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Abstract 

Macrophages are one of the most abundant immune cells in the tumour microenvironment of solid 

tumours and their presence correlate with reduced survival in most cancers. Macrophages are present 

at all stages of tumour progression and stimulate angiogenesis, tumour cell invasion and intravasation 

at the primary site. At the metastatic site, macrophages and monocytes prepare for the arrival of 

disseminated tumour cells and promote their extravasation and survival by inhibiting immune-

mediated clearance or by directly engaging with tumour cells to activate pro-survival signalling 

pathways. In addition, macrophages promote the growth of disseminated tumour cells at the 

metastatic site by organising the formation of a supportive metastatic niche. The development of 

agents inhibiting the recruitment or the pro-tumorigenic effector functions of macrophages in both the 

primary tumour and at the metastatic site is a promising strategy to improve cancer survival in the 

future.  

      

Macrophage Origin in Healthy Tissues and the Tumour Microenvironment 

Monocytes and macrophages are a subset of leukocytes that play distinct roles in tissue homeostasis 

and immunity. In general, monocytes are important during inflammation and pathogen challenge, 

whereas tissue-resident macrophages have important roles in development, homeostasis and 

resolution of inflammation
1
. Some of the homeostatic functions of tissue-resident macrophages 

include regulation of angiogenesis and removal of apoptotic cells. Macrophages play a key role in the 

development of blood vessels, which has been mostly studied in the retina, specifically by promoting 

endothelial tip cell anastomosis and by limiting excessive vessel sprouting
2–4

. In addition, 

macrophages remove apoptotic cells during limb formation and ingest the extruded erythrocyte nuclei 

during erythropoiesis. In addition, macrophages maintain hematopoietic steady state by engulfment of 

neutrophils and eosinophils in the liver and spleen
5
. During inflammatory responses, macrophages 

play a dual role by initial secretion of inflammatory mediators, including tumour necrosis factor alpha 

(TNFα) and interleukin (IL) 1 beta (IL1β) and nitric oxide, which activate anti-microbial defence 

mechanisms that contribute to the killing of invading organisms. Although these inflammatory 

macrophages are initially beneficial, they also trigger substantial tissue damage and must be quickly 

controlled, if not to become pathogenic and contribute to disease progression. To balance the tissue-

damaging potential of the inflammatory macrophage response, macrophages undergo apoptosis or 

switch into an anti-inflammatory phenotype that reduces the pro-inflammatory response while 

facilitating wound healing
5
. As an example, in liver fibrosis, selective depletion of macrophages 
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during the fibrosis-promoting insult resulted in reduced fibrosis, whereas macrophage depletion after 

cessation of the insult delayed the fibrotic resolution
6
.  

 

Tissue-resident macrophages can develop from three independent sources during embryonic 

development and adulthood: yolk sac-derived macrophages and foetal liver-derived monocytes 

(embryonic) or hematopoietic stem cells in the bone marrow (adult). Most tissue-resident 

macrophages in the adult organism are derived from embryonic precursors that seed the tissues before 

birth during two waves of haematopoiesis.  The first wave comprises macrophages that develop from 

early erythro-myeloid progenitors in the yolk sac at embryonic age (E) 8.5–9.0 in mice. The second 

wave includes foetal liver monocytes, generated in the foetal liver from E12.5 onward after late yolk 

sac-derived erythro-myeloid progenitors migrate into the fetal liver
1
. During the two waves of 

haematopoiesis, yolk sac-derived macrophages and fetal liver monocytes migrate to populate the 

embryonic tissue. Tissue-resident macrophages are capable of maintaining their populations through 

proliferation, which means that in the adult steady state organism, monocytes do not contribute to the 

maintenance of most peripheral tissue macrophages. This includes microglia in the brain, Kupffer 

cells in the liver and Langerhans cells in the epidermis
7–10

. The third source of macrophages comes 

from hematopoietic stem cells that colonize the bone marrow from E17.5 onward and produce 

monocytes that seed the blood continuously throughout adult life.  Fate mapping has identified yolk 

sac-derived macrophages as the main precursor for brain microglia
11

, whereas fetal liver-derived 

monocytes are the main precursor of liver Kupffer cells and lung alveolar macrophages
12,13

, while 

bone marrow-derived monocytes replenish intestinal and cardiac macrophages in the steady state 

adult organism
14, 15

. 

Monocytes in the circulation can be differentiated into two subsets based on cell surface expression of 

different markers. Inflammatory monocytes are characterised by Ly6C
high 

CX3CR1
mid 

CCR2
+ 

CD62L
+ 

CD43
low

 (Ly6C
high

) expression, whereas patrolling monocytes are characterised by Ly6C
low 

CX3CR1
high 

CCR2
- 

CD62L
- 

CD43
high

 (Ly6C
low

) expression. Inflammatory monocytes are rapidly 

recruited to sites of inflammation, including cancer, by chemokines such as macrophage-colony 

stimulating factor (CSF1), C-C Motif Chemokine Ligand 2 (CCL2), and stromal cell-derived factor 1 

alpha (SDF1α), where they extravasate from the blood vessels and differentiate into monocyte-

derived macrophages
16,17,18

. In contrast, patrolling monocytes reside in the blood vessel lumen where 

they patrol the endothelial surface on the luminal side of the vessel and coordinate its repair through 

recruitment of neutrophils
19,20

. 

The tumour microenvironment is a complex assembly of genetically heterogeneous cancer cells and 

the different cell types that constitutes the local environment. These cells include endothelial cells, 

cancer-associated fibroblasts and different populations of immune cells. Macrophages are one of the 
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most abundant immune cells in the tumour microenvironment of solid tumours
16,21

. There is a strong 

correlation between the density of macrophages and poor survival in and carcinomas of pancreas, 

breast, lung, cervix, the bladder and Hodgkin's lymphoma
22–26

. In addition, expression of CSF-1, the 

major lineage regulator for macrophages, or it’s receptor CSF-1R correlates with poor survival in 

liver and breast cancer
27,28

, respectively. Furthermore, a macrophage transcriptional signature in 

patients with breast cancer is predictive of poor prognosis and reduced survival
29,30

. Using flow 

cytometry and different genetic mouse models, it was recently demonstrated in breast cancer that 

tumour growth was associated with a decrease in mammary tissue macrophages and an increase in 

tumour-associated macrophages (TAMs). These TAMs were distinguished from mammary-resident 

macrophages based on the surface expression of CD11b
low 

MHCII
high 

F4/80
+ 

CD64
+ 

MerTK
+
 on 

TAMs. Importantly, this TAM population was recruited directly from CCR2+ inflammatory 

monocytes that proliferated and differentiated into TAMs in the tumour microenvironment
31

. Flow 

cytometric analysis of myeloid populations in tumours suggsets that Ly6C+ inflammatory monocytes 

are recruited from the blood circulation and the splenic reservoir and differentiate into Ly6C
low

 

TAMs. These TAMs are heterogenous populations that can be further divided into separate 

populations based on high and low expression of MHC class II
17,18

. Although these reports suggest 

that most TAM subpopulations arise from the Ly6C+ population of circulating mouse monocytes, the 

contributions of tissue-resident embryo-derived macrophages to TAM populations remains less well 

understood and might likely differ depending on the tumor type and localization. However, examples 

of markers used to identify monocytes and macrophages in development and disease can be seen in 

table 1. 

 

 
Macrophage and TAM phenotypes 

Macrophages display a high degree of adaptability in response to changes in their immediate 

environment. It was initially proposed that macrophages could be polarised into two distinct 

phenotypes based on their response to interferon gamma (IFNγ) and lipopolysaccharide (LPS) 

(termed M1 macrophages) or IL-4 and IL-13 (termed M2 macrophages). The M1 phenotype is 

associated with production of proinflammatory cytokines, such as IL-12, IFNγ and TNFα, antigen 

presentation, generation of reactive oxygen species and the ability to eliminate pathogens and cells. In 

contrast, the M2 phenotype is associated with the production of anti-inflammatory cytokines, such as 

IL-10, up regulation of scavenging receptors and tissue remodelling
32–34

. However, the ability of 

macrophages to adapt results in a wide range of activation states, of which M1 and M2 macrophages 

are rather examples of each end of the macrophage activation spectrum. Stimulation with other factors 

such as IL-10, immune complexes, transforming growth factor β (TGFβ) and glucocorticoids can 

promote macrophage M2 polarization into specific M2 subtypes that are distinct from the classical 

M2 phenotype induced by IL-4
34

. Indeed, transcriptomic profiling of human monocyte-derived 
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macrophages exposed to a wide variety of stimuli confirms that transcriptomic changes in M1 

(stimulated by IFNγ) and M2 (stimulated by IL-4) macrophages are found at either end of a bipolar 

axis, which stimulation with other factors associated with M1 (LPS, TNFα) or M2 (IL-13) 

macrophages do not change. In contrast, addition of other factors such as IL-10, free fatty acids, 

prostaglandin or high-density lipoprotein, reveal separate clusters of trancriptomic changes in 

macrophage activation along the bipolar M1/M2 axis
35

. 

TAMs are typically associated with an M2-like polarization state caused by tumour-derived lactic 

acid or secretion of immunosuppressive cytokines such as IL-4, IL-10 and IL-13 from different cells 

in the tumour microenvironment or B cell-derived immunoglobulins
36–40

. Hypoxia, a common feature 

of the tumour microenvironment in most cancers, does not influence TAM polarization directly. 

Instead, several reports confirm that heterogenous TAM populations are found in distinct 

compartments within tumours based on the level of hypoxia in these areas. TAMs are recruited to 

hypoxic tumour areas by cancer cell-derived VEGF-A and semaphorin 3A through 

VEGFR1/neuropillin-1 signaling. TAMs are retained inside the hypoxic areas to promote tumour 

angiogenesis by down-regulation of neuropillin-1 and semaphorin 3A-mediated PlexinA1/A4 

signaling. Interfering with neuropillin-1 in TAMs restrict their presence to oxygenated areas where 

they promote anti-tumour immunity and inhibit angiogenesis
41

. Inflammatory monocytes give rise to 

both MHCII
low 

and MHCII
high 

TAMs, but TAMs inside hypoxic regions were predominantly MHCII
low 

and associated with increased expression of M2-markers. Interestingly, hypoxia does not promote M2 

polarization since there was no difference in MHCII
low 

and MHCII
high 

TAMs or their expression of M2 

markers in well-oxygenated tumours. Instead, hypoxia primarily regulate the expression of genes that 

promotes angiogenesis. Thus, hypoxia primarily regulates a subset of M2-related genes that affects 

the tumour angiogenic phenotype of TAMs
42

. 

 

Tumour-Promoting Functions of TAMs 

Macrophages display several pro-tumorigenic functions that have important roles in cancer 

development and progression such as the ability to provide cytokines and induce tumour 

angiogenesis
43

. TAMs are a source of tumour-promoting IL-6 in several murine tumour models. 

Tumour-associated myeloid cell production of IL-6 promotes colon tumour cell proliferation and 

protection from apoptosis through activation of STAT3
44,45

. A similar effect is seen in pancreatic 

cancer, where myeloid-derived IL-6 promotes tumour progression from epithelial precursor lesions 

through STAT3
46

. In a genetic model of colorectal cancer, tumour development is initiated through 

loss of the adenomatous polyposis coli tumour suppressor gene that leads to activation of β-catenin 

and results in disruption of the epithelial barrier. This allows microbial products to penetrate and 
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induce the production of IL-23 from macrophages. IL-23 drives a Th17 response in CD4+ T cells 

through IL-6 and IL-17, which ultimately results in colorectal cancer progression
47

.  

Blood vessels in healthy tissues reside in a quiescent state where angiogenesis is only transiently 

activated in response to certain stimulus. In contrast, during tumour progression, an ‘‘angiogenic 

switch’’ is almost always activated and remains on, causing normally quiescent vasculature to 

continually sprout new vessels. However, compared to a normal vascular network, the blood vessels 

in tumours are characterized by convoluted and excessive vessel branching, distorted and enlarged 

vessels, erratic blood flow, microhemorrhaging and leakiness
21

. Macrophages are important for this 

angiogenic switch in tumours particularly through production of vascular-endothelial growth factor A 

(VEGF-A) and placental growth factor (PlGF). In particular, the blood vessels in tumours lacking 

myeloid cell-derived VEGF-A was less tortuous, with increased pericyte coverage and decreased 

vessel length. These are all characteristics that indicate a normalization of the blood vessels
48,49

. 

Macrophages also modulate the bioavailability of VEGF-A in tumours through processing by matrix 

metalloproteinases
50

. In addition, antibody-mediated neutralization of angiopoietin 2, the ligand for 

the Tie2 receptor, or macrophage depletion blocks tumour angiogenesis and limits tumour progression 

in a mouse model of breast cancer
51,52

.  

 

Macrophages Promote Chemoresistance 

Macrophages play a key role in therapeutic resistance to chemotherapy
53

. Cytotoxic therapies can 

induce tumour cell expression of CSF-1, which results in an increased macrophage infiltration. 

Blockade of CSF-1 and CSF-1R in combination with chemotherapy improved survival and reduced 

the metastatic frequency in a breast cancer model and this response correlated with an increase in 

cytotoxic CD8+ T cells within the tumours
24

. Macrophages induce the expression of cytidine 

deaminase, the primary metabolizing enzyme of the chemotherapeutical agent Gemcitabine, in 

pancreatic cancer cells. This results in an increased tumour cell survival in response to 

chemotherapeutic treatment of orthotopically implanted pancreatic tumours, which could be 

prevented by inhibition of CCR2+ inflammatory monocytes or depletion of macrophages
54

. TAMs 

also promote chemoresistance in pancreatic cancer through insulin-like growth factor (IGF) 1 and 2. 

Antibody-mediated neutralisation of IGF in combination with gemcitabine improves the response to 

chemotherapy, which results in reduced tumour size and increased cancer cell apoptosis in an 

orthotopic pancreatic cancer model
55

. Chemotherapeutic agents can also directly induce the 

expression of cathepsins in macrophages. In this study, macrophage derived cathepsins were 

sufficient to protect tumour cells from cell death and blockage of cathepsins restored the sensitivity of 

cancer cells to several chemotherapeutic agents
56

. An indirect mechanism how macrophages increase 

chemoresistance was described by Lisa Coussens and colleagues
57

.  In this study, macrophages were 
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identified as the main source of IL-10. IL-10 was found to inhibit the expression of IL12 in dendritic 

cell and subsequently reduced the activation of cytotoxic CD8+ T cells. Interestingly, antibody-

mediated neutralization of IL-10 in combination with chemotherapy increased the sensitivity to 

chemotherapeutic treatments
57

 (Figure 1). 

 

Macrophages Promote Different Aspects of Metastasis 

The final step of cancer progression is the development of distant tumours in different organs from 

where the cancer initially developed. This process is referred to as metastasis is extremely clinically 

relevant since the vast majority of cancer patients die with metastatic tumours. 

Metastasis is a series of steps that the tumour cells must go through before they develop into clinically 

detectable metastastic tumour lesions. At the primary site, cancer cells must invade the surrounding 

tissue and intravasate into blood and/or lymphatic vessels. This allows the cancer cells to circulate in 

the body and spread to secondary sites. The organisation of the circulatory system that moves blood 

around the body and the structure of the capillary walls in each organ influence the pattern of cancer 

cell metastasis. The circulating tumour cells become arrested in the capillaries at the secondary site 

and must extravasate from the vessel to initiate the colonisation. This part of the process can be 

divided into many steps that take place on a timescale of several years. After extravasation, cancer 

cells must develop resistance from the immune system and host-tissue defences. This is made possible 

by settlement in supportive niches that enables them to survive as micro metastases that are not 

possible to detect with current technology. It is also thought that the supportive niche can enhance 

tumour-stem cell traits that endow the tumour cells with the ability to re-initiate their growth and 

develop into clinically detectable macro metastases. In some cases, theraputical treatment can 

partially eliminate the macro metastatic lesions, but this usually lead to survival of drug resistant 

tumour cells through niche-mediated survival mechanisms that eventually relapse as a drug-resistant 

metastatic lesion
58–61

. Macrophages can promote each step of the metastatic cascade, which we will 

discuss in more detail in the following sections.  

 

Pre-Metastatic Niche 

Systemic effects from a primary tumour that occur before tumour cell dissemination can prepare 

future metastatic site(s) and increase the efficiency of disseminated tumour cells (DTCs) 

colonisation
62

. Primary tumours produce factors such as lysyl oxidase, PlGF and exosomes that 

prepare the secondary site for the arrival of disseminated tumour cells in what is termed the pre-

metastatic niche. These tumour-derived factors induce the accumulation and programming of 
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CD11b+VEGFR1+ myeloid cells that cluster at the secondary site before the arrival of tumour cells 

and promote metastatic colonisation upon DTC arrival
63-68

.  

Most studies have focused on recruitment of myeloid cells to the pre-metastatic niches, but resident 

macrophage populations also play a role in formation of the pre-metastatic niche. Interestingly, pre-

conditioning of tumour-free mice through administration of conditioned medium from B16 melanoma 

cells, with a distinct metastatic profile towards multiple organs, could change the metastatic pattern of 

injected Lewis lung carcinoma cells, that primarily metastasise to the lungs, to include organs such as 

testis, spleen and kidney, which is similar to the metastatic pattern of B16 melanoma cells
63

. This was 

later demonstrated to depend on tumour-derived exosomes, which are small membrane vesicles (30–

100 nm) that contain functional biomolecules (such as proteins, lipids, RNA and DNA) that can be 

horizontally transferred to recipient cells. Injection of tumour-derived exosomes from cells with 

specific metastatic patterns resulted in a metastatic distribution of injected tumour cells that matched 

that of the cell that had produced the exosomes. Specifically, pre-treating mice with exosomes from 

lung-tropic cancer cells followed by injection of bone-tropic cancer cells resulted in increased lung 

metastasis of the bone tropic cells. The exosomes from lung-, liver- or brain-tropic cancer cells had 

distinct integrin expression profiles that were required for successful uptake by cells in the pre-

metastatic site (such as endothelial and epithelial cells of the lungs, Kupffer cells in the liver and 

endothelial cells in the brain, respectively). Knockdown of the individual exosomal integrins could 

inhibit organ-specific metastasis. The same research group demonstrated, in a mouse model of 

pancreatic cancer metastasis that cancer-derived exosomes are taken up by liver-resident Kupffer 

cells. The exosomes contain macrophage inhibitory factor that induce transforming growth factor β 

production from Kupffer cells, which activate resident hepatic stellate cells (HSTCs) into 

myofibroblasts that prepare the liver for metastatic DTCs by production of fibronectin to recruit 

monocytes and macrophages
69,70

 (Figure 1). However, the ability of other resident macrophage 

populations, such as lung alveolar macrophages, to initiate pre-metastatic niche formation in the lung 

is yet unexplored. 

 

Primary Tumour Invasion and Metastatic Extravasation 

Macrophages promote invasion and metastasis from the primary tumour site through their ability to 

engage cancer cells in an autocrine loop that promote cancer cell migration. This autocrine signalling  

involves CSF-1 production from the cancer cells that engage the macrophages to produce epidermal 

growth factor, which ultimately leads to co-migration of macrophages trailed by cancer cells towards 

tumour blood vessels where macrophage-derived VEGF-A promotes cancer cell intravasation into the 

blood vessels
66–68

. In addition, macrophage-derived cathepsins, SPARC or CCL18 enhances the 

tumour cell adhesion to extracellular matrix proteins and promotes tumour cell migration
71-76

. 
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Macrophages orchestrate metastatic development by distinct cellular interactions within metastatic 

sites. Intravital microscopy of DTCs in the lungs immediately after tail vein injection reveals that 

DTCs are lodged inside the lung capillaries and begin to shed microparticles with an average diameter 

of 5μm due to shear forces in the lungs. These microparticles are taken up by neutrophils, monocytes 

and macrophages at the metastatic site in three distinct waves within the first 24 hours after DTC 

arrest. In addition, CD103+ dendritic cells also take up microparticles and migrate to the lymph 

nodes. Ablation of CCR2+ monocytes and macrophages reduces the metastatic burden in the lungs. 

This correlates with increased microparticle loading in CD103+ dendritic cells and increased presence 

of CD8+ T cells in the lungs. In contrast, depletion of CD103+ dendritic cells resultes in increased 

metastatic development
77

.  

Macrophages promote extravasation of arrested DTCs in capillary networks at the secondary site. 

DTCs produce CCL2 that recruits inflammatory monocytes from the blood to the metastatic site. 

Here, inflammatory monocytes secrete VEGF-A to promote DTC extravasation through increased 

vascular permeability
78,79

. In addition, CCL2 induces the expression of CCL3 from metastasis-

associated macrophages (MAMs) that promote the retention of MAMs at the metastatic site. This 

improves the direct contact between cancer cells and macrophages through VCAM1-α4 integrin 

mediated signalling and promotes cancer cell retention in the metastatic site
80

. 

Both macrophages and tumour cells produce cathepsin S and high cathepsin S expression at the 

primary tumour site is correlated with decreased brain metastasis-free survival in breast cancer 

patients. Mechanistically, cathepsin S mediates blood–brain barrier transmigration through proteolytic 

processing of the junctional adhesion molecule, JAM-B, and only the combined depletion of both 

MAM- and cancer cell-derived cathepsin S reduces the development of brain metastasis
81

 (Figure 1). 

 

Colonisation 

Once DTCs have extravasated, they find themselves in an unfamiliar environment where crosstalk 

between DTCs and their microenvironment is essential for successful metastatic colonisation. This 

allows DTCs to escape immune-mediated destruction and initiate niche-dependent survival signalling. 

One of the key components of the metastatic niche is macrophages that promote metastatic 

colonization through various mechanisms.    

Tissue Factor expressed on DTCs can recruit platelets and activate the coagulation cascade which 

leads to thrombin activation and fibrin deposition (clot formation). Macrophages are recruited to the 

clots on extravasated DTCs in the lung and promote cancer cell survival in a NK cell-independent 

mechanism
82

. This might be due to the direct interaction between DTCs and MAMs, as it was 
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demonstrated that macrophages promote DTC survival by initiating cell-cell contact. Here, DTCs, 

which have high expression of VCAM-1, engages α4-integrins on MAMs to initiate pro-survival 

signalling within cancer cells through the PI3K/Akt signalling pathway
83

. We recently demonstrated a 

crucial pro-metastatic mechanism of MAMs in pancreatic cancer to orchestrate the establishment of a 

metastatic niche in the liver. Inflammatory monocyte-derived MAMs accumulate in the liver upon 

DTC arrival. Pharmacological depletion of MAMs with clodronate liposomes or blockade of 

inflammatory monocyte recruitment through PI3Kγ depletion, which is important for monocyte 

trafficking to inflammatory sites
84

, decreased the metastatic burden and correlated with a reduction in 

alpha smooth muscle actin-positive (αSMA+) myofibroblasts. Mechanistically, we found that MAMs 

secrete granulin to activate resident HSTCs into αSMA+ myofibroblasts. The activated 

myofibroblasts produce extracellular matrix molecules such as periostin that enhances colony 

formation abilities of pancreatic cancer cells. Depletion of granulin in the bone marrow compartment 

ablated the deposition of extracellular matrix and periostin in the metastatic lesions and resulted in 

reduced proliferation of metastatic cancer cells
85

. A myofibroblast activating function of granulin has 

been previously reported in a breast cancer model, where tumour-instigating cells promoted the 

outgrowth of contralateral implanted indolent tumour cells, through recruitment of granulin-secreting 

myeloid cells to the indolent tumour site, which correlated with accumulation of aSMA+ 

myofibroblasts
86

. In respect of macrophages and pancreatic cancer metastasis, a recent report showed 

that long-term pharmacological depletion of macrophages in the genetic KPC mouse model of 

pancreatic cancer (Pdx1
cre

;Kras
G12D/+

;p53
R172H/+

)
87

 markedly reduced metastasis
88

 (Figure 1).  

 

Targeting Macrophage Functions in the Tumour Microenvironment 

Because of the important role of macrophages in tumour development they have emerged as a 

promising therapeutic target (Figure 1). Among the potential strategies to inhibit macrophage 

function in the tumour microenvironment are (1) blocking their recruitment or depletion from the 

tumour, (2) re-education to an anti-tumorigenic phenotype or (3) immunestimmulatory reactivation.  

Since CSF-1 is the most important cytokine for macrophage survival, several strategies have been 

developed to block ligand binding to CSF-1R. These include antibodies that block CSF-1 or CSF-1R, 

thus preventing receptor ligation. Treatment with these antibodies has decreased tumour burden in 

several pre-clinical animal models
28,89

 and human patients
90

. One emerging strategy to inhibit 

macrophages is re-education to an anti-tumorigenic M1-like phenotype. Interestingly, treatment with 

two different anti-CSF-1R antibodies resulted in a macrophage reprogramming in a mouse models of 

glioma and pancreatic cancer. In both cases, antibody treatment reversed macrophage polarization 

from an M2 to an M1 profile through down-regulation of markers associated with the M2-like 

phenotype and up-regulation of markers associated with a M1-like profile
28,91

. Macrophages can be 
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recruited to tumour sites by tumour-derived CCL2 that binds to CCR2. Disrupting this axis by 

targeting CCR2 or CCL2 have resulted in reduced mobilization of inflammatory monocytes from the 

bone marrow and peripheral blood to tumour sites, which correlated with increased survival and 

decreased tumour burden in mouse models of lung metastasis and pancreatic cancer
78,92

. In addition, 

the chemotherapeutic agent Trabectedin was reported to specifically deplete monocytes and 

macrophages in a several animal tumour models resulting in reduced tumour angiogenesis and 

reduced tumour growth
93

. In addition, low-dose radiotherapy has been shown to re-program 

macrophages to a M1-like profile that promotes the normalization of tumour vasculature and efficient 

recruitment of cytotoxic T cells in both mouse models and human patients with pancreatic cancer
94

. 

Finally, activation of macrophages in a genetically engineered mouse model of pancreatic cancer with 

an agonist monoclonal CD40 antibody synergizes with chemotherapy (CTX) to induce tumour 

regression
95

. These results were based on the ability of the CD40 antibody to enhance antigen 

presentation, depletion of the desmoplastic stroma and ultimately promote pro-tumouricidal activities 

of monocytes, macrophages and CD8+ T cells before their recruitment to the tumour site
96,97

. 

 

Targeting Macrophages at Metastatic Sites 

Despite advances in cancer treatment, surgical removal of a tumour is still considered the best 

treatment if possible. Surgery is often complemented with systemic chemotherapy treatment before 

(neo-adjuvant) or after (adjuvant) surgical resection. Neo-adjuvant chemotherapy aims to reduce 

tumour burden, thereby allowing surgical intervention, whereas adjuvant chemotherapy is standard of 

care treatment and aims to eliminate residual cancer cells at the surgical site or clinically undetectable 

metastatic deposits. However, this treatment may fail due to niche-mediated survival at either site
60

. 

From that point of view it might be beneficial to target the pro-metastatic stromal compartment, 

including macrophages in combination with current cytotoxic regimens, which mainly target cancer 

cells. Indeed, several inhibitors of the CSF1-CSF-1R or CCR2-CCL2 signalling axes have shown 

therapeutic benefits in mouse models of pancreatic and breast cancer, both in combination and 

without chemotherapeutical agents
28,78

, and in clinical settings
90,92,98

. However, further work must 

determine the optimal treatment conditions, since cessation of treatment may have detrimental effects 

as recently demonstrated for anti-CCL2 antibodies. Experimental neutralization of CCL2 with anti-

CCL2 antibodies in mouse models of breast cancer metastasis, although limiting early metastatic 

processes, promoted metastasis following the cessation of therapy. Ending treatment increased the 

mobilization of inflammatory monocytes and their recruitment to micrometastatic deposits, which 

increased angiogenesis and metastatic proliferation through VEGF-A and IL-6
99

. For patients with 

inoperable disease, systemic treatment is the only available treatment, but efficiency is limited by 

development of drug resistance
60

. In a breast cancer model, CXCL1/2 is produced by cancer cells and 
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serves as a chemoattractant for myeloid cells that are recruited to the lungs, where they produce 

S100A8/9 to enhance cancer cell survival at the metastatic site. Treatment of mice with the 

chemotherapeutic agents Doxorubicin and Cyclophosphamide enhanced the CXCL1-S100A8/9 axis. 

Interestingly, this amplification was due to the direct effect of chemotherapy on endothelial cells and 

fibroblasts that produced TNFα to stimulate further CXCL1/2 production from the cancer cells
100

. 

Treatment with anti-CSF-1R antibodies reprograms macrophages in a glioma mouse model to a M1-

phenotype and limits tumour growth. However, Macrophages in the tumour microenvironment 

became refractory to the effect of anti-CSF1R antibodies resulting in regrowth of glioma tumours. 

This was caused by IGF1 production from macrophages stimulated with CD8+ T cell-derived IL-

4
91,101

. Furthermore, treatment with neutralising anti-CSF-1R or anti-CSF1 antibodies can lead to a 

compensatory increase in granulocyte colony stimulating factor (CSF3), which stimulates an increase 

in neutrophils at the primary tumour site and in metastatic deposits. The increased neutrophil 

accumulation results in increased metastatic development, which could be prevented by the addition 

of a neutralising anti-CSF3 antibody in combination with the anti-CSF1 antibody
102

. 

It was believed that directing the tumour microenvironment might serve as a more promising 

theraputical target than the cancer cells compartment due to decreased likelihood of developing 

therapeutic resistance through mutations in the targeted cells with the tumour microenvironment. 

These reports stress the need for more research into the role of cells in the tumour microenvironment, 

especially the macrophages, both in response to targeted therapies and without. 

 

Future Directions 

Macrophages are essential components of all mammalian tissues where they perform a variety of 

supportive functions that reaches beyond their classical functions as anti-microbial phagocytes. 

However, the molecular mechanims how the origin of macrophages and their tissue specificity affects 

their tumour promoting and/or tumour suppressive functions still remain poorly understood. 

Macrophages have a high plasticity and their biological functions can differ markedly based on their 

organ/tissue specificity.  Transcriptional factors have been identified that control the differentiatoin of 

progrenitor cells into macrophage, while different transcriptional factors can be induced in an organ-

specific manner, thereby regulating macrophage identity relative to their ascribed function within that 

organ. It will be interesting to further characterise the relative contribution of transcriptional programs 

induced by tissue-derived signals versus signals regulated by a functional demand in the tumour 

microenvironment (such as hypoxia or tumour-derived signals). This might be particular important for 

certain cancer types and could possibly reveal new tumour-promoting mechanisms and offer new 

therapeutic targets to inhibit pro-tumourigenic macrophages.  
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We and others have described different mechanism of how metastasis-associated macrophages 

promote metastasis by mediating cancer cell extravasation, heterotypic cell-cell-mediated survival 

signaling and metastatic niche formation at the secondary site after tumour cell dissemination. Tissue-

resident macrophage populations seem to play a role in the initial phase of the pre-metastatic niche 

formation, but their role in metastatic progression at the secondary site remains unexplored.  

While macrophages remain a promising therapeutical target in multiple cancer types, recent reports 

concerning acquired resistance in different tumours to therapeutical agents that specifically target 

macrophages, such as anti-CCL2/CCR2 or anti-M-CSFR, highlight that it will be important to 

characterise potential resistance mechanisms when we develop agents that target macrophages in the 

tumour microenvironment.   
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Tabel 1. Markers used to identify Murine Macrophage Populations in Healthy and Tumour-bearing Mice   

Type Population Markers Reference 
Healthy Tissues Microglia  

(During embryonic development) 
CD11b

+
 CX3C1

+
 F4/80

+
 CSFR1

+
 Gr1

-
 F4/80

+
 

 
Ginhoux et al., Science (2010) 

Alveolar macrophages 
(Adult) 

CD11b
+
 F4/80

+
 SiglecF

high
 CD11c

high
 CD64

+
 Guilliams et al., JEM (2013) 

Colon Macrophages 
Embryonic: 
Adult: 

 
CD45

+
 Siglec-F

−
 Ly6G

−
 CD11c

low
 CD64+ CD11b

low
 F4/80

high
 

CD45
+
 Siglec-F

−
 Ly6G

−
 CD11c

low
 CD64+ CD11b

+
 F4/80

low
 

Bain et al., Nature Immunology (2014) 

 

Blood-derived cells 
in adult mice 

Patrolling monocytes 
 

Ly6C
low

 CX3CR1
high

 CCR2
-
 CD62L

-
 CD43

high 
Auffray et al., Science (2007) 

Inflammatory monocytes 
 

Ly6C
high

 CX3CR1
mid

 CCR2
+
 CD62L

+
 CD43

low
 Auffray et al., Science (2007) 

Neutrophils 
 

CD45
+
 CD11b

+
 F4/80

-
 Ly6C

+
 Ly6G

high
  DeNardo et al., Cancer Disc. (2011) 

 

 

Tumour associated 
macrophages (TAM) 

Breast Cancer (MMTV-PyMT Model) 
TAMs: 
Mammary-resident Macrophages: 

 
CD11b

low 
MHCII

high 
CCR2

+
 F4/80

+ 
CD64

+ 
MerTK

+
 

CD11b
high 

MHCII
high 

 
Franklin et al., Science (2014) 

Breast Cancer (MMTV-PyMT Model) 
TAMs: 

 
CD11b

+
 Gr1

-
 F4/80

+
 

CD45
+
 CD11b

+
 Ly6G

−
 Ly6C

low
 F4/80

+
 

CD11b
+
 F4/80

+
 MHCII

+
 Ly6C

- 

 
DeNardo et al., Cancer Cell (2009) 
DeNardo et al., Cancer Disc. (2011) 
Ruffell et al., Cancer Cell (2014) 

Breast Cancer 
Subcutaneous N202 mammary tumors 
Tie2-expressing monocytes (TEM): 
TAMs: 

 
 
CD45

+
 CD11b

+
 F4/80

+
 Tie2

+
 CD31

- 

CD45
+
 CD11b

+
 F4/80

+
 Tie2

-
 CD31

-
 

DePalma et al., Cancer Cell (2005) 
Pucci et al., Blood (2009) 

Pancreatic Cancer 
TAMs (Orthotopic KPC): 
TAMs (KC model; p48-CRE/LSL-KRas

G12D
) 

 
CD11b+ F4/80+ Gr1- MHCII

+
 CD206

high 

CD11b+ Gr1- 

 
Zhu et al., Cancer Research (2014) 
Clark et al., Cancer Research (2007) 

Glioma (PDGF-B–driven glioma) 
TAMs:  
 

 
CD45

+
 CD11b

+
 CD68

+
 CSF-1R

+
 Gr1

-
 

 
Pyonteck et al., Nat Med (2013) 

    



 



 



Figure 1. Pro-metastatic functions of macrophages. 
Macrophages promote invasion and intravasation of tumour cells at the primary site (purple). Tumour cells produce CSF1 that induce EGF expression in 
TAMs. This autocrine loop leads to co-migration of tumour cells and macrophages towards blood vessels where macrophages produce VEGF-A to promote 
increased vessel permeability. In addition macrophage-derived molecules such as SPARC, CCL18 and proteases promote increased tumour cell invasion and 
migration. At the metastatic site, tumour cell-derived CCL2 recruit inflammatory monocytes to the metastatic site, where they differentiate into metastasis-
associated macrophages that produce VEGF-A and cathepsin S to promote cancer cell extravasation. Macrophages promote survival at the metastatic site 
(green). Macrophages express Integrin α4 that engages VCAM1 on tumour cells at the metastatic site, which increases tumour cell survival through 
PI3K/Akt signalling. In addition, macrophages bind to fibrin complexes on tumour cell-associated platelets, which increase tumour cell survival in the initial 
phase of metastatic colonisation. Macrophages promote metastatic niche formation (pink). Metastasis-associated macrophages produce Granulin that 
activates HSTC to produce ECM molecules, such as collagen and periostin, which enhances the colony formation abilities of cancer cells in the metastatic 
niche of pancreatic cancer. In addition, tumour-derived exosomes can activate TGFβ expression in Kupffer cells that activates HSTCs to produce fibronectin 
in the pre-metastatic liver. Macrophages promote therapeutic resistance (blue). Macrophages produce IL-10 that inhibits the effector functions of CD8+ T 
cells by blocking the effects of dendritic cell-derived IL-12. Inhibition of IL-10 with a blocking antibody in combination with chemotherapy improves the 
therapeutic response. Tumour cells express CXCL1/2 that induces S100A8/9 production in macrophages to improve tumour cell survival. Chemotherapy 
induces TNFα expression from cancer-associated fibroblasts and endothelial cells that re-inforce the CXCL1/2-S100A8/9 axis and limits the efficacy of 
chemotherapy.    
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