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Abstract. We study connected components of the space of higher spin bun-
dles on hyperbolic Klein surfaces. A Klein surface is a generalisation of a Rie-

mann surface to the case of non-orientable surfaces or surfaces with boundary.

The category of Klein surfaces is isomorphic to the category of real algebraic
curves. An m-spin bundle on a Klein surface is a complex line bundle whose

m-th tensor power is the cotangent bundle. Spaces of higher spin bundles on
Klein surfaces are important because of their applications in singularity theory

and real algebraic geometry, in particular for the study of real forms of Goren-

stein quasi-homogeneous surface singularities. In this paper we describe all
connected components of the space of higher spin bundles on hyperbolic Klein

surfaces in terms of their topological invariants and prove that any connected

component is homeomorphic to the quotient of Rd by a discrete group. We
also discuss applications to real forms of Brieskorn-Pham singularities.

1. Introduction

A complex line bundle e : L → P on a Riemann surface P , denoted (e, P ), is
an m-spin bundle for an integer m > 1 if its m-th tensor power e⊗m : L⊗m → P
is isomorphic to the cotangent bundle of P . The classical 2-spin structures on
compact Riemann surfaces were introduced by Riemann as theta characteristics and
play an important role in mathematics. Their modern interpretation as complex
line bundles and classification were given by Atiyah [Ati] and Mumford [Mum], who
showed that 2-spin bundles have a topological invariant δ = δ(e, P ) ∈ {0, 1}, the Arf
invariant, which is determined by the parity of the dimension of the space of sections
of the bundle. Moreover, the space S2

g,δ of 2-spin bundles on Riemann surfaces of

genus g with Arf invariant δ, i.e. the space of such pairs (e, P ), is homeomorphic
to the quotient of R6g−6 by a discrete group of autohomeomorphisms, see [Nat89a,
Nat04].

The study of spaces of m-spin bundles for arbitrary m started more recently
because of the remarkable connections between the compactified moduli space of
m-spin bundles and the theory of integrable systems [Wit], and because of their
applications in singularity theory [Dol83, NP11, NP13]. It was shown that for oddm
the space of m-spin bundles is connected, while for even m (and g > 1) there are
two connected components, distinguished by an invariant which generalises the Arf
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invariant [Jar00]. In all cases each connected component of the space of m-spin
bundles on Riemann surfaces of genus g is homeomorphic to the quotient of R6g−6

by a discrete group of autohomeomorphisms, see [NP05, NP09]. The homology of
these moduli spaces was studied further in [Jar01, JKV, ChZ, FSZ, RW1, RW2,
PPZ, SSZ].

The aim of this paper is to determine the topological structure of the space of
m-spin bundles on hyperbolic Klein surfaces. A Klein surface is a non-orientable
topological surface with a maximal atlas whose transition maps are dianalytic, i.e.
either holomorphic or anti-holomorphic, see [AG]. Klein surfaces can be described
as quotients P/〈τ〉, where P is a compact Riemann surface and τ : P → P is
an anti-holomorphic involution on P . The category of such pairs is isomorphic
to the category of Klein surfaces via the relation (P, τ) 7→ P/〈τ〉. Under this
correspondence the fixed points of τ correspond to the boundary points of the
Klein surface. In this paper a Klein surface will be understood as an isomorphism
class of such pairs (P, τ). We will only consider connected compact Klein surfaces.
The category of connected compact Klein surfaces is isomorphic to the category of
irreducible real algebraic curves (see [AG]).

The boundary of a surface P/〈τ〉, if not empty, decomposes into k pairwise
disjoint simple closed smooth curves. These closed curves are called ovals and
correspond to connected components of the set of fixed points P τ of the involution
τ : P → P . On the real algebraic curve they correspond to connected components
of the set of real points.

The topological type of the surface P/〈τ〉 is determined by the triple (g, k, ε),
where g is the genus of P , k is the number of connected components of the boundary
of P/〈τ〉 and ε ∈ {0, 1} with ε = 1 if the surface is orientable and ε = 0 otherwise.
The following conditions are satisfied: 1 6 k 6 g + 1 and k ≡ g + 1 (mod 2) in
the case ε = 1 and 0 6 k 6 g in the case ε = 0. These classification results
were obtained by Weichold [Wei]. It is known that the topological type completely
determines the connected component of the space of Klein surfaces. Moreover, the
space Mg,k,ε of Klein surfaces of the topological type (g, k, ε) is homeomorphic to

the quotient of R3g−3 by a discrete subgroup of automorphisms. In addition to
the invariants (g, k, ε), it is useful to consider an invariant that we will call the
geometric genus of (P, τ). In the case ε = 1 the geometric genus (g + 1 − k)/2 is
the number of handles that need to be attached to a sphere with holes to obtain a
surface homeomorphic to P/〈τ〉. In the case ε = 0 the geometric genus [(g − k)/2]
is half the number of Möbius bands that need to be attached to a sphere with holes
to obtain a surface homeomorphic to P/〈τ〉.

An m-spin bundle on a Klein surface (P, τ) is a pair (e, β), where e : L → P is
an m-spin bundle on P and β : L→ L is an anti-holomorphic involution on L such
that e ◦ β = τ ◦ e, i.e. the following diagram commutes:

L
e−−−−→ P

β

y yτ
L

e−−−−→ P

Spaces of higher spin bundles on Klein surfaces are important because of their
applications in singularity theory and real algebraic geometry. We are particularly
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interested in applications to the classification of real forms of complex singularities.
Any Brieskorn-Pham singularity, i.e. singularity of the form xa + yb + zc = 0, can
be constructed from an m-spin bundle on a Riemann surface P (roughly speak-
ing by contracting the zero section of the bundle) [Mil75, Neu77] and real forms
of the singularity correspond to m-spin bundles on Klein surfaces (P, τ). More
generally any hyperbolic Gorenstein quasi-homogeneous surface singularity can be
constructed from an m-spin bundle on a quotient of the form H/Γ, where Γ is a
Fuchsian group, possibly with torsion, see [Dol75, Dol77, Dol83]. An extension of
the results of our paper to such m-spin bundles will lead to a classification of real
forms of hyperbolic Gorenstein quasi-homogeneous surface singularities. The first
results in this direction were obtained by H. Riley in her Ph.D. thesis [Ril]. Other
classes of complex singularities for which real forms have been studied are simple
singularities and cusp singularities, see the survey [W4] as well as [W1, W2, GZ].
See section 5 for more details of applications to singularity theory.

Another important connection is between 2-spin bundles on Klein surfaces and
abelian Yang-Mills theory on real tori [OT] and possible generalisations to m-spin
bundles.

In this paper we determine the connected components of the space of m-spin bun-
dles on Klein surfaces, i.e. equivalence classes of m-spin bundles on Klein surfaces up
to topological equivalence (Definition 3.8). We find the topological invariants that
determine such an equivalence class and determine all possible values of these invari-
ants. We also show that every equivalence class is a connected set homeomorphic to
the quotient of Rn by a discrete group, where the dimension n and the group depend
on the class. The special case m = 2 was studied in [Nat89b, Nat90, Nat99, Nat04].

While 2-spin bundles on a Riemann surface P can be described in terms of qua-
dratic forms on H1(P,Z/2Z), for higher spin bundles the situation is more complex.
The main innovation of our method is to assign to every m-spin bundle on a Klein
surface (P, τ) a function on the set of simple closed curves in P with values in
Z/mZ, called real m-Arf function [NP16]. Thus the problem of topological classi-
fication of m-spin bundles on Klein surfaces is reduced to topological classification
of real m-Arf functions. We introduce a complete set of topological invariants of
real m-Arf functions. We then construct for any real m-Arf function σ a canoni-
cal generating set, i.e. a generating set of the fundamental group of P on which σ
assumes values determined by the topological invariants.

We will now explain the results in more detail. Let (P, τ) be a Klein surface of
type (g, k, ε). In this paper we will consider hyperbolic Klein surfaces (P, τ), i.e. we
assume that the underlying Riemann surface P is hyperbolic, g > 2. We will also
assume that the geometric genus of (P, τ) is positive, i.e. k 6 g − 2 if ε = 0 and
k 6 g − 1 if ε = 1.

We show that if m is odd and there exists an m-spin bundle on the Klein
surface (P, τ) then g ≡ 1 (modm). Moreover, assuming that m is odd and
g ≡ 1 (modm), the space of m-spin bundles on Klein surfaces of type (g, k, ε)
is not empty and is connected.

Now let m be even. Consider an m-spin bundle e on the Klein surface (P, τ). A
restriction of the bundle e gives a bundle on the ovals. Let K0 and K1 be the sets
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of ovals on which the bundle is trivial and non-trivial respectively. We show that
|K1| ·m/2 ≡ 1− g (modm).

If m is even and ε = 0, the Arf invariant δ of the bundle e and the cardinalities
ki = |Ki| for i = 0, 1 determine a (non-empty) connected component of the space
of m-spin bundles on Klein surfaces of type (g, k0 + k1, 0) if and only if

k1 ·
m

2
≡ 1− g (modm).

If m is even and ε = 1, the bundle e determines a decomposition of the set of
ovals into two disjoint sets, K0 and K1, of similar ovals (for details see section 3.1).
The bundle e induces m-spin bundles on connected components of P\P τ . The Arf

invariant δ̃ of these induced bundles does not depend on the choice of the connected
component of P\P τ . We also consider the cardinalities kji = |Ki ∩ Kj |. The

invariants δ̃ and kji for i, j ∈ {0, 1} determine a connected component of the space
of m-spin bundles on Klein surfaces of type (g, k00 + k10 + k01 + k11, 1) if and only if
the following conditions are satisfied:

• If g > k + 1 and k00 + k10 6= 0 then δ̃ = 0.

• If g > k + 1 and m ≡ 0 (mod 4) then δ̃ = 0.

• If g = k + 1 and k00 + k10 6= 0 then δ̃ = 1.

• If g = k + 1 and m ≡ 0 (mod 4) then δ̃ = 1.

• If g = k + 1 and k00 + k10 = 0 and m ≡ 2 (mod 4) then δ̃ ∈ {1, 2}.
• (k01 + k11) ·m/2 ≡ 1− g (modm).

We also show that every connected component of the space of m-spin bundles on
Klein surfaces of genus g is homeomorphic to the quotient of R3g−3 by a discrete
subgroup of automorphisms which depends on the component (see Theorem 4.3).

The paper is organised as follows:

In section 2 we recall the classification of real m-Arf functions from [NP16]. We
determine the topological invariants of realm-Arf functions in section 3. In section 4
we use these topological invariants to describe connected components of the space
of m-spin bundles on Klein surfaces. In section 5 we explain the connection between
m-spin bundles on Klein surfaces and real forms of complex singularities.

We are greatful to Victor Goryunov, Anna Felikson and Oscar Randal-Williams
for useful discussions related to this work. We would like to thank the referee for
their valuable remarks and suggestions.

2. Higher Spin Structures on Klein Surfaces

A Klein surface is a topological surface with a maximal atlas whose transition
maps are either holomorphic or anti-holomorphic. A homomorphism between Klein
surfaces is a continuous mapping which is either holomorphic or anti-holomorphic
in local charts.

Let us consider pairs (P, τ), where P is a compact Riemann surface and τ :
P → P is an anti-holomorphic involution on P . For each such pair (P, τ) the
quotient P/〈τ〉 is a Klein surface and each isomorphism class of Klein surfaces
contains a surface of the form P/〈τ〉. Moreover, two such quotients P1/〈τ1〉 and
P2/〈τ2〉 are isomorphic as Klein surfaces if and only if there exists a biholomorphic
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map ψ : P1 → P2 such that ψ ◦ τ1 = τ2 ◦ ψ, in which case we say that the pairs
(P1, τ1) and (P2, τ2) are isomorphic. Hence from now on instead of Klein surfaces we
will consider isomorphism classes of pairs (P, τ). The category of such pairs (P, τ)
is isomorphic to the category of real algebraic curves, where fixed points of τ (i.e.
boundary points of the corresponding Klein surface) correspond to real points of the
real algebraic curve. For example a non-singular plane real algebraic curve given
by an equation F (x, y) = 0 is the set of real points of such a pair (P, τ), where P is
the normalisation and compactification of the surface {(x, y) ∈ C2

∣∣ F (x, y) = 0}
and τ is given by the complex conjugation, τ(x, y) = (x̄, ȳ).

Given two Klein surfaces (P1, τ1) and (P2, τ2), we say that they are topologically
equivalent if there exists a homeomorhism φ : P1 → P2 such that φ ◦ τ1 = τ2 ◦ φ.

Let (P, τ) be a Klein surface. The set of fixed points of the involution τ is called
the set of real points of (P, τ) and denoted by P τ . We say that (P, τ) is separating
if the set P\P τ is not connected, otherwise we say that it is non-separating . The
set P τ decomposes into pairwise disjoint simple closed smooth curves, called ovals.
Simple closed curves on P which are invariant under the involution τ but do not
contain any fixed points of τ are called twists. The topological type of (P, τ) is the
triple (g, k, ε), where g is the genus of the Riemann surface P , k is the number of
connected components of the fixed point set P τ of τ , ε = 0 if (P, τ) is non-separating
and ε = 1 otherwise. In this paper we consider hyperbolic surfaces, hence g > 2.
Weichold [Wei] classified Klein surfaces up to topological equivalence: Two Klein
surfaces are topologically equivalent if and only if they are of the same topological
type. A triple (g, k, ε) is a topological type of some Klein surface if and only if
either ε = 1, 1 6 k 6 g + 1, k ≡ g + 1 (mod 2) or ε = 0, 0 6 k 6 g. For more
detailed discussion of Klein surfaces see [AG, Nat90].

A line bundle e : L→ P on a Riemann surface P is an m-spin bundle (of rank 1)
if the m-fold tensor power L⊗· · ·⊗L→ P coincides with the cotangent bundle of P .
For m = 2 we obtain the classical notion of a spin bundle. In [NP05, NP09] we
proved that m-spin bundles on P are in 1-1-correspondence with m-Arf functions,
certain functions on the space π0

1(P ) of homotopy classes of simple closed curves
on P with values in Z/mZ described by simple geometric properties. We introduced
topological invariants of m-Arf functions, in particular the Arf inariant δ, and
described the conditions for existence of an m-Arf function with prescribed values
on a generating set of π1(P ).

Let (P, τ) be a Klein surface. A classification of m-spin bundles on P that are
invariant under τ was given in [NP16]. Such bundles are characterised by the special
properties of the corresponding m-Arf functions, called real m-Arf functions. An
m-Arf function σ on P is real if σ(τc) = −σ(c) for any c and σ(c) = 0 for any
twist c. The mapping that assigns to an m-spin bundle on P the corresponding
m-Arf function establishes a 1-1-correspondence between m-spin bundles invariant
under τ and real m-Arf functions on P . In [NP16] we determined the conditions for
existence of real m-Arf functions with prescribed values on a symmetric generating
set, which is a generating set of π1(P ) which is particularly well adapted to the
action of τ . Furthermore we enumerated such real m-Arf functions. For details see
section 4.4 in [NP16], in particular Theorems 4.9 and 4.10.

3. Topological Types of Higher Arf Functions on Klein Surfaces
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3.1. Topological Invariants.

Definition 3.1. Let (P, τ) be a non-separating Klein surface of type (g, k, 0). Let
m be even. The topological type of a real m-Arf function σ on (P, τ) is a tuple
(g, δ, k0, k1), where g is the genus of P , δ is the m-Arf invariant of σ and kj is the
number of ovals of (P, τ) with the value of σ equal to j ·m/2.

Real m-Arf functions with even m on separating Klein surfaces have additional
topological invariants:

Definition 3.2. Let (P, τ) be a separating Klein surface of type (g, k, 1). Let P1

and P2 be the connected components of P\P τ . Let m be even. Let σ be an m-Arf
function on (P, τ). We say that two ovals c1 and c2 are similar with respect to σ,
c1 ∼ c2, if σ(` ∪ (τ`)−1) is odd, where ` is a simple path in P1 connecting a point
on c1 to a point on c2.

From the definition of m-Arf functions (see Definition 3.4 in [NP16]) it is clear
that if σ : π0

1(P ) → Z/mZ is a real m-Arf function on (P, τ) and m is even, then
(σ (mod 2)) : π0

1(P ) → Z/2Z is a real 2-Arf function on (P, τ). Note that two
ovals are similar with respect to the m-Arf function σ if and only if they are similar
with respect to the 2-Arf function (σ (mod 2)), hence we obtain using [Nat04],
Theorem 3.3:

Proposition 3.1. Similarity of ovals is well-defined. Similarity is an equivalence
relation on the set of all ovals with at most two equivalence classes.

Definition 3.3. Let (P, τ) be a separating Klein surface of type (g, k, 1). Let P1

and P2 be the connected components of P\P τ . Let m be even. Let us choose one
similarity class of ovals. The topological type of a real m-Arf function σ on (P, τ)
is a tuple

(g, δ̃, {(k00, k01), (k10, k
1
1)}),

where g is the genus of P , δ̃ is the m-Arf invariant of σ|P1
, k0j is the number of ovals

in the chosen similarity class with the value of σ equal to j ·m/2 and k1j = kj−k0j is
the number of ovals in the other similarity class with the value of σ equal to j ·m/2.
The invariants kij depend on the choice of a similarity class of ovals, choosing the

other similarity class leads to the swap (k00, k
0
1)↔ (k10, k

1
1).

Definition 3.4. Let (P, τ) be a Klein surface of type (g, k, ε). Let m be odd. The
topological type of a real m-Arf function σ on (P, τ) is a pair (g, k), where g is the
genus of P and k the number of ovals of (P, τ).

Proposition 3.2. If there exists a real m-Arf function of the topological type t on
a Klein surface of type (g, k, ε), g > 2, then t satisfies the following conditions:

1) Case ε = 0, m ≡ 0 (mod 2), t = (g, δ, k0, k1):
k1 ·m/2 ≡ 1− g (modm).

2) Case ε = 1, m ≡ 0 (mod 2), t = (g, δ̃, ({(k00, k01), (k10, k
1
1)}):

Let kj = k0j + k1j for j = 0, 1.

(a) If g > k + 1 and m ≡ 0 (mod 4) then δ̃ = 0.

(b) If g > k + 1 and k0 6= 0 then δ̃ = 0.

(c) If g = k + 1 and m ≡ 0 (mod 4) then δ̃ = 1.

(d) If g = k + 1 and k0 6= 0 then δ̃ = 1.

(e) If g = k + 1, m ≡ 2 (mod 4) and k0 = 0 then δ̃ ∈ {1, 2}.
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(f) k1 ·m/2 ≡ 1− g (modm).
3) Case m ≡ 1 (mod 2), t = (g, k):

g ≡ 1 (modm).

Proof. Let (P, τ) be a Klein surface of type (g, k, ε), g > 2. Let σ be a real m-Arf
function of the topological type t on (P, τ). Let c1, . . . , ck be the ovals of (P, τ).

1) Case ε = 0, m ≡ 0 (mod 2), t = (g, δ, k0, k1): By the definition of the kj , the
tuple (σ(c1), . . . , σ(ck)) is a permutation of zero repeated k0 times and m/2

repeated k1 times, hence
k∑
i=1

σ(ci) ≡ k1 · m/2 (modm). On the other hand

Theorem 4.9(1) in [NP16] implies
k∑
i=1

σ(ci) ≡ 1− g (modm). Hence k1 ·m/2 ≡

1− g (modm).

2) Case ε = 1, m ≡ 0 (mod 2), t = (g, δ̃, {(k00, k01), (k10, k
1
1)}): Let P1 and P2 be the

connected components of P\P τ . Each of these components is a surface of genus
g̃ = (g+1−k)/2 with k holes. If σ is a real m-Arf function of the topological type

(g, δ̃, {(k00, k01), (k10, k
1
1)}) on (P, τ), then σ|P1 is an m-Arf function on a surface

of genus g̃ with k holes with the values on the holes equal to zero repeated k0
times and m/2 repeated k1 times.
• Theorem 4.3(b) in [NP16] implies that if g̃ > 1 and σ(ci) ≡ 0 (mod 2) for

some i then δ̃ = 0. Note that g̃ > 1 if and only if g > k+ 1. If m ≡ 0 (mod 4)

then all σ(ci) are even since both 0 and m/2 are even, therefore δ̃ = 0. If
k0 6= 0 then σ(ci) = 0 for some i, hence σ(ci) is even for some i, therefore

δ̃ = 0. However, if m ≡ 2 (mod 4) and k0 = 0 then all σ(ci) = m/2 are odd,

hence no conclusion can be made about δ̃. Thus we can rewrite the condition
as follows: If g > k + 1 and (m ≡ 0 (mod 4) or k0 6= 0) then δ̃ = 0.

• Theorem 4.3(c) in [NP16] implies that in the case g̃ = 1 the Arf invariant δ̃ is
a divisor of gcd(m,σ(c1)+1, . . . , σ(ck)+1). Note that g̃ = 1 if and only if g =

k+1. If k0 6= 0 then σ(ci) = 0 for some i, hence δ̃ is a divisor of gcd(m, 1, . . . ),

therefore δ̃ = 1. If k0 = 0 then σ(ci) = m/2 for all i, hence δ̃ is a divisor of

gcd
(
m, m2 + 1

)
. For m ≡ 0 (mod 4) we have gcd

(
m, m2 + 1

)
= 1, hence δ̃ = 1.

For m ≡ 2 (mod 4) we have gcd
(
m, m2 + 1

)
= 2, hence δ̃ ∈ {1, 2}. Therefore

we can rewrite the condition as follows: If g = k + 1 and (m ≡ 0 (mod 4) or

k0 6= 0) then δ̃ = 1. If g = k + 1, m ≡ 2 (mod 4) and k0 = 0 then δ̃ ∈ {1, 2}.
• Theorem 4.3(d) in [NP16] implies that σ(c1) + · · · + σ(ck) ≡ (2 − 2g̃) −
k (modm). Note that σ(c1) + · · ·+σ(ck) = k1 ·m/2 and (2− 2g̃)− k = 1− g.
Hence we can rewrite the condition as follows: k1 ·m/2 ≡ 1− g (modm).

3) Case m ≡ 1 (mod 2), t = (g, k): Theorem 4.10(1) in [NP16] implies g ≡
1 (modm).

�

Proposition 3.3. Let (P, τ) be a Klein surface of type (g, k, 1), g > 2, and let m be

even. Let σ be an m-Arf function of type (g, δ̃, {(k00, k01), (k10, k
1
1)}) on (P, τ). Then

the Arf invariant δ ∈ {0, 1} of σ is given by

δ ≡ k00 ≡ k10 (mod 2) if m ≡ 2 (mod 4),

δ ≡ k00 + k01 ≡ k10 + k11 (mod 2) if m ≡ 0 (mod 4).
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Proof. Consider an m-Arf function σ of type (g, δ̃, {(k00, k01), (k10, k
1
1)}) on (P, τ).

Let c1, . . . , ck be the ovals of (P, τ). We choose a symmetric generating set

B = (a1, b1, . . . , ag̃, bg̃, a
′
1, b
′
1, . . . , a

′
g̃, b
′
g̃, c1, . . . , ck−1, d1, . . . , dk−1).

of π1(P ). Set γi = σ(ci) for i = 1, . . . , k and δi = σ(di) for i = 1, . . . , k − 1. We
can assume without loss of generality that the chosen similarity class contains the
oval ck (see Definition 3.3). Let δk = 1. For α, β ∈ {0, 1} let Aβα be the subsets of
{1, . . . , k} given by

Aβα = {i
∣∣ γi = α ·m/2, δi ≡ 1− β (mod 2)}.

Then k ∈ A0
0 ∪ A0

1. Note that |Aβα| = kβα. According to Theorem 4.9(4) in [NP16],
the Arf invariant δ of σ is given by

δ ≡
k−1∑
i=1

(1− γi)(1− δi) (mod 2).

Weichold’s classification of Klein surfaces implies k ≡ g + 1 (mod 2). If m ≡
2 (mod 4), then

k−1∑
i=1

(1− γi)(1− δi) ≡ |A1
0 ∩ {1, . . . , k − 1}| ≡ |A1

0| ≡ k10 (mod 2).

In this case m/2 is odd, hence condition k1 ·m/2 ≡ 1− g (modm) can be reduced
modulo 2 to k1 ≡ 1− g (mod 2). Using k ≡ g + 1 (mod 2) we obtain

k0 = k − k1 ≡ (g + 1)− (1− g) ≡ 0 (mod 2),

i.e.
k10 = k0 − k00 ≡ k00 (mod 2).

If m ≡ 0 (mod 4), then

k−1∑
i=1

(1− γi)(1− δi) ≡ |(A1
0 ∪A1

1) ∩ {1, . . . , k − 1}| ≡ |A1
0 ∪A1

1| ≡ k10 + k11 (mod 2).

In this case m/2 is even, hence condition k1 ·m/2 ≡ 1− g (modm) can be reduced
modulo 2 to 0 ≡ 1 − g(mod 2), hence g is odd, so that k ≡ g + 1 (mod 2) is even.
Therefore

k10 + k11 = k − (k00 + k01) ≡ k00 + k01 (mod 2).

�

3.2. Canonical Symmetric Generating Sets. For a Klein surface (P, τ) we
introduced in [NP16] symmetric generating sets of π1(P ). These generating sets
have certain symmetry with respect to the action of τ . In this section we will
construct for any real m-Arf function σ a standard generating set of π1(P ) on
which σ assumes prescribed values determined by the topological invariants of σ.
We will call such a generating set canonical for σ. For the convenience of the reader
we will first recall the definition of a standard generating set. The following fact is
well known, see for example [Nat04, Nat75, Nat78] and [B]:

Proposition 3.4. Let (P, τ) be a Klein surface of the topological type (g, k, ε).
Let c1, . . . , ck be the ovals of (P, τ). In the case ε = 0 we can choose for any n
with k + 1 6 n 6 g + 1 and n ≡ g + 1 (mod 2) twists ck+1, . . . , cn such that the
complement of the curves c1, . . . , cn in P consists of two components P1 and P2.
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In the case ε = 1 we can take n = k. Each of the components P1 and P2 is a
surface of genus g̃ = (g + 1 − n)/2 with n holes. We will refer to P1 and P2 as
a decomposition of (P, τ) in two halves. Note that such a decomposition is unique
if (P, τ) is separating, but is not unique if (P, τ) is non-separating since the twists
ck+1, . . . , cn can be chosen in different ways.

Definition 3.5. Let (P, τ) be a Klein surface and c1, . . . , cn invariant closed curves
as in Proposition 3.4 such that the complement of the curves c1, . . . , cn in P consists
of two components P1 and P2. For two invariant closed curves ci and cj , a bridge
between ci and cj is a curve of the form

ri ∪ (τ`)−1 ∪ rj ∪ `,
where:

• ` is a simple path in P1 starting at a point on cj and ending at a point on ci.
• ri is the path along ci from the end point of ` to the end point of τ`. (If ci is an

oval then the path ri consists of one point.)
• rj is the path along cj from the starting point of τ` to the starting point of `. (If
cj is an oval then the path rj consists of one point.)

Figure 1 shows the shapes of the bridges for different types of invariant curves. The
bridges are shown in bold. The bold arrows on the bold lines show the direction
of the bridges, while the thinner arrows near the lines show the directions of the
paths ci, cj , ri, rj , ` and τ`.
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Figure 1: Bridges

Definition 3.6. Let (P, τ) be a Klein surface of the topological type (g, k, ε). A
symmetric generating set of π1(P ) is a generating set of the form

(a1, b1, . . . , ag̃, bg̃, a
′
1, b
′
1, . . . , a

′
g̃, b
′
g̃, c1, . . . , cn−1, d1, . . . , dn−1),

where

• n = k if ε = 1.
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• k + 1 6 n 6 g + 1 and n ≡ g + 1 (mod 2) if ε = 0.
• c1, . . . , ck are the ovals of (P, τ).
• ck+1, . . . , cn−1 are twists (in the case ε = 0).
• There exists an invariant closed curve cn such that the complement of the curves
c1, . . . , cn in P consists of two components P1 and P2. The invariant curve cn is
an oval if ε = 1 and a twist if ε = 0.

• (a1, b1, . . . , ag̃, bg̃, c1, . . . , cn) is a generating set of π1(P1).
• a′i = (τai)

−1 and b′i = (τbi)
−1 for i = 1, . . . , g̃.

• d1, . . . , dn−1 are closed curves which only intersect at the base point, such that
di is homotopic to a bridge between ci and cn,

Note that τci = ci and τdi = c
|ci|
i d−1i c

|cn|
n , where |cj | = 0 if cj is an oval and |cj | = 1

if cj is a twist.

Definition 3.7. Let (P, τ) be a Klein surface of type (g, k, ε), g > 2, and σ a real
m-Arf function σ of the topological type t on (P, τ). Let

B = (a1, b1, . . . , ag̃, bg̃, a
′
1, b
′
1, . . . , a

′
g̃, b
′
g̃, c1, . . . , cn−1, d1 . . . , dn−1)

be a symmetric generating set of π1(P ) and

αi = σ(ai), βi = σ(bi), α
′
i = σ(a′i), β

′
i = σ(b′i), γi = σ(ci), δi = σ(di).

We say that B is canonical for the m-Arf function σ if

• Case ε = 0, m ≡ 0 (mod 2), t = (g, δ, k0, k1):

(α1, β1, . . . , αg̃, βg̃) = (α′1, β
′
1, . . . , α

′
g̃, β
′
g̃) = (0, 1, 1, . . . , 1) if g̃ > 2,

(α1, β1) = (α′1, β
′
1) = (1, 0) if g̃ = 1,

γ1 = · · · = γk0 = 0, γk0+1 = · · · = γk = m/2, γk+1 = · · · = γn−1 = 0,

δ1 = · · · = δn−1 = 1− δ.

• Case ε = 1, m ≡ 0 (mod 2), t = (g, δ̃, {(k00, k01), (k10, k
1
1)}):

(α1, β1, . . . , αg̃, βg̃) = (α′1, β
′
1, . . . , α

′
g̃, β
′
g̃) = (0, 1− δ̃, 1, . . . , 1) if g̃ > 2;

(α1, β1) = (α′1, β
′
1) = (δ̃, 0) if g̃ = 1;

γ1 = · · · = γk0 = 0, γk0+1 = · · · = γk−1 = m/2;

In the case k1 > 1 : δ1 = · · · = δk10 = 0, δk10+1 = · · · = δk0 = 1,

δk0+1 = · · · = δk0+k11 = 0, δk0+k11+1 = · · · = δk−1 = 1;

In the case k1 = 0 : δ1 = · · · = δk10 = 0, δk10+1 = · · · = δk−1 = 1.

• Case m ≡ 1 (mod 2), t = (g, k):

(α1, β1, . . . , αg̃, βg̃) = (α′1, β
′
1, . . . , α

′
g̃, β
′
g̃) = (0, 1, 1, . . . , 1) if g̃ > 2,

(α1, β1) = (α′1, β
′
1) = (1, 0) if g̃ = 1,

γ1 = · · · = γn−1 = 0,

δ1 = · · · = δn−1 = 0.

Lemma 3.5. Let (P, τ) be a Klein surface of type (g, k, ε), g > 2. Let the geometric
genus of (P, τ) be positive, i.e. k 6 g − 1 if ε = 1 and k 6 g − 2 if ε = 0. In the
case ε = 1 let n = k. In the case ε = 0 we choose n ∈ {k + 1, . . . , g − 1} such that
n ≡ g − 1 (mod 2). (The assumption that the geometric genus is positive implies
k + 1 6 g − 1, hence {k + 1, . . . , g − 1} 6= ∅.) Let c1, . . . , cn be invariant closed
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curves as in Proposition 3.4, then bridges d1, . . . , dn−1 as in Definition 3.6 can be
chosen in such a way that

(i) If m is odd, then σ(di) = 0 for i = 1, . . . , n− 1.
(ii) If m is even and (P, τ) is separating, then σ(di) ∈ {0, 1} for i = 1, . . . , n− 1.

(iii) If m is even and (P, τ) is non-separating, then σ(d1) = · · · = σ(dn−1) ∈ {0, 1}.

Proof. Let P1 and P2 be the connected components of the complement of the closed
curves c1, . . . , cn in P . Each of these components is a surface of genus g̃ = (g+ 1−
n)/2 with n holes. The assumption n 6 g − 1 implies g̃ > 1.

• Consider the real 2-Arf function (σ (mod 2)) : π0
1(P ) → Z/2Z. If m is even

and (P, τ) is non-separating, then, according to Lemma 11.2 in [Nat04], we can
choose the bridges d1, . . . , dn−1 so that

(σ (mod 2))(d1) = · · · = (σ (mod 2))(dn−1).

This means for the original m-Arf function σ that

σ(d1) ≡ · · · ≡ σ(dn−1) (mod 2).

• Let Q1 be the compact surface of genus g̃ with one hole obtained from P1 af-
ter removing all bridges d1, . . . , dn−1. Let δ̃ be the Arf invariant of σ|Q1

. In
the case g̃ > 2, Lemma 5.1 in [NP09] implies that we can choose a standard
generating set (a1, b1, . . . , ag̃, bg̃, c̃) of π1(Q1) so that σ(a1) = 0. In the case
g̃ = 1, Lemma 5.2 in [NP09] implies that we can choose a standard generating
set (a1, b1, c̃) of π1(Q1) so that σ(b1) = 0. Thus for g̃ > 1 there always exists a
non-trivial closed curve a in P1 with σ(a) = 0, which does not intersect any of
the bridges d1, . . . , dn−1. If we replace di by (τa)−1dia, then

σ((τa)−1dia) = σ((τa)−1) + σ(di) + σ(a)− 2.

Taking into account the fact that σ(a) = 0 we obtain

σ((τa)−1dia) = σ(di)− 2.

Repeating this operation we can obtain σ(di) = 0 for odd m and σ(di) ∈ {0, 1}
for even m.
• Note that the property σ(d1) ≡ · · · ≡ σ(dn−1) (mod 2) (if m is even and (P, τ)

is non-separating) is preserved during this process, hence σ(d1) = · · · = σ(dn−1)
at the end of the process.

�

Proposition 3.6. Let (P, τ) be a Klein surface of positive geometric genus. For
any real m-Arf function on (P, τ) there exists a canonical symmetric generating set
of π1(P ).

Proof. Let (g, k, ε) be the topological type of the Klein surface (P, τ). Let σ be
a real m-Arf function on (P, τ). Let c1, . . . , cn be invariant closed curves as in
Proposition 3.4.

• If m ≡ 0 (mod 2) then σ(ck+1) = · · · = σ(cn) = 0.
• If m ≡ 0 (mod 2) then σ(c1), . . . , σ(ck) ∈ {0,m/2}. We can reorder the ovals
c1, . . . , ck in such a way that

σ(c1) = · · · = σ(ck0) = 0, σ(ck0+1) = · · · = σ(ck) = m/2,

where k0 is the numbers of ovals of (P, τ) with the value of σ equal to 0.
• If m ≡ 1 (mod 2) then σ(c1) = · · · = σ(cn) = 0.
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• We can choose bridges d1, . . . , dn−1 with the values σ(di) as described in Lemma 3.5
since the assumptions of the Lemma are satisfied.

• If ε = 1 and m ≡ 0 (mod 2), we can change the order of c1, . . . , ck0 and
ck0+1, . . . , ck to obtain the required values δ1, . . . , δk−1.

• If ε = 0 and m ≡ 0 (mod 2), there exists ξ ∈ {0, 1} such that

σ(d1) = · · · = σ(dn−1) = ξ.

According to Theorem 4.9(4) in [NP16] the Arf invariant of σ is

δ ≡
n−1∑
i=1

(1− σ(ci))(1− σ(di)) (mod 2).

Using σ(di) = ξ we obtain

δ ≡
n−1∑
i=1

(1− σ(ci))(1− σ(di))

≡ (1− ξ) ·
n−1∑
i=1

(1− σ(ci))

≡ (1− ξ) ·

(
(n− 1)−

n−1∑
i=1

σ(ci)

)
≡ (1− ξ) ·

(
(n− 1)− k1 ·

m

2

)
(mod 2).

Recall that k1 ·m/2 ≡ 1− g (modm) by Proposition 3.2 and n ≡ g − 1 (mod 2),
hence

(n− 1)− k1 ·
m

2
≡ (g − 2)− (1− g) ≡ 2g − 3 ≡ 1 (mod 2)

and

δ ≡ (1− ξ) ·
(

(n− 1)− k1 ·
m

2

)
≡ 1− ξ (mod 2).

Therefore

σ(d1) = · · · = σ(dn−1) = ξ = 1− δ.
• For g̃ > 2, Lemma 5.1 in [NP09] implies that we can choose a standard generating

set (a1, b1, . . . , ag̃, bg̃, c1, . . . , cn) of π1(P1) so that

(σ(a1), σ(b1), . . . , σ(ag̃), σ(bg̃)) = (0, 1− δ̃, 1, . . . , 1),

where δ̃ is the Arf invariant of σ|P1 . Moreover, if m is odd then δ̃ = 0. If m is
even and ε = 0 then there are closed curves around holes in P1 such that the
values of σ on these closed curves are even, namely σ(ck+1) = · · · = σ(cn) = 0,

hence δ̃ = 0.
• If g̃ = 1, Lemma 5.2 in [NP09] implies that we can choose a standard generating

set (a1, b1, c1, . . . , cn) of π1(P1) so that

(σ(a1), σ(b1)) = (δ̃, 0),

where δ̃ = gcd(m,σ(a1), σ(b1), σ(c1)+1, . . . , σ(cn)+1) is the Arf invariant of σ|P1 .

If m is odd then σ(c1) = · · · = σ(cn) = 0, hence δ̃ = 1. If ε = 0 then σ(ck+1) =

· · · = σ(cn) = 0, hence δ̃ = 1.

�
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Proposition 3.7. For any Klein surface (P, τ) and any symmetric generating set B
of π1(P ) and any tuple t that satisfies the conditions of Proposition 3.2 there exists
a real m-Arf function of the topological type t on (P, τ) for which B is canonical.

Proof. Let V = (αi, βi, α
′
i, β
′
i, γi, δi) satisfy the conditions of Definition 3.7.

• Case ε = 0, m ≡ 0 (mod 2), t = (g, δ, k0, k1): We have γ1 = · · · = γk0 = 0,

γk0+1 = · · · = γk0+k1 = m/2, hence
k∑
i=1

γi = k1 · m/2. The tuple t satisfies

the conditions of Proposition 3.2, hence k1 · m/2 ≡ 1 − g (modm). Therefore
k∑
i=1

γi ≡ 1−g (modm). Other conditions of Theorem 4.9(2) in [NP16] are clearly

satisfied. Hence there exists a real m-Arf function σ on P with the values V on B.
If δ′ is the Arf invariant of σ, then

δ′ ≡
n−1∑
i=1

(1− γi)(1− δi) ≡
n−1∑
i=1

(1− γi)(1− (1− δ))

≡ δ ·
n−1∑
i=1

(1− γi) ≡ δ ·

(
(n− 1)−

n−1∑
i=1

γi

)
≡ δ ·

(
(n− 1)− k1 ·

m

2

)
(mod 2).

Recall that k1 ·m/2 ≡ 1− g (modm) and n ≡ g − 1 (mod 2), hence

(n− 1)− k1 ·
m

2
≡ (g − 2)− (1− g) ≡ 2g − 3 ≡ 1 (mod 2)

and

δ′ ≡ δ ·
(

(n− 1)− k1 ·
m

2

)
≡ δ (mod 2).

Hence σ is a real m-Arf function on P of type t and B is canonical for σ.
• Case ε = 1, m ≡ 0 (mod 2), t = (g, δ̃, {(k00, k01), (k10, k

1
1)}): The tuple t satisfies

the conditions of Proposition 3.2, hence

1− g ≡ k1 ·
m

2
(modm)

and therefore

1− g ≡ 0 (mod
m

2
).

Other conditions of Theorem 4.9(2) in [NP16] are clearly satisfied. Hence there

exists a real m-Arf function σ on P with the values V on B. Let δ̃′ be the Arf in-
variant of σ|P1

. The m-Arf function σ is real, hence according to Proposition 3.2,
we have
• If g > k + 1 and m ≡ 0 (mod 4) then δ̃′ = 0.

• If g > k + 1 and k0 6= 0 then δ̃′ = 0.
• If g = k + 1 and m ≡ 0 (mod 4) then δ̃′ = 1.

• If g = k + 1 and k0 6= 0 then δ̃′ = 1.
• If g = k + 1, m ≡ 2 (mod 4) and k0 = 0 then δ̃′ ∈ {1, 2}.
On the other hand t = (g, δ̃, {(k00, k01), (k10, k

1
1)}) satisfies the conditions of Propo-

sition 3.2, hence
• If g > k + 1 and m ≡ 0 (mod 4) then δ̃ = 0.

• If g > k + 1 and k0 6= 0 then δ̃ = 0.
• If g = k + 1 and m ≡ 0 (mod 4) then δ̃ = 1.
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• If g = k + 1 and k0 6= 0 then δ̃ = 1.
• If g = k + 1, m ≡ 2 (mod 4) and k0 = 0 then δ̃ ∈ {1, 2}.
Hence if m ≡ 0 (mod 4) or k0 6= 0 we have δ̃′ = δ̃. It remains to consider the
case m ≡ 2 (mod 4), k0 = 0. In the case g > k + 1, m ≡ 2 (mod 4), k0 = 0, we
have g̃ > 2 and the values of the m-Arf function σ|P1 on the boundary curves
σ(ci) are all equal to m/2 and hence odd. Then, according to Theorem 4.4(c)

in [NP16], the Arf invariant δ̃′ is given by

δ̃′ ≡
g̃∑
i=1

(1− αi)(1− βi) (mod 2).

We have (α1, β1, . . . , αg̃, βg̃) = (0, 1− δ̃, 1, . . . , 1), hence

δ̃′ ≡
g̃∑
i=1

(1− αi)(1− βi) ≡ 1 · δ̃ + 0 + · · ·+ 0 ≡ δ̃ (mod 2)

and therefore δ̃′ = δ̃. In the case g = k + 1, m ≡ 2 (mod 4), k0 = 0, we have
g̃ = 1 and the values of the m-Arf function σ|P1

on the boundary curves σ(ci)
are all equal to m/2. Then, according to Theorem 4.4(d) in [NP16], the Arf

invariant δ̃′ ∈ {1, 2} is given by

δ̃′ = gcd
(
m,α1, β1,

m

2
+ 1
)
.

We have (α1, β1) = (δ̃, 0), hence gcd(α1, β1) = δ̃ ∈ {1, 2}. For m ≡ 2 (mod 4) we
have gcd

(
m, m2 + 1

)
= 2. Therefore

δ̃′ = gcd
(
m,α1, β1,

m

2
+ 1
)

= gcd(δ̃, 2) = δ̃.

Hence σ is a real m-Arf function on P of type t and B is canonical for σ.
• Case m ≡ 1 (mod 2), t = (g, k): The tuple t satisfies the conditions of Proposi-

tion 3.2, hence g ≡ 1 (modm). Other conditions of Theorem 4.10(2) in [NP16]
are clearly satisfied. Hence there exists a real m-Arf function σ on P with the
values V on B. The topological type of σ is t and B is canonical for σ.

�

Proposition 3.8. The conditions in Proposition 3.2 are necessary and sufficient
for a tuple to be the topological type of a real m-Arf function.

Proof. Proposition 3.2 shows that the conditions are necessary. Proposition 3.7
shows that the conditions are sufficient as we constructed an m-Arf function of
type t for any tuple t that satisfies the conditions. �

Definition 3.8. Two m-Arf functions σ1 and σ2 on a Klein surface (P, τ) are
topologically equivalent if there exists a homeomorphism ϕ : P → P such that
ϕ ◦ τ = τ ◦ ϕ and σ1 = σ2 ◦ ϕ∗ for the induced automorphism ϕ∗ of π1(P ).

Proposition 3.9. Let (P, τ) be a Klein surface of positive geometric genus. Two
m-Arf functions on (P, τ) are topologically equivalent if and only if they have the
same topological type.

Proof. Let (g, k, ε) be the topological type of the Klein surface (P, τ). Proposi-
tion 3.6 shows that for any real m-Arf function σ of the topological type t we can
choose a symmetric generating set B (the canonical generating set for σ) with the
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values of σ on B determined completely by t. Hence any two real m-Arf functions
of the topological type t are topologically equivalent. �

4. Moduli Spaces

In this section we will describe the space of real m-spin bundles as a branched
covering of the space of underlying Klein surfaces (Theorem 4.3) and determine the
branching indices (Theorem 4.4).

We will first recall the descriptions of the space of Klein surfaces and of the
corresponding Teichmüller space, see [Nat75, Nat78]: We consider hyperbolic Klein
surfaces, i.e. we assume that the genus is g > 2. Let Mg,k,ε be the moduli space
of Klein surfaces of the topological type (g, k, ε). Let Γg,n be the group generated
by the elements

v = {a1, b1, . . . , ag, bg, c1, . . . , cn}
with a single defining relation

g∏
i=1

[ai, bi]

n∏
i=1

ci = 1.

Let Aut+(H) be the group of all orientation-preserving isometries of H. The Fricke

space T̃g,n is the set of all monomorphisms ψ : Γg,n → Aut+(H) such that

{ψ(a1), ψ(b1), . . . , ψ(ag), ψ(bg), ψ(c1), . . . , ψ(cn)}

is a generating set of a Fuchsian group of signature (g, n). The Fricke space T̃g,n
is homeomorphic to R6g−3+3n. The group Aut+(H) acts on T̃g,n by conjugation.

The Teichmüller space is Tg,n = T̃g,n/Aut+(H).

Theorem 4.1. Let (g, k, ε) be a topological type of a Klein surface. In the case
ε = 1 let n = k. In the case ε = 0 we choose n ∈ {k + 1, . . . , g + 1} such
that n ≡ g + 1 (mod 2). Let g̃ = (g + 1 − n)/2. The moduli space Mg,k,ε of
Klein surfaces of the topological type (g, k, ε) is the quotient of the Teichmüller
space Tg̃,n by a discrete group of autohomeomorphisms Modg,k,ε. The space Tg̃,n is

homeomorphic to R3g−3.

Theorem 4.2. The moduli space of Klein surfaces of genus g decomposes into
connected components Mg,k,ε. Each connected component is homeomorphic to the

quotient of R3g−3 by a discrete group action.

We will now state the main result of this paper, listing all connected components
of the space of real m-spin bundles and describing their topology.

Theorem 4.3. Let (g, k, ε) be a topological type of a Klein surface. Assume that
the geometric genus of such Klein surfaces is positive, i.e. k 6 g − 2 if ε = 0 and
k 6 g − 1 if ε = 1. Let t be a tuple that satisfies the conditions of Proposition 3.2.
The space S(t) of all m-spin bundles of type t on a Klein surface of type (g, k, ε) is
connected and diffeomorphic to

R3g−3/Modt,

where Modt is a discrete group of diffeomorphisms.
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Proof. In the case ε = 1 let n = k. In the case ε = 0 we choose n ∈ {k+1, . . . , g−1}
such that n ≡ g− 1 (mod 2). Let g̃ = (g+ 1− n)/2. By definition, to any ψ ∈ T̃g̃,n
corresponds a generating set

V = {ψ(a1), ψ(b1), . . . , ψ(ag̃), ψ(bg̃), ψ(c1), . . . , ψ(cn)}

of a Fuchsian group of signature (g̃, n). The generating set V together with

{ψ(c1), . . . , ψ(ck), ψ̃(ck+1), . . . , ψ̃(cn)}

generates a real Fuchsian group Γψ. On the Klein surface (P, τ) = [Γψ], we consider
the corresponding symmetric generating set

Bψ = (a1, b1, . . . , ag̃, bg̃, a
′
1, b
′
1, . . . , a

′
g̃, b
′
g̃, c1, . . . , cn−1, d1, . . . , dn−1).

Proposition 3.7 implies that there exists a real m-Arf function σ = σψ of type t for
which Bψ is canonical. According to Theorem 3.11 in [NP16], an m-spin bundle
Ω(ψ) ∈ S(t) is associated with this m-Arf function. The correspondence ψ 7→ Ω(ψ)
induces a map Ω : Tg̃,n → S(t). Let us prove that Ω(Tg̃,n) = S(t). Indeed, by
Theorem 4.1, the map

Ψ = Φ ◦ Ω : Tg̃,n → S(t)→Mg,k,ε,

where Φ is the natural projection, satisfies the condition

Ψ(Tg̃,n) =Mg,k,ε.

The fibre of the map Ψ is represented by the group Modg,k,ε of all self-homeomor-
phisms of the Klein surface (P, τ). By Proposition 3.9, this group acts transitively
on the set of all real m-Arf functions of type t and hence, by Theorem 3.11 in [NP16],
transitively on the fibres Φ−1((P, τ)). Thus

Ω(Tg̃,n) = S(t) = Tg̃,n/Modt, where Modt ⊂ Modg,k,ε

According to Theorem 4.1, the space Tg̃,n is diffeomorphic to R3g−3. �

In the following theorem we determine the branching indices for the branched
covering of the space of Klein surfaces by the space of real m-spin bundles.

Theorem 4.4. Let (g, k, ε) be a topological type of a Klein surface. Assume that
the geometric genus of such Klein surfaces is positive, i.e. k 6 g − 2 if ε = 0 and
k 6 g − 1 if ε = 1. Let t be a tuple that satisfies the conditions of Proposition 3.2.
The space S(t) of all real m-spin bundles of type t on a Klein surface of type (g, k, ε)
is an N(t)-fold covering ofMg,k,ε, where N(t) is the number of real m-Arf functions
on (P, τ) of the topological type t. The number N(t) is equal to

1) Case ε = 0, m ≡ 0 (mod 2), t = (g, δ, k0, k1):

N(t) =

(
k

k1

)
· m

g

2
.

2) Case ε = 1, m ≡ 0 (mod 2), t = (g, δ̃, {(k00, k01), (k10, k
1
1)}): Let

M =

(
k

k0

)
·
(
k0
k00

)
·
(
k1
k01

)
.

• Case g > k + 1, (m ≡ 0 (mod 4) or k0 6= 0):

N(t) = 21−k ·mg ·M for δ̃ = 0 and N(t) = 0 for δ̃ = 1.
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• Case g > k + 1, m ≡ 2 (mod 4), k0 = 0:

N(t) =
(

2−k + 2−
g+k+1

2

)
·mg ·M for δ̃ = 0,

N(t) =
(

2−k − 2−
g+k+1

2

)
·mg ·M for δ̃ = 1.

• Case g = k + 1, (m ≡ 0 (mod 4) or k0 6= 0):

N(t) = 2−(k−1) ·mk+1 ·M for δ̃ = 1 and N(t) = 0 for δ̃ = 2.

• Case g = k + 1, m ≡ 2 (mod 4), k0 = 0:

N(t) = 3 · 2−(k+1) ·mk+1 ·M for δ̃ = 1,

N(t) = 2−(k+1) ·mk+1 ·M for δ̃ = 2.

3) Case m ≡ 1 (mod 2), t = (g, k):

N(t) = mg.

Proof. According to Theorem 4.3, S(t) ∼= Tg̃,n/Modt, where Modt ⊂ Modg,k,ε,
hence S(t) is a branched covering of Mg,k,ε = Tg̃,n/Modg,k,ε and the branching
index is equal to the index of the subgroup Modt in Modg,k,ε, i.e. is equal to the
number N(t) of real m-Arf functions on (P, τ) of the topological type t. Let

B = (a1, b1, . . . , ag̃, bg̃, a
′
1, b
′
1, . . . , a

′
g̃, b
′
g̃, c1, d1, . . . , cn−1, dn−1)

be a symmetric generating set of π1(P ). Let V = (αi, βi, α
′
i, β
′
i, γi, δi) denote the

set of values of an m-Arf function on B.

1) Case ε = 0, m ≡ 0 (mod 2), t = (g, δ, k0, k1): There are
(
k
k1

)
ways to choose the

values γi. There are m2g̃ ways to choose αi = α′i and βi = β′i. According to
Theorem 4.9(5) in [NP16], out of mn−1 ways to choose δ1, . . . , δn−1 there are
mn−1/2 which give Σ ≡ 0 (mod 2) and mn−1/2 which give Σ ≡ 1 (mod 2). Thus
the number of real m-Arf functions of type (g, δ, k0, k1) is(

k

k1

)
·m2g̃ · m

n−1

2
=

(
k

k1

)
· m

2g̃+n−1

2
=

(
k

k1

)
· m

g

2
.

2) Case ε = 1, m ≡ 0 (mod 2), t = (g, δ̃, {(k00, k01), (k10, k
1
1)}): There are M =(

k
k0

)
·
(
k0
k00

)
·
(
k1
k01

)
ways to choose the values γi. Moreover, for a fixed parity of δi,

there are (m/2)k−1 ways to choose the values of δi. Hence the number of such
real m-Arf functions on P is equal to

m2g̃ ·
(m

2

)k−1
·M =

m2g̃+k−1

2k−1
·M = mg · 21−k ·M.

• In the case g > k+1, m ≡ 2 (mod 4), k0 = 0, the resulting invariant δ̃ is given
by

δ̃ ≡
g̃∑
i=1

(1− αi)(1− βi) (mod 2).

It can be shown by induction that out of m2g̃ ways to choose the values αi,
βi we get the Arf invariant δ̃ = 0 in 2g̃−1(2g̃ + 1)(m/2)2g̃ cases and δ̃ = 1 in

2g̃−1(2g̃ − 1)(m/2)2g̃ cases. Hence the number N(t) with δ̃ equal to 0 and 1
respectively is

2g̃−1(2g̃ ± 1)
(m

2

)2g̃ (m
2

)k−1
·M.
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We simplify

2g̃−1(2g̃ ± 1)
(m

2

)2g̃ (m
2

)k−1
= (22g̃−1 ± 2g̃−1)

(m
2

)2g̃+k−1
=
(

2g−k ± 2
g−k−1

2

)(m
2

)g
=
(

2g−k ± 2
g−k−1

2

)
2−g ·mg

=
(

2−k ± 2
−g−k−1

2

)
mg =

(
2−k ± 2−

g+k+1
2

)
mg

to obtain N(t) as stated.
• In the case g > k + 1, (m ≡ 0 (mod 4) or k0 6= 0), the Arf invariant of all

m-Arf functions we construct is δ̃ = 0, hence N(t) is as stated.

• In the case g = k + 1, m ≡ 2 (mod 4), k0 = 0, the Arf invariant δ̃ of the
resulting m-Arf function is given by

δ̃ = gcd
(
m,α1, β1,

m

2
+ 1
)
.

Note that for m ≡ 2 (mod 4) we have gcd(m,m/2 + 1) = 2, hence δ̃ = 2 if

α1 and β1 are both even and δ̃ = 1 otherwise. Out of m2 ways to choose the
values α1, β1 we get δ̃ = 1 in 3m2/4 cases and δ̃ = 2 in m2/4 cases. Hence

the number N(t) with δ̃ equal to 1 and 2 respectively is

2± 1

4
·m2

(m
2

)k−1
·M = (2± 1) ·

(m
2

)k+1

·M.

• In the case g = k + 1, (m ≡ 0 (mod 4) or k0 6= 0), the Arf invariant of all

m-Arf functions we construct is δ̃ = 1, hence N(t) is as stated.
3) Case m ≡ 1 (mod 2), t = (g, k): The statement follows from Theorem 4.10(3)

in [NP16].

�

Example: Consider the case g = 3, m = 4. Let P be a compact Riemann
surface of genus 3. According to Weichold’s classification for a Klein surface (P, τ)
either ε = 1, k ∈ {2, 4} or ε = 0, k ∈ {0, 1, 2, 3}. Possible topological types of
4-spin bundles on these Klein surfaces are described in Propositions 3.2 and 3.8.
Condition k1 ·m/2 ≡ 1 − g (modm) becomes 2k1 ≡ −2 (mod 4) and is equivalent
to k1 being odd.

For example there exist 4-spin bundles on separating Klein surfaces (P, τ) with

k = 2 and for these bundles k00+k10 = k01+k11 = 1 and δ̃ = 1, i.e. the bundle is trivial
on one of the ovals and non-trivial on the other and the 4-spin bundle restricted to
P\P τ is odd. There are two possible topological types of such bundles:

(g, δ̃, {(k00, k01), (k10, k
1
1)}) = (3, 1, {(1, 1), (0, 0)}),

(g, δ̃, {(k00, k01), (k10, k
1
1)}) = (3, 1, {(1, 0), (0, 1)}).

Proposition 3.9 implies that 4-spin bundles on separating Klein surfaces of genus g =
3 with k = 2 are topologically equivalent if and only if they have the same topo-
logical type. Theorem 4.4 implies that the number N(t) of real 4-spin bundles of

the topological type t = (g, δ̃, {(k00, k01), (k10, k
1
1)}) is N(t) = 64 for

t = (3, 1, {(1, 1), (0, 0)}) and t = (3, 1, {(1, 0), (0, 1)}).
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There exist 4-spin bundles on non-separating Klein surfaces (P, τ) with k = 1
and for these bundles k0 = 0, k1 = 1, i.e. the bundle is non-trivial on the only oval.
There are two possible topological types of such bundles:

(g, δ, k0, k1) = (3, 0, 0, 1) and (g, δ, k0, k1) = (3, 1, 0, 1).

Proposition 3.9 implies that 4-spin bundles on non-separating Klein surfaces of
genus g = 3 with k = 1 are topologically equivalent if and only if they have the
same topological type. Theorem 4.4 implies that the number N(t) of real 4-spin
bundles of the topological type t = (g, δ, k0, k1) is N(t) = 32 for t = (3, 0, 0, 1) and
t = (3, 1, 0, 1).

Similarly separating Klein surfaces (P, τ) with k = 4 admit 4-spin bundles with

topological types (g = 3, δ̃, {(k00, k01), (k10, k
1
1)}) with (k0, k1) = (k00 + k10, k

0
1 + k11)

equal to (1, 3) or (3, 1) and non-separating Klein surfaces (P, τ) with k = 2, 3

admit 4-spin bundles of the topological types (g = 3, δ̃, {(k00, k01), (k10, k
1
1)}) with

(k00 + k10, k
0
1 + k11) equal to (1, 1) or (0, 3) or (2, 1), while non-separating Klein

surfaces (P, τ) with k = 0 do not admit 4-spin structures. Geometric genus of
Klein surfaces with ε = 1, k = 4 and ε = 0, k = 2, 3 is equal to zero and their
topological equivalence is not considered in this paper.

5. Applications in Singularity Theory

I. Dolgachev in [Dol75, Dol77, Dol83] described how all hyperbolic Gorenstein
quasi-homogeneous surface singularities can be constructed by contracting the zero
section of an m-spin bundle on H/Γ for some Fuchsian group Γ. (If the group Γ
has torsion, a more careful construction using a normal torsion-free subgroup of Γ
of finite index is necessary.) Hence a Klein surface structure on H/Γ leads to an
anti-holomorphic involution on the singularity, i.e. to a real form of the singularity.

The correspondence between the weights of a quasi-homogeneous singularity
and the signature of the Fuchsian group was studied in detail by K. Möhring
in [Mo1, Mo2]. In this paper we only consider the case where Γ is a surface group,
i.e. a Fuchsian group such that H/Γ is a compact Riemann surface. For general
Gorenstein quasi-homogeneous surface singularities we need to consider Fuchsian
groups Γ with torsion and m-spin bundles on the corresponding Klein orbifolds,
i.e. on orbifolds H/Γ with an anti-holomorphic involution. The first results in this
direction were obtained by Riley [Ril] who considered the case where the marked
points of the orbifold H/Γ do not lie on the set of real points P τ .

Let Γ be a Fuchsian group such that H/Γ is a compact Riemann surface of
genus g. LetW be a corresponding weight system for a quasi-homogeneous singular-
ity as described in [Mo1, Mo2]. Möhring states (Example 2.7 in [Mo2]) that among
all quasi-homogeneous hypersurface singularities with the weight system W there is
always a Brieskorn-Pham singularity, i.e. a singularity of the form xa+ yb+ zc = 0.
Moreover, a (non-regular) normal quasi-homogeneous hypersurface singularity cor-
responds to a surface group if and only if it has the same weight system as a
Brieskorn-Pham singularity xa + yb + zc = 0 such that no prime divides only one
of the exponents a, b, c (see section 7 in [Mil75]).

For example 4-spin bundles on surfaces of genus 3 whose real forms were dis-
cussed above correspond to Brieskorn-Pham singularities x14 + y7 + z2 = 0 and
x12 + y4 + z3 = 0 (Example 2.3 in [Mo2]). It would be of interest to make the
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connection between the anti-holomorphic involutions on a Riemann surface and on
the corresponding singularities more explicit but this is beyond the scope of this
paper.
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Diploma Thesis, University of Bonn, 2000.
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