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Abstract

The free fermionic construction of the heterotic string in four dimensions pro-
duced a large space of three generation models with the underlying SO(10)
embedding of the Standard Model states. The SO(10) symmetry is broken to
a subgroup directly at the string scale. Over the past few years free fermionic
models with the Pati–Salam and flipped SU(5) subgroups have been classified.
In this paper we extend this classification program to models in which the
SO(10) symmetry is broken at the string level to the SU(4)×SU(2)L×U(1)R
(SU421) subgroup. The subspace of free fermionic models that we consider
corresponds to symmetric Z2 × Z2 orbifolds. We provide a general argument
that shows that this class of SU421 free fermionic models cannot produce viable
three generation models.
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1 Introduction

The Standard Model of particle physics accounts successfully for all subatomic ob-
servational data. The gauge charges of the Standard Model matter states suggest its
embedding in SO(10) Grand Unified Theory, which is broken to the Standard Model
at the GUT or string scale. The SO(10) unification picture is further supported
by: the logarithmic evolution of the Standard Model gauge parameters; the proton
longevity; and the suppression of left–handed neutrino masses. The heterotic–string
[1] produces chiral SO(10) representations in its perturbative spectrum, and is there-
fore the one suited to explore the SO(10) GUTs structure underlying the Standard
Model. Phenomenological studies of the heterotic–string have been pursued since the
mid–eighties [2], using a variety of world–sheet [3, 4, 5] and target space techniques
[6, 7].

The free fermionic construction of the heterotic–string in four dimensions pro-
duced a rich space of phenomenological three generation models. These models admit
the underlying SO(10) GUT embedding of the Standard Model spectrum. However,
the SO(10) symmetry is broken directly at the string level. The early studies of
these models consisted of isolated examples that shared an underlying NAHE–base
structure [8]. Examples in which the SO(10) symmetry is broken to the: flipped
SU(5) (FSU5) [9]; SO(6) × SO(4) Heterotic String Pati–Salam Models (HSPSM)
[10]; SU(3)×SU(2)×U(1)2 Standard–like Models (SLM) [11]; SU(3)×SU(2)2×U(1)
left–right symmetric (LRS) [12]; and SU(4)×SU(2)×U(1) (SU421) [13]; subgroups
were studied. Among those the FSU5; SLM; HSPSM; LRS cases produced quasi–
realistic three generation models, whereas the SU421 case did not produce any viable
three generation model. The advantage of the SU421 models compared to the FSU5
and HSPSM is that they admit both the doublet–triplet, as well as the doublet–
doublet spitting mechanism [13]. We also note the recent interest in SU421 models
from purely phenomenological considerations [14].

The phenomenological free fermionic heterotic–string models are Z2×Z2 orbifolds
that are constructed at enhanced symmetry points in the moduli space [15, 16].
Many of the phenomenological properties of the models are rooted in their underlying
Z2 × Z2 structure [17]. In recent years systematic methods for the classification
of symmetric Z2 × Z2 free fermionic orbifolds were developed in [18] for type II
superstrings and in refs. [19, 20] for symmetric Z2 × Z2 heterotic–string orbifolds
with SO(10) GUT symmetry. The classification was extended in refs. [21, 22, 23]
and [24] to string vacua in which the SO(10) symmetry is broken to the SO(6)×SO(4)
Pati–Salam and to the flipped SU(5) subgroups, respectively. The Pati–Salam class
of free fermionic vacua produced examples of three generation exophobic models in
which exotic fractionally charged states only appear in the massive string spectrum
[21, 22], whereas the flipped SU(5) class of models did not produce exophobic models
with an odd number of generations [24].

In this paper we discuss the classification for the class of SU421 heterotic–string
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models. We provide a general argument that breaking the SO(10) symmetry to
this subgroup cannot produce three chiral generations in the prevalent free fermionic
construction which is based on symmetric Z2 × Z2 toroidal compactification with a
Z2×Z4 fermionic boundary conditions that break the SO(10) symmetry to SU(4)×
SU(2)× U(1).

2 SU(4)× SU(2)× U(1) Phenomenology

The field theory content of the N = 1 supersymmetric SU(4)C ×SU(2)L×U(1)R
model∗ was discussed in ref. [13]. The SU421 class of heterotic–string models differs
from the HSPSM models in the breaking of SU(2)R → U(1)R directly at the string
level. Similar to the HSPSM, the SU421 heterotic–string models admit the SO(10)
embedding and the chiral states are obtained from the spinorial 16 representations
of SO(10) which decomposes in the following way:

F i
L = (4, 2, 0) = (3, 2,

1

3
, 0) + (1, 2,−1, 0) =

(

u

d

)i

+

(

ν

e

)i

, (2.1)

U i
R = (4, 1,−

1

2
) = (3, 1,−

1

3
,−

1

2
) + (1, 1,+1,−

1

2
) = uci +N ci, (2.2)

Di
R = (4, 1,+

1

2
) = (3, 1,−

1

3
,+

1

2
) + (1, 2,+1,+

1

2
) = dci + eci. (2.3)

The first and second equalities show the decomposition under SU(4)C × SU(2)L ×
U(1)R and SU(3)C×SU(2)L×U(1)B−L×U(1)R, respectively. The electroweak U(1)Y
current is given by

U(1)Y =
1

2
U(1)B−L + U(1)R. (2.4)

From eq. (2.1) we note that FL produces the quarks and leptons weak doublets, and
that UR and DR produces the right–handed weak singlets. The two Higgs multiplets
of the Minimal Supersymmetric Standard Model, hu and hd, are given by,

hd = (1, 2,−
1

2
), (2.5)

hu = (1, 2,+
1

2
). (2.6)

The heavy Higgs states that are responsible for breaking SU(4)C × U(1)R gauge
symmetry to the Standard Model groups SU(3)× U(1)Y are given by the fields

H = (4, 1,−
1

2
) (2.7)

H = (4, 1,+
1

2
) (2.8)

∗we note that U(1)R as defined here is equal to 1/2U(1)L as defined in ref. [11].
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The SU421 heterotic–string models may also contain states that transform as

(6, 1, 0) = (3, 1,
1

3
, 0) + (3, 1,−

1

3
, 0).

These multiplets arise from the vectorial 10 representation of SO(10). These coloured
states generate proton decay from dimension five operators, and therefore must be
sufficiently heavy to be in agreement with the proton lifetime limits. An important
benefit of the SU421 symmetry breaking pattern is that these colour triplets may
be projected out by the Generalised GSO (GGSO) projections [25], and need not be
present in the low energy spectrum. The string doublet–triplet mechanism works in
all models that include the symmetry breaking pattern SO(10) → SO(6) × SO(4).
The HSPSM heavy Higgs states, which break SU(4)× SU(2)R → SU(3)C × U(1)Y ,
contain colour triplets with the charges of the states in (2.3) that may give rise to
dimension five proton decay mediating operators. In the HSPSM the superpotential
terms λ2HHD+λ3H̄H̄D̄ couples the colour triplets from the vectorial representation
(6, 1, 1) to the colour triplets arising from the heavy Higgs field. The GUT scale
VEVs of the heavy Higgs fields H and H̄ are used to give heavy mass to the Higgs
colour triplets. However, the heavy Higgs representations in the SU421 heterotic–
string models, eq. (2.8), do not contain the states with the charges of eq. (2.3).
Consequently, the stringy doublet–triplet splitting mechanism works only in models
in which the SO(10) symmetry is broken to SU(3)C × SU(2)L × U(1)2, SU(4)C ×
SU(2)L × U(1)R, or SU(3)C × SU(2)L × SU(2)R × U(1)B−L.

Another important advantage of the SU421 class of models versus the PS and
LRS models is with respect to the light Higgs representations. In the LRS and
PS models, the light Higgs states exist in bi–doublet representations and couple
simultaneously to the up– and down–type quarks, which may give rise to Flavor
Changing Neutral Currents (FCNC) at an unacceptable rate [26]. This introduces a
bi–doublet splitting problem. The solutions that have been proposed in the literature
[27] use a SU(2)L triplet representation that are not present in string models in which
the gauge symmetry is realised as a level one Kac–Moody algebra. On the other hand,
in SU421 models SU(2)R is broken at the string level and consequently the Higgs
bi–doublet is split at the string level.

The solutions to the doublet–doublet as well as the doublet–triplet splitting prob-
lems are the two appealing properties offered by the SU421 free fermionic heterotic–
string models. However, as we argue in the next section the free fermionic Z2 × Z2

orbifold models, with additional Z2 × Z4 basis vectors that are used to break the
SO(10) symmetry to SU(4)C × SU(2)L × U(1)R, cannot in fact produce three com-
plete chiral generations and therefore, like the NAHE–based free fermionic models
[13], these models do not produce viable SU421 string models.
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2.1 The SU(4)× SU(2)× U(1) Free Fermionic Construction

The string vacuum in the free fermionic formulation [3] is defined in terms of a set
of boundary condition basis vectors and the Generalised GSO projection coefficients,
which span the one–loop partition function. The basis vectors generate a finite ad-
ditive group Ξ =

∑

k nkbk where nk = 0, · · · , Nzk − 1. The physical states in the
Hilbert space of a sector α ∈ Ξ are obtained by acting on the vacuum with fermionic
and bosonic oscillators and by applying the GGSO projections. Each fermionic com-
plex oscillator acting on the vacuum is counted by a fermion number operator as
Fα(f) = 1 and α(f ∗) = −1. For periodic complex fermions with α(f) = 1, the vac-
uum is in a doubly degenerate spinorial representation |±〉, annihilated by the zero
modes f0 and f0

∗ and with fermion numbers F (f) = 0,−1, respectively. The U(1)
charges Q(f) of the unbroken Cartan generators of the right–moving gauge group
are given in terms of the boundary conditions and fermion numbers of the complex
right–moving world–sheet fermions by

Q(f) =
1

2
α(f) + F (f). (2.9)

In the light–cone gauge, the free fermionic heterotic–string models in four di-
mensions require 20 and 44, left–moving and right–moving real world–sheet fermions
respectively, to cancel the conformal anomaly. In the usual notation these are denoted

as: ψµ, χ1,...,6, y1,...,6, ω1,...,6 and y1,...,6, ω1,...,6, ψ
1,...,5

, η1,2,3, φ
1,...,8

.

2.2 The SU(4)× SU(2)× U(1) Gauge Group

In the following we set up the necessary ingredients for the classification of the
SU421 free fermionic heterotic–string models. The analysis is along similar lines to
the one performed in the classification of the SO(10) [19]; heterotic–string Pati–Salam
models [21]; and flipped SU(5) models [24]. The novelty compared to these cases is
that the SU421 models employ two basis vectors that break the SO(10) symmetry,
whereas the HSPSM and FSU5 models use only one. However, we argue below that
this class of heterotic–string vacua cannot in fact produce phenomenologically viable
models. The basis vectors that generate our SU(4)× SU(2)× U(1) heterotic–string
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models are given by the following 14 basis vectors

v1 = 1 = {ψµ, χ1,...,6, y1,...,6, ω1,...,6|y1,...,6, ω1,...,6, η1,2,3, ψ
1,...,5

, φ
1,...,8

},

v2 = S = {ψµ, χ1,...,6},

v2+i = ei = {yi, ωi|yi, ωi}, i = 1, . . . , 6,

v9 = b1 = {χ34, χ56, y34, y56|y34, y56, η1, ψ
1,...,5

}, (2.10)

v10 = b2 = {χ12, χ56, y12, y56|y12, y56, η2, ψ
1,...,5

},

v11 = z1 = {φ
1,...,4

},

v12 = z2 = {φ
5,...,8

},

v13 = α = {ψ
4,5
, φ

1,2
},

v14 = β = {ψ
4,5

= 1
2
, φ

1,...,6
= 1

2
}.

The basis vector 1 generates models with SO(44) gauge group from the Neveu–
Schwarz sector. The vector S produces N = 4 space–time supersymmetry. The
vectors e1,. . . ,e6 break the SO(44) gauge group to SO(32)× U(1)6 and preserve the
N = 4 space–time supersymmetry. The ei basis vectors correspond to all the possible
symmetric shifts of the six internal bosonic coordinates. The basis vectors b1 and b2
correspond to Z2 × Z2 orbifold twists and break N = 4 space–time supersymmetry
to N = 1. Additionally, they reduce the rank of gauge group by breaking the U(1)6

symmetry. Combined with the projections of the basis vectors z1 and z2 the SO(32)
gauge group is reduced to SO(10) × U(1)3 × SO(8)1 × SO(8)2, where SO(10) ×
U(1)3 and SO(8)1 × SO(8)2 correspond to the observable and hidden gauge groups,
respectively. The combined projection of the basis vectors α and β breaks the SO(10)
GUT symmetry to SU(4) × SU(2) × U(1), where α is identical to the basis vector
used in the classification of the Pati–Salam models, and hence breaks the SO(10)
symmetry to SO(6) × SO(4) and finally using the β basis vector with fractional
boundary conditions reduces the SO(10) gauge symmetry to SU(4)×SU(2)×U(1).

2.3 The String Spectrum

The space–time vector bosons that are obtained from the Neveu–Schwarz (NS)
sector and that survive the GGSO projections, defined by the basis vectors in (2.10)
generate the observable and hidden gauge groups given by:

Observable : SU(4)× SU(2)L × U(1)R × U(1)3

Hidden : SU(2)A × U(1)A × SU(2)B × U(1)B × SU(2)C × U(1)C × SO(4)2

The string states arising in other sectors transform under these gauge group factors.
Additional space–time vector bosons that enhance the NS observable and/or hidden
gauge groups may arise from additional sectors. In order to preserve the above gauge
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groups, all these additional space–time vector bosons need to be projected out. These
additional space–time vector bosons arise from the following 36 sectors

GEnh =



















































































z1, z1 + β, z1 + 2β,
z1 + α, z1 + α+ β, z1 + α+ 2β,
z2, z2 + β, z2 + 2β,

z2 + α, z2 + α+ β, z2 + α+ 2β,
z1 + z2, z1 + z2 + β, z1 + z2 + 2β,

z1 + z2 + α, z1 + z2 + α+ β, z1 + z2 + α+ 2β,
β, 2β, α,

α+ β, α+ 2β, x,
z1 + x+ β, z1 + x+ 2β, z1 + x+ α,

z1 + x+ α+ β, z2 + x+ β, z2 + x+ α+ β,
z1 + z2 + x+ β, z1 + z2 + x+ 2β, z1 + z2 + x+ α+ β,

x+ β, x+ α, x+ α+ β,



















































































, (2.11)

where x = 1 + S +
∑6

i=1 ei + z1 + z2.

2.4 The Matter Content

The observable matter states in heterotic–string vacuum with (2, 2) world–sheet
supersymmetry is embedded in the 27 representation of E6. In the free fermionic
construction that we adopt here, and using the basis vectors in (2.10), the E6 is first
broken to the SO(10)× U(1) symmetry. Therefore, the 27 of E6 decomposes in the
following way

27 = 16+ 10+ 1. (2.12)

Where the 16 transforms under the spinorial representation of SO(10) and 10 trans-
forms in the vectorial representation of the SO(10), and similarly for 27. The fol-
lowing 48 sectors produce states that give the spinorial 16 or 16 of SO(10)

B(1)
pqrs = S + b1 + pe3 + qe4 + re5 + se6

= {ψµ, χ12, (1− p)y3y3, pω3ω3, (1− q)y4y4, qω4ω4,

(1− r)y5y5, rω5ω5, (1− s)y6y6, sω6ω6, η1, ψ
1,...,5

}, (2.13)

B(2)
pqrs = S + b2 + pe1 + qe2 + re5 + se6,

B(3)
pqrs = S + b3 + pe1 + qe2 + re3 + se4,

where p, q, r, s = 0, 1 and b3 = b1+b2+x. In order to distinguish between the spinorial
16 and 16 in the states given above, the following chirality operators are used
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X
(1)SO(10)
pqrs = C

(

B
(1)
pqrs

b2 + (1− r)e5 + (1− s)e6

)

,

X
(2)SO(10)
pqrs = C

(

B
(2)
pqrs

b1 + (1− r)e5 + (1− s)e6

)

, (2.14)

X
(3)SO(10)
pqrs = C

(

B
(3)
pqrs

b1 + (1− r)e3 + (1− s)e4

)

.

Where X
(1,2,3)SO(10)
pqrs = 1 implies the states corresponds to the 16 of SO(10) and

X
(i)SO(10)
pqrs = −1 to the 16 of SO(10). Moreover, we note that the states here can be

projected in or out depending on the GGSO projections of the basis vectors e1, ...., e6,
z1 and z2. Therefore, we define below a projector P , such that P = 1 implies the
state is projected in and P = 0 implies the state is projected out. The projector P
is given by

P (1)
pqrs =

1

16

(

1− C

(

e1

B
(1)
pqrs

))

.

(

1− C

(

e2

B
(1)
pqrs

))

.

(

1− C

(

z1

B
(1)
pqrs

))

.

(

1− C

(

z2

B
(1)
pqrs

))

,

P (2)
pqrs =

1

16

(

1− C

(

e3

B
(2)
pqrs

))

.

(

1− C

(

e4

B
(2)
pqrs

))

.

(

1− C

(

z1

B
(2)
pqrs

))

.

(

1− C

(

z2

B
(2)
pqrs

))

, (2.15)

P (3)
pqrs =

1

16

(

1− C

(

e5

B
(3)
pqrs

))

.

(

1− C

(

e6

B
(3)
pqrs

))

.

(

1− C

(

z1

B
(3)
pqrs

))

.

(

1− C

(

z2

B
(3)
pqrs

))

.

These projectors above can in fact be expressed as matrix equations given by









(e1|e3) (e1|e4) (e1|e5) (e1|e6)
(e2|e3) (e2|e4) (e2|e5) (e2|e6)
(z1|e3) (z1|e4) (z1|e5) (z1|e6)
(z2|e3) (z2|e4) (z2|e5) (z2|e6)

















p

q

r

s









=









(e1|b1)
(e2|b1)
(z1|b1)
(z2|b1)









,









(e3|e1) (e3|e2) (e3|e5) (e3|e6)
(e4|e1) (e4|e2) (e4|e5) (e4|e6)
(z1|e1) (z1|e2) (z1|e5) (z1|e6)
(z2|e1) (z2|e2) (z2|e5) (z2|e6)

















p

q

r

s









=









(e3|b2)
(e4|b2)
(z1|b2)
(z2|b2)









, (2.16)









(e5|e1) (e5|e2) (e5|e3) (e5|e4)
(e6|e1) (e6|e2) (e6|e3) (e6|e4)
(z1|e1) (z1|e2) (z1|e3) (z1|e4)
(z2|e1) (z2|e2) (z2|e3) (z2|e4)

















p

q

r

s









=









(e5|b3)
(e6|b3)
(z1|b3)
(z2|b3)









.

Writing the projectors as matrix equations given above entails solving systems of
linear equations. These algebraic equations can be solved using a computerised code,
which can be used to scan a vast space of models.
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Similar to the spinorial representations singlet and vectorial 10 representations
of SO(10) are obtained from the following 48 sectors

B(4)
pqrs = B(1)

pqrs + x

= {ψµ, χ12, (1− p)y3y3, pω3ω3, (1− q)y4y4, qω4ω4,

(1− r)y5y5, rω5ω5, (1− s)y6y6, sω6ω6, η2,3}, (2.17)

B(5,6)
pqrs = B(2,3)

pqrs + x.

Massless states that arise in these sectors are obtained by acting on the vacuum with
a NS oscillator. The type of states therefore depend on the type of oscillator, and
may correspond to SO(10) singlets or vectorial 10 representation of SO(10), which
is needed for electroweak symmetry breaking. The different type of SO(10) singlets
arising from eq. (2.17) are

• {ηi}|R〉
(4,5,6)
pqrs or {η∗i}|R〉

(4,5,6)
pqrs , i = 1, 2, 3, where |R〉

(4,5,6)
pqrs is the degenerated

Ramond vacuum of the B
(4,5,6)
pqrs sector. These states transform as a vector–like

representations under the U(1)i’s.

• {φ
1,2
}|R〉

(4,5,6)
pqrs or {φ

∗1,2
}|R〉

(4,5,6)
pqrs . These states transform as a vector–like rep-

resentations of SU(2)A × U(1)A.

• {φ
3,4
}|R〉

(4,5,6)
pqrs or {φ

∗3,4
}|R〉

(4,5,6)
pqrs . These states transform as a vector–like rep-

resentations of SU(2)B × U(1)B.

• {φ
5,6
}|R〉

(4,5,6)
pqrs or {φ

∗5,6
}|R〉

(4,5,6)
pqrs . These states transform as a vector–like rep-

resentations of SU(2)C × U(1)C .

• {φ
7,8
}|R〉

(4,5,6)
pqrs or {φ

∗7,8
}|R〉

(4,5,6)
pqrs . These states transform as a vector–like rep-

resentations of SO(4).

Similarly, for the matrix equations given above in eq. (2.15), we can write algebraic
equations for the sectors in eq. (2.17) given as follows:
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







(e1|e3) (e1|e4) (e1|e5) (e1|e6)
(e2|e3) (e2|e4) (e2|e5) (e2|e6)
(z1|e3) (z1|e4) (z1|e5) (z1|e6)
(z2|e3) (z2|e4) (z2|e5) (z2|e6)

















p

q

r

s









=









(e1|b1 + x)
(e2|b1 + x)
(z1|b1 + x)
(z2|b1 + x)









,









(e3|e1) (e3|e2) (e3|e5) (e3|e6)
(e4|e1) (e4|e2) (e4|e5) (e4|e6)
(z1|e1) (z1|e2) (z1|e5) (z1|e6)
(z2|e1) (z2|e2) (z2|e5) (z2|e6)

















p

q

r

s









=









(e3|b2 + x)
(e4|b2 + x)
(z1|b2 + x)
(z2|b2 + x)









, (2.18)









(e5|e1) (e5|e2) (e5|e3) (e5|e4)
(e6|e1) (e6|e2) (e6|e3) (e6|e4)
(z1|e1) (z1|e2) (z1|e3) (z1|e4)
(z2|e1) (z2|e2) (z2|e3) (z2|e4)

















p

q

r

s









=









(es5|b3 + x)
(e6|b3 + x)
(z1|b3 + x)
(z2|b3 + x)









.

3 The Observable Matter Spectrum

The basis vectors α and β given in eq. (2.10) break the SO(10) symme-
try to SU(4) × SU(2)L × U(1)R. Following the α and β GGSO projections, the
decomposition of the spinorial 16 and 16 representations of SO(10), under the
SU(4)× SU(2)L × U(1)L gauge group is given as follows:

16 = (4, 2, 0) +
(

4, 1,−1
)

+
(

4, 1,+1
)

,

16 =
(

4, 2, 0
)

+ (4, 1,−1) + (4, 1,+1) .

Here to break the SU(4)×SU(2)L×U(1)L gauge group to the standard model group,
we require the heavy higgs pair. This pair is given by

(

4, 1,−1
)

+ (4, 1,−1) .

Similarly, the vectorial representation 10 of SO(10) decomposed under the SU(4)×
SU(2)L × U(1)L gauge group is given as follows

10 = (6, 1, 0) + (1, 2,−1) + (1, 2,+1) ,

Furthermore, we take the following normalizations of the hypercharge and electro-
magnetic charge

Y =
1

3
(Q1 +Q2 +Q3) +

1

2
(Q4 +Q5),

Qem = Y +
1

2
(Q4 −Q5).
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where the Qi charges of a state arise due to ψi for i = 1, ..., 5. The following table
summaries the charges of the colour SU(3) and electroweak SU(2) × U(1) Cartan
generators of the states which form the SU(4)× SU(2)L ×U(1)L matter representa-
tions:

Representation ψ
1,2,3

ψ
4,5

Y Qem

(+,+,−) (+,−) 1/6 2/3
(+,+,−) (−,+) 1/6 -1/3

( 4 , 2, 0 ) (−,−,−) (+,−) -1/2 0
(−,−,−) (−,+) -1/2 -1
(+,−,−) (−,−) -2/3 -2/3

(

4 , 1, −1
)

(+,+,+) (−,−) 0 0
(+,−,−) (+,+) 1/3 1/3

(

4 , 1, +1
)

(+,+,+) (+,+) 1 1
(+,−,−) (+,−) -1/6 -2/3
(+,−,−) (−,+) -1/6 1/3

(

4 , 2, 0
)

(+,+,+) (+,−) 1/2 0
(+,+,+) (−,+) 1/2 1
(+,+,−) (+,+) 2/3 2/3

(4 , 1, −1 ) (−,−,−) (+,+) 0 0
(+,+,−) (−,−) -1/3 -1/3

( 4 , 1, +1 ) (−,−,−) (−,−) -1 -1

Here “ + ” and “ − ”, label the contribution of an oscillator with fermion number
F = 0 or F = −1, to the degenerate vacuum. These states correspond to particles of
the Standard Model. More precisely we can decompose these representations under
SU(3)× SU(2)× U(1) as

(4, 2, 0) =

(

3, 2,+
1

6

)

Q

+

(

1, 2,−
1

2

)

L

,

(

4, 1,−1
)

=

(

3, 1,−
2

3

)

uc

+ (1, 1, 0)νc ,

(

4, 1,+1
)

=

(

3, 1,+
1

3

)

dc

+ (1, 1,+1 )ec .

Where L is the lepton–doublet; Q is the quark–doublet; dc, uc, ec and νc are the
quark and lepton singlets. Because of the α- and β-projections, which projects on
incomplete 16 and 16 representations, complete families and anti–families are formed
by combining states from different sectors.
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4 Nonviability of the SU(4)× SU(2)× U(1) model

We now discuss why in our free fermionic construction, the SU(4)×SU(2)×U(1)
GUT models are not viable. As mentioned in the previous section, the matter content
comes from the 16 of SO(10). However, with the addition of the α and β basis vectors
from eq. (2.10), the 16 representation is broken by the GGSO projections that are
in general given by

eiπvi·Fξ |Sξ >= δξ C

(

ξ

vi

)

∗

|Sξ > . (4.1)

Here δξ = ±1 is a spacetime spin statistics index and Fξ is the fermion number op-
erator. In the SU421 models spanned by eq. (2.10) the GGSO projection coefficients
C
(

ξ

vi

)

can take the values ±1;±i. Therefore, firstly considering the α GGSO pro-
jection, we decompose the 16 into the Pati-Salam group representation. Moreover,
using the following chirality operators

X
(1)SO(6)
pqrs = C

(

B
(1)
pqrs

α

)

,

X
(2)SO(6)
pqrs = C

(

B
(2)
pqrs

α

)

, (4.2)

X
(3)SO(6)
pqrs = C

(

B
(3)
pqrs

α

)

,

we deduce that for X
(i)SO(6)
pqrs = 1 we get the QR ≡ (4, 1, 2) states under SU(4) ×

SU(2)L × SU(2)R, whereas the QL ≡ (4, 2, 1) states correspond to X
(i)SO(6)
pqrs = −1.

Next, considering the β GGSO projection, the operators

X(1)421
pqrs = C

(

B
(1)
pqrs

β

)

,

X(2)421
pqrs = C

(

B
(2)
pqrs

β

)

, (4.3)

X(3)421
pqrs = C

(

B
(3)
pqrs

β

)

.

determine the decomposition of the QL and QR states under SU(4)×SU(2)×U(1).
Here, the product β · Bpqrs

j = −1 with (j = 1, 2, 3), and the modular invariance

constraints, impose that X
(1,2,3)421
pqrs = ± i. Therefore, this implies the states cannot be

completed to form a family. Thus, to complete the 16 the states: (4, 2, 0), (4, 1,−1)
and (4, 1,+1) under the SU(4)×SU(2)L×U(1)R group all need to survive the GGSO
projections, but in order for the (4, 1,−1) and (4, 1,+1) states to survive, we need

X
(1,2,3)421
pqrs = ± 1, which is forbidden in this case by modular invariance. To see more
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clearly why this is the case we consider the decomposition of the 16 representation
in the combinatorial notation of ref. [28]

16 ≡

[(

5

0

)

+

(

5

2

)

+

(

5

4

)]

(4.4)

≡

[(

3

0

)

+

(

3

2

)][(

2

0

)

+

(

2

2

)]

+

[(

3

1

)] [(

2

1

)]

(4.5)

≡

[(

3

0

)

+

(

3

2

)][(

2

0

)]

+

[(

3

0

)

+

(

3

2

)] [(

2

2

)]

+

[(

3

1

)][(

2

1

)]

(4.6)

where the combinatorial factor counts the number of periodic fermions in the |−〉
state. The second line in eq. (4.5) corresponds to the decomposition of the 16 under
the Pati–Salam subgroup, whereas eq. (4.6) shows its decomposition under the SU421
subgroup. The key point here, as seen from eq. (4.6), is the even number of fermions
in the |−〉 vacuum of the QR states, resulting in ±1 projections on the left–hand side
of eq. (4.1), whereas the right–hand side is fixed by the product β · Bpqrs

j = −1 to
be ±i. Thus, the exclusion arises because the β projection fixes the chirality of the

vacuum of the world–sheet fermions ψ
4,5

that generate the SU(2)L×U(1)R symmetry.
We note that the situation here is different from the case of the SU421 models of
ref. [13]. The reason is that our classification method only allows for symmetric
boundary conditions for the set of internal fermions {y, ω|y, ω}1,··· ,6, whereas the
models of ref. [13] introduce additional freedom by allowing asymmetric boundary
conditions. Thus, while the NAHE–based models of ref. [13] did not yield any model
with three complete generations they contain both the QL and QR states in their
spectra, whereas vacua with only symmetric boundary conditions with respect to the
set {y, ω|y, ω}1,··· ,6 do not contain QR states and are therefore categorically excluded.
It is of further interest to note that in the case of the LRS models the chirality of the
QL + LL and QR + LR is similarly affected [12]. However, there it is compensated
by the chirality of the ηj worldsheet fermions leading to opposite charges under the
U(1)j gauge symmetries. The SLM models [11] are obtained by combining the PS and
FSU5 breaking vectors. Therefore, the SLM models produce complete 16 multiplets
decomposed under the SLM group and with equal U(1)j charges. The SU421 class of
models is the only case that is excluded in vacua with symmetric internal boundary
conditions.

5 Conclusion

In this paper we discussed the classification of the SU421 models with symmetric
internal boundary conditions. This continues the development of the classification
program initiated in ref. [19], which led to the discovery of spinor–vector duality [29]
and exophobic string vacua [21, 22, 30]. The novel feature in the classification of the
SU421 models compared to the PS and FSU5 vacua is the introduction of two basis

13



vectors that break the SO(10) symmetry. An appealing feature of the SU421 models
is the admission of both the triplet–doublet as well as the doublet–doublet splitting
mechanism, which is shared only with the standard–like models. However, as we
showed in section 4 these models cannot accommodate the weak SU(2) singlet states
of the Standard Model and are therefore excluded. The next step in our classification
program is the classification of standard–like models that will be reported in a future
publication.
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