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Abstract

We study heterotic ground states in which supersymmetry is broken by coupling
the momentum and winding charges of two large extra dimensions to the R-
charges of the supersymmetry generators. The large dimensions give rise to
towers of heavy string thresholds that contribute to the running of the gauge
couplings. In the general case, these contributions are proportional to the volume
of the two large dimensions and invalidate the perturbative string expansion. The
problem is evaded if the susy breaking sectors arise as a spontaneously broken
phase of N = 4 → N = 2 → N = 0 supersymmetry, provided that N = 4
supersymmetry is restored on the boundary of the moduli space. We discuss
the mechanism in the case of Z2 × Z2 orbifolds, which requires that the twisted
sector that contains the large extra dimensions has no fixed points. We analyze
the full string partition function and show that the twisted sectors distribute
themselves in non-aligned N = 2 orbits, hence preserving the solution to the
string decompactification problem. Remarkably, we find that the contribution to
the vacuum energy from the N = 2→ N = 0 sectors is suppressed, and the only
substantial contribution arises from the breaking of the N = 4 sector to N = 0.
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1 Introduction

String theory is the leading contender for a unified theory of all known interactions [1], and

numerous string models exhibiting rich phenomenological properties have been constructed.

They utilize various compactification techniques, like for instance the Calabi-Yau compactifi-

cations [1], the orbifold compactifications [2], the 2d-fermionic constructions [3], the self-dual

lattice constructions [4], the asymmetric orbifold compactifications [5], the N = (2, 2) su-

perconformal constructions [6], as well as the N = (2, 0) constructions [3, 5].

However, all of the quasi-realistic string models that have been constructed to date,

namely with the correct standard model spectrum, possess an N = 1 spacetime supersym-

metry (susy), and the question of how this symmetry is broken is still an open problem. The

mechanisms that have been proposed to address this point are either perturbative [7–10] or

non-perturbative [11–14]. One can consider :

• A non-perturbative breaking via gaugino condensation [11], which up till now has to be

discussed at the level of the effective supergravity. Due to the non-perturbative nature

of the mechanism, one looses the predictability associated to the underlying string

model. One then has to resort to an effective parametrization of the susy breaking

parameters.

• Perturbative and/or non-perturbative flux compactifications, where internal fluxes are

introduced and break susy suitably. These models can be explored using the non-

perturbative S, T, U -dualities between the heterotic, Type IIA, Type IIB and orientifold

superstring vacua [13–15].

• An interesting example of geometrical fluxes is the one associated with a Stringy Scherk-

Schwarz (SSS) susy breaking compactification, which has the advantage to be imple-

mented at the perturbative string level [9]. Here, the symmetry breaking parameters

are obtained directly from the perturbative string theory.

In this last approach, the Scherk-Schwarz mechanism [16] defined in supergravity theories

is promoted at the superstring level [8–10]. Denoting the string scale as Ms = 1/
√
α′, the

mechanism entails that some of the compactified dimensions of characteristic size R/Ms

(measured in string frame) of the internal manifold are large, i.e. of the order of the inverse
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of the supersymmetry breaking scale. In Einstein frame, we have m
(E)
3
2

= O(MPlanck/R) =

O(1–10) TeV. This follows from the fact that supersymmetry is broken by coupling a Z2

freely acting shift in these compactified directions, with the R-charges of the supersymmetry

generators. These large dimensions give rise to tower of states, charged under low-energy

gauge groups, that populate the energy range between the susy breaking scale and the Planck

scale. They induce thresholds, whose analysis was recently pioneered in [17], that contribute

to the running of the gauge couplings, Yukawa couplings and soft susy breaking parameters.

However, a problem arises when the threshold corrections are proportional to the volume

of the large dimensions. When the β-function coefficient is negative, they drive the theory

to strong coupling at energies lower than the unification (or string) scale [18]. This problem

is known as the decompactification problem and some proposals exist on how to avoid it [9,

10, 15, 18]. A first idea supposes the existence of models without N = 2 sectors, so that

the threshold corrections are independent of the volume moduli of the internal theory [10].

Alternatively, one can suppose the thresholds of different spin states cancel among each other

at one-loop in the perturbative expansion [10]. However, the stability of this mechanism

against higher loop corrections has not been demonstrated. Moreover, no quasi-realistic

model realizing one of the above two proposals has been constructed so far.

In this paper, we examine a different possibility, which was introduced in Ref. [18] in the

context of N = 2 supersymmetric models. Due to the properties of the N = 4 → N = 2

spontaneous breaking via freely acting orbifolds, the behavior of thresholds as functions of

the moduli of the internal manifold is radically different from that of the generic orbifold

models, where the breaking from N = 4 to N = 2 is not spontaneous [18]. The reason for

this distinction is that N = 4 supersymmetry is restored on the boundary of the moduli

space. In this case, for large values of the relevant moduli, the thresholds vanish (up to

logarithmic corrections).

In order to extend the above idea to non-supersymmetric models, we first present in

Sect. 2 the class of string theories we consider, namely the heterotic Z2 × Z2 non-left/right-

symmetric orbifold models realized in “moduli-deformed fermionic constructions”, where

the N = 1 supersymmetry is further spontaneously broken to N = 0 by a SSS mechanism.

In Sect. 3, we provide some preliminary introduction on how the gauge coupling threshold

corrections in simpleN = 4 models spontaneously broken toN = 0 do not develop dangerous
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linear dependences on volume moduli. We turn back to the Z2 × Z2 models from Sect. 4

to the end of the article. For simplicity, we specialize to the case where only one of the Z2

actions is freely acting. The second together with the diagonal action of the two are supposed

to have fixed points. As we will see, this restriction forces the spontaneous breaking of the

supersymmetries to involve only one of the three internal 2-tori, for the decompactification

problem not to arise.

In Sect. 4, we evaluate the threshold corrections and effective potential generated at one-

loop in the sectors arising from the action of a single Z2, namely the N = 4 sector and the

so-called N = 2 1st complex plane. For the associated N = 4 → N = 2 susy breaking to

be spontaneous, the Z2 twist acts simultaneously as a shift along some of the two untwisted

internal directions. The SSS mechanism responsible of the final spontaneous susy breaking

to N = 0 is implemented by an additional Zshift
2 . The action of the latter on the above two

untwisted internal directions introduces sub-sectors we analyze carefully. We find that only

the N = 4 → N = 0 sub-sector (denoted as B), together with two sub-sectors (denoted as

C and D) preserving distinct N = 2 supersymmetries contribute substantially.

Sect. 5 discusses physically the formal results obtained in the sub-sectors B,C,D. Three

moduli-dependent mass scales M
(E)
B,C,D are introduced, the lowest of which being in the TeV

region in realistic models. These scales, which are different from the gravitini masses present

in each sector, control the contributions of the whole towers of Kaluza-Klein states that

contribute to the running effective gauge couplings. Some examples are also presented.

Sect. 6 completes the sector by sector analysis of the Z2×Z2 models, by considering the

additional contributions arising from the action of the second Z2, namely the 2nd and 3rd

complex planes, together with theN = 1 sector. Under our hypothesis (only the 1st Z2 action

is freely acting), the above two planes have fixed points and the SSS susy breaking to N = 0

must only involve the 1st plane moduli. This has two consequences. First, the gravitino

mass m 3
2

of the N = 1 → N = 0 model is of order 1/
√

ImT1, the inverse of the volume

of the internal 1st plane. Moreover, the 2nd plane, 3rd plane and N = 1 sectors preserve

exact supersymmetries at tree level and the threshold scales M
(E)
I associated to the complex

planes I = 2, 3 must be of the order of the Planck scale. We also collect our results in order

to write the expression of the effective coupling constants in the N = 1 → N = 0 models

we consider. Moreover, it is remarkable that the effective potential arises only from the

3



N = 4 → N = 0 sector B, the other sectors being either supersymmetric or exponentially

suppressed, when m
(E)
3
2

is lower than the Planck scale.

Finally, our conclusions can be found in Sect. 7, while Appendix A is a review of the

moduli-deformed fermionic construction.

2 The Z2 × Z2 models with spontaneously broken susy

The context in which we will propose a solution to the decompactification problem consists in

Z2×Z2 non-symmetric orbifolds obtained via the “moduli-deformed fermionic construction”

defined in Appendix A, and describing a spontaneous N = 1→ N = 0 susy breaking. As we

will see in Sect. 4, the relevant models rely on an underlying N = 4 structure. Specifically,

at least one of the two Z2’s must act freely, so that an N = 2 sector will have the desired

properties of spontaneously broken N = 4 → N = 2 [18]. It is however important to note

that this condition is incompatible with the existence of a chiral spectrum, as explained

in Sect. 6. The final implementation of the N = 1 → N = 0 spontaneous breaking is

done by coupling another Z2 freely acting shift in the large internal directions, with the

supersymmetric R-symmetry charges (e.g. the four SO(1, 9) helicity charges of the ten

dimensional mother theory). In the present section, our goal is to review the expression

of the gauge threshold corrections in heterotic string and to present the structure of the

partition function in the most general Z2 × Z2 non-symmetric orbifold models arising from

deformed fermionic construction.

For a gauge group factor Gi at Kac-Moody level ki, the running effective field theory

coupling constant of a string model is [15,18–21]

16π2

g2
i (µ)

= ki
16π2

g2
s

+ bi log
M2

s

µ2
+ ∆i , (2.1)

where bi is the β-function coefficient, gs is the string coupling and µ plays the role of renor-

malization scale in the effective field theory. In string calculations, a mass gap µ is introduced

to regularize the infrared [20]. The analytic expression of the threshold corrections takes the

form

∆i =

∫
F

d2τ

τ2

(
1

2

∑
a,b

Q[ab ](2v)

(
P2
i (2w̄)− ki

4πτ2

)
τ2 Z[ab ](2v, 2w̄)− bi

)∣∣∣∣∣
v=w̄=0

+ bi log
2 e1−γ

π
√

27
,

(2.2)
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where Z[ab ](2v, 2w̄) is the partition function for given spin structures (a, b) of the worldsheet

fermionic supercoordinates. (a, b) are integer modulo 2 : Spacetime bosons have a = 0,

while spacetime fermions have a = 1. As indicated by the presence of the variables v and w̄,

Z[ab ](2v, 2w̄) is actually a refined partition function, on which the helicity operator Q[ab ](2v)

acts on the left-moving part,

Q[ab ](2v) =
i

π
∂τ

(
log

θ[ab ](2v)

η

)
≡ 1

16π2

∂2
v(θ[

a
b ](2v))

θ[ab ](2v)
− i

π
∂τ log η . (2.3)

Our conventions for the θ[αβ ](v|τ)-functions can be found in Eq. (A.1) or in Appendix C of

Ref. [22] and it is understood that θ[αβ ](v) denotes θ[αβ ](v|τ), while θ[αβ ] stands for θ[αβ ](0|τ).

On the contrary, Pi(2w̄) is the charge operator of the gauge group factor Gi, thus acting on

the right-moving sector of the heterotic string as a derivative operator. Finally, no infrared

divergence occurs in the expression of ∆i, due to the relation

bi = lim
τ2→∞

1

2

∑
a,b

Q[ab ](2v)P2
i (2w̄) τ2 Z[ab ](2v, 2w̄)

∣∣
v=w̄=0

. (2.4)

In all orbifold models that preserve N = 1 supersymmetry, the N = 4 sector gives

vanishing contribution and only the N = 2 sectors contribute. Thus, in the Z2 × Z2 non-

symmetric case, one has

∆i =
3∑
I=1

∆i
I(TI , UI) , (2.5)

where the threshold corrections ∆i
I(TI , UI) come from the three different N = 2 planes. In

this expression, TI , UI , I = 1, 2, 3, are the moduli of the three Γ2,2-lattices associated to the

six internal dimensions. Notice that in all Z2×Z2 non-symmetric orbifold models, there are

no N = 1 sectors. The full β-function coefficient in these N = 1 theories is thus

bi =
3∑
I=1

biI , biI =
1

2

∑
a,b

Q[ab ]P2
i τ2 ZI [

a
b ]|v=w̄=0 , (2.6)

where ZI [
a
b ] is the contribution from the plane I, and the modular covariant helicity operator

Q[ab ] can be replaced by i
π
∂τ log θ[ab ], since the − i

π
∂τ log η contribution is proportional to zero,

due to the preservation of supersymmetry.

Our goal is to derive the analogous structure of the threshold corrections to the couplings

and to the effective potential in Z2 × Z2 non-symmetric orbifold models, where N = 1

supersymmetry is spontaneously broken “à la Stringy Scherk-Schwarz”. This is done in the
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context of the moduli-deformed fermionic construction, where the dependence in the moduli

TI , UI , I = 1, 2, 3, of the three Γ2,2-lattices are implemented. For this purpose, we need the

generic form of the associated partition functions, which is found by first following the rules

of the fermionic construction and then implementing the moduli deformations, as explained

in Appendix A. We obtain in this way not only the generic form of the partition function in

symmetric Z2 × Z2 orbifolds, but also in non-left/right-symmetric ones.

Limiting ourselves to the continuous deformations parameterized by TI , UI , but including

however all possible 1
2
-discrete Wilson lines, the generic modular invariant partition function

turns out to be

Z(2v, 2w̄) =
1

τ2(ηη̄)2

1

2

∑
a,b

1

4

∑
HI ,GI

1

2N

∑
hiI ,ĥ

i
I ,g

i
I ,ĝ

i
I

eiπ(a+b+ab) θ[
a
b ](2v)

η

θ[a+H2
b+G2

]

η

θ[a+H1
b+G1

]

η

θ[a+H3
b+G3

]

η

× S
[
a, hiI , ĥ

i
I , HI

b, giI , ĝ
i
I , GI

]
Z2,2

[
hi1, ĥ

i
1

gi1, ĝ
i
1

∣∣∣H2
G2

]
Z2,2

[
hi2, ĥ

i
2

gi2, ĝ
i
2

∣∣∣H1
G1

]
Z2,2

[
hi3, ĥ

i
3

gi3, ĝ
i
3

∣∣∣H3
G3

]
Z0,16

[
hiI , ĥ

i
I , HI

giI , ĝ
i
I , GI

]
(2w̄) ,

(2.7)

in terms of which the effective potential can be expressed as

Veff = − 1

(2π)4

∫
F

d2τ

2τ 2
2

Z|v=w̄=0 . (2.8)

In Eq. (2.7), the variable w̄ refers to a gauge group factor realized by the Z0,16 block but

may have been implemented in one of the Z2,2’s (see the following). Our notations are as

follows :

• (H1, G1) and (H2, G2) are integer modulo 2, associated to the Z2 × Z2 action, whose

generators twist the internal coordinates X6,7,8,9 and X4,5,8,9, respectively. We denote

(H3, G3) ≡ −(H1 +H2, G1 +G2), which is associated to the diagonal action. It is then

natural to separate the contributions of the partition function in the following sectors :

- The N = 4 sector, which corresponds to (H1, G1) = (H2, G2) = (H3, G3) = (0, 0).

- Three N = 2 twisted sectors, i.e. the so-called complex planes :

Complex plane I = 1 : (H1, G1) = −(H3, G3) 6= (0, 0) with (H2, G2) = (0, 0).

Complex plane I = 2 : (H2, G2) = −(H3, G3) 6= (0, 0) with (H1, G1) = (0, 0).

Complex plane I = 3 : (H1, G1) = −(H2, G2) 6= (0, 0) with (H3, G3) = (0, 0).

- The N = 1 twisted sector : (H1, G1) 6= (0, 0), (H2, G2) 6= (0, 0), (H3, G3) 6= (0, 0).
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As we will explain later in more details, N = 4, 2, 1 denotes in the above list the

number of fermionic zero modes present in each sector, when no spontaneous breaking

of supersymmetry to N = 0 is implemented. Indeed, the (extended) supersymmetry of

each sector may or may not be in a spontaneously broken phase, N = 4, 2, 1→ N = 0,

depending on the choice of S introduced below.

• (hiI , g
i
I), (ĥiI , ĝ

i
I), i = 1, 2, I = 1, 2, 3, are integer modulo 2. (hiI , g

i
I) are shifts and (ĥiI , ĝ

i
I)

are “dual shifts” of the three untwisted Γ2,2-lattices, which are given as sums over two

momenta mi
I and two winding numbers niI associated to each complex plane I (see

Appendix A).

• The contribution of the six internal coordinates (shifted by (hiI , g
i
I), dual shifted by (ĥiI , ĝ

i
I)

and twisted by (HI , GI)), is given in the second line of Eq. (2.7), in terms of the (2, 2)-

conformal blocks Z2,2

[
hiI , ĥ

i
I

giI , ĝ
i
I

∣∣∣HIGI ], I = 1, 2, 3.

• The fact that the shifts (hiI , g
i
I), the dual shifts (ĥiI , ĝ

i
I) and the twists (HI , GI) are not

in general independent leads to an effective normalization factor 1/2N in the partition

function, with N the number of independent pairs (hiI , g
i
I) and (ĥiI , ĝ

i
I).

• S is a phase that can implement the breaking of N = 1 spacetime supersymmetry to

N = 0. When S
[
a, hiI , ĥ

i
I , HI

b, giI , ĝ
i
I , GI

]
≡ 1, the theory is N = 1 supersymmetric. The latter

can be broken spontaneously “à la Stringy Scherk-Schwarz” once some of the 10-

dimensional helicity characters (R-parity charges)

(ab ) ,
(
a+H1
b+G1

)
,
(
a+H2
b+G2

)
,
(
a+H3
b+G3

)
(2.9)

are coupled with the lattice charges, i.e. with some shifts (hiI , g
i
I) and/or dual shifts

(ĥiI , ĝ
i
I).

• Finally, the contribution of the 32 extra right-moving worldsheet fermions is denoted

Z0,16

[
hiI , ĥ

i
I , HI

giI , ĝ
i
I , GI

]
. In the absence of shifts, dual shifts and twists, Z0,16 is the partition

function associated to the E8 × E8 or SO(32) root lattice. When shifts, dual shifts

or twists are non-trivial, the initial gauge group is broken to a product of lower di-

mensional subgroups (modulo some stringy extended symmetry points). Therefore,

the role of the non-trivial (dual) shifts and twists is to generate non-zero discrete and

continuous Wilson lines. According to the fermionic construction rules, the choice of
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(dual) shifts and twists in realistic models is such that the right-moving gauge group

contains an SO(10) factor, which is further broken to a subgroup that includes the de-

sired standard model gauge group, coupled to acceptable particle content, with three

generations (see for instance Ref. [23]).

If no particular attention is devoted to the choice of shifts (hiI , g
i
I) and dual shifts (ĥiI , ĝ

i
I),

when supersymmetry is broken to N = 0 “à la Stringy Scherk-Schwarz”, the resulting N = 0

model may suffer from the so-called decompactification problem. The reason for this is

related to the supersymmetry breaking scale, which is fixed by the inverse of the characteristic

size R of the internal compactified dimensions involved in the breaking, m 3
2

= O(Ms/R).

Indeed, in order to have a small supersymmetry breaking scale compared to the string

scale, m 3
2

= 10−14Ms, R must be enormous. Consequently, when the threshold corrections

due to the tower of Kaluza-Klein states are proportional to the volume of the large extra

dimensions and dressed with a negative β-function coefficient, the perturbative expansion is

invalidated [15,18]. However, this is not always the case. The next section is devoted to the

presentation of the simplest example, where such a volume term is not generated.

3 The N = 4→ N = 0 sector

The partition function (2.7) can be separated in sectors according to the Z2 × Z2 action.

In this section, we focus on the N = 4 sector (H1, G1) = (H2, G2) = (0, 0), which can be

spontaneously broken to N = 0, when the SSS phase S is non-trivial. In this case, the

induced contribution to the thresholds yields a logarithmic dependence on the volume of

the internal directions involved in the susy breaking. Actually, the threshold corrections of

the N = 4 → N = 0 sector appearing in the Z2 × Z2 non-symmetric orbifold models are

smaller by a factor 4, compared to those of the full “mother” N = 4 → N = 0 theory.

As a first step, we compute here the threshold corrections in an N = 4 → N = 0 theory

and will remind that in the final result a factor of 1
4

arising from a Z2 × Z2 projection must

be included. We will present in detail the simple case, where a single factorized circle is

involved in the process of supersymmetry breaking. This example can be considered as an

introduction, since Sects 4–6 will present the analysis valid in Z2 × Z2 models obtained by

moduli-deformed fermionic constructions and where only the Z2 action parameterized by
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(H1, G1) is freely acting.

In an N = 4 model, two possibilities may arise once a phase S is introduced. If S

is independent of (a, b), then the N = 4 supersymmetry is unbroken. In this case, the

contribution of the worldsheet fermions to the partition function yields

1

2

∑
a,b

(−)a+b+ab θ[ab ](2v) θ[ab ]
3 = θ[11]4(v) = O(v4) , (3.1)

where we use the Jacobi θ-function identity and the relation θ[11](v|τ) = 2πη3(τ) v +O(v3).

Therefore, the partition function (and effective potential) vanish. Similarly, the helicity

insertion, which defines the corrections to the coupling constants, gives

1

2

∑
a,b

(−)a+b+abQ[ab ](2v) θ[ab ](2v) θ[ab ]
3 =

1

16π2
∂2
v

(
θ[11]4(v)

)
= O(v2) , (3.2)

which shows that the gauge coupling thresholds vanish as well.

The second possibility is when the phase S couples non-trivially the helicity charges (a, b),

with the shifts and/or dual shifts of the internal lattice. This will break spontaneously the

N = 4 supersymmetry to N = 0. In order to simplify our discussion in this section, we

restrict ourselves to the case where only one S1 cycle is involved in the susy breaking, and

is very large. In this direction, we also consider shifts only, (h1
1, g

1
1) we denote as (h, g), and

take

S = eiπ(ah+bg+hg) . (3.3)

Moreover, we specialize to the case where the S1 shifted lattice is factorized,

Γ6,6+16[hg ] = Γ1,1[hg ](R1) Γ5,21[hg ] , (3.4)

where Γ5,21[hg ] is a shifted lattice associated to the remaining 5 internal coordinates and the

32 right-moving worldsheet fermions of the heterotic string.1 For instance, the dependence

of the Γ5,21-lattice on (h, g) may induce a Higgs mechanism by acting on the right-moving

worldsheet degrees of freedom. In any case, due to our assumptions, this dependence must

not imply a participation of the Γ5,21 moduli in the super-Higgs mechanism, which would

otherwise induce a very large gravitino mass. The S1 shifted lattice, Γ1,1[hg ], admits two

representations, Hamiltonian or Lagrangian, which are related to one another by Poisson

1In Z2 × Z2 models, Γ5,21 is further factorized as in Eq. (2.7).
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resummation on the momentum quantum number m [15, 18] :

Γ1,1[hg ](R1) =
∑
m,n

(−)mg q
1
2
p2L q̄

1
2
p2R , where pL

R
=

1√
2

[
m

R1

±
(
n+

h

2

)
R1

]
=

R1√
τ2

∑
n,m̃

e
−πR

2
1

τ2
|(m̃+ g

2
)+(n+h

2
)τ|2 . (3.5)

In fact, restricting the internal lattice to the above factorized form will not affect the asymp-

totic behavior of the threshold corrections for large R1.

Because of the non-trivial correlation of the helicity and lattice charges through the SSS

susy breaking phase, both the partition function and the coupling constant corrections are

not zero. Indeed, in the partition function, the worldsheet fermions and SSS phase give

1

2

∑
a,b

(−)a+b+ab eiπ(ag+bh+hg)θ[ab ]
4 =

1

2

∑
A,B

eiπ(A+B+AB+h+g)θ
[
A+h
B+g

]4
= eiπ(h+g+1)θ

[
1−h
1−g
]4
, (3.6)

which contribute to the effective potential when (h, g) 6= (0, 0) [24]. Moreover, using the

above equation, the integrand involved in the gauge threshold corrections becomes

1

2

∑
a,b

Q[ab ]

(
P2
i −

ki

4πτ2

)
τ2 Z[ab ]

∣∣∣∣
v=w̄=0

=
1

2

∑
h,g

eiπ(h+g+1) i

π

(
1

4
∂τθ[

1−h
1−g ]

4 − (∂τ log η)θ[1−h1−g ]
4

)
×

1

η12η̄24
Γ1,1[hg ](R1)

(
P2
i (2w̄)− ki

4πτ2

)
Γ5,21[hg ](2w̄)

∣∣∣
w̄=0

.

(3.7)

The second part of the helicity operator Q[ab ] proportional to ∂τ log η gives non-trivial con-

tribution, when supersymmetry is broken to N = 0 i.e. when (h, g) 6= (0, 0).

To perform the integral over the fundamental domain, one can use the unfolding method

introduced in Ref. [25] and used in [15, 18, 19, 26]. Defining N = 2n + h and M̃ = 2m̃ + g,

when R1 is sufficiently large to guaranty the absolute convergences of the series, one can

map the integral over the fundamental domain F into an integral over F restricted to the

pair (N, M̃) = (0, 0), plus an integral over the “upper half strip” (−1
2
< τ2 <

1
2
, τ2 > 0)

restricted to N = 0, M̃ 6= 0. In the strip representation, the winding contributions to the

fundamental domain integral are mapped to the momentum contributions in the ultraviolet

region of the strip, τ2 < 1. In our case, all integrands with N = 0 (i.e. n = h = 0) and

M̃ even (i.e. g = 0) preserve N = 4 and therefore vanish, as shown in Eq. (3.2). This is

fundamental, since the key point to not have a contribution to the thresholds proportional to

10



a large volume (R1 in the present case) is that the integrand with (N, M̃) = (0, 0) vanishes.

Thus, we are left with an integral over the strip, with (h, g) = (0, 1),

∆i = lim
µ→0

[ ∫
||

d2τ

τ2

1

2

i

π

(
1

4

∂τθ[
1
0]4

η12
− (∂τ log η)

θ[10]4

η12

)
R1√
τ2

∑
m̃

e
−πR

2
1

4τ2
(2m̃+1)2−πµ2τ2 ×(

P2
i (2w̄)− ki

4πτ2

)
Γ5,21[01](2w̄)

η̄24
− bi

∫
F

d2τ

τ2

e−πµ
2τ2

]∣∣∣∣
w̄=0

+ bi ln
2 e1−γ

π
√

27
. (3.8)

In Eq. (3.8), we introduced a small mass µ in order to regulate the infrared divergences

in the large τ2 limit [20]. Other ways to regularize the infrared regime have been proposed

recently [26] and have the advantage of preserving in a very elegant way both worldsheet and

target space dualities. Our results, however, do not depend of the regularization scheme.

The would be tachyonic level appearing in the right-moving sector is projected out by the

level matching condition induced via τ1-integration over the strip. In the large R1 limit, the

massive string states give exponentially suppressed contributions to the integral over τ2 and

can be consistently neglected. The dominant contribution comes from the massless level and

even if supersymmetry is broken, there are no-tachyons arising from the left-moving sector.

More specifically, we have(
i

π
∂τ log θ[10]− i

π
∂τ log η

)
θ[10]4

η12
=

(
−1

4
+

1

12

)
16 +O(q) = −8

3
+O(q) , (3.9)

which is an expected result, since the constant term in the above q-expansion must be

proportional to the β-function contribution of the bosons of the N = 4 vector multiplets.

On the contrary, the gauge group contribution comes from the P2
i charge operator, which

acts on the right-moving sector. Actually, in our conventions, the β-function contributions

of massless degrees of freedom are :

b(gauge boson) = −11

3
C(R) , b(real scalar) =

1

6
C(R) , b(Majorana fermion) =

2

3
C(R) ,

(3.10)

where C(R)δab = Tr(T aT b) is the group factor coefficient associated to the generators T a in

the representation R of Gi. In an N = 4 vector multiplet, R is the adjoint representation,

and there are 6 real scalars and 4 Majorana gauginos per gauge boson, leading to b(bosons) =

−8
3
C(R) and b(fermions) = 8

3
C(R). When supersymmetry is unbroken, the N = 4 β-

functions vanish. However, in our case, supersymmetry is spontaneously broken via the

SSS mechanism. The gravitinos and gauginos are getting masses that can be read in the

11



Hamiltonian form of the Γ1,1[01]-lattice in Eq. (3.5) and are proportional to the inverse of the

internal radius,

m2
3
2

= m2
1
2

=
M2

s

R2
1

, (3.11)

while the gauge bosons and scalars remain massless,

m2
1 = m2

0 = 0 . (3.12)

Thus, the logarithmic behavior of the β-function is fully controlled by the massless bosons,

while the main corrections in the thresholds come from the tower of states organized by the

shifted Γ1,1[01](R1)-lattice.

Neglecting in Eq. (3.8) the exponentially suppressed contributions for large radius, ∆i

gets simplified enormously,

∆i = bi∆− kiY , (3.13)

where bi∆ comes from the P2
i action and kiY is the universal contribution arising from its

modular covariant term ki

4πτ2
. The former is

∆ = lim
µ→0

[
R1

∑
m̃

∫ +∞

0

dτ2

τ
3/2
2

e
−πR

2
1

4τ2
(2m̃+1)2

e−πτ2µ
2 −

∫ +∞

1

dτ2

τ2

e−πτ2µ
2

]
− lnπ − γ + · · ·

= lim
µ→0

[
2
∑
m̃

1

|2m̃+ 1|
e−πR1|2m̃+1|µ − Γ(0, πµ2)

]
− lnπ − γ + · · · , (3.14)

where the dots stand for O(e−cR1) corrections, with c positive and of the order of the lowest

mass M0 of the massive spectrum divided by Ms.
2 In the above expression, Γ(s, x) is the

upper incomplete Γ-function. Using the fact that Γ(0, x) = − ln(x) − γ +O(x), one finally

finds

∆ = lim
µ→0

[
2 ln

(
1 + e−πR1µ

1− e−πR1µ

)
+ lnµ2

]
+ · · · = − log

(
π2

4
R2

1

)
+ · · · . (3.15)

For the determination of Y , the infrared regulator µ is not needed since the integral is

infrared convergent,

Y =
C0

4π

∑
m̃

∫ ∞
0

dτ2

τ
5/2
2

R1e
−πR

2
1

4τ2
(2m̃+1)2

+ · · · = 7ζ(3)

4π2

C0

R2
1

+ · · · . (3.16)

In (3.16), C0 is the product of the contribution of the helicity operator Q[ab ] acting on the

left-moving sector, −8
3
, with a coefficient 2 + dG−nF associated to the right-moving sector,

C0 =
1

2

∑
a,b

Q[ab ] τ2Z[ab ]
∣∣∣
q0q̄0,v=0

= −8

3
(2 + dG − nF) . (3.17)

2M0 depends on the moduli appearing in the Γ5,21[hg ]-lattice and is at most equal to Ms.

12



dG is the number of vector bosons in the N = 4 vector multiplets of the parent N = 4

theory that remain massless after spontaneous breaking to N = 0. In other words, dG is

the dimension of the gauge group. Similarly, 4nF is the number of Majorana fermions in the

N = 4 vector multiplets of the parent N = 4 theory that remain massless after spontaneous

breaking to N = 0. When the shifts (h, g) are not acting on the right-moving sector, then

nF = 0. However, in the generic case, nF is non-trivial, as is the case in the examples

presented in Sects 5.2 and 5.3. Therefore, the corrections to the coupling constants in this

N = 4→ N = 0 model are

∆i = bi∆− kiY = −bi log

(
π2

4
R2

1

)
+ ki

14ζ(3)

3π2

2 + dG − nF

R2
1

+O
(
e−cR1

)
. (3.18)

The dangerous volume dependence (linear term in R1) is absent, and the reason for this

is the restoration of the N = 4 supersymmetry in the R1 → ∞ limit. Since the universal

contribution Y scales like m2
3
2

/M2
s , it is a tiny correction to the logarithmic term and may

be neglected.

As said at the beginning of this section, the contribution of the N = 4→ N = 0 sector

in a Z2×Z2 model is obtained from Eq. (3.18) by changing bi → bi/4 and C0 → C0/4, where

the β-function bi and C0 refer to the N = 4→ N = 0 parent theory. However, the presence

of N = 2 sectors requires more attention in the choice of susy breaking (dual) shifts. For

instance, an N = 2→ N = 0 model containing a sector of the form

S1

Zshift
2

× T 4

Z2

, (3.19)

where the circle of radius R1 is shifted as before to break susy spontaneously to N = 0, will

contain a contribution to the thresholds arising from the integration over F of the lattice

term with (N, M̃) = (0, 0), which is proportional to the large radius R1. This contribution

arises from an N = 2 preserving sector, which therefore does not vanish as is the case when

N = 4 is preserved. On the contrary, an N = 2→ N = 0 model based on an internal space

containing a factor
S1/Zshift

2 × T 3

Z2

(3.20)

is safe. The reason for this is that the only R1-dependent contribution to the partition

function arises from the untwisted sector, which realizes an N = 4 → N = 0 spontaneous

breaking. Unfortunately, there is no model based on a single large S1 shifted direction
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that realizes a SSS spontaneous breaking of N = 1 supersymmetry to N = 0 and solves

the decompactification problem. Therefore, we proceed in the next section with the more

sophisticated case where two internal shifted directions involved in the breaking are large.

4 N = 4 and 1st plane contributions : (H2, G2) = (0, 0)

From now on, we come back to Z2 × Z2 models defined in Eq. (2.7). In this section and the

following, we develop a sector by sector analysis of the contributions to the gauge thresh-

old corrections and effective potential. The susy breaking is defined by the SSS phase

S
[
a, hiI , ĥ

i
I , HI

b, giI , ĝ
i
I , GI

]
that correlates non-trivially the (dual) shifts and the twists charges with the

helicity and R-symmetry charges. However, S being sector-dependent, it can be trivial

(S = 1) in some sectors, thus preserving supersymmetry, and non-trivial (S 6= 1) in some

others, thus inducing a spontaneous breaking of supersymmetry.

In the present section, we focus on the N = 4 sector (H2, G2) = (H1, G1) = (0, 0),

together with the 1st N = 2 plane (H2, G2) = (0, 0), (H1, G1) 6= (0, 0). We derive here the

formal results, and will comment on them physically in Sect. 5. Both sectors contain sub-

sectors, which preserve or break supersymmetry. The contribution of the untwisted internal

coordinates ((H2, G2) = (0, 0)) in the partition function (2.7) involves shifts (hi1, g
i
1), and we

restrict ourselves to the case where no dual shifts are introduced, (ĥi1, ĝ
i
1) ≡ (0, 0). In this

class of models, we have

Z2,2

[
hi1
gi1

∣∣∣00]=
Γ2,2

[
h11, h

2
1

g11 , g
2
1

]
(ηη̄)2

, (4.1)

which depends on the T1, U1 moduli implemented in the moduli-deformed fermionic model,

as explained in Appendix A. The shifted lattice dependence on T1, U1 (denoted T, U in this

section and Sect. 5) is

Γ2,2

[
h1, h2

g1, g2

]
=
∑
mi,ni

(−)m1g1+m2g2 e
2iπτ

[
m1

(
n1+h1

2

)
+m2

(
n2+h2

2

)]
×

e
− πτ2

ImT ImU

∣∣∣T(n1+h1

2

)
+TU

(
n2+h2

2

)
−Um1+m2

∣∣∣2

=

√
detG

τ2

∑
m̃i,ni

e
− π
τ2

[
m̃i+ gi

2
+
(
ni+hi

2

)
τ
]

(Gij+Bij)
[
m̃j+ gj

2
+
(
nj+hj

2

)
τ̄
]
, (4.2)

where the dictionary between T, U and the internal metric and antisymmetric tensor in the
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two associated compact directions is

Gij =
ImT

ImU

(
1 ReU

ReU |U |2
)
, Bij = ReT

(
0 1
−1 0

)
. (4.3)

As explained before, our solution to the decompactification problem requires the breaking

of N = 4 → N = 2 to be spontaneous. This is implemented by imposing the twist action

labeled by (H1, G1) ≡ (H,G) to act simultaneously as a shift in the above Γ2,2-lattice. As in

the previous section, independent charges (h, g) that are integer modulo 2 must be used to

define the N = 2 → N = 0 SSS susy breaking phase. In the sectors we consider here, two

options parameterized by ζ ′ = 0 or 1 can be chosen for the phase S :

In the sectors (H2, G2) = (0, 0), S = eiπ[ag+bh+hg+ζ′(aG+bH+HG)] . (4.4)

Anticipating the arguments of Sects 5 and 6, when neither of the N = 2 sectors associated

to the 2nd and 3rd planes are realized as a spontaneous breaking of N = 4 supersymmetry (a

fact that we suppose from now on), the moduli TI , UI involved in these planes must not be

too far from 1, for the decompactification problem no to occur. In this case, (h, g) must be

associated to the Γ2,2-lattice of the 1st internal 2-torus, for the gravitino masses to be low.

Therefore, both shifts (hi1, g
i
1), i = 1, 2, are involved and three classes of two models (labeled

by ζ = 0 or 1) can be analyzed3 :

a) Γ2,2

[
h+ζH,H
g+ζG, G

]
i.e. (h1

1, g
1
1) ≡ (h, g) + ζ(H,G), (h2

1, g
2
1) ≡ (H,G)

b) Γ2,2

[
H,h+ζH
G, g+ζG

]
i.e. (h1

1, g
1
1) ≡ (H,G), (h2

1, g
2
1) ≡ (h, g) + ζ(H,G)

c) Γ2,2

[
h+ζH, h+(1−ζ)H
g+ζG, g+(1−ζ)G

]
i.e. (h1

1, g
1
1) ≡ (h, g) + ζ(H,G), (h2

1, g
2
1) ≡ (h, g) + (1− ζ)(H,G) .

(4.5)

In the absence of SSS phase and Zshift
2 action parameterized by (h, g), the models would

describe the partial spontaneous breaking of supersymmetry from N = 4 → N = 2, which

was considered in [18]. In this reference, it was shown that the pathological volume behaviors

of the gauge couplings are absent, thanks to the restoration of N = 4 supersymmetry in the

large volume limit. In the presence of non-trivial SSS phase, the Zshift
2 action parameterized

by (h, g) breaks further the supersymmetry to N = 0. In this case, the decompactification

3The a priori remaining cases Γ2,2

[
h+H, 0
g+G, 0

]
, Γ2,2

[
0, h+H
0, g+G

]
and Γ2,2

[
h+H,h+H
g+G, g+G

]
lead to a volume dependence

in the gauge thresholds, arising from the sub-sector (h, g) = (H,G) 6= (0, 0), which preserves N = 2
supersymmetry.
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problem becomes more involved, due to extra contributions coming from the sectors with

non-trivial charges (h, g).

The separation of the (H2, G2) = (0, 0) sector of the partition function (2.7) in sub-sectors

is more transparent once we perform the summation over the helicity charges (a, b), keeping

the non-trivial characters (h, g) and (H,G) fixed4 :

1

2
Z
[
h,H
g, G

]
(2v, 2w̄) =

1

4η8

∑
a,b

eiπ(a+b+ab) eiπ[ag+bh+hg+ζ′(aG+bH+HG)]×

θ[ab ](2v) θ[ab ] θ[
a+H
b+G ] θ[a−Hb−G ] Γ2,2

[
h11, h

2
1

g11 , g
2
1

] 1

η̄4
Z4,20

[
h,H
g, G

]
(2w̄)

=
1

2η8
eiπ[hg+G(1+h+H)] θ[1−h1−g ]

2(v) θ[1−h+H
1−g+G ]2(v) Γ2,2

[
h11, h

2
1

g11 , g
2
1

] 1

η̄4
Z4,20

[
h,H
g, G

]
(2w̄).

(4.6)

The above result is obtained by redefining a = A−h−ζ ′H, b = B−g−ζ ′G and summing over

A,B equal to 0 or 1. Note that ζ ′ has disappeared, which shows that the two SSS phases S in

Eq. (4.4) are actually equivalent, the different sectors of the theory being simply reshuffled.

In Eq. (4.6), the conformal block Z4,20

[
h,H
g, G

]
for (H,G) = (0, 0) involves an untwisted lattice

Γ4,20[hg ], which depends on the moduli TI , UI , I = 2, 3. As said before, the latter are close

to 1 and therefore must not participate in the super-Higgs mechanism that breaks susy to

N = 0. Otherwise, a gravitino mass close to MPlanck would be generated in the sub-sector

(h, g) 6= (0, 0), (H,G) = (0, 0) i.e. far above the acceptable 1–10 TeV region. However,

the dependence of the Γ4,20-lattice on (h, g) may induce a Higgs mechanism arising from an

action on the right-moving worldsheet degrees of freedom. Several examples will be given in

Sect. 5.

In Eq. (4.6), the number of odd θ-functions θ[1+X
1+Y ](v), with (X, Y ) = (0, 0), counts the

preserved supersymmetries, according to the number of fermionic zero modes in each sub-

sector. In the following, we use this number of preserved supersymmetries to classify the

sub-sectors and derive the effective potential and gauge couplings corrections in each case.

4The factor 1
2 in the l.h.s. refers to the Zshift

2 projection obtained once the sum over h and g is performed.
The analogous 1

4 factor associated to the Z2 × Z2 twist (or 1
2 for a single Z2 twist) will be included later.
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4.1 A : The exact N = 4 sector (h, g) = (0, 0), (H,G) = (0, 0)

In this sector we denote A, N = 4 supersymmetry is unbroken. Therefore, the contributions

VeffA and ∆i
A to the partition function (or effective potential) and to the gauge couplings

vanish. This is due to the fact that the partition function (4.6) is in this case proportional

to θ[11]4(v) = O(v4) and the β-functions are of order O(v2),

∆i
A = 0 , VeffA = 0 . (4.7)

The four gravitini in this sector are massless,

mi
3
2

= 0 , i = 1, 2, 3, 4 . (4.8)

4.2 B : TheN = 4→ N = 0 sector (h, g) 6= (0, 0), (H,G) = (0, 0)

In this sector we denote B, all arguments of the θ-functions in Eq. (4.6) are identical but

not equal to [11]. The partition function being proportional to θ[1+h
1+g ]

4(v), both corrections

VeffB and ∆i
B to the effective potential and to the β-functions are non-vanishing. The four

gravitini have equal non-zero masses, which can be read from the Hamiltonian form of the

lattice (4.2) (the first equality),5,6

mi
3
2
≡mB =

|αBU − sign(ReU)βB|√
ImT ImU

Ms =

√
(αB ImU)2 + (αB|ReU | − βB)2

√
ImT ImU

Ms , i = 1, 2, 3, 4,

(4.9)

where we define

(αB, βB) =


(1, 0) in case a)
(0, 1) in case b)
(1, 1) in case c) .

(4.10)

In Sect. 3, we evaluated the coupling constant correction in case a), when only one radius

denoted by R1 was very large. In this regime, the contribution of the remaining Γ5,21-lattice

was trivial. However, there are extra contributions when both compact directions in the

1st plane are large. In the following, utilizing the techniques of Ref. [18], we compute the

thresholds in cases a), b) and c) in the regime where the complex moduli T and U satisfy

ImT � 1, U finite, which guaranties mB �Ms.

5We display the masses for Re (U) in the range (−1, 1].
6We define sign(0) = +1.
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Thanks to the Lagrangian expression of the lattice (4.2) (the second equality), the sector

h = 1 is exponentially suppressed. Keeping explicitly the sector (h, g) = (0, 1), the threshold

corrections in sector B are

∆i
B =

∫
F

d2τ

τ2

{
1

η4η̄4

i

4π
∂τ

(
θ[10]4

η4

)
1

2
Γ2,2

[
0 , 0
αB , βB

](
P2
i (2w̄)− ki

4πτ2

)
Z4,20

[
0, 0
1, 0

]
(2w̄)− biB

}∣∣∣∣
w̄=0

+ biB log
2e1−γ

π
√

27
+ · · · , (4.11)

where the coefficient biB is introduced to cancel the infrared divergence and the dots stand

for exponentially small contributions for large ImT and finite U . Similarly, the effective

potential based on the partition function (4.6) with (H,G) = (0, 0) is

VeffB = − 1

(2π)4

∫
F

d2τ

2τ 3
2

θ[10]4

η8η̄4

1

2
Γ2,2

[
0 , 0
αB , βB

]
Z4,20[0, 01, 0]

∣∣
w̄=0

+ · · · . (4.12)

In the above two expressions, the dressing with the Lagrangian form of the Γ2,2-lattice implies

the non-level matched modes as well as the massive (level-matched) physical states to yield

exponentially suppressed contributions. As a result, the universal form of the thresholds in

sector B,

∆i
B = biB∆B − kiYB , (4.13)

as well as the effective potential take the simple forms obtained from the massless states and

associated Kaluza-Klein modes :

∆B =

∫
F

d2τ

τ2

(
Γ2,2

[
0 , 0
αB , βB

]
− 1
)

+ log
2e1−γ

π
√

27
+ · · · ,

YB =
CB
8π

∫
F

d2τ

τ 2
2

Γ2,2

[
0 , 0
αB , βB

]
+ · · · ,

VeffB = − CV
2(2π)4

∫
F

d2τ

τ 3
2

Γ2,2

[
0 , 0
αB , βB

]
+ · · · , (4.14)

where CB = −8
3
(2 + dGB − nFB) and CV = 8(2 + dGB − nFB). In these coefficients, dGB is

the number of vector bosons in the N = 4 vector multiplets of the parent N = 4 theory

that remain massless after spontaneous breaking to N = 0, i.e. the dimension of the gauge

group realized in the sector B. Similarly, 4nF is the number of Majorana fermions in the

N = 4 vector multiplets of the parent N = 4 theory that remain massless after spontaneous

breaking to N = 0. In other words, CV is the index that counts the number of massless
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bosonic degrees of freedom minus the number of massless fermionic degrees of freedom in

the N = 0 sector B,

CV = 8(2 + dGB − nFB) ≡ massless Bosons−massless Fermions in the sector B . (4.15)

A simple way to evaluate ∆B is based on the relation between the shifted lattices

Γ2,2

[
0 , 0
αB , βB

]
and the unshifted one, Γ2,2(T, U). For the cases a), b) and c), we use respectively

Γ2,2

[
0, 0
1, 0

]
(T, U) =

∑
h,g

′
Γ2,2

[
h, 0
g, 0

]
(T, U) + · · · = 2 Γ2,2

(T
2
, 2U

)
− Γ2,2(T, U) + · · · ,

Γ2,2

[
0, 0
0, 1

]
(T, U) =

∑
h,g

′
Γ2,2

[
0, h
0, g

]
(T, U) + · · · = 2 Γ2,2

(T
2
,
U

2

)
− Γ2,2(T, U) + · · · ,

Γ2,2

[
0, 0
1, 1

]
(T, U) =

∑
h,g

′
Γ2,2

[
h, h
g, g

]
(T, U) + · · · = 2 Γ2,2

(T
2
,

1 + U

1− U

)
− Γ2,2(T, U) + · · · , (4.16)

where the primes indicate the sums are over (h, g) 6= (0, 0). Using the well know integral [19,

27] ∫
F

d2τ

τ2

(Γ2,2(T, U)− 1) + log
2e1−γ

π
√

27
= − log

(
4π2 |η(T )|4 |η(U)|4 ImT ImU

)
, (4.17)

one obtains

∆B = − log

(
π2

4

∣∣θ[01](T )
∣∣4 ∣∣θ[1−βB1−αB

]
(U)
∣∣4 ImT ImU

)
+O

(
e−c

√
ImT
)
, (4.18)

where c is positive and of the order of the lowest mass of the massive spectrum divided by

Ms. This lowest non-vanishing mass depends on the modulus U , together with the moduli of

the Γ4,20[hg ]-lattice present in the sector B and introduced below Eq. (4.6). Supposing that

the order of magnitude of U is not too far from 1, a fact that will be justified in Sect. 5, and

given the fact that the Γ4,20[hg ]-lattice moduli are also not too far from 1, we have c = O(1).

Moreover, since

log
∣∣θ[01](T )

∣∣4 = O
(
e−π ImT

)
, (4.19)

this contribution can be omitted in Eq. (4.18). Thus, the ImT volume dependence of ∆B

is only logarithmic. The key point for this is the following. In the integral (4.17), the

contribution m̃i = ni = 0 in the unshifted lattice (4.2) is proportional to
√

detG = ImT ,

which is responsible for a π
3

ImT dominant contribution in the result. On the contrary, the

shifted lattice in ∆B is expressed in Eq. (4.16) as a difference of two unshifted lattices, where

the contribution m̃i = ni = 0 cancels out.
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For the second part of the thresholds, YB, and the effective potential, we use the fact that

the contributions with non-trivial winding numbers ni in the lattice (4.2) are exponentially

suppressed,

Γ2,2

[
0 , 0
αB , βB

]
=

ImT

τ2

∑
m̃1,m̃2

e
− π
τ2

ImT
ImU
|m̃1+

αB
2

+(m̃2+
βB
2

)U |2
+ · · · . (4.20)

This expression also justifies that, at our level of approximation, we are free to extend the

integration domain from F to the full upper half strip. This leads

YB = −2 + dGB − nFB

3π3

1

ImT
E(αB ,βB)(U | 2) +O

(
e−c

√
ImT
)
,

VeffB = −2 + dGB − nFB

2π7

1

( ImT )2
E(αB ,βB)(U | 3) +O

(
e−c

√
ImT
)
, (4.21)

where we have defined “shifted real analytic Eisenstein series” as

E(g1,g2)(U | s) =
∑
m̃1,m̃2

′ (ImU)s

|m̃1 + g1
2

+ (m̃2 + g2
2

)U |2s
. (4.22)

In these functions, g1 and g2 are integer modulo 2 and the prime means m̃1 = m̃2 = 0 is

excluded from the sum when g1 = g2 = 0. They satisfy modular properties as follows :

E(g1,g2)(M(U)| s) = E(g1,g2)MT (U | s) , where M(U) =
aU + b

cU + d
, M =

(
a b
c d

)
∈ SL(2,Z) .

(4.23)

Note that the sign of the index CV = massless Bosons−massless Fermions in the sector B

is essential to discuss questions about moduli stabilization [24].

4.3 C : The exact N = 2 sector with (h, g)=(0, 0), (H,G) 6=(0, 0)

The partition function (4.6) associated to this sector, which we will denote by C, is propor-

tional to θ[11]2(v) θ[1+H
1+G ]2(v) = O(v2). Thus, the contribution VeffC to the effective potential

is zero, while the threshold correction ∆i
C is not vanishing and proportional to an N = 2

β-function coefficient biC . Two of the four gravitini are massless, while the masses of the

other two are given in terms of the T and U moduli,

m1,2
3
2

= 0 , m3,4
3
2

≡ mC =

√
(αC ImU)2 + (αC |ReU | − βC)2

√
ImT ImU

Ms , (4.24)

where we have

(αC , βC) =


(ζ, 1) in case a)
(1, ζ) in case b)
(ζ, 1− ζ) in case c) .

(4.25)
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The threshold corrections in this sector are those of N = 2 theories that are obtained by an

N = 4 → N = 2 spontaneous susy breaking via a free Z2 orbifold action. They have been

computed in Ref. [18] but we briefly rederive the results we need here.

The Lagrangian form of the lattice (4.2) implies the sector H = 1 to be exponentially

suppressed, when ImT � 1 and U is finite. Keeping explicitly the sector (H,G) = (0, 1),

one obtains using again θ[11](v|τ) = 2πη3(τ) v +O(v3),

∆i
C =

∫
F

d2τ

τ2

{
Γ2,2

[
0 , 0
αC , βC

](
P2
i (2w̄)− ki

4πτ2

)
Ω̄(2w̄)− biC

}∣∣∣∣
w̄=0

+ biC log
2e1−γ

π
√

27
+ · · · ,

where Ω̄(2w̄) =
θ[10]2

4η2η̄4
Z4,20

[
0, 0
0, 1

]
(2w̄). (4.26)

In fact, since the 4 directions associated to the 2nd and 3rd planes are twisted, Z4,20

[
0, 0
0, 1

]
contains an overall factor η2/θ[10]2 making Ω̄ an antiholomorphic function. The contribution

biC to the full β-function coefficient subtracts the infrared divergence. Proceeding as in the

sector B, only the massless contributions dressed by the Γ2,2

[
0 , 0
αC , βC

]
-lattice are non-negligible,

leading to formally identical results :

∆i
C = biC∆C − kiYC , (4.27)

where

∆C = − log

(
π2

4

∣∣θ[01](T )
∣∣4 ∣∣θ[1−βC1−αC

]
(U)
∣∣4 ImT ImU

)
+O

(
e−c

√
ImT
)
,

YC = −2 + nVC − nHC

3π3

1

ImT
E(αC ,βC)(U | 2) +O

(
e−c

√
ImT
)
. (4.28)

In the above expression, nVC and nHC are the numbers of massless vector multiplets and

hypermultiplets in the sector C. Thus nVC is the dimension of the gauge group GC realized

in this sector, while

IC = nVC − nHC (4.29)

is an index arising naturally from the extended supersymmetry we will denote NC = 2. As in

sector B, the
∣∣θ[01](T )

∣∣4-term can be omitted and the thresholds are only logarithmic in ImT .

As said before, it is interesting enough that in this sector the cosmological term vanishes,

VeffC = 0, thanks to the exact NC = 2 supersymmetry.
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4.4 D : The exactN = 2 sector with (h, g)=(H,G), (G,H) 6=(0, 0)

We denote this sector as D. As in sector C, the partition function (4.6) vanishes, since it is

proportional to θ[1+H
1+G ]2(v) θ[11]2(v) = O(v2). There is an exact N = 2 supersymmetry, which

is not that of the sector C, the two N = 2 susymmetries being not aligned. The two massless

and two massive gravitini are not the same,

m1,2
3
2

≡ mD =

√
(αD ImU)2 + (αD|ReU | − βD)2

√
ImT ImU

Ms , m3,4
3
2

= 0 (4.30)

and the non-vanishing masses are even different to those in sector C. This is due to the fact

that the pairs (αD, βD) and (αC , βC) are not equal,

(αD, βD) =


(1− ζ, 1) in case a)
(1, 1− ζ) in case b)
(1− ζ, ζ) in case c) .

(4.31)

Actually, we see that the sectors C and D are replaced by one another under the change

ζ → 1− ζ,

sector C ↔ sector D ⇐⇒ ζ → 1− ζ . (4.32)

As a result, the threshold corrections to the gauge couplings are

∆i
D = biD∆D − kiYD , (4.33)

where

∆D = − log

(
π2

4

∣∣θ[01](T )
∣∣4 ∣∣θ[1−βD1−αD

]
(U)
∣∣4 ImT ImU

)
+O

(
e−c

√
ImT
)
,

YD = −2 + nVD − nHD

3π3

1

ImT
E(αD,βD)(U | 2) +O

(
e−c

√
ImT
)
. (4.34)

nVD and nHD count the massless vector multiplets and hypermultiplets in the sector D, while

IC = nVD − nHD (4.35)

is the index arising from the second non-aligned extended supersymmetry we will denote

ND = 2. Of course, nVD is nothing but the dimension of the gauge group GD realized in

this sector. As before, the
∣∣θ[01](T )

∣∣4-term in ∆D can be omitted and the contribution to the

cosmological term vanishes : VeffD = 0.
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4.5 E &F : The NC,D = 2→ NC,D = 0 sectors hG− gH 6= 0

The previous sectors A,B,C,D have (H,G) or (h, g) equal to (0, 0), or (H,G) = (h, g).

All these conditions are equivalent to saying that the determinant
∣∣h H
g G

∣∣ vanishes. In the

remaining sectors, namely E and F , one has
∣∣h H
g G

∣∣ 6= 0, which implies not only that (H,G) 6=
(0, 0), but also that (h, g) 6= (0, 0) and (h, g) 6= (H,G). In other words, the supersymmetries

NC = 2 of sector C and ND = 2 of sector D are both broken to NC = 0 and ND = 0.

Indeed, one finds that in the partition function (4.6), the left-moving part (including the

four twisted left-moving internal coordinates) is not vanishing and universal, modulo the

dressing with Γ2,2 shifted lattices. We display below the refined partition function in case

a), for the NC = 0 sector E,

1

2

(
Z
[

1, 0
0, 1

]
+ Z

[
1, 1
1, 0

]
+ Z

[
0, 1
1, 1

])∣∣∣
2v,2w̄

=− 8
θ2

4(v) θ2
3(v)

η6 θ2
2

Γ2,2

[
1, 0
ζ, 1

]
Z̄
[

1
0

∣∣0
1

]
(2w̄)

− 8
θ2

3(v) θ2
2(v)

η6 θ2
4

Γ2,2

[
1−ζ, 1

1 , 0

]
Z̄
[

1
1

∣∣1
0

]
(2w̄)

+ 8
θ2

2(v) θ2
4(v)

η6 θ2
3

Γ2,2

[
ζ , 1

1−ζ, 1

]
Z̄
[

0
1

∣∣1
1

]
(2w̄) , (4.36)

and for the ND = 0 sector F ,

1

2

(
Z
[

1, 0
1, 1

]
+ Z

[
0, 1
1, 0

]
+ Z

[
1, 1
0, 1

])∣∣∣
2v,2w̄

= + 8
θ2

4(v) θ2
3(v)

η6 θ2
2

Γ2,2

[
1 , 0

1−ζ, 1
]
Z̄
[

1
1

∣∣0
1

]
(2w̄)

+ 8
θ2

3(v) θ2
2(v)

η6 θ2
4

Γ2,2

[
ζ, 1
1, 0

]
Z̄
[

0
1

∣∣1
0

]
(2w̄)

− 8
θ2

2(v) θ2
4(v)

η6 θ2
3

Γ2,2

[
1−ζ, 1
ζ , 1

]
Z̄
[

1
0

∣∣1
1

]
(2w̄) . (4.37)

In these expressions, the Z̄-factors are purely antiholomorphic. The partition functions in

case b) are obtained from the above ones by exchanging the columns of the Γ2,2-lattices.

In case c), the first columns of the Γ2,2-lattices are as above, while the second columns are

obtained by changing ζ → 1− ζ in the first ones.

The key point here is that once
∣∣h H
g G

∣∣ 6= 0, it is forbidden to have h = H = 0 in the

sectors E and F . Therefore, all individual terms in the associated partition functions are

coupled with exponentially suppressed shifted lattices (see Eq. (4.5)), when ImT is large and

U finite. This shows explicitly that in sectors E and F , the contributions to the cosmological

term and coupling constants can be neglected,

∆E,F = O
(
e−c

√
ImT
)
, YE,F = O

(
e−c

√
ImT
)
, VeffE,F = O

(
e−c

√
ImT
)
. (4.38)
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5 Analysis of the N = 4 and 1st plane contributions

Before investigating the 2nd and 3rd planes contributions in the Z2 × Z2 models where only

the 1st Z2 action is freely acting, we would like to comment further on the structure of the

corrections coming from the N = 4 → N = 2 → N = 0 susy breaking associated to the

sectors A to F in these models. Some explicit examples will also be given. Let us start by

collecting the results found in the previous section :

• In sector A, the contributions to the effective potential, VeffA, and to the gauge thresholds,

∆i
A, are always zero due to the “mother” N = 4 theory.

• There are two non-aligned NC = 2 and ND = 2 “daughter” supersymmetries in the sectors

C and D. In the former, the first two gravitini are massless, while in the latter the

third and fourth gravitini are massless. Gauge coupling corrections ∆i
C,D occur, while

there are no contributions to the effective potential, VeffC,D = 0.

• The sectors E and F are not supersymmetric and correspond to the breaking NC,D = 2→
NC,D = 0. However, their contributions VeffE,F and ∆i

E,F are exponentially suppressed,

when ImT is large and U finite.

• The contributions VeffB and ∆i
B of the sector B are the only ones arising from a non-

supersymmetric sector. The latter realizes a spontaneous breaking of N = 4 to N = 0.

Moreover, the sector B is the only one that gives a non-vanishing (or non-negligible)

cosmological term, which is proportional to m4
3
2

≡ m4
B ∝ 1/( ImT )2.

• The non-trivial contributions to the gauge thresholds arise from the sectors B, C and D.

For any model a), b) or c), with ζ = 0 or 1, (αB, βB), (αC , βC) and (αD, βD) take

distinct values among the set {(1, 0), (0, 1), (1, 1)}. In fact, the 6 models realize the 3!

allowed permutations of these parameters.

The contributions of the sectors A to F are what is required to write the corrections to

the gauge coupling constants and to the cosmological term in the Z2 non-symmetric orbifold

models, where shifts along the untwisted plane realize an N = 2→ N = 0 spontaneous susy

breaking à la SSS. The running gauge couplings can be expressed in terms of the redefined
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infrared regulator Q2 = µ2 π2

4
, and are valid for Q < mB,mC ,mD < cMs, where c is defined

below Eq. (4.18). They take the form

16 π2

g2
i (Q)

= ki
16π2

g2
s

− 1

2

(
biB + biC + biD

)
log

Q2

M2
s

− 1

2
biB log

(∣∣θ[1−βB1−αB

]
(U)
∣∣4 ImT ImU

)
− 1

2
biC log

(∣∣θ[1−βC1−αC

]
(U)
∣∣4 ImT ImU

)
− 1

2
biD log

(∣∣θ[1−βD1−αD

]
(U)
∣∣4 ImT ImU

)
+O

(
1

ImT

)
, (5.1)

while the effective potential is

Veff =
1

2
VeffB +O

(
e−c

√
ImT
)

= −1

2

2 + dGB − nFB

2π7

1

( ImT )2
E(αB ,βB)(U, 3) +O

(
e−c

√
ImT
)
.

(5.2)

The factors 1
2

in front of the β-function coefficients and in the expression of the potential

come from the normalization arising from the Z2 orbifold projection. The gravitino mass

m 3
2

of the N = 2→ N = 0 model being equal to that of sector B,

m 3
2
≡ mB =

√
(αB ImU)2 + (αB|ReU | − βB)2

√
ImT ImU

Ms , (5.3)

the cosmological term is proportional to m4
3
2

. Note that no correction of order M2
s m

2
3
2

occurs.

In order to make the physical interpretation of the gauge coupling threshold corrections more

transparent, it is convenient to introduce moduli-dependent mass scales,

1

M2
B

=
1

M2
s

∣∣θ[1−βB1−αB

]
(U)
∣∣4 ImT ImU ,

1

M2
C

=
1

M2
s

∣∣θ[1−βC1−αC

]
(U)
∣∣4 ImT ImU ,

1

M2
D

=
1

M2
s

∣∣θ[1−βD1−αD

]
(U)
∣∣4 ImT ImU , (5.4)

in terms of which the coupling constant corrections for Q < MB,MC ,MD take the form

16 π2

g2
i (Q)

= ki
16π2

g2
s

− 1

2
biB log

Q2

M2
B

− 1

2
biC log

Q2

M2
C

− 1

2
biD log

Q2

M2
D

+O
(

1

ImT

)
. (5.5)

As we are going to see, the behavior of these thresholds depends crucially on the complex

structure U . In particular, the hierarchy between the moduli-dependent scales MB,MC ,MD

depends only on U . To further investigate the qualitative features of the U -dependence, we
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can focus on the particular susy breaking pattern of model a), with ζ = 0, keeping in mind

that the gauge coupling thresholds in all six cases a), b), c), with ζ = 0, 1, are obtained

by permutation of the defining expressions of the threshold scales MB,C,D. In this case, the

shifted lattice involved in the threshold corrections is Γ2,2

[
0, 0
g,G

]
and the susy breaking scales

in sectors B,C,D are

mB =
|U |√

ImT ImU
Ms , mC =

1√
ImT ImU

Ms , mD =

√
( ImU)2 + (1− |ReU |)2

√
ImT ImU

Ms .

(5.6)

This shows that the scale at which N = 4 is spontaneously broken to N = 2 is mC , since

(g,G) = (0, 1) is the value taken by (αC , βC). Similarly, the scale at which supersymmetry

is spontaneously broken to N = 0 is mB, since (g,G) = (1, 0) is the value taken by (αB, βB).

These two scales are relatively small compared to Ms, as is also the third one, mD, which

emerges for (g,G) = (1, 1) = (αD, βD).

To proceed, we specialize further to the situation where ReU = 0 and define

t = ImT = R1R2 , u = ImU =
R2

R1

, (5.7)

where R1 and R2 are the radii of the shifted squared untwisted internal 2-torus. The susy

breaking scales become

m2
B =

u

t
M2

s , m2
C =

1

tu
M2

s , m2
D = m2

B +m2
C , (5.8)

which implies mD is the largest one. The moduli-dependent scales MB and MC become

1

M2
B

=
1

M2
s

∣∣θ2(iu)
∣∣4 tu =

1

m2
B

∣∣θ4(i/u)
∣∣4 ,

1

M2
C

=
1

M2
s

∣∣θ4(iu)
∣∣4 tu =

1

m2
C

∣∣θ4(iu)
∣∣4 . (5.9)

Utilizing the identity
∣∣θ3(iu)

∣∣4 =
∣∣θ2(iu)

∣∣4 +
∣∣θ4(iu)

∣∣4, which is valid for pure imaginary

arguments, we obtain the moduli-dependent threshold scale related to the ND = 2 super-

symmetric sector D as a function of MB and MC ,

1

M2
D

=
1

M2
s

∣∣θ3(iu)
∣∣4 tu =

1

M2
B

+
1

M2
C

. (5.10)

This shows that in the present case, MD is the lowest threshold scale. This example is

illuminating. It shows that the scales at which supersymmetry is restored in the sectors
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B,C,D are not the associated gravitini masses mB,C,D. Instead, the relevant scales for

supersymmetry restoration are the full threshold scales MB,C,D, whose hierarchy differs from

that of the scales mB,C,D. For instance, since

M2
B ∼ m2

B , M2
C ∼

m2
B

16
eπ/u , M2

D ∼ m2
B , when u� 1 , (5.11)

the full hierarchy of the threshold scales for small enough u is Q < MD ≤MB ≤MC , while

we have mB < mC ≤ mD. Moreover, in the limit where u is very small, the scale MC grows

exponentially, which gives large corrections to the gauge couplings in Eq. (5.5), proportional

to 1/u = R1/R2. On the contrary, since

M2
B ∼

m2
C

16
eπu , M2

C ∼ m2
C , M2

D ∼ m2
C , when u� 1 , (5.12)

the hierarchy of the threshold scales for large enough u is Q < MD ≤MC ≤MB, while mC <

mB ≤ mD. Furthermore, when u is very large, the scale MB, which grows exponentially

with u, gives rise to large corrections to the couplings in Eq. (5.5), proportional to u =

R2/R1. In the end, in both extreme limits summarized by the condition u+ 1/u� 1, large

linear corrections can destroy the string perturbative expansion, when dressing β-function

coefficients are negative. In such cases, one must assume that u is not too small or large.

In our low energy description, the range of permitted ratios u = R2/R1 can be derived

by the requirement that the higher threshold scale must be smaller than the scale of the

massive states we neglected i.e. cMs. In general, the lowest threshold scale among MB, MC

and MD in Eq. (5.4) is the one that contains θ3(U) in its definition. As we have just shown,

this scale has a simple relation with the highest threshold scale in the extreme limits u� 1

or u� 1. The validity constraint in these two limits becomes

1

16
eπ(u+1/u) =

M2
high

M2
low

< c2 M
2
s

M2
low

= c2M
2
Planck

M
(E)2
low

, (5.13)

where M
(E)
low is the lowest scale measured in the Einstein frame. Notice that the ratio

Mhigh/Mlow is independent of the frame. This gives the condition :

u+
1

u
<

2

π
log

(
4 c

MPlanck

M
(E)
low

)
. (5.14)

Assuming the lowest supersymmetry breaking scale measured in Einstein frame to be in the

1–10 TeV region, we take M
(E)
low = O(104) GeV, and given the gravity scale MPlanck = 2.4·1018
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GeV, one finds for c = O(1) the permitted values of u :

u+
1

u
< 22 . (5.15)

Once u is in this region, we can write the following interpolating expression for the running

gauge couplings, in terms of the physical energy scale measured in string frame, Q < cMs (or

Q(E) ≡ Q/gs < cMPlanck in the Einstein frame). It is valid for all supersymmetry breaking

patterns i.e. models a), b) or c), with ζ = 0 or 1, and independently of the U -dependent

hierarchy among the threshold scales MB, MC and MD :

16 π2

g2
i (Q)

= ki
16 π2

g2
s

− 1

2
biB log

(
Q2

Q2 +M2
B

)
− 1

2
biC log

(
Q2

Q2 +M2
C

)
− 1

2
biD log

(
Q2

Q2 +M2
D

)
.

(5.16)

The above expression implements the successive decouplings of the effective threshold mass

scales MB,C,D, which occur when the infrared cut-off scale Q crosses them. Q plays the role of

a scattering energy scale. For Q smaller than the three threshold scales, it can be neglected

compared to them and one recovers the threshold formula for small Q, Eq. (5.5). Once Q

becomes larger than one of the threshold scales, the latter can be neglected compared to Q,

which is consistent with the fact that the whole tower of associated thresholds give negligible

contribution. In particular :

• In the cases where the susy breaking pattern and the complex structure U imply MB to be

the lowest threshold scale, when the physical scale satisfies MB < Q < MC ,MD, the

two non-aligned NC = 2 and ND = 2 supersymmetries are restored. The full N = 4

supersymmetry is recovered when Q is above MC and MD.

• In the cases where the susy breaking pattern and the complex structure U imply MB to

be the highest threshold scale, then the model describes a total N = 4 → N = 0

spontaneous susy breaking, when the physical scale satisfies MC ,MD < Q < MB.

When Q > MB, the full N = 4 supersymmetry is restored.

5.1 Example 1 : Gauge group factor E8 with nF = 0

Before analyzing the contributions of the 2nd and 3rd planes in the Z2×Z2 models we consider,

we would like to present typical examples in the Z2 case i.e. where N = 4 supersymmetry
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is spontaneously broken to N = 2 and further broken to N = 0 using the shifts and T, U

moduli of the untwisted Γ2,2-lattice. In fact, the β-function coefficients we are going to focus

on can either be deduced by computing those associated to the sectors B, C and D, or

directly by considering the massless spectrum of the N = 0 theory.

In our first example, we consider the models whose gauge groups contain a factor Gi = E8.

The associated affine character in the adjoint representation, Ē8(τ̄), is realized by 16 right-

moving Majorana-Weyl worldsheet fermions,

Ē8(τ̄) =
1

2

∑
γ,δ

θ̄[γδ ]
8

η̄8
. (5.17)

The latter is factorized in the right-moving part of the partition function, whose relevant

conformal block takes the form

Z4,20

[
h
g

∣∣H
G

]
= Z4,12

[
h
g

∣∣H
G

]
Ē8 . (5.18)

The adjoint character Ē8 can be written in terms of those associated to the adjoint and

spinorial representations of SO(16),

Ē8 = Ō16 + S̄16 , (5.19)

where our conventions for the holomorphic SO(2N) characters are

O2N =
θ[00]N + θ[01]N

2ηN
, V2N =

θ[00]N − θ[01]N

2ηN
,

S2N =
θ[10]N + (−i)Nθ[11]N

2ηN
, C2N =

θ[10]N − (−i)Nθ[11]N

2ηN
. (5.20)

Since the character Ē8 is factorized, the gauge groups realized in the sectors B,C,D

contain a common factor, Gi
B = Gi

C = Gi
D = E8. In sector B, the β-function coefficient

arises from the bosonic part of an N = 4 vector multiplet (1 gauge boson + 6 real scalars) in

the adjoint of Gi
B. In the sectors C and D, the β-function coefficients correspond to NC = 2

and ND = 2 vector multiplets in the adjoint of Gi
C and Gi

D. Thus, we have

biB = −8

3
C(E8) , biC = −2C(E8) , biD = −2C(E8) , (5.21)

where C(E8) = 14+16 = 30. The contribution 14 in C(E8) comes from the adjoint of SO(16),

C(O16) = 14, while the contribution 16 comes from the spinorial of SO(16), C(S16) = 16.
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Thus, the sector by sector analysis leads to a β-function coefficient in the N = 0 theory

given by

bi =
1

2

(
biB + biC + biD

)
= −10

3
C(E8) = −100 , (5.22)

which shows that the gauge theory is asymptotically free.

To cross check this value, we can directly compute bi from the point of view of an

N = 2→ N = 0 spontaneously broken theory. The massless spectrum contains the bosonic

part of an N = 2 vector multiplet in the adjoint representation of Gi, namely 1 gauge boson

for 2 real scalars, while the gauginos have become massive :

bi =

(
−11

3
+

2

6

)
C(E8) = −10

3
C(E8) . (5.23)

5.2 Example 2 : Gauge group factor SO(16) with nF 6= 0

The second models we would like to present have a gauge group factor Gi = SO(16). The

latter is obtained by coupling non-trivially the lattice shift (h, g), with the SO(16) spinorial

representation initially present in the character Ē8. The coupling is implemented by a phase

as follows :

Z4,20

[
h
g

∣∣H
G

]
= Z4,12

[
h
g

∣∣H
G

]
Z0,8

[
h
g

]
where Z0,8

[
h
g

]
=

1

2

∑
γ,δ

θ̄[γδ ]
8

η̄8
eiπ(gγ+hδ+hg) , (5.24)

which breaks simultaneously E8 → SO(16) and supersymmetry to N = 0.

The SSS phase changes effectively to

S = eiπ[g(a+γ)+h(b+δ)] . (5.25)

This shows clearly that in the sector B, the fermions of the initially massless N = 4 vector

multiplets in the Ō16 representation (i.e. for γ = 0) become massive, while the bosons

remain massless. However, compared to Example 1, the new thing is that the situation is

reversed for the states in the S̄16 representation (i.e. for γ = 1) : The bosons of the originally

massless N = 4 vector multiplets become massive, while the fermions remain massless. In

total, the gauge group factor in the non-supersymmetric sector B is Gi
B = SO(16) and the

β-function coefficient is

biB = −8

3
{C(O16)− C(S16)} . (5.26)
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Notice that since (h, g) = (0, 0) in sector C, the gauge group factor Gi
C = E8 is unbroken

and the associated NC = 2 supersymmetric β-function coefficient is identical to that of

Example 1,

biC = −2C(E8) ≡ −2 {C(O16) + C(S16)} . (5.27)

However, in sector D, where (h, g) 6= (0, 0), the E8 gauge group is broken to Gi
D = SO(16),

with massless hypermultiplets in the spinorial representation S̄16. The ND = 2 supersym-

metric β-function coefficient is thus

biD = −2 {C(O16)− C(S16)} . (5.28)

Taking into account the above sector by sector contributions, the β-function coefficient of

the Gi = SO(16) non-supersymmetric gauge theory is

bi =
1

2

(
bB + bC + bD

)
= −10

3
C(O16) +

4

3
C(S16) =

76

3
. (5.29)

Even if in this example the gauge theory is non-asymptotically free, it remains a good exercize

that illustrates the sector by sector analysis of the gauge threshold corrections.

Here also, the agreement with the direct evaluation of the β-function coefficient of the

N = 2 → N = 0 theory can be checked. This can be done in two steps. At the N = 2

level obtained by applying the Z2 action that breaks spontaneously N = 4 → N = 2,

the massless spectrum contains an N = 2 vector multiplet in the adjoint representation

of Gi = SO(16), coupled to a hypermultiplet in the spinorial representation. Applying

the final Zshift
2 responsible for the N = 2 → N = 0 spontaneous breaking, the massless

spectrum charged under the Gi = SO(16) gauge group factor are the bosons of the N = 2

vector multiplet in the adjoint representation of SO(16), together with the fermions of the

hypermultiplet in the spinorial representation. Consistently, one finds

bi =

(
−11

3
+

2

6

)
C(O16) +

4

3
C(S16) = −10

3
C(O16) +

4

3
C(S16) . (5.30)

5.3 Example 3 : Gauge group factor SO(8)× SO(8)′ with nF 6= 0

The third example we would like to present has a Gi = SO(8)× SO(8)′ gauge subgroup. It

is obtained by coupling non-trivially both (g, h) and (G,H), with the vectorial and spinorial
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representations of SO(8)× SO(8)′ initially present in the Ē8 character :

Z4,20

[
h
g

∣∣H
G

]
= Z4,12

[
h
g

∣∣H
G

]
Z0,8

[
h
g

∣∣H
G

]
where Z0,8

[
h
g

∣∣H
G

]
=

1

2

∑
γ,δ

θ̄4[γδ ] θ̄
4[γ+H
δ+G ]

η̄8
eiπ(gγ+hδ+hg+GH) .

(5.31)

As in Example 2, the coupling to (h, g) breaks E8 → SO(16) and supersymmetry to N = 0,

while the coupling to (H,G) breaks further SO(16)→ SO(8)× SO(8)′. Here also, the SSS

phase is effectively

S = eiπ[g(a+γ)+h(b+δ)] . (5.32)

Since (H,G) = (0, 0) in sector B, the latter is identical to that of Example 2. Therefore,

we have Gi
B = SO(16), with β-function coefficient

biB = −8

3
{C(O16)− C(S16)} . (5.33)

However, since the overall gauge group factor of the model is Gi = SO(8) × SO(8)′, it is

instructive to express the characters of Gi
B = SO(16) in terms of those of SO(8)×SO(8)′ :

Ō16 = Ō8Ō
′
8 + V̄8V̄

′
8 , S̄16 = S̄8S̄

′
8 + C̄8C̄

′
8 . (5.34)

Thus, the bosons of the initially massless N = 4 vector multiplets in the Ō16 representation

(i.e. for γ = 0) are in the adjoint representation (28, 1)⊕ (1, 28) as well as in the bi-

vectorial (8v, 8v) of SO(8)×SO(8)′. Moreover, the fermions of the initially massless N = 4

vector multiplets in the S̄16 representation (i.e. for γ = 1) are in the (8s, 8s) and (8c, 8c)

bi-spinorial representations of SO(8)× SO(8)′.

As said before, the model can be constructed by successive breaking,

E8 → SO(16)→ SO(8)× SO(8)′ , (5.35)

by first coupling the SO(8)× SO(8)′ characters initially present in Ē8,

Ē8 = Ō16 + S̄16 = Ō8Ō
′
8 + V̄8V̄

′
8 + S̄8S̄

′
8 + C̄8C̄

′
8 , (5.36)

with (h, g), and then with (H,G). In the intermediate step, which is nothing but the sectorB,

the Gi
B = SO(16) gauge theory is non-supersymmetric. However, the analysis of the sectors

C and D is more conveniently done by considering the model from two other viewpoints :
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• The breaking (5.35) can be realized by first coupling the SO(8)× SO(8)′ characters with

(H,G), and then with (h, g). In the intermediate step, which is nothing but the sector

C, we have an NC = 2 supersymmetric Gi
C = SO(16) gauge theory.

• The breaking (5.35) can also be realized by first coupling the SO(8) × SO(8)′ characters

with (h, g) = (H,G), and then with (h − H, g − G). In the intermediate step, which

is nothing but the sector D, we have an ND = 2 supersymmetric Gi
D = SO(16) gauge

theory.

Actually, the three intermediate gauge group factors Gi
B,C,D = SO(16) are not aligned,

so that the resulting unbroken gauge group of the combined final theory is Gi = SO(8) ×
SO(8)′. Correspondingly, thanks to the triality symmetry of the three SO(8) representations

8v,8s,8c, there are three alternative decompositions of the SO(16) characters in terms of

SO(8) × SO(8)′ ones. If desired, these decompositions can be used to describe the spectra

in sectors B,C,D in terms of SO(8)× SO(8)′ representations. They are

in sector B : Ō16 = Ō8Ō
′
8 + V̄8V̄

′
8 , S̄16 = S̄8S̄

′
8 + C̄8C̄

′
8 ,

in sector C : Ō16 = Ō8Ō
′
8 + S̄8S̄

′
8 , S̄16 = C̄8C̄

′
8 + V̄8V̄

′
8 ,

in sector D : Ō16 = Ō8Ō
′
8 + C̄8C̄

′
8 , S̄16 = V̄8V̄

′
8 + S̄8S̄

′
8 . (5.37)

In any case, what we are interested in is the massless spectrum in sector C, charged under the

gauge group factor Gi
C = SO(16). To find it, we start from the parent N = 4 theory, where

the massless spectrum contains an N = 4 vector multiplet in the adjoint representation of

E8. Implementing the (H,G)-projection and using the fact that Ē8 = Ō16 + S̄16, we obtain

the sector C, whose massless spectrum lies schematically in the representation(
NC = 2 vector multiplet

)
· Ō16 ⊕

(
NC = 2 hypermultiplet

)
· S̄16 . (5.38)

We have an NC = 2 vector multiplet in the adjoint representation and a hypermultiplet in

the spinorial representation, so that

biC = −2 {C(O16)− C(S16)} . (5.39)

By symmetry between the sectors C and D, we also have in sector D for the gauge group

factor Gi
D = SO(16),

biD = −2 {C(O16)− C(S16)} . (5.40)
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Combining the above results, the β-function coefficient of the Gi = SO(8) × SO(8)′ non-

supersymmetric gauge theory is

bi =
1

2

(
bB + bC + bD

)
= −10

3
{C(O16)− C(S16)} =

20

3
. (5.41)

Here also, the gauge theory is non-asymptotically free.

To check the above value of bi, we can derive the massless spectrum of the theory that

is charged under Gi = SO(8) × SO(8)′. We have just seen that the implementation of the

(H,G)-projection on the parent N = 4 theory leads to the massless spectrum of sector

C, given in Eq. (5.38). Using the decomposition of the SO(16) characters in terms of

SO(8)× SO(8)′ ones valid in sector C, this spectrum can be written as(
NC = 2 vector multiplet

)
·
(
Ō8Ō

′
8+S̄8S̄

′
8

)
⊕
(
NC = 2 hypermultiplet

)
·
(
C̄8C̄

′
8+V̄8V̄

′
8

)
. (5.42)

We can now implement the final (h, g)-projection, which let us with massless states schemat-

ically as follows :(
bosons of the vector multiplet

)
· Ō8Ō

′
8 ⊕

(
fermions of the vector multiplet

)
· S̄8S̄

′
8⊕(

bosons of the hypermultiplet
)
· V̄8V̄

′
8 ⊕

(
fermions of the hypermultiplet

)
· C̄8C̄

′
8 . (5.43)

We have 1 gauge boson and 2 real scalars in the adjoint representation of SO(8)× SO(8)′,

(28, 1)⊕ (1, 28), together with 4 real scalars in the (8v, 8v), and 4 Majorana fermions in

the (8s, 8s)⊕ (8c, 8c). Since the gauge coupling of Gi is equal to that of each of its SO(8)

subgroups, it is sufficient to calculate the β-function coefficient associated to one of them :

bi =

(
−11

3
+

2

6

)
C(O8) +

4n(V ′8)

6
C(V8) +

4n(S ′8)

3
C(S8) +

4n(C ′8)

3
C(C8) , (5.44)

where C(O8) = 6, C(V8) = C(S8) = C(C8) := C(8) = 1 and the multiplicities arising from

the second SO(8)′ factor are all equal, n(V ′8) = n(S ′8) = n(C ′8) = 8. In total, one has

bi = −10

3
C(O8) +

80

3
C(8) =

20

3
, (5.45)

which is in agreement with the sector by sector contributions.

5.4 The generic case

The above examples illustrate the universal structure of the running effective gauge couplings

valid in the Z2 non-symmetric orbifold models that realize a spontaneous N = 4 → N =

34



2→ N = 0 supersymmetry breaking à la SSS, when shifts (but no dual shifts) are introduced

along the untwisted torus. In these models, no dangerous linear dependence on the internal

volume appears in the threshold corrections. The result is given in Eq. (5.5) for Q < MB,C,D

(or Eq. (5.16) for Q < cMs), with the sector by sector β-function coefficients given by :

biB = −8

3
{C(OB)− C(RB)} , biC = −2 {C(OC)− C(RC)} , biD = −2 {C(OD)− C(RD)} .

(5.46)

The structures of the sectors C and D are simple to understand, since both of them de-

scribe N = 2 supersymmetric gauge theories. The associated gauge groups contain factors

Gi
C and Gi

D, which may be different. The individual β-function coefficients are given in

terms of vector multiplets contributions in the adjoint representations of Gi
C,D, denoted by

−2C(OC,D), together with hypermultiplets contributions in the representations RC,D, de-

noted by 2C(RC,D).

On the contrary, the structure of sector B, which describes a non-supersymmetric gauge

theory with a gauge group factor Gi
B, is something new. The −8

3
C(OB) contribution to biB

comes from the bosons of initially massless N = 4 vector multiplets in the parent N = 4

model, that remain massless. These bosons (1 vector and 2 real scalars) are in the adjoint

representation of Gi
B. The second contribution, 8

3
C(RB), arises from the fermions of initially

massless N = 4 vector multiplets in the parent theory, that remain massless. They are 4

Majorana fermions in a spinorial representation RB. If as in Examples 2 and 3, RB is a

spinorial representation of SO(16), it is in general the spinorial representation of a subgroup

of E8, such as SO(16), SO(8)× SO(8)′, E7 × SU(2), SO(12)× SO(4) or even SO(4)4. All

these cases can be easily realized by fermionic constructions.

6 2nd plane, 3rd plane and N = 1 sector contributions :

(H2, G2) 6= (0, 0)

In Sects 4 and 5, we have extensively analyzed the threshold corrections in Z2 non-symmetric

orbifold models, where an N = 4→ N = 2→ N = 0 spontaneous breaking of supersymme-

try is implemented with shifts such that the running gauge couplings develop only logarithmic

dependencies on the volume of the untwisted internal 2-torus. Up to an additional overall

factor of 1
2
, these results are the contributions of the N = 4 and 1st complex plane in Z2×Z2
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non-symmetric orbifold models. In the present section, we proceed with the evaluations of

the contributions arising from the remaining sectors, namely the 2nd and 3rd complex planes,

and the N = 1 sector. All of them are twisted, with (H2, G2) 6= (0, 0). Moreover, the 2nd

plane has (H1, G1) = (0, 0), the 3rd plane has (H3, G3) = (0, 0) and the N = 1 sector has

(H1, G1) 6= (0, 0), (H1, G1) 6= (H2, G2).

Our concern in the present paper is the decompactification problem only. In particular, we

do not address the issue of chirality and the models presented here are actually incompatible

with the physical requirement that the N = 1 spectrum (further spontaneously broken to

N = 0 à la SSS) be chiral. Forgetting for the moment the final breaking to N = 0, we remind

that at the level of N = 1 supersymmetric models constructed via Z2 × Z2 non-symmetric

moduli-deformed fermionic construction, the chiral families always come from the N = 2

twisted sectors that have non-trivial fixed points. Thus, the N = 1 untwisted spectrum

(H1 = H2 = 0 projected by G1, G2) is always non-chiral, while the spectrum arising in the

1st plane (H1 = 1, H2 = 0 projected by G1, G2) is massive, when the 1st Z2 action acts freely

so that no fixed point arises in this plane. To understand why the spectrum realized in the

2nd and 3rd planes is also non-chiral in this case, we reverse the role of the two Z2 actions.

The freely acting Z2 can be viewed as responsible of an N = 2 → N = 1 spontaneous

breaking of supersymmetry on a T 6/Z2 parent model. This means that in the large volume

limit of the 1st internal 2-torus, one recovers an N = 2 spectrum. However, in the 2nd and 3rd

complex planes, the 1st torus, which is shifted, is also twisted since H2 = 1. The spectrum

arising from these sectors is thus independent of the moduli T1, U1 and is identical to the

non-chiral one present in the large volume limit, where N = 2 is recovered. In the case of

(2, 2) compactifications, which correspond to Calabi-Yau internal spaces at fermionic points,

the Euler characteristic vanishes [28].

Taking into account the final breaking of N = 1 → N = 0, we have in the partition

function (see Appendix A and Ref. [15])

Z2,2

[
h11, h

2
1

g11 , g
2
1

∣∣∣H2
G2

]
=


Γ2,2

[
h11, h

2
1

g11 , g
2
1

]
(T1, U1)

(ηη̄)2
, when (H2, G2) = (0, 0) ,

4ηη̄

θ[1−H2
1−G2

] θ̄[1−H2
1−G2

]
δ∣∣h11 H2

g11 G2

∣∣,0 mod 2
δ∣∣h12 H2

g12 G2

∣∣,0 mod 2
, when (H2, G2) 6= (0, 0) ,

(6.1)

where the shifts (hi1, g
i
1) are defined in Eq. (4.5) (we remind that H,G denote H1, G1).
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Therefore, the twisted spectrum of the 2nd and 3rd complex planes (H2 = 1 projected by

G1, G2) is independent of the gravitino mass m
(E)
3
2

≡ mB/gs, which is in the desired 1–10

TeV region. The contributions of these modes to the partition function are identical to those

evaluated at the fermionic point. We proceed by arguing that the SSS phase in the sectors

(H2, G2) 6= (0, 0) must not break supersymmetry to N = 0. The reason for this comes in

three steps. First, in the 2nd and 3rd planes, the sub-sectors with (h, g) = (0, 0) always

preserve N = 2 supersymmetry, and since we choose to restrict to the case where they arise

from non-free Z2 actions, the order of magnitude of the moduli TI , UI , I = 2, 3, must be close

enough to 1 for the decompactification problem not to arise. Second, if the (h, g) 6= (0, 0)

sub-sectors of the 2nd and 3rd planes were non-supersymmetric, the respective gravitini mass

scales would be determined by TI , UI , I = 2, 3, and thus of order MPlanck, when measured

in Einstein frame, which is something we want to exclude. Third, the (h, g) 6= (0, 0) sub-

sector of the N = 1 sector must preserve supersymmetry as well, in order to not lead to

an extremely large gravitino mass. To summarize, in our solution to the decompactification

problem, the SSS phase S in the sectors (H2, G2) 6= (0, 0) must not contain the factor

eiπ(ag+bh+hg) introduced in Eq. (4.4), which would otherwise break susy to N = 0 at tree

level at a high scale. The breaking of supersymmetry is transmitted to the 2nd and 3rd planes

twisted spectra (H2 = 1 projected by G1, G2) by quantum corrections that involve states

with broken supersymmetry (H2 = 0 projected by G1, G2). To summarize, the spectrum

arising from the 2nd and 3rd planes presents at tree level an N = 2 extended supersymmetry

and is non-chiral.

Note that since the sectors (H2, G2) = (0, 0) and (H2, G2) 6= (0, 0) are independent

orbits of the worldsheet modular group, the associated choices of SSS phases do not need

to be correlated to guaranty the consistency of the whole Z2 × Z2 model. In the sectors

(H2, G2) 6= (0, 0), a certainly valid susy preserving choice is S ≡ 1. However, playing with

the quantum numbers (H1, G1) and (H2, G2), we can have

In the sectors (H2, G2) 6= (0, 0), S = eiπ[ζ1(aG1+bH1+H1G1)+ζ2(aG2+bH2+H2G2)] , (6.2)

where ζ1 and ζ2 can be fixed to 0 or 1. As we just noticed, ζ1 may not be equal to ζ ′

we introduced in Eq. (4.4). To see that (ζ1, ζ2) = (0, 0) is not the only allowed choice, we
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consider the conformal block associated to the left-moving fermionic degrees of freedom,

1

2

∑
a,b

eiπ(a+b+ab) eiπ[ζ1(aG1+bH1+H1G1)+ζ2(aG2+bH2+H2G2)] θ[ab ](2v) θ[a+H2
b+G2

] θ[a+H1
b+G1

] θ[a−H1−H2
b−G1−G2

]

= eiπ(ζ1+ζ2)(H1G2−G1H2) eiπ(G1+G2)(1+H1+H2) θ[11](v) θ[1−H2
1−G2

](v) θ[1−H1
1−G1

](v) θ[1+H1+H2
1+G1+G2

](v) . (6.3)

To show this equality, one can redefine a = A− ζ1H1− ζ2H2, b = B − ζ1G1− ζ2G2 and sum

over A,B equal to 0 or 1. Given that (H2, G2) 6= (0, 0), we see that N = 2 supersymmetry

is preserved in the 2nd plane, (H1, G1) = (0, 0), and in the 3rd plane, (H1, G1) = (H2, G2),

(or (H3, G3) = (0, 0)). Supersymmetry is also preserved in the N = 1 sector,
∣∣H1 H2
G1 G2

∣∣ 6= 0.

Two distinct cases arise however, ζ1 = ζ2 or ζ1 = 1 − ζ2, corresponding to different choices

of discrete torsions that yield opposite contributions of the N = 1 sector to the partition

function.

The NI = 2, I = 2, 3, unbroken supersymmetries of the 2nd and 3rd planes are not

aligned to one another, as well as non-aligned with the NC = 2 and ND = 2 supersymmetries

appearing in the sectors C and D of the 1st complex plane. Being supersymmetric, the 2nd

plane, 3rd plane and N = 1 sector do not contribute to the effective potential. Moreover,

their contributions to the gauge coupling thresholds are identical to those present in the

N = 1 supersymmetric Z2×Z2 moduli-deformed fermionic models. In this class of theories,

the N = 1 sectors do not contribute. The reason for this is that the helicity operator Q[ab ]

acting on an N = 1 sector involves

∂2
v

(
θ[11](v) θ[1−H2

1−G2
](v) θ[1−H1

1−G1
](v) θ[1+H1+H2

1+G1+G2
](v)
)∣∣∣
v=0
∝ ∂2

v

(
θ1(v) θ2(v) θ3(v) θ4(v)

)∣∣∣
v=0

= 0 ,

(6.4)

thanks to the fact that θ1(v) is odd and θ2,3,4(v) are even. Therefore, corrections to the

gauge couplings occur only from the N = 2 planes. The case of N = 2 planes in symmetric

orbifolds, which are characterized by (2, 2) superconformal symmetry, have been analyzed

extensively in the literature [18]. However, even if the analysis for non-symmetric orbifolds

that posses (2, 0) superconformal symmetry has not yet been fully completed, our conclusions

will remain valid in this case, as mentioned later in this section.

Let us start by considering the 2nd and 3rd planes in the (2, 2) case. As was shown

in Refs [18, 19, 21, 29], the gauge coupling corrections are given in terms of two threshold

functions,

∆i
I = biI∆(TI , UI)− kiY (TI , UI) , I = 2, 3 , (6.5)
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where biI are the N = 2 β-function coefficients in each planes7,

∆(TI , UI) = − log
(

4π2
∣∣η(TI)

∣∣4 ∣∣η(UI)
∣∣4 ImTI ImUI

)
,

Y (TI , UI) = − ξ

12

∫
F

d2τ

τ2

Γ2,2(TI , UI)

[(
Ē2 −

3

πτ2

)Ē4Ē6

η̄24
− ̄+ 1008

]
. (6.6)

In these expressions, E2,4,6 are holomorphic Eisenstein series, with modular weights 2,4,6,

E2 =
12

iπ
∂τ log η = 1− 24

∞∑
n=1

n qn

1− qn
,

E4 =
1

2
(θ8

2 + θ8
3 + θ8

4) = 1 + 240
∞∑
n=1

n3qn

1− qn
,

E6 =
1

2
(θ4

2 + θ4
3)(θ4

3 + θ4
4)(θ4

4 − θ4
2) = 1− 504

∞∑
n=1

n5qn

1− qn
, (6.7)

while j = 1
q

+ 744 + O(q) is holomorphic and modular invariant. ξ is a constant that can

be expressed in terms of the numbers of massless vector multiplets and hypermultiplets per

plane. Using the relation between gauge and R2-term renormalizations [15], it is fixed to

ξ = −1, thanks to the anomaly cancellation conditions [30] valid in the six dimensional

decompactification limits [15, 18]. This property being general in all N = 2 theories with

underlying (2, 2) superconformal symmetries, the threshold corrections are universal in this

case [21, 27], modulo the β-function coefficients and Kac-Moody levels.

As anticipated, what is relevant to note is that these threshold corrections scale linearly

with the volume of the untwisted 2-tori. For ImTI � 1 and UI finite, one has

∆(TI , UI) =
π

3
ImTI − log(ImTI) +O(1) , Y (TI , UI) = 4π ImTI +O

(
1

ImTI

)
, (6.8)

which invalidates the string perturbative expansion (when the dressing β-function coefficient

is negative). As follows from target space duality, similar dangerous behaviors occur in all

limits, where the Kähler and/or complex structures of the untwisted 2-tori are large or small :

TI →∞ or 0, and/or UI →∞ or 0. This is not a surprise, since we have seen in the previous

sections (and also in Ref. [18]) that for the linear terms not to arise, N = 4 supersymmetry

must be restored on the moduli space boundary. However, this cannot be the case in our

7In our conventions, biI , I = 2, 3, are β-function coefficients in the parent theories obtained by acting with
a single Z2. In the Z2 × Z2 models we are interested in, overall factors 1

2 must be included in the r.h.s. of
Eq. (6.5), for the thresholds to the correctly normalized.
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2nd and 3rd complex planes, since the breaking from N = 4 to N = 2 in these sectors is not

spontaneous. As announced before in this section, these considerations force us to assume

that the order of magnitude of the moduli of the 2nd and 3rd planes, TI and UI , I = 2, 3, are

not too far from 1. This justifies that we took the order of magnitude of the coefficient c

introduced in Eq. (4.18) to be not far from 1. Moreover, the moduli-dependent scales MI ’s

that control the threshold corrections are

1

M2
I

=
16

M2
s

∣∣η(TI)|4
∣∣η(UI)|4 ImTI ImUI , I = 2, 3

=
16

M2
Planck

∣∣η(TI)
∣∣4 ∣∣η(UI)

∣∣4 ImSdil ImTI ImUI , (6.9)

and are close to the string scale Ms. In the above expression, we introduce the string

coupling constant, which is related to the dilaton field, g2
s = 1/ ImSdil, in order to display

the threshold masses in units of gravitational scale.

The contributions biI∆(TI , UI) controlled by the MI ’s have to be completed by the uni-

versal contribution −kiY (TI , UI), whose order of magnitude is close to 1. Being infrared

finite, these corrections are continuous functions that remain finite even at special values

of (TI , UI), where additional massless states arise. Thus, we are free to absorb them in a

redefinition of the string coupling [29] :

16π2

g2
renor

=
16 π2

g2
s

− 1

2
Y (T2, U2)− 1

2
Y (T3, U3) , (6.10)

where the factors 1
2

arise from the action of the second Z2 (see Footnote 7) and the “renor-

malized” string coupling is

g2
renor =

g2
s

1− 1
32π2

(
Y (T2, U2) + Y (T3, U3)

)
g2

s

. (6.11)

When the 2nd and 3rd complex planes are realized as (2, 0) non-symmetric compactifi-

cations via fermionic constructions, the natural values for ImTI and ImUI are of order 1.

Moreover, the target space dualities SL(2,Z)TI × SL(2,Z)UI of the (2, 2) case are broken

to some sub-groups. Consequently,
∣∣η(TI)

∣∣4 and
∣∣η(UI)

∣∣4 are replaced by products of other

modular functions, with however identical weights. In all cases, (2, 2) and (2, 0), the orders

of magnitude of the dressed threshold scales MI , I = 2, 3, remain close to the string scale.

We are now ready to collect all our previous results and present the 1-loop effective poten-

tial and running gauge couplings arising in Z2×Z2 moduli-deformed fermionic construction.
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We consider models where N = 1 supersymmetry is further spontaneously broken to N = 0

at a scale in the TeV regime, m
(E)
3
2

= O(1–10) TeV, while the validity of perturbation theory

is preserved. Our work is restricted to the case where only the 1st Z2 action is free. The

second one and the product of the two have fixed points. Under these conditions, only one

internal 2-torus, the 1st in our conventions, is large and involved in the N = 4 → N = 2

breaking and N = 1 → N = 0 breaking, which are both spontaneous. This was done by

introducing suitable shifts along this torus but dual shifts may have been considered.

In these models, we find remarkable that the N = 4 sector spontaneously broken to

N = 0, which is referred as sector B, is the only one leading to a substantial contribution to

the effective potential (the cosmological term), when mB ≡ m 3
2

is small compared to cMs,

Veff =
1

4
VeffB +O

(
e−c

√
ImT1

)
= −1

4

2 + dGB − nFB

2π7

1

( ImT1)2
EαB ,βB(U1| 3) +O

(
e−c

√
ImT1

)
,

(6.12)

which is proportional to m4
3
2

. Moreover, the relevant threshold corrections to the gauge

couplings arise from the sector B, as well as from four sectors exhibiting exact N = 2 su-

persymmetries : The sectors C and D, which are actually sub-sectors of the “massive” 1st

complex plane, and the 2nd and 3rd complex planes. The associated NC , ND, N2, N3 = 2

supersymmetries are all non-aligned. These five contributions to the gauge coupling thresh-

olds are characterized by effective mass scales : MB,C,D depend on the “massive” 1st plane

moduli T1, U1, while MI , I = 2, 3, depends on the Ith plane moduli TI , UI and is modular

invariant, with respect to some target space duality sub-group of SL(2,Z)TI × SL(2,Z)UI .

The running effective coupling constants in the N = 1 → N = 0 models take a very

simple form, once expressed in terms of the dressed mass scales and coupling grenor,

16 π2

g2
i (Q)

= ki
16π2

g2
renor

− 1

4
biB log

(
Q2

Q2 +M2
B

)
− 1

4
biC log

(
Q2

Q2 +M2
C

)
− 1

4
biD log

(
Q2

Q2 +M2
D

)
− 1

2
bi2 log

(
Q2

M2
2

)
− 1

2
bi3 log

(
Q2

M2
3

)
, (6.13)

where Q < cMs is the energy scale measured in string frame (Q(E) < cMPlanck in the Einstein

frame) and the sector by sector β-coefficients are

biB = −8

3
{C(OB)− C(RB)} , biC = −2 {C(OC)− C(RC)} , biD = −2 {C(OD)− C(RD)} ,

bi2 = −2 {C(O2)− C(R2)} , bi3 = −2 {C(O3)− C(R3)} .
(6.14)
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The OB,C,D,2,3 and RB,C,D,2,3 symbols refer to adjoint and matter representations of gauge

group factors Gi
B,C,D,2,3 that are realized in the sectors B,C,D and I = 2, 3, respectively.

In total, the β-function coefficient of the N = 1 → N = 0 model, for Q smaller than all

threshold scales, is given by

bi =
1

4

(
biB + biC + biD

)
+

1

2

(
bi2 + bi3

)
. (6.15)

When ImU1 = O(1), the dressed masses measured in Einstein frame, M
(E)
B,C,D = MB,C,D/gs,

are all in the TeV region. Thus, they decouple in Eq. (6.13), when Q(E) = Q/gs reaches

larger energy scales, thanks to the restoration of N = 4 supersymmetry in the sector B and

1st plane. When ImU1 or 1/ ImU1 is larger, say up to 20 or so, only two scales among M
(E)
B,C,D

are in the TeV region, while the remaining one can be up to cMPlanck. In this case, the full

restoration of N = 4 supersymmetry in the sector B and 1st plane occurs only at energies

above this highest threshold scale. In Eq. (6.13), the reason why we do not add Q2-terms

in front of the M2
I ’s, I = 2, 3, is that the order of magnitude of these two threshold masses

is close to the string scale Ms, and that in our effective description, the physical energy Q

must not exceed cMs.

From the effective field theory viewpoint, the SSS susy breaking gives rise to a specific

N = 1 supergravity no-scale model, with so-called “SdilT1U1”-breaking mechanism [31].

We remind that Sdil is the four dimensional dilaton, while T1, U1 are the moduli of the

“massive” 1st complex plane. The moduli of the 2nd and 3rd planes do not participate

in the supersymmetry breaking. As explained in Ref. [31], the determination via radiative

corrections of the vacuum expectation value of the “no-scale modulus” and thus of theN = 1

gravitino mass m
(E)
3
2

[32], at relatively low scale of order 1–10 TeV, requires that the genus-1

effective potential is free from terms that scale like
(
m

(E)
3
2

)2
Λ2. In such terms, Λ is the cut-off

of the effective field theory, which in principle can be as large as MPlanck or Ms. Thus, it

is remarkable that in the setup we consider in this work to break spontaneously N = 1 →
N = 0, such terms are absent, thanks to the underlying N = 4 → N = 0 supersymmetry

breaking structure of the sector B, which imposes the genus-1 effective potential to scale

like
(
m

(E)
3
2

)4
.
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7 Conclusions

In this paper, our concern is to implement a low scale spontaneous breaking of supersymme-

try in N = 1 models, while maintaining the validity of gauge coupling perturbation theory.

We address this question within the context of N = 1 Z2 × Z2 non-symmetric orbifolds,

realized by moduli-deformed fermionic constructions. At the N = 1 supersymmetric level, it

is known that an N = 2 complex plane realized as an N = 4→ N = 2 spontaneous breaking

of supersymmetry yields threshold corrections to the gauge couplings, with a mild logarith-

mic dependence on the complex plane volume [18]. This contrasts with the case where the

Z2 action responsible of the N = 4 breaking to N = 2 is not freely acting. Indeed, a linear

dependence of the thresholds on the complex plane volume arises in this case, invalidating

perturbation theory once the volume is large. What we have shown in the present work is

that the above solution to the “decompactification problem” can be extended to the case

where N = 1 supersymmetry is further spontaneously broken to N = 0 at a low scale, by

implementing an additional Zshift
2 orbifold shift acting along the large internal dimensions

and coupled with the helicity charges (a, b).

To arrive at this conclusion, we develop a sector by sector analysis of the models and

analyze systematically the associated induced threshold corrections. We find that one of the

Z2 twists, which for instance preserves the 1st complex plane, must act freely. Restricting

to the case where no “dual shifts” are implemented along this plane, the Z2 twist acts on

it as a shift. Allowing the volume of the 1st plane to be large, we can further implement

the Zshift
2 shift responsible for the susy breaking to N = 0 along this plane. As desired,

the gravitino mass m
(E)
3
2

generated this way is low. We find that taking into account the

first Z2 (which has a free action) and the additional Zshift
2 only, three sub-sectors denoted as

B, C and D contribute substantially to the thresholds. What is meant by “substantially”

is that other sub-sectors that are non-supersymmetric contribute in the 1st complex plane,

but their effects are however exponentially suppressed when the gravitino mass is small,

m
(E)
3
2

�MPlanck. Moreover, this hierarchy allows another great simplification, since it implies

the contributions of the massive excitations of the string are also exponentially suppressed,

compared to those arising from the Kaluza-Klein towers of states above the charged massless

states.

The above discussion is general if the 2nd Z2 twist and the diagonal product of both
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Z2’s have fixed points. In this case, the 2nd and 3rd planes do not arise from a spontaneous

breaking of N = 4 supersymmetry and their volume (in Planck units) and shape moduli

must be close to 1, in order not to introduce the decompactification problem back. In

addition, supersymmetry has to be preserved at tree level in these sectors, since otherwise

an extremely large gravitino mass would be generated. These two planes are the remaining

sectors that contribute to the thresholds. Of course, other models where both Z2 actions

(and eventually their diagonal product as well) are freely acting could be analyzed. In these

cases, both the 1st and 2nd (and eventually the 3rd) internal 2-tori are allowed to be large

and involved in the spontaneous breaking of the supersymmetries.

In total, the five relevant sectors in the Z2×Z2 models we consider in the present paper,

which have N = 1 supersymmetry spontaneously broken to N = 0 at low scale à la SSS, are

as follows :

• The sector B, describes the N = 0 spontaneously broken phase of the N = 4 spectrum of

the initial parent theory. Surprisingly, this sector is the only non-supersymmetric one

that is relevant for the gauge coupling thresholds and effective potential. In fact, the

other sectors relevant for the gauge couplings being supersymmetric, the sector B is

solely responsible for the generation of the cosmological term. The latter is proportional

to
(
m

(E)
3
2

)4
and no M2

Planck

(
m

(E)
3
2

)2
term is induced.

• The sectors C and D, which are both sub-sectors of the non-chiral 1st complex plane,

preserve NC = 2 and ND = 2 supersymmetries, respectively.

• The 2nd and 3nd chiral complex planes preserve N2 = 2 and N3 = 2 supersymmetries,

respectively.

The gauge coupling thresholds arising from the above sectors are controlled by associated

mass scales, which are functions of the Kälher and complex structures TI , UI of the corre-

sponding planes, I = 1, 2, 3. In the 1st plane, the smallest of the masses M
(E)
B , M

(E)
C and

M
(E)
D is about 1–10 TeV (as is the case for all of them if U1 ' i). However, any hierarchy

among these scales can be achieved by permuting the formal expressions of M
(E)
B,C,D, which

can be done by changing the pattern of shifts along the 1st complex plane. On the contrary,

in the 2nd and 3rd planes, M
(E)
2 and M

(E)
3 are close to the Planck scale. Finally, additional
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universal contributions of order 1 arising from these 2nd and 3rd planes correct slightly the

large inverse bare coupling, ki/g2
s .

What we have found is the complete dependence of the running effective gauge couplings

on the physical scale Q(E), up to cMPlanck, including when Q(E) crosses the thresholds scales

M
(E)
B,C,D and that the associated Kaluza-Klein towers of states decouple from the thresholds.

The upper bound cMPlanck, where c is not far from 1, is the order of magnitude of the

massive string modes in Planck units, whose exponentially suppressed contributions have

been neglected. The result, displayed in Eq. (6.13), takes a universal form that depends only

on the β-function coefficients associated to the above listed five relevant sectors. Moreover,

the form itself of the β-function coefficients is universal, Eqs (6.14). The factors ∓2 in

the coefficients biC , b
i
D, b

i
2, b

i
3 arise from the massless vector multiplets and hypermultiplets

charged under the gauge group factors Gi
C,D,2,3, which are realized in each sectors. The

factors ∓8
3

in biB follow from specific truncations to N = 0 of the massless N = 4 vector

multiplets in the parent models : 1 vector boson plus 6 real scalars contribute −8
3
, while 4

Majorana fermions contribute 8
3
. All these states are charged under a gauge group factor

Gi
B, realized in the sector B.

While the early examples of realistic free fermionic models consisted in isolated exam-

ples [33], in more recent years, systematic classification methods have been developed that

enable scanning large classes of three generations models, with viable phenomenological

properties [23]. However, in all these vacua [23, 33], as well as in other quasi-realistic het-

erotic string models [34], N = 1 supersymmetry is unbroken and its spontaneous breaking to

N = 0 needs to be implemented. When this is done via Stringy Scherk-Schwarz mechanism

in Z2×Z2 fermionic construction, the conditions for the present solution to the decompact-

ification problem to be valid are however incompatible with the physical requirement that

the spectrum be chiral (the large volume limit of the 1st internal 2-torus leads to an N = 2

spectrum and the twisted spectra of the 2nd and 3rd planes are independent of this volume).

Thus, implementing an N = 1 → N = 0 spontaneous breaking of supersymmetry in a

realistic, chiral model, while preserving perturbation theory remains a challenge. We also

note the recent work of Ref. [35] on the partition functions of non-supersymmetric heterotic

string vacua.

45



Acknowledgement

We are grateful to C. Angelantonj, I. Antoniadis, D. Luest, I. Florakis, J. Rizos and N.

Toumbas for fruitful discussions. A.F. acknowledges the Laboratoire de Physique Théorique
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A The moduli-deformed fermionic construction

The context of our study is within the framework of fermionic constructions, where marginal

(1, 1)-current-current deformations are implemented. We restrict to the introduction of the

moduli TI and UI , I = 1, 2, 3, associated to the three internal 2-tori involved in the Z2 × Z2

models in bosonic language. The goal of this appendix is to review the procedure to achieve

these deformations. Throughout this paper, our definition for the θ-functions is, for α, β ∈ R,

θ[αβ ](v|τ) =
∑
m

q
1
2

(m−α
2

)2e2iπ(v−β
2

)(m−α
2

) , where q = e2iπτ . (A.1)
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A.1 One coordinate compactification

In the fermionic construction, one deals with two holomorphic and two antiholomorphic

worldsheet Majorana-Weyl fermions ω, y, ω̄, ȳ, rather than an internal compactified coordi-

nate X(z, z̄) = XL(z)+XR(z̄). The well known fermion-boson equivalence in two dimensions

is established via the definitions and identifications

ψ =
ω + iy√

2
≡ :ei

√
2XL : , ψ̄ =

ω̄ − iȳ√
2
≡ :e−i

√
2XR : , (A.2)

where the periodicity of X is 2πR0, with R0 = 1/
√

2. These systems lead to the same U(1)

left- and right-moving current algebras generated by

JL = :ψψ∗ :≡ i
√

2 ∂X , JR = : ψ̄ψ̄∗ :≡ −i
√

2 ∂̄X . (A.3)

In general, a non-left/right-symmetric model involves sectors characterized by specific

boundary conditions of the complex fermions ψ, ψ̄ on the genus one Riemann surface,

ψ(z + 1) = eiπ(γ+hL) ψ(z) , ψ̄(z̄ + 1) = e−iπ(γ+hR) ψ̄(z̄) ,

ψ(z + τ) = eiπ(δ+gL) ψ(z) , ψ̄(z̄ + τ̄) = e−iπ(δ+gR) ψ̄(z̄) , (A.4)

whose bosonic counterpart for the chiral bosons XL,R leads

XL(z + 1) = XL(z) + πR0(γ + hL) , XR(z̄ + 1) = XR(z̄) + πR0(γ + hR) ,

XL(z + τ) = XL(z) + πR0(δ + gL) , XR(z̄ + τ̄) = XR(z̄) + πR0(δ + gR) . (A.5)

In the above notations, which are chosen for later convenience, γ and δ are integers, while

hL, gL and hR, gR are real constants referred as left-moving and right-moving shifts.

The model can also involve a Z2 twist action on the bosonic coordinate, X → −X, whose

translation in fermionic language is (ω, y, ω̄, ȳ)→ (ω,−y, ω̄,−ȳ), i.e.

ψ → ψ∗ , ψ̄ → ψ̄∗ ⇐⇒ X → −X . (A.6)

In this case, four sectors labeled by pairs (H,G) of integers arise, as dictated by the boundary

conditions

JL(z + 1) = (−1)HJL(z) , JR(z̄ + 1) = (−1)HJR(z̄) ,

JL(z + τ) = (−1)GJL(z) , JR(z̄ + τ̄) = (−1)GJR(z̄) . (A.7)
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The marginal deformation we want to consider is implemented by the addition of the

operator λJLJR, known as Thirring interaction in fermionic language, in the worldsheet La-

grangian density. Its effect in the bosonic picture is clear, since λJLJR = 2λ∂X∂̄X, which

corresponds to a change of circle squared radius, R2
0 → R2 = R2

0(1+2λ). In the fermionic pic-

ture, the Thirring interactions can be totally absorbed by changing the boundary conditions

of the worldsheet complex fermions ψ, ψ̄.

Untwisted sector

In the present context, we refer as “untwisted” the sector where JL and JR are periodic along

both directions of the worldsheet torus, (H,G) = (0, 0). The contribution to the one-loop

partition function of the complex left-moving and right-moving fermions ψ, ψ̄ is expressed

in terms of θ-functions according to the boundary conditions (A.4),

θ[γ+hL
δ+gL

] θ̄[γ+hR
δ+gR

]

ηη̄
≡ eiπ

h′
2

(δ+ĝ′) Z1,1

[
γ;hL, hR
δ; gL, gR

∣∣∣00](R0) , (A.8)

where the r.h.s. expresses the result in the bosonic picture, which is valid at the fermionic

point R0. The bosonic side involves naturally

(h′, g′) = (hL − hR, gL − gR) , (ĥ′, ĝ′) =
(hL + hR

2
,
gL + gR

2

)
, (A.9)

in terms of which we have for arbitrary radius R,

Z1,1

[
γ;hL, hR
δ; gL, gR

∣∣∣00](R) =
R
√
τ2ηη̄

∑
m̃,n

e
−πR

2

τ2

∣∣∣(m̃− g′2 )+(n−h
′
2

)τ
∣∣∣2+iπ(m̃ĥ′−nĝ′) eiπ(m̃n+m̃γ−nδ) . (A.10)

The identity (A.8) can be derived by writing the powers of q and q̄ in the θ-functions as

q
1
2

(m− γ+hL
2

)2 q̄
1
2

(m−n− γ+hR
2

)2 and performing a Poisson resummation on the momentum charge

m [36]. The phase eiπ
h′
2

(δ+ĝ′) expresses the non-trivial behavior of the (1, 1)-conformal block

under modular transformation, while Z1,1 is modular covariant. Actually, Z1,1 couples the

modular covariant Γ1,1-lattice shifted by (h′, g′) and (ĥ′, ĝ′),

Γ1,1

[
h′, ĥ′

g′, ĝ′

]
(R) =

R
√
τ2

∑
m̃,n

e
−πR

2

τ2

∣∣∣(m̃− g′2 )+(n−h
′
2

)τ
∣∣∣2+iπ(m̃ĥ′−nĝ′) , (A.11)

to the characters (γ, δ) via the modular invariant phase eiπ(m̃n+m̃γ−nδ). The modular trans-
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formations act as

τ → −1

τ
⇐⇒ (h′, g′)→ (h′, g′)S , (ĥ′, ĝ′)→ (ĥ′, ĝ′)S , (γ, δ)→ (γ, δ)S ,

τ → τ + 1 ⇐⇒ (h′, g′)→ (h′, g′)T , (ĥ′, ĝ′)→ (ĥ′, ĝ′)T , (γ, δ)→ (γ, δ + γ − 1) ,

where S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
. (A.12)

Given the fact that the marginal deformation by JLJR in the bosonic picture amounts to

changing the argument R of Z1,1, whose modular properties are R-independent, the contri-

bution to the partition function of the untwisted sector of the R modulus-deformed fermionic

construction is obtained by replacing

θ[γ+hL
δ+gL

] θ̄[γ+hR
δ+gR

]

ηη̄
−→ eiπ

h′
2

(δ+ĝ′) Z1,1

[
γ;hL, hR
δ; gL, gR

∣∣∣00](R) . (A.13)

Note that the particular values R = p
q
R0 for p

q
rational can be realized in fermionic language

by implementing a Zp × Zq quotient on the theory, were the orbifold generators act as

phases similar to Eq. (A.4), or shifts similar to Eq. (A.5) in bosonic language. A well known

example of this procedure is that the left/right-symmetric compactification on S1(R)/Zshift
2

is equivalent to that on S1(R/2).

Twisted sectors

The twisted sectors, which have H,G not both even, can be considered in the bosonic

language for arbitrary radius R. The boundary conditions (A.7) imply ∂X and ∂̄X have

vanishing constant modes, so that no R-dependent zero mode lattice arises in these sectors

and the JLJR marginal deformation is trivial. The alternative point of view, where the switch

from R0 to R = p
q
R0 is implemented in the fermionic construction by a Zp × Zq orbifold

action, leads to the same conclusion. For instance, when H = 1, the key point is that the

boundary conditions for some phases ϕL, ϕR are

ψ(z + 1) = (eiϕLψ)∗(z) , ψ̄(z̄ + 1) = (eiϕRψ̄)∗(z̄) , (A.14)

and become trivial under the redefinitions

ψ̃(z) ≡ e
i
2
ϕL ψ(z) , ˜̄ψ(z̄) ≡ e

i
2
ϕR ψ̄(z̄) . (A.15)

In other words, the twisted sectors of the R modulus-deformed fermionic construction are

those of the undeformed one.
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In a twisted sector, the boundary conditions of ω, y, ω̄, ȳ along the cycles of the genus

one Riemann surface are either periodic or antiperiodic. In other words, when a Z2 twist is

implemented, hL,R and gL,R are restricted to be integer. The contribution of ω, y, ω̄, ȳ to the

one-loop partition function is

1

ηη̄
θ

1
2 [γ+hL
δ+gL

] θ
1
2 [γ+hL+H
δ+gL+G ] θ̄

1
2 [γ+hR
δ+gR

] θ̄
1
2 [γ+hR+H
δ+gR+G ] ≡ e

iϕ

[
γ;hL, hR
δ; gL, gR

∣∣H
G

]
Z1,1

[
γ;hL, hR
δ; gL, gR

∣∣∣HG], (A.16)

where the r.h.s. shows the result in non-left/right-symmetric orbifold language. In fact, the

bosons yield

Z1,1

[
γ;hL, hR
δ; gL, gR

∣∣∣HG]=

∣∣∣∣∣ 2η

θ[1−H1−G ]

∣∣∣∣∣P [γ;hL, hR
δ; gL, gR

∣∣∣HG] , (A.17)

where P is a modular invariant projector that picks up the only non-trivial contributions,

which arise from the fixed points of the non-symmetric Z2 orbifold,

P
[
γ;hL, hR
δ; gL, gR

∣∣∣HG] =
1

2

(
1 + eiπ(γ+hL)(δ+gL)

) 1

2

(
1 + eiπ(γ+hL+H)(δ+gL+G)

)
×

1

2

(
1 + eiπ(γ+hR)(δ+gR)

) 1

2

(
1 + eiπ(γ+hR+H)(δ+gR+G)

)
. (A.18)

Beside Eq. (A.12), the modular transformations act on (H,G) as,

τ → −1

τ
⇐⇒ (H,G)→ (H,G)S , τ → τ + 1 ⇐⇒ (H,G)→ (H,G)T . (A.19)

The relation (A.16) is obtained via the θ-function identities

θ[10]θ[00]θ[01] = 2η3 , θ[11] = 0 i.e. θ2θ3θ4 = 2η3 , θ1 = 0 , (A.20)

while from the fermionic point of view, the projector P captures the fact that the sectors

that involve θ1 are vanishing. The phase in the r.h.s. of Eq. (A.16) is

ϕ
[
γ;hL, hR
δ; gL, gR

∣∣∣HG] =
π

2
(gL − gR)(1−H −G) for δ + gL, δ + gR, H,G ∈ {0, 1} , (A.21)

but varies accordingly, when some of the above arguments take other integer values.

Left/right-symmetric case

At this stage, the left- and right-moving shifts we have described are the most general ones.

In the following, we concentrate on a case of particular interest that corresponds to the

left/right-symmetric bosonic compactification.
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In sectors where ĥ′ and ĝ′ vanish, we define

(h, g) := (hR, gR) = (−hL,−gL)

(
i.e. (h, g) =

(
−h

′

2
,−g

′

2

)
and (ĥ′, ĝ′) = (0, 0)

)
, (A.22)

and consider the fermionic block

eiπ(k− 1
2

)(hG−gH)

(
eiπhδ

θ[γ−hδ−g ] θ̄[γ+h
δ+g ]

ηη̄

) 1
2
(
eiπh(δ+G)

θ[γ+H−h
δ+G−g ] θ̄[γ+H+h

δ+G+g ]

ηη̄

) 1
2

. (A.23)

Since the quantity hG − gH is modular invariant, the phase eiπ(k− 1
2

)(hG−gH) can be intro-

duced for any real k. Moreover, we see from Eq. (A.8) that the specific insertion of phase

eiπh(δ+G
2

) makes the fermionic block modular covariant and allows γ, δ to be defined modulo

2. Summing over γ, δ equal to 0, 1, we obtain when h, g are restricted to be integer,

Z fer,k
1,1

[
h
g

∣∣∣HG] := eiπ(k− 1
2

)(hG−gH) 1

2

∑
γ,δ

eiπ[h(δ+G
2

)−g(γ+h+H
2

)]

∣∣∣∣∣θ[
γ+h
δ+g ]

η

∣∣∣∣∣
∣∣∣∣∣θ[

γ+h+H
δ+g+G ]

η

∣∣∣∣∣
= eikπ(hG−gH) 1

2

∑
γ̃,δ̃

eiπ(−gγ̃+hδ̃−hg)

∣∣∣∣∣θ[
γ̃

δ̃
]

η

∣∣∣∣∣
∣∣∣∣∣θ[

γ̃+H

δ̃+G
]

η

∣∣∣∣∣ , (A.24)

where we have defined γ̃ = γ+h and δ̃ = δ+g in the second line. From now on, we restrict k

to be integer modulo 2, so that h, g and H,G are defined modulo 2 in the above expression.

In this case, we also have

Z fer,k
1,1

[
h
g

∣∣∣HG]= ei(1−k)π(hG−gH) 1

2

∑
γ̂,δ̂

eiπ(−gγ̂+hδ̂−hg)

∣∣∣∣∣θ[
γ̂+H

δ̂+G
]

η

∣∣∣∣∣
∣∣∣∣∣θ[

γ̂

δ̂
]

η

∣∣∣∣∣ , (A.25)

which shows that changing k → 1 − k corresponds to imposing the twist to act on ω, ω̄

instead of y, ȳ, which leads to an equivalent model.

For (H,G) = (0, 0), we obtain from the definition (A.23)

Z fer,k
1,1

[
h
g

∣∣∣00]=
1

2

∑
γ,δ

eiπhδ
θ[γ−hδ−g ] θ̄[γ+h

δ+g ]

ηη̄

=
1

2

∑
γ,δ

R0√
τ2ηη̄

∑
m̃,n

e
−πR

2
0

τ2
|(m̃+g)+(n+h)τ |2

eiπ(m̃n+m̃γ−nδ)

=
2R0√
τ2ηη̄

∑
m̃′,n′

e
−π(2R0)

2

τ2
|(m̃′+ g

2
)+(n′+h

2
)τ|2 :=

Γ1,1[hg ](2R0)

ηη̄
, (A.26)
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where the sum over γ, δ projects out the odd values of m̃ and n. Thus, we recover the well

know bosonic Γ1,1-lattice considered in Eq. (3.5), with shifts (h, g) and radius R1 = 2R0.

For (H,G) 6= (0, 0) modulo 2, we use Eqs (A.16)–(A.18) applied for hL,R = gL,R = 0 to

write

Z fer,k
1,1

[
h
g

∣∣∣HG]= eikπ(hG−gH) 1

2

∑
γ,δ

eiπ(−gγ+hδ−hg)

∣∣∣∣∣ 2η

θ[1−H1−G ]

∣∣∣∣∣ δγδ,0 mod 2 δ(γ+H)(δ+G),0 mod 2

= eikπ(hG−gH)

∣∣∣∣∣ 2η

θ[1−H1−G ]

∣∣∣∣∣ (δ(h,g),(0,0) mod 2 + δ(h,g),(H,G) mod 2

)
=

∣∣∣∣∣ 2η

θ[1−H1−G ]

∣∣∣∣∣ δ∣∣h H
g G

∣∣,0 mod 2
, (A.27)

which is nothing but the (H,G)-twisted and (h, g)-shifted sector of a circle compactifica-

tion [15].

Using the rule shown in Eq. (A.13), the (1, 1)-block of the R-modulus deformed fermionic

construction that realizes the left/right-symmetric case in bosonic language is obtained by

substituting

Z fer,k
1,1

[
h
g

∣∣∣HG]= eikπ(hG−gH) 1

2

∑
γ,δ

eiπ(−gγ+hδ−hg)

∣∣∣∣∣θ[γδ ]η
∣∣∣∣∣
∣∣∣∣∣θ[γ+H

δ+G ]

η

∣∣∣∣∣ −→ Z1,1

[
h
g

∣∣∣HG](2R) ,

(A.28)

where the r.h.s. is the block associated to a twisted and shifted circle compactification at

arbitrary radius 2R,

Z1,1

[
h
g

∣∣∣HG](2R) =


Γ1,1[hg ](2R)

ηη̄
, when (H,G) = (0, 0) mod 2∣∣∣∣∣ 2η

θ[1−H1−G ]

∣∣∣∣∣ δ∣∣h H
g G

∣∣,0 mod 2
, when (H,G) 6= (0, 0) mod 2 .

(A.29)

Before considering the two coordinates compactification, we would like to make some

remarks. Summing over the shifts h, g, we obtain

1

2

∑
h,g

Z fer,k
1,1

[
h
g

∣∣∣HG]=
1

2

∑
γ,δ

e−iπ(γ+kH)(δ+kG)

∣∣∣∣∣θ[γδ ]η
∣∣∣∣∣
∣∣∣∣∣θ[γ+H

δ+G ]

η

∣∣∣∣∣ = Z1,1[HG ](R0) , (A.30)
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where

Z1,1[HG ](R) =


Γ1,1(R)

ηη̄
, when (H,G) = (0, 0) mod 2∣∣∣∣∣ 2η

θ[1−H1−G ]

∣∣∣∣∣ , when (H,G) 6= (0, 0) mod 2

(A.31)

and Γ1,1(R) ≡ Γ1,1[00](R) is the circle compactification lattice. Eq. (A.30) expresses the

geometrical fact that
S1(2R0)

Zshift
2 × Z2

=
S1(R0)

Z2

, (A.32)

i.e. that the shift divides the radius of compactification by a factor of 2, even when the circle

is twisted. However, from the fermionic point of view, the natural definition of the twisted

(1, 1)-conformal block is without the phase e−iπ(γ+kH)(δ+kG) present in Eq. (A.30). Thus, we

take

Z fer
1,1[HG ] :=

1

2

∑
γ,δ

∣∣∣∣∣θ[γδ ]η
∣∣∣∣∣
∣∣∣∣∣θ[γ+H

δ+G ]

η

∣∣∣∣∣ =


1

2

∑
γ,δ

θ[γδ ] θ̄[
γ
δ ]

ηη̄
, when (H,G) = (0, 0) mod 2∣∣∣∣∣ 2η

θ[1−H1−G ]

∣∣∣∣∣ , when (H,G) 6= (0, 0) mod 2 ,

(A.33)

where we have used Eqs (A.16)–(A.18) for hL,R = gL,R = 0 in the second line. Since Eq. (A.8)

gives

1

2

∑
γ,δ

θ[γδ ] θ̄[
γ
δ ]

ηη̄
=

R0√
τ2ηη̄

∑
m̃,n

e
−πR

2
0

τ2
|m̃+nτ |2 1

2

∑
γ,δ

eiπ(m̃n+m̃γ−nδ)

=
2R0√
τ2ηη̄

∑
m̃′,n′

e
−π(2R0)

2

τ2
|m̃′+n′τ |2

=
Γ(2R0)

ηη̄
, (A.34)

we finally conclude as expected that

Z fer
1,1[HG ] = Z1,1[HG ](2R0) . (A.35)

Comparing Eqs (A.30), (A.33) and (A.35), we see that if the shift divides the radius by 2 in

bosonic language, it flips the signs in front of θ1-functions in fermionic language. We thus

have Z1,1[HG ](2R0) = Z1,1[HG ](R0), a fact that can be understood as a T-duality. Actually,

since 2R0 = 1/R0, the shift operation that changes 2R0 → R0 is equivalent to the operation

1/R0 → R0.

Before concluding this subsection, we would like to mention that in order to simplify

formulas in the core of our paper, we have used the convention to take Z1,1

[
h
g

∣∣∣HG](R) rather

than Z1,1

[
h
g

∣∣∣HG](2R) in the r.h.s. of the substitution (A.28).
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A.2 Two coordinates compactification

Proceeding in a similar way for a second coordinate, we can deform even further an initial

fermionic model by switching on the full metric Gij and antisymmetric tensor Bij moduli, i =

1, 2. This is done without changing the modular properties of the initial model constructed at

the fermionic point. As before, we introduce integers γi, δi, together with real left- and right-

moving shifts hiL,R, g
i
L,R. In case a Z2 twist is implemented, we suppose it acts simultaneously

on the two coordinates.

Untwisted sector

We start with the sector (H,G) = (0, 0). Defining linear combinations h′i, g′i, ĥ′i, ĝ′i as in

Eq. (A.9), the undeformed (2, 2)-conformal block takes the form

θ[
γ1+h1L
δ1+g1L

] θ̄[
γ1+h1R
δ1+g1R

]

ηη̄

θ[
γ2+h2L
δ2+g2L

] θ̄[
γ2+h2R
δ2+g2R

]

ηη̄
≡ e

iπ
[
h′1
2

(δ1+ĝ′1)+h′2
2

(δ2+ĝ′2)
]
Z2,2

[
γi;hiL, h

i
R

δi; giL, g
i
R

∣∣∣00](T0, U0) ,

(A.36)

where (T0, U0) = ( i
2
, i) and, for arbitrary T and U ,

Z2,2

[
γi;hiL, h

i
R

δi; giL, g
i
R

∣∣∣00](T, U) =

√
detG

τ2(ηη̄)2

∑
m̃i,ni

e
− π
τ2

[
m̃i− g

′i
2

+
(
ni−h

′i
2

)
τ
]

(Gij+Bij)
[
m̃j− g

′j
2

+
(
nj−h

′j
2

)
τ̄
]
×

eiπ(m̃iĥ
′i−niĝ′i) eiπ(m̃in

i+m̃iγ
i−niδi) , (A.37)

with T, U related to the metric and antisymmetric tensor as

Gij =
ImT

ImU

(
1 ReU

ReU |U |2
)
, Bij = ReT

(
0 1
−1 0

)
. (A.38)

Here also, Z2,2 couples non-trivially the Γ2,2-lattice shifted by (hi, gi) and (ĥi, ĝi),
√

detG

τ2

∑
m̃i,ni

e
− π
τ2

[
m̃i− g

′i
2

+
(
ni−h

′i
2

)
τ
]

(Gij+Bij)
[
m̃j− g

′j
2

+
(
nj−h

′j
2

)
τ̄
]
eiπ(m̃iĥ

′i−niĝ′i) (A.39)

to the characters (γi, δi), via the modular invariant phase eiπ(m̃in
i+m̃iγ

i−niδi).

The contribution to the partition function of the untwisted sector of the T, U moduli-

deformed fermionic construction is obtained by replacing T0, U0 by arbitrary T and U :

θ[
γ1+h1L
δ1+g1L

] θ̄[
γ1+h1R
δ1+g1R

]

ηη̄

θ[
γ2+h2L
δ2+g2L

] θ̄[
γ2+h2R
δ2+g2R

]

ηη̄
−→ e

iπ
[
h′1
2

(δ1+ĝ′1)+h′2
2

(δ2+ĝ′2)
]
Z2,2

[
γi;hiL, h

i
R

δi; giL, g
i
R

∣∣∣00](T, U) .

(A.40)
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Twisted sectors

When H and G are not both even, the associated twisted sectors of the T, U moduli-deformed

fermionic construction are those of the undeformed one. This is again due to the fact that

they are moduli-independent, which implies that the expressions of their conformal blocks

are those given at the fermionic point (T0, U0) :

1

(ηη̄)2

∏
i

(
θ

1
2 [
γi+hiL
δi+giL

] θ
1
2 [
γi+hiL+H

δi+giL+G
] θ̄

1
2 [
γi+hiR
δi+giR

] θ̄
1
2 [
γi+hiR+H

δi+giR+G
]
)
≡ e

i
∑
i ϕ

[
γi;hiL, h

i
R

δi; gi
L
, gi
R

∣∣H
G

]
Z2,2

[
γj ;hjL, h

j
R

δj ; gjL, g
j
R

∣∣∣HG],
(A.41)

where in bosonic language we have

Z2,2

[
γj ;hjL, h

j
R

δj ; gjL, g
j
R

∣∣∣HG]=

∣∣∣∣∣ 2η

θ[1−H1−G ]

∣∣∣∣∣
2∏

i

P
[
γi;hiL, h

i
R

δi; giL, g
i
R

∣∣∣HG] . (A.42)

Left/right-symmetric case

Defining shifts hi, gi as in Eq. (A.22), we consider for integer ki’s the fermionic conformal

block

∏
i

eiπ(ki− 1
2

)(hiG−giH)

(
eiπh

iδi
θ[γ

i−hi
δi−gi ] θ̄[

γi+hi

δi+gi
]

ηη̄

) 1
2
(
eiπh

i(δi+G)
θ[γ

i+H−hi
δi+G−gi ] θ̄[γ

i+H+hi

δi+G+gi
]

ηη̄

) 1
2

, (A.43)

where γi, δi are integer modulo 2. Proceeding as in the one coordinate case, we sum over

γi, δi and find, when hi, gi are integer,

Z fer,kj

2,2

[
h1, h2

g1, g2

∣∣∣HG] :=
∏
i

eik
iπ(hiG−giH) 1

2

∑
γi,δi

eiπ(−giγi+hiδi−higi)

∣∣∣∣∣θ[γ
i

δi
]

η

∣∣∣∣∣
∣∣∣∣∣θ[

γi+H
δi+G

]

η

∣∣∣∣∣
=


Γ2,2[h

1, h2

g1, g2 ](4T0, U0)

(ηη̄)2
, when (H,G) = (0, 0) mod 2

4ηη̄

θ[1−H1−G ] θ̄[1−H1−G ]
δ∣∣h1 H
g1 G

∣∣,0 mod 2
δ∣∣h2 H
g2 G

∣∣,0 mod 2
,when (H,G) 6= (0, 0) mod 2 ,

(A.44)

where the Γ2,2 shifted lattice is defined in Eq. (4.2).

As said in Eq. (A.40), the moduli deformation amounts to changing the argument of the

lattice as (4T0, U0)→ (4T, U), where T, U are arbitrary. However, in the core of the paper,

we found convenient to take the lattice argument at arbitrary point in moduli space to be

(T, U), as indicated in Eq. (6.1).
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