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bÉlectricité de France Lab, Acoustics and Mechanical Analyses Department,

1 avenue du Général de Gaulle, 92141 Clamart Cedex, France

Abstract

This paper deals with the identification of a stochastic computational model
using experimental eigenfrequencies and mode shapes. In presence of ran-
domness, it is difficult to construct a one-to-one correspondence between the
results provided by the stochastic computational model and the experimen-
tal data because of the random modes crossing and veering phenomena that
may occurs from one realization to another one. In this paper, this corre-
spondence is constructed by introducing an adapted transformation for the
computed modal quantities. Then the transformed computed modal quan-
tities can be compared with the experimental data in order to identify the
parameters of the stochastic computational model. The methodology is ap-
plied to a booster pump of thermal units for which experimental modal data
have been measured on several sites.

Keywords: Structural dynamics, Model identification, Computational
stochastic dynamics, Mode crossing, Experimental modal analysis

1. Introduction

In industrial context, the quantification of the confidence in computa-
tional models must be established so that they can be used either in design
purpose or in expertise purpose. A given dynamical system can operate at
design conditions, at off-design conditions and at failure-mode conditions
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that apply in accident scenarios. An adapted way to take into account their
generic characteristics and their capability to reproduce the behavior of the
whole family of nominally-identical structures is to consider no more de-
terministic but stochastic computational models (SCM), using experimental
data. The objective of this paper consists in identifying a SCM using some
natural frequencies and the associated mass-normalized mode shapes, mea-
sured for a family of structures.

The identification or updating methods of deterministic computational
dynamic models using modal data have been intensively studied during the
last four decades. Efficient methods have been proposed (see for instance
[31, 51, 20]) and are now commonly used in industry. There are two main
types of methods: the global methods (see for instance [3, 21, 41, 54]) which
consist in directly modifying the stiffness and mass matrices and the local
methods which consists in updating some physical parameters (see for in-
stance [9, 14]). The latter method can be described in three steps: (1) The
first one consists in constructing a nominal computational model (NCM) for
which the parameters are set to nominal values. These parameters can be
related to material properties (Young’s modulus, mass density, and so on),
geometry (CAD, thickness, area moments of inertia, and so on) and boundary
conditions. (2) The second step consists in performing a sensitivity analysis
of the quantities of interest with respect to the parameters in order to select
the most-sensitive parameters which have to be updated (see for instance
[6, 15]). (3) The third step consists in updating the most-sensitive parame-
ters using experimental data. In general, this step is carried out by reducing
a ”distance” between the experimental modal data (eigenvalue, mode shape,
modal mass, modal damping) and the corresponding computed quantities
using the NCM.

We consider the random context for which the available experimental
data are related to a family of several experimental configurations of a given
dynamical structure. The observed variability between the experimental con-
figurations of this family is induced (1) by the uncontrolled differences that
can appear during the manufacturing process (manufacturing tolerances) and
during the life cycle of the structure (natural damage, incidents, etc) and (2)
by some slight differences which are controlled and are related, for instance,
to the boundary conditions, the embedded equipments, etc. These two types
of variability induce differences for the data measured on two configurations
of the given dynamical structure. It should be noted that the measurement
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errors can also yield fluctuations in the measured data. This last source of
variability induced by the experimental process is not addressed in this paper
because it is assumed to be of second-order with respect to the other sources
of variability for the application which is presented.

In such a random context, we have to construct a stochastic computa-
tional model (SCM) for which two sources of uncertainties have to be taken
into account (see for instance [48]): (1) the uncertainties relative to some
model parameters of the NCM and (2) the modeling errors. The first one
includes both the uncertainties induced by the above-mentioned observed
variability (also called aleatory uncertainty in the literature) and the uncer-
tainties induced by the lack of knowledge related to some uncertain param-
eters of the SCM (also called epistemic uncertainty in the literature). With
respect to the computational model, this first source of uncertainty yields the
model-parameter uncertainties while the uncertainties induced by the model-
ing errors yield the model uncertainties. The stochastic computational model
which is constructed with these two sources of uncertainties (and with ad-
ditional input and output noises if measurement errors are significant) must
have the capability of representing the variability of all the measured config-
urations (as explained above).

In this paper, the uncertainties are taken into account using a proba-
bilistic approach and then the SCM is constructed including both the model-
parameter uncertainties and the model uncertainties in a separate way (using
the generalized probabilistic approach of uncertainties proposed in [47, 48]).
Usually, a SCM is controlled by a set of hyperparameters such as mean val-
ues, coefficients of variation, and so on. These hyperparameters have to
be identified using experimental data and realizations of the SCM. Several
types of observation can be used in order to perform such an identification
and the choice depends on the quantities of interest for the developed SCM
(see for instance, [34, 35, 19, 22, 23] for model-parameter uncertainties, and
[45, 46, 12, 13, 5, 2, 49] for both model-parameter uncertainties and model
uncertainties). For example, if the computational model is devoted to the
prediction of responses in the low-frequency band of analysis and if the res-
onances are relatively well-separated, then the modal quantities (eigenfre-
quencies, mode shapes) are suitable observations. In a random context and
for the low-frequency dynamical analysis, the eigenfrequencies can be used if
a one-to-one correspondence can be constructed between the computational
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modes and the experimental modes [45, 5, 2]. This means that the experi-
mental variability and the randomness in the SCM should not induce mode
crossing phenomena or mode veering phenomena (see [36, 37, 33]) for the
experimental modes and for the computed stochastic modes. This is true if
the variability is sufficiently small and if the resonances are well-separated. If
this is not the case, information on the mode shapes have to be used in order
to construct a one-to-one correspondence between the experimental data and
the corresponding computational quantities.

The objective of this paper consists in identifying the hyperparameters
of a SCM using natural frequencies and mass-normalized mode shapes mea-
sured for a family of structures. The methodology proposed introduces a
random transformation of the computational observations (computational
eigenfrequencies and computational mode shapes) in order to match them to
the experimental observation of each measured structure. This methodology
automatically takes into account the mode crossings and the mode veerings
which can appear between two experimental configurations or between two
computational realizations of the SCM. In Section 2, the construction of the
SCM is summarized. Section 3 is devoted to the identification of the hyper-
parameters of the SCM using a new methodology. Finally, in Section 4, an
application devoted to an industrial pump of a thermal unit is presented.

2. Construction of the stochastic computational model

The construction of an adapted SCM can be carried out using different
approaches (a state-of-the-art concerning stochastic modeling of uncertain-
ties can be found, for instance, in [39, 40, 48]). The objective of this section is
to construct a parameterized SCM based on the use of the generalized prob-

abilistic approach of uncertainties proposed in [47, 48], for which both the
model-parameter uncertainties and the model uncertainties are taken into ac-
count and are separately identified. First, the NCM is constructed using the
Finite Element (FE) method. The probabilistic model of model-parameter
uncertainties is constructed by replacing the uncertain model parameters by
random variables and the probabilistic model of model uncertainties is con-
structed by replacing the mass and stiffness matrices by adapted random
matrices. The prior probability distributions of the uncertain model param-
eters and of the random matrices depend on unknown parameters (called the
hyperparameters) for which the identification is addressed in Section 3.
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2.1. Construction of the nominal computational model

The NCM is constructed using the FE method and the boundary condi-
tions of the structure are such that there are no rigid body modes. This com-
putational model exhibits np uncertain model parameters denoted h1, . . . , hnp

.
Let be h = (h1, . . . , hnp

) belonging to an admissible set, Ch. Let [M(h)] and
[K(h)] be the mass and stiffness (m×m) real matrices of the NCM. For all
h in Ch, we are interested in calculating the first n (with n < m) eigenvalues
0 < λ1(h) ≤ . . . ≤ λn(h) and the associated mode shapes, φ1(h), . . . ,φn(h).
These modal quantities are the solutions of the following generalized eigen-
value problem related to the NCM,

[K(h)]φ(h) = λ(h) [M(h)]φ(h) . (1)

Let [Φ(h)] be the m× n matrix whose columns are the first n mode shapes.
We then introduce the n× n mass and stiffness reduced matrices, [M(h)] =
[Φ(h)]T [M(h)] [Φ(h)] and [K(h)] = [Φ(h)]T [K(h)] [Φ(h)]. For convenience,
the mode shapes are normalized with respect to the mass matrix such that

[M(h)] = [In] , (2)

in which [In] is the n × n identity matrix. The diagonal n × n real matrix
[K(h)] is then written as

[K(h)] = diag(λ1(h), . . . , λn(h)) . (3)

2.2. Construction of the probabilistic model of uncertain model parameters

The probabilistic model of uncertain model parameters is constructed
by replacing vector h of the uncertain model parameters by the random
vector H with values in R

np, defined on a probability space (Θpar, T par,Ppar)
and for which the probability density function (pdf) p

H
(h) with respect to

dh depends on hyperparameters which can be mean values, coefficients of
variation, Lagrange multipliers (in case of a Maximum Entropy construction
[42, 25, 26]), and so on. The first n random eigenvalues 0 < Λpar

1 ≤ . . . ≤ Λpar
n

associated with the random mode shapes φpar
1 , . . . ,φpar

n are the solutions of
the following random generalized eigenvalue problem,

[K(H)]φpar = Λpar[M(H)]φpar . (4)
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Let [Φpar] be the m×n random matrix whose columns are the first n random
mode shapes. We then introduce the n×n random mass and stiffness reduced
matrices [Mpar] = [Φpar]T [M(H)] [Φpar] and [Kpar] = [Φpar]T [K(H)] [Φpar].
The random mode shapes are normalized (almost surely) with respect to the
random mass matrix such that

[Mpar] = [In] , (5)

and thus, the random diagonal n× n real matrix [Kpar] is written as

[Kpar] = diag(Λpar
1 , . . . ,Λpar

n ) . (6)

By construction, the random matrices [Mpar] and [Kpar] are positive definite
(almost surely) and therefore, their Cholesky decompositions yield,

[Mpar] = [LM ]T [LM ] , [Kpar] = [LK ]
T [LK ] . (7)

From Eqs. (5) to (7), it can be deduced that [LM ] = [Im] and [LK ] =

diag(Ωpar
1 , . . . ,Ωpar

n ) where Ωpar
j =

√
Λpar

j is the jth random eigenfrequency

(in rad/s).
Let αpar be the vector whose components are the hyperparameters of

the pdf p
H
(h) which is then rewritten as p

H
(h;αpar). The vector-valued

hyperparameter αpar must be identified using experimental modal data.

2.3. Construction of the generalized probabilistic model of uncertainties

Let (Θmod, T mod,Pmod) be another probability space. To take into ac-
count model uncertainties (induced by modeling errors), the dependent ran-
dom matrices [Mpar] and [Kpar] are replaced by the dependent random ma-
trices [Mtot], [Ktot], defined on a probability space (Θ = Θpar × Θmod, T =
T par ⊗ T mod,P = Ppar ⊗ Pmod), such that for all θ = (θpar, θmod) in Θ =
Θpar ×Θmod,

[Mtot(θ)] = [LM (θpar)]T [GM(θmod)][LM(θpar)] ,

[Ktot(θ)] = [LK(θ
par)]T [GK(θ

mod)][LK(θ
par)] ,

(8)

in which the probability distributions of the random matrices [GM ] and [GK ],
defined on (Θmod, T mod,Pmod), are explicitly given in [44] in the context of
the nonparametric probabilistic approach of uncertainties. The probability
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distributions of [GM ] and [GK ] depend on the dispersion parameters δM and
δK respectively. Let αmod be the vector of the dispersion parameters such
that αmod = (δM , δK).

The random matrices [Mtot] and [Ktot] are not diagonal. In order to
calculate the random eigenfrequencies and the random mode shapes of the
SCM with both the model-parameter uncertainties and the model uncertain-
ties, the following small-dimension random generalized eigenvalue problem is
introduced. Let 0 < Λ1 ≤ . . . ≤ Λn be the first n random eigenvalues asso-
ciated with the random eigenvectors φtot

1 , . . . ,φtot
n which are the solutions of

the following random reduced generalized eigenvalue problem

[Ktot]φtot = Λ[Mtot]φtot . (9)

Let [Φtot] = [φtot
1 , . . . ,φtot

n ]. These random modes are normalized with re-
spect to the random mass matrix [Mtot],

[M] = [Φtot]T [Mtot] [Φtot] = [In] , (10)

and we have

[K] = [Φtot]T [Ktot] [Φtot] = diag(Λ1, . . . ,Λn) . (11)

Then the first n random eigenvalues of the SCM, with both the model-
parameter uncertainties and the model uncertainties, are 0 < Λ1 ≤ . . . ≤ Λn

and the associated random vectors are φ1, . . . ,φn such that them×n random
matrix [Φ] = [φ1, . . . ,φn] is written as

[Φ] = [Φpar] [Φtot] . (12)

Finally the SCM is parameterized by the vector-valued hyperparameter α =
(αpar,αmod) which has to be identified using experimental modal data. The
admissible space for vector α is denoted by C.

3. Identification of the SCM using experimental modal data

The objective of this section is to identify the parameter α of the SCM
using experimental modal data (eigenfrequencies and mass-normalized mode
shapes) and realizations of the modal data calculated using the SCM.
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3.1. Experimental modal data as observations

It is assumed that nexp experimental configurations of the structure (sim-
ply called ”configurations”) have been tested. For each configuration j, nj

modes have been experimentally identified using an experimental modal anal-
ysis method (see [18, 32]). For two given configurations, the number of modes,
the number and locations of the sensors can be different. For each configura-
tion j, nj experimental eigenfrequencies ωexp,j

1 , . . . , ωexp,j
nj

associated with nj

mass-normalized experimental mode shapes ϕ̂exp,j
1 , . . . , ϕ̂exp,j

nj
have been iden-

tified for mj degrees of freedom (DOFs). Let [Φ̂exp,j] = [ϕ̂exp,j
1 . . . ϕ̂exp,j

nj
] be

the mj × nj matrix of the nj experimental mode shapes of the configuration
j. It is assumed that nj < n < mj < m for all j in {1, . . . , nexp}. The exper-
imental reduced mass matrix and the experimental reduced stiffness matrix
are then written as

[M̂ exp,j] = [Inj
] , [K̂exp,j] = diag(λexp,j

1 , . . . , λexp,j
nj

) , (13)

in which λexp,j
i = (ωexp,j

i )2.

3.2. Transformation of the modal data

For all j in {1, . . . , nexp}, let [P
j] be the mj ×m matrix that performs the

projection from them DOFs of the SCM to themj DOFs of the experimental

configuration j. Then the projected random modal basis [Φ̃
j
] of the SCM is

defined by

[Φ̃
j
] = [P j] [Φ]. (14)

The experimental modes [Φ̂
exp,j

] cannot directly be compared to the com-

putational modes [Φ̃
j
] because, in general, there is not a one-to-one corre-

spondence between the experimental modes and the computational modes.
Indeed, some modes may be missing in the experimental modal basis or
in the computational modal basis. Furthermore, due to the experimental
variability (variability of the configurations) and the computational ran-
domness (uncertainties), some mode crossing and/or mode veering [36, 37,
33] phenomena may occur. The classical mode tracking methods [28, 11]
based on the MAC criterion [18] are efficient to detect mode missings and
mode crossings but are not able to detect mode veerings (see [1], [33]).
In Ref. [1], in the context of the interpolation of reduced-order models
(ROM), the authors have introduced a transformation for a given ROM,
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{[Φ̃], [K], [M ]}, in which [Φ̃] is a reduced-order basis, [K] is a reduced stiff-
ness matrix and [M ] is a reduced mass matrix, in order to match it with

a reference ROM, {[Φ̂ref ], [Kref ], [M ref ]}, of the same dimension. The trans-
formed ROM is constructed using a congruence transformation and is then
written as {[Φ̃] [Q], [Q]T [K][Q], [Q]T [M ][Q]}, in which [Q] is a square orthogo-

nal matrix that minimizes the distance ‖ [Φ̃] [Q]−[Φ̂ref ] ‖F , where ‖ . ‖F is the
Frobenius norm. Such a transformation is also used in the context of modal
expansion methods (see [43, 29] for instance). In the present paper, a simi-
lar method is introduced in order to construct a one-to-one correspondence
between the random ROM calculated using the SCM and the experimental
ROM.

For each experimental configuration j, the above reference ROM is chosen
as the experimental ROM, {[Φ̂exp,j], [K̂exp,j], [M̂ exp,j]}. The ROM to be trans-

formed is the projected computational ROM, {[Φ̃
j
], [K], [M]} which is not of

the same dimension as the experimental ROM. Therefore, the projected com-

putational ROM, {[Φ̃
j
], [K], [M]}, is transformed into the following ROM,

{[Φ̂
j
], [K̂j], [M̂j]}, such that

[Φ̂
j
] = [Φ̃

j
] [Qopt,j] , (15)

[K̂j] = [Qopt,j]T [K][Qopt,j] , (16)

[M̂j] = [Qopt,j]T [M][Qopt,j] , (17)

in which [Qopt,j] is a random n×nj real matrix for which each realization [Q] =
[Qopt,j(θ)], for θ in Θ, must belong to the Stiefel manifold [16], OSt(n, nj),
defined by

OSt(n, nj) = {[Q] ∈ R
n×nj , [Q]T [Q] = [Inj

]} . (18)

We then have the following properties for the random nj × nj real matrices,

[K̂j] and [M̂j],

[K̂j] is with values in M
+
nj
(R) ,

[M̂j] = [Inj
] ,

(19)

in which M
+
nj
(R) is the set of all the positive-definite nj × nj real matrices.

For all θ in Θ, orthogonal matrix [Qopt,j(θ)] is calculated by minimizing the

distance between the computational modal basis [Φ̂
j
(θ)] and the experimental
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modal basis [Φ̂exp,j],

[Qopt,j(θ)] = arg min
[Q]∈OSt(n,nj)

‖ [Φ̃
j
(θ)] [Q]− [Φ̂exp,j] ‖F . (20)

The minimization problem (14) is referred as a Procruste problem [7, 8]. Con-
trary to a classical Procruste problem (for which [Q] is searched in the square
orthogonal matrices ensemble [24]), this Procruste problem does not have an
explicit solution. Nevertheless, a solution can be calculated iteratively (see
[7]) using the Algorithm 1. The number of iterations niter1 is determined

through a convergence analysis of the error ‖ [Φ̃
j
(θ)] [Qopt,j(θ)]− [Φ̂exp,j] ‖F .

In general, this error does not converge to zero. This convergence analysis

can be performed for all the realizations [Φ̃
j
(θ)] or can be performed only

one time using the mode shapes of the NCM. In this case, the transformed
nominal ROM {[Φ̂(h)], [K̂(h)], [M̂ (h)]} such that

[Φ̂j(h)] = [Φ̃j(h)] [Qopt,j(h)] , (21)

[K̂ j(h)] = [Qopt,j(h)]T [K(h)][Qopt,j(h)] , (22)

[M̂ j(h)] = [Qopt,j(h)]T [M(h)][Qopt,j(h)] , (23)

in which [Φ̃j(h)] = [P j] [Φ(h)] and [Qopt,j(h)] is calculated by minimizing

the distance between the nominal modal basis [Φ̂j(h)] and the experimental

modal basis [Φ̂exp,j].
If the experimental mode shapes ϕ̂exp,j

1 , . . . , ϕ̂exp,j
nexp

are not mass-normalized
(because the modal masses have not been identified with a good precision)
then the transformation defined by Eqs. (15) to (20) is not enough to make
the random computational mode shapes close enough to the experimental
mode shapes. It is then necessary to include an external scaling loop to Algo-

rithm 1 so that the columns of matrices [Φ̂exp,j] and [Φ̂
j
(θ)] = [Φ̃

j
(θ)][Qopt,j(θ)]

have the same norm. This external loop is summarized in Algorithm 2.
It should be noted that, in [2], the authors have proposed an alterna-

tive solution to take into account mode crossings and mode veerings in the
identification of the hyperparameters of a SCM. Their solution consists in
projecting the experimental mode shapes in the modal basis of the NCM
and in letting the eigenfrequencies unchanged. A similar procedure has re-
cently been proposed in [10].
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Algorithm 1: Algorithm for solving the Procruste problem.

Initialization :

[C] = [Φ̃
j
(θ)]T [Φ̃

j
(θ)] ;

[W ]: matrix of the (n− nj) eigenvectors of [C] ;

[A] = [[Φ̂exp,j] , [Φ̃
j
(θ)][W ]] ;

Loop :

for ℓ = 1, . . . , niter1 do

[P ] = [Φ̃
j
(θ)]T [A] ;

[U ][S][V ]T = [P ] (SVD) ;

[Q̃] = [U ][V ] ∈ OSt(n, n) ;

[Q1, Q2] = [Q̃], with [Q1] ∈ OSt(n, nj) and [Q2] ∈ OSt(n, n−nj) ;
[Qopt,j(θ)] = [Q1]

[A] = [Φ̂exp,j, [Φ̃
j
(θ)][Q2]] ;

Algorithm 2: Scaling external loop for the Procruste problem.

Initialization :

Scale the columns of [Φ̂exp,j] with respect to the first nj columns of

[Φ̃
j
(θ)] ;

Loop :

for ℓ = 1, . . . , niter2 do

Solve [Qopt,j(θ)] = argmin ‖ [Φ̃
j
(θ)] [Q]− [Φ̂exp,j] ‖F ;

[Φ̂
j
(θ)] = [Φ̃

j
(θ)][Qopt,j(θ)] ;

Scale the columns of [Φ̂exp,j] w.r.t. the columns of [Φ̂
j
(θ)] ;

3.3. Computational modal quantities as observations

For j = 1, . . . , nexp, the experimental ROM {[Φ̂exp,j], [K̂exp,j], [M̂ exp,j]}

has to be compared to the projected computational ROM, {[Φ̂
j
], [K̂j], [M̂j]},

calculated using the SCM. Since [M̂j] = [M̂ exp,j] = [Inj
], only the mode

shapes and the stiffness matrices have to be compared. Before proceeding
to the identification, it is convenient to represent the experimental modal
data and the corresponding computational modal quantities in an Euclidean
space. Such a representation can be achieved through logarithm maps [1].
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Concerning the modal basis, we define [Φ̂
obs,j

] such that

[Φ̂
obs,j

] = [Φ̂
j
]− [Φ̂exp,j] , (24)

and the corresponding experimental observation [Φ̂exp,obs,j] is defined by

[Φ̂exp,obs,,j] = [ 0 ] . (25)

Concerning the stiffness matrix, we define [K̂obs,j
logm] such that

[K̂obs,j
logm] = logm([K̂exp,j]−

1

2 [K̂j][K̂exp,j]−
1

2 ) , (26)

in which logm is the logarithm for matrices. The corresponding experimental
observation [K̂exp,obs,j

logm ] is such that

[K̂exp,obs,j
logm ] = [ 0 ] , (27)

Let nobs,j = (mj × nj + nj × (nj + 1)/2). We then introduce the random
observation vector, Wj, with values in R

nobs,j containing the mj × nj entries

of random matrix [Φ̂
obs,j

] and the nj×(nj+1)/2 entries of the upper triangular

part of random matrix [K̂obs,j
logm]. The corresponding experimental observation

vector is zero. For the observations, this representation has the advantage to
belong to Euclidean space R

nobs,j and therefore, the probability distribution
of the vector-valued random observation will be easier to estimate since its
support is not a complex manifold.

3.4. Identification of hyperparameter α

Hyperparameter α of the SCM is identified using the maximum likeli-
hood method and experimental modal data. Then the optimal values αopt

is solution of the following optimization problem

αopt = argmax
α∈C

nexp∑

j=1

log(p
Wj

(0;α)) , (28)

where p
Wj

(w;α) is the probability density function (pdf) of random vector
Wj. This pdf is estimated using the Monte Carlo simulation method [38]
and a multi-dimensional kernel density estimator (see [52]). As proposed
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in [47], a statistical reduction can be performed for random vector Wj in
order to reduce the statistical dimension of the random observation and then
to facilitate the estimation of its pdf. Furthermore, a good predictor of
αopt can be obtained by assuming a Gaussian pdf for random vector Wj.
Since random vector Wj is with values in R

nobs,j , such an assumption is
admissible. For the predictor, the optimization problem defined by Eq. (28)
is then replaced by the following one

L(α) =

nexp∑

j=1

{−nobs,j log(2 π)−
1

2
log(det([CW j(α)]))

−
1

2
wj(α)T [CW j(α)]−1wj(α)} , (29)

in which the mean value wj and the covariance matrix [CW j(α)] of random
vector Wj are estimated using the Monte Carlo simulation method. In high
dimension, the determinant of the covariance matrix can be calculated using
the eigenvalues {σj

k(α), k = 1, . . . , nobs,j} of the covariance matrix [CW j(α)].
In this case, the optimization problem defined by Eq. (29) can be rewritten
as

L(α) =

nexp∑

j=1

{−nobs,j log(2 π)−
1

2

nobs∑

k=1

log(σj
k(α))

−
1

2
wj(α)T [CW j(α)]−1wj(α)} . (30)

In general, the optimization problem defined by Eq. (28) (or by Eq. (29) is
non-convex and has to be solved using evolutionary algorithms and random
search algorithm (see [51, 17, 50] and, for example, [30] for an application to
model updating in structural dynamics).

4. Application

4.1. Industrial mechanical system and experimental modal data

We are interested in the dynamical behavior of a one-stage booster pump
used by Electricité de France (EDF) company in its thermal units (see Fig. 1).
This pump is made up of a diffuser and a volute, with axial suction and ver-
tical delivery, and is mounted on a metallic frame. It has been designed
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Figure 1: Industrial mechanical system.

forty years ago by Sulzer Pumps. An experimental modal analysis has been
carried out on two specimens of this pump located at two different thermal
units. Therefore, there are nexp = 2 experimental configurations (denoted
as Pump 1 and Pump 2) which are measured. There are slight differences
between Pump 1 and Pump 2 concerning the joints between the pumps and
their metallic frame. The pumps have been disconnected to the adjacent
piping before being equipped. The experimental meshes for the two pumps
are not the same and are represented in Fig. 2. Pump 1 and Pump 2 have
respectively been equipped with 55 and 113 triaxial accelerometers. There-
fore m1 = 165 and m2 = 339. An experimental modal analysis has been

Figure 2: Experimental meshes: Pump 1 (left) and pump 2 (right).

carried for each pump. For Pump 1, n1 = 6 modes have been identified
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with eigenfrequencies 76.8 Hz, 134.4 Hz, 162.0 Hz, 211.9 Hz, 233.4 Hz and
251.2 Hz. For Pump 2, n2 = 11 modes have been identified with eigenfre-
quencies 69.9 Hz, 84.6 Hz, 151.8 Hz, 160.6 Hz, 166.3 Hz, 167.8 Hz, 202.5 Hz,
224.6 Hz, 244.3 Hz, 252.1 Hz and 288.3 Hz. The first six mode shapes for
Pump 1 and Pump 2 are plotted in Figs. 3 and 4 respectively. In these

Figure 3: Pump 1: First six experimental mode shapes (Thick black line).

Figure 4: Pump 2: First six experimental mode shapes (Thick black line).

figures, it can be seen that, except for the first mode, it is not easy to make
a correspondence between the modes of Pump 1 and the modes of Pump 2.
This is due the variability of the configurations (as explained in the intro-
duction). For both Pump 1 and Pump 2, the experimental mode shapes are
not normalized with respect to the mass.

4.2. Construction of the stochastic computational model

4.2.1. Construction of the nominal computational model

The finite element mesh of the NCM is plotted in Fig. 5. The nominal
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Figure 5: Finite element mesh of the NCM.

finite element model is made up of 3D solid elements, Kirchhoff plate ele-
ments and spring elements. The assembled model has 488, 220 DOFs. The
uncertain model parameters of the NCM are the Young modulus ys of the
steel, the Young’s modulus yc of the cast iron, the thicknesses t1, t2 and t3
of the plates 1, 2 and 3 of the metallic frame (see Fig. 6) and the stiffnesses
k1, k2, k3 and k4 of the discrete springs normal to the metallic frame (see
Fig. 6). The NCM for Pump 1 and the NCM for Pump 2 are the same but
the updated NCM for these two pumps are different. The differences be-
tween the two updated NCM are relative to the values of some (but not all)
parameters that have been chosen as updating parameters. The values of the
parameters for the updated NCM related to the two pumps are reported in
Table 1. An infinite for a discrete spring means that this discrete spring has
been replaced by a direct coupling.

The uncertain model parameters are the eight parameters which have
been updated. Let h = (ys, yc, t1, t2, t3, k1, k2, k3, k4) be the vector of these
uncertain model parameters. For the updated NCM of Pump 1 and Pump 2,
the updated values of h are denoted by h1 and h2. For each updated NCM,
n = 20 modes are calculated . For h = h1, the first 6 eigenfrequencies are
76.4 Hz, 81.2 Hz, 143.1 Hz, 163.5 Hz, 185.5 Hz, 200.1 Hz and the first two
mode shapes φ1(h

1) and φ2(h
1) are plotted in Fig. 7. For Pump 1, the first

6 projected mode shapes are plotted in Fig. 8. For Pump 1, the MAC matrix
between the projected computed mode shapes of the updated NCM and the
experimental mode shapes is plotted in Fig. 9. For h = h2, the first 6 eigen-
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Figure 6: Metallic frame (bottom view).

Pump 1 Pump 2
Young’s modulus steel ys (Pa) 1.43× 1011 1.40× 1011

Young’s modulus cast iron yc (Pa) 8.2× 1010 8.0× 1010

Thickness t1 (m) 0.024 0.024
Thickness t2 (m) 0.015 0.015
Thickness t3 (m) 0.017 0.017
Stiffness k1 (N/m) ∞ 1.0× 109

Stiffness k2 (N/m) ∞ 1.0× 1010

Stiffness k3 (N/m) 1.0× 108 ∞
Stiffness k4 (N/m) 3.0× 108 1.0× 108

Table 1: Values of the parameters for updated NCM of Pump 1 and Pump 2.

frequencies are 78.6 Hz, 82.4 Hz, 140.7 Hz, 157.4 Hz, 181.6 Hz, 192.9 Hz and
the first 6 projected mode shapes are plotted in Fig. 10. For Pump 2, the
MAC matrix between the projected computation mode shapes of the updated
NCM and the experimental mode shapes is plotted in Fig. 11. It can be seen
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Figure 7: Mode shapes φ1(h
1) and φ2(h

1) for Pump 1.

Figure 8: First 6 projected mode shapes for Pump 1.

Figure 9: MAC matrix for the updated NCM of Pump 1.

for Pump 1 and Pump 2 that the MAC indices are low. Therefore, there
is no clear correspondence between the experimental modes and the modes
calculated with the updated NCM. The transformed modal bases [Φ̂1(h1)]

and [Φ̂2(h2)] are calculated using Eq. (21). The MAC matrix between the
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Figure 10: First 6 projected mode shapes for Pump 2.

Figure 11: MAC matrix for the updated NCM of Pump 2.

experimental modal basis [Φ̂
exp,1

] and the transformed computational modal

basis [Φ̂1(h1)] is plotted in Fig. 12 and the MAC matrix between the experi-

mental modal basis [Φ̂
exp,2

] and the transformed computational modal basis

[Φ̂2(h2)] is plotted in Fig. 13. In Figs. 12 and 13, it can be seen that the new
MAC matrix between the transformed modal bases of the updated NCM and
the experimental modal bases are good.

4.2.2. Construction of the stochastic computational model

The vector h is modeled by a random vectorH = (Ys, Yc, T1, T2, T3, K1, K2,
K3, K4). The Maximum Entropy principle has been used for constructing the
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Figure 12: MAC matrix for the updated NCM of Pump 1 after transformation of the mode
shapes.

Figure 13: MAC matrix for the updated NCM of Pump 2 after transformation of the mode
shapes.

probability distribution of H. Taking into account the available information,
it can be deduced that (1) all the components of H are independent random
variables; (2) positive-valued Young moduli Ys and Yc are Gamma random
variables parameterized by their mean values mYs

and mYc
, and by their
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coefficients of variation (standard deviation divided by the mean value) δYs

and δYc
; (3) positive-valued random thicknesses T1, T2 and T3 are uniform

positive-valued random variables parameterized by their mean values mT1
,

mT2
and mT3

, and by their coefficients of variation δT1
, δT2

and δT3
; (4)

positive-valued stiffnesses K1, K2, K3 and K4 are Gamma random variables
parameterized by their mean values mK1

, mK2
, mK3

and mK4
, and by their

coefficients of variation δK1
, δK2

, δK3
and δK4

. Then αpar = (mYs
, δYs

, mYc
,

δYs
, mT1

, δT1
, mT2

, δT2
, mT3

, δT3
, mK1

, δK1
, mK2

, δK2
, mK3

, δK3
, mK4

, δK4
)

has 18 components to be identified and α = (αpar,αmod) has 20 components
to be identified.

4.2.3. Identification of the optimal hyperparameter αopt.

The vector αopt is given by the optimization problem defined by Eq. (28)
which is solved using a genetic algorithm. For each value of α, the prob-
ability density functions p

W1
(w;α) and p

W2
(w;α) are estimated using 800

realizations of the observation vectors W1 and W2 calculated with the SCM.
The components of αopt

par are given in Table 2. The two components of αopt
mod

are δoptM = 0.52 and δoptK = 0.43. These optimal dispersions of the probability
distributions for model uncertainties are relatively high due to the experi-
mental variability and due to modeling errors introduced in the NCM. These
dispersions could be partly decreased by constructing a more accurate NCM.

Mean value Coefficient of variation
Young’s modulus steel Ys mYs

= 1.33× 1011 Pa δYs
= 0.2

Young’s modulus cast iron Yc mYc
= 7.57× 1010 Pa δYc

= 0.17
Thickness T1 mT1

= 0.013 m δT1
= 0.12

Thickness T2 mT2
= 0.011 m δT2

= 0.57
Thickness T3 mT3

= 0.01 m δT3
= 0.09

Stiffness K1 mK1
= 8.01× 108 N/m δK1

= 0.19
Stiffness K2 mK2

= 5.74× 109 N/m δK2
= 0.13

Stiffness K3 mK3
= 6.30× 107 N/m δK3

= 0.34
Stiffness K4 mK4

= 2.68× 108 N/m δK4
= 0.42

Table 2: Components of αopt
par.
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4.3. Validation of the results

For α = αopt, the marginal pdf of the first six eigenvalues of the matrices
[K̂1] and [K̂2] are shown in Figs. 14 and 15 respectively. It can be seen
in these figures that the first 5 experimental eigenvalues for Pump 1 and
Pump 2 are predicted by the SCM with a high probability level (very high
for Pump 1). The 6th experimental eigenvalue for Pump 1 and Pump 2 are
also within the interval of prediction of the SCM but with a lower probability
level.

For Pump 1, the mean value of the MAC matrix between the random

modal basis [Φ̃
1
] (before transformation) of the SCM and the experimental

modal basis [Φ̂exp,1] is plotted in Fig. 16, while for Pump 2, the mean value
of MAC matrix is plotted in Fig. 17. The comparison of Figs. 16 and 17 with
Figs. 9 and 11 shows that the randomness of the SCM introduces random
mode crossings and random mode veerings which modify the correspondence.
For Pump 1, the mean value of the MAC matrix between the random modal

basis [Φ̂
1
] (after transformation) of the SCM and the experimental modal

basis [Φ̂exp,1] is plotted in Fig. 18 while for Pump 2, the mean value of MAC
matrix is plotted in Fig. 19. In Figs. 18 and 19, it can be seen that the
random transformation of the random mode shapes of the SCM allows to
achieve a good correspondence between the random computational modes of
the SCM and the experimental modes.

5. Conclusion

A new methodology has been presented for the identification of a stochas-
tic computational model using experimental eigenfrequencies and mode shapes
with experimental variabilities. The model-parameter uncertainties and the
modeling errors are taken into account in the framework of a generalized
probabilistic approach of uncertainties. A transformation of the computa-
tional modal quantities is introduced in order to construct a correspondence
between the experimental modal data and the computational modal quanti-
ties. This method allows us to take into account mode crossings and mode
veerings that may occur. The methodology has been applied to the con-
struction a stochastic computational model representing a family of booster
pumps of thermal units. The first 5 experimental eigenvalues for Pump 1
and Pump 2 are predicted by the SCM with a high probability level.
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Figure 14: Probability density function for the first six eigenvalues of [K̂1]. Vertical lines:

corresponding experimental values (eigenvalues of [K̂exp,1]).

The dispersion of the probability distributions for model uncertainties
that have been identified are relatively high due to the experimental vari-
ability and due to modeling errors introduced in the NCM. These disper-
sions could be partly decreased by constructing a more accurate NCM with
a better representation of the bolted joints and the boundary conditions.
The experimental variabilities induced by the measurements errors have not
directly been modeled, but are indirectly taken into account by the proba-
bilistic model of model uncertainties. Therefore, in the present paper, this
experimental uncertainty is not quantified independently but is encompassed
within the model uncertainties which have been quantified.

The introduction of a proper stochastic model of measurement errors
which could be done by introducing additive random noises could also partly
decrease the values of the dispersions of model uncertainties which have been
identified, but in counter part, a stochastic model of such additive random
noises must be constructed and must experimentally be identified.

23



−2 0 2 4 6 8

x 10
5

0

1

2

3

4

5

6
x 10

−6

ei
ge

nv
al

ue
 1

pdf
0 2 4 6 8 10 12

x 10
5

0

0.5

1

1.5

2

2.5

3
x 10

−6

ei
ge

nv
al

ue
 2

pdf
0 0.5 1 1.5 2

x 10
6

0

0.5

1

1.5

2
x 10

−6

ei
ge

nv
al

ue
 3

pdf

0 0.5 1 1.5 2 2.5 3

x 10
6

0

0.5

1

1.5
x 10

−6

ei
ge

nv
al

ue
 4

pdf
0 1 2 3 4

x 10
6

0

0.2

0.4

0.6

0.8

1

1.2
x 10

−6

ei
ge

nv
al

ue
 5

pdf
0 1 2 3 4 5 6

x 10
6

0

1

2

3

4

5

6

7

8
x 10

−7

ei
ge

nv
al

ue
 6

pdf

Figure 15: Probability density function for the first six eigenvalues of [K̂2]. Vertical lines:

corresponding experimental values (eigenvalues of [K̂exp,2]).

Figure 16: For Pump 1, mean value of the MAC matrix between the random mode shapes
of the SCM and the experimental mode shapes before transformation.
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Figure 17: For Pump 2, mean value of the MAC matrix between the random mode shapes
of the SCM and the experimental mode shapes before transformation.

Figure 18: For Pump 1, mean value of the MAC matrix between the random mode shapes
of the SCM and the experimental mode shapes after transformation.
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