent P4, normal P4 or DEPC treated water for 1 hour. Cells 
were then washed in either trypsin or PBS and the fluorescence of cells measured 
by flow cytometry. Top: Fluorescent P4 -PBS washed vs. trypsin washed. Bottom: 
Cells treated with non fluorescent P4 vs. fluorescent P4 washed in trypsin.  
Analysed by paired t-test top p=0.008 and bottom p=0.03 
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2. Fluorescent P4 – confocal imaging  

Imaging of cells treated with fluorescent P4 was performed to further 

establish the fate of P4 when it comes into contact with cells.  

Figure 87 shows images of J774 macrophages treated for 20 mins with 

fluorescently labelled P4. Distinct spherical areas of fluorescent P4 (red) can 

be seen with the cells. 

 Figure 88 shows sequential Z-stacks at a distance of 1 μm between each 

image from A-D. The appearance of P4 (red) in sequential cuts through the 

cell suggests that the fluorescence is internalised within the cell.   
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Figure 87 Live confocal imaging of J774 macrophages treated with 
fluorescently labelled P4 
J774 macrophages were treated with P4 peptide for 20 mins, the cells were then 
washed with PBS before being imaged. P4 is shown in red.  

Figure 88 Live confocal imaging of J774 macrophages treated with 
fluorescently labelled P4 – Z stacks 
Live confocal image of J774 macrophage treated for 20 mins with fluorescently 
labelled P4 (red). Images A-D show sequential Z-stacks 1 μm apart.   

A B 

D C 
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C. Discussion 

Bone marrow neutrophils from naïve mice bound P4 peptide as evidenced by 

increases in fluorescence in cells treated with fluorescently P4, 87% of this 

fluorescence was removed by treatment with trypsin but levels of 

fluorescence were still significantly higher than in cells treated with non-

fluorescent P4. This suggests the around 13% of the peptide may be 

internalised by the cells.   

Images of J774 macrophages suggest that the P4 peptide is internalised by 

cells within 20 mins of treatment with P4 peptide. It is noted however that not 

all cells within frame showed uptake of P4 peptide.   
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