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Abstract This paper deals with the generation of seismic accelerogramswhich
are compatible with a given response spectrum and other design specifications.
The time sampling of the stochastic accelerogram yields a time series repre-
sented by a random vector in high dimension. The probability density function
of this random vector is constructed using the Maximum Entropy (MaxEnt)
principle under constraints defined by the available information (design spec-
ifications). In this paper, an adapted algorithm is proposed to identify the
Lagrange multipliers introduced in the MaxEnt principle to take into account
the constraints. This algorithm is based on (1) the minimization of an ap-
propriate convex functional and (2) the construction of the probability dis-
tribution defined as the invariant measure of an Itô Stochastic Differential
Equation in order to estimate the integrals in high dimension of the problem.
The constraints related to a seismic accelerogram are developed explicitly.
This methodology is validated through an application for which the available
information is related to the variance of each component of the random vec-
tor representing the accelerogram, statistics on the response spectrum, on the
Peak Ground Acceleration, on the Cumulative Absolute Velocity and on the
end-values for the velocity and for the displacement.
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1 Introduction

In the context of a seismic risk assessment, the calculation of the transient
response of a dynamical structure requires the specification of seismic loads
corresponding to specific site characteristics and specific scenarios. These seis-
mic loads can be constructed directly using recorded accelerograms (Katsanos
et al (2010); Mukherjee and Gupta (2002); Naeim et al (2004)). This method
has the advantage to keep all the features of a natural accelerogram and has to
be used whenever a sufficient number of seismic records is available for the site
where the structure is located and for the scenario considered by the engineers.
Several methods for the selection and the modification of recorded accelero-
grams have been proposed in the literature in order to extend the applicability
domain of the available recorded accelerograms of the world databases (Han-
cock et al (2006); Mukherjee and Gupta (2002); Naeim et al (2004); Gu and
Wen (2007)). In Zentner and Poirion (2012), the authors use a Karhunen-Loève
representation to extend a database. This method allows to generate new ac-
celerograms which have the same natural features as the accelerograms from
which the Karhunen-Loève representation has been constructed. If no recorded
accelerogram corresponding to the studied case is available, then synthetic ac-
celerograms have to be generated in order to perform the seismic transient
analysis of the structure. Due to the randomness of seismic signals, these syn-
thetic accelerograms are simulated as realizations of stochastic processes. A
large amount of simulation methods have been proposed in the literature. Most
of these methods concern the simulation of trajectories of stationary (see for in-
stance Ahmadi (1979); Iyengar and Rao (1979); Preumont (1980); Shrinkhande
and Gupta (1996)) or non-stationary (in amplitude Spanos and Loli (1985);
Giaralis and Spanos (2012) and in frequency Preumont (1985); Sabetta and
Pugliese (1996); Razaeian and Der Kiureghian (2008); Cacciola (2010); Cac-
ciola and Zentner (2012)) Gaussian stochastic processes which are compatible
with a response spectrum. Indeed, most of the regulation codes such as the
Eurocode 8 (CEN (2003)) only imposes compatibility of the mean value of
the velocity response spectrum with the response spectrum which depends
on the peak ground acceleration, soil conditions, etc. In Lin and Ghaboussi
(2001), the authors introduce stochastic neural networks (for which learning is
done using recorded accelerograms) to simulate spectrum-compatible accelero-
grams. In Giaralis and Spanos (2009), the authors propose a wavelet-based
method in order to improve the matching with the target design spectrum.
The large quantity of methods proposed in the literature is mainly due to
the fact that the solution of the problem consisting in the construction of a
centered stochastic process for which the mean velocity response spectrum
is equal to a target value is not unique. The Gaussian assumption is often
used for controlling the frequency content of the accelerograms but is not
imposed by the regulation codes. The Maximum Entropy (MaxEnt) princi-
ple (Shannon (1948); Jaynes (1954); Kapur and Kevasan (1992)) is a pow-
erful method which allows a probability distribution of a random vector to
be constructed under some constraints defined by the available information.
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A great advantage of this method is that, if it exists, the solution is unique.
This method has recently been applied in Soize (2010) for the generation of
spectrum-compatible accelerograms as trajectories of a non-stationary non-
Gaussian centered stochastic process represented by a high-dimension random
vector for which the probability density function (pdf) is constructed using
the MaxEnt principle under constraints related to (1) the mean value, (2) the
variance of the components and (3) the mean value of the velocity response
spectrum. The work presented in Soize (2010) was developed in the general
context of the generation of any accelerograms compatible with a given veloc-
ity response spectrum applied to an equipment or a secondary subsystem and
was not specific to a seismic accelerogram.

The methodologies referenced above are mainly focussed on the response
spectrum compatibility (which is the main constraint in most of the regula-
tion codes). The objective of this paper is to take into account additional con-
straints related to (1) some features of natural seismic accelerograms and (2)
some accelerogram characteristics used in the earthquake engineering commu-
nity in order to describe the strong ground motion. To achieve this objective,
the methodology proposed in Soize (2010) is extended to take into account,
if needed, constraints related to (1) the end-values for the velocity and the
displacement, (2) the Peak Ground Acceleration (PGA), (3) the Peak Ground
Velocity (PGV) (4) the envelop of the random Velocity Response Spectrum
(VRS), (5) the Cumulative Absolute Velocity (CAV) and (6) the Arias In-
tensity (AI). The probability density function is constructed using the Max-
Ent principle and a generator of independent realization adapted to the high
stochastic dimension of an accelerogram is proposed. Furthermore an adapted
method for the identification of the Lagrange multipliers is proposed in this
paper. It should be noted that the methodology proposed for the generation
of accelerograms is very versatile and can be adapted, if necessary, for any
specific situation of seismic risk assessment.

In Section 2, the MaxEnt principle is used to construct the pdf of the accel-
eration random vector under constraints defined by general available informa-
tion. In Section 3, the available information specific to a seismic accelerogram
is constructed. Finally, Section 4 is devoted to the application of the method-
ology for several cases.

2 Construction of the probability distribution of the sampled

seismic accelerograms

The MaxEnt principle is used to construct the pdf of the random vector corre-
sponding to the time sampling of the stochastic process (modeling the sampled
seismic accelerograms) under the constraints defined by the available informa-
tion. In this section, we summarize the general methodology for the construc-
tion of the pdf of such a random vector. The application of the methodology to
specific constraints associated with seismic accelerograms will be presented in
Section 3. The random acceleration of the soil is modeled by a non-Gaussian
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second-order centered stochastic process {A(t), t ∈ [0, T ]}. A time sampling
with tj = j ∆t, j = 1, . . . , N and T = N × ∆t, of this stochastic process is
introduced yielding a time series {A1, . . . , AN} with Aj = A(tj) and for which
the random vector A = (A1, . . . , AN ) is associated with. Finally, we have to
construct the probability distribution of random vector A.

2.1 Maximum entropy principle

In this paper, the upper case boldface letterA corresponds to a random vector.
The probability density function of random vector A is denoted by pA(a)
(or by pA(a1, . . . , aN ) and is such that the probability of the event, {A1 ≤
a∗1, ..., AN ≤ a∗N}, is written (cumulative distribution function) as

Proba{A1 ≤ a∗1, ..., AN ≤ a∗N} =

∫ a∗

1

−∞

. . .

∫ a∗

N

−∞

pA(a1, . . . , aN) da1 . . . daN ,

in which the volume element da1 . . . daN is also denoted by da. The lower
case boldface letter a = (a1, . . . , aN) will denote the deterministic vector
(with deterministic components a1, . . . , aN ) associated with random vector
A = (A1, . . . , AN ) (with random components A1, . . . , AN ) and will correspond
to an integration variable associated with the random vector A or will corre-
spond to any deterministic value associated with A. For instance, if E{g(A)}
denotes the mathematical expectation of the random variable g(A) in which
g is a deterministic real function, this function will be denoted as g(a). It
can also be said that the deterministic vector a = (a1, . . . , aN ) represents any
possible value of random vector A = (A1, . . . , AN ) that is to say, any possible
value of the time sampling A = (A(t1), . . . , A(tN )) of the stochastic process
{A(t), t ∈ [0, T ]} modeling the soil acceleration.

The objective of this section is to construct the pdf pA(a) of random vector
A. This construction is performed by using the MaxEnt principle under the
constraints defined by the available information related to random vector A.
The available information is written as

E{g(A)} = f , (1)

in which g(a) = (g1(a), . . . , gµ(a)) is a given function which is defined herein
as the information function and where f = (f1, . . . , fµ) is a given vector (or
target). Equation (1) can be rewritten as

∫

RN

g(a) pA(a) da = f . (2)

An additional constraint related to the normalization of the pdf pA is intro-
duced such that

∫

RN

pA(a) da = 1 . (3)
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The entropy of pdf pA is defined by

S(pA) = −
∫

RN

pA(a) log(pA(a)) da , (4)

where log is the natural logarithm. This functional measures the related un-
certainty of pA. Let C be the set of all the possible pdfs of random vector
A, satisfying the constraints defined by Eqs. (2) and (3). Then the MaxEnt
principle consists in constructing the pdf pA as the unique pdf in C which
maximizes entropy S(pA). Then by introducing a positive Lagrange multiplier
λ0 associated with Eq. (3) and a Lagrange multiplier λ = (λ1, . . . , λµ) asso-
ciated with Eq. (2) and belonging to an admissible set Lµ, it can be shown
(see Jaynes (1954); Kapur and Kevasan (1992)) that the MaxEnt solution, if
it exists, is defined by

pA(a) = csol0 exp(−〈λsol, g(a)〉) , (5)

in which csol0 = exp(−λsol
0 ), 〈x,y〉 = x1y1+ . . .+xµyµ and where λsol

0 and λsol

are respectively the values of λ0 and λ for which Eqs. (2) and (3) are satisfied.
Using Eqs. (3) and (5), the parameter csol0 can be rewritten as a function of
λsol and Eq. (6) can be rewritten as

pA(a) = c0(λ
sol) exp(−〈λsol, g(a)〉) , (6)

in which λ
sol is such that Eq. (2) is satisfied and where c0(λ) is defined by

c0(λ) =

{
∫

RN

exp(−〈λ, g(a)〉) da
}−1

. (7)

At this stage, a parametric MaxEnt pdf pA has been constructed but the
vector of the Lagrange multipliers λsol has not been calculated yet. This is the
objective of the next section.

2.2 Calculation of the Lagrange multipliers

In this section, we propose a methodology for the calculation of λsol. We first
present the general methodology for the calculation of this vector. Then the
Gaussian particular case is presented for the case for which the gradient and
the Hessian of the objective function can explicitly be calculated. Note that the
Gaussian case will be useful (1) either if the available information consists only
of linear or affine transformations of statistical second-order moments (2) or,
for initializing the value of the Lagrange multipliers in the iterative algorithm
which will be presented for the non-Gaussian case. Finally, for the general
non-Gaussian case, we will present a generator of independent realizations of
random vector A, which is adapted to the high dimension.
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2.2.1 Objective function and methododology

Using Eqs. (6) and (2), vector λsol is the solution in λ of the following nonlinear
algebraic equation,

∫

RN

g(a) c0(λ) exp(−〈λ, g(a)〉) = f . (8)

Instead of directly solving Eq. (8), a more convenient method to calculate
vector λsol consists in solving the following optimization problem (see Agmon
et al (1979); Golan et al (1996)),

λsol = arg min
λ∈Lµ⊂Rµ

Γ (λ) , (9)

in which the objective function Γ is written as

Γ (λ) = 〈λ,f〉 − log(c0(λ)) . (10)

It should be noted that the great advantage of such a formulation is that the
introduced objective function Γ does not depend on the Lagrange multiplier
λ0 associated with the constant of normalization. Let {Aλ , λ ∈ Lµ} be a
family of random variables for which the pdf is defined, for all λ in Lµ, by

pAλ
(a) = c0(λ) exp(−〈λ, g(a)〉) . (11)

We then have, A = Aλsol . The gradient vector ∇Γ (λ) and the Hessian matrix
[H(λ)] of function Γ (λ) are written as

∇Γ (λ) = f − E{g(Aλ)} , (12)

[H(λ)] = E{g(Aλ)g(Aλ)
T } − E{g(Aλ)}E{g(Aλ)}T , (13)

in which uT is the transpose of u. It can be noted that the Hessian matrix
[H(λ)] is the covariance matrix of the random vector g(Aλ). It is assumed that
the constraints defined by Eq. (2) are algebraically independent. Consequently,
the Hessian matrix is positive definite and therefore, function Γ is strictly
convex and reaches its minimum for λsol which is such that ∇Γ (λ) = 0 for
λ = λsol. It can then be deduced that the minimum of function Γ corresponds
to the solution of Eq. (8). The optimization problem defined by Eq. (9) can be
solved using any minimization algorithm. The Newton iterative method can be
applied to the increasing function ∇Γ for searching λsol such that ∇Γ (λsol) =
0. This iterative method is not unconditionally convergent. Consequently, an
under-relaxation is introduced and the iterative algorithm is written as

λi+1 = λi − α [H(λi)]−1
∇Γ (λi) , (14)

in which α belongs to ]0 , 1] in order to ensure the convergence towards the
solution λsol.
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2.2.2 Gaussian case

In this section, it is assumed that the available information leads us to a Gaus-
sian second-order centered random vectorA. This particular case is interesting
for calculating the covariance matrix of the Gaussian centered random vector
A when the µ constraints are defined by µ linear (or affine) functions of the
second-order moments. In the case of a seismic accelerogram, this type of in-
formation is useful to define the time envelop of the stochastic process and
also to control the velocity and displacement traces. Since these constraints
must be algebraically independent, it is assumed that 1 < µ ≤ N(N + 1)/2.
The available information is then defined as follows,

E{A} = 0 , (15)

E{1
2
〈A, [Kj ]A〉} = hj , j = 1, . . . , µ , (16)

in which [K1], . . . , [Kµ] are µ symmetric (N × N) real matrices which are
assumed to be algebraically independent. In this case, it can be shown that
the Lagrange multipliers vector related to the constraint defined by Eq. (15)
is zero and therefore the MaxEnt pdf is written as

pAλ
(a;λ) = c0(λ) exp(−

1

2
〈a, [Kλ]a〉) , (17)

in which [Kλ] =
∑µ

j=1 λj [Kj ] is assumed to be positive definite for all λ in Lµ

and where c0(λ) is the normalization constant such that

c0(λ) = (2π)−
N
2

√

det[Kλ] . (18)

Equations (17) and (18) show that Aλ is a real centered Gaussian random
vector for which the covariance matrix is [K(λ)]−1. For this Gaussian case,
Γ (λ), ∇Γ (λ) and [H(λ)] can explicitly be derived. The use of Eqs. (10) and
(18) yields

Γ (λ) = 〈λ,h〉+ N

2
log(2π)− 1

2
log(det([Kλ]) . (19)

in which h = (h1, . . . , hµ). The gradient vector is then written as

(∇Γ (λ))i = hi −
1

2
tr([Kλ]

−1[Ki]) , (20)

in which tr is the trace for matrices. The Hessian matrix is written as

[H(λ)]ij =
1

2
tr([Kλ]

−1[Ki][Kλ]
−1[Kj]) . (21)

Finally, Eq. (14) allows λsol to be calculated iteratively.
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2.2.3 General non-Gaussian case

In general, for the non-Gaussian case, the N -dimensional integrals appearing
in Eqs. (12) and (13) cannot explicitly (such as in the Gaussian case) be cal-
culated and cannot be discretized for large value of N . In this paper, these
integrals are estimated using the Monte Carlo simulation method (Rubinstein
and Kroese (2008)) for which the convergence rate is independent of N and
for which independent realizations of random vector Aλ are generated using
an algorithm belonging to the Markov Chain Monte Carlo (MCMC) which is
adapted to the high stochastic dimension, as proposed in Soize (2008, 2010). In
this Section, we first introduce a generator of independent realizations adapted
to random vectors in high-dimension for which the pdf is constructed using
the MaxEnt principle. Then, the integrals in Eqs. (12) and (13) are estimated.
Finally, an algorithm for the calculation of vector λsol of the Lagrange multi-
pliers is presented.

i - Generator of independent realizations

The objective of this section is to provide a generator of independent real-
izations of the random variable Aλ for all λ fixed in Lµ. A generator of in-
dependent realizations for MaxEnt distributions has been proposed in Soize
(2008, 2010) in the class of the MCMC algorithms. This methodology consists
in constructing the pdf of random vector Aλ as the pdf pAλ

associated with
the stationary solution of a second-order nonlinear Itô Stochastic Differential
Equation (ISDE). The advantages of this generator compared to the other
MCMC generators such as the Metropolis-Hastings algorithm (see Hastings
(1970)) are: (1) The mathematical results concerning the existence and the
uniqueness of an invariant measure can be used, (2) a damping matrix can be
introduced in order to rapidly reach the invariant measure and (3) there is no
need to introduce a proposal distribution which can induce difficulties in high
dimension. Below, we directly introduce the generator of independent realiza-
tions using a discretization of the ISDE. Details concerning the construction
of this generator can be found in Soize (2008, 2010).

As proposed in Soize (2008, 2010), the ISDE is discretized using a semi-
implicit integration scheme in order to avoid the resolution of an algebraic
nonlinear equation at each step while allowing significantly increase of the
time step compared to a purely explicit scheme. We assume that function
g, introduced in Eq. (1) and defining the available information, is written as
g(a) = (gL(a), gNL(a)) in which gNL = ({gNL}1, . . . , {gNL}µNL

) is a nonlinear
function and where gL = ({gL}1, . . . , {gL}µL

) is a quadratic function whose
components are such that

{gL(a)}i =
1

2
〈a, [Ki]a〉 , (22)
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in which [K1], . . . , [KµL
] are µL symmetric (N × N) real matrices which are

assumed to be algebraically independent. Let Φ(a,λ) be a potential function
in a defined by

Φ(a,λ) = 〈λ, g(a)〉 . (23)

Let us introduce the decomposition λ = (λL,λNL) ∈ Lµ = LµL
× LµNL

of
the Lagrange multipliers. Then for all λ ∈ Lµ, the potential function can be
written as

Φ(a,λ) =
1

2
〈a, [KλL

]a〉+ ΦNL(a,λNL) , (24)

in which the symmetric matrix [KλL
] =

∑µL

j=1 {λL}j[Kj ] is assumed to be posi-

tive definite for all λL in LµL
and where ΦNL(a,λNL) =

∑µNL

j=1 {λNL}j{gNL(a)}j .
Therefore, the gradient of the potential function with respect to a is written
as

∇aΦ(a,λ) = [KλL
]a+∇aΦNL(a,λNL) , (25)

in which ∇aΦNL(a,λNL) =
∑µNL

j=1 {λNL}j∇a{gNL(a)}j. Thus the gradient
function ∇aΦ(a,λ) is decomposed into a linear part with respect to a and a
nonlinear part.

Let ∆rλ be the integration step size related to the discretization of the
ISDE. Let ∆W 1, . . . , ∆WM be M mutually independent second-order Gaus-
sian centered random vector with covariance matrix equal to ∆rλ [IN ]. We
introduce the time series {(Uk,V k), k = 1, . . . ,M} with Uk = (Uk

1 , . . . , U
k
N )

and V k = (V k
1 , . . . , V k

N ). The corresponding initial conditions (U0,V 0) are
assumed to be second-order random vectors which are independent of time
series {(Uk,V k), k = 1, . . . ,M}.

For ℓ = 1, . . . , ns, using ns independent realizations {∆W k+1,ℓ, k = 1, . . . ,
M − 1} of the family of random vectors {∆W k+1, k = 1, . . . ,M − 1} and ns

independent realizations (U ℓ
0,V

ℓ
0) of the random initial conditions (U0,V 0)

(which are also independent of {∆W k+1, k = 1, . . . ,M−1}), then the ns inde-
pendent realizations UM,ℓ of the vector random UM are generated by solving
ns times, for k = 1, . . . ,M − 1, the following equations (which correspond to
the discretization of the ISDE, see Soize (2008))

[Eλ]V k+1,ℓ = [Bλ]V
k,ℓ −∆rλ[KλL

]Uk,ℓ +∆rλL
k,ℓ
NL + [Sλ]∆W k+1,ℓ ,

Uk+1,ℓ = Uk,ℓ + 1
2 ∆rλ (V k+1,ℓ + V k,ℓ) ,

U1,ℓ = U ℓ
0 , V 1,ℓ = V ℓ

0 .

(26)

in which [Eλ] = [IN ]+ 1
4 ∆rλ [Dλ]+

1
4 ∆r2

λ
[KλL

] and [Bλ] = [IN ]− 1
4 ∆rλ [Dλ]−

1
4 ∆r2

λ
[KλL

] where [IN ] is the (N × N) identity matrix and where [Dλ] is a
symmetric positive-definite damping matrix and the lower triangular matrix
[Sλ] is such that [Dλ] = [Sλ][Sλ]

T . The vector Lk
NL is defined by Lk

NL =
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−{∇aΦNL(a,λNL)}a=Uk . If the gradient function ∇aΦNL(a,λNL) cannot ex-
plicitly be calculated, then Lk

NL is calculated using a finite difference approx-
imation of ∇aΦNL(a,λNL).

Then, if M is sufficiently large, the ns independent realizations of the
random vector Aλ are constructed such that Aℓ

λ ≃ UM,ℓ for ℓ = 1, . . . , ns.
Concerning the initial conditions, the more the probability distribution of the
initial conditions is close to the invariant measure, the shorter is the transient
response. Finally, the choice of the pdf pU0,V 0

for the random vector of the
initial condition (U0,V 0) is discussed later.

ii - Estimation of the mathematical expectations

The mean value E{g(Aλ)} and the correlation matrix E{g(Aλ)g(Aλ)
T } are

estimated using the classical statistical estimators,

E{g(Aλ)} ≃ 1

ns

ns
∑

ℓ=1

g(Aℓ
λ) , (27)

E{g(Aλ)g(Aλ)
T } ≃ 1

ns

ns
∑

ℓ=1

g(Aℓ
λ)g(A

ℓ
λ)

T . (28)

As previously explained, we need not to calculate the normalization constant
c0(λ) with the proposed algorithm.

iii - Implementation of the iterative algorithm for the calculation of the La-

grange multipliers

Concerning the initialization of the algorithm, an initial value λinit of λ
has to be provided in Lµ. A pdf of the random vector (U0,init,V 0,init) cor-
responding to the random initial condition (U0,V 0) for λ = λinit has to be
provided too. Concerning V 0,init, it can be proven (see Soize (2008)) that for

M sufficiently large, V M ∼ N (0, [In]). Therefore the pdf of V 0,init is cho-
sen as the normalized Gaussian distribution, V 0,init ∼ N (0, [In]). Concerning
U0,init, if we set λNL,init = 0, then Aλinit

is a Gaussian centered random vector
for which the covariance matrix is [KλL,init

]−1. Therefore the pdf of U0,init is
chosen such that U0,init ∼ N (0, [KλL,init

]−1), and the initial value λL,init can
be identified using the methodology developed in Section 2.2.2 devoted to the
Gaussian case. Then λNL,init must be chosen such that (λL,init,λNL,init) is in
Lµ.

At each iteration of the algorithm, the calculation of λi+1 given λi requires
the calculation of the gradient and the Hessian for λ

i. These quantities are
estimated solving the ISDE with the pdf of the random initial condition which
is chosen as the pdf of the invariant measure constructed for λi−1 for which
independent realizations are known. The algorithm for the identification of the
Lagrange multipliers is summarized in Table 1.
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Table 1 Identification of the Lagrange multipliers.

INITIALIZATION:

i = 1 ;
λi = λinit ;
error(i) = +∞ ;
for ℓ = 1, . . . , ns do

U ℓ
0 = U ℓ

0,init ;

Generate V ℓ
0 ∼ N (0, [In]) ;

LOOP:

while error(i) > ǫ do

for ℓ = 1, . . . , ns do

U1,ℓ ← Uℓ
0 ;

V 1,ℓ ← V ℓ
0 ;

Solve the ISDE → (UM,ℓ,V M,ℓ) ;
Aℓ

λi ← UM,ℓ ;

Uℓ
0 ← UM,ℓ V ℓ

0 ← V M,ℓ ;

Estimate E{g(A
λi)} ≃ (1/ns)

∑ns
ℓ=1 g(A

ℓ
λi );

Estimate E{g(A
λi)g(Aλi )T } ≃ (1/ns)

∑ns
ℓ=1 g(A

ℓ
λi)g(A

ℓ
λi )

T ;

Estimate ∇Γ (λi) = f − E{g(A
λi)} ;

Estimate [H(λi)] = E{g(A
λi)g(Aλi)T } − E{g(A

λi )}E{g(Aλi )}T ;
Estimate error(i+ 1) = ‖∇Γ (λi)‖ / ‖f‖ ;
λi+1 = λi − [H(λi)]−1 ∇Γ (λi) ;
i← i+ 1 ;

It should be noted that the updating of vector λ is sequential but for each
value of λ, the ns Monte Carlo loops can be calculated on parallel processors.

3 Examples of information related to seismic accelerograms

In this section, some examples of information related to a seismic accelerogram
is presented. This list is not exhaustive and can be completed if necessary.
For each part of available information, the information function g(a) and its
gradient, which are necessary for the algorithm introduced in Section 2.2.3 are
specified in Appendix A.

3.1 Mean value

The seismic accelerogram is modeled by a centered stochastic process. There-
fore the vector A has to be centered. We then have the constraint

E{A} = 0 . (29)
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3.2 Variance of the components

This constraint allows the envelop of the accelerogram to be specified and
therefore the strong motion duration to be fixed. Since random vector must
be centered, it is equivalent to impose the variance of the components or their
second-order moments. For j = {1, . . . , N}, these constraints are defined by

E{A2
j} = σ2

j < +∞ . (30)

3.3 Variance of the end-velocity and the end-displacement

The objective of this constraint is to control the end-velocity and the end-
displacement which are assumed to be zero. Usually, this control is carried out
using an adapted filtering to perform a correction of recorded or simulated
accelerograms (see for instance Spanos and Loli (1985); Boore and Boomer
(2005)). In this paper, the method proposed allows to directly take this cor-
rection into account in the construction of the pdf. Let V (t) and D(t) be the
velocity and the displacement stochastic processes indexed by [0 , T ]. Assuming
that V (0) = D(0) = 0 almost surely, it can easily be proven that

V (t) =

∫ t

0

A(τ) dτ , (31)

D(t) =

∫ t

0

V (τ) dτ , (32)

in which {A(t), t ∈ [0, T ]} is the acceleration stochastic process. Performing
an integration by parts in the right-hand side of Eq. (32) and using Eq. (31)
yield,

D(t) =

∫ t

0

(t− τ)A(τ) dτ . (33)

Using the time sampling tj = j ∆t for j = 1, . . . , N and the corresponding
sampling Aj = A(tj), the following discretization of Eqs. (31) and (33) are
then introduced,

I(1)n (A) = V (tn) ≃ ∆t

n
∑

j=1

Aj , (34)

I(2)n (A) = D(tn) ≃ (∆t)2
n
∑

j=1

(n− j + 1)Aj , (35)

in which A = (A1, . . . , AN ). The zero end-velocity, I
(1)
N (A) = V (tN ) and

the zero end-displacement, I
(2)
N (A) = D(tN ), are then specified in writing
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I
(1)
N (A) = 0 and I

(2)
N (A) = 0. These properties should be satisfied almost

surely, which means that all the simulated trajectories of the acceleration
stochastic process should satisfy this property. Three approaches could be
used to take into account these almost sure properties through a constraint
defined by Eq. (1). The first one would consist in performing a change of
variable in order to impose the constraints related to the end-values, but the
entropy defined in Eq. (4) is not invariant when operating a change of variable
(see Kapur and Kevasan (1992)). The second one would consist in imposing
this constraint in probability but would require to introduce a regularization.
The third one, which is the one adopted in this paper, consists in imposing the
constraint in the mean-square sense and not almost surely. Since random vector

A is centered, then random variables I
(1)
N (A) and I

(2)
N (A) are also centered.

We then introduce the following constraint,

E{(I(1)N (A))2} = 0 , E{(I(2)N (A))2} = 0 , (36)

which shows, using the Tchebychev inequality (DeGroot and Schervish (2011)),

that I
(1)
N (A) and I

(2)
N (A) converge to 0 in probability.

3.4 Mean value of the random VRS

For 0 < ωmin < ω < ωmax and 0 < ξmin < ξ < ξmax < 1, the random VRS
s(ω, ξ;A) of stochastic process {A(t), t ∈ [0, T ]} is defined by Clough and
Penzien (1975)

s(ω, ξ;A) = ω max
t∈[0,T ]

|y(t;ω, ξ, A)| , (37)

in which the stochastic process {y(t;ω, ξ, A), t ∈ [0, T ]} is defined by

y(t;ω, ξ, A) =

∫ t

0

h(t− τ ;ω, ξ)A(τ) dτ , (38)

where

h(t;ω, ξ) = −1l [0,+∞[ (t)
1

ω
√

1− ξ2
exp{−ξ ω t} sin{ω

√

1− ξ2 t} , (39)

in which the function 1l [0,+∞[ (t) is equal to 1 if t ∈ [0,+∞[ and is equal to
0 otherwise. In Eq. (39), h(t;ω, ξ) is the impulse response function of a single
degree of freedom oscillator with natural frequency ω and damping ratio ξ.
Let κω be the positive integer number of sampling points {ω1, . . . , ωκω

} of the
frequency (pulsation) interval [ωmin, ωmax], such that ωκω

< π/∆t. Similarly,
let κξ be the positive integer number of sampling points {ξ1, . . . , ξκξ

} of the
damping rate interval [ξmin, ξmax]. Let be κ = κω × κξ. The discretization of
Eqs. (37), (38) and (39) yields the random VRS vector S = s(A) in which
s = (s1, . . . , sκ) is a nonlinear mapping such that

sj(a) = s(ω, ξ,a) for (ω, ξ)j in {ω1, . . . , ωκω
} × {ξ1, . . . , ξκξ

}, (40)
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in which

s(ω, ξ,a) = ωmax{|y1(ω, ξ,a)|, . . . , |yN(ω, ξ,a)|} , (41)

with

yi(ω, ξ,a) = {[B(ω, ξ)]a}i , (42)

and where [B(ω, ξ)] is a (N ×N) real matrix defined by

[B(ω, ξ)]ij = − ∆t

ω
√

1− ξ2
exp{−(i−j)ξω∆t} sin{(i−j)ω

√

1− ξ2 ∆t} . (43)

The available information related to the mean value of the random VRS is
defined, for all j in {1, . . . , κ}, by

E{sj(A)} = sj , (44)

where s = (s1, . . . , sκ) is the mean VRS which is chosen as the target.

3.5 Variability of the random VRS

The constraint defined in Section 3.4 which concerns the mean value of the
random VRS does not allow us to control the statistical fluctuations of the
random VRS around its mean value. In this section, the variability of the
randomVRS is controlled by introducing a constraint related to the probability
that the random VRS belongs to a region delimited by two given envelops.
The VRS upper envelope is defined by the vector sup = (sup1 , . . . , supκ ) and the
VRS lower envelope is defined by the vector slow = (slow1 , . . . , slowκ ). We then
introduce the following constraint

P ({slow1 < s1(A) < sup1 , . . . , slowκ < sκ(A) < supκ }) = p0 , (45)

which can be rewritten as

E{
κ
∏

j=1

1l [slowj ,s
up

j ] (sj(A))} = p0 . (46)

The indicator functions x 7→ 1l [slowj ,s
up

j ] (x) which are not differentiable are

regularized by introducing the approximation x 7→ 1lreg
[slowj ,s

up

j ]
(x) defined by

1lreg
[slowj ,s

up

j ]
(x) =

1

2
(tanh(

x − slowj

ǫ
)− tanh(

x− supj
ǫ

)) , (47)

in which 0 < ǫ ≪ 1 and for which the derivative with respect to x, denoted by
δreg(x), is such that

δreg(x) =
d

dx
1lreg
[slowj ,s

up

j ]
(x) =

1

2 ǫ
(tanh2(

x− supj
ǫ

)− tanh2(
x− slowj

ǫ
)) . (48)

The constraint defined by Eq. (46) is approximated by

E{
κ
∏

j=1

1lreg
[slowj ,s

up

j ]
(sj(A))} = p0 . (49)
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3.6 Mean value of the random PGA and mean value of the random PGV

The PGA characterizes the maximum amplitude of the accelerogram. The
random PGA, related to acceleration process {A(t), t ∈ [0, T ]}, is defined by

PGA(A) = max
t∈[0,T ]

|A(t)| . (50)

In the regulation codes, this value is used to construct the target VRS. Never-
theless, even if the mean VRS of the simulated accelerogramsmatches perfectly
the target VRS, the mean PGA of the simulated accelerograms does not match
the PGA which has been used to construct the target VRS. In this section,
we propose to enforce this matching. Using the time sampling of Eq. (50), the
following constraint is introduced,

E{max{|A1|, . . . , |AN |}} = PGA , (51)

in which PGA is the target value for the mean value of the PGA.

Concerning the random PGV, which is defined by PGV(A) = max{|V (t)|, t ∈
[0, T ]}, its mean value is controlled by imposing the following constraint

E{max{|I(1)1 (A)|, . . . , |I(1)N (A)|}} = PGV , (52)

in which PGV is the target value for the mean value of the PGV and where

I
(1)
j (A) is defined by Eq. (34).

3.7 Mean value of the random CAV

The random CAV (EPRI (1991)) is defined as the integral of the absolute
value of the random acceleration over time range [0, T ],

CAV(A) =

∫ T

0

|A(τ)|dτ . (53)

The CAV is usually used for the risk assessment of nuclear power-plants. Using
a discretization of Eq. (53), the corresponding constraint is introduced,

E{∆t

N
∑

j=1

|Aj |} = CAV , (54)

in which CAV is the target value for the mean value of the random CAV.
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3.8 Mean value of the random AI

The random AI is defined (up to a multiplicative constant) as the integral of
the square of the random acceleration over time range [0, T ],

AI(A) =
π

2 g

∫ T

0

A2(τ)dτ . (55)

where g is the acceleration of gravity. The time discretization of Eq. (55) yields
the following constraint,

E{π∆t

2 g

N
∑

j=1

A2
j} = AI , (56)

in which AI is the target value for the mean value of the random AI.

3.9 Remarks

(1) It should be noted that the above list of constraints defined by the avail-
able information is not complete with respect to all the features of a natural
accelerogram. As it will be seen for the application presented in Section 4,
with such constraints, the generated accelerograms are not perfectly natural,
but it is recalled that the main objective of the methodology proposed is to
generate accelerograms which take into account the constraints imposed by
regulation codes and/or by earthquake engineering. If necessary, the list of the
constraints defined by the available information (given below) can be com-
pleted in order to take into account other features of a natural accelerogram
such as a nonstationary phase, the zero-crossings of the acceleration, velocity
and displacement, and so on.

(2) The constraint defined by Eq. (30) related to the mean AI is a linear
combination of the constraint defined by Eq. (56) related to the variance of
the components. As a consequence, if the constraints related to the variance
of the components have already been taken into, the constraint related the AI
is redundant and should not be taken into account in order to guaranty the
uniqueness of the MaxEnt solution.

(3) All the information functions related to the constraints developed in
Sections 3.2 to 3.8 are even functions in a. Therefore, it can be shown that, if
the available information concerns the mean value and additional constraints
among those developed in Sections 3.2 to 3.8, then the Lagrange multipliers
related to the mean value constraint are zero. In this case, the constraint
related to the mean value can be omitted.

(4) Concerning the PGA, the PGV, the CAV and the AI, only constraints
related to the mean value are developed in Sections 3.6 to 3.8. Additional
constraints related to other statistics of these functions such as the variances
and/or covariances could also be developed and be taken into account.
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(5) As it can be seen in Appendix A, most information functions related
to the constraints developed above are nonquadratic functions yielding a non-
Gaussian pdf for random vector A. The resulting pdf can be very complex
and an adapted algorithm such as the one proposed in Section 2.2.3 is needed.
It should also be noted that the classical methods based on a linear filtering
of a Gaussian process are less time consuming than the proposed method
but allows only the mean value of the VRS to be specified. The methodology
proposed here allows a wide range of additional constraints to be taken into
account in the construction of the pdf. These additional constraints such as
the mean CAV can be very important for some particular industrial seismic
designs (nuclear power plants for instance).

4 Applications

In this Section, several different sets of available information will be studied.
The first case corresponds to constraints related to the mean value, the vari-
ance of the components and the zero end-velocity and the zero end-displacement.
The other cases correspond to successive addition of available information. The
time duration is T = 20 s. The acceleration stochastic process is sampled at
a time step, ∆t = 0.0125 s. We then have N = 1600 (it is assumed that
A(0) = 0 ms−2 almost surely).

4.1 Case 1. Constraints: mean value, variance of the components, zero
end-velocity and zero end-displacement

This case yields a Gaussian centered random vector for which the mean VRS is
not controlled. Therefore it is not suitable for a risk assessment. Nevertheless,
since it corresponds to the Gaussian case, the Lagrange multipliers of the
MaxEnt pdf can be computed very easily (see Section 2.2.2). These optimal
Lagrange multipliers will then be used in the next sections devoted to non-
Gaussian MaxEnt pdf in order to construct the initial values of the Lagrange
multipliers. The available information is then given by Eqs. (29), (30) and
(36) for which the standard deviation {σj , j = 1, . . . , N} is defined by σj =
λ3 ((j∆)tλ1) exp(−λ1(j∆t)) with λ1 = 2.05, λ2 = 0.51 and λ3 = 0.87. This
target standard deviation is plotted in Fig. 1. As explained in Section 2.2.2,
since random vector A is centered, the Lagrange multiplier related to the
mean vector is zero and therefore, the available information related to the
mean vector is useless. Then, µ = N + 2 and the matrix [Kλ] is defined by

[Kλ] =

N
∑

j=1

λj [K
var
j ] +

2
∑

j=1

λN+j [K
int
j ] . (57)

The admissible space Lµ of vector λ = (λ1, . . . , λµ) is defined as Lµ =]0,+∞[µ.
It can easily be proven that (1) the N+2 matrices {[Kvar

j ]}j=1,...,N , [K int
1 ] and
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Fig. 1 Case 1: target standard deviation.

[K int
2 ] are algebraically independent and (2) the matrix [Kλ] is positive definite

for all λ in Lµ. The methodology developed in Section 2.2 is applied using 30
iterations. Figure 2 shows two independent realizations of the random vector
Aλsol

which is generated using a classical generator for Gaussian random vector
and which are representative of two independent realizations of a random
accelerogram. The corresponding trajectories of the velocity times series and
of the displacement times series are plotted in Figs. 3 and 4. As expected, it
can be seen that the end-velocity and the end-displacements are equal to zero.
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Fig. 2 Case 1: two independent realizations of the stochastic accelerogram.
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Fig. 3 Case 1: two independent realizations of the stochastic velocity.
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Fig. 4 Case 1: two independent realizations of the stochastic displacement.

4.2 Case 2. Constraints: Case 1 and mean VRS

The VRS is constructed following the Eurocode 8 for a A-type soil and a
PGA equal to 5 ms−2. It is defined for 1 value of the damping ratio: 0.05,
and for 20 values of the angular frequency: 1.04, 1.34, 1.73, 2.23, 2.86, 3.69,
4.74, 6.11, 7.86, 10.11, 13.01, 16.74, 21.53, 27.70, 35.64, 45.86, 59.00, 75.91,
97.67 and 125.66 (in rad/s). We then have κ = κω×κξ = 20. The target mean
VRS, s = (s1, . . . , sκ), is plotted in Fig. 5. Figure 6 displays the comparison
between the target mean VRS of the present Case 2 and the mean value of
the VRS simulated with Case 1 (for which no constraint related to the VRS is
introduced). It can be seen that the two graphs are completely different and
is due to the fact that the mean VRS is not taken into account in Case 1.
For the identification of the Lagrange multipliers, the algorithm developed in
Section 2.2.3 is used. For the initial value λinit of the Lagrange multipliers, the
nonlinear part λNL,init is zero while the linear part λL,init is the result of the
identification carried out in Section 4.1. As explained in Section 2.2.3,U0,init ∼
N (0, [KλL,init

]−1). At each iteration, the step size is ∆rλ = 2 π/(β
√
2λmax),

in which λmax is the maximum of the components of vector λL and β = 80.
At each iteration, the damping matrix [Dλ] is chosen as a diagonal matrix
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Fig. 5 Target mean VRS for Case 2.
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Fig. 6 Mean VRS: target (dashed line) of Case 2 and estimation given by Case 1 (solid
line).

such that [Dλ]ii = 2 ξito
√

2 {λL}i, in which ξito = 0.7. For the ISDE, the
number of integration steps is M = 600. At each iteration, ns = 900 Monte
Carlo simulations are carried out. The under-relaxation parameter is fixed at
α = 0.3. Figure 7 displays the comparison of the estimated standard deviation
with the target values. Figure 8 displays the comparison of the mean VRS
with the target mean VRS. Figures 7 and 8 shows a good matching for both
the standard deviations and the mean VRS.

4.3 Case 3. Constraints: Case 2 and variance of the VRS

Let slow be the lower envelop defined by slow = 0.5× s and sup be the upper
envelop defined by sup = 1.5× s. Figure 9 shows these two envelops and 100
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Fig. 7 Standard deviation for Case 2: target (thick dashed line) and estimation (thin solid
line).
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Fig. 8 Mean VRS: target (dashed line) for Case 2, estimation for Case 1 (solid line),
estimation for Case 2 (mixed line).

trajectories of the random VRS constructed with the constraints of Case 2. In
Fig. 9, it can be seen that even if a good matching of the mean VRS is obtained
with the target VRS (see Section 4.2), then the statistical fluctuations around
the mean VRS are large and several trajectories are out of the region delimited
by the two envelops. For this case, the probability that the random VRS
belongs to the region delimited by two envelops has been estimated using the
Monte Carlo simulation method. The estimated value is p0 = 4.09× 10−2. In
the present Case 3, the constraint defined by Eq. (49) is introduced with p0 =
9.0×10−2 and ǫ = 0.07. The parameters of the algorithm for the identification
of the Lagrange multipliers are the same as those chosen in Section 4.2. Figure
10 displays 100 trajectories of the random VRS and the envelops slow and
sup. In comparison with Fig. 9, it can be seen that the statistical fluctuations
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Fig. 9 Random VRS without constraint on the variance of the VRS (only constraints of
Case 2): 100 trajectories (thin lines), lower and upper envelops (thick lines).

around the mean VRS has been reduced and all the trajectories are inside
region delimited by the envelops. We have E{gVRS-ENV

NL (A)} = 8.99 × 10−2
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Fig. 10 Random VRS for Case 3: 100 trajectories (thin lines), lower and upper envelop
(thick lines).

which is very close to the target value which is 9.0× 10−2.

4.4 Case 4. Constraints: Case 3 and mean PGA, mean PGV and mean CAV

In this section additional constraints to Case 3 are imposed in order to con-
trol the mean values for the PGA, PGV and CAV. For Case 3 presented in
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Section 4.3, the mean values of the PGA, PGV and CAV are estimated using
Eqs. (51), (52) and (54) respectively, and we have E{gPGA

NL (A)} = 6.30 ms−2,
E{gPGV

NL (A)} = 0.56 ms−1 and E{gCAV
NL (A)} = 11.97 ms−1. It can be seen

that the mean value of the PGA does not correspond to the value of the
PGA that has been used to construct the target VRS in Section 4.2 (5 ms−2).
In this section, this matching is enforced by imposing the constraint defined
by Eq. (51) with PGA = 5 ms−2. The following values PGV = 0.45 ms−1

and CAV = 13 ms−2 are also imposed. For the identification of the Lagrange
multipliers, the parameters of the algorithm are the same as those chosen in
Section 4.2. Table 2 summarizes the results. It can be seen a good matching
of the estimated means values of the PGA, PGV and CAV with the target
values. Figure 11 shows two independent realizations of the random vector
Aλsol

which are representative of two independent realizations of the stochas-
tic accelerogram. The corresponding trajectories of the stochastic velocity and
the stochastic displacement associated with the stochastic accelerogram are
plotted in Figs. 12 and 13. As expected, it can be seen that the end-velocity
and the end-displacement are equal to zero. We now verify that the additional
constraints related to the the PGA, PGV and CAV do not corrupt the previ-
ous good matching for the variance of the components and for the mean VRS.
Figure 14 displays a comparison of the estimated standard deviation of the
components with the target values. Figure 15 compares the mean VRS with
the target mean VRS. Figure 16 shows 100 trajectories of the random VRS
and the envelops slow and sup. The probability of being completely inside the
envelops is E{gVRS-ENV

NL (A)} = 8.97× 10−2 (the target value is 9.0× 10−2). It
can be seen in Figs. 14 to 16 that the results are still very good.

Table 2 Summary of Cases 1-4: mean PGA, PGV and CAV, and their target values.

Constraint Case 1 Case 2 Case 3 Case 4 Target

p0 1.25× 10−7 0.041 0.0899 0.0897 0.09
Mean PGA (ms−2) 5.68 6.12 6.30 4.98 5.00
Mean PGV (ms−1) 0.34 0.55 0.56 0.45 0.45
Mean CAV (ms−1) 12.06 11.87 11.97 13.04 13.0

4.5 Remark

The results presented in Section 4.4 show a very good agreement between the
target values and the values estimated using the generated accelerograms. Nev-
ertheless, in Figs. 11-13, it can be seen that the generated trajectories are not
perfectly natural. For instance, spurious low-frequency content appears at the
beginning of the signal. Such low-frequency content should appear later in the
signal. The time dependence of the velocity (or response) spectrum has been
studied in the literature in which natural accelerograms have been analyzed
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Fig. 11 Case 4: two independent realizations of the stochastic accelerogram.
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Fig. 12 Case 4: two independent realizations of the stochastic velocity.
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Fig. 13 Case 4: two independent realizations of the stochastic displacement.

in the time-frequency domain (see for instance, Spanos et al (2007)). With
adapted constraints, it can be expected that the higher frequencies prevail
during the ”growth phase” of the accelerograms and then decay following a
given rate. Such a rate could certainly be controlled but its analysis is beyond
the scope of the present paper. In the application presented in this paper, the
frequential content of the trajectories is controlled by the Eurocode VRS. It
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Fig. 14 Variance: Target (thick dashed line) and estimation (thin solid line).
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Fig. 15 Mean VRS: Target (dashed line), estimation (mixed line).

would thus seem that the Eurocode-VRS constraint is not sufficient to gener-
ate accelerograms with a natural frequency content. A time-dependent VRS
could provide better trajectories. Such a constraint would consist in replacing
Eq. (44) by a constraint of the following type,

E{sij(A)} = sij , (58)
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Fig. 16 Random VRS for Case 4: 100 trajectories (thin lines), lower and upper envelop
(thick lines)..

for all i in {1, . . . , N} and for all j in {1, . . . , κ}, in which sij(A) would be the
time sampling of the instantaneous VRS such that

sij(A) = s(ti, ω, ξ,A) for (ω, ξ)j in {ω1, . . . , ωκω
} × {ξ1, . . . , ξκξ

}, (59)

and where sij would be the corresponding target. The introduction of an in-
stantaneous VRS, s(t, ω, ξ,A), would allow the frequential content to be mod-
ified as a function of time t. The equation relating A to sij would have to be
constructed using an adapted representation of stochastic process {A(t), t ∈
[0, T ]}, such as a wavelet representation (see for instance Giaralis and Spanos
(2009)).

5 Conclusions

A new methodology has been presented for the generation of accelerograms
compatible with a wide range of specifications. The proposed method allows
the specifications to be directly taken into account in the probability distribu-
tion of the acceleration time series and therefore does not need to a posteriori

corrections in order that the generated accelerograms match the specifications.
The associated problem of the high stochastic dimension has been solved by
introducing an adapted algorithm based on the resolution of an Itô stochastic
differential equation. The method has the advantage of being very versatile
and more constraints can easily be taken into account in addition to those
introduced in this paper. The applications presented show a good accuracy
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of the method despite the presence of numerous nonlinear constraints. There-
fore, from an engineering point of view for which the specification matching is
of most importance, the proposed method can directly be used to perform a
seismic design of a structure in nonlinear dynamics. From a physical point of
view, the acceleration trajectories that have been generated could be improved
to be more natural by introducing additional constraints related to the time
dependence of the frequency content of the accelerograms.

A Information functions and gradients

In this appendix, for each constraint introduced in Section 3, the information functions
∇aΦ(a,λ) are specified. Furthermore for λ fixed, [K1], . . . , [KµL

] and ∇a{gNL(a)}j for
j = 1, . . . , µNL are also specified.

A.1 Mean value

The information function corresponding to the mean value is

{gmean
NL (a)}j = aj , (60)

yielding

{∇a{g
mean
NL (a)}j}i = δij , (61)

in which δij is the Kronecker symbol.

A.2 Variance of the components

The information function corresponding to the variance of the components of random vector
A is

{gvarL (a)}j = a2j . (62)

Consequently, for all i and j in {1, . . . , N}, we have

{∇a{g
var
L (a)}j}i = 2ajδij , [Kvar

j ]ik = 2 δkjδij . (63)

A.3 Variance of the end-velocity and the end-displacement

The information function is written as

{gintL (a)}1 = (I
(1)
N

(a))2 , {gintL (a)}2 = (I
(2)
N

(a))2 , (64)

which are quadratic functions. Consequently, for all i and j in {1, . . . , N}, we have

{∇a{g
int
L (a)}1}j = 2 (∆t)2

N∑

k=1

ak . (65)

{∇a{g
int
L (a)}2}j = 2 (∆t)4 (N − j + 1)

N∑

k=1

(N − k + 1) ak , (66)

[K int
1 ]ji = 2 (∆t)2 , [K int

2 ]ji = 2 (∆t)4(N − j + 1)(N − i+ 1) . (67)
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A.4 Mean value of the random VRS

The information function related to the mean value of the random VRS is defined, for all j
in {1, . . . , κ}, by

{gVRS
NL (a)}j = sj(a) . (68)

For fixed j and for (ω × ξ) = (ω× ξ)j , using Eq. (33), (34), (35) and the chain rules for the
calculation of the gradient, it can be proven that

{∇a{g
VRS
NL (a)}j}i = {∇asj(a)}i (69)

= ω [B(ω, ξ)]qi sgn{yq(ω, ξ,a)} ,

in which sgn{yq(ω, ξ,a)} is the sign of yq(ω, ξ,a) defined in Eq. (42), and where

q = imax{|y1(ω, ξ,a)|, . . . , |yN (ω, ξ,a)|} , (70)

where imax is a function with values in {1, . . . , N} such that

imax(x1, . . . , xN ) = imax(x) = arg max
i∈{1,...,N}

xi . (71)

For ‖a‖ 6= 0, it should be noted that the derivative given by Eq. (69) holds if q constructed
using Eqs. (70) and (71) is unique. This derivative is used for a equal to Uk,ℓ in which Uk,ℓ

is a given realization {Uk,ℓ, k = 1, . . . ,M−1} of the time series {Uk, k = 1, . . . ,M−1}. For
a given realization ℓ, the probability that there exist two solutions for Eq. (71) is zero. For
‖a‖ = 0, this derivative does not exist but, since the initial condition is such that ‖a‖ 6= 0,
the probability that ‖Uk,ℓ‖ be equal to zero is zero.

A.5 Variability of the random VRS

The information function corresponding to the variability of the random VRS is defined by

gVRS-ENV
NL (a) =

κ∏

j=1

1lreg
[slow

j
,s

up
j

]
(sj(a)) . (72)

Its gradient function is written as

{∇ag
VRS-ENV
NL (a)}i = gVRS-ENV

NL (a)
κ∑

j=1

{∇asj(a)}i
δreg(sj(a))

1lreg
[slow

j
,s

up
j

]
(sj(a))

, (73)

in which {∇asj(a)}i is defined by Eq. (69).

A.6 Mean value of the random PGA and mean value of the random PGV

The information function corresponding to the mean value of the random PGA is

gPGA
NL (a) = max{|a1|, . . . , |aN |} . (74)

and the gradient function is written as

{∇ag
PGA
NL (a)}i = δiq sgn{aq} , (75)
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where q = imax{a}, in which the function x 7→ imax(x) is defined in Eq. (71). Concerning
the random PGV, the corresponding information function related to the mean value is
defined by

gPGV
NL (a) = max{|I

(1)
1 (a)|, . . . , |I

(1)
N

(a)|} , (76)

whose gradient function is written as

{∇ag
PGV
NL (a)}i = sgn{I

(1)
q (a)} 1l [1,q] (i) , (77)

in which q = imax{|I
(1)
1 (a)|, . . . , |I

(1)
N

(a)|}.

A.7 Mean value of the random CAV

The corresponding information function related to the mean CAV is defined by

gCAV
NL (a) = ∆t

N∑

j=1

|aj | , (78)

and its gradient function is such that

{∇ag
CAV
NL (a)}i = ∆t sgn{ai} . (79)

A.8 Mean value of the random AI

The information function related to the mean AI is defined by

gAI
L (a) =

π∆t

2 g

N∑

j=1

a2j , (80)

which is a quadratic function. For all i and j in {1, . . . , N}, we have

{∇ag
AI
L (a)}i =

π∆t

g
ai , [KAI]ij =

π∆t

g
δij . (81)
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