
A sharp-interface treatment technique for two-phase flows in meshless methods 

Yan Zhou* 

School of Engineering, University of Liverpool 

*Corresponding author email: yan.zhou@liverpool.ac.uk 

Abstract 

    In this paper, a new interface treatment technique for multi-phase meshless methods is proposed. It 

enables the interface conditions to be applied effectively on the interface points in two-phase flows 

involving interface tension and high viscosity. This technique is incorporated in the Meshless Local 

Petrov-Galerkin method with the Rankine source solution (MLPG_R) and the model predictions are 

validated through a number of standard test cases. Convergent results that agreed well with both 

available analytical and numerical solutions from other methods are obtained in simulations of square-

droplet deformation, capillary wave, bubble rising and Rayleigh-Taylor instability. In these cases, 

sharp pressure discontinuity at the interface is well predicted with depressed parasitic current and the 

capability of the technique in dealing with high viscosity is comprehensively demonstrated. 
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1. Introduction  

     Two-phase flow where clear interfaces separate different fluids due to discontinuities of fluid 

properties across the interface exists both in nature and in a wide range of industrial processes. Many 

applications such as water dripping from a nozzle, formation of bubbles and liquid sprays involve 

significant effects of interface tension and viscosity. Interface tension and viscous force can even be 

the dominant forces in many commonly occurring two-phase flows such as  deformation of fluid 

drops in viscous fluids or capillary waves [1,2]. From the numerical perspective, the former involves a 

singular stress that acts only at the interface while the latter is characterised by the discontinuity of 



high viscosity, both of which need to be properly formulated in the interface treatment using either 

mesh-based method with an Eulerian or arbitrary Eulerian-Lagrangian formulation or meshless 

methods based on a Lagrangian formulation.  

In mesh-based methods, interface is commonly captured by volume of fluid (VOF) [3,4] or level set 

methods [5,6], in which fluid properties are continuously transferred within the interface region. The 

interface tension is generally computed by the continuous surface force (CSF) method [7]. The 

singular surface tension in the CSF method is regularized to a volumetric surface force spreading 

within the interface region. However, the artificial mixing region and artificial spreading of the 

interface tension may generate unphysical parasitic currents near the interface [8,9]. Fully coupled 

treatments of interface tension singularity were achieved by Sussman et al. [10] using the ghost fluid 

method [11] to handle the pressure jump. With the density and viscosity being defined at the mesh 

face according to the reconstructed interface segment, Luo et al. [12] achieved the sharp interface and 

full coupling by integrating extra interfacial momentum flux and ensuring the shear stress continuity 

at the sub-grid reconstructed interface. Arbitrary Lagrangian Eulerian (ALE) methods [13] were 

developed in which the interface is represented by mesh faces which move with the flow and the 

sharply separated phases ensure that each mesh is occupied by only one phase of fluids. The interface 

conditions including pressure jump and velocity continuity are explicitly enforced at the infinitely thin 

interface through extensive and time consuming mesh adaption and regeneration. 

    With meshless methods the interface is inherently advected by Lagrangian moving particles 

without involving complex interface capturing algorithms. By assigning each particle to a single 

phase throughout the simulation, interface even with large deformation or breakup can be followed in 

a straightforward manner. Among the established meshless methods, both Smoothed Particle 

Hydrodynamics (SPH) [14-17] and Moving Particle Semi-implicit (MPS) [18,19] methods have 

shown their remarkable flexibility in handling multiphase flows involving large density and viscosity 

ratio and interface tension.  

    There are mainly two categories of approaches to dealing with interface conditions in meshless 

methods, one of which is one-fluid category without explicit implementation of the interface 



conditions. With this approach, for either SPH [20,21] or MPS [18,19], a smoothing scheme involving 

a spatially weighted averaging is usually adopted to continuously transfer fluid density and viscosities 

across the interface. However, it has been pointed out that such smoothing schemes may have 

problems of satisfying mass conservation [2] and may also result in unphysical diffusion, i.e.  

unphysical particle dispersion at the interface [19]. Effort has been made to develop a higher order 

density smoothing scheme [19] so as to achieve more accurate and sharper density reconstruction at 

the interface or to maintain the density discontinuity by considering volume rather than mass of 

neighbouring particles [2,22]. Harmonic mean viscosity is another alternative for viscosity treatment 

near the interface which is also in wide applications [2,17,20]. It is noted that all those density and 

viscosity treatments for multiphase flow simulations are also accompanied by various discretized 

operators either for gradients or Laplacians [2,19]. 

    The other category seeks to track the interface movement by explicitly imposing interface 

conditions with respect to the pressure (𝑝) and the ratio of pressure gradient to density (
𝛻𝑝

𝜌
). Three 

such interface conditions have been implemented into meshless methods to simulate multiphase flows, 

namely (1) continuous 𝑝 and 
𝛻𝑝

𝜌
 [14], (2) continuous 𝑝 only [23] and (3) continuous 𝑝 with a specified 

𝛻𝑝

𝜌
 jump [24]. Hu and Adams [14] implemented the first condition into the inter-particle-averaged 

derivatives to formulate specific gradient and Lapacian operators for pressure near the interface. As 

the interface is assumed to locate at the middle of each pair of particles belonging to different phases, 

the two conditions are applied on an interface with a thickness depending on the kernel smoothing 

length. Shao [23] implemented the second condition but considered an infinitely thin interface 

ignoring either the kinematic interface condition or the interface tension. The method is therefore 

limited to flows with relatively low density ratios (up to 1.3). Lind et al. [25] also imposed the 

condition of pressure continuity to solve incompressible water phase and the velocity continuity 

condition to solve compressible air phase. Interface tension was not considered. Recently Zhou et al. 

[24] proposed an interface implementation method that enforces the third condition at an infinitely 

thin interface. For the case of low viscosity when an averaged viscous force can be applied at the 



interface and in the absence of interface tension, 𝑝 and 
𝛻𝑝

𝜌
 could be simplified to be continuous and 

were implemented in the meshless local Petrov-Galerkin method based on the Rankine source 

solution (MLPG_R). Through a number of validation tests the model was found to have second-order 

convergence and is accurate for the density ratio ranging from 1 to 1000. 

    In meshless methods considering interface tension, the continuous surface force (CSF) method is 

generally employed, by adding a body force reformulated from the interface tension stress in the 

momentum equation [7] and distributing this body force over a layer of particles predefined as the 

interface [20,26,27]. The curvature for CSF is calculated either as the second order derivative of the 

phase indicator function or derived analytically from reconstructed interface curve [28]. Continuous 

Surface Stress (CSS) taking first order derivative of the indicator was also implemented in the 

multiphase SPH models [2]. For CSF and CSS interface tension schemes, instead of predicting a sharp 

pressure jump at the interface, continuous pressure variations are obtained as the singular stress is 

taken to be continuous over a certain length across the sharp interface. 

    In this study, a new interface treatment technique for multi-phase meshless methods is presented. 

As an extension of the previous work [24] the technique is formulated using MLPG_R method [29]. 

The interface treatment prescribes specific jumps in both 𝑝 and 
𝛻𝑝

𝜌
 which are derived from normal 

stress balance and continuous velocity at the interface including the effects of interface tension and 

high viscosity. The consideration of the interface tension is achieved by a sharp pressure jump at the 

interface rather than the conventional continuous scheme. A number of numerical tests involving 

square-droplet deformation, capillary wave, rising bubble and Rayleigh-Taylor instability are carried 

out to demonstrate the potential of the present method in determining the effects of surface tension 

and handling high viscosity. The results show that sharp pressure jump at the interface is well 

maintained and the parasitic current is depressed. The capillary wave case shows an approximate 

second order convergent rate as compared to the analytical solution. In the case of rising bubble a 

smooth terminal shape under the action of high interface tension and high viscosity is obtained. Both 

calculated rising velocity and centroid position compared well with the simulation results using mesh-



based numerical methods. The simulation of Rayleigh-Taylor instability shows an accurate instability 

growth and a clear separation of phases for complex interface profiles in a long time simulation. 

2. Governing equations and computational procedures 

    The governing equations are the incompressible Navier-Stokes equations in Lagragian formalism 

for two immiscible fluids. 

𝑑�⃗⃗� 𝛼

𝑑𝑡
= 𝑔 −

1

𝜌𝛼
𝛻𝑝𝛼 + 𝜐𝛼𝛻

2�⃗� 𝛼         ( 1 ) 

𝛻 ∙ �⃗� 𝛼 = 0           ( 2 )  

where 𝑔  is the gravitational acceleration, �⃗� 𝛼 is the particle velocity vector for fluid phase 𝛼, 𝑝 is the 

pressure, 𝜌 is the fluid density and 𝜐 is the fluid kinematic viscosity. The subscript 𝛼 = 𝑙, 𝑘 presents 

the two phases that particles belong to. As for surface tension (referring to interface tension between 

two immiscible phases in this paper), unlike other meshless methods treating the interface tension as a 

volumetric force and adding a term on the right hand side of Eq. (1) [10,12,20,22], the treatment in 

this paper will be based on the normal stress condition at the interface and so the surface tension 

appears in the interface conditions, which will be detailed in the next section.      

    The projection method is used to solve pressure and velocity field as in many meshless simulations 

for incompressible fluids [30-32]. In this method both the density and mass of particles are assumed to 

be constant. Based on the known variables of each particle at n-th time step (𝑡 = 𝑡𝑛), an intermediate 

velocity �⃗� 𝛼
∗
is firstly calculated according to Eq. (1) without the pressure gradient term. 

�⃗� 𝛼
∗
= �⃗� 𝛼

𝑛
+ 𝑔 ∆𝑡 + 𝜐𝛼𝛻

2�⃗� 𝛼∆𝑡         ( 3 ) 

The pressure at 𝑡𝑛+1is obtained from solving the pressure Poisson’s equation (PPE), 

𝛻2𝑝𝛼
𝑛+1 =

𝜌𝛼

∆𝑡
𝛻 ∙ �⃗� 𝛼

∗
          ( 4 ) 

The particle velocities and positions at 𝑡𝑛+1are then updated by 



�⃗� 𝛼
𝑛+1

= �⃗� 𝛼
∗
−

∆𝑡

𝜌𝛼
𝛻𝑝𝛼

𝑛+1         ( 5 ) 

𝑟 𝑙
𝑛+1

= �⃗� 𝑙
𝑛
+ �⃗� 𝑙

𝑛+1
∆𝑡          ( 6 ) 

To solve the PPE within each phase, MLPG_R method will be adopted to obtain a weak formulation 

of Eq. (4) by integrating the equation , details of which can be found in Ma and Zhou [33]. 

3. Interface conditions 

    In the previous work [24], interface conditions for small viscosity and zero interface tension were 

presented which impose the continuity in pressure, and continuous normal velocity at the interface 

particles. To deal with fluids with interface tension and high viscosities, the interface conditions [7,10] 

adopted here are continuity condition for velocity, 

�⃗� 𝑙 = �⃗� 𝑘           ( 7 ) 

continuity condition for normal stress 

𝑝𝑙 − 𝑝𝑘 = 𝜏𝑙,𝑛 − 𝜏𝑘,𝑛 + 𝜎𝜅         ( 8 ) 

and continuity condition for tangential stress 

𝜏𝑙,𝜏 = 𝜏𝑘,𝜏           ( 9 ) 

where 𝜎  is a constant interface tension coefficient, 𝜅  is the curvature and the sign of the surface 

tension indicates that phase 𝑙 is on the convex side. 𝜏𝑙,𝑛 and 𝜏𝑘,𝑛 are normal viscous stresses on two 

sides of the interface, 𝜏𝑙,𝜏 and 𝜏𝑘,𝜏 are tangential viscous stress, which can be expressed by 

𝜏𝛼,𝑛 = 2𝜇𝛼𝑛𝑗 (
𝜕𝑢𝑗

𝜕𝑛
) 

𝜏𝛼,𝜏 = 𝜇𝛼 [𝑛𝑗 (
𝜕𝑢𝑗

𝜕𝜏
) + 𝜏𝑗 (

𝜕𝑢𝑗

𝜕𝑛
)]    𝑗 = 1,2 

where �⃗� = (𝑛1, 𝑛2) and 𝜏 = (𝜏1, 𝜏2) are the unit normal and tangent respectively to the interface. Eq. 

(8) implies that 𝑝  is discontinuous when normal viscous stress or interface tension is taken into 

consideration. The interface tension may also be considered by other approaches in meshless method 



such as CSF in Zainali et al. [20] and CSS in Hu and Adams [2]. But in both approaches, rather than 

treating it in the interface condition as Eq. (8), the interface tension is converted to a volumetric force 

and is added to the RHS of the momentum equation. The continuity of tangential stress is imposed in 

the calculation of the intermediate velocity following the procedure proposed by Shao [23] involving 

the update of the tangential stress at the interface in one phase using the value of the corresponding 

tangential stress in the other phase. 

3.1 Derivation of discontinuous 
𝛻𝑝

𝜌
 

    To solve PPE for each phase, conditions associated with pressure at the interface need to be 

provided. In addition to the usual pressure jump condition (i.e. Eq. (8)), a condition containing 

pressure gradient can be derived. In the Lagrangian formulation, the continuous velocity across the 

interface implies that the particle acceleration at the interface is continuous as well as [34], which can 

be expressed as.  

𝑑�⃗⃗� 𝑙

𝑑𝑡
= 𝐹 𝑢 = 𝑔 −

1

𝜌𝑙
 𝛻𝑝𝑙 + 𝜐𝑙𝛻

2𝑢𝑙        ( 10 ) 

𝑑�⃗⃗� 𝑘

𝑑𝑡
= 𝐹 𝑢 = 𝑔 −

1

𝜌𝑘
 𝛻𝑝𝑘 + 𝜐𝑘𝛻

2𝑢𝑘        ( 11 ) 

where 𝐹 𝑢 denotes the matched particle acceleration for each phase at the interface. Rearranging Eqs. 

(10) and (11), the expressions of 
𝛻𝑝

𝜌
 for each phase can be obtained. 

(
𝛻𝑝

𝜌
)
𝑙
= 𝑔 − 𝐹 𝑢 + 𝜐𝑙𝛻

2�⃗� 𝑙         ( 12 ) 

(
𝛻𝑝

𝜌
)
𝑘
= 𝑔 − 𝐹 𝑢 + 𝜐𝑘𝛻

2�⃗� 𝑘         ( 13 ) 

For fluids with zero or very low viscosities, 𝜐𝛼𝛻
2�⃗� 𝛼 in Eq. (12) and (13) may be replaced by the 

averaging value of (𝜐𝑙𝛻
2�⃗� 𝑙 + 𝜐𝑘𝛻

2�⃗� 𝑘)/2 as proposed in Zhou et al. [24]. With that averaging, the 

jump of 
𝛻𝑝

𝜌
 can be eliminated by imposing the velocity continuity at the interface, representing as 

[
𝛻𝑝

𝜌
]
𝐿𝑉
= 0. Continuous 

𝛻𝑝

𝜌
 condition was also used to approximate inter-particle averaged derivatives 



in SPH together with the viscous force derived from the inter-particle-averaged stress [14,27]. 

However, for high viscous fluids separated by a sharp interface, averaging the viscous term as in Zhou 

et al. [24] is no longer feasible and the viscous term needs to be considered separately for each phase 

without introducing any artificial smoothing. By subtracting Eq. (13) from Eq. (12), it yields 

(
𝛻𝑝

𝜌
)
𝑙
− (

𝛻𝑝

𝜌
)
𝑘
= 𝜐𝑙𝛻

2�⃗� 𝑙 − 𝜐𝑘𝛻
2�⃗� 𝑘        ( 14 ) 

Eq. (14) gives the jump in pressure gradient over density for high viscous fluids, abbreviated as[
𝛻𝑝

𝜌
]
𝐻𝑉

. 

Numerical tests will be carried out to compare the capability of [
𝛻𝑝

𝜌
]
𝐻𝑉

 and [
𝛻𝑝

𝜌
]
𝐿𝑉

in handling fluids 

with various viscosities in section 4.2.  

3.2 Interface Pressure formulation  

    The pressure near the interface will be derived by combining the jump conditions of 𝑝 and 
𝛻𝑝

𝜌
 given 

by Eqs. (8) and (14). The pressure of each phase near the interface particles is firstly expanded into a 

Taylor series: 

1

𝜌𝑙
(𝑝𝑙(𝑟 𝑙) − 𝑝𝑙(𝑟 0)) =

1

𝜌𝑙
(𝛻𝑝𝑙)𝑟 0 ∙ (𝑟 𝑙 − 𝑟 0) + 𝑂(|𝑟 𝑙 − 𝑟 0|

2)     ( 15 ) 

1

𝜌𝑘
(𝑝𝑘(𝑟 𝑘) − 𝑝𝑘(𝑟 0)) =

1

𝜌𝑘
(𝛻𝑝𝑘)𝑟 0 ∙ (𝑟 𝑘 − 𝑟 0) + 𝑂(|𝑟 𝑘 − 𝑟 0|

2)     ( 16 ) 

where 𝑝𝑙(𝑟 𝑙) and 𝑝𝑘(𝑟 𝑘) are pressures in phase 𝑙 and 𝑘 respectively at arbitrary point of 𝑟  while 𝑝𝑙(𝑟 0) 

and 𝑝𝑘(𝑟 0) are these for 𝑟  tending to 𝑟 0from both sides of the interface with 𝑟 0  being the positon 

vector of the interface. Discretising Eq. (15) and (16) in the support domain within each phase and 

substituting the jump condition of Eq. (14) yield 

1

𝜌𝑙
∑(𝑝𝑙(𝑟𝑗) − 𝑝𝑙(𝑟0)) ∅𝑙(𝑟𝑗0)

𝑛

𝑗=1

 

               = [𝜐𝑙𝛻
2�⃗� 𝑙 − 𝜐𝑘𝛻

2�⃗� 𝑘 + (
𝛻𝑝

𝜌
)
𝑘

]
𝑟0

∙∑(𝑟 𝑗 − 𝑟 0)∅𝑙(𝑟 𝑗0)

𝑛

𝑗=1

 

( 17 ) 

  



1

𝜌𝑘
∑(𝑝𝑘(𝑟𝑞) − 𝑝𝑘(𝑟0))∅𝑘(𝑟𝑞0)

𝑚

𝑞=1

 

               = [(
𝛻𝑝

𝜌
)
𝑘

]
𝑟0

∙ ∑(𝑟 𝑞 − 𝑟 0)∅𝑘(𝑟 𝑞0)

𝑚

𝑞=1

 

( 18 ) 

where the shape function ∅(𝑟 ) is obtained by the moving least square (MLS) algorithm [29] with a 

support domain containing both phases; 𝑟 𝑗  and 𝑟 𝑞  are position vectors of neighbouring particles in 

phase 𝑙 and 𝑘; 𝑛 and 𝑚 are total numbers of neighbouring particles in phase 𝑙 and 𝑘. 

    Adding up Eq. (17) and (18) and replacing the pressure gradient term according to Eq. (13), it 

yields 

1

𝜌𝑙
∑𝑝𝑙(𝑟 𝑗)∅𝑙(𝑟 𝑗0)

𝑛

𝑗=1

+
1

𝜌𝑘
∑𝑝𝑘(𝑟 𝑞)∅𝑘(𝑟 𝑞0)

𝑚

𝑞=1

− [
𝑝𝑙(𝑟 0)

𝜌𝑙
∑∅𝑙(𝑟 𝑗0)

𝑛

𝑗=1

+
𝑝𝑘(𝑟 0)

𝜌𝑘
∑∅𝑘(𝑟 𝑞0)

𝑚

𝑞=1

] 

                         = (𝑔 − 𝐹 𝑢)𝑟 0
[∑(𝑟 𝑗 − 𝑟 0)∅𝑙(𝑟 𝑗0)

𝑛

𝑗=1

+∑(𝑟 𝑞 − 𝑟 0)∅𝑘(𝑟 𝑞0)

𝑚

𝑞=1

] + 𝐹𝑣 

( 19 ) 

where 𝐹𝒗 = (𝜐𝑙𝛻
2�⃗� 𝑙)𝑟 0 ∙ ∑ (𝑟 𝑗 − 𝑟 0)∅𝑙(𝑟 𝑗0)

𝑛
𝑗=1 + (𝜐𝑘𝛻

2�⃗� 𝑘)𝑟 0 ∙ ∑ (𝑟 𝑞 − 𝑟 0)∅𝑘(𝑟 𝑞0)
𝑚
𝑞=1 . 

    Although the first term of the RHS of Eq. (19) can be omitted when sufficient particles are used, it 

will be retained as 𝐹𝑟
′ hereafter to cover the situations of insufficient or unevenly distributed particles. 

𝐹𝑟
′ is computed by the parameters obtained from the previous time step.  

The explicit pressure expression for interface particles is then obtained by rearranging Eq. (19) and 

utilising the pressure jump in Eq. (8) showing as 

𝑝𝑘(𝑟 0) =

1

𝜌𝑙
∑ 𝑝𝑙(𝑟 𝑗)∅𝑙(𝑟 𝑗0)
𝑛
𝑗=1 +

1

𝜌𝑘
∑ 𝑝𝑘(𝑟 𝑞)∅𝑘(𝑟 𝑞0)
𝑚
𝑞=1 −𝐹𝑟

′−𝐹𝑣−𝐹𝑛,𝑘

1

𝜌𝑙
∑ ∅𝑙(𝑟 𝑗0)
𝑛
𝑗=1 +

1

𝜌𝑘
∑ ∅𝑘(𝑟 𝑞0)
𝑚
𝑞=1

     ( 20 ) 

𝑝𝑙(𝑟 0) =

1

𝜌𝑙
∑ 𝑝𝑙(𝑟 𝑗)∅𝑙(𝑟 𝑗0)
𝑛
𝑗=1 +

1

𝜌𝑘
∑ 𝑝𝑘(𝑟 𝑞)∅𝑘(𝑟 𝑞0)
𝑚
𝑞=1 −𝐹𝑟

′−𝐹𝑣+𝐹𝑛,𝑙

1

𝜌𝑙
∑ ∅𝑙(𝑟 𝑗0)
𝑛
𝑗=1 +

1

𝜌𝑘
∑ ∅𝑘(𝑟 𝑞0)
𝑚
𝑞=1

     ( 21 ) 



where 

𝐹𝑛,𝑘 =
1

𝜌𝑙
(𝜏𝑙,𝑛 − 𝜏𝑘,𝑛 + 𝜎𝜅)∑∅𝑙(𝑟 𝑗0)

𝑛

𝑗=1

 

𝐹𝑛,𝑙 =
1

𝜌𝑘
(𝜏𝑙,𝑛 − 𝜏𝑘,𝑛 + 𝜎𝜅)∑∅𝑘(𝑟 𝑞0)

𝑚

𝑞=1

 

    The pressures expressed by Eqs. (20) and (21) are implemented on each single interface particle 

and represent the pressures for the phase 𝑘  and 𝑙  respectively providing the Dirichlet boundary 

condition for the solution of pressure Poisson’s equation of the each phase. To impose the condition, 

interface particles are identified based on the absolute density gradient method recently proposed by 

Zhou and Ma [35]. The terms of 𝐹𝑣 and 𝐹𝑛,𝑙 (or 𝐹𝑛,𝑘) are generated by the jump of  
𝛻𝑝

𝜌
 as shown in Eq. 

(14) and normal stress jump (includes interface tension) respectively. Similarly, explicit pressure 

expression to provide Dirichlet condition at the interface was also achieved in Shao [23] and Lind et 

al. [25]. The former ensured the stress balance without considering the interface tension or velocity 

continuity at the interface. While the latter was proposed for air-water flow ensuring the pressure 

continuity for the water phase (negligible interface tension and viscosity) and the velocity continuity 

was implemented individually for the air phase. 

3.3 Interface curvature  

    The surface tension term 𝜎𝜅 in both Eqs. (20) and (21) is crucial to achieve an accurate pressure 

jump and consequently the whole pressure field. For existing surface tension model, e.g. CSF [7] and 

GFM [11], calculations are based on the assumption that the interface is known a priori and the 

curvature needs to be carefully treated. In the mesh based group, it is widely estimated from an 

indicator function which can be either a discontinuous fluid distribution function or developed to be 

smoothed [1,36]. To improve the performance on mesh refinement convergence, an indicator function 

based on least square approach [37] and height function approach [38] were proposed, achieving first 

and second order convergence respectively. 



    For meshless approaches, CSF is also widely adopted for surface tension implementation and the 

curvature is computed as the divergence of unit normal using an indicator function [2,27]. A method 

locally reconstructing the interface in conjunction with the interface particle identification was 

adopted in Zhang et al. [28] in which polynomial or MLS algorithm is used to fit the local interface 

curve. For the present MLPG_R multiphase model, as the interface is automatically traced by 

identifying interface particles, local interface curve reconstruction will be used. MLS fitting is used to 

avoid oscillations that might be caused by polynomial fitting due to disordered interface particle 

distribution, with details provided in the Appendix. 

The curvature obtained by above technique is tested on different types of curves including a circle, 

𝑥2 + 𝑦2 = 1, an ellipse, (
𝑥

2
)
2
+ 𝑦2 = 1, and a sinusoidal curve, 𝑦 = 𝑠𝑖𝑛 (𝑥). Particle distances of 

0.167, 0.1, 0.063, 0.05, 0.033, 0.02 and 0.013 are tested for the three curves and the 𝐿2 relative errors 

defined by 𝐸𝐿2 = √
∑ (𝜅𝑖−𝜅𝑖𝑎)

2𝑁
𝑖=1

∑ 𝜅𝑖𝑎
2𝑁

𝑖=1

 are plotted in Fig. 1, where 𝜅𝑖𝑎  is the analytical curvature for the 

particle on the curve and  𝜅𝑖 is the corresponding numerical curvature. One can observe that second-

order convergence is achieved by the local curve fitting with second-order MLS algorithm. 



 

  

Fig. 1: 𝐿2 errors of curvatures for the circle, ellipse and sine-curve corresponding to different particle 

distances. The dashed line indicates the second order convergence. 

 

4. Validation results 

    In this section, a number of numerical experiments involving fluids with interface tension and high 

viscosity are presented to demonstrate the performance of the method proposed, i.e. the combined 

implementation of the sharp pressure jump at the interface and the precise determination of interface 

curvature based on MLS fitting of local interface curve while satisfying the velocity continuity 

condition, in both normal and tangential directions. Validations are also carried out for the newly 

derived discontinuous [
𝛻𝑝

𝜌
]
𝐻𝑉

, Eq. (14), and its corresponding pressure expressions, Eqs. (20) and (21), 

showing its applicability for high viscous fluids.  



4.1 Square-droplet deformation 

    In this case, an initially squared fluid droplet with density of 𝜌1 and dynamic viscosity of  𝜇1 is 

located at the centre of a larger square as shown in Fig. 2. The density of the fluid surrounding the 

inner square is 𝜌2 and the viscosity is 𝜇2. Due to unbalanced surface tension force, capillary waves are 

induced to oscillate the inner fluid about its equilibrium shape which is a circle based on the Laplace 

law [39]. Viscous effects damp the oscillation and lead the droplet to its final equilibrium shape.  

 

Fig. 2: Setup of square-droplet deformation test 

In the tests on the same case previously carried out to validate surface tension models and interface 

curvature estimations [7,27,28,36], the unphysical residual flows at latter equilibrium state called 

‘parasitic currents’ were often observed to be considerable due to the imbalance between the interface 

tension force and pressure gradients near the interface [40,41]. This is because the interface in these 

tests covers several cells (in mesh based method) or particle layers (in meshless method) within which 

curvature and surface tension are smeared. The transitional curvature and pressure do not strictly 

satisfy the interface conditions stated by Eq. (4), leading to relatively high parasitic currents when the 

droplet reaches its equilibrium state. In fact, even with sharp pressure jump based on a fix grid method 

[41], the tested drop in static equilibrium can still have a considerable velocity magnitude, which was  

likely caused by the inaccurate curvature estimation on fixed grid. 



With the newly developed implementation for the surface tension, sharp pressure jump across a 

single interface particle layer is achieved and curvature is accurately estimated through locally fitting 

the interface particles. The test follows the settings in Hoang et al. [36] and all the parameters are non-

dimensionalized giving the density of 𝜌2 = 3546, the viscosity of 𝜇2 = 1.0, the density ratio of 

𝜌2/𝜌1 = 2, the viscosity ratio of 𝜇2/𝜇1 = 0.4 and the interface tension of 𝜎 = 1.0. The domain size is 

𝐿2 = 2𝐿1 = 4. When the inner drop reaches its equilibrium state, the shape is transformed to a circle 

remaining the same area as the initial square. According to Laplace law, the pressure inside and 

outside the circle are two constants having a jump at the circle. By plotting the pressure on 𝑦 = 2.0 

within the right half side of the square, i.e. 2.0 ≤ 𝑥 ≤ 4.0 , Fig. 3 illustrates a higher constant pressure 

inside the inner circle and a lower constant outside the circle with the transition between two 

constants completed on one interface particle. One can also observe that the simulations using 40, 60 

and 80 particles along the outside square edge (giving the particle distance of 0.025, 0.017 and 0.013 

respectively) largely provide similar results which are close to the analytical solution. From the 

enlarged insert in Fig. 3, well convergence can be observed when the number of particles increases. 

The reason for such sharp pressure jump lies in the newly proposed Eqs. (20) and (21) which strictly 

satisfy the pressure jump condition by storing two pressure values for individual phases on one 

interface particle. Similar simulations were also conducted by the SPH in Zainali et al. [20], by 

treating the interface force continuously as in the CSF method. Although the accuracy of interface 

force was improved by testing various kernel combinations for the governing equations and the 

interface force, the pressure still shows gradual reduction across the interface accompanied by slight 

oscillations somewhat losing the sharp pressure jump as stated in Laplace law. Pressure snapshots of 

𝑡 =6, 30 and 300 are demonstrated in Fig. 4 with interface particles marked black, illustrating the 

pressure fields which drive the shape oscillates (i.e. (a) and (b)) until the equilibrium state (i.e. (c)). 

The volume conservation issue of particle based methods simulating incompressible flow was 

discussed by Nair and Tomar [42]. In this case, the volume conservation can be validated by the 

occupied area of the inner fluid after long time simulation as it becomes circular at equilibrium. In Fig. 

3, the position of the pressure jump of the Laplace law is based on the radius of the final circle whose 



area equals to that of the initial square of 𝐿1 × 𝐿1. The matched location of the pressure jump between 

the simulation and the Laplace law illustrates the area conservation during shape transformation. 

By recording the maximum velocity in the whole domain, Fig. 5 shows that after long time 

simulation, the drop reaches its equilibrium and due to the energy dissipation of viscosity the 

maximum velocity is gradually reduced and becomes a stable but non-zero value which is caused by 

numerical errors and called the parasitic current. By checking the maximum velocity dissipation, not 

only the convergence is achieved when 80 particles are used, the spurious current is also significantly 

reduced and stabilized by the new interface tension implementation compared to conventional CSF 

model [36]. 

 

Fig. 3: Pressures inside and outside the equilibrium droplet at y=2.0 for different particle numbers. 

             

                                                (a)                                                            (b) 



 

                                                                           (c) 

Fig. 4: Pressure snapshots during droplet oscillation at time instants of 6 (a), 30 (b) and 300 (c). 

 

 

Fig. 5: Time histories of maximum velocity with different particle numbers along the outside square 

edge. The large circle solid line is from Hoang et al. [36] adopting CSF model with cell number of 

100. 

4.2 Capillary wave 

    The capillary wave is a surface tension driven flow and its amplitude damping oscillation is often 

used as a benchmark to test the accuracy of numerical schemes for viscous, surface tension driven 

two-phase flows [1,41]. In this section, the proposed pressure formulations, Eqs. (20) and (21), that 

include the effects of  high viscosity and interface tension, will be validated and the differences 

between the results from the use of Eq. (14) and that for low viscous stress will also be shown. 



    A computational domain of 𝐻 × 𝐻  is equally split into two sections filled by two fluids with 

identical kinematical viscosity. An initial sinusoidal perturbation is applied to the interface with the 

amplitude of 𝑎0 = 0.01𝐻  and the wave length of 𝐻 . The analytical solution of this initial value 

problem for the linearized case was found by Prosperetti [43]. Due to infinite domains used in 

Prosperetti’s theory, periodic boundary is applied on the wave progressing direction. To simulate such 

boundary, three columns of particles are added on the left and right hand sides out of the domain. The 

added particles on the right hand side carry the information, i.e., density, viscosity, pressure and 

velocity, of three columns of particles on the far left of computational domain and vice versa. 

Following Wang and Tong [41], we set the wave length 𝜆 = 𝐻 = 1𝑚, the dynamic viscosity 𝜇𝑙 =

𝜇𝑘 = 1.0𝑃𝑎 ∙ 𝑠, the density 𝜌𝑙 = 𝜌𝑘 = 100𝑘𝑔/𝑚
3 and the interfacial tension coefficient 𝜎 = 30𝑁/𝑚. 

The Ohnesorge number is 𝑂ℎ =
𝜇

√(𝜎𝜌𝜆)
= 1/√3000. Convergence tests of different particle distance 

are first carried out and the wave amplitudes with different particle numbers in a wave length are 

shown in Fig. 6(a), in which 𝜔0 = √𝜎𝑘
3/(𝜌𝑙 + 𝜌𝑘) and 𝑘 is the wave number. Results of another test 

with the same parameters but a higher viscosity of 0.05m2/s are shown in Fig. 6(b), in which a 

stronger damping can be observed. For both cases, 64 nodes in a wave length are sufficient to achieve 

a convergent results and this number will be applied to the following capillary wave cases unless 

stated otherwise. To observe the convergent rate, 𝐿2  norm is calculated as 𝐿2 =

√
1

𝑁
∑ (𝑎𝑖 − 𝑎𝑒𝑥𝑎𝑐𝑡)

2𝑁
𝑖=1 , where 𝑁 is the number of results on time history, 𝑎𝑖 is the amplitude from 

numerical simulation and 𝑎𝑒𝑥𝑎𝑐𝑡  is from Prosperetti’s analytical solution. For both viscosities of 

0.01m2/s and 0.05m2/s, values of 𝐿2 are calculated for different particle numbers per wave length of 

16, 32, 64 and 128. Fig. 7 plots the errors with respect to particle numbers, showing approximate 

second order convergent rate for both viscosities. The pressure fields at two time instants are shown 

by the left column of Fig. 8 illustrating smooth pressure distributions within each phase and sharp 

jumps at the interface caused by the interface tension and normal viscous stress. The right column of 

the Fig. 8 shows the corresponding velocity fields which are continuous at the interfaces as indicated 

by black dots. 



 

        (a)                                                                           (b) 

Fig. 6: Amplitude time history with different particle numbers per wave length. Kinematic viscosities 

are 0.01𝑚2/𝑠 in (a) and 0.05𝑚2/𝑠 in (b). 

 

 

Fig. 7:  𝐿2 norms of particle number of 16, 32, 64 and 128 per wave length for the viscosities of 

0.01𝑚2/𝑠 and 0.05𝑚2/𝑠. The solid line indicates the second order convergence. 



         

(a) 

        

(b) 

Fig. 8: Pressure and velocity fields at 𝑡𝜔0 = 1.0 (a) and 𝑡𝜔0 = 2.9 (b), respectively. The black dots in 

velocity fields denote the location of the interface. 

 

For comparisons between [
𝛻𝑝

𝜌
]
𝐻𝑉

and  [
𝛻𝑝

𝜌
]
𝐿𝑉

, the viscosities of 0.001m2/s and 0.01m2/s are first 

tested, giving the wave amplitudes shown in Fig. 9(a) and (b). Results with both conditions almost 

coincide and agree well with the analytical solution. But for the higher viscosities of 0.05m2/s and 

0.075m2/s, the differences in the results obtained by the two conditions increased considerably as 

shown in Fig. 9(c) and (d), indicating that the results obtained with the jump formulation considering 

high viscous effects (i.e., [
𝛻𝑝

𝜌
]
𝐻𝑉

)  can match the analytical solution much better than that with the 

assumption of small viscous effects (i.e., [
𝛻𝑝

𝜌
]
𝐿𝑉

). The relative error of the amplitude, defined as 

𝐸𝑟,𝑖 = |𝑎𝑖 − 𝑎𝑒𝑥𝑎𝑐𝑡,𝑖|/|𝑎𝑒𝑥𝑎𝑐𝑡,𝑖|, can be well over 100% at certain phases when [
𝛻𝑝

𝜌
]
𝐿𝑉

 is used. These 



results demonstrate clearly that [
𝛻𝑝

𝜌
]
𝐻𝑉

 covers the range of both low and high viscosity whereas [
𝛻𝑝

𝜌
]
𝐿𝑉

 

only works well with low viscosity flows. Comparisons of full interface profiles at two time instants 

for each viscosity, i.e. 𝑡𝜔0 = 5.7 and 6.4 for 0.05m2/s as well as 𝑡𝜔0 =5.7 and 7.6 for 0.075m2/s, 

are illustrated in Fig. 10, further showing the difference by adopting [
𝛻𝑝

𝜌
]
𝐻𝑉

 and[
𝛻𝑝

𝜌
]
𝐿𝑉

. 

 

        

                              (a)                                                                             (b) 

       

                                           (c)                                                                            (d) 

Fig. 9: Comparisons of amplitude time history predicted with the two jump conditions of 𝛻𝑝 𝜌⁄ , 

respectively for viscosities of 0.001, 0.01, 0.05and 0.075𝑚2/𝑠. 

 

 



        

                                               (a)                                                                                (b) 

Fig. 10:  Comparisons of interface profiles predicted with two jump conditions of 𝛻𝑝 𝜌⁄  at 𝑡ω0 = 5.7 

and 6.4 for the viscosity of 0.05𝑚2/𝑠 in (a) and at 𝑡ω0 =5.5 and 7.6 for the viscosity of 0.075𝑚2/𝑠 in 

(b). 

4.3 Bubble rising 

    In this section the newly proposed interface treatment with MLPG_R method is further tested and 

validated against the published results related to bubble rising in viscous fluids which is strongly 

affected by  fluid viscosity and the surface tension and has been widely adopted to exam the accuracy 

of surface tension and viscous terms estimation in terms of predicted bubble shapes and rising 

velocities [20,22]. 

    Based on the definition in Hysing et al. [44], a two dimensional computational domain with 𝐻/𝐵 =

2/1 is adopted with the slip condition being imposed at the left and right walls and non-slip boundary 

at the top and bottom walls, as shown in Fig. 11. A bubble with the radius of 𝑅 = 0.25 is initially set 

at (
𝐵

2
, 2𝑅) where 𝐵 = 4𝑅. Non-dimensional densities assigned to fluids inside and outside the bubble 

are 𝜌𝑘 = 100 and 𝜌𝑙 = 1000, respectively. The viscosities are 𝜇𝑘 = 1 and 𝜇𝑙 = 10 and the interface 

tension coefficient is σ = 24.5.  



 

Fig. 11: The setup of the bubble rising case 

    During bubble rising and shape translation, the centroid position of the bubble, 𝑥 𝑐, and velocity, 

�⃗� 𝑐,may be used to track the bubble movement [43,44] and are determined as 

𝑥 𝑐 =
∫ 𝑥 𝑑𝛺𝛺

∫ 1𝑑𝛺𝛺

 and �⃗� 𝑐 =
∫ �⃗⃗� 𝑑𝛺𝛺

∫ 1𝑑𝛺𝛺

 

where Ω is the domain occupied by the bubble. The simulations of this case are conducted with three 

initial particle distances of 𝑑𝑙 = 1/[80, 120,160] to the nondimensional time 𝑡 = 3. Apart from the 

benchmark results from Hysing et al. [44] in which centroid positions and rising velocities were 

obtained by FEM with the interface captured by  level set algorithm and the results from FVM using 

Volume of Fluid (VOF) capturing algorithm conducted in OpenFOAM solver (open source CFD) are 

also presented. 

    Fig. 12(a) compares the rising velocity from the two-phase MLPG_R method with particle 

distances of 1/40, 1/60 and 1/80, FEM of finest grids of 1/320 given by Hysing et al. [44] and FVM 

with refined and converged grids of 1/240 given by the OpenFOAM. The solutions from MLPG_R 

with different particle distances are close to each other but still have a noticeable deviation compared 

with Hysing et al.’s benchmark results. It can also be observed that the velocity converges when the 

distance is decreased to be 1/80 and this converged velocity locates between solutions of FEM and 



FVM. Compared to OpenFOAM’s solution, the results obtained by multiphase MLPG_R are closer to 

the benchmark, probably due to the reduction in spurious currents which was previously discussed in 

square-droplet case. Fig. 12(b) illustrates the time histories of bubble centroid position as predicted by 

MLPG_R using different particle distances, FVM and FEM with fine grids. Similar to the rising 

velocity, good results are obtained by these three MLPG_R resolutions which are located between that 

of FVM and FEM.  

    According to numerical tests of MLPG_R, the bubble gets deformed during rising. But it stays 

compact as one enclosed region throughout the simulation which is caused by the strong influence of 

the surface tension. The shape of the bubble finally becomes stable and the terminal shapes at 𝑡=3 

obtained by different particle distances are shown in Fig. 13. The shape also converges at 𝑑𝑙 = 1/80 

for MLPG_R method and largely agrees with those from FEM by Level set method [44] and FVM by 

VOF using OpenFOAM.  

                 

                                      (a)                                                                                  (b) 

Fig. 12: Rising velocities (a) and centroid position of the bubble (b) from MLPG_R method with 

initial particle distance of 1/40, 1/60 and 1/80, FEM-Level set method [44] and FVM-VOF 

(OpenFOAM) with very fine grids. 



 

 

Fig. 13: Bubble shape at t=3 from the MLPG_R method with initial particle distance of 1/40, 1/60 and 

1/80, FEM-Level set method [44] and FVM-VOF (OpenFoam) with very fine mesh. 

 

4.4 Rayleigh-Taylor instability 

Rayleigh-Taylor instability typically occurs in multiphase flows with complex interface profiles 

characterised by significant distortions of particle distribution in long time simulation. The test chosen 

in this paper involves two immiscible fluids with density of the upper phase being 𝜌𝑘 = 1.8 and the 

lower phase 𝜌𝑙 = 1.0 which are enclosed in a rectangular domain with the length of 𝐿 = 1 and the 

depth of 2𝐿. The phases are initially separated by 𝑦/𝐿 = 1 − 0.15sin (2𝜋𝑥/𝐿). The Reynolds number 

based on the reference velocity 𝑢𝑟𝑒𝑓 = √𝑔𝐿  is 𝑅𝑒 = 𝑢𝑟𝑒𝑓𝐿 𝜐⁄ = 420  where 𝜐  is the kinematic 

viscosity. 

The simulation was performed with 60 × 120 particles, resulting in an initial distance of 1/60. Fig. 14 

illustrates phase configurations at t=1, 3 and 5 (nondimensionalized by the time scale of √𝐿/𝑔) 

compared with the results of [22] using particle distance of 1/256. A good agreement is achieved for 

the growth of the instability even when the interface is highly complex. Without any artificial 

treatments to sharpen the interface such as adding different types of repulsion forces between phases 

[22,45,46] which is widely adopted by particle based methods, this algorithm achieves clear 



separation of two phases by implementing the conditions in Eqs. (20) and (21) which enforces the 

balance of the stress and the continuity of the velocity at the interface.  

     

                                  (a)                                            (b)                                             (c) 

Fig. 14: Phase configurations of the Rayleigh-Taylor instability at t=1, t=3 and t=5 as shown in (a), (b) 

and (c) by blue and red dots. Black curves are the results of the interfaces from [22]. 

 

5. Conclusion 

In this work, a new interface treatment technique for multi-phase meshless methods considering 

interface tension and high viscosity is proposed and is incorporated into the MLPG_R method to 

simulate two-phase flows. The interface conditions imposed are the stress balance including interface 

tension in the normal direction of the interface and the velocity continuity at the interface. Based on 

these interface conditions, jumps in the pressure and in the ratio of pressure gradient to the density are 

derived. The curvature of the interface is determined from the local reconstructed interface curve 

which is fitted by MLS approach. The new two-phase model has been validated with analytical 

solutions for square-droplet deformation and capillary waves. The simulation obtains a precise and 

discontinuous pressure at the interface with depressed parasitic current and demonstrates the 

capability of the model in handling high viscosity showing approximate second order convergent rate 



of the solution method. The simulation of the bubble rising shows acceptable agreement with other 

numerical models which further validates the new model’s capability in dealing with two-phase flow 

problems involving high viscosity and interface tension. The Rayleigh-Taylor instability case 

demonstrates the capacity of the model for dealing with complex interface profiles and maintaining 

clear separations of two phases. It should be noted that although the proposed interface treatment 

technique is implemented based on MLPG_R method in this work, it is straightforward to apply it to 

other meshless methods as long as interface particles are clearly identified.  

 

Appendix 

    To ensure a one-valued interface curve, a local coordinate system is first built (as shown in Fig. A1) 

with the new origin 𝑂′  being at the averaged coordinates of neighbouring interface particles, i.e., 

interface particles within the circle in Fig. A1, and the 𝑦′ axis pointing to the concerned particle. 

Secondly a local curve of the concerned particle will be constructed. Unlike the polynomial 

interpolation used by Zhang et al. [28], the second-order MLS technique is used to ensure a smooth 

curve even with irregularly distributed interface particles. Details of MLS technique can be found in 

Ma [29] and here only the curve reconstruction procedures are described.  
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Fig. A1: Coordinate transformation for local curve construction. 

    To obtain a second-order curve in 𝑥′𝑜′𝑦′  system, the approximant 𝑦′ℎ(𝑥′) of 𝑦′(𝑥′) having 𝑥′ 

within the support domain, can be defined by 

𝑦′ℎ(𝑥′) = 𝒑𝑇(𝑥′)𝒂(𝑥′) 

where 𝑃𝑇(𝑥′) is a complete monomial basis of order 𝑚 which can be written as 

𝒑𝑇(𝑥′) = [1, 𝑥′, 𝑥′
2
] ,     𝑚 = 3 

and 𝒂(𝑥′)  is a vector containing coefficients 𝑎𝑗(𝑥
′), 𝑗 = 1,2, … ,𝑚 and can be expressed as 

𝒂(𝑥′) = 𝑨−1(𝑥′)𝑩(𝑥′)𝒚′ 

where  𝒚′
𝑇
= [𝑦′1, 𝑦

′
2, … , 𝑦

′
𝑛]  and 𝑦′𝑖, 𝑖 = 1,2,… , 𝑛  are the 𝑦′  values of surrounding interface 

particles in the support domain. The matrices 𝑨(𝑥′) and 𝑩(𝑥′) are defined as 

𝑨(𝑥′) = 𝑷𝑇𝑾𝑷 =∑wi(𝑥
′)

n

i=1

𝒑(𝑥′𝑖)𝒑
𝑇(𝑥′𝑖) 

𝑩(𝑥′) = 𝑷𝑇𝑾 = [w1(𝑥
′)𝒑(𝑥′1),w2(𝑥

′)𝒑(𝑥′2),… ,wn(𝑥
′)𝒑(𝑥′𝑛)] 

where the matrices 𝑷 and 𝑾 are defined as 

𝑷 = [

𝒑𝑇(𝑥′1)

𝒑𝑇(𝑥′2)
⋯

𝒑𝑇(𝑥′𝑛)

] ,𝑾 = [
w1(𝑥

′) ⋯ 𝟎
⋯ ⋯ ⋯
𝟎 ⋯ wn(𝑥

′)
] 

Upon solving 𝒂(𝑥′), the interpolated curve can be expressed as 

𝑦′ℎ(𝑥′) = 𝑎1(𝑥
′) + 𝑎2(𝑥

′)𝑥′ + 𝑎3(𝑥
′)𝑥′

2
 

The curvature and the normal vector of the interface are subsequently calculated from the interpolated 

curve. The curvature 𝜅 is given by 

𝜅 =
|𝑑2𝑦′ℎ/𝑑𝑥′

2
|

[1 + (𝑑𝑦′ℎ/𝑑𝑥′)2]3/2
 



The normal vector in the local coordinate system is taken as 

�⃗� ′ =

{
 
 

 
 (
𝑑𝑦′ℎ

𝑑𝑥′
, −1) , for  𝑑2𝑦′ℎ/𝑑𝑥′

2
< 0

(−
𝑑𝑦′ℎ

𝑑𝑥′
, 1) , for  𝑑2𝑦′ℎ/𝑑𝑥′

2
> 0

 

It should be noted that the curvature is not affected by the transformation of the coordinate system but 

the normal vector calculated with respect to the local coordinate system needs to be converted back to 

the original fixed 𝑥𝑜𝑦 system. 
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