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Abstract 

A study of the mechanism of action and resistance of artemisinin 

antimalarials in Plasmodium falciparum  

Matthew Phanchana 

 

Malaria remains a global health and economic issue affecting nearly half of the world's population. In 
the past decade, effective chemotherapy and vector control have been the major interventions used to 
control and reduce the burden of malaria. However, resistance to antimalarial drugs and insecticides is 
compromising the control and treatment strategies and the goal to eliminate malaria. In most malaria 
endemic countries, artemisinin combination therapies (ACTs) are the first line treatment for 
uncomplicated Plasmodium falciparum malaria, the most lethal cause of malaria. Despite the 
widespread use of artemisinin-based therapies, the mechanism of action of this class of drug remains 
elusive. Emergence of resistance to ACTs in South East Asia is a global concern for drug efficacy. In this 
thesis, a click chemistry coupled with mass spectrometry (MS) proteomics approach was used to identify 
the molecular targets of artemisinin in various stages of P. falciparum strain 3D7 and extensively applied 
to the candidate trioxolanes, a new class of fully-synthetic artemisinin-like drugs. Using artemisinin 
activity-based probes, a number of biological targets were identified, these targets derive from key 
biological pathways/process that include; haemoglobin metabolism, glycolysis, nucleic acid and protein 
biosynthesis, antioxidant defence and oxidative stress response.  The identified fingerprint of biological 
targets was similar between semi synthetic artemisininin and fully synthetic next generation 
artemisinins.  Identified biological targets were enriched with glutathionylated proteins, indicating that 
these proteins are vulnerable to endoperoxide antimalarial inhibition and loss of function. The shared 
protein targets or protein pattern of semisynthetic artemisinin and fully synthetic trioxolane suggest 
that they might share similar mechanism or action and, possibly, mechanism of resistance. This raises 
the concern of cross resistance between them. The ring stage parasites which showed the least 
sensitivity to artemisinins and associated with resistance to artemisinins have much less proteins 
identified, including the absence of proteins in haemoglobin metabolism and reduction in proteins of 
major pathways. These findings support the working hypothesis that artemisinin is most effective 
against later stages of the parasite in line with the activity of haemoglobin digestion, the main activator 
of artemisinins and other endoperoxides. The reduced sensitivity during the ring stage is possibly due 
to less activation of artemisinin. A whole genome sequence comparative approach was undertaken with 
parasites displaying phenotypic artemisinin resistance (slow clearance phenotype) derived from an 
experimental in vivo model of infection.  Parasite genes that we correlated to the slow clearance 
phenotype included genes involved in the unfolded protein response pathway consistent with recent 
models of parasite resistance to artemisinins. The results presented in this thesis using chemical biology 
and omics technologies, have contributed to our understanding of the mechanism of action and 
resistance of endoperoxides and offer future research directions to study this important class of 
antimalarials. 
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Chapter 1 

Introduction 
 

1.1 Malaria 

Malaria is among the highest mortality and morbidity rate with HIV/AIDS and tuberculosis for infectious 

diseases. Malaria is also the leading cause of deaths in post-neonatal along with pneumonia, diarrhoea, 

and injuries (WHO, 2016b). It is estimated 3 billion people are living in area at risk of malaria infection 

(WHO, 2015b). Plasmodium spp. are causative pathogens of malaria with Plasmodium falciparum 

responsible for most of death and severe malaria cases. Malaria prevalence is not limited to human 

only, but extended to other animals; avian, reptile, and other mammals. Distribution of malaria is in the 

tropic and sub-tropic regions and limited to distribution of its vectors Anopheles mosquitoes.  

 

Malaria can be traced to the prehistoric period around 15-45 million year ago, when the first evidence 

of malaria was dating; the dating was uncertain due to the dating methods. Plasmodium dominicana was 

identified from mosquito fossil embedded in tertiary Dominican amber. It is also believed that the host 

would be galliformes (Poinar, 2005). However, human malaria is dated back to 2700 BC in the Chinese 

Canon of Medicine by Nei Ching. In the past, malaria was described as periodic fever or seasonal fever 

associated with splenomegaly, spleen enlargement (Cox, 2010). Although many historical documents 

recorded symptoms resembling later known malaria, the discovery of malaria parasite was in 1880 by 

French surgeon Charles Louis Alphonse Laveran. Not long after, Camillo Golgi had showed that there 

are more than one malarial species in 1886. Nearly twenty years later, British medic Sir Ronald Ross 

demonstrated that mosquitoes is the malaria vector in 1897. These discoveries led to the Nobel Prize in 

physiology or medicine awarded to Sir Ronald Ross, Camillo Golgi, and Charles Laveran in 1902, 1906, 

and 1907, respectively.   

 

The distribution of malaria (Figure 1.1) is largely superimposed with the vector distribution as expected 

in typical vector borne diseases, and also linked with poverty (Gallup and Sachs, 2001). Other major 

factors affecting malaria distribution are including temperature and rainfall (Hay et al., 2004).  
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Figure 1.1 Malaria distribution change during 2000-2015 (taken from WHO) 

 

1.1.1 Life cycle 

Malaria parasites have a complex life cycle which requires two hosts to complete; an invertebrate host 

where sexual cycle takes place and a vertebrate host where asexual cycle occurs (Figure 1.2). Most 

human malaria parasites share similar life cycle with the exception of Plasmodium vivax and Plasmodium 

ovale. These species exhibit the dormant hepatic stage called ‘hypnozoite’, which is not detectable and 

is the cause of relapse malaria. Hypnozoite stage was first shown for relapse malaria in rhesus malaria 

Plasmodium cynomolgi in 1948, and that exoerythrocytic cycle exists (Shortt and Garnham, 1948).  
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Figure 1.2 Plasmodium falciparum life cycle (taken from http://www.merckmanuals.com) 

 

Female Anopheles mosquitoes, invertebrate vector, carrying infectious sporozoites stage transmit 

sporozoites to human during their blood meal. Once sporozoites are released into blood stream, they 

migrate to the liver, infect hepatocytes, and reproduce a high number of progeny or ‘merozoites’ via 

the process called ‘schizogony’. In Plasmodium vivax and Plasmodium ovale, some sporozoites undergo 

dormancy and become hypnozoites. Mature merozoites in the vesicle called ‘merosome’ release from 

the host hepatocyte by budding into blood vessels (sinusoids). This process coincides with inhibition of 

exposure to phosphatidylserine on the outer leaflet of host plasma membrane, preventing host immune 

response (Figure 1.3) (Sturm et al., 2006).  

 

 

Figure 1.3 Hypothesis of the release of merosome to sinusoids (doi: 10.1126/science.1129720) 

 

These merosomes travel to the lung, become smaller as they travel through blood vessels, and 

accumulate in the lung. It is believed that sequestration of merosomes in pulmonary capillaries ensures 

infectiveness and provides protection from host immune system. Merozoites are released from the 
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merosomes and invade host red blood cells (RBCs) marked the beginning of intraerythrocytic cycle (Baer 

et al., 2007).  

 

Intraerythrocytic cycle is responsible for pathogenicity of malaria. Once merozoites invade host RBCs 

via a complex process (see Tardieux and Baum (2016) for review), they use host materials for their 

growth and development. The first stage of intraerythrocytic cycle is called ‘trophozoite’, but early 

trophozoite appearance is similar to ring shape, where cytoplasm is formed the ring part and nucleus 

is formed the setting part of the ring, when stained with Giemsa stain, so it is also called ‘ring-shaped 

trophozoite’ or ‘ring stage’ (which will be used throughout to describe this early stage of trophozoite). 

Mature trophozoite is greater both in term of size, due to accumulation of biomass, and metabolisms. 

Then mature trophozoites proceed to schizogony process to produce a number of merozoites within 

the cells called ‘schizont’. Merozoites egress from host RBCs via a complex process. 

 

This intraerythrocytic stage lasts between 42-49 h for Plasmodium falciparum, Plasmodium vivax and 

Plasmodium ovale, 72 h for Plasmodium malariae, and 24 h in Plasmodium knowlesi. Some trophozoites 

will commit gametogenesis upon stimulation of uncertain mechanism to become ‘gametocyte’, the 

transmission stage from human to Anopheles vectors, which will be picked up by the mosquitoes. 

 

Microgametocyte (male) and microgametocyte (female) gametocytes are picked up by mosquitoes 

and move to the midgut, where male gametocytes undergo ‘exfragellation’ process producing 

exflagellated microgametocytes which fuse with macrogametocytes and form the zygote called 

‘ookinete’. Ookinetes migrate, in the special left-handed helical motion (Kan et al., 2014), to and invade 

mosquitoes midgut epithelial cells where they form ‘oocyst’. Within the oocyst, multiplication steps 

generate number of infectious sporozoites which later egress from the oocysts and migrate to 

mosquitoes’ saliva gland. The whole life cycle of Plasmodium spp. completed when sporozoites are 

transmitted to human at the next blood meal.   
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1.2 Antimalarial drugs 

Antimalarial drugs are one of key players in disease management and control. There are only a handful 

of licensed antimalarial drugs used in the clinic nowadays, although a remedy for malaria was 

introduced in the 17th century and established the modern years of antimalarial (Wells et al., 2015). In 

the past, plant extracts were the major sources of fever relief including cinchona extract and sweet 

wormwood extract, later known as cinchona alkaloids and artemisinin, respectively. In the past decades, 

only a few new antimalarials have been licensed (Figure 1.4). 

 

 

Figure 1.4 The timeline of antimalarial drug introduction and its resistance. Introductory and emerging resistance 
year of each antimalarial drug is shown in green and blue box, respectively.  

 

1.2.1 4-aminoquinolines 

4-aminoquinoline is a group of antimalarial with quinoline as a core structure with amine group at 

position 4 (Figure 1.5) (Schlitzer, 2008). The 4-aminoquinoline chloroquine (Figure 1.5) is considered one 

of the most important antimalarial drugs owing its potent efficacy and low cost. Chloroquine had a 

pivotal role, together with dichlorodiphenyltrichloroethane (DTT), in the massive reduction of malaria 

burden in the 20th century (Committee on the Economics of Antimalarial Drugs, 2004). Mechanism of 

action of 4-aminiquinoline is believed, yet not fully understood, to be inhibition of crystallisation of 

haemozoin or malaria pigment.  
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Quinoline 

 

 

Chloroquine 

 

   

Hydroxychloroquine                                                         Amodiaquine 

 

 

Piperaquine 

Figure 1.5 4-aminoquinolines 

 

During parasite intraerythrocytic cycle, parasites digest host haemoglobin for amino acids in acidic food 

vacuole (~pH 5) and generate free haem (Figure 1.6) as a by-product which is toxic to the parasites. 

Parasites overcome this toxic haem by crystallising haem to nontoxic insoluble haemozoin crystal, or 

malaria pigment (Figure 1.7) (Sullivan et al., 1996a).  
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Haem                                                            Haematin 

Figure 1.6 Haem and haematin structure 

 

This haemozoin crystallisation process is driven by histidine-rich proteins (HRPs) (Sullivan et al., 1996a) 

and/or haem detoxification protein (HDP) (Jani et al., 2008). Chloroquine, a singly or doubly-protonated 

form, accumulates in food vacuole of the parasites as a result of a weak base interaction (Yayon et al., 

1985), but not the sole mechanism. The accumulation of protonated forms of chloroquine is essential 

and dependent on haem binding (Bray et al., 1999, Bray et al., 1998). Inhibition effect of haem 

crystallisation is due to binding of inhibitor on haem or haemozoin, rather than to the enzymes, 

preventing further crystallisation of haemozoin (Sullivan et al., 1996a), leading to the accumulation of 

toxic free haem and the parasite death (Slater and Cerami, 1992). In 2014, Erin L. Dodd and D. Scott 

Bohle successfully demonstrated that gallium protoporphyrin IX, haem analogue, forms complex with 

chloroquine confirmed by 1H NMR (Dodd and Bohle, 2014). This evidence supports haem-chloroquine 

complex hypothesis (Figure 1.8). Prior to this structural work, Sullivan and colleagues showed that 3H-

quinolines co-localised with haemozoin in parasite vacuole by autoradiography technique providing first 

evidence of haemozoin-quinoline complex (Sullivan et al., 1996b). 
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Figure 1.7 Haemozoin (β-haematin) structure 

 

 

Figure 1.8 Haem-chloroquine complex 

 

There is also evidence that chloroquine inhibits aspartic protease in vacuole at high concentration (~30 

mM), however, this concentration is much higher than a typical pharmacological concentration of 

chloroquine in vacuole of 1-5 mM.  

 

Amodiaquine (AQ) (Figure 1.5), aromatic substitution in quinoline side chain, is effective against low-

level chloroquine-resistance parasites. It is used as monotherapy or with artesunate in artemisinin-

based combination therapies (ACTs). There is a report of amodiaquine adverse effect, hepatotoxicity 
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and agranulocytosis, in a prolonged use for chemoprophylactic purpose or with HIV patients on 

zidovudine and/or cortrimoxazole, so it is not recommended to use amodiaquine with these patients 

(WHO, 2015a). In some western countries, amodiaquine is no longer available.  

 

Piperaquine (PPQ) (Figure 1.5), bisquinoline, is reintroduced for malaria treatment in combination with 

DHA after its effectiveness declined due to the emergence of resistance in 1980s. It was first synthesised 

in 1960s by Chinese scientist. Clinical study has shown DHA-PPQ has higher efficiency and good safety 

profile for prevention of malaria in pregnancy specially when on monthly regimen (Kakuru et al., 2016). 

Another clinical study conducted in Cambodia also showed high efficiency and safety of DHA-PPQ in 

uncomplicated malaria with 96.9% cure rate at 28-day (Denis et al., 2002). It is not recommended to use 

DHA-PPQ in patients with congenital QT prolongation as high-dose of PPQ increases the risk of QT 

prolongation, by the same degree as chloroquine, especially when on high-fat meals. However, there is 

no evidence showing piperaquine-related cardiotoxicity (WHO, 2015a). 

 

1.2.2 8-aminoquinolines 

The 8-aminoquinolines (Figure 1.9) are antimalarial drugs with quinoline core structure with amine 

group at position 8 of quinoline ring. It was proposed that 8-aminoquinolines have similar mechanism 

of action to 4-aminoquinoline by inhibiting crystallisation of haematin (Vennerstrom et al., 1999). 

 

Primaquine (Figure 1.9) is a sole licensed antimalarial effective against sexual stage of parasites and 

hypnozoites of Plasmodium vivax and Plasmodium ovale. For prevention of relapse in vivax and ovale 

malaria, 14-day course of 0.25-0.5 mg/kg bw daily is recommended in addition of ACT or chloroquine, 

where applicable, for blood stage treatment. A single-dose of 0.25 mg/kg is also used for transmission 

prevention in low-transmission area for falciparum malaria. Primaquine exhibits adverse effect of 

haemolysis in patients with G6PD deficiency, so it is recommended to check for G6PD status before 

prescription of 14-day course of primaquine but not necessary for single-dose prescription (WHO, 

2015a, WHO, 2014a). Primaquine is a replacement of pamaquine which has high toxicity and withdrawn 

for clinical use.  

 

Tafenoquine (Figure 1.9) is currently in Phase III clinical trial evaluating for its safety for human use. 

Tafenoquine has proved its effectiveness against sexual stage parasite and hypnozoites (Vennerstrom 

et al., 1999, Li et al., 2014, Shanks et al., 2001). Benefit of tafenoquine over primaquine is its longer 

plasma half-life, ~2 weeks (Brueckner et al., 1998), thus a single dose of tafenoquine is sufficient for 

prevention of relapse malaria (Llanos-Cuentas et al., 2014). Like primaquine and other 8-aminoquinoline 

drugs, tafenoquine exhibits haemolysis effect in patients with G6PD deficiency.    
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Pamaquine                                                     Primaquine 

 

 

Tafenoquine 

Figure 1.9 8-aminoquinolines 

 

1.2.3 Arylaminoalcohols 

Arylaminoalcohols is another class of important antimalarial drugs. It became the first class of 

antimalarial compounds isolated from plant extracts cinchona in 1820 by French chemists (Committee 

on the Economics of Antimalarial Drugs, 2004). 

 

Quinine (Figure 1.10) is antimalarial drug derived from plant cinchona and has long been used for 

treatment of malaria. Quinine is currently not recommended for first line treatment of Plasmodium 

falciparum malaria but remains effective for treatment of other malaria and for malaria in first trimester 

of pregnancy, in combination with clindamycin (WHO, 2015a). However, quinine is used in combination 

with tetracycline for treatment of Plasmodium falciparum malaria when ACTs failed (Noedl et al., 2010) 

(Prof. Srivicha Krutsood, MD; personal communication). The recent study reveals quinine interferes with 

serotonin biosynthesis by either competitive binding with active site of tryptophan hydroxylase (TPH2), 

rate-limiting enzyme of serotonin biosynthesis, or binding to tryptophan transporter. This explains the 

adverse effect of quinine in patients with low plasma tryptophan (Islahudin et al., 2014).  

 

Lumefantrine (Figure 1.10) is only used in combination with artemether (Coartem®) in ACTs as 

monotherapy of lumefantrine could develop resistance, therefore lumefantrine was never used in 

monotherapy (WHO, 2015a). The advantage of lumefantrine is its long elimination half-life of 6 days with 

peak plasma concentration at 4-6 h. This feature complements well the effect of artemether in clearing 
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parasites (Djimde and Lefevre, 2009). It has been reported that lumefantrine bioavailability can be 

increased by co-administration with fatty meal, milk is sufficient (Djimde and Lefevre, 2009). 

 

Mefloquine (Figure 1.10) is used in combination with artesunate in ACTs for treatment of uncomplicated 

falciparum malaria, mostly in Asian countries. It is also used for chemoprophylaxis for malaria. However, 

its side effects including insomnia, depression, panic attack and hallucination limit its use for many 

circumstances (Mayxay et al., 2006).  

 

Halofantrine (Figure 1.10) is not currently used for malaria treatment and/or prophylaxis in most 

countries due to its safety profile (prolonged QT-interval as in chloroquine and piperaquine) and lower 

efficiency than alternatives (Bindschedler et al., 2002). 

 

   

Quinine                                                     Mefloquine 

 

   

Halofantrine                                                      Lumefantrine 

Figure 1.10 Arylaminoalcohols 

 

1.2.4 Antifolates 

Antifolates (Figure 1.11) are used to inhibit folate metabolism mainly dihydropteroate synthase (DHPS) 

and dihydrofolate reductase (DHFR). The effect of antifolate itself is not very potent hence it is used in 

combination to synergise the effect of other antimalarial compounds. Antifolates were not in a 

mainstream research focus as no new antifolate has been introduced to the clinical use or trial since its 

first introduction in 1940 (Nzila, 2006).  
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Cycloguanil (Figure 1.11) is active metabolite of proguanil inhibiting DHFR of the parasite by unclear 

mechanism. Proguanil is prescribed in combination with atovaquone (mitochondrial electron transport 

inhibitor) in a fixed-dose tablet Malarone®. Malarone® is the major FDA approved drug recommended 

for malaria chemoprophylaxis (Nixon et al., 2013).   

 

Pyrimethamine (Figure 1.11) is DHFR inhibitor and the most widely used antifolates, usually in 

combination with sulfadrug sulfadoxine (SP). However, resistance to pyrimethamine and other 

antifolates reduce the efficacy of these drugs. The new regimen is to use SP in combination with 

artesunate in ACTs to slow the rate of resistance (White, 1999).   

 

The use of some antifolate, dapsone and SP, is limited due to its haemolysis side effect on G6PD 

deficiency patients. However, SP is recommended for intermittent preventive treatment of malarial in 

pregnancy (IPTp) in highly endemic areas (WHO, 2015a). 

 

  

Sulfadoxine                                             Pyrimethamine 

 

   

Proguanil                                                   Cycloguanil 

 

 

Dapsone 

Figure 1.11 Antifolates 
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1.2.5 Inhibitors of the respiratory chain  

Atovaquone, the naphthoquinone, (Figure 1.12) is the only available inhibitor of electron transport in 

mitochondrion and is only prescribed in combination with proguanil as Malarone® because resistance 

to atovaquone is easily developed when used in monotherapy. Atovaquone and proguanil, or its active 

metabolite cycloguanil, have synergistic effect by disrupting mitochondrial membrane potential. 

Atovaquone/proguanil also active against early liver stage parasite, so it is used for prophylaxis. Due to 

its low solubility in water, it is recommended to supply with fatty meal. However, the cost of Malarone® 

is relatively high compared to other antimalarial drugs limiting its use in many endemic areas, it was 

estimated that Malarone® will become widespread after its patent expired in 2013 (Nixon et al., 2013) .  

 

The mechanism of atovaquone was suggested by the mutations in cytochrome b gene. It was first found 

that atovaquone resistance is mediated by mutations in cytochrome b of cytochrome bc1 complex 

(Srivastava et al., 1999). The binding site of atovaquone was confirmed by structural analysis showing 

that atovaquone binds to Qo site in cytochrome b (Birth et al., 2014). These findings led to the 

development of new inhibitors for cytochrome bc1 complex rationalised for Qi site and could overcome 

atovaquone resistance (Capper et al., 2015).  

 

 

Figure 1.12 Atovaquone 
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1.2.6 Antibiotics 

Antibiotics (Figure 1.13) for malaria treatment were used in combination with other antimalarial drugs 

e.g. ACTs. This is to address possible bacterial coinfection, usually in severe malaria. It is suggested that 

broad-spectrum antibiotic should be given to all malaria in children with suspected severe malaria 

(WHO, 2015a). In some situation, doxycycline can be given for chemoprophylaxis of malaria (Tan et al., 

2011). 

 

  

Doxycycline                                           Clindamycin 

 

 

Azithromycin 

Figure 1.13 Antibiotics used for treatment of malaria 
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1.2.7 Mechanisms of antimalarial resistance 

1.2.7.1 Resistance to quinolines. 

Among all antimalarial drugs, the 4-aminoquinolines have the best established mechanism of 

resistance, although not yet fully understood. A widely accepted mechanism of resistance to 

chloroquine is the reduced access to the haematin (Bray et al., 1998, Bray et al., 1999). The protonated 

forms of chloroquine are accumulated within the food vacuole of the parasites and led to haem-

chloroquine complex formation preventing further crystallisation to a non-toxic haemozoin (Slater and 

Cerami, 1992, Slater, 1993, Sullivan et al., 1996b). The genetic determinant of chloroquine resistance is 

the chloroquine resistance transporter (PfCRT) gene (Fidock et al., 2000). The resistance mechanism is 

mediated by efflux of chloroquine from the food vacuole by the CRT protein localised on the food 

vacuole membrane (Lehane and Kirk, 2008). 

 

Another important genetic determinant for other quinolones compounds, including piperaquine, 

mefloquine, amodiaquine, lumefantrine, and halofantrine, is multidrug resistance protein 1 (PfMDR1). 

It was shown that polymorphisms in PfMDR1 are associated with resistance to multiple quinolone 

compounds but chloroquine (Reed et al., 2000). Furthermore, gene amplification of PfMDR1 gene is 

believed to play a role in resistance to some quinoline compounds. It was demonstrated that gene copy 

number of PfMDR1 is associated with in vivo resistance to mefloquine (Price et al., 2006). More recently, 

it has been proposed that polymorphisms in PfCRT and PfMDR1 have an interlink role in modulating 

parasite susceptibility to various antimalarial drugs including artemisinins and their clinical partner 

drugs, amodiaquine, lumefantrine, and mefloquine (Veiga et al., 2016). 

 

1.2.7.2 Resistance to antifolates  

The two enzymes targeted by antifolate antimalarials are dihydropteroate synthase (DHPS) and 

dihydrofolate reductase (DHFR). As these antimalarials have a direct effect on the enzymes, resistance 

to antifolates is associated with point mutations in the genes coding enzymes. Resistance to DHFR 

antifolates is mediated by mutations in DHFR gene. Several point mutations including Ser180Asn, 

Asn51Ile, Cys59Arg, and Ile164Leu were reported to directly associate with DHFR antifolate resistance, 

and thus could be closely monitor for resistance (Gregson and Plowe, 2005, WHO, 2015a). DHPS 

resistance is linked with variations of 5 amino acids (436, 437, 518, 540, and 613) (Triglia et al., 1998). 

However, it was also demonstrated that folate and folate derivative levels affect the parasite sensitivity 

to antifolates (van Hensbroek et al., 1995, Wang et al., 1997). 

 

1.2.7.3 Resistance to naphthoquinone 

Resistance to naphthoquinone atovaquone was quickly acquired both in vitro and in vivo (Gassis and 

Rathod, 1996, Srivastava et al., 1999). It also observed from the clinical trials that relatively high 
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treatment failure rate is associated with atovaquone (Chiodini et al., 1995, Looareesuwan et al., 1996). 

Therefore, it is always used in combination with proguanil for a synergistic effect to reduce the failure 

rate. The target of atovaquone is the parasite Qo site of the cytochrome bc1 complex. The mutations in 

the Qo site, especially near the highly conserved PEWY region, confer atovaquone resistant phenotype. 

In the clinic, the variations in cytochrome bc1 at codon 268 are associated with Maralone® treatment 

failure (Fivelman et al., 2002). However, atovaquone resistant phenotype is with a fitness cost of reduced 

activity of the cytochrome bc1 complex (Fisher et al., 2012). 

 

1.3 Development of new antimalarial drugs 

New antimalarial drugs are urgently needed as drug resistance to most current antimalarial drugs have 

been reported. Medicine for Malaria Venture (MMV) was founded to advocate the development of new 

antimalarial drugs through the partnerships. The goal of new antimalarial drugs is to avoid cross 

resistance, so novel therapeutic targets are also required. Furthermore MMV has published the target 

product profile (TPP) and target candidate profile (TCP) as a guideline for desirable new antimalarial 

drugs (Burrows et al., 2013). In the past years, antimalarial drugs in the pipeline are endoperoxides, 

aurora kinase inhibitors, PfPI4K inhibitors, and some other targets (MMV global portfolio, accessed from 

www.mmv.org).  

 

OZ277 or arterolane (Figure 1.14) is the first generation trioxolane fully synthesised antimalarial 

candidate (Vennerstrom et al., 2004) received regulatory review process according to MMV portfolio. It 

is effective against chloroquine-resistance parasite from field isolates (Kreidenweiss et al., 2006).  

 

OZ439 or artefenomel (Figure 1.14) is a second generation synthetic trioxolane antimalarial candidate 

finishing phase II clinical trial with a good safety profile and a high efficiency on a single dose regimen. 

No serious adverse effect has been reported (Phyo et al., 2016). OZ439 is a promising candidate for 

single-dose regimen because it exhibits long elimination half-life of 46-62 h with maximum plasma 

concentration at 4 h. OZ439 also exhibits superior prophylaxis property to mefloquine. Administration 

of single dose 30 mg/kg provides total protection (Charman et al., 2011). 
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OZ277 

 

 

OZ439 

Figure 1.14 Fully synthetic endoperoxide trioxolanes 

 

DDD107498 or DDD498 (Figure 1.15) is a newly developed antimalarial candidate led by University of 

Dundee Drug Discovery unit (DDU) and MMV. Preclinical study shows that DDD107498 has good oral 

bioavailability and long plasma elimination half-life (19 h). These properties are important for the use in 

resource-poor area and are required by target product profiles (TPP) and target candidate profiles (TCP) 

set by MMV (Burrows et al., 2013). DDD107498 showed similar potency to artemisinin in vitro and 

superior to artesunate ex vivo for both Plasmodium falciparum and Plasmodium vivax from clinical 

isolates. DDD107498 also inhibits gamete formation both male and female revealed by membrane 

feeding assay and direct mouse-to-mouse Plasmodium berghei model (Baragana et al., 2015). The study 

also shows that DDD107498 inhibits parasite translation elongation factor 2 (PfeEF2) which is essential 

for protein synthesis (Baragana et al., 2015). These properties support DDD107498 as a promising 

antimalarial candidate.  

 

 

Figure 1.15 DDD107498 

 

A novel class of antimalarial, imidazolopiperazines, was developed, and KAF156 (Figure 1.16) was 

selected from the lead optimised compounds. The development of KAF156 is led by the pharmaceutical 

company Novartis. KAF156 shows a promising characteristic for both therapeutic and prophylactic uses, 

and possibly transmission blocking (Kuhen et al., 2014). Preclinical study showed that in vitro induced-

resistance to KAF156 is associated with SNPs in PfCARL gene (Meister et al., 2011). Lately, other two 
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genes were reported with association to KAF156 resistant-phenotype, namely an UDP-galactose 

transporter (PfUGT) and an acetyl-CoA transporter (PfACT) (Lim et al., 2016). 

 

 

Figure 1.16 KAF156 

 

Another antimalarial candidate developed by Novartis, Swiss THP and Wellcome, KAE609 (Figure 1.17), 

is currently assessed in clinical trials. The proposed mechanism of action of KAE609 is inhibition of 

protein synthesis as it was shown to reduce incorporation of radiolabelled Met/Cys within an h after 

exposure (Rottmann et al., 2010). Furthermore, the mutations in the P-type cation-transporter ATPase4 

(PfATP4) encoding gene abolishes the antimalarial effect of KAE609 (Rottmann et al., 2010). The result 

from phase II clinical trial showed KAE609 has a high efficacy on both Plasmodium falciparum and 

Plasmodium vivax malaria, and is suitable for a once-daily regimen (White et al., 2014). In addition, a 

homology model study with yeast P-type ATPase (ScPMA1) has shown that KAE609 directly inhibits the 

P-type ATPase activity, and computational molecular docking model also supports the hypothesis 

(Goldgof et al., 2016). 

 

 

Figure 1.17 KAE609 
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1.4 Prevention and control  

According to WHO world malaria report 2015, malaria prevention strategies involve vector control, 

chemoprevention, and case management. These strategies can be achieved by cost-effective 

interventions.  

 

1.4.1 Vector control 

Vector control plays a major role in a vector borne diseases control and prevention, cutting through the 

vector cycle can intervene and reduce disease burden in endemic areas very effectively. Main control 

measures for malaria vector control are using of insecticide-treated nets (ITNs) and indoor residue 

spraying (IRS).  

 

ITNs are a protective barrier for human. ITNs have been proved to be superior to untreated nets for 

vector borne disease prevention. Main difference is seen when there is a hole in a bed net. Insecticide 

on the net kills, and repel, mosquitoes and other insects. This reduces the number of mosquitoes in 

house and also provides community-wide protection, when community adopted this intervention. Since 

2000, ITN usage has been greatly increased in Africa (Figure 1.18). It is estimated that 55% of population 

in sub-Saharan Africa sleeping under the ITN in 2015, increasing from 2% in 2000. However, coverage 

goal is universal (100%). 

 

 

Figure 1.18 Insecticide-treated nets (ITNs) coverage in Africa in 2000 (left) and 2015 (right). Use under the Creative 
Commons Attribution 3.0 Unported License. 

 

The first generation of ITNs provides 6-12 months protection, then reduces its protective power and 

requires re-treatment with insecticide. This process requires government involvement and is not 

normally carried out. Next generation ITNs, so called long-lasting insecticide-treated nets (LLINs), last 
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much longer than ITNs (up to 5 years), requiring no re-treatment and so less frequent distribution of 

the nets. LLINs rely mainly on pyrethroids class of compounds and incorporated into the net fibre given 

its long-lasting effect. Newer generation of LLINs uses piperonyl butoxide (PBO) and pyrethroid 

treatment. PBO itself is not an insecticide but synergists the effect of pyrethroid by sequester the 

pyrethroid effect until it is within the mosquitoes (Tungu et al., 2010). 

  

Indoor residue spraying (IRS) is another factor in the control strategy. In the past 

dichlorodiphenyltrichloroethane (DDT) was extensively used before it was opted out from the control 

interventions due to health and environmental concerns (Chapin and Wasserstrom, 1981). However, the 

use of DDT and other control interventions had reduced malaria prevalence dramatically in the 1950s 

as part of WHO eradication program (Najera et al., 2011). Nowadays, the major classes of compounds 

for IRS are pyrethroids, organochlorines, organophosphates, and carbamates (WHO, 2012). IRS is still 

rolling in the endemic areas, however, insecticide resistance to pyrethroids affected the coverage of IRS 

due to less affordable costs of non-pyrethroids insecticides (WHO, 2015b).  

 

1.4.2 Chemoprevention and malaria vaccine 

Despite the fact that malaria vaccine is not currently available, chemoprevention for malaria is achieved 

through antimalarial drugs in some risk population i.e. in pregnancy. Intermittent preventive treatment 

in pregnancy (IPTp) and infant (IPTi) are to reduce the burden of malaria in pregnant women and infants. 

Sulfadoxin-pyrimethamine (SP) itself or in combination with amodiaquine is recommended in for those 

risk groups in highly endemic area (WHO, 2015a, WHO, 2015b). 

 

The development of malaria vaccines is a great challenge due to antigenic variation of the parasites 

(Schwartz et al., 2012, Arama and Troye-Blomberg, 2014). The parasites have a sophisticated genetic 

regulation for surface antigen representation and the antigen switching facilitates host immune evasion 

(Kyes et al., 2007). The variation in antigen along with the parasite complex life cycle deter the vaccine 

development (Crompton et al., 2010). The most advanced malaria vaccine candidate is RTS,S from 

GlaxoSmithKline (GSK) and is receiving WHO policy and regulation reviewing process following the 

completion of phase III clinical trial in the risk populations in Africa (RTS, 2015). Other malaria vaccine 

progressing to clinical trials are including the sporozoite-based vaccines (PfSPZ) and the modified 

vaccinia virus Ankara (MVA) with adenovirus vector encoding liver stage antigen (ME-TRAP) or (MVA ME-

TRAP), according to the WHO rainbow table (WHO, 2016a) (Figure 1.19).  
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Figure 1.19 WHO rainbow table (accessed on 25th November 2016) 

 

The RTS,S vaccine was developed based on the central repeat region of Plasmodium falciparum 

circumsporozoite protein and recombinantly (CSP) produced with hepatitis B surface antigen (HBsAg) in 

the yeast systems (Gordon et al., 1995). The RTS,S vaccine was optimised to co-injected with AS01 

adjuvant which gives the best availability and immunogenicity of the vaccine (Kester et al., 2009). Unlike 

the RTS,S vaccine, PfSPZ vaccine is based on life attenuated, metabolically active, non-dividing 

sporozoites (Richie et al., 2015), while MVA ME-TRAP was developed from liver stage antigen. Although 

there are dissimilarities among these vaccine candidates, it is seemingly that most vaccines in the 

developmental pipeline require booster shot to prolong the protection effect of the vaccine (Crompton 

et al., 2010), which would be a limitation in control measure.  

 

1.4.3 Case management 

Case management in highly endemic area is another important factor in malaria control. The gold 

standard of diagnostic for malaria is a microscopic technique, however, the technique requires 

experienced health workers which are limited. Therefore, suspected malaria cases is inflated by 

misdiagnosis. Rapid diagnostic tests (RDTs) are implemented to address this issue. Rapid and accurate 

diagnosis of malaria could reduce the disease burden and prolong the drugs efficacies (WHO, 2015b).  
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1.5 Malaria eradication program  

Global attempts to eradicate malaria have been seen in the history. The biggest attempt was Global 

Malaria Eradication Programme (GMEP) launched by WHO in 1950s followed the successful attempts in 

regional eradication programmes. At the time, the use of DDT and antimalarial drug chloroquine was 

the major intervention of the programme. Although it was a promising effort, the program was 

abandoned in the late 1960s. After the program, increase in malaria prevalence was observed.  

 

After the abandonment of GMEP in 1969, the attempts to reduce malaria, HIV/AIDS, tuberculosis (TB), 

and other neglected tropical diseases (NTDs) burdens were not totally opted. This is reflected by the 

dedicated goal set for these diseases in Millennium Development Goals (MDGs) and Sustainable 

Development Goals (SDGs) in 2000 and 2016, respectively. In accordant with the goals, WHO has 

endorsed malaria eradication program worldwide in partnership with Bill and Melinda Gates foundation 

in 2007 (Tanner and de Savigny, 2008).  

 

1.6 Artemisinins 

Artemisinins are sesquiterpene lactones with an unusual endoperoxide bridge (Figure 1.20) considered 

the most important antimalarial drug class nowadays. It is recommended by World Health Organization 

(WHO) that artemisinin-based combination therapies (ACTs) should be used in malaria endemic areas 

as the first line treatment for uncomplicated falciparum malaria (WHO, 2015a). 

 

 

Figure 1.20 Artemisinin. Sesquiterpene (blue), lactone (black), 1,2,4-trioxane endoperoxide (red) 

 

The antimalarial drug discovery project by Chinese scientists in 1967, under Project 523, led to the 

discovery of artemisinin from sweet wormwood extract, Artemisia annua L., by Professor Youyou Tu, 

who was awarded Nobel Prize in Physiology or Medicine in 2015, at the Institute of Chinese Meteria 

Medica, China Academy of Chinese Medical Sciences (CACAMS) in 1971 (Tu, 2011). Research team had 

screened traditional Chinese medicines recorded in literatures and found extract from sweet 

wormwood leaf exhibits antimalarial activity, but not consistently potent. They found that the traditional 

extraction method involved heating step might degrade the active ingredient, thus, cool extraction 
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method could improve potency of artemisinin. Extract from cool extraction method has 100% kill 

malaria in mouse and had been tested in humans.  

 

Artemisinin and its derivatives (Figure 1.21) share an important core structure, 1,2,4-trioxane 

endoperoxide (shown in red in Figure 1.20), which is accounted for antimalarial activity. It is believed so 

because desoxyartemisin, lacking 1,2,4-trioxane, has no antimalarial activity in vitro and in vivo. The 

mechanisms by which artemisinins action are still uncertain. However, researchers have proposed 

mechanisms of activation of endoperoxide and mechanisms of action.  

 

   

                                              Artemisinin                                Dihydroartemisinin 

 

           

                             Artesunate                                  Artemether                           Artemotil 

Figure 1.21 Artemisinins 

 

Although artemisinins are very potent antimalarial drugs, their short elimination half-life is a major 

drawback and is not suitable for use in monotherapy. Therefore, artemisinins are recommended to be 

used in combination with other longer elimination half-life partner drugs to delay the resistance to 

artemisinins. The combinations are referred to as artemisinin-based combination therapies (ACTs) and 

is currently the first line treatment for uncomplicated falciparum malaria in most malaria endemic 

countries (WHO, 2015a).  

 

Artemisinin resistance has been evidenced from South East Asia region (Phyo et al., 2012) despite an 

attempt has made to prevent or delay the resistance as a lessons learnt from chloroquine resistance. 

Interestingly, artemisinin resistance is dissimilar from other drugs resistance, the conventional in vitro 

drug inhibitory assay (IC50) could not discriminate artemisinin susceptible and resistance in clinical 
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relevant phenotypes (Dondorp et al., 2009). It has been shown that in vivo artemisinin resistance is 

associated with the delayed parasite clearance (Dondorp et al., 2009, Phyo et al., 2012), and the delayed 

or prolonged developmental cycle during the early stage of parasites is a plausible mechanism of 

resistance to artemisinins (Teuscher et al., 2010). 

 

1.6.1 Bioactivation of artemisinins 

Artemisinins are activated to carbon centred-radicals within the parasite, especially in digestive vacuole 

where its activators are prominent. It is controversial how artemisinins are activated in the parasite. 

Three mechanisms of artemisinin activation have been proposed; reductive scission, open peroxide, 

and cofactor model.  

 

 

Figure 1.22 Proposed mechanism of artemisinin activation (adapted from O'Neill et al. (2010)) 

 

Reductive scission model proposes (Figure 1.22, right) that artemisinin is activated by binding of ferrous 

iron to either O1 or O2 in 1,2,4-trioxane endoperoxide, and rearrangement to primary or secondary 

carbon centred radical via β-scission or 1,5-H shift. In support of this mechanism, there is evidence of 

the existence of these radical intermediates (Butler et al., 1998, O'Neill et al., 2000, Wu et al., 1998). 

These carbon centred radicals are believed to alkylate parasite proteins or haems.  

 

The open peroxide model proposes that iron acts as a Lewis acid to open the trioxane endoperoxide 

bridge via ionic activation to generate subsequent reactive oxygen species. These reactive oxygen 

species are capable of protein oxidation. 
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The reductive scission and open peroxide models require iron for activation which is believed to derive 

from haem-iron and free iron. A recent study showed that haem is main activator (>80%) of artemisinin 

in early ring stage (Xie et al., 2016). This hypothesis is supported by detectable active falcipains, 

haemoglobin digestive enzymes, during early ring stage (Xie et al., 2016). Free iron also plays a role in 

activation of artemisinin as iron chelator, deferoxamine (DFO) showed antagonistic effect to artemisinin 

(Stocks et al., 2007, Xie et al., 2016) but did not abolish the inhibitory effect (Eckstein-Ludwig et al., 2003). 

These studies lend support to a role for free iron during artemisinin activation.  

 

The cofactor model proposes that the trioxane bridge is activated by redox-active flavoenzymes 

generating reactive oxygen species (Haynes et al., 2012). Flavoenzymes involved in the model are not 

limited to mitochondrial flavoenzymes but also cytosolic flavoenzymes.  The cofactor model has reduced 

its importance as haem-iron and free iron have been evidenced to play important role in activation of 

artemisinin (Xie et al., 2016), which are not required by the cofactor model. 

 

1.6.2 Postulated mechanisms of action and resistance of artemisinin 

With an attempt to address the mechanism of action and resistance of artemisinin and derivatives, 

many studies have been conducted to propose the mechanism or targets, including translationally 

controlled tumour protein (TCTP), sarco/endoplasmic reticulum Ca2+ ATPase (SERCA or PfATP6), and 

phosphatidylinositol-3-kinase (PI3K), whereas kelch propeller domain (K13) gene was proposed as a 

prominent artemisinin resistance marker.  

 

1.6.2.1 Translationally controlled tumour protein (TCTP) 

The first evidence of TCTP as the artemisinin target was suggested by Bhisutthibhan et al. (1998). 

Tritiated-dihydroartemisin ([3H]-DHA) was used to identified DHA protein target in situ. The 25-kDA 

protein was detected by autoradiographic detection of tritium and identified by matching sequence 

(Bhisutthibhan et al., 1998). Further study revealed molecular interaction of artemisinin with TCTP, the 

binding sites of artemisinin in TCTP were identified using MS, surface plasmon resonance spectroscopy, 

and bioinformatics approaches (Eichhorn et al., 2013). Also the interaction between artemisinin, TCTP 

and haemin in anti-cancer was also established (Bhisutthibhan et al., 1998, Eichhorn et al., 2013). These 

finding suggested artemisinin binding might interfere with cytokine-like activity of TCTP (Eichhorn et al., 

2013). However, the mechanism of artemisinin on TCTP is yet unknown.   

 

1.6.2.2 Sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) 

A study conducted in Xenopus laevis oocyst proposed that artemisinin is a direct inhibitor of SERCA 

(PfATP6) in vitro. Eckstein-Lugwig and colleagues showed that Xenopus membrane expressing PfATP6 

protein alongside with other transporters are normally functional. Artemisinin, but not quinine or 



26 
 

chloroquine, inhibits the function of PfATP6, but not other transporters, with high specificity. This effect 

is comparable to thapsigargin, a known specific inhibitor of PfATP6. They also showed free iron chelator 

deferoxamine (DFO) antagonises the effect of artemisinin on PfATP6 but not thapsigargin as 

thapsigargin does not require iron for activation (Eckstein-Ludwig et al., 2003).  

 

However, the hypothesis of PfATP6 as the target of artemisinin was challenged by the work by David-

Bosne et al. (2016). They showed that PfATP6 expressed in Xenopus oocyst is not affected by artemisinin 

and also suggested that Xenopus expression system is not suitable for the study and should be used 

with high caution. In addition, the relation between artemisinin resistance and mutations in PfATP6 

could not be established in clinical studies (Cui et al., 2012, Phompradit et al., 2011, Brasil et al., 2012, 

Tanabe et al., 2011). 

 

1.6.2.3 Kelch propeller domain (K13) 

K13 gene had been identified as a major marker for artemisinin resistance. Association between K13 

mutation and resistant trait of Plasmodium falciparum was identified from genome-wide association 

study (GWAS) on more than 1,000 clinical cases from Cambodia and Africa (Ariey et al., 2014).  

 

The major mutations in K13 propeller domain are C580Y, R539T and Y493H. These mutation patterns 

are strongly associated with slow clearance half-life (>5 h) (Ashley et al., 2014). The association between 

K13 and resistant trait was also confirmed by in vitro ring survival assay (RSA0-3) study conducted with 

transgenic parasites and clinical isolates (Straimer et al., 2015). Although mutations in K13 gene show 

correlation to artemisinin resistance, other putative genes (PfCRT, PfCTP, PfMDR1, PfMRP1, and ABC 

transporter) or putative target of artemisinin (PfATPase6) were not acquired mutation during 5-year 

selection of artemisinin resistant parasite, F32-ART5 (Menard et al., 2016).    

 

After the K13-propeller domain was identified as a prominent marker for artemisinin resistance, many 

other studies used K13 mutations to monitor artemisinin resistance worldwide (Conrad et al., 2014, 

Isozumi et al., 2015). A recent study monitoring polymorphisms in the K13 gene reveals a distribution of 

K13 polymorphisms. South East Asia are distributed into 2 regions according to haplotypes of mutation. 

Cambodia, Vietnam, and Laos are included in one region. Thailand, Myanmar, and China form another 

region (Figure 1.23). Africa shows rare nonsynonymous mutations, different from Asia. A common 

A578S mutation in Africa region shows no correlation with delayed parasite clearance as assayed by in 

vitro ring survival assay and clinical outcome (Menard et al., 2016).  

 



27 
 

 

Figure 1.23 Distribution of K13-propeller domain polymorphisms in Asia                                                               
(Reproduced with permission from Menard et al. (2016), Copyright Massachusetts Medical Society) 

 

1.6.2.4 Phosphatidylinosital-3-kinase (PI3K) 

In addition to other proposed targets of artemisinin, phosphatidylinositol-3-kinase (PI3K) was also 

suggested as the direct target of artemisinin. An increase in PI3K level is associated with mutation in K13 

gene. It was proposed that PI3K in artemisinin susceptible parasite is ubiquitinated, upon binding with 

K13 protein, and undergone degradation by proteasome system reducing the phosphatidylinositol-3-

phosphate (PI3P) level. On the contrary, K13 mutation blocks the interaction between PI3K and K13 

proteins preventing PI3K degradation and increasing PI3P level (Mbengue et al., 2015). PI3K plays roles 

in signalling pathway and trafficking in the parasites (Vaid et al., 2010). Its role in signalling might involve 

in resistance mediation (Mbengue et al., 2015).  

 

1.6.2.5 Delayed parasite life cycle (dormant ring) 

It was proposed that resistance to artemisinin is linked with delayed growth in the early stage of the 

parasite life cycle (dormant ring). This dormant ring was protected from the effects of artemisinin and 

resumed normal growth in the absent of drug (Teuscher et al., 2010, Witkowski et al., 2010, Cheng et al., 
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2012). Later on, this delayed parasite life cycle was observed in the clinic as a reflection of delayed 

parasite clearance half-life (Phyo et al., 2012, Ashley et al., 2014). The hypothesis led to the development 

of in vitro assays to determine sensitivity to artemisinin. Basically, the in vitro assays mimicked the clinical 

episode of artemisinin exposure and monitored the development of parasites. (Witkowski et al., 2013, 

Hott et al., 2015). It is believed that the short plasma half-life of artemisinins and dormant ring parasites 

led to the recrudescent after the treatment (Codd et al., 2011). Therefore, prolonged artemisinin 

regimen could reduce the treatment failures (de Vries and Dien, 1996, Codd et al., 2011, Ashley et al., 

2014). In addition, the delayed parasite clearance half-life was associated with mutations in the K13 gene 

(Ariey et al., 2014). However, what causes the parasite to enter dormancy is yet unknown.  

 

Following the recent studies, WHO has defined the new working definition of artemisinin resistance (Box 

1). This definition is based on therapeutic studies of ACTs, clinical trials, and K13 sequencing. 

Box 1 Working definition of artemisinin resistance (WHO, 2014b) 

Suspected partial artemisinin resistance is defined as: 

x ≥ 5% of patients carrying K13 resistance-associated mutations; or 

x ≥ 10% of patients with persistent parasitaemia by microscopy on day 3 after treatment with ACT or 

artesunate monotherapy; or 

x ≥ 10% of patients with a parasite clearance half-life of ≥ 5 h after treatment with ACT or artesunate 

monotherapy. 

 

Confirmed partial artemisinin resistance is defined as: 

≥ 5% of patients carrying K13 resistance-associated mutations, all of whom have been found, after 

treatment with ACT or artesunate monotherapy, to have either persistent parasitaemia by microscopy 

on day 3, or a parasite clearance half-life of ≥ 5 h. 

 

1.7 Approaches toward understanding mode of action 

Understanding mode of action or target of the antimalarial drugs is important for management of use 

and developing the novel antimalarial drugs. In order to study mode of action of the drugs, many 

approaches have currently been used including in silico assignment, stage specificity determination, 

gene annotation, and in vitro evolution of drug resistant parasite (McNamara and Winzeler, 2011). 

Unfortunately, many of the techniques applicable with other organisms were incapable in Plasmodium 

falciparum e.g. RNAi and microRNA (McNamara and Winzeler, 2011). A technique such as in vitro or 

possibly in vivo evolution of drug resistance is very time consuming and rather expensive, however, it 

was used extensively in the past to successfully identify the target of chloroquine (Fidock et al., 2000) 

and, more recently, the targets of the new antimalaril candidates (Lim et al., 2016). The technique has it 
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own limitation for compounds with multiple targets, which is hypothesised as artemisnin mode of 

action, and that resistance is gained by indirect mechanism.  

 

In this study a chemical biology approach using the modified artemisinin activity-based probes and 

trioxolane activity-based probe (click chemistry) and mass spectrometry proteomics were undertaken 

to identify the protein partners of these compounds. Click chemistry is a highly selective chemical 

reaction that favours only a direction of reaction. Click reaction is achievable via copper-catalysed and 

copper-free reaction; both reactions were adopted in this study (see detailed review in Chapter 3). In 

addition to chemical biology and proteomic approaches, whole genome sequencing by next-generation 

sequencing was employed to identify SNPs or genes associated with resistant phenotypes from in vivo 

artesunate-induced resistant parasite. 

 

1.8 Aims 

The aims of this work are to: 

1 Provide proof of concept (PoF) for click chemistry-based approach to study molecular targets 

and mechanism of actions. 

2 Identify the artemisinin molecular targets in various stages of Plasmodium falciparum strains 

3D7 parasite. 

3 Identify the targets of fully synthetic endoperoxide trioxolane in Plasmodium falciparum strain 

3D7 parasite. 

4 Identify SNPs or genes associated with artesunate resistant phenotype. 
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Chapter 2 

General Materials and Methods 
 

This chapter outlined general materials and methods used throughout the study in details. Specific 

experimental protocols can be found in the particular chapter.  

 

2.1 Chemicals 

All chemicals used in the study were supplied from Sigma-Aldrich unless otherwise stated.  

 

2.2 Preparation of HEPES 

HEPES or (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) was used as a buffer in complete media. 

One molar HEPES solution pH 7.4 was prepared by mixing 238.3 g HEPES in 800 mL distilled water on 

magnetic stirrer until completely dissolved. The pH was adjusted by adding 5 N NaOH to achieve pH 7.4. 

Then volume was adjusted to 1 L by distilled water. Final solution was filtered sterile using 0.2 µm PES 

filter unit (Thermo Scientific, 566-0020) and stored at 4°C.  

 

2.3 Preparation of hypoxanthine 

Hypoxanthine was supplemented in Albumax-I-based media as both RPMI-1640 and Albumax-I lack 

hypoxanthine, a precursor metabolite for purine biosynthesis. Four millimolar hypoxanthine was 

prepared by mixing 272.2 mg hypoxanthine in 400 mL distilled water. The pH was adjusted using 5 N 

NaOH to pH 12 and adjusted total volume using distilled water to 500 mL. The final solution was filtered 

sterile using 0.2 µm PES filter unit and stored at 4°C. 

 

2.4 Preparation of human serum 

Human sera were obtained from Royal Liverpool University Hospital and allowed to coagulate at room 

temperature (RT) overnight. Serum from each donor was distributed to 50 mL aliquots and centrifuged 

to sediment any remaining cells at 3500g 5 min at RT. Human serum which appeared red due to 

haemolysis was discarded. Then human serum suitable for parasite culture from each donor was 

pooled together; each pool contained more than 10 donors, and distributed to 50 mL aliquots. Prepared 

human sera were heat inactivated at 56°C for 1 h and stored at -20°C until used. Each batch of human 

serum was tested for sterility by examining the turbidity and microscopically checked after 24 h 

incubation at 37°C. The batch passing sterility test was used in complete medium without filtration.  
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2.5 Preparation of sorbitol  

The sorbitol solution was used to synchronise ring stage parasites. Five per cent w/v sorbitol solution 

was prepared in distilled water by mixing 25 g of sorbitol in 500 mL distilled water and mixed well. The 

final solution was filtered sterile using 0.2 µm PES filter unit and stored at 4°C. Sorbitol solution was pre-

warmed prior to use.  

 

2.6 Preparation of saponin 

The saponin solution was used for RBC membrane lysis. The saponin solution was prepared in 0.15% 

w/v by mixing 0.75 g saponin in 500 mL D-PBS and mixed well. The final solution was filtered sterile 

using 0.2 µm PES filter unit and stored at 4°C. All process was carefully carried out as saponin is irritation 

to respiratory system.  

 

2.7 Preparation of cryopreservation solution 

The cryopreservation solution was prepared by mixing 140 mL of glycerol with 360 mL of 4.2% sorbitol 

in 0.9% NaCl solution. The cryopreservation solution was prepared by weighting 15.12 g of sorbitol and 

3.24 g of NaCl and mixed with 360 mL of distilled water until completely dissolve. This give final 

concentration of 28% glycerol, 3% sorbitol, and 0.65% NaCl. The final solution was filtered sterile using 

0.2 PES filter unit and stored at 4°C. 

 

2.8 Preparation of TE buffer 

TE buffer or Tris-EDTA buffer was prepared by mixing 1 M Tris and 0.5 M EDTA pH 8 together and 

adjusted the pH to 7.4 by HCl. 0.5 M EDTA buffer was prepared by adding 18.6 g of EDTA to 80 mL 

distilled water adjusted to pH 8 to dissolve fully, and adjusted to 100 mL by distilled water. 1M Tris was 

prepared by adding 60.57 g of Trizma® base to 400 mL distilled water, adjusted to pH 7.4, and adjusted 

volume to 500 mL by distilled water. Then 10 mL of 1 M Tris and 2 mL 0.5 M EDTA pH 8 were added to 

900 mL distilled water and adjusted the pH to 7.4, if needed, and adjusted volume to 1 L by distilled 

water. The fiinal solution was filtered sterile using 0.2 µm PES filter unit and stored at 4°C.  

 

2.9 Preparation of lysis buffer 

The lysis buffer was prepared at 10X concentration for long term storage and diluted to 1X solution with 

sterile distilled water when required. To prepare 500 mL of 10X lysis buffer, 100 mL of 1 M Tris pH 7.4 

and 500 µL of 0.5 M EDTA pH 8 (both reagents were prepared with the same method as for TE buffer, 

section 2.8. Then 4 mL of Triton-X 100 and 400 mg of saponin were added to the mixture and adjusted 

volume to 500 mL with distilled water. The 10X lysis buffer was filtered sterile with 0.2 µm PES filter unit 

and stored at 4°C until use.  
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2.10 Preparation of complete media  

There are two types of complete media (CM) used in the study: human serum-based and Albumax-I-

based complete media. Albumax-I-based complete media were prepared from base RPMI-1640 (Sigma, 

R8758) supplemented with 12.5 mL 1M HEPES, 5 mL 4 mM hypoxanthine pH 12, 25 mL 5% Albumax-I 

(Life Technologies, 11020-039), and 200 µL 10 mg/mL gentamycin solution. As all components were 

sterile-filtered, no sterilisation process was needed. Human serum-based media were prepared from 

based RPMI-1640 supplemented with 12.5 mL 1 M HEPES, 50 ml human serum, and 200 µL 10 mg/mL 

gentamycin, and filtered sterile with 0.2 µm PES filter unit, if required. Complete media were stored at 

RT and used within 2 weeks after preparation.   

 

2.11 Preparation of washed red blood cells  

Whole blood O+ supplied in citrate-phosphate-dextrose bag was obtained from national blood services 

and aseptically distributed to 25 mL aliquots. Prior to use, the whole blood was washed 3 times with 

RPMI-1640 to remove all buffy coat. Washed blood was stored at 4°C and used within 1 week.  

 

2.12 Retrieval of parasite from cryopreservation  

The parasites used in the study were preserved and stored in vapour phase of liquid nitrogen at -190°C 

for long-term storage. Parasites were retrieved from cryo storage using single step 3.5% NaCl2 method. 

Cryogenic vials containing cryogenic preserved parasites were thawed in 37°C water bath. The contents 

were then aseptically transferred to 15 mL sterile centrifuge tubes. An equal volume of 3.5% NaCl2 was 

gently added drop-by-drop whilst gently mixed and allowed to equilibrate at 37°C for 5 min. Parasite 

pellet was obtained by centrifuged at 500g 5 min at RT. Then aliquot of 1 mL aseptically processed 

human serum was added and equilibrated at 37°C for 30 min, then washed with 10 mL RPMI-1640. 

Culture was initialised by adding 100 µL of fresh washed RBCs, 10 mL complete medium, and gassed as 

per normal culture. 

 

2.13 Parasite culture 

In vitro parasite culture was performed followed the method developed by Trager and Jensen (1976) 

with some modifications. The culture was maintained in T50 flask (Nunc, Thermo Scientific) at 2% 

haematocrit in 50 mL complete medium. The culture was maintained in physiological conditions at 37°C 

in physiological atmosphere by flushing with 4% oxygen, 3% carbon dioxide, 93% nitrogen gas mixture 

via sterile serological pipet. The day-to-day parasite culture was maintained at 1-2% parasitaemia, daily 

examined for parasitaemia and stages by thin smear stained with 10% Giemsa solution (BDH, improved 

R66 solution) at 1000X magnification power. Once parasitaemia was higher that 2%, excessive culture 
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was taken out and supplied with equal volume of washed RBCs to reduce parasitaemia, unless higher 

parasitaemia was desired.     

 

2.14 Synchronisation of ring stage parasites by sorbitol 

The 5% w/v sorbitol solution was used to eliminate trophozoite stage parasites in the culture. Parasite 

pellet was obtained by centrifugation at 800g 5 min at RT. Then 5 volumes of pre-warmed 5% sorbitol 

solution at 37°C was added to parasite pellet and mixed well. Parasite pellet was allowed to incubate 

with sorbitol solution for 10 min at 37°C. After incubation, parasite pellet was obtained by centrifugation 

and sorbitol removed by aspiration. Parasite pellet was washed to completely remove sorbitol solution 

by 35 mL RPMI-1640. Then synchronised parasite was maintained in normal culture condition. Parasite 

remains synchronous for up to 5 erythrocytic cycles if carefully maintained. However, synchronous 

period is also dependent on parasite strain.  

 

2.15 Establishment of cryopreservation stock 

Cryopreservation stock of parasite culture was always establised within the first 2 cycles of parasite 

culture after culture initiation to ensure parasite integrity. Cryopreservation stock was prepared by 

adding 2 volumes of cryopreservation solution to the washed parasite pellet, gently drop-by-drop whilst 

gently mixed, and transferred to a sterile cryogenic vial. Cryogenic vial was directly transferred to 

Statebourne cryogenic tank.    

 

2.16 Parasite strains and isolates 

The parasite used in this study was mainly Plasmodium falciparum strain 3D7. Proteomic works of ring 

and trophzoite stage were performed with 3D7 parasite. 

 

Parasites used in whole genome sequencing were Plasmodium falciparum parasites infected in 

humanised SCID mouse model. Parasite TE616 parent isolate was used to infect mouse and treated with 

clinical relevant 3-day corse artesunate monotherapy (10-50 mg/kg). Then blood was collected and 

injected to the new mouse to generate the passage 2 parasite TE1201. These process was repeated for 

22 passages to induce resistance to artesunate. Parasite clearance half-life was determined for every 

passage to monitor resistant phenotype to artesunate. The experiment to generate this parasite line 

was conducted at GSK open lab at Tres Cantos, Spain. Then cryopreserved parasites were shipped to 

LSTM (phenotype data not shown). Parasites were retrieved, adapted to culture, and extracted for gDNA 

as described in section 2.12, 2.13, and 2.19.  
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Table 2.1 Plasmodium falciparum parasite isolates from GSK 

Isolate Passage Artesunate phenotype Note 

TE616 Parent Sensitive  

TE1201 2 Sensitive  

TE1211 3 Sensitive  

TE1214 4 Sensitive Failed to retrieve 

TE1281 5 Sensitive Failed to retrieve 

TE1304 6 Sensitive  

TE1328 8 Sensitive  

TE1368 10 Sensitive  

TE1373 11 Sensitive  

TE1389 11 Sensitive  

TE1411 13 Sensitive  

TE1419 14 Resistant  

TE1423 15 Resistant  

TE1432 16 Resistant  

TE1435 17 Resistant  

TE1436 18 Resistant  

TE1439 19 Resistant  

TE1475 22 Resistant  

 

2.17 Conventional IC50 assay 

The half maximal inhibitory concentration (IC50) of antimalarial compounds was determined using 

conventional fluorometric-based IC50 assay. The stock compounds were generally prepared in DMSO at 

10 mM concentration. Assay plates were created using Hamilton® Microlab Star robotic platform. The 

highest compound concentration was 1 µM and 1:4 serially diluted to achieve 8 concentration levels. 

Blank CM was used in positive growth control (assay negative control) and 1 µM artemisinin was used 

in negative growth control (assay positive control). The assay plate has layout as in Figure 2.1.  

The parasite inoculum was prepared to 1% haematocrit and 2% parasitaemia. An aliquot of 50 µL of 

parasite inoculum was added to each pre-loaded well and incubated in modular chamber and gassed 

with culture gas for 2 min. After 48 h, assay was terminated by freezing the assay plate at -20°C overnight 

or until further processed.  

 

The parasite growth was measured in reflection of nucleic acid contents detected by nucleic acid 

fluorescent dye SYBR Green I in 1X lysis buffer. An aliquot of 100 µL 1X SYBR Green I in 1X lysis buffer 

was added to each well and incubated in dark condition for 1 h before measured by Thermo Scientific 
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VarioSkan™ microplate reader. SYBR Green I was excited at 497 nm and fluorescent emission detected 

at 520 nm. The IC50 value was determined by regression model incorporated in ‘IC50’ package in R 

programming or GraphPad Prism® software.   

 

 

Figure 2.1 IC50 assay plate layout. Each assy was performed in triplicate wells. The outermost wells are avoided and 
filled with complete medium to minimise the edge effect. 

 

2.18 RBC lysis of infected RBC by saponin 

The 0.15% w/v saponin solution was used for RBC membrane lysis. Parasite culture was first pelleted by 

centrifugation at 800g 5 min at RT. Then 5 volumes of 0.15% saponin solution was added to parasite 

culture pellet and left on for 5 min on ice to prevent degradation of proteins or DNA by exogenous 

proteases or DNases. After incubation, free parasite pellet was obtained by centrifugation at 3500g 5 

min at 4°C. Free parasite pellet was then washed with 10 mL to 35 mL D-PBS, 3 times to remove lysed 

cells. Free parasite pellet was finally resuspended in either TE buffer or D-PBS supplemented with 1X 

Roche cOmplete™ EDTA-free protease inhibitor according to subsequent applications. 

 

2.19 Extraction of genomic DNA  

All genomic DNA (gDNA) in this study was extracted from the trophozotite stage parasite cultures by 

phenol-chloroform method. The saponin solution was used to purify parasites from RBCs and 
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resuspended in TE buffer. This parasite pellet can be stored at -80°C until further process. Free parasite 

pellet was allowed to defrost at 4°C until completely thawed and complete lysis was assisted by adding 

20 µL of protenase K solution (Qiagen) and heated to 65°C for 5 h, then treated with 20 µg/mL of RNase 

A for 10 min at RT to eliminate RNA contamination.  

 

The extract was added to 1 mL phenol:chloroform:isomoyl alcohol solution (25:24:1) in 1.5 mL 

microcentrifuge tube, vortexed, and centrifuged at 17,000g 2 min at RT. Then aqueous phase (upper 

layer) was carefully transferred to a new clean microcentrifuge tube containing 1 mL 

phenol:chloroform:isomoyl alcohol solution. This step was repeated 3 times to minimise protein 

contamination in gDNA samples. The final aqueous phase was collected, and 750 µL cold absolute 

methanol was added to precipitate gDNA overnight at -20°C. Genomic DNA was collected from 

methanol precipitation step by centrifugation at 17,000g 20 min at 4°C. Methanol was completely 

removed by aspiration and pellet was air-dried at 50°C until completely dry as methanol residue can 

interfere some enzymes in the subsequent steps. Genomic DNA pellet was recovered by adding 

adequate (~50 µL) volume of nuclease-free water pre-warmed at 42°C. This gDNA solution can be stored 

at 4°C or -20°C or -80°C depending on storage time. Genomic DNA was checked for purity and 

concentration by spectrophotometry (NanoDrop™, Thermo Scientific) and agarose gel electrophorysis.   

 

2.20 Spectrophotometry analysis of genomic DNA  

Quality and quantity of genomic DNA was assessed by determination of protein and nucleic acid 

contents in the sample by NanoDrop™ spectrophotometer (Thermo Scientific). An aliquot of 2 µL gDNA 

sample was loaded onto NanoDrop™ head and read for absorbance at 260 nm for nucleotides 

measurement and 280 nm for proteins, phenols, and other contaminants measurement. The 260/280 

ratio was used to determined purity of gDNA sample, ratio of more than 1.8 is acceptable for most 

application including PCR and sequencing purposes. NanoDrop™ quantification of gDNA is not accepted 

by Centre for Genomic Research (CGR), University of Liverpool (UoL). CGR required quantification of 

gDNA by fluorometric-based which was generously performed by CGR staff using Qubit® fluorometer 

(Thermo Scientific).  

 

2.21 Agarose gel electrophoresis  

Agarose gel electrophoresis was used to detect PCR products or check for genomic DNA quality. To 

prepare 1% agarose gel in tris-borate-EDTA (TBE) buffer, 1 g of agarose was added to 100 mL TBE buffer 

and heated in medium heat microwave for 2 min and mixed gently until completely dissolved. Then 10 

µL SYBR Safe nucleic stain was added to gel solution and gently mixed. From this point onwards, 

exposure to light was avoided. The agarose gel solution was allowed to cool down before casted in the 
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gel tray and comb inserted. Agarose gel solution was allowed to polymerise at RT for 30 min. The comb 

was removed from the casted gel befor sample loading. 

 

Thermo Scientific GeneRuler™ 1 kb plus DNA ladder was used for size comparison, an aliquot of 3-5 µL 

ladder was used depending on the well volume. DNA sample was mixed with 6X sample loading buffer 

(Thermo Scientific) to achieve 1X dye solution before loading to the agarose gel. Gel electrophoresis was 

performed at 80 V constant for 1.15 h for 7 cm gel. The gel was imaged by UV transilluminator gel 

documentation system (Syngene) via GeneSys software.   

 

2.22 Polyacrylamide gel electrophoresis  

Polyacrylamide gel electrophoresis (SDS-PAGE) was used to analyse protein samples. Thermo Scientific 

Novex™ NuPAGE™ Bis-Tris 4-12% pre-cast gel was used in the present study. Running buffer used was 

NuPAGE™ MES SDS at 1X prepared from 20X commercial stock solution by distilled water.  

 

Protein samples were incubated with corresponding volume of 4X NuPAGE™ LDS sample buffer and 

10X NuPAGE™ reducing agent and heated at 90°C for 10 min. Then up to 15 µL of samples was loaded 

to the gel. Electrophoresis was performed at 120 V constant for 2.15 h in the presence of 1X NuPAGE™ 

antioxidant and imaged with Bio-Rad Gel Doc™ EZ gel documentation system or GE ImageQuant™ LAS 

4000 imaging system. Blue LED excitation and the Y515 BP Cy2 filter setting was used to detect signal 

from Alexa Fluor® 488.  

 

2.23 In vitro parasite treatment with chemical probes 

In each experiment, ten 50-mL flasks were used for each probe and also for DMSO control. Parasite of 

more than 10% parasitaemia was used. Plasmodium falciparum parasite culture is described in section 

2.13. Parasites from all flasks were pooled together and re-distributed to aliquots of 2% haematocrit in 

50 mL complete medium to obtain an equal parasitaemia in each experimental condition. 

  

Parasite cultures were treated with either 1 µM active probe or inactive probes or an equal volume of 

DMSO for 6 h at normol culture conditions. After 6 h, all flasks from respective condition were pooled 

together and parasite pellet was sedimented by centrifugation at 1500g 5 min at RT. Then RBC lysis was 

performed by adding 35 mL of 0.15% saponin solution and incubated for 5 min at 4°C to allow maximum 

lysis of RBCs. The free parasites were collected by centrifugation at 3,500g 5 min at 4°C followed by 3 

washing steps with 50 ml of Ca2+ and Mg2+-free phosphate buffer saline solution. Then the free parasites 

were suspended in 1 mL of D-PBS containing Roche cOmplete™ protease inhibitor and stored at -80°C 

until process. 
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2.24 Protein samples preparation and quantification 

Protein samples from clickable-probes treatment were process as follows. Free parasite in proteinase 

inhibitor D-PBS solution was briefly sonicated to assist cell lysis using probe sonicator (30% power). Cell 

debris was separated by centrifugation at 1,600g 20 min at 4°C and supernatant was collected. 

 

The Bradford protein quantification assay was performed to quantify protein concentration in each 

sample. Bovine serum albumin (BSA) standard ranging from 2-0.125 mg/mL was prepared in triplicate 

in 96-well microwell plate. Each well contained 5 μL protein sample (or BSA standard solution), 45 μL D-

PBS, and 250 μL Bradford reagent (Bio-Rad). Then the protein concentration was adjusted to 

appropriated concentration (1.5-2 mg/mL) using D-PBS. Concentration adjusted protein samples were 

ready for click chemistry reaction. 

 

2.25 Concentration of protein samples 

In order to concentrate protein in the samples, Christ rotational vacuum concentrator was used. Protein 

samples in 2 mL screw-cap tubes were placed in vacuum concentrator with lid off. A vacuum state was 

generated by external vacuum pump equipped with cooler condenser operating at -50°C. Duration for 

concentration was depended on initial sample volume and desired final sample volume. To completely 

remove solvent in the samples, in typical 250 μL solution, samples were placed in the system for 6 h. 

 

2.26 Click reaction 

In this study copper-catalysed and copper-free click reaction were used. For copper-catalysed reaction, 

biotin-azide (PEG4 carboxamide-6-Azidohexanyl Biotin) was supplied from Life Technologies. Protein 

samples were prepared in 500-μL aliquot and processed as follows. Aa aliquot of 5.65 μL of 5 mM biotin-

azide in DMSO was added to each protein sample and vortexed, followed by 11.3 μL of 50 mM Tris(2-

carboxyethyl)phosphine hydrochloride (TCEP), no vortex applied, 34 μL of 1.7 mM Tris[(1- benzyl-1H-

1,2,3-triazol-4-yl)methyl]amine (TBTA), vortexed, and 11.3 μL of 50 mM CuSO4, vortexed. Then reaction 

was allowed to incubate at RT for 1 h under dark condition and gently mixed every 15 min. For copper-

free click reaction, Click-IT® biotin dibenzocyclooctyne (DIBO) alkyne (Life Technologies) was used 

instead of biotin-azide. The aliquot of 5.65 μL of 5 mM Click-IT® biotin DIBO alkyne was added to protein 

samples and vortexed. Copper-free click reaction was allowed to occur at RT for 1 h in the absent of light 

and gently mixed every 15 min. 

 

After 1 h, respective samples were pooled together and centrifuged at 6,500g 4 min at 4°C to pellet 

protein adducts. Then 750 μL of ice-cold absolute HPLC-grade methanol was added to protein pellet 

and briefly sonicated for 3-4 s, repeated methanol wash step twice. Then protein pellet was 
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resuspended in 650 μL of 2.5% SDS in D-PBS and briefly sonicated 3-4 s 3 times to dissolve protein pellet. 

Samples were then heated in 90°C heat block for 5 min to denature proteins in the samples followed by 

pulse sonication 2, twice. Cell debris and insoluble proteins were pelleted by centrifugation at 6,500g 4 

min at RT. The supernatant was collected and adjusted volume to 3.5 mL by D-PBS. Samples were stored 

at -20°C until further process. 

 

To fluorescently label protein in the samples by click reaction, protein samples from azide probes 

treatments were used. An aliquot of 50 μL protein samples was mixed with 5 μL of 200 μM Click-IT® 

Alexa Fluor® 488 DIBO alkyne (Invitrogen, USA) in D-PBS and incubated for 1 h at RT with gentle mixing 

every 15 min interval. Then reaction was terminated by adding 500 μL absolute cold methanol to 

precipitate protein. The samples were centrifuged to obtain protein pellet and washed 3 times with cold 

methanol. Protein pellet was then resuspended in 1X NuPAGE™ LDS sample buffer (Invitrogen, USA) 

supplemented with 1X NuPAGE™ sample reducing agent (Invitrogen, USA) and heated at 90°C in heat 

block for 10 min. Samples were ready for gel electrophoresis analysis (section 2.22). 

 

2.27 Streptavidin enrichment, protein alkylation and reduction 

Protein samples from click reaction step were thawed and adjusted the volume to 8.3 mL by D-PBS. 

Then 200 μL of pre-washed streptavidin agarose beads (Pierce, Thermo Scientific) in D-PBS, containing 

100-μL of 50% slurry streptavidin, was added to the solution and mixed on end-over rotator for 1.5 h. 

After incubation with beads, samples were centrifuged at 1,400g 2 min at RT, and supernatant was 

discarded. The remaining beads were transferred to microbio-spin column (Bio-Rad) and washed with 

1 mL of 1% SDS in D-PBS, 6 M urea in D-PBS, and D-PBS, each for 3 times. Washed beads were 

transferred to 2-mL screw-cap tube using minimal D-PBS and centrifuged at 1,400g 2 min at RT. Beads 

were then resuspended in 500 μL of 6 M urea in D-PBS. Then 25 μL of 200 mM DL-dithiothreitol (DTT) 

was added to the samples and heated in 65°C heat block for 15 min. An aliquot of 25 μL of 500 mM 3-

indoleacetic acid (IAA) was added and mixed on medium speed end-over rotator for 30 min at RT under 

dark condition. After incubation, samples were centrifuged at 1,400g 2 min at RT and discarded the 

supernatant. The remaining beads were washed with 1 mL D-PBS.  

 

To perform protein digestion, washed beads were resuspended in 200 μL of 2 M urea. Then 2 μL of 100 

mM CaCl2 and 5 μL of 0.5 mg/mL sequencing-grade trypsin (Promega) were added to the samples and 

allowed to incubate in orbital shaker (250 rpm) overnight at 37°C. Elution of tryptic peptides was 

performed using microbio-spin column (Bio-Rad). Then 17 μL of 90% formic acid was added to tryptic 

peptide. At this step samples were ready for peptide sequencing by HPLC-MS/MS and can be stored at 

-80°C. 
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2.28 HPLC-MS/MS analysis 

Peptide sequencing was performed on ultra-high-performance liquid chromatography coupled tandem 

mass spectrometry system (UHPLC-MS/MS). UHPLC used in the study was Thermo Scientific UltiMate™ 

3000LC chromatography system. Mass spectrometer used in the study was Themo Scietific LTQ 

Orbitrap™ Velos using Xcalibur™ software v2.1 (Thermo Scientific). Peptides sample were injected onto 

analytical column (Dionex Acclaim® PepMap™ RSLC C18, 2 μm, 100 Å, 75 μm i.d. x 15 cm, nanoViper™.), 

which was maintained at 35°C and at a nanoflow rate of 0.3 μL/min. Peptides were separated over linear 

chromatographic gradients composed of buffer A (2.5% ACN: 0.1% formic acid) and buffer B (90% ACN: 

0.1% formic acid). Two gradients, 60 (3-50% buffer B in 40 min) and 120 minutes (3-60% buffer B in 90 

min), were employed for analysis. Full scan MS spectra were acquired over the m/z range of 350-2000 

in positive polarity mode by the LTQ Orbitrap™ Velos at a resolution of 30,000. A data dependent Top20 

collision induced dissociation (CID) data acquisition method was used. The ion-trap operated with CID 

MSMS on the 20 most intense ions (above the minimum MS signal threshold of 500 counts). 

 

2.29 Protein Identification 

Protein identification was performed by MASCOT and SEQUEST search engine via Thermo Scientific 

Proteome Discoverer™ v1.4. The database used in the study was SwissProt database for Plasmodium 

falciparum. Raw spectrum files from mass spectrometer were imported to the software and processed 

with following MASCOT parameters: precursor mass tolerance of 10 ppm, fragment ion tolerance 0.8 

Da with one tryptic missed cleavage permitted. Carbamidomethyl (C) was set as a static modification 

with oxidation of methionine (M) and deamidation (N,Q) set as dynamic modifications. A decoy database 

was searched and relaxed peptide confidence filters applied to the dataset (ion scores p <0.05 / FDR 

5%). 

 

The protein list was then filtered by high confidence peptide and 2 peptide-per-protein filters to increase 

confidence of protein identification. For each paired experiment, proteins identified by DMSO and 

desoxyartemisinin probe were excluded from the artemisinin activity-based probe proteome.  

 

2.30 Computational protein-ligand docking 

Computational protein-ligand docking was performed using Autodock Vina software either on 

standalone or built-in in Chimera software suite. Three-dimensional protein structures were obtained 

from PDB database. Any bound inhibitor was removed from the structure and polar hydrogens were 

added by MGL tools or Dock Prep software. Area of interest was defined manually with either in 

AutoDock tools or Chimera. AutoDock Vina calculates the results according to the user inputs. Docking 

results were visualised by Chimera.
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Chapter 3 

The use of click-chemistry to define the proteomic targets of 
the antimalarial artemisinin: validation of a pairwise 

strategy 
 

3.1 Introduction 

Proteomics is a branch of the post-genomics era –omics technology. The suffix –ome comes from latin 

root oma meaning mass. Proteomics is thus a study of large amounts of proteins. The term ‘proteome’ 

was first coined in 1994 (Patterson & Aebersold 2003), and there are 2 major proteomic approaches; 

untargeted proteomics and targeted proteomics. Untargeted proteomics aims to study all proteins in a 

given set of conditions, whereas targeted proteomics focuses on a given set of pre-determined proteins 

in a particular condition. In this study, an untargeted proteomics approach using click chemistry was 

employed to study the potential molecular target(s) of artemisinin action against Plasmodium for the 

first time. 

 

During the early years of proteomic research, two-dimensional gel electrophoresis (2DE), developed in 

1975, was the most commonly used separation technique. This technique relies on the principle that 

each protein will migrate on a polyacrylamide gel matrix at different rates based on their isoelectric 

points (which is charge dependent) in the first dimension and their relative molecular weights in the 

second dimension (O'Farrell 1975). In the late 1960s a mass spectrometry method was developed for 

protein and, more specifically, peptide sequencing. However, peptide sequencing only really came into 

its own as an analytical technique when the tandem mass spectrometry technique was invented 

(Biemann 1986; Hunt et al. 1986). Since then, mass spectrometry-based proteomics has become 

mainstream and together with protein sequence databases, has significantly advanced research in this 

field. 

 

Click chemistry is a relatively new approach in synthetic chemistry developed by Professor Barry 

Sharpless’s group at The Scripps Research Institute in the USA. He was awarded the Nobel Prize in 

chemistry in 2001 for the development of chirally catalysed oxidation reactions (also known as Sharpless 

epoxidation and Sharpless asymmetric dihydroxylation). Briefly, it is a type of reaction that can 

synthesise complex molecules from small units in a stereospecific manner with high yields. The reaction 

itself should also display a large thermodynamic driving force to favour the formation of a single 

reaction product. Thus the click reaction provides a good platform for complex molecule synthesis. 
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Subsequently this approach has been modified to allow chemical tagging of target biomolecules 

coupled with targeted pull down purification and identification, the “click chemistry” strategy. 

 

3.1.1 Mass spectrometry-based proteomics 

The birth of the mass spectrometer (MS) was closely related to the study of the atom by Sir Joseph John 

Thomson, 1906 Nobel laureate in physics, which led to development of the mass spectrograph by 

Francis William Aston. Mass spectrometry (MS) was used extensively by physicists and chemists in the 

early years and, later on, caught biologists’ attention for biomolecular studies in the late 1950s (Figure 

3.1) (Yates III 2011).  

 

 

Figure 3.1 Evolution of mass spectrometry-based proteomics from microbial isolates to communities. (Taken from 
VerBerkmoes et al. (2009). License permission no. 3973081315319). 

 

In general, a mass spectrometer detects the mass of charged molecules, giving the technique its name. 

There are three main elements in the MS technique - ionisation, mass analysis and ion detection. 

Samples for MS analysis are required to be ionised in the initial step of MS analysis. Those ionised 

molecules then travel through the path of the mass analyser where they are separated in some way 

before finally reaching the detector. MS results are reported in the form of mass-to-charge ratios (m/z) 

(Todd, 1991).  

 

 

Figure 3.2 Mass spectrometer schematic 
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Ionisation is the first critical step in order to make a sample detectable by MS. Ionisation can be 

performed by several methods. In biological applications, soft ionisation methods are commonly 

preferred i.e. electrospray ionisation (ESI) and matrix-assisted laser desorption/ionisation (MALDI). ESI 

is one of the most popular ionisation methods, due to the fact that it can be easily equipped on-line with 

a separation platform, usually liquid chromatography, and it is able to generate single and multiple 

charged masses, which broaden masses analysed. John B. Fenn and Toichi Tanaka, inventors of ESI, 

were awarded the Nobel Prize in Chemistry in 2002. On the other hand, MALDI sample preparation is 

more complicated. It requires co-crystallisation with an organic matrix. This matrix, when excited by a 

laser at an appropriate wavelength, will then ionise the sample within the matrix into a gas phase. 

Masses charged by MALDI are usually singlets (Finehout and Lee, 2004). More recently, MALDI has been 

applied in a MALDI imaging technique (Ly et al., 2016, Aichler and Walch, 2015, Weaver and Hummon, 

2013). This technique is advantageous in pathophysiological research, as a desired area within a tissue 

can be analysed whilst being imaged.  

 

 

Figure 3.3 Principle of electrospray ionisation (ESI) 

 

The mass analyser is another important step in MS analysis. This component also determines the 

resolution of the MS. Resolution in mass spectrometry is directly related to number of masses which 

can be analysed by MS. Resolution of MS is usually determined by full width of the peak at half of its 

maximum height or FWHM (IUPAC, 1997). Popular mass analysing techniques are quardrupole/iontrap, 

time-of-flight (TOF), orbitrap, and Fourier transform-ion cyclotron resonance (FTIC), in the order of 

increasing mass resolution.    

 

In modern MS techniques, masses are usually analysed more than once, termed tandem mass 

spectrometry (MS/MS). Charged masses are first analysed and allowed to collide with inert gas such as 

argon or helium in a collision cell to generate fragmented ions or daughter ions. This process is called 

collision-induced dissociation (CID). Each molecule has specific patterns of fragmentation and this 

pattern can be used to specifically identify the molecule according to its fragmentation pattern.  



 

44 
 

 

Figure 3.4 Schematic diagram of Thermo Scientific LTQ Orbitrap™ Velos                                                                
(taken from www.planetorbitrap.com) 

 

The mass detector is the final destination of masses being analysed by MS. Charged masses that pass 

through the ion path of the mass analyser hit the detector, usually an electron multiplier or 

microchannel plate, generating an electron cascade magnifying signal in the form of a detectable 

current. This detection can be calibrated to read out the specific mass/charge.  

 

In order to increase the number of detectable analytes, MS or MS/MS is usually coupled with liquid 

chromatography (LC) to separate analytes in the sample according to their chemical properties before 

analysis by MS. LC deployed in biological applications are mainly high-performance or ultra-high 

performance (HPLC or UHPLC) depending on the pressure level used in the separation. Pressure in LC 

system is mainly affected by column size and flow rate. 

 

In the present study, ultra-high performance liquid chromatography coupled tandem mass 

spectrometry was employed (UHPLC-MS/MS) for peptide sequencing. This technique provides high 

sensitivity of mass analysis and an easy to operate platform.  

 

Peptide sequencing, not protein sequencing, by MS is a fast growing field in light of computer-assisted 

technology and bioinformatics. Before being analysed, protein samples need to be digested to create 

peptide fragments by use of certain proteases, usually trypsin. These peptide fragments are then 

sequenced by MS. In the past, peptide sequencing had been achieved manually by comparing peaks in 

a mass spectrum, known as de novo peptide sequencing (for detail see review in Steen and Mann (2004)). 

Nowadays, de novo peptide sequencing and peptide sequencing matches are performed 

computationally by software or via database searching. Peptide database searching is a leap forward in 

proteomic research. A peptide database is created from a genome sequence database by predicting all 

possible peptide sequences in an organism. Nonetheless, a limitation of the database searching 

approach as that not every organism has its genome sequenced. Common database peptide searching 

algorithms are PeptideSearch, Sonar MS/MS, MASCOT, and SEQUEST (Steen and Mann, 2004). 
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Figure 3.5 Peptide sequencing by MS using database matching. (Taken from Steen and Mann (2004). License 
permission no. 3973090357128) 
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3.1.2  Click chemistry 

Click chemistry was originally developed as a synthetic approach to generate complex molecules from 

small simple molecules but has recently been applied to biological and pharmaceutical research as it 

provides high specificity and selectivity (Kolb et al., 2001, Moses and Moorhouse, 2007). In biological 

applications, click reactions are also referred to as bio-orthogonal reactions. There are a number of 

limitations to which reactions can be bio-orthogonal. They have to be insensitive to water, nucleophilic 

attack, redox, and biological enzymes and able to occur under physiological conditions (pH and 

temperature) (Jewett and Bertozzi, 2010). These criteria leave only a few compatible reactions and 

functional groups. Among these are azides and alkynes, thanks to their inert nature and unique 

chemistry.  

 

To allow bio-orthogonal reactions between alkynes and azides to occur in a biological system, copper-

catalysed and copper-free reactions are mainly used (Ramil and Lin, 2013). Both reactions result in 

production of 1,2,3-triazole via [3+2] cycloaddition (also called Huisgen’s 1,3-dipolar cycloaddition). The 

difference between these reactions is the types of alkyne used which governs the need of a copper 

catalyst. In a copper-catalysed reaction, terminal alkyne reacts with an azide in the presence of copper 

and a stabilising ligand (to increase the rate constant of the reaction). When cyclooctyne is used in the 

reaction, there is no need to add a catalyst as its 8-membered ring strain is the driving force for the 

cycloaddition reaction (Jewett and Bertozzi, 2010, Subramanian et al., 2014).  

 

Sharpless and colleagues (2002) first proposed the mechanism of Cu-catalysed 1,3 dipolar cycloaddition 

as a stepwise process involving copper-alkyne intermediates (Rostovtsev et al., 2002), a hypothesis 

which was subsequently proved in 2013 by Fokin and Worrell (Scheme 3.1). The presence of Cu as a 

catalyst in the reaction increases the reaction’s rate constant enormously (Worrell et al., 2013, 

Rostovtsev et al., 2002).  
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Scheme 3.1 Proposed mechanism of 1,3-dipolar cycloaddition by copper-catalysed click reaction (Adapted from 
Worrell et al. (2013), Rostovtsev et al. (2002)) 

 

For copper-free click reactions, cyclooctyne was used instead of a terminal alkyne. The alkyne moiety in 

cyclooctynes has an internal bond angle of 160°, compared to 180° for a typical alkyne, generating a 

ring strain and elevating its ground state energy (Jewett and Bertozzi, 2010). This ring strain can be 

increased by adding fluorine atoms onto the ring (Sletten and Bertozzi, 2009), or by incorporating 

benzene rings to cyclooctyne to create dibenzocyclooctyne (Ning et al., 2008) (Figure 3.6). There are 

continuing attempts to generate new reagents for copper-free click reactions, with the aim to increase 

the rate of the reaction (Sletten and Bertozzi, 2009, Ramil and Lin, 2013). However, cyclooctyne-based 

molecules share the same reaction mechanism (Scheme 3.2).  

 

     

Figure 3.6 From left, cycloocytne, cyclooctyne with 2 fluorine atoms (DIFO), and dibenzocyclooctyne (DIBO) 
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Scheme 3.2 Proposed mechanism of 1,3-dipolar cycloaddition of cyclooctyne and azide 

 

3.2 Experimental 

This section will briefly outline the materials and methods used in this chapter. Detailed materials and 

method can be found in Chapter 2. 

 

3.2.1 Chemical probes 

Probes used in this study were synthesised by Sitthivut Charoensutthivarakul and Michael H.L. Wong 

under a supervision of Paul O’Neill at Department of Chemistry, University of Liverpool. The rationale of 

probe design was to mimic the structure of artemisinin with a clickable functional group, either a 

terminal alkyne or azide. 

 

In brief, a series of chemical probes were synthesised in 6-10 steps, in moderate yields. The chemicals 

used in this synthesis are commercially available, including dihydroartemisinin, and they were used 

without any prior purification. The intermediates and products from each step were purified by 

chromatography or crystallisation and fully characterised, as appropriate, by 1H NMR, 13C NMR, high 

resolution MS and elemental analysis providing the purity of >95%. The chemical probes were then 

transferred to LSTM and kept under atmospheric conditions in the absent of light prior to its uses. The 

synthetic schemes for those probes are published elsewhere (Ismail et al. 2016a; Ismail et al. 2016b). 

For each active probe containing the peroxide bridge and inactive desoxy control probe was also 

produced.  
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ART- 15    SCR-A-17   SCR-A-10 

 

   

ART-21    SCR-A-21   SCR-A-22 

Figure 3.7 Structures of chemical probes 

 

3.2.2 Parasite treatment 

Briefly, trophozoite stage Plasmodium falciparum 3D7 parasites were maintained as described in section 

2.13 and synchronised for the ring stage by sorbitol (section 2.14). Then parasites were maintained until 

they reached the desired parasitaemia and life-cycle stage. Parasites were treated with 1 µM probe or 

DMSO (as negative control) for 6 h under normal culture condition (section 2.23). Then parasites were 

freed from RBC by saponin lysis (section 2.18), washed with D-PBS, resuspended in D-PBS with 1X 

cOmplete™ EDTA-free protease inhibitor (Roche), and stored at -80ºC until further processing.  

 

3.2.3 Click reaction and peptide preparation 

Treated parasites samples were retrieved at RT and cell lysis was assisted with probe sonication. The 

sample protein concentration was determined using the Bradford assay (section 2.24). The 

corresponding samples were adjusted for equal concentration prior to initiating click reactions.  

 

The click reaction was performed following the protocol described in section 2.26. Briefly, for copper-

catalysed click reactions, biotin-azide, TCEP, TBTA, and CuSO4 were added sequentially. For copper-free 

click reactions, biotin-DIBO alkyne was added to the samples. The samples were then incubated at RT 

for an hour, away from light and with gentle mixing every 15 min. After the incubation period, pellets 

were obtained by centrifugation and washed three times with 750 µL cold absolute methanol. Pellets 
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were then resuspended in 650 µL 2.5% SDS in D-PBS and heated to 90ºC. Undissolved pellets were 

removed after centrifugation and supernatants were adjusted with D-PBS to 3.5 mL and stored at -20ºC. 

 

Protein samples then exposed to a streptavidin enrichment step to remove unbound proteins followed 

by alkylation and reduction, respectively. Briefly, samples collected from the click reaction were adjusted 

to 8.3 mL D-PBS and incubated with 200 μL streptavidin agarose beads for 1.5 h. After incubation the 

beads were collected, and washed respectively with 1% SDS, 6 M urea, and D-PBS, each 3 times to 

completely remove unbound proteins. Then on-bead alkylation with DTT and reduction with IAA were 

performed before overnight incubation with trypsin for digestion. Tryptic digestion was terminated with 

90% formic acid prior to MS analysis. For the detailed protocol see Chapter 2.  

 

3.2.4  Click reaction for SDS-PAGE analysis 

SDS-PAGE was used to visualise protein labelling profiles from the protein extracts. Protein extracts 

from probe treatments were incubated with 20 µM Click-IT® Alexa Fluor® 488 DIBO alkyne for 1 h and 

washed trice with 1 mL cold absolute methanol to remove unbound dye (section 2.26). Protein samples 

were then analysed by NuPAGE™ Bis-Tris 4-12% gel following the method described in section 2.22. 

Fluorescence was detected using SYBR green setting in GE ImageQuant™ 4000 system (section 2.26). 

Next the gel was stained with Instant Blue coomasie-based staining for 1 h and then de-stained 

overnight, coomasie images was captured using a Bio-Rad Gel Doc™ EZ gel documentary  system 

(section 2.22). 

 

3.3 Results 

3.3.1 Antimalarial activity of chemical probes 

The antimalarial activity of the probes was tested using the conventional SYBR Green I-based IC50 assay 

(section 2.17). All synthetic artemisinin activity-based probes were active exhibited a similar antimalarial 

activity level compared to artemisinin and dihydroartemisinin, whereas desoxyartemisinin (non-

peroxidic) probes provide no antimalarial activity as expected at the concentrations tested. Activity of 

the probes was checked regularly to ensure that the chemical constituents of the probes remained the 

same throughout the following experiments. IC50 values for artemisinin and dihydroartemisinin were 

17.3 nM (95% CI = 13.46-22.24 nM) and 2.92 nM (95% CI = 2.33-3.65 nM), respectively. IC50 values for 

artemisinin-containing probes, namely ART-15, SCR-A-10, and SCR-A-17 were 18.04 nM (95% CI = 12.70-

25.57 nM), 5.26 nM (95% CI = 3.92-8.41 nM), and 5.74 (95% CI = 4.22-655 nM), respectively (Figure 3.8). 
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Figure 3.8 Dose response curves of the chemical probes 

 

3.3.2 Gel electrophoresis 

Using the protocol for click reaction and fluorescent gel analysis and SDS-PAGE techniques described in 

section 2.22 and 2.26. Protein extracts from trophozoite stage parasites, post-treatment with azide 

probes, were subjected to a copper-free click reaction with Click-IT® Alexa Fluor® 488 DIBO alkyne and 

separated through a 4-12% Bis-Tris gel. The gel was then imaged under blue LED excitation and the Y515 

BP Cy2 filter using a GE ImageQuant™ LAS 4000 biomolecular imager. 

 

Figure 3.9 shows clicked proteomes from two individual trophozoite protein experiments labelled with 

fluorescent conjugated DIBO alkyne or azide. It demonstrated that the artemisinin-based probe SCR-A-

10 and ART-15 labelled more proteins while their inactive counterpart SCR-A-22 and ART-21 were not 

able to label proteins after a 1 h click reaction. Coomasie staining gels confirmed that this selective 

labelling effect was not due to unequal loading of proteins but a direct function of the activity of the 

probes themselves. 
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Figure 3.9 Copper-free click chemistry visualised by SDS-PAGE. (A) DIBO alkyne-488 concentration titration range 
from 1 µM to 30 µM. (B) DIBO alkyne-488 labelling profiles of DMSO, desoxyartemisinin probe SCR-A-22, and 
artemisinin activity-based probe SCR-A-10 treatments. (C) Coomasie staining of the same gel in B. (D) Trifunctional 
biotin-azide-rhodamine labelling profile of artemisinin activity-based probe (ART-17) and desoxyartemisinin probe 
(ART-21) and protein concentration variation, gel image Dr Hanafy Ishmail.    

 

3.3.3 Protein concentration 

The protein concentration of each sample was determined using a standard Bradford protein 

quantification assay. The BSA Protein standard was prepared prior to each use. Sample concentrations 

from corresponding treatments were adjusted to concentrations of 2 or 1.5 or 1 or 0.5 mg/ml, where 

applicable, prior to initiation of the click reaction. 

 

3.3.4 Protein IDs and gene IDs mapping 

Results returned from the protein identification step by MASCOT and SEQUEST were in UniProt ID 

format, which was not fully compatible with some databases, so mapping UniProt ID to systematic gene 

ID was performed in the PlasmoDB database. Any missing gene IDs were manually integrated into the 

list. Lists of identified and tagged proteins can be found in Chapters 4 and Chapter 5. Gene IDs or UniProt 

protein IDs were used where applicable, however gene IDs were used as the first choice. 
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3.3.5 Artemisinin-activity based probes vs control probes and DMSO 

Artemisinin probes and their desoxy counterparts have been introduced as a pairwise strategy in the 

study. Drug inhibition assays have already shown that there was a clear difference between them in 

terms of antimalarial activity (Figure 3.8). HPLC-MS/MS analysis confirmed the stringency of the strategy.  

 

Protein extracts from parasites treated with DMSO, artemisinin-activity based probes, and 

desoxyartemisinin probes were processed and sequenced by HPLC-MS/MS as previously described in 

Chapter 2. A clear difference is seen in the numbers of proteins identified from artemisinin-activity 

based probes, desoxyartemisinin probes and the DMSO control group (Figure 3.10). Protein hits 

identified from the DMSO group and desoxyartemisinin group were considered as background proteins 

and were therefore excluded from artemisinin-activity based probes protein hits when further analysed.  
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Figure 3.10 Bar graph showing number of protein hits identified by different probes 

 

3.3.6 Difference between short and long linker click probes 

Two different lengths of carbon linker were used in the study. ART probes possess a 1-carbon linker 

between the artemisinin moiety and a tag while SCR probes are equipped with a 4-carbon linker. These 

2 probe lengths led to a differences in the number of alkylated protein hits, however they largely 

overlapped. SCR probes with a 4-carbon linker labelled more proteins than the 1-carbon (ART-15) probe 

albeit insignificantly (p-value >0.05). 
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Figure 3.11 Number of protein hits identified by 1-carbon linker (ART) probe and 4-carbon linker (SCR) probes. 
These results were total number of protein identified by artemisinin activity-based probes before subtracting 

background protein from DMSO and desoxyartemisinin probes. 

 

However, when considering unique protein hits identified by each artemisinin activity-based probe, this 

difference in the number of protein hits identified was smaller (Figure 3.12). 
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Figure 3.12 Number of unique protein hits identified by artemisinin activity-based probe. Protein hits identified by 
DMSO and desoxyartemisinin probe were excluded. 

 

3.3.7 Copper-catalysed vs copper-free click reaction 

Two versions of the alkyne probes: 1-carbon linker and 4-carbon linker, were used in the copper-

catalysed click reaction. For copper-free reactions, only the 4-carbon linker azide probe was used.  
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The numbers of unique protein hits identified from 1-carbon linker and 4-carbon linker alkyne probes 

were 86 and 125 proteins respectively. Both probes labelled 45.5% (66 proteins) in common (Figure 

3.15). The 4-carbon linker alkyne and azide probes labelled 125 and 121 proteins, respectively, and 

shared 20% common proteins identified (Figure 3.13). 

 

 

Figure 3.13 Proportional Venn diagram showing unique protein hits by SCR alkyne and SCR azide artemisinin 
activity-based probes 

 

Both artemisinin probes with an alkyne or azide tag labelled a similar number of proteins. However, 

both reactions resulted in different levels of background protein labelling. Both 1-carbon linker and 4-

carbon linker desoxyartemisinin alkyne probes labelled only a few proteins that were considered as a 

background, whereas the 4-carbon linker desoxyartemisinin azide probe labelled many more 

background proteins, up to 100 (Figure 3.10, Table A1.3 and Table A1.4). 
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3.4 Discussion 

In this section 2 pairwise strategies are discussed. In the first analysis, artemisinin activity-based probes 

(active) and desoxyartemisinin probes (inactive) are compared and discussed thereafter the copper-

catalysed and copper-free reaction are considered.  

 

3.4.1 Antimalarial activity of chemical probes 

It is widely accepted that the unusual peroxide structure in the artemisinins, or other synthetic 

endoperoxides contributes to the potent antimalarial activity of these compounds, since their non-

peroxidic equivalents exhibit no antimalarial effects (Kaiser et al. 2007; O'Neill, Barton & Ward 2010). It 

was also demonstrated here by conventional IC50 assays that the artemisinin activity-based probes have 

retained antimalarial activity similar to parent artemisinin and dihydroartemisinin, while their 

desoxyartemisinin counterparts were inactive against asexual stages of Plasmodium falciparum 3D7 

(Figure 3.8). Importantly the addition of the click liker did not compromise antimalarial activity. This is in 

accordance with previous studies which confirms that desoxyartemisinin is unable to generate carbon 

centred radicals which leads to the complete loss of antimalarial activity (O'Neill et al., 2010). 

Desoxyartemisinin probes could provide non-activity controls for background protein labelling 

increasing labelling confidence of artemisinin activity-based probes. The use of these two types of 

control, DMSO and desoxy inactive probes, is a unique strength of the strategy deployed here in this 

study.  

 

Results from the HPLC-MS/MS approach also supported the importance of the 1,2,4 trioxane structure 

hypothesis and confirmed the value of the pairwise analysis strategy. DMSO and desoxyartemisinin 

probes labelled a small number of proteins from parasite extracts, while artemisinin probes labelled an 

order of magnitude more proteins (Figure 3.10). Some proteins have been reported previously to 

directly bind to streptavidin, which was used in the pull-down process in the study. For example, histone 

proteins were reported to directly bind to streptavidin independently of biotin. It is also evident that 

histone proteins are post-translationally modified by biotinylation (Bailey et al., 2008). For this reason, 

histone proteins were excluded from the protein hits identified by artemisinin-activity based probes. 

Other sequences known for their high affinity to streptavidin including HPM, HPQ, HPYP, and HPFP 

motifs were also omitted from the protein hits identified by artemisinin-activity based probes (Lam and 

Lebl, 1992).  

 

3.4.2 Probe linker length and protein number 

It is hypothesised that the 2 different lengths of carbon linker between a pharmacophore and a tag can 

result in different numbers of protein hits being identified. It is possibly due to the fact that a longer 

linker probe may provide more accessibility to fit inside the target proteins while being able to present 
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clickable functional group, alkyne or azide, for click reaction. Results from HPLC-MS/MS analysis 

revealed that the probes with longer linkers, SCR, labelled more protein than the shorter linker 

counterpart, ART, albeit not significantly (p-value >0.05). 
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Figure 3.14 Number of proteins identified by artemisinin activity-based probes. Blue bar showing all proteins 
identified by artemisinin activity-based probes and red bar showing unique proteins identified artemisinin activity-

based probe (control subtracted). 

 

In contrast to the working hypothesis, the result shows that there is no significant difference in number 

of proteins identified from 1-carbon linker and 4-carbon linker probes. In addition, proteins identified 

by 1-carbon and 4-carbon alkyne probes overlapped by 45.5% (Figure 3.15). This result suggested that 

the use of a longer linker in the chemical probe can improve the efficiency of protein labelling while 

maintain the selectivity of artemisinin activity-based probes.  
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Figure 3.15 Proportional Venn diagram showing unique protein hits by ART and SCR alkyne artemisinin activity-
based probe 

 

3.4.3 Copper-catalysed vs copper-free click reactions 

Since click reactions can be performed either with or without copper through the Huisgen’s 1,3-dipolar 

cycloaddition, both chemistries were included in the study as a chemistry pairwise comparison strategy. 

The presence of copper in the reaction can be toxic to living cells (Ramil and Lin, 2013) and it was unclear 

if copper could act like iron in cleaving any remaining active peroxide containing drug that might remain 

post processing and therefore generating adducts that were an artefact of the processing. In this 

section, the aim was to study the necessity of copper as a catalyst in the biorthogonal click chemistry. 

Although click reactions in this study were performed in vitro, where copper causes much less 

interference and toxicity, both chemistries were adopted to compare the labelling profiles.          

 

The results from 4-carbon alkyne and azide artemisinin activity-based probes showed that both probes 

identify a similar number of protein (125 and 121 proteins) but only 20% of proteins were identified by 

both sets of conditions. Also the higher background protein labelling from desoxyartemisinin probe 

treatment might discourage the use of copper-free click reactions. However, the copper-free click 

reaction is preferred in most applications due to its higher sensitivity and lower toxicity in living cells 

(Jewett and Bertozzi, 2010). The difference of both chemistry approaches lies in the reactivity of the 

chemicals used in each reaction.  
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For copper-catalysed click reactions, CuSO4 was used to catalysed the 1,3 Huisgen’s cycloaddition with 

TBTA as a ligand for copper and TCEP as a reducing agent for proteins. Considering the chemistry basis 

of the reaction, the terminal alkyne is a relatively stable form of carbon-carbon triple bond with its bond 

angle of 180º while the azide is known as a good leaving group that is sensitive to a nucleophilic attack 

(Jewett and Bertozzi, 2010). These two functional groups are not reactive without a catalyst due to the 

large energy gap between ground and transition states. To overcome this energy gap and drive the 

reaction forward, Huisgen introduced [3+2] cycloaddition or 1,3-dipolar cycloaddition, by increasing the 

reaction temperature to higher than 100ºC, however this is not applicable in biological systems (Huisgen, 

1963). Sharpless and colleagues have proposed that this 1,3-dipolar cycloaddition can be achieved by 

using copper as a catalyst instead of heat (Himo et al., 2004). This copper-catalysed 1,3-dipolar 

cycloaddition allows the reaction to occur at physiological temperatures and is feasible for biological 

applications.  

 

As opposed to copper-catalysed click reactions, copper-free click reactions are less toxic to living cells 

(Ramil and Lin, 2013). However, when considering chemicals used in the reaction, some nonspecific 

reactions can be detected as the reagent used in the reaction is quite reactive, thus allowing the reaction 

to occur without a catalyst (Ramil and Lin, 2013). In a copper-free click reaction, 1,3-dipolar cycloaddition 

is driven by the ring strain of the cyclooctyne-based reagent (Jewett and Bertozzi, 2010). This strain is 

generated by the alkyne bond angle in the cyclooctyne moiety which is 160º instead of 180º (Figure 3.6). 

This stress in the molecule reduces the energy gap between ground state and transition state, increasing 

the rate constant of the reaction (Sletten and Bertozzi, 2009, Jewett and Bertozzi, 2010, Ramil and Lin, 

2013). Nonetheless, using DIBO-biotin and other cyclooctynes in the reaction could lead to nonspecific 

binding (Yao et al., 2012, Subramanian et al., 2014) as DIBO can react and conjugate to not only azide 

but also to free cysteine residues via a thiol-yne reaction (van Geel et al., 2012). This nonspecific labelling 

can be reduced by adding reducing agents, e.g. β-mercaptoethanol or iodoacetamide (IAA), to alkylate 

the terminal thiol group of cysteine (van Geel et al., 2012, Chen and Wu, 2016, Tian et al., 2016) (Scheme 

3.3).  
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Scheme 3.3 Protecting effect of reducing agent to cysteine residue from cyclooctyne. (adapted from van Geel et al. 
(2012)) 

 

To control for any copper activation of the artemisinin, the copper-free click reaction was introduced to 

address this. Results from the 4-carbon tagged alkyne and azide artemisinin activity-based probes 

showed 20% overlap in the labelled proteome (41 proteins). However, it was unlikely that copper 

activation of artemisinin was an issue as the copper-catalysed click reaction was performed in a reducing 

environment in the presence of TCEP (tris(2-carboxyethyl)phosphine) (Meshnick et al., 1989). The 

reducing environment was shown to antagonise the effect of artemisinin (Krungkrai and Yuthavong, 

1987, Meshnick et al., 1989). In addition, several washing steps after probe treatment should remove 

free non-activated artemisinin probes, therefore there should be no artemisinin available for activation 

by copper during the click reaction. 

 

The background from non-specific labelling by DIBO alkyne could be minimised by reducing the 

concentration of DIBO. When the concentration of DIBO in the reaction was reduced from 50 µM to 20 

µM, no proteins were identified from desoxyartemisinin probe treatments. (This experimental part had 

been performed in association with Dr Hanafy Ismail) (Ismail et al., 2016a). 

  

3.4.4 Protein localisation coverage 

There is a concern that this approach will not be able to label possible target proteins localised on 

membranes. Protein hits identified by artemisinin-activity based probes were subjected to search for 

membrane localised proteins (GO term 0016020; membrane). Sixty-nine proteins uniquely identified by 

artemisinin activity-based probes were annotated with GO membrane (Table 4.7). This shows that this 

approach can cover a wide range of protein with multiple localisations. This is made possible due to the 

fact that the sonication extraction method adopted is powerful enough to disrupt membranes and 

release membrane localised proteins. However, it is worth noting that membrane localised proteins 
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might be either disaggregated or part of smaller soluble membrane fractions (Rosenberg and McIntosh, 

1968).  

 

3.4.5 Protein labelling is not due to abundance bias 

In order to address the criticism that protein labelling is not specific to the targets for artemisinin but a 

measure if protein abundance in the parasite preparation, a search against protein abundance levels 

was evaluated using data on abundance published by Pease et al. (2013). The analysis showed that the 

artemisinin tagged proteins identified by this approach were distributed equally across all expression 

levels and did not form an identifiable clusters corresponding to highly expressed proteins (Figure 3.16).  

 

  

Figure 3.16 Proteins expression level. Red dots represent top 40 proteins from the hits. Black dots represent all 
2605 proteins in (Pease et al., 2013). This figure was generated by Dr Gareth Weedall (LSTM bioinformatics unit). 
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3.5 Conclusions 

The advances in mass spectrometry-based proteomics has been extensively used in biological research 

thanks to its ease of use and high sensitivity. Recently developed click chemistry is a growing application 

in chemical biological research. Combining these two powerful tools together has provided a new 

approach for proteomic identification of potential drug targets with high specificity as previously 

discussed throughout this chapter. Both chemical and activity pairwise analysis strategies introduced in 

the study provided high confidence in the proteins identified as potential artemisinin molecular targets. 

Copper-catalysed and copper-free click reactions were both capable of tagging and pulling down 

potential targets albeit with different efficiencies.  

 



 

63 
 

Chapter 4 

Proteins identified by artemisinin activity-based probes of 
trophozoite stage parasites 

 

4.1 Introduction 

The mechanism of action and resistance of artemisinin and its derivatives has remained poorly 

understood for long time, despite these drugs being on the centre stage of antimalarial drug research 

and clinical use. Reduced sensitivity to artemisinins and ACTs treatment failures are threatening global 

attempts to control and eradicate malaria. Many studies have proposed molecular targets of artemisinin 

and its derivatives (see Chapter 1). One hypothesis is that these drugs have a global effect on parasite 

protein alkylation, however experiments showing this have not been established. In this study, click 

chemistry and MS proteomics approaches were applied to identify molecular targets of artemisinin.  

 

Click chemistry-based approach has been developed first as chemical synthetic approach and later 

applied to biological research. Click chemistry approach had successfully used to identify the protein 

partners of phosphatidylinositol 3,4,5-triphosphate or PIP3 (Rowland et al., 2011), the targets of serine 

protease inhibitors (Adibekian et al., 2012), and the molecular targets of artemisinin in Plasmodium 

falciparum parasites (Wang et al., 2015). The work by Rowland et al. (2011) used synthetic modified PIP3 

with alkyne tag, copper-catalysed click reaction, and LC-MS/MS to identify the partner proteins. Using 

aforementioned approach, 265 proteins were identified as PIP3-binding proteins. A work by Adibekian 

et al. (2012) used the modified serine protease inhibitors to confirm that hydrolases lysophospholipase 

1 (LYPLA1) and lysophospholipase 2 (LYPLA2) are selectively inhibited by the proteases in mouse model. 

More recently, click chemistry approach was applied to identify molecular targets of artemisinin (Wang 

et al., 2015). A copper-catalysed click reaction with a modified artemisinin alkyne probe successfully 

identified 124 artemisinin targets in mixed stage parasites (Wang et al., 2015). In addition, copper-free 

reaction was applied for in vivo imaging (Baskin et al., 2007). This growing application of click chemistry 

in biological research will advance the drug target research with better click reagents in the future.  

 

In this study, it has been shown in Chapter 3 that click chemistry proteomic approach using artemisinin 

activity-based probes is a robust platform to study molecular targets of artemisinin. In this chapter, 

proteins identified from trophozoite stage parasites will be discussed in context of artemisinin 

mechanism of action and possible resistance mechanism. It was shown that the trophozoite stage of 

Plasmodium falciparum is much more sensitive to artemisinin than the ring stages (Klonis et al., 2013). A 

working hypothesis is that artemisinin is first activated by haem or free iron in the parasites as iron 
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chelators and hamoglobinase inhibitor have antagonistic effect to artemisinin (Stocks et al., 2007, Xie et 

al., 2016), then the global damage of the parasite proteins is caused by alkylation by activated 

artemisinin. The benefits of performing an experiment with the trophozoite stage parasites are 

relatively high biomass, easy to purify by saponin lysis, and high metabolic activity of the parasites. This 

higher sensitivity to artemisinin of the trophozoite stage parasites could provide some insight into how 

artemisinin affects the parasite. In this chapter, probe-labelled proteome or ‘endoperoxome’ is 

identified and discussed.  

 

4.2 Experimental 

4.2.1 Parasite treatment and protein processing 

In order to identify artemisinin targets, chemically modified artemisinin and desoxyartemisinin probes 

(Figure 3.7) were used to treat the parasites at synchronous trophozoite stage (~18-24 hpi) for 6 h at 1 

µM concentration. Parasites were lysed and released from RBCs by saponin lysis (section 2.18) and 

proteins were extracted by sonication (section 2.24). Protein extracts underwent click copper-catalysed 

or copper-free click reactions according to the probe structures (section 2.26). Protein-drug complexes 

were purified by streptavidin affinity and cleaned to remove unbound proteins (section 2.27). Proteins 

were digested on beads, and peptides were sequenced by MS (section 2.28). 

  

4.2.2 Protein identification 

Peptide sequencing spectra were used to identify protein ID from respective samples. RAW spectra were 

processed in Thermo Scientific Proteome™ 1.4 and proteins were identified by SEQUEST and MASCOT 

(section 2.29). Proteins identified by artemisinin activity-based probes were subtracted with background 

proteins identified by corresponding desoxyartemisinin probe and DMSO. Histone proteins and 

streptavidin binding motifs were also subtracted from the list. Confidence of proteins was assigned to 

each protein according to the number of probes identified.  

  



 

65 
 

4.3 Results 

Artemisinin activity-based probes were used to treat trophozoite stage Plasmodium falciparum 3D7 

parasites for 6 h at 1 µM. Then proteins were extracted, processed with click reaction, sequenced and 

identified. Using this procedure 237 proteins were identified (Table 4.1). The identified proteins were 

assigned confidence terms, defined by how frequently proteins were identified by artemisinin activity-

based probes. Proteins identified from 8-10 experiments, and 6-7 experiments were considered very 

high and high confidence, respectively. Proteins assigned with moderate confidence were identified 

from 5-4 experiments, whereas proteins identified from 3 experiments were considered low confidence. 

Proteins identified from 1 or 2 experiments were regarded as noise (Table A1.6).  

 
 

 

 



 

66 
 

Table 4.1 Protein hits identified by artemisinin activity-based probes (proteins in bold were identified from more than one probe) 

Gene ID UniProt ID Product Description Confidence GSH 

PF3D7_1459400 Q8IKN7 conserved Plasmodium protein, unknown function Very high - 

PF3D7_1438100 Q8IL86 secretory complex protein 62 Very high - 

PF3D7_1432100 Q8ILE3 voltage-dependent anion-selective channel protein, putative Very high - 

PF3D7_1410700 Q8ILY8 conserved Plasmodium protein, unknown function Very high - 

PF3D7_1410400 Q8ILZ1 rhoptry-associated protein 1 Very high + 

PF3D7_1408100 Q8IM15 plasmepsin III Very high + 

PF3D7_1408000 Q8I6V3 plasmepsin II Very high + 

PF3D7_1360900 C0H5J5 polyadenylate-binding protein, putative Very high + 

PF3D7_1311900 Q76NM6 V-type proton ATPase catalytic subunit A Very high + 

PF3D7_1311800 Q8IEK1 M1-family alanyl aminopeptidase Very high + 

PF3D7_1306200 Q8IEQ3 conserved Plasmodium protein, unknown function Very high - 

PF3D7_1301700 Q8IEJ0 Plasmodium exported protein (hyp8), unknown function Very high - 

PF3D7_1237700 Q8I546 conserved protein, unknown function Very high - 

PF3D7_1211800 Q7KQK2 polyubiquitin Very high + 

PF3D7_1121600 Q8IIF0 exported protein 1 Very high + 

PF3D7_1118200 Q8III6 heat shock protein 90, putative Very high - 

PF3D7_1108700 Q8IIR6 heat shock protein DnaJ homologue Pfj2 Very high + 

PF3D7_1105800 Q8IIU5 conserved Apicomplexan protein, unknown function Very high - 

PF3D7_1104400 Q8IIV8 thioredoxin, putative Very high - 

PF3D7_1016300 Q8I6U8 glycophorin binding protein Very high + 

PF3D7_1010700 Q8IJT8 dolichyl-phosphate-mannose protein mannosyltransferase, putative Very high - 
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Gene ID UniProt ID Product Description Confidence GSH 

PF3D7_1008900 Q8IJV6 adenylate kinase Very high + 

PF3D7_0936800 Q8I2F2 Plasmodium exported protein (PHISTc), unknown function Very high - 

PF3D7_0903200 C0H516 ras-related protein RAB7 Very high + 

PF3D7_0823800 Q8IB72 DnaJ protein, putative Very high - 

PF3D7_0807300 Q7K6B0 ras-related protein Rab-18 Very high + 

PF3D7_0720400 Q8IBP8 ferrodoxin reductase-like protein Very high + 

PF3D7_0702400 Q8IC43 small exported membrane protein 1 Very high - 

PF3D7_0629200 C6KTC7 DnaJ protein, putative Very high - 

PF3D7_0628300 C6KTB9 choline/ethanolaminephosphotransferase, putative Very high - 

PF3D7_0532100 Q8I3F3 early transcribed membrane protein 5 Very high - 

PF3D7_0523000 Q7K6A5 multidrug resistance protein 1 Very high + 

PF3D7_0501200 Q8I488 parasite-infected erythrocyte surface protein Very high - 

PF3D7_0309600 O00806 60S acidic ribosomal protein P2 Very high + 

PF3D7_0207600 Q9TY95 serine repeat antigen 5 Very high + 

PF3D7_1471100 Q8IKC8 exported protein 2 High + 

PF3D7_1468700 Q8IKF0 eukaryotic initiation factor 4A High + 

PF3D7_1456800 Q8IKR1 V-type H(+)-translocating pyrophosphatase, putative High - 

PF3D7_1454400 Q8IKT5 aminopeptidase P High + 

PF3D7_1451800 Q8IKV8 sortilin High - 

PF3D7_1444800 Q7KQL9 fructose-bisphosphate aldolase High - 

PF3D7_1421200 Q8ILN8 40S ribosomal protein S25 High - 

PF3D7_1352500 Q8IDH5 thioredoxin-related protein, putative High + 
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Gene ID UniProt ID Product Description Confidence GSH 

PF3D7_1347500 Q8IDM3 DNA/RNA-binding protein Alba 4 High - 

PF3D7_1345700 Q8I6T2 isocitrate dehydrogenase [NADP], mitochondrial High + 

PF3D7_1344800 Q8IDP8 aspartate carbamoyltransferase High - 

PF3D7_1330400 Q8IE22 ER lumen protein retaining receptor 1, putative, unspecified product High - 

PF3D7_1328300 Q8IE43 conserved Plasmodium protein, unknown function High - 

PF3D7_1325100 Q8IE67 phosphoribosylpyrophosphate synthetase High + 

PF3D7_1324900 Q76NM3 L-lactate dehydrogenase High + 

PF3D7_1246200 Q8I4X0 actin I High + 

PF3D7_1231100 Q8I5A9 ras-related protein Rab-2 High - 

PF3D7_1224300 Q8I5H4 polyadenylate-binding protein, putative High + 

PF3D7_1222300 Q8I0V4 endoplasmin, putative High + 

PF3D7_1143200 Q8IHT4 DnaJ protein, putative High - 

PF3D7_1134000 Q8II24 heat shock protein 70 High + 

PF3D7_1130200 Q8II61 60S ribosomal protein P0 High + 

PF3D7_1129100 Q8II72 parasitophorous vacuolar protein 1 High - 

PF3D7_1129000 Q8II73 spermidine synthase High - 

PF3D7_1117700 Q7KQK6 GTP-binding nuclear protein RAN/TC4 High + 

PF3D7_1116700 Q8IIJ9 dipeptidyl aminopeptidase 1 High + 

PF3D7_1105000 Q8IIV2 histone H4 High + 

PF3D7_1026800 Q8IJD4 40S ribosomal protein S2 High + 

PF3D7_1020900 Q7KQL3 ADP-ribosylation factor High + 

PF3D7_1015600 Q8IJN9 heat shock protein 60 High + 
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Gene ID UniProt ID Product Description Confidence GSH 

PF3D7_1012400 Q8IJS1 hypoxanthine-guanine phosphoribosyltransferase High + 

PF3D7_0936000 C0H592 ring-exported protein 2 High - 

PF3D7_0930300 Q8I0U8 merozoite surface protein 1 High + 

PF3D7_0929400 C0H571 high molecular weight rhoptry protein 2 High - 

PF3D7_0927900 Q8I2N0 phosphatidylserine decarboxylase High - 

PF3D7_0919100 Q8I2W2 DnaJ protein, putative High - 

PF3D7_0914700 Q8I305 major facilitator superfamily-related transporter, putative High - 

PF3D7_0912400 Q8I328 alkaline phosphatase, putative High - 

PF3D7_0823200 Q8IB66 RNA-binding protein, putative High + 

PF3D7_0818200 C0H4V6 14-3-3 protein High + 

PF3D7_0814200 Q8IAX8 DNA/RNA-binding protein Alba 1 High - 

PF3D7_0731600 Q8I6Z1 acyl-CoA synthetase High + 

PF3D7_0721100 Q8IBP0 conserved Plasmodium protein, unknown function High - 

PF3D7_0709700 Q8IBZ2 lysophospholipase, putative High - 

PF3D7_0709000 Q8IBZ9 chloroquine resistance transporter High - 

PF3D7_0706500 C0H4L6 conserved Plasmodium protein, unknown function High - 

PF3D7_0608800 Q6LFH8 ornithine aminotransferase High + 

PF3D7_0601900 C6KSL9 conserved Plasmodium protein, unknown function High - 

PF3D7_0532300 Q8I3F1 Plasmodium exported protein (PHISTb), unknown function High - 

PF3D7_0501300 Q8I487 skeleton-binding protein 1 High + 

PF3D7_0501000 Q8I490 Plasmodium exported protein, unknown function High - 

PF3D7_0500800 Q8I492 mature parasite-infected erythrocyte surface antigen High + 
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Gene ID UniProt ID Product Description Confidence GSH 

PF3D7_0424600 Q8IFM0 Plasmodium exported protein (PHISTb), unknown function High + 

PF3D7_0422400 Q8IFP2 40S ribosomal protein S19 High + 

PF3D7_0402000 Q8I206 Plasmodium exported protein (PHISTa), unknown function High - 

PF3D7_0316800 O77395 40S ribosomal protein S15A, putative High - 

PF3D7_0106300 Q76NN8 calcium-transporting ATPase High - 

PF3D7_1466400 Q8IKH2 transcription factor with AP2 domain(s) Moderate - 

PF3D7_1465900 Q8IKH8 40S ribosomal protein S3 Moderate + 

PF3D7_1447700 Q8IKZ8 conserved Plasmodium protein, unknown function Moderate - 

PF3D7_1447000 Q8IL02 40S ribosomal protein S5 Moderate + 

PF3D7_1434800 Q8ILB6 mitochondrial acidic protein MAM33, putative Moderate - 

PF3D7_1429600 Q8ILG8 conserved Plasmodium protein, unknown function Moderate - 

PF3D7_1424100 Q8ILL3 60S ribosomal protein L5, putative Moderate + 

PF3D7_1407800 Q8IM16 plasmepsin IV Moderate + 

PF3D7_1405600 Q8IM38 ribonucleoside-diphosphate reductase small chain, putative Moderate + 

PF3D7_1359400 Q8IDB7 CUGBP Elav-like family member 1 Moderate + 

PF3D7_1357000 Q8I0P6 elongation factor 1-alpha Moderate + 

PF3D7_1354500 Q8IDF6 adenylosuccinate synthetase Moderate + 

PF3D7_1353900 Q8IDG2 proteasome subunit alpha type-7, putative Moderate + 

PF3D7_1353100 Q8IDG9 Plasmodium exported protein, unknown function Moderate - 

PF3D7_1346100 Q8IDN6 protein transport protein SEC61 subunit alpha Moderate - 

PF3D7_1343000 Q8IDQ9 phosphoethanolamine N-methyltransferase Moderate + 

PF3D7_1304500 Q8IES0 small heat shock protein, putative Moderate - 
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Gene ID UniProt ID Product Description Confidence GSH 

PF3D7_1242800 Q8I501 rab specific GDP dissociation inhibitor Moderate + 

PF3D7_1242700 Q8I502 40S ribosomal protein S17, putative Moderate - 

PF3D7_1241700 Q8I512 replication factor C subunit 4, putative Moderate - 

PF3D7_1232100 Q8I0V3 60 kDa chaperonin Moderate + 

PF3D7_1229400 Q8I5C5 macrophage migration inhibitory factor Moderate + 

PF3D7_1228600 Q8I5D2 merozoite surface protein 9 Moderate - 

PF3D7_1223100 Q7KQK0 cAMP-dependent protein kinase regulatory subunit Moderate + 

PF3D7_1212000 Q8I5T2 glutathione peroxidase-like thioredoxin peroxidase Moderate + 

PF3D7_1211900 Q8I5T3 non-SERCA-type Ca2+ -transporting P-ATPase Moderate + 

PF3D7_1211400 Q7KQK3 heat shock protein DNAJ homologue Pfj4 Moderate - 

PF3D7_1203700 Q8I608 nucleosome assembly protein Moderate + 

PF3D7_1201000 Q8I635 Plasmodium exported protein (PHISTb), unknown function Moderate - 

PF3D7_1149400 Q8IHM9 Plasmodium exported protein, unknown function Moderate - 

PF3D7_1134100 Q8II23 protein disulfide isomerase Moderate + 

PF3D7_1124700 Q8IIB6 GrpE protein homolog, mitochondrial, putative Moderate + 

PF3D7_1124600 Q8IIB7 ethanolamine kinase Moderate + 

PF3D7_1119000 Q8IIH7 acyl-CoA-binding protein, putative Moderate - 

PF3D7_1117300 Q8IIJ4 conserved Plasmodium protein, unknown function Moderate - 

PF3D7_1116800 Q8IIJ8 heat shock protein 101 Moderate - 

PF3D7_1115600 Q8IIK8 peptidyl-prolyl cis-trans isomerase Moderate + 

PF3D7_1113300 Q8IIM9 UDP-galactose transporter, putative Moderate - 

PF3D7_1037300 Q8IJ34 ADP/ATP transporter on adenylate translocase Moderate - 
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Gene ID UniProt ID Product Description Confidence GSH 

PF3D7_1019900 Q8IJK2 autophagy-related protein 8 Moderate - 

PF3D7_1015900 Q8IJN7 enolase Moderate + 

PF3D7_1011400 Q8IJT1 proteasome subunit beta type-5 Moderate + 

PF3D7_1008700 Q7KQL5 tubulin beta chain Moderate - 

PF3D7_0934500 Q8I2H3 V-type proton ATPase subunit E, putative Moderate - 

PF3D7_0922500 P27362 phosphoglycerate kinase Moderate + 

PF3D7_0919400 Q8I2V9 protein disulfide isomerase Moderate + 

PF3D7_0917900 Q8I2X4 heat shock protein 70 Moderate + 

PF3D7_0907400 Q8I377 ATP-dependent protease ATPase subunit ClpY Moderate - 

PF3D7_0831400 C0H4Z7 Plasmodium exported protein, unknown function Moderate - 

PF3D7_0827900 C0H4Y6 protein disulfide isomerase Moderate + 

PF3D7_0826700 Q8IBA0 receptor for activated c kinase Moderate + 

PF3D7_0824400 Q8IB78 nucleoside transporter 2 Moderate - 

PF3D7_0821000 Q8IB44 conserved Plasmodium protein, unknown function Moderate - 

PF3D7_0813900 Q8IAX5 40S ribosomal protein S16, putative Moderate - 

PF3D7_0807900 Q8IAR7 tyrosine--tRNA ligase Moderate - 

PF3D7_0802000 Q8IAM0 glutamate dehydrogenase, putative Moderate - 

PF3D7_0727400 Q8IBI3 proteasome subunit alpha type-5, putative Moderate + 

PF3D7_0708400 Q8IC05 heat shock protein 90 Moderate + 

PF3D7_0624600 C6KT82 SNF2 helicase, putative Moderate - 

PF3D7_0624000 C6KT76 hexokinase Moderate + 

PF3D7_0621200 C6KT50 pyridoxine biosynthesis protein PDX1 Moderate + 



 

73 
 

Gene ID UniProt ID Product Description Confidence GSH 

PF3D7_0610400 C6KSV0 histone H3 Moderate - 

PF3D7_0608300 C6KST1 conserved Plasmodium protein, unknown function Moderate - 

PF3D7_0532400 Q8I3F0 lysine-rich membrane-associated PHISTb protein Moderate - 

PF3D7_0517000 Q8I3T8 60S ribosomal protein L12, putative Moderate + 

PF3D7_0516900 Q8I3T9 60S ribosomal protein L2 Moderate - 

PF3D7_0512600 Q7K6A8 ras-related protein Rab-1B Moderate + 

PF3D7_0509000 Q8I0X0 SNAP protein (soluble N-ethylmaleimide-sensitive factor attachment protein), putative Moderate - 

PF3D7_0501600 Q8I484 rhoptry-associated protein 2 Moderate + 

PF3D7_0416800 Q8I1S0 small GTP-binding protein sar1 Moderate - 

PF3D7_0406100 Q6ZMA8 V-type proton ATPase subunit B Moderate + 

PF3D7_0316700 O77388 protein YOP1, putative Moderate - 

PF3D7_0307100 O97249 40S ribosomal protein S12, putative Moderate + 

PF3D7_0303600 Q8I224 plasmoredoxin Moderate + 

PF3D7_0204700 Q7KWJ5 hexose transporter Moderate - 

PF3D7_0108000 Q8I261 proteasome subunit beta type-3, putative Moderate + 

PF3D7_0105200 Q8I289 RAP protein, putative Moderate - 

PF3D7_1474600 Q8IK92 conserved Plasmodium membrane protein, unknown function Low - 

PF3D7_1468100 Q8IKF6 conserved Plasmodium protein, unknown function Low - 

PF3D7_1464700 Q8IKJ0 ATP synthase (C/AC39) subunit, putative Low - 

PF3D7_1453700 Q8IKU1 co-chaperone p23 Low - 

PF3D7_1451100 Q8IKW5 elongation factor 2 Low + 

PF3D7_1424400 Q8ILL2 60S ribosomal protein L7-3, putative Low - 
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Gene ID UniProt ID Product Description Confidence GSH 

PF3D7_1420700 Q8ILP3 surface protein P113 Low - 

PF3D7_1419700 Q8ILQ3 conserved Plasmodium protein, unknown function Low - 

PF3D7_1417500 Q8ILS0 H/ACA ribonucleoprotein complex subunit 4, putative Low - 

PF3D7_1412300 Q8ILX1 nuclear transport factor 2, putative Low + 

PF3D7_1408600 Q8IM10 40S ribosomal protein S8e, putative Low + 

PF3D7_1370300 C0H5L9 membrane associated histidine-rich protein Low - 

PF3D7_1368100 Q8ID28 26S proteasome regulatory subunit RPN11, putative Low - 

PF3D7_1361900 P61074 proliferating cell nuclear antigen 1 Low + 

PF3D7_1361800 C0H5J9 conserved Plasmodium protein, unknown function Low - 

PF3D7_1355100 Q8IDF0 DNA replication licensing factor MCM6 Low - 

PF3D7_1342000 Q8IDR9 40S ribosomal protein S6 Low - 

PF3D7_1338200 Q8IDV1 60S ribosomal protein L6-2, putative Low - 

PF3D7_1331700 Q8IE10 glutamine--tRNA ligase, putative Low + 

PF3D7_1318800 Q8IEC8 translocation protein SEC63 Low - 

PF3D7_1252100 Q8I4R5 rhoptry neck protein 3 Low - 

PF3D7_1246800 Q8I4W4 signal recognition particle receptor, beta subunit Low - 

PF3D7_1238100 Q8I542 calcyclin binding protein, putative Low + 

PF3D7_1226900 Q8I5E9 conserved Plasmodium protein, unknown function Low - 

PF3D7_1149000 Q8IHN4 antigen 332, DBL-like protein Low + 

PF3D7_1136500 C6S3F7 casein kinase 1 Low + 

PF3D7_1132200 Q8II43 T-complex protein 1 subunit alpha Low - 

PF3D7_1126200 Q8IIA2 40S ribosomal protein S18, putative Low - 
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Gene ID UniProt ID Product Description Confidence GSH 

PF3D7_1126000 Q8IIA4 threonine--tRNA ligase Low + 

PF3D7_1118500 Q8III3 nucleolar protein 56, putative Low - 

PF3D7_1105100 Q8IIV1 histone H2B Low + 

PF3D7_1104000 Q8IIW2 phenylalanine--tRNA ligase beta subunit Low - 

PF3D7_1021900 Q8IJI4 PHAX domain-containing protein, putative Low - 

PF3D7_1017900 Q8IJM0 26S proteasome regulatory subunit p55, putative Low - 

PF3D7_1010300 Q8IJU2 succinate dehydrogenase subunit 4, putative Low - 

PF3D7_1008800 Q8IJV7 nucleolar protein 5, putative Low - 

PF3D7_1006700 Q8IJX4 conserved Plasmodium protein, unknown function Low - 

PF3D7_0935800 Q8I2G2 cytoadherence linked asexual protein 9 Low + 

PF3D7_0933600 Q8I2I2 mitochondrial-processing peptidase subunit beta, putative Low - 

PF3D7_0931800 Q8I0U7 proteasome subunit beta type-6, putative Low + 

PF3D7_0925900 Q8I2Q0 conserved Plasmodium protein, unknown function Low - 

PF3D7_0918300 Q8I2X0 eukaryotic translation initiation factor 3 subunit F, putative Low - 

PF3D7_0905400 Q8I395 high molecular weight rhoptry protein 3 Low + 

PF3D7_0903700 Q6ZLZ9 alpha tubulin 1 Low - 

PF3D7_0818900 Q8IB24 heat shock protein 70 Low + 

PF3D7_0807500 Q8IAR3 proteasome subunit alpha type-6, putative Low + 

PF3D7_0801800 Q8IAL6 mannose-6-phosphate isomerase, putative Low - 

PF3D7_0714000 Q8IBV7 histone H2B variant Low + 

PF3D7_0702500 Q8IC42 Plasmodium exported protein, unknown function Low - 

PF3D7_0631900 C6KTF1 stevor Low - 
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Gene ID UniProt ID Product Description Confidence GSH 

PF3D7_0627800 C6KTB4 acetyl-CoA synthetase, putative Low - 

PF3D7_0626800 C6KTA4 pyruvate kinase Low + 

PF3D7_0623500 C6KT71 superoxide dismutase [Fe] Low - 

PF3D7_0619400 C6KT34 cell division cycle protein 48 homologue, putative Low + 

PF3D7_0617800 C6KT18 histone H2A Low - 

PF3D7_0614300 C6KSY4 major facilitator superfamily-related transporter, putative Low - 

PF3D7_0524000 Q8I3M5 karyopherin beta Low - 

PF3D7_0523100 Q8I3N3 mitochondrial-processing peptidase subunit alpha, putative Low + 

PF3D7_0520900 P50250 adenosylhomocysteinase Low + 

PF3D7_0507100 Q8I431 60S ribosomal protein L4 Low - 

PF3D7_0503400 Q8I467 actin-depolymerizing factor 1 Low + 

PF3D7_0415900 C0H4A6 60S ribosomal protein L15, putative Low - 

PF3D7_0316600 O77389 formate-nitrite transporter Low - 

PF3D7_0310600 Q9NFE6 eukaryotic translation initiation factor 3 subunit K, putative, unspecified product Low - 

PF3D7_0310400 O77361 parasite-infected erythrocyte surface protein Low - 

PF3D7_0108300 Q8I259 conserved Plasmodium protein, unknown function Low - 

PF3D7_0102900 Q8I2B1 aspartate--tRNA ligase Low - 

PF3D7_0102200 Q8I0U6 ring-infected erythrocyte surface antigen Low + 
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4.3.1 Pathway enrichment 

GO biological process showed significant enrichment (p-value <0.05) in some metabolic pathways with 

protein refolding and haemoglobin metabolic process at the top. Other important parasite pathways 

including cell redox homeostasis, glycolysis, purine metabolism, protein folding, transport, signalling, 

translation, and proteolysis were also enriched (Figure 4.1).  
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Figure 4.1 GO biological process enrichment of protein hits. 

 

4.3.2 Protein previously proposed as possible antimalarial targets 

From 237 total proteins identified, 18 proteins have previously been reported as possible molecular 

targets of antimalarial drugs. These include proteins identified by computational modelling and 

biochemical evidences (Table 4.2).   
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Table 4.2 Protein hits previously proposed as possible antimalarial targets 

Gene ID UniProt 
ID 

Product Description References 

PF3D7_0106300 Q76NN8 calcium-transporting ATPase (ATP6) (Eckstein-Ludwig et al., 2003, Muller and Hyde, 2010) 

PF3D7_0523000 Q7K6A5 multidrug resistance protein 1 (MDR1) (Ding et al., 2011) 

PF3D7_0608800 Q6LFH8 ornithine aminotransferase (OAT) (Berger, 2000, Ludin et al., 2012) 

PF3D7_0626800 C6KTA4 pyruvate kinase (PyrK) (Crowther et al., 2010) 

PF3D7_0629200 C6KTC7 DnaJ protein, putative (Crowther et al., 2010) 

PF3D7_0709000 Q8IBZ9 chloroquine resistance transporter (CRT) (Ding et al., 2011, Muller and Hyde, 2010) 

PF3D7_0823800 Q8IB72 DnaJ protein, putative (Crowther et al., 2010) 

PF3D7_1129000 Q8II73 spermidine synthase (SpdSyn) (Plata et al., 2010, Huthmacher et al., 2010) 

PF3D7_1324900 Q76NM3 L-lactate dehydrogenase (LDH) (Plata et al., 2010) 

PF3D7_1352500 Q8IDH5 thioredoxin-related protein, putative (Huthmacher et al., 2010) 

PF3D7_1407800 Q8IM16 plasmepsin IV (PM4) (Rosenthal, 1998) 

PF3D7_1408000 Q8I6V3 plasmepsin II (Rosenthal, 1998) 

PF3D7_1408100 Q8IM15 plasmepsin III (HAP) (Rosenthal, 1998) 

PF3D7_1012400 Q8IJS1 hypoxanthine-guanine phosphoribosyltransferase (HGPRT) (Yeh et al., 2004, Crowther et al., 2010, Plata et al., 2010, 
Huthmacher et al., 2010, Downie et al., 2008) 

PF3D7_1444800 Q7KQL9 fructose-bisphosphate aldolase (FBPA) (Huthmacher et al., 2010, Plata et al., 2010, Crowther et al., 
2010, Yeh et al., 2004) 

PF3D7_0709700 Q8IBZ2 lysophospholipase, putative (Zidovetzki et al., 1994) 

PF3D7_0802000 Q8IAM0 glutamate dehydrogenase, putative (GDH3) (Aparicio et al., 2010, Werner et al., 2005) 

PF3D7_1344800 Q8IDP8 aspartate carbamoyltransferase (ATCase) (Maria Belen et al., 2011) 
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4.3.3 Protein concentration of artemisinin and desoxyartemisinin treated parasites 

Concentration of protein extracts from parasite treatment was determined by Bradford protein assay 

before click reaction to normalise the starting concentration. Figure 4.2 showed protein concentrations 

of protein extract in paired treatment of artemisinin activity-based (active) probes and 

desoxyartemisinin (inactive) probes. A reduction trend was observed from most of the paired 

experiments, Wilcoxon test showed significant difference (p-value <0.005).  
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Figure 4.2 Protein concentrations from each artemisinin activity-based probes vs desoxyartemisinin probes 
treatments. Each point showed protein concentration and the line showed paired experiments. 
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4.4 Discussion 

In this section, protein hits identified by artemisinin activity-based probes from trophozoite stage 

parasites will be discussed according to their metabolic pathways. The discussion will mainly focus on 

major metabolic pathways including haemoglobin digestion, glycolysis, nucleic acid and protein 

biosynthesis, ubiquitin-proteasome system, transporter protein, antioxidant system, and parasite-host 

interaction.   

 

4.4.1 Artemisinin disrupts haemoglobin metabolism 

Artemisinin activity-based probes identified 6 enzymes in haemoglobin metabolism of Plasmodium 

falciparum, namely, plasmepsin II, plasmepsin III (HAP), plasmepsin IV, aminopeptidase P (APP), 

dipeptidyl aminopeptidase 1 (DPAP1), and M-1 family alanyl aminopeptidase (M1AAP) (Figure 4.3).  
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Figure 4.3 Haemoglobin catabolic pathway in Plasmodium falciparum (adapted from MPMP database). Enzymes 
are indicated in blue. Red indicates enzymes identified from experiment. 

 

Plasmodium falciparum relies on haemoglobin uptake and digestion as a main source of amino acids for 

its growth and development. Stage-specific proteomic analysis revealed haemoglobin metabolism is a 

major player in trophozoite stage parasites (Florens et al., 2002). However, human adult haemoglobin 

lacks one essential amino acid, isoleucine, which parasites needs to obtain directly from the plasma or 

culture medium (Babbitt et al., 2012, Liu et al., 2006). There is evidence that parasites cultured in 

isoleucine-free medium enter a hibernatory state, but are able to resume normal growth after re-

supplement of isoleucine in the culture medium. Another study also suggested that inhibition of the 

enzymes falcipain 2, plasmepsin I and plasmepsin IV in haemoglobin metabolism is lethal to the parasite 

(Liu et al., 2006). This reflects the important role of haemoglobin metabolism on parasite survival. The 

parasite also exhibits redundant pathways for haemoglobin digestion to ensure amino acid supply. 

Falcipain 2 and plasmepsins pathways were reported to be redundant. Parasites with either falcipain 2 
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or plasmepsins knockout survive in isoleucine-supplement culture medium, while falcipain 2 knockout 

parasite treated with potent plasmepsins inhibitor pepstatin A was killed (Babbitt et al., 2012). 

Furthermore, the haemoglobin digestion is essential for activation of artemisinin. This was 

demonstrated by inhibitions of the haemoglobinase enzymes or knockout of falcipain 2 led to significant 

reduction of artemisinin activity in the trophozoite stage parasites (Klonis et al., 2011). 

 

Plasmepsins are aspartic proteases found in the parasite food vacuole and are involved in haemoglobin 

catabolism. Two major types of plasmepsins in Plasmodium falciparum, plasmepsin I and plasmepsin II, 

are believed to be crucial for early processing of haemoglobin in order for subsequent proteolysis to 

occur. Both enzymes can cleave the bond between Phe33-Leu34 in each monomer of dimeric 

haemoglobin, but not in native tetrameric haemoglobin. Both enzymes are synthesised as proenzymes, 

thus needing activation through removal of the pro-domain in the food vacuole via an as yet unknown 

mechanism (Coombs et al., 2001). 

 

In general, aspartic proteases’ catalytic mechanism involves an activated water molecule in its active site 

and does not form the covalent intermediate during cleavage, unlike serine or cysteine proteases that 

require specific amino acids as attacking nucleophiles. Therefore, aspartic protease inhibitors usually 

contain hydroxyl moieties to bind in place of catalytic water molecules (Coombs et al., 2001). A 

commonly known aspartic protease inhibitor, pepstatin, also contain hydroxyl moieties (Figure 4.4). 

 

 

Figure 4.4 Common aspartic proteases inhibitor pepstatin 

 

According to O’Neill and colleagues (2010), activated artemisinin also contains hydroxyl moiety (Figure 

4.5) which might interfere with the catalytic site of plasmepsins. 

 

  

Figure 4.5 Secondary carbon centred radicals of activated artemisinin 
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To further investigate the binding potential of artemisinin and carbon-centred radical artemisinin to 

plasmepsin II, computational docking modelling was performed using AutoDock Vina plug-in in Chimera 

software suite. The docking model of artemisinin and its carbon-centred radical revealed that both 

compounds fit in the same pocket as the known inhibitor pepstatin A (Figure 4.6). 

 

 

Figure 4.6 Computational docking model of artemisinin (yellow, left panel) and carbon centred radical artemisinin 
(pink, right panel) with plasmepsin II (blue ribbon), Cys292 and Val78 residues forming close pocket are shown in 
orange. Pepstatin A is shown in yellow wire. The best fit pose was shown, binding energy of -8.4 and -10.3 kcal/mol 
for artemisinin and carbon centred radical artemisinin, respectively. 

 

The structural and activity studies of plasmepsin II and its synthetic inhibitors show that relatively 

smaller compounds have a greater effect on inhibition of parasite growth, although they exhibit similar 

potency in enzyme inhibition. Another feature of smaller compounds is they favour parasite plasmepsin 

II to its human analogue, cathepsin D (Silva et al., 1996). Artemisinin is much smaller than pepstatin A. 

Together with the docking model, these findings suggest artemisinin’s potential inhibitory effect on 

plasmepsin II.  

 

A metabolomic study by Cobbold et al. (2016) revealed that levels of haemoglobin-derived peptides 

prolyl glutamate (PE), prolyl-aspartate (PD), prolyl-glutamyl-glutamate (PEE), and aspartylleucyl-histidine 

(DLH) suddenly reduce following DHA treatment, suggesting haemoglobin catabolic process had been 

perturbed by DHA (Figure 4.7). The fact that haemoglobin catabolism is increased in accordance with 

parasite development, together with effects of artemisinins on other biological processes, might explain 

why artemisinins are more potent in later stage than in ring stage parasite. 
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Figure 4.7 Perturbations to haemoglobin-derived peptides after antimalarial drugs treatment (Permission licence 
number 3852701483027; DOI: 10.1093/infdis/jiv372). 

 

Dipeptidyl-aminopeptidase 1 (DPAP1) is a chloride-activated enzyme catalysing amide bond 

hydrolysis at acidic pH. There is evidence that DPAP1 fulfils the function of endopeptidase and 

aminopeptidase in the food vacuole, increasing amino acids production (Wang et al., 2011). Another 

work by Klemba et al. (2004) suggested DPAP1 is essential for asexual stage parasite proliferation as it 

is impossible to be genetically deleted (by single crossover). Targeting this enzyme could be detrimental 

to parasite survival and proliferation. 

 



 
 

85 
 

Two other enzymes identified by artemisinin-activity based probes, aminopeptidase P (APP) and M1-

family alanyl aminopeptidase (M1AAP), are involved in hydrolysis of dipeptides to amino acids. It was 

believed that haemoglobin degradation in the food vacuole is ceased at dipeptide level, with dipeptides 

then transported to the cytosol for further digestion to produce amino acids (Gavigan et al., 2001, 

Kolakovich et al., 1997). However, it was reported that two out of four parasite aminopeptidases are 

localised and enzymatically active in food vacuole (Dalal and Klemba, 2007). Both vacuolar 

aminopeptidases were detected by artemisinin-activity based probes, suggesting these enzymes are 

plausible artemisinin targets. 

 

It has been observed that haemozoin content was markedly, even if not significantly, reduced after 

artemisinin treatment as compared to desoxyartemisinin treatment (data not shown). It is still 

controversial that artemisinins inhibit haem crystallisation process. To the best of our knowledge it is 

unlikely that artemisinins interfere with haemozoin production in parasites at concentrations which 

don’t affect proliferation, as reflected by 3H-hypoxanthine incorporation (Asawamahasakda et al., 1994) 

(Figure 4.8). It is possible that reduction of haemozoin production is due to inhibition of the haemoglobin 

catabolic process, which in turn reduces haem and haemozoin production. Unlike artemisinins, cysteine 

protease inhibitor E64 exhibits inhibitory effect on haemozoin production but not on 3H-hypoxanthine 

incorporation (Figure 4.8) (Asawamahasakda et al., 1994). 
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Figure 4.8 Inhibition of hypoxanthine uptake (hatched bars) and haemozoin production (solid bars) in infected 
RBCs carrying rings (top) or trophozoites (bottom) by 0.5 µM CQ (A), 0.5 µM ART (B), 50 µM E64 (C), and 50 µM 

pepstatin A (D). (Permission license number 3961370378723). 

 

Although the parasite haemoglobin catabolic process involves redundancy to ensure stable and 

interruptible amino acid supply for survival and proliferation, artemisinin potentially inhibits 6 crucially 

important enzymes in the pathway (Figure 4.3). Sensitivity to artemisinin is commensurate with activity 
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of the haemoglobin catabolic process in asexual stage parasite. As there is no clear evidence that 

artemisinins inhibit or target haemozoin production, it is presumed that reduction in haemozoin 

content is due to reduction in haemoglobin degradation and reduced metabolic processes due to 

parasite death. 

 

4.4.2 Glycolysis pathway 

Glycolysis is an essential pathway for cells to maintain their normal functions and viability and is a major 

source of energy for Plasmodium parasites. Proteins involved in the glycolysis pathway identified from 

the experiment were hexose transporter (HT), hexokinase (HKX), enolase, phosphoglycerate kinase, 

pyruvate kinase (PryK), and L-lactate dehydrogenase (LDH) (Figure 4.9).    
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Figure 4.9 Plasmodium falciparum glycolysis pathway (adapted from MPMP).                                                    
Proteins in red were labelled by artemisinin activity-based probes. 

 

Work by Cobbold and colleagues (2016) shows that DHA had no effect on glycolysis metabolites, glucose- 

6-phosphate, PEP or pyruvate (Figure 4.10). The study used targeted metabolomics approach to study 

changes in metabolite levels upon treatment with antimalarial drugs. DHA, atovaquone, and 

chloroquine had no effect on glycolysis metabolite levels, while antimalarial candidate compound 3361, 

a glucose transport inhibitor, significantly affected metabolite levels, including glucose, glucose-6-

phosphate, phosphoenol pyruvate, and pyruvate, reflecting its inhibitory effect on enzymes in the 

glycolysis pathway (Cobbold et al., 2016). This is plausible because a crucial process in glycolysis in 

Plasmodium falciparum parasite is glucose transport. Glucose transport has to be inhibited to result in 

50% glycolytic flux (van Niekerk et al., 2016). Although hexose transporter (HT) was labelled by ART-15 
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probe but not other artemisinin-activity based probes. It is not always necessary that artemisinin 

binding to any protein or transporter would inhibit the function of the protein or not up to the level that 

can interfere glycolysis pathway. Also glycolysis is a crucial metabolic process in the parasite and could 

be highly self-protective as no major antimalarial drug, apart from 3361, has an effect on metabolites 

level (Cobbold et al., 2016) (Figure 4.10). However, the concentration of DHA used by Cobbold et al. 

(2016) was 40 nM compared to 1,000 nM used by this study. At 40 nM, the inhibitory effect of artemisinin 

on glucose transport might be minimal and could not be detected by the setting. Further experiment is 

required to investigate this in a more relevant concentration of artemisinin.  

 

 

Figure 4.10 Metabolites in glycolysis pathway affected by antimalarial drugs                                                
(Permission licence number 3852701483027; DOI: 10.1093/infdis/jiv372) 
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4.4.3 Nucleic acid and protein biosynthesis pathway 

Proteins involved in the translation process identified by artemisinin activity-based probes are listed in 

Table 4.3. Spermidine synthase, ornithine aminotransferase, hypoxanthine-guanine 

phosphoribosyltransferase (HGPRT), adenylate kinase (AK1), elongation factor 2 (eEF2), and initiation 

factor 4A (eIF4a) were also identified from the experiments.  

 

Table 4.3 Protein identified by artemisinin activity-based probes involved in translation process (GO:translation) 

Gene ID UniProt ID Product Description Confidence 

PF3D7_0309600 O00806 60S acidic ribosomal protein P2 Very high 

PF3D7_1421200 Q8ILN8 40S ribosomal protein S25 High 

PF3D7_1130200 Q8II61 60S ribosomal protein P0 High 

PF3D7_1026800 Q8IJD4 40S ribosomal protein S2 High 

PF3D7_0706500 C0H4L6 conserved Plasmodium protein, unknown function High 

PF3D7_0422400 Q8IFP2 40S ribosomal protein S19 High 

PF3D7_0316800 O77395 40S ribosomal protein S15A, putative High 

PF3D7_1465900 Q8IKH8 40S ribosomal protein S3 Moderate 

PF3D7_1447000 Q8IL02 40S ribosomal protein S5 Moderate 

PF3D7_1424100 Q8ILL3 60S ribosomal protein L5, putative Moderate 

PF3D7_1357000 Q8I0P6 elongation factor 1-alpha Moderate 

PF3D7_1242700 Q8I502 40S ribosomal protein S17, putative Moderate 

PF3D7_0813900 Q8IAX5 40S ribosomal protein S16, putative Moderate 

PF3D7_0807900 Q8IAR7 tyrosine--tRNA ligase Moderate 

PF3D7_0517000 Q8I3T8 60S ribosomal protein L12, putative Moderate 

PF3D7_0516900 Q8I3T9 60S ribosomal protein L2 Moderate 

PF3D7_0307100 O97249 40S ribosomal protein S12, putative Moderate 

PF3D7_1451100 Q8IKW5 elongation factor 2 Low 

PF3D7_1424400 Q8ILL2 60S ribosomal protein L7-3, putative Low 

PF3D7_1408600 Q8IM10 40S ribosomal protein S8e, putative Low 

PF3D7_1342000 Q8IDR9 40S ribosomal protein S6 Low 

PF3D7_1338200 Q8IDV1 60S ribosomal protein L6-2, putative Low 

PF3D7_1331700 Q8IE10 glutamine--tRNA ligase, putative Low 

PF3D7_1126200 Q8IIA2 40S ribosomal protein S18, putative Low 

PF3D7_1126000 Q8IIA4 threonine--tRNA ligase Low 

PF3D7_1104000 Q8IIW2 phenylalanine--tRNA ligase beta subunit Low 

PF3D7_0918300 Q8I2X0 eukaryotic translation initiation factor 3 subunit F, 

putative 

Low 
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Gene ID UniProt ID Product Description Confidence 

PF3D7_0507100 Q8I431 60S ribosomal protein L4 Low 

PF3D7_0415900 C0H4A6 60S ribosomal protein L15, putative Low 

PF3D7_0102900 Q8I2B1 aspartate--tRNA ligase Low 

 

Protein biosynthesis pathways are another possible target of artemisinins, as artemisinin-activity based 

probes labelled 21 ribosomal protein subunits at mostly high to low confidence, with only one ribosomal 

subunit with very high confidence Table 4.3). It was also observed that protein concentrations in paired 

treatments were different. Protein concentrations in artemisinin activity-based probes treatments were 

lower that desoxyartemisinin or DMSO treatments (p-value <.005) (Figure 4.2). Morphologic evidence by 

electron micrographs showed that parasites treated with artemisinin and dihydroartemisinin lost their 

ribosomes 4 h post-treatment (Maeno et al., 1993). Another study revealed that artemisinin rapidly 

reduced incorporation of radioactive labelled isoleucine to newly synthesised protein at concentrations 

as low as 50 nM, without reduction of 3H-hypoxanthine incorporation (Gu et al., 1983). However, a study 

performed in cell-free system suggested artemisinin and other antimalarial drugs have no effect on the 

protein elongation machinery (Ferreras et al., 2002), but does not exclude the possibility of inhibition of 

translation initiation processes. These evidence support the hypothesis that artemisinins interfere with 

parasite protein biosynthesis and strengthen the results obtained in the study reported here. 

 

Nonetheless, it is also possible that artemisinin binds to ribosome subunits non-specifically and could 

not exhibit any inhibitory effect as it lacks specificity to ribosome subunits, none of ribosomal proteins 

were identified by all probes, and number of ribosome in the parasite could overcome the effect of 

promiscuous binding of artemisinin. However, it is too early to draw any conclusion here on protein 

translation inhibition by artemisinin as more experiments are needed to confirm this, but this proteomic 

approach has provided some insight.  

 

Ornithine aminotransferase (PfOAT) is a protein of particular interest. It catalyses a very narrow 

process in the amino acid metabolic pathway and is also involved in redox mechanisms. The enzyme 

catalyses the conversion of L-glutamate 5-semialdehyde to ornithine and is regulated by thioredoxin 

(Trx) via a unique Cys163 in the structural loop (residue 147-170) (Jortzik et al., 2010). Two cysteine 

residues, Cys154 and Cys163, are unique to Plasmodium falciparum, although there is conservation in 

the sequences. However, this structural loop is not defined by electron density map, so it does not 

appear in crystal structures (3LG0 and 3NTJ) suggesting it has a flexible structure (Jortzik et al., 2010). 

 

To further explore the finding that artemisinin probes bind to PfOAT, computational docking has been 

performed. The model predicted artemisinin fits in the pocket near the structural loop containing the 
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unique cysteine residues with binding energy of -7.9 kcal/mol. The model suggested possible 

competitive binding with the OAT regulator thioredoxin (Trx) and could interfere with its activity (section 

A2.2.3). Taken together, this phenomenon could affect protein function. However, further experiments 

are needed to investigate if artemisinin inhibits protein function in the physiological environment, 

presumably by binding cysteine 163 in the structural loop. Site-directed mutagenesis of the active site 

residues could give some insight into this protein function and artemisinins’ effect. 

 

Spermidine synthase is an enzyme involved in methionine and polyamine metabolism, catalysing 

propylamine transfer from S-adenosylmethioninamine to putrescine, and was identified with high 

confidence by artemisinin activity-based probes. The enzyme also produces spermidine which is 

important for activation of translation initiation factor 5A (eIF5A). Inhibition of this enzyme affects 

parasite development by arresting parasite at early trophozoite stage (Becker et al., 2010). Most recently, 

Sprenger et al (2016) had demonstrated that inhibition of spermidine synthase is a hierarchical process 

where the substrate binding site (dcAdoMet) must be occupied first, after which the product binding site 

(putrescine) can be occupied. Several known inhibitors of spermidine synthase have been biochemically 

characterised. Although artemisinin was not included in the work by Sprenger et al. (2016), chemical 

perspective of compound structure suggested artemisinin is more similar to spermidine synthase 

inhibitors AdoDATA and NAC  used in their study. Both compounds are also the most potent spermidine 

synthase inhibitors tested (Sprenger et al., 2016). 

 

 

NAC 

 

AdoDATO 

Figure 4.11 Plasmodium falciparum spermidine synthase inhibitors, NAC (top) and AdoDATO (bottom). 

 

Another important function of spermidine synthase lies in its product spermidine, activator of 

translation initiation factor 5A (eIF5A), which was not identified by artemisinin activity-based probes. 

The unique production of amino acid hypusine of Lys residue in eIF5A requires aminobutyl moiety from 

spermidine to activate the eIF5A (Molitor et al., 2004). If artemisinin does inhibit spermidine synthase, 
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this possibly synergises the effect of artemisinin on eIF4A (identified with high confidence) in translation 

initiation process of protein synthesis in the parasite.  

 

 

Figure 4.12 Methionine and polyamine metabolism (adapted from MPMP). Detected enzyme is indicated in red. 

 

The evidence from metabolic study suggested that DHA affects pyrimidine biosynthesis as reflected by 

a significant reduction in the pathway metabolites including aspartate, carbamoyl aspartate, orotate, 

and UMP. Atovaquone also has an effect on pyrimidine biosynthesis. However, it is likely that 

artemisinins and atovaquone might have different mechanisms of action as they have different 

metabolic profile changes. Atovaquone treatment resulted in accumulation of dihydroorotate and 

carbamoyl-L-aspartate suggesting inhibition of dihydroorotate dehydrogenase enzyme (Biagini et al., 

2012), while DHA resulted in depletion of the metabolites (Cobbold et al., 2016). However, artemisinin 

activity-based probes were not able to identify any enzyme directly involved in pyrimidine biosynthesis 

pathway, suggesting artemisinin might have indirect effects on pyrimidine pathway. On the other hand, 

enzymes in the purine biosynthesis pathway were specifically labelled by artemisinin activity-based 

probes. 
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The purine biosynthesis pathway was enriched by GO enrichment analysis (Figure 4.1). Adenylate 

kinase (AK1) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are the 2 proteins in 

the purine metabolism pathway identified by the probes with very high and moderate confidence, 

respectively.   

 

Adenylate kinase (AK) catalyses reversible conversion of 2 ADP and ATP + AMP. This process is part of 

energy metabolism in the parasite. Although metabolomics work by Cobbold and co-workers (2016) did 

not show any significant alteration in purine metabolites levels, adenylate kinase also plays an important 

role, together with GTP:AMP phosphotransferase, in cellular energy metabolism. It is possible that 

artemisinin would have an effect on the parasite energy metabolism in the wider aspect through 

adenylate kinase. 

 

Hypoxanthine-guanine phosphoribosyltransferase (HGPRT or HGXPRT) is an enzyme in purine salvage 

pathway of the parasite (lacking de novo purine synthesis). Therefore, the parasites purine nucleobases 

rely completely on salvage pathway (Downie et al., 2008). It was shown that hypoxanthine is an essential 

factor for the parasite development (Asahi et al., 1996) and inhibition of this enzyme by purine 

analogues was lethal to the parasites (Keough et al., 2006). This finding suggested artemisinin might 

have an effect on purine biosynthesis pathway.  

 

To evaluate the binding affinity of artemisinin to HGPRT, computational docking modelling was 

performed by AutoDock Vina software. The best fit pose has the binding energy of -10.3 kcal/mol and 

fit in the same binding site as a known inhibitor immucillin (S-SerMe-ImmH) (Hazleton et al., 2012)  

(Figure 4.13 and A2.2.6). However, more experiments are required for further investigation as this 

enzyme is a promising drug target.   
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Figure 4.13 Computational molecular docking of PfHGXPRT (blue) and artemisinin (yellow). HGXPRT structure with 
inhibitor S-SerMe-ImmH (3OZG) was obtained from PDB database. Cocrystallised inhibitor was removed and 
artemisinin was docked.  

 

4.4.4 Chaperone protein and unfolded protein response 

It has long been proposed that artemisinin rapid killing of the parasites are a result of catastrophic effect 

on parasite proteins. Activated artemisinin or artemisinin carbon-centred radicals alkylate many 

parasite proteins averting them from normal functions, thus many artemisinin mechanism of action 

studies have focused on this hypothesis. The results obtained here showing that chaperonins and 

unfolded protein response proteins are enriched in probe-labelled proteome suggest that parasites 

possibly overcome this catastrophic effect by boosting its protein recycling process via an unfolded 

protein response. Transcriptome analysis of parasite treated with artesunate also revealed chaperone 

and chaperone-related genes are upregulated within a 90-180 min period after treatment (Natalang et 

al., 2008). These findings are supported by a population transcriptomic study that revealed how the 

artemisinin resistance phenotype is associated with elevated expression levels of proteins involved in 

the unfolded protein response in the parasite, including Plasmodium Oxidative Stress Complex (PROSC) 

and TCP-1 Ring Complex (TRiC) (Mok et al., 2015). PROSC proteins are listed in Table 4.4. Artemisinin 

activity-based probes identified 5 out of 8 PROSC proteins, suggesting artemisinin action is strongly 

correlated with disruption of protein involved in response to unfolded proteins. However, none of TRiC 

proteins were identified by the artemisinin activity-based probes. Artemisinin effect on this parasite 

process might synergise with the effect on other parasite pathways.  
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Table 4.4 Plasmodium Oxidative Stress Complex (PROSC) proteins (taken from (Mok et al., 2015)). Proteins in bold 
were identified from the experiment. 

Gene ID UniProt ID Product Description Confidence 

PF3D7_1010700 Q8IJT8 dolichyl-phosphate-mannose protein 

mannosyltransferase, putative 

very high 

PF3D7_1222300 Q8I0V4 endoplasmin, putative (GRP94) high 

PF3D7_1115600 Q8IIK8 peptidyl-prolyl cis-trans isomerase (CYP19B) high 

PF3D7_0827900 C0H4Y6 protein disulfide isomerase (PDI8) moderate 

PF3D7_1134100 Q8II23 protein disulfide isomerase (PDI-11) moderate 

PF3D7_1344200 C0H5H0 heat shock protein 110, putative (HSP110) not detected 

PF3D7_1437900 Q8IL88 HSP40, subfamily A, putative (ERdj3) not detected 

PF3D7_0917900 Q8I2X4 heat shock protein 70 (HSP70-2) not detected 

 

The two proteins in PROSC identified by artemisinin activity-based probes were protein disulfide 

isomerase 8 (PDI8) and 11 (PDI11), named after their chromosomal location, are 2 of 4 disulfide 

isomerases annotated in Plasmodium falciparum genome, localised in the parasite ER and are part of 

the ER-associated degradation (ERAD) pathway. The structures of PDI8 is highly conserved among 

Plasmodium species. It has 2 thioredoxin domains while PDI11 has 1 thioredoxin domain as predicted 

by SMART protein database or 2 thioredoxin domains as predicted by the Pfam and HMMs databases 

(Mahajan et al., 2006). These proteins have oxidoreductase/isomerase and chaperone activity, assisting 

protein folding via disulfide-dependent conformation (Mahajan et al., 2006, Mouray et al., 2007). 

Plasmodium PDIs have been reported to be targeted, but not solely targeted, by the compound 

DS61(Mouray et al., 2007). These proteins contain thioredoxin domain(s) suggesting their involvement 

in response to oxidative stress. Although PDI11 contains HPM motif in the sequence which suggests 

direct binding to streptavidin, PDI11 was never identified by any control experiment.  

 

Endoplasmin (GRP94) is another protein involved in ERAD pathway dealing with misfolded protein 

stress in ER. The ERAD pathway in Plasmodium parasites and other apicomplexan protozoa are much 

reduced compared to other eukaryotes and are relatively sensitive to inhibition of the pathway 

enzymes. Small molecule Inhibition of signal peptide peptidase (SPP), an enzyme in ERAD, has a lethal 

effect to Plasmodium falciparum (Harbut et al., 2012). It has been shown that some compounds directly 

bind to and inhibit SPP in the parasite. In addition, SPP mutant also renders parasite less sensitive to 

those compounds by an order of magnitude (Harbut et al., 2012). 
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Figure 4.14 Endoplasmic reticulum-assisted degradation (ERAD) pathway in Plasmodium parasites (adapted from 
Harbut et al. (2012)). Proteins indicated in red were identified by the probes. 

 

System analysis of the chaperone network in Plasmodium falciparum by Pavithra et al. (2007) revealed 

that Plasmodium parasites have 97 chaperone proteins (Pavithra et al., 2007). From this total number, 

artemisinin activity-based probes identified 16 chaperone proteins (16.5%) with various confidence 

(Table 4.5). This finding supports the hypothesis that artemisinin alkylates parasite proteins and that 

parasite boosted its response to unfolded proteins (Natalang et al., 2008). Not only that parasite 

increases response to the unfolded proteins, but the chaperone network itself might be affected by 

artemisinin.  
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Table 4.5 Identified proteins associated with chaperone network involved in chaperone network (Pavithra et al., 
2007) 

Gene ID UniProt ID Product Description Confidence 

PF3D7_1118200 Q8III6 heat shock protein 90, putative Very high 

PF3D7_1108700 Q8IIR6 heat shock protein DnaJ homologue Pfj2 Very high 

PF3D7_0823800 Q8IB72 DnaJ protein, putative Very high 

PF3D7_0629200 C6KTC7 DnaJ protein, putative Very high 

PF3D7_1015600 Q8IJN9 heat shock protein 60 High 

PF3D7_0919100 Q8I2W2 DnaJ protein, putative High 

PF3D7_1116800 Q8IIJ8 heat shock protein 101 Moderate 

PF3D7_1115600 Q8IIK8 peptidyl-prolyl cis-trans isomerase Moderate 

PF3D7_0917900 Q8I2X4 heat shock protein 70 Moderate 

PF3D7_0907400 Q8I377 ATP-dependent protease ATPase subunit ClpY Moderate 

PF3D7_0827900 C0H4Y6 protein disulfide isomerase Moderate 

PF3D7_0708400 Q8IC05 heat shock protein 90 Moderate 

PF3D7_0532400 Q8I3F0 lysine-rich membrane-associated PHISTb 

protein 

Moderate 

PF3D7_1453700 Q8IKU1 co-chaperone p23 Low 

PF3D7_0818900 Q8IB24 heat shock protein 70 Low 

PF3D7_0102200 Q8I0U6 ring-infected erythrocyte surface antigen Low 

 

As discussed above, artemisinin activity-based probes bind, and possibly interfere, with many proteins 

involved in parasite response to misfolded proteins and unfolded protein, including ERAD and 

chaperone network, suggesting artemisinin gains it rapid killing effect by interrupting this important 

process. It has been shown that the unfolded protein response process is crucial to parasite survival, 

with inhibition of this process leading to apoptosis-like cell death (Rathore et al., 2015).  

 

4.4.5 Ubiquitin-proteasome system 

The ubiquitin-proteasome system is responsible for protein degradation in the parasite and thus 

recycling unwanted proteins. The system comprises of an initial step where ubiquitin is transferred to 

designated proteins, then ubiquitinated proteins undergo degradation by the proteasome complex. 

This process is important for parasite survival as it degrades non-functional proteins including damaged 

proteins. Ubiquitin-proteasome is interlaced with unfolded protein response where unfolded proteins 

are usually refolded first by chaperone-assisted system or heavily damaged proteins undergone 

degradation by ubiquitin-proteasome system. Artemisinin activity-based probe SCR-A-17 and SCR-A-10 

labelled polyubiquitin (PfpUB), one of the proteins involved in the ubiquitin-proteasome system. Some 



 
 

99 
 

proteasome subunits were labelled by artemisinin activity-based probes, usually with moderate and 

low confidence (Table 4.6).  

 

Table 4.6 Proteins in ubiquitin-proteasome system identified by artemisinin activity-based probes 

Gene ID UniProt ID Product Description Confidence 

PF3D7_1353900 Q8IDG2 proteasome subunit alpha type-7, putative Moderate 

PF3D7_1011400 Q8IJT1 proteasome subunit beta type-5 Moderate 

PF3D7_0907400 Q8I377 ATP-dependent protease ATPase subunit ClpY Moderate 

PF3D7_0727400 Q8IBI3 proteasome subunit alpha type-5, putative Moderate 

PF3D7_0108000 Q8I261 proteasome subunit beta type-3, putative Moderate 

PF3D7_0931800 Q8I0U7 proteasome subunit beta type-6, putative Low 

PF3D7_0807500 Q8IAR3 proteasome subunit alpha type-6, putative Low 

PF3D7_1368100 Q8ID28 26S proteasome regulatory subunit RPN11, 

putative 

Low 

PF3D7_1017900 Q8IJM0 26S proteasome regulatory subunit p55, 

putative 

Low 

 

Upon exposure to artemisinin, parasite proteins are subjected to stress and ubiquitination leading to 

activation of the proteasome system. It has been demonstrated that artemisinin-susceptible parasites 

had higher level of ubiquitinated proteins than in resistant parasite (Dogovski et al., 2015). This finding 

is suggestive of some possibilities. Firstly, artemisinin generates vast protein damage as evidenced by 

this study. Secondly, accumulation of ubiquitinated proteins are due to proteasomes were also affected 

by artemisinin. Lastly, resistant parasites may be able to protect against protein damage or are better 

able to cope with the stress generated by artemisinin. Proteasome inhibition has a synergistic effect 

with artemisinin in both artemisinin susceptible and resistant parasites, highlighting the proteasome as 

a promising therapeutic target (Dogovski et al., 2015).  

 

4.4.6 Transporter proteins 

Transporter proteins are important for the parasite to maintain adequate supplies of nutrients, 

metabolites, and ions by controlling transport across the membranes. Normal function of transporter 

proteins is required for cellular development and survival. Artemisinin activity-based probes identified 

many transporter proteins localised on many major membranes including parasite membrane, ER, and 

food vacuole (Table 4.7). Transporter proteins are also important for retaining normal physiological 

membrane potential.   
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Artemisinin, derivatives, and synthetic tetraoxane RKA182 have been demonstrated to cause rapid 

depolarisation of plasma and mitochondrial membranes. The latter is possibly due to disruption of 

transporter proteins or other components rather than mitochondrial electron transport chain (ETC) 

components as direct enzyme assays on ETC components failed to establish any inhibition effect 

(Antoine et al., 2014). In accordance with previous finding, artemisinin activity-based probes labelled 

some transporter proteins involved in maintaining membrane potentials, V-type ATPase subunits A 

(very high), V-type H(+)-translocating pyrophosphatase (high), and V-type ATPase subunits E and V-type 

ATPase subunits B (moderate). It is possible that artemisinin binding to these transporter proteins alters 

protein conformation resulting in influx or efflux of ions across membranes and depolarises the 

membrane potential.  

 

A recent study has claimed that dormant parasite can maintain the mitochondrial membrane potential 

when exposed to ~700 nM (200 ng/mL) of DHA and are able to recover from dormancy, inferring a 

resistance phenotype, while parasite whose mitochondrial membrane potential has been abolished 

failed to recover (Peatey et al., 2015). This is suggestive of membrane potential as a possible therapeutic 

target and modulator of resistance phenotype. In the present study, voltage-dependent anion-

selective channel protein was the only protein identified with very high confidence localised on 

mitochondrial outer membrane with suggestive ion transport function which could contribute to 

mitochondrial membrane potential generation. Other proteins localised on mitochondrial membrane 

identified by the artemisinin activity-based probes included the ADP/ATP transporter subunit of 

adenylate translocase (ADT) (moderate) and GrpE protein homolog (MGE1) (moderate) (Table 4.1 and 

Table 4.7).  

 

Table 4.7 Protein hits associated with GO term transport 

Gene ID 

 

UniProt ID Product Description Confidence 

PF3D7_1438100 Q8IL86 secretory complex protein 62 Very high 

PF3D7_1311900 Q76NM6 V-type proton ATPase catalytic subunit A Very high 

PF3D7_0903200 C0H516 ras-related protein RAB7 Very high 

PF3D7_0807300 Q7K6B0 ras-related protein Rab-18 Very high 

PF3D7_0523000 Q7K6A5 multidrug resistance protein 1 Very high 

PF3D7_1432100 Q8ILE3 voltage-dependent anion-selective channel 

protein, putative 

Very high 

PF3D7_0106300 Q76NN8 calcium-transporting ATPase High 

PF3D7_0501300 Q8I487 skeleton-binding protein 1 High 

PF3D7_1231100 Q8I5A9 ras-related protein Rab-2 High 
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Gene ID 

 

UniProt ID Product Description Confidence 

PF3D7_1117700 Q7KQK6 GTP-binding nuclear protein RAN/TC4 High 

PF3D7_1020900 Q7KQL3 ADP-ribosylation factor High 

PF3D7_1015600 Q8IJN9 heat shock protein 60 High 

PF3D7_1451800 Q8IKV8 sortilin High 

PF3D7_0709000 Q8IBZ9 chloroquine resistance transporter High 

PF3D7_0914700 Q8I305 major facilitator superfamily-related 

transporter, putative 

High 

PF3D7_0601900 C6KSL9 conserved Plasmodium protein, unknown 

function 

High 

PF3D7_1456800 Q8IKR1 V-type H(+)-translocating pyrophosphatase, 

putative 

High 

PF3D7_1330400 Q8IE22 ER lumen protein retaining receptor 1, 

putative, unspecified product 

High 

PF3D7_1346100 Q8IDN6 protein transport protein SEC61 subunit alpha Moderate 

PF3D7_1242800 Q8I501 rab specific GDP dissociation inhibitor Moderate 

PF3D7_1211900 Q8I5T3 non-SERCA-type Ca2+ -transporting P-ATPase Moderate 

PF3D7_1116800 Q8IIJ8 heat shock protein 101 Moderate 

PF3D7_0824400 Q8IB78 nucleoside transporter 2 Moderate 

PF3D7_1113300 Q8IIM9 UDP-galactose transporter, putative Moderate 

PF3D7_0934500 Q8I2H3 V-type proton ATPase subunit E, putative Moderate 

PF3D7_0512600 Q7K6A8 ras-related protein Rab-1B Moderate 

PF3D7_0416800 Q8I1S0 small GTP-binding protein sar1 Moderate 

PF3D7_0406100 Q6ZMA8 V-type proton ATPase subunit B Moderate 

PF3D7_0204700 Q7KWJ5 hexose transporter Moderate 

PF3D7_1037300 Q8IJ34 ADP/ATP transporter on adenylate 

translocase 

Moderate 

PF3D7_0509000 Q8I0X0 SNAP protein (soluble N-ethylmaleimide-

sensitive factor attachment protein), putative 

Moderate 

PF3D7_1124700 Q8IIB6 GrpE protein homolog, mitochondrial, 

putative 

Moderate 

PF3D7_1464700 Q8IKJ0 ATP synthase (C/AC39) subunit, putative Low 

PF3D7_0524000 Q8I3M5 karyopherin beta Low 

PF3D7_1412300 Q8ILX1 nuclear transport factor 2, putative Low 

PF3D7_1010300 Q8IJU2 succinate dehydrogenase subunit 4, putative Low 

PF3D7_0316600 O77389 formate-nitrite transporter Low 



 
 

102 
 

Gene ID 

 

UniProt ID Product Description Confidence 

PF3D7_1318800 Q8IEC8 translocation protein SEC63 Low 

PF3D7_1246800 Q8I4W4 signal recognition particle receptor, beta 

subunit 

Low 

PF3D7_1006700 Q8IJX4 conserved Plasmodium protein, unknown 

function 

Low 

PF3D7_0933600 Q8I2I2 mitochondrial-processing peptidase subunit 

beta, putative 

Low 

PF3D7_0614300 C6KSY4 major facilitator superfamily-related 

transporter, putative 

Low 

PF3D7_0523100 Q8I3N3 mitochondrial-processing peptidase subunit 

alpha, putative 

Low 

 

One protein of particular interest is sarco/endoplasmic reticulum Ca2+ ATPase (SERCA-type ATPase 

or PfATP6). This protein has previously been proposed as molecular target of artemisinin (Eckstein-

Ludwig et al., 2003).  The hypothesis is backed by several pieces of computational works (Naik et al., 

2011, Shandilya et al., 2013). They reported artemisinin, artemisinin derivatives, and Fe-artemisinin bind 

to the protein similarly to specific inhibitor thapsigargin and interfere with protein function. A separate 

experiment on Xenopus oocyst with WT and mutant protein sequences showed that mutations in PfATP6 

L263D, L263E, and L263K render the protein insensitive to artemisinin (Uhlemann et al., 2005, Uhlemann 

et al., 2012). In contrast, another study, showed PfATP6, rabbit SERCA1a, and E255L SERCA1a (reversed 

substitution of PfATP6) expressed on Xenopus oocyst showed no sensitivity to artemisinin, even up to 50 

µM (David-Bosne et al., 2016). Transgenic parasite expressing WT PfATP6 or L263E mutant PfATP6 

showed near significant difference in artemisinin and derivatives IC50 values (Valderramos et al., 2010). 

A study by Arnou et al. (2011) has confirmed that PfATP6 is SERCA but with unique pharmacological 

profile. They also showed that artemisinin fails to exhibit inhibitory effect on purified PfATP6 and rabbit 

SERCA1a as assayed by in vitro enzyme activity (Arnou et al., 2011). In relation with bench results, studied 

from field isolate parasites failed to establish any correlation between mutations in PfATP6 and reduced 

sensitivity to artemisinin (Cui et al., 2012, Phompradit et al., 2014, Na-Bangchang et al., 2013, 

Phompradit et al., 2011) while two other studies also showed parasites with mutations in PfATP6 

remained sensitive to artemisinin (Tanabe et al., 2011, Brasil et al., 2012).  

 

Although many studies argue against PfATP6 as an artemisinin target, in addition to the computational 

works, all artemisinin activity-based probes used labelled PfATP6 both in this study and in a separate 
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study (Wang et al., 2015). However, how artemisinin affects PfATP6 has to be further studied and this 

topic remains a point of debate.  

 

It is worth noting that endoplasmic reticulum-resident calcium binding protein (ERC) was also 

identified by the probes (considered as noise). This protein is closely related to mammalian calumenin, 

a CREC (Cab45, Reticulo-calbin, ERC-55, and Calumenin) protein family. Although CREC has low affinity 

to calcium, compared to other calcium binding proteins, ERC may play a role in calcium storage and 

regulation in the parasite ER. Parasite ERC has been proposed as a direct target of some synthetic 

endoperoxides, N-89 and N-251 (Morita et al., 2012). Chemical proteomic approach showed synthetic 

endoperoxides have high affinity to ERC in asexual stage of Plasmodium falciparum parasite (Morita et 

al., 2012).   

 

   

                                 N-89                                                                              N-251 

 

 

N-346-based column 

Figure 4.15 Synthetic endoperoxide N-89 (top left), N-251 (top right), and N-346-based column (bottom)     
(adapted from (Sato et al., 2011) and (Morita et al., 2012)). 

 

Artemisinin might have effects on calcium homeostasis in the parasite as evidenced by ERC and PfATP6 

are proteins involved in calcium homeostasis of the cell were labelled by artemisinin activity-based 

probes. Presumably artemisinin abolishes cellular calcium homeostasis which is important and 

fundamental in parasite and other eukaryotes. Cellular calcium served as secondary messenger in 

signalling pathways and also in gene transcription regulation. In normal physiological condition, cells 

maintain free cellular calcium in optimum level and stored excess calcium in ER or other organelles. In 

Plasmodium parasites, calcium is also important for parasite egress from RBC (Glushakova et al., 2013) 

and invasion into RBC (Alleva and Kirk, 2001). However, excessive free calcium in cytoplasm can lead to 

adverse effect or induce cell death (Ermak and Davies, 2002). 
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Another transporter protein identified from the experiment was chloroquine resistance transporter 

(PfCRT). It is a transporter protein located on the food vacuole membrane which has been widely 

studied, as mutations in this gene are associated with chloroquine resistance, hence its name. Mutation 

in PfCRT confers resistance to chloroquine supposedly by reduced accumulation of chloroquine in food 

vacuole due to leakage.  

 

Artemisinin and chloroquine are believed to share a similar cellular localisation in parasite food vacuole. 

Genome wide association study (GWAS) study showed that polymorphisms in PfCRT gene are strongly 

associated with artemisinin resistance (Miotto et al., 2015). This is suggestive of PfCRT being involved 

either directly or indirectly with artemisinin’s mechanism of resistance. In PfCRT mutant parasite 

conferring chloroquine resistance, chloroquine is actively transported out of the food vacuole, 

preventing chloroquine from sequestering haemozoin. This process is believed to be coupled with ion 

exchange and proton leakage (Lehane and Kirk, 2008, Juge et al., 2015). If artemisinin shares a similar 

mechanism of resistance conferred by CRT, this process may prevent artemisinin activation by a haem-

mediated process (Xie et al., 2016) or its effects on haemoglobin digestion (section 4.4.1).  

  

CRT also transport ions and proton across food vacuole membranes and could contribute the 

generation of membrane potential across the food vacuole membrane (Juge et al., 2015). Artemisinin 

binding to CRT may cause membranes to leak. It has been shown that proton leakage is associated with 

chloroquine resistance (Lehane and Kirk, 2008). Not only drugs and ions that are transported by CRT, 

glutathione has been reported to be transported by CRT and linked with chloroquine resistance 

(Patzewitz et al., 2013). 

 

Multidrug resistance protein 1 (MDR1) is another transporter protein identified. The gene encoded 

for MDR1 protein is associated with susceptibility to multiple antimalarial drugs. Disruption of one copy 

of PfMDR1 gene renders parasite more sensitive to mefloquine, lumefantrine, halofantrine, quinine, and 

artemisinin, but not chloroquine (Sidhu et al., 2006).  

 

Although MDR1 and CRT and their association with resistance to many antimalarial drugs were 

established (Veiga et al., 2016), a clear evidence for artemisinin of action and resistance to these proteins 

remain elusive and yet to further explored.  
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4.4.7 Antioxidant defence system 

The malaria parasite is subjected to oxidative stress throughout its life cycle. To withstand a highly 

oxidative environment, the parasite possesses a large and complex antioxidant system (Bozdech and 

Ginsburg, 2004) (Figure 4.16). The system serves the parasite as a redox switch, redox homeostasis, and 

antioxidant defence system. 

 

 

Figure 4.16 Antioxidant system in Plasmodium falciparum. Proteins identified from the experiments indicated in 
red. 

 

Artemisinin activity-based probes identified a number of proteins in antioxidant systems in Plasmodium 

falciparum (Table 4.8). It has been hypothesised that artemisinin kills the parasite because ROS 

generated by artemisinin overwhelm the redox balance of these systems. If the defence systems 

themselves are affected by artemisinin, this could be catastrophic and rapidly kill the parasite, which is 

a key feature of artemisinin. Furthermore, nearly 50% of proteins identified by artemisinin activity-based 

probes (very high-moderate confidence) contain glutathione binding site (Kehr et al., 2011). This 
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implicated artemisinin disturbs antioxidant system in the parasites and that cysteine residue is possibly 

the main target of alkylation by carbon centred artemisinin radicals.  

 

Table 4.8 Protein hits involved in cell redox homeostasis and antioxidant system (GO term) 

Gene ID UniProt ID Product Description Confidence 

PF3D7_0823800 Q8IB72 DnaJ protein, putative very high 

PF3D7_1104400 Q8IIV8 conserved protein, unknown function very high 

PF3D7_1108700 Q8IIR6 heat shock protein DnaJ homologue Pfj2 very high 

PF3D7_1212000 Q8I5T2 glutathione peroxidase-like thioredoxin 

peroxidase (TPx(Gl)) 

high 

PF3D7_1352500 Q8IDH5 thioredoxin-related protein, putative high 

PF3D7_0303600 Q8I224 plasmoredoxin (Plrx) high 

PF3D7_0827900 C0H4Y6 protein disulfide isomerase (PDI8) moderate 

 

4.4.8 Parasite-host interaction and protein export 

A number of parasite proteins localised on the RBC membrane and involved in parasite-host interaction 

were labelled from the experiment with various confidence (Table 4.9 and Figure 4.17). 

 

Table 4.9 Protein hits associated with GO Maurer's cleft, PHIST protein family, and host-parasite interaction 

Gene ID UniProt ID Product Description Confidence 

PF3D7_0501200 Q8I488 parasite-infected erythrocyte surface protein 
(PIESP2) 

very high 

PF3D7_0702400 Q8IC43 small exported membrane protein 1 (SEMP1) very high 

PF3D7_0936000 C0H592 ring-exported protein 2 (REX2) very high 

PF3D7_0936800 Q8I2F2 Plasmodium exported protein (PHISTc), unknown 
function 

very high 

PF3D7_0416800 Q8I1S0 small GTP-binding protein sar1 (SAR1) high 

PF3D7_0501300 Q8I487 skeleton-binding protein 1 (SBP1) high 

PF3D7_0601900 C6KSL9 conserved Plasmodium protein, unknown function high 

PF3D7_0424600 Q8IFM0 Plasmodium exported protein (PHISTb), unknown 
function 

high 

PF3D7_1201000 Q8I635 Plasmodium exported protein (PHISTb), unknown 
function 

high 

PF3D7_0532300 Q8I3F1 Plasmodium exported protein (PHISTb), unknown 
function 

high 

PF3D7_0402000 Q8I206 Plasmodium exported protein (PHISTa), unknown 
function 

high 

PF3D7_0501000 Q8I490 Plasmodium exported protein, unknown function moderate 

PF3D7_1149000 Q8IHN4 antigen 332, DBL-like protein (Pf332) moderate 

 

Although there is no established evidence showing that mechanism of artemisinin involves host-

parasite interaction, these finding suggested artemisinin could have effects on this important process.  
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Figure 4.17 Parasite exported proteins (Warncke et al., 2016). Proteins in circles were identified from the 
experiments. 
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4.5 Conclusions 

Artemisinins are most effective in mature trophozoite stage in Plasmodium falciparum as its activator 

ferrous haem is abundant (Klonis et al., 2013). Proteome of trophozoite parasites treated with 

artemisinin activity-based probes revealed many proteins, spanning most major parasite metabolic 

pathways, were irreversibly bound to artemisinin. Possible pathways implicated include haemoglobin 

metabolism, protein biosynthesis, nucleic acid, transport of metabolites and ions, and membrane 

potential as previously discussed in this chapter. These findings support the idea that artemisinin’s 

mechanism of action is not through single inhibitory pathway but due to a global effect of parasite 

protein alkylation causing unfunctional proteins or possible induction of cell death pathway. However, 

further study is required to elucidate effect(s) of artemisinin on selected pathways or enzymes.  

Limitation in the study are including parasite material used for the treatment, low coverage of lysine 

and arginine-rich proteins, contamination from host protein, and high background from copper-free 

click reaction. In this study a tremendous amount of parasite is required to obtain a substantial amount 

of protein for click reaction and subsequent purification. Also high background from copper-free click 

reaction due to highly reactive reagent DIBO, but could be prevented by lowering the concentration and 

reducing the proteins before click reaction. Although saponin lysis was introduced to purify the free 

parasites and to reduce the host haemoglobin contamination, the detectable level of host haemoglobin 

is inevitable and could cause ion suppression during peptide sequencing step by MS. As peptide 

preparation involved trypsin digestion, proteins with high lysine and arginine could undergo extensive 

digestion and not detectable by MS.  



 
 

109 
 

Chapter 5 

The “endoperoxome” of the ring stage parasite 
 

5.1 Introduction  

Previous studies have suggested that different stages of the Plasmodium falciparum intra-erythrocytic 

life cycle respond differentially to artemisinin exposure (Figure 5.1) with significant implications for the 

K13 dependent resistance mechanism.  The data suggest that the very early ring stage (~0-3 hpi) parasite 

is hypersensitive to artemisinin whereas mid-late ring stage (~3-18 hpi) parasite exhibits high 

artemisinin tolerance and the trophozoite stage (~18-40 hpi) parasite see a restoration in parasite 

susceptibility to artemisinin action (Klonis et al., 2013). In addition, resistance to artemisinin is associated 

with delayed or prolonged ring stage (3-18 hpi) which has the least sensitivity to artemisinin (Cheng et 

al., 2012) and is believed to be mediated by K13 mutations (Ariey et al., 2014, Tilley et al., 2016).  

 

 

Figure 5.1 Parasite sensitivity fluctuations to short pulses of artemisinin (taken from Klonis et al. (2013). (A) A tightly 
synchronized 3D7 culture (>90% of parasites within a 1-hour time window) was subjected to 4-hour drug pulses 
every 4 h. Horizontal bars correspond to the range of ages (of ≥50% of the parasite population) during each assay. 
The grey vertical lines indicate where a significant fraction (indicated above the lines) progressed to the next cycle. 
(B) Haemozoin formation during the ring to trophozoite transition. (Left) Colour images of Giemsa-stained parasites 
from A. (Right) Blue channel of the Giemsa images showing dark puncta that correspond to haemozoin (arrows). The 
percentages of represented morphologies are indicated (n ≥ 19). 
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The proposed mechanism of artemisinin resistance mediated by K13 is via the interaction between K13 

protein and phosphatydylinositol-3-kinase (PI3K), a proposed target of artemisinin. It has been 

suggested that the wildtype K13 protein interacts with PI3K and leads to polyubiquitination and 

degradation of PI3K, while the K13 mutant protein hinders the interaction between the two proteins 

preventing PI3K degradation and increasing level of phosphatidylinositol-3-phosphate (PI3P). However, 

the consequential mechanism of this observation is as yet unknown (Mbengue et al., 2015). 

 

 

Figure 5.2 Proposed mechanism of artemisinin resistance via K13 mutation and PI3K interaction (adapted from 
Mbengue et al. (2015)). (A) K13 and PI3K interaction leads to PI3K degradation by ubiquitin-mediated proteolysis 
resulting in low level of PI3P and artemisinin sensitive phenotype. (B) K13 mutation results in reduced interaction 
with PI3K, therefore less ubiquitination and degradation of PI3K. However, how increased level of PI3P is associated 
with resistance phenotype is still unknown.   

 

In Chapter 4 click probes were used to identify proteins that could be tagged by artemisinin. Through 

inference there is a strong possibility that one or more of these drug protein interaction is important to 

antimalarial activity so an attempt has been made to relate the targeted proteins to plausible 

mechanism of action. In the light of the information on differential susceptibility in erythrocytic 

parasites, analysis of the artemisinin protein labelling profile of ring stage parasites could provide some 

perspective on what underlies the differential sensitivity to artemisinin during the asexual 

developmental cycle and could assist in prioritising protein targets of greatest relevance or linkage with 

the exquisite sensitivity to these drugs. 
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5.2 Experimental 

5.2.1 Chemical probes 

In order to study the molecular protein targets of artemisinin in ring stage parasites, azide tagged 

artemisinin activity-based probes (active SCR-A-10 and control SCR-A - 22) were used to treat the 

synchronous staged parasites. The probe synthetic schemes were published elsewhere (Ismail et al., 

2016a, Ismail et al., 2016b) and briefly described in section 3.2.1. 

 

  

SCR-A-10                                                   SCR-A-22 

Figure 5.3 Probes structures used in ring parasites treatments 

 

5.2.2 Parasite treatment 

Plasmodium falciparum strain 3D7 parasite was cultured as described in section 2.13, and synchronised 

for ring stage (section 2.14). The synchronous parasites were allowed to recover from sorbitol treatment 

for at least 1 cycle. Probes treatments were performed when ring stage (~6-12 hpi) parasites reached 

~10% parasitaemia with 1 µM probes for 6 h at normal parasite culture conditions (section 2.23). In 

order to obtain substantial amount of protein from ring stage parasite, 15-20 flasks of the parasite were 

used per condition. After parasite treatment, protein extraction, copper-free click reaction (section 2.26) 

and protein processing for MS analysis (section 2.27 and 2.28) were performed.  
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5.3 Results 

In this section, ring stage proteins identified by the artemisinin activity-based probe are presented and 

compered with the results from trophozoite stage parasites (described in detail in Chapters 3 and 4).  

 

5.3.1 Number of protein hits identified from ring and trophozoite stage parasites using the 

azide click probe 

Because experiments with ring stage parasite were only performed with the azide probes, protein hits 

from ring and trophozoite stages identified by azide artemisinin activity-based probe were first 

compared. MS results showed that there were 70 proteins identified from ring stage, while probe 

labelled 176 proteins from trophozoite stage parasites despite equivalent parasite numbers being used 

in each experiment. Among these, only 10 of the 70 proteins from the ring stage were found in 

trophozoite probe-labelled proteome.  

 

When considering all 255 protein hits identified from trophozoite stage by all probes, 38 of the 70 

proteins ring stage proteins overlapped, resulting in 32 proteins uniquely identified from (drug 

insensitive) ring stage parasite using this azide probe (Table 5.1).  

 

Confidence of the proteins identified from ring stage parasites was differently defined from the 

trophozoite stage proteome because only one type of probe was used. Protein confidence in ring stages 

was defined by the frequency proteins were identified from repeated experiments. Any protein that was 

identified from 4 experiments (100%), 3 experiments, and 2 was considered high, moderate, and low 

confidence, respectively. Proteins only identified by one experiment were considered background and 

they mostly overlapped with the background proteome from desoxyartemisinin treatment (Table A1.5). 

This result again highlighted the advantage of using the pairwise strategy (active probe versus inactive 

control probe) as described in Chapter 3. 
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Table 5.1 Protein hits identified from ring stage parasite by azide artemisinin activity-based probe 

Gene ID UniProt ID Product Description Confidence Note 

PF3D7_0317600 O77381 40S ribosomal protein S11, putative (RPS11) high Unique in ring 

PF3D7_0517000 Q8I3T8 60S ribosomal protein L12, putative high Unique in ring 

PF3D7_0618300 C6KT23 60S ribosomal protein L27a, putative high Unique in ring 

PF3D7_0619400 C6KT34 cell division cycle protein 48 homologue, putative high Unique in ring 

PF3D7_0903700 Q6ZLZ9 alpha tubulin 1 high Unique in ring 

PF3D7_0917900 Q8I2X4 heat shock protein 70 (HSP70-2) high Unique in ring 

PF3D7_0922500 P27362 phosphoglycerate kinase (PGK) high Unique in ring 

PF3D7_1008700 Q7KQL5 tubulin beta chain high Unique in ring 

PF3D7_1019400 Q8IJK8 60S ribosomal protein L30e, putative high Unique in ring 

PF3D7_1310700 Q8IEK9 RNA-binding protein, putative high Unique in ring 

PF3D7_1318800 Q8IEC8 translocation protein SEC63 (SEC63) high Unique in ring 

PF3D7_1351400 Q8IDI5 60S ribosomal protein L17, putative high Unique in ring 

PF3D7_1426000 Q8ILK3 60S ribosomal protein L21 (RPL21) high Unique in ring 

PF3D7_0525800 Q8I3K7 inner membrane complex protein 1g, putative (IMC1g) Moderate Unique in ring 

PF3D7_0624000 C6KT76 hexokinase (HK) Moderate Unique in ring 

PF3D7_1003500 Q8IK02 40S ribosomal protein S20e, putative Moderate Unique in ring 

PF3D7_1011800 Q8IJS7 PRE-binding protein (PREBP) Moderate Unique in ring 

PF3D7_1015900 Q8IJN7 enolase (ENO) Moderate Unique in ring 

PF3D7_1105400 Q8IIU8 40S ribosomal protein S4, putative Moderate Unique in ring 

PF3D7_1126200 Q8IIA2 40S ribosomal protein S18, putative Moderate Unique in ring 

PF3D7_1306400 Q8IEQ1 26S protease regulatory subunit 10B, putative (RPT4) Moderate Unique in ring 
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Gene ID UniProt ID Product Description Confidence Note 

PF3D7_1317800 C0H5C2 40S ribosomal protein S19 (RPS19) Moderate Unique in ring 

PF3D7_1338300 Q8IDV0 elongation factor 1-gamma, putative Moderate Unique in ring 

PF3D7_1358800 Q8IDB0 40S ribosomal protein S15 (RPS15) Moderate Unique in ring 

PF3D7_1414300 Q8ILV2 60S ribosomal protein L10, putative Moderate Unique in ring 

PF3D7_1438900 Q8IL80 thioredoxin peroxidase 1 (Trx-Px1) Moderate Unique in ring 

PF3D7_0719600 Q8IBQ6 60S ribosomal protein L11a, putative low Unique in ring 

PF3D7_1142500 Q8IHU0 60S ribosomal protein L28 (RPL28) low Unique in ring 

PF3D7_1309100 Q8IEM3 60S ribosomal protein L24, putative low Unique in ring 

PF3D7_0922200 Q7K6A4 S-adenosylmethionine synthetase (SAMS) high Identified from trophozoite  

PF3D7_0106300 Q76NN8 calcium-transporting ATPase (ATP6) high Identified from trophozoite  

PF3D7_0415900 C0H4A6 60S ribosomal protein L15, putative high Identified from trophozoite  

PF3D7_0422400 Q8IFP2 40S ribosomal protein S19 (RPS19) high Identified from trophozoite  

PF3D7_0523000 Q7K6A5 multidrug resistance protein 1 (MDR1) high Identified from trophozoite  

PF3D7_0721600 Q8IBN5 40S ribosomal protein S5, putative high Identified from trophozoite  

PF3D7_0813900 Q8IAX5 40S ribosomal protein S16, putative high Identified from trophozoite  

PF3D7_0814200 Q8IAX8 DNA/RNA-binding protein Alba 1 (ALBA1) high Identified from trophozoite  

PF3D7_0827900 C0H4Y6 protein disulfide isomerase (PDI8) high Identified from trophozoite  

PF3D7_0929400 C0H571 high molecular weight rhoptry protein 2 (RhopH2) high Identified from trophozoite  

PF3D7_1011400 Q8IJT1 proteasome subunit beta type-5 high Identified from trophozoite  

PF3D7_1012400 Q8IJS1 hypoxanthine-guanine phosphoribosyltransferase (HGPRT) high Identified from trophozoite  

PF3D7_1026800 Q8IJD4 40S ribosomal protein S2 (RPS2) high Identified from trophozoite  

PF3D7_1117300 Q8IIJ4 conserved Plasmodium protein, unknown function high Identified from trophozoite  
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Gene ID UniProt ID Product Description Confidence Note 

PF3D7_1129000 Q8II73 spermidine synthase (SpdSyn) high Identified from trophozoite  

PF3D7_1224300 Q8I5H4 polyadenylate-binding protein, putative (PABP) high Identified from trophozoite  

PF3D7_1237700 Q8I546 conserved protein, unknown function high Identified from trophozoite  

PF3D7_1325100 Q8IE67 phosphoribosylpyrophosphate synthetase high Identified from trophozoite  

PF3D7_1341200 Q8IDS6 60S ribosomal protein L18, putative high Identified from trophozoite  

PF3D7_1352500 Q8IDH5 thioredoxin-related protein, putative high Identified from trophozoite  

PF3D7_1408600 Q8IM10 40S ribosomal protein S8e, putative high Identified from trophozoite  

PF3D7_1421200 Q8ILN8 40S ribosomal protein S25 (RPS25) high Identified from trophozoite  

PF3D7_1424100 Q8ILL3 60S ribosomal protein L5, putative high Identified from trophozoite  

PF3D7_1424400 Q8ILL2 60S ribosomal protein L7-3, putative high Identified from trophozoite  

PF3D7_1468700 Q8IKF0 eukaryotic initiation factor 4A (eIF4A) high Identified from trophozoite  

PF3D7_0628300 C6KTB9 choline/ethanolaminephosphotransferase, putative (CEPT) high Identified from trophozoite  

PF3D7_0709000 Q8IBZ9 chloroquine resistance transporter (CRT) high Identified from trophozoite  

PF3D7_0823800 Q8IB72 DnaJ protein, putative high Identified from trophozoite  

PF3D7_1105800 Q8IIU5 conserved Plasmodium protein, unknown function high Identified from trophozoite  

PF3D7_1211800 Q7KQK2,Q9U5M1 polyubiquitin (PfpUB) high Identified from trophozoite  

PF3D7_1459400 Q8IKN7 conserved Plasmodium protein, unknown function high Identified from trophozoite  

PF3D7_1444800 Q7KQL9 fructose-bisphosphate aldolase (FBPA) Moderate Identified from trophozoite  

PF3D7_1471100 Q8IKC8 exported protein 2 (EXP2) Moderate Identified from trophozoite  

PF3D7_1019900 Q8IJK2 autophagy-related protein 8 (ATG8) moderate Identified from trophozoite  

PF3D7_1143200 Q8IHT4 DnaJ protein, putative moderate Identified from trophozoite  

PF3D7_0309600 O00806 60S acidic ribosomal protein P2 (PfP2) low Identified from trophozoite  
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Gene ID UniProt ID Product Description Confidence Note 

PF3D7_1346100 Q8IDN6 protein transport protein SEC61 subunit alpha (SEC61) low Identified from trophozoite  

PF3D7_0207600 Q9TY95 serine repeat antigen 5 (SERA5) low Identified from trophozoite  

PF3D7_1451800 Q8IKV8 sortilin low Identified from trophozoite  
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5.3.2 Ring and trophozoite stages divergent protein profiles 

Not only were the total number of protein hits identified by the azide artemisinin activity-based probe 

difference between rings and trophozoites the protein profiles displayed minimum overlap.  Both 

proteomes shared only 4.2% overlap or 10 proteins (Figure 5.4). The overlap between ring and 

trophozoite probe-labelled proteomes became larger (18.2% or 38 proteins) when compared with 

trophozoite protein hits identified by all artemisinin activity-based probes (Figure 5.5). This resulted in 

32 proteins uniquely identified from ring stage parasite.  

 

 

Figure 5.4 Proportional Venn diagram showing proteins identified by azide probe from ring and trophozoite stages 
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Figure 5.5 Proportional Venn diagram showing proteins identified by azide probe from ring stage and by all probes 
from trophozoite stages 
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5.3.3 GO biological enrichment of ring stage protein hits 

To evaluate which biological processes were mostly affected, the 70 ring stage protein hits were 

enriched for pathway by GO enrichment. The majority of the proteins identified in ring stages were 

ribosomal proteins (27%). Gene expression, hexose catabolism, purine nucleoside metabolism, and cell 

redox homeostasis were also enriched from the ring stage probe-labelled proteome (Figure 5.6).  
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Figure 5.6 GO enrichment by biological process of artemisinin activity-based probe protein hits 
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5.4 Discussion 

In this section, proteins hits are discussed according to their metabolic pathway with a focus on some 

uniquely identified proteins from ring stage proteome and when compared with trophozoite stage 

parasites.  

 

5.4.1 Less proteins were identified in ring stages by the azide probe 

By comparing the protein hits from ring and trophozoite stages as identified by the azide artemisinin 

activity-based probe a 60% reduction in total number of proteins identified was noted (from 176 to 70) 

(Figure 5.4). This finding is in line with data suggesting that ring stage parasite (~3-18 hpi) are much less 

sensitive to artemisinins than trophozoite stage or very early ring stage (0-3hpi) parasite (Klonis et al., 

2013). One argument is that this parasite stage has relatively low biochemical activity and as such fewer 

pathways were active, or flux through pathways is reduced (Shaw et al., 2015). Interestingly the fact that 

some protein adducts were identified does suggest some degree of peroxide activation.  

 

During the early stage of parasite development, parasite metabolism is relatively low compared to the 

later stages including the process of haemoglobin metabolism, which therefore reduces haem 

production and activation of artemisinin. Lower protein expression and total protein numbers in ring 

stages (Le Roch et al., 2004) could also contribute to the low numbers of tagged proteins seen here. 

However, very early ring stage parasites (~0-3 hpi) are reported to be hypersensitive to artemisinin 

(Klonis et al., 2013) and there is a suggestion that haemoglobin digestion is active at these very early 

stage of the life cycle (Xie et al., 2016). The data presented here would suggest that if the claim of Xie et 

al. (2016) is correct the process of haemoglobin degradation must be switched off after 3 hpi or it would 

be difficult to reconcile with the massive reduction in protein labelling seen in the 3-18 hpi ring stage 

parasites recorded here. Alternatively, there could be some protective mechanism operational in these 

older rings but there is little literature data to support this.  

 

5.4.2 Haemoglobin metabolic pathway is not affected in ring stage 

Unlike the trophozoite stage probe-labelled proteome, none of proteins in haemoglobin metabolism 

pathway were identified in ring stage endoperoxome. As previously discussed in Chapter 4, 

haemoglobin metabolism was heavily labelled by artemisinin as would be expected as there is 

substantial literature evidence implicating artemisinin haem activation as a central feature of its 

antimalarial activity. The absence of tagged haemoglobin metabolic enzymes in ring stage probe-

labelled proteome supports the argument for reduced sensitivity to artemisinin in ring stage (3-18 hpi) 

stage parasite. This data can be considered as further validation of the click pull down strategy for 

investigating mechanisms of drug action even against the backdrop of promiscuous labelling and 

complex data interpretation. It is unclear from this study what the source of probe activation is that has 
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led to the generation of the 70 or so protein drug adducts identified but it is unlikely to be freshly 

generated haem from haemoglobin degradation.  

 

5.4.3 Response to the unfolded protein and ERAD pathway 

There were 4 proteins adducted that are involved in response to the unfolded protein response (UPR) 

in ER and ERAD pathways identified from ring stage proteome, namely protein disulfide isomerase 8 

(PDI8), protein transport protein SEC61 subunit alpha (SEC61), translocation protein SEC63, (SEC63), and 

cell division cycle protein 48 homologue, putative (CDC48 or P97). The latter 2 were not identified in the 

trophozoite stage parasite study.  

 

 

Figure 5.7 Endoplasmic reticulum associated degradation (ERAD) pathway. Proteins indecated in red were 
identified from the experiment. 

 

As previously discussed in Chapter 4, the ERAD pathway in ER and chaperone system are critically 

important for the parasite. Inhibition of the pathways enzymes severely affects parasite growth. There 

was a reduction in the proportion of chaperone proteins identified in ring stages (4.08% or 4 proteins) 

compared to trophozoites (20.4% or 20 proteins) as shown in Table 4.5. This reduction in chaperones 

labelling by the artemisinin activity-based probe might underlie some reduced susceptibility of the ring 

stages to artemisinin. In addition, resistance to artemisinin is associated with upregulation of proteins 

involved in the unfolded protein response suggesting UPR as the (direct or indirect) target for 
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artemisinin (Mok et al., 2015). Also proteasome inhibition have a synergistic effect with artemisinin 

during ring stages and can overcome the artemisinin resistance (Dogovski et al., 2015). This data is 

intriguing and suggests the need for a more careful characterisation of the stage specific functioning of 

this important biochemical pathway. 

  

Cell division cycle protein 48 homologue, putative (CDC48 or P97) was a protein uniquely identified 

from the ring stage study. Although there is no data on this protein in Plasmodium falciparum, its 

homologues have been studied in mammalian cells and zebrafish. A study from cancer cells revealed 

inhibition of P97 by the specific inhibitor N2,N4-dibenzylquinazoline-2,4-diamine (DBeQ) blocks 

degradation of unfolded proteins by the ERAD pathway, and induces the caspase pathway inhibiting cell 

proliferation (Chou et al., 2011). In addition, overexpression of the CDC48 gene by low temperature in 

zebrafish cells increases cell proliferation but the expression level was unaffected in a Tyr805Ala CDC48 

mutant (Imamura et al., 2003). Both studies implicated importance of P97 in controlling cell proliferation 

and suggest that it is a promising drug target for cancer and also for possibly malaria? More recently, 

the P97 human homologue VCP structures were resolved in complex with an inhibitor by cryo-

electronmicroscopy technique (Banerjee et al., 2016). The study in human P97 revealed the inhibitor 

interferes the movement of P97 preventing it from catalysing the reaction.  

 

5.4.4 Transport proteins 

The work by Antoine et al. (2014) showed that artemisinins affect the membrane potential of the 

trophozoite stage parasites and the trophozoite probe-labelled proteome supports these findings. Due 

to the fact that none of V-type proton pumps or other transport proteins involved in membrane 

potential generation was labelled in the ring stage, despite some activation, suggests that ring stage 

parasites can possibly maintain membrane potential in the presence of artemisinin stress or that 

activation occurs at sites away from the mitochondrion. Both ring and trophozoite stage parasites have 

similar membrane potentials of -90±3 mV and -93±10 mV, respectively (Mikkelsen et al., 1986). This 

difference could also point to the role of the mitochondria in trophozoites which are susceptible to drug 

action compared to rings that are not. 

  

The other 2 transport proteins PfATP6 and PfCRT were also pulled-out from the ring stage proteome. 

These 2 proteins might contribute to mechanism of action of artemisinin as previously discussed in 

Chapter 4. However, more solid evidence on these proteins are required to draw any clear conclusion.  

 

5.4.5 Protein and nucleic acids biosynthesis 

Similar to the trophozoite stage probe-labelled proteome, ribosomal subunits were promiscuously 

labelled by artemisinin activity-based probe (15 proteins, Table 5.1). Along with ribosomal subunits, 
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elongation factor 1-gamma was labelled in the ring stage, whereas elongation factor 2 (eEF2) was 

identified in the trophozoite stage. The possibility of these proteins having a role in the mechanism of 

artemisinin action is discussed in Chapter 4.  

 

5.4.6 Postulated mechanism of reduced sensitivity to artemisinin in ring stages 

The results from ring and trophozoite stages endoperoxomes together with existing knowledge on 

parasite biology suggested a plausible mechanism that might underlie different sensitivity of various 

stages of the parasites to peroxides as follows. During ring stages, haemoglobin degradation is minimal, 

so less artemisinin is activated (Klonis et al., 2011, Shaw et al., 2015). Less activation of artemisinin is 

reflected in less proteins identified by artemisinin activity-based probes. Furthermore, the major 

pathways targeted by artemisinin in the trophozoite stages and implicated in drug action are less 

affected or not operational at all in the ring stages, including haemoglobin metabolism and elements of 

the unfolded protein response. The absence of any proteins involved in haemoglobin metabolism in the 

ring stage parasite endoperoxome suggests the pathway is essentially switched of in these rings or 

significantly down regulated compared to the trophozoite stage. It is important to note that if 

haemoglobin degradation and heam generation is central to drug activation and parasite death these 

would be the first proteins an activated drug would see within the parasite, hence the expected adduct 

formation (Figure 5.8).   
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Figure 5.8 Postulated mechanism of different sensitivity to artemisinin in different stages of parasite. (A) During very 
early ring stage, the hypersensitivity to artemisinin is possibly due to low unfolded protein response (UPR) system 
and could not overcome the effects of protein damages caused by artemisinin (even though low activation of 
artemisinin). (B) K13 mutation and up-regulation of the UPR in the resistance parasites could overcome the effects 
of artemisinin during very early ring stage. (C) At ring stage, the parasites become insensitive to artemisinin is possibly 
due to low activation of artemisinin, less protein alkylation and slightly more UPR system. (D) During trophozoite 
stage, artemisinin activation is increased, more damage to the proteins including haemoglobin digestion so the UPR 
system and other stress response could not overcome the effects of artemisinin.   
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5.5 Conclusions 

There are serious limitations conducting experiment on ring stage parasite particularly related to low 

protein abundance per unit parasite, challenging and inefficient parasite recovery after saponin lysis, 

and synchronisation to confidently generate very early ring stages (~0-3 hpi) on mass. Parasite biomass 

in the ring stage is obviously much lower than in the trophozoite stage and therefore these experiments 

required much more parasite material to generate equivalent amount of proteins for click reactions. In 

order to purify ring stage parasite from the culture and to reduce host protein contamination, saponin 

lysis had to be used and this led to a significant loss of parasites. Saponin lysis has much poorer lysis 

efficiency in ring stages compered to trophozoite stage parasite, also the absence of pigment made 

recovery from centrifugation after saponin lysis much less efficient. Significant efforts (over almost a 

year) were made to generate very young synchronous rings 0-3 hpi without success. 

 

Despite all these technical difficulties it has been possible to confidently define the endoperoxome of 

the mid–late ring stage parasite (3-8hpi). A limited number of proteins were identified and the overlap 

with the trophozoite was minimal.  This is useful on several levels, the differential susceptibility if rings 

and trophozoites is linked with very different pull down profiles moreover the proteins where there is 

overlap may represent promiscuous irrelevant targets for further investigation, i.e. an artefact of the 

pull down strategy. Alternatively, the fact that we still see some activation in these relatively insensitive 

ring stages and that key components of pathways implicated in drug action are tagged may suggest that 

a more details stage specific global “omic” analysis of the parasite could help unlock the basis of the 

differential drug sensitivity patterns that have been reported.  
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Chapter 6 

The “endoperoxome” of a fully synthetic endoperoxide 
activity-based probe in trophozoite stage malaria parasites 

 

6.1 Introduction 

Resistance to the current antimalarial drugs and emerging resistance to the first line treatment 

artemisinin based combination therapies (ACTs) compromises all treatment and control interventions. 

Therefore, new antimalarials are urgently needed. Following the success of artemisinin in the reduction 

of malarial burden, a group of new antimalarial fully synthetic peroxide drugs was developed based on 

the same core structure of endoperoxide artemisinins, namely the 1,2,4-trioxolanes (Figure 1.14). The 

first generation of fully synthetic trioxolane, OZ277, exhibits good antimalarial activity in vitro and in vivo, 

but poor bioavailability (Vennerstrom et al., 2004, Kreidenweiss et al., 2006) and instability in parasitised 

blood. The next generation trioxolane, OZ439, was developed to improve the bioavailability (~20 h 

elimination half-life) and blood stability (Charman et al., 2011) and thus drug is in late phase clinical 

trials. It is hoped that such drugs will reduce the recrudescent rate and treatment failure associated with 

short half-life peroxides such as artemisinins and OZ277. 

 

Like artemisinin, the mechanism of action of these trioxolanes remains elusive, however, it was shown 

that like the semisynthetic artemisinins, trioxolanes are activated and via iron species leading to radical 

formation (Fugi et al., 2010). The work by Fugi et al. (2010) demonstrated that the radical spin trap 

2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and its analogues antagonised the effect of artemisinin 

and OZ277 in vitro. This finding implies that antimalarial activity of artemisinin and OZ277 is radical 

dependent. The activators of fully synthetic trioxolanes are believed to be free iron and haem-iron 

(Stocks et al., 2007). Fully synthetic trioxolanes seems to be more effective than semisynthetic 

artemisinins because activated artemisinins undergoes self-quenching process more so than that of 

fully synthetic trioxolane (Fugi et al., 2010). 

 

Although activation of artemisinins and fully synthetic trioxolanes shared many similarities in terms of 

mechanism of activation it is unclear if the specific end targets of drug action are the same. This has 

important implications for cross resistance patterns and long term utility of second and third generation 

peroxide antimalarials.  Following the successful identification of artemisinin targeted protein partners 

(the endoperoxome) from trophozoite and ring stage falciparum parasites using artemisinin activity-

based probes as demonstrated in Chapters 3, 4, and 5, the same conceptual approach was applied to 

study the molecular targets (endoperoxome) of these fully synthetic trioxolane compounds. The central 
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question was do the synthetic trioxalones and the semi-synthetic artemisinins share common intra-

parasitic protein targets or not?  

 

6.2 Experimental 

6.2.1 Chemical probes 

In this study, trioxolane probes were synthesised mimicking fully synthetic trioxolane core structure 

(Figure 1.14). Only azide linker probes were developed for use in this study. Again we adopted the 

pairwise approach with an active trioxalone (P4) compared directly with an inactive equivalent (CP4). 

  

  

P4    CP4 

Figure 6.1 Chemical probes used. P4 active probe contains 1,2,4 trioxolane structure, while CP4 inactive control 
probe is non-epoxidic counterpart. 

 

6.2.2 In vitro activity of chemical probes  

Prior to the parasite treatment with the probes, antimalarial activity of the probes was evaluated using 

standard SYBR Green I-based assay (section 2.17). Assay plates containing test compounds were created 

using a Hamilton robotic platform in 1:4 dilutions, the final concentration ranged from 1,000 nM to 0.061 

nM. Parasite inoculum (1% haematocrit and 2% parasitaemia) was added to each well and incubated 

under normal physiological condition. The assay was terminated by freezing the plates at -20°C and 

nucleic acid content was measured by SYBR Green I nucleic acid stain. IC50 was calculated by GraphPad 

Prism® 7.0 software.   

 

6.2.3 Parasite treatment 

Probe treatment was performed as described in section 2.23. Each treatment was performed with 10 

flasks of synchronous trophozoite stage parasites at 1 µM for 6 h under normal culture conditions. After 

incubation, parasites were released from RBCs by saponin lysis (section 2.18), washed with D-PBS thrice, 

resuspended in 1X protease Roche cOmplete™ protease inhibitor in D-PBS, and stored at -80°C for 

further processing. 
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6.2.4 Protein extraction and sequencing 

Parasite protein extraction was performed by sonication (section 2.24). Parasite samples were allowed 

to defrost at RT and then sonicated briefly for 5 s, thrice. Parasite debris was obtained by centrifugation 

and soluble proteins were collected for and prepared for the click reaction.  

 

Copper-free click reaction was performed as detailed in section 2.26. DIBO-alkyne in DMSO was added 

directly to each sample to a final concentration of 20 µM and incubated for 1 h in the absence of light 

and with gentle mixing every 15 min to ensure homogeneity throughout the reaction. Conjugated 

proteins were sedimented by centrifugation at 6,500g, 4 min, at 4°C. The protein pellet was then washed 

3 times with cold absolute methanol to remove excess non-labelled proteins and reagents. Streptavidin 

affinity enrichment was performed to purify probe-labelled proteins (section 2.27), followed by on bead 

protein reduction and alkylation with DTT and IAA. Processed protein samples were digested with 

sequencing grade modified trypsin overnight and reactions were terminated with 90% formic acid. 

Tryptic peptide samples were sequenced by HPLC-MS/MS method (section 2.28). Protein identification 

was performed via Thermo Scientific Proteome Discoverer™ 1.4 software.  

 

6.3 Results 

6.3.1 Activity of chemical probes 

Like the semisynthetic artemisinin probes, the modified fully synthetic probes were first tested for 

antimalarial activity in vitro by standard SYBR Green I-based assay. IC50 values for the P4 probe was 7.675 

nM (SE = 1.58, n = 2) while CP4 has no activity in vitro against Plasmodium falciparum 3D7 strain (Figure 

6.2), in the concentration range tested. 

 

0.01 0.1 1 10 100 1000 10000
0

50

100

150

Concentration (nM)

G
ro

w
th

 (%
)

P4
CP4

IC50 = 7.676 r1.58 nM

 

Figure 6.2 Dose response curve of trioxolane activity-based probe (P4). 
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6.3.2 Proteins identified by trioxolane activity-based probe 

The optimised protocol reduced the non-specific binding to non-detectable levels (no proteins were 

identified from DMSO and inactive probe incubations). By using aforementioned method, 54 proteins 

were identified with this trioxolane activity-based probes as drug protein adducts. The proteins 

identified by fully synthetic trioxolane probe were largely overlapped with endoperoxome of artemisinin 

in trophozoite stage parasites (Figure 6.3). The probe-labelled proteome was then manually 

interrogated for S-glutathionylation potential (Kehr et al., 2011) (Figure 6.4).  

 

 

Figure 6.3 Proportional Venn diagram showing number of proteins identified by semi-synthetic and fully-synthetic 
exdoperoxide probes from trophozoite stage parastites. 
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Figure 6.4 Protein S-glutathionylation percentage of artemisinin and trioxolane probes-labelled proteomes 
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Table 6.1 Proteins identified by trioxolane activity-based probe (2 repeats) 

Gene ID UniProt ID Product Description Artemisinin Acitivity-Based Probes GSH Binding 

PF3D7_0203000 O96133 repetitive organellar protein, putative Trophozoite and ring - 

PF3D7_1012400 Q8IJS1 hypoxanthine-guanine phosphoribosyltransferase Trophozoite and ring + 

PF3D7_1444800 Q7KQL9 fructose-bisphosphate aldolase Trophozoite and ring - 

PF3D7_1026800 Q8IJD4 40S ribosomal protein S2 Trophozoite and ring + 

PF3D7_0102200 Q8I0U6 ring-infected erythrocyte surface antigen Trophozoite + 

PF3D7_0309600 O00806 60S acidic ribosomal protein P2 Trophozoite + 

PF3D7_0406100 Q6ZMA8 V-type proton ATPase subunit B Trophozoite + 

PF3D7_0503400 Q8I467 actin-depolymerizing factor 1 Trophozoite + 

PF3D7_0520900 P50250 adenosylhomocysteinase Trophozoite + 

PF3D7_0617800 C6KT18 histone H2A Trophozoite - 

PF3D7_0624000 C6KT76 hexokinase Trophozoite + 

PF3D7_0708400 Q8IC05 heat shock protein 90 Trophozoite + 

PF3D7_0903700 Q6ZLZ9 alpha tubulin 1 Trophozoite - 

PF3D7_0917900 Q8I2X4 heat shock protein 70 Trophozoite + 

PF3D7_1008700 Q7KQL5 tubulin beta chain Trophozoite - 

PF3D7_1015900 Q8IJN7 enolase Trophozoite + 

PF3D7_1121600 Q8IIF0 exported protein 1 Trophozoite + 

PF3D7_1136500 C6S3F7 casein kinase 1 Trophozoite - 

PF3D7_1228600 Q8I5D2 merozoite surface protein 9 Trophozoite - 

PF3D7_1246200 Q8I4X0 actin I Trophozoite + 

PF3D7_1311800 Q8IEK1 M1-family alanyl aminopeptidase Trophozoite + 
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Gene ID UniProt ID Product Description Artemisinin Acitivity-Based Probes GSH Binding 

PF3D7_1311900 Q76NM6 V-type proton ATPase catalytic subunit A Trophozoite + 

PF3D7_1324900 Q76NM3 L-lactate dehydrogenase Trophozoite + 

PF3D7_1357000 Q8I0P6 elongation factor 1-alpha Trophozoite + 

PF3D7_1361900 P61074 proliferating cell nuclear antigen 1 Trophozoite + 

PF3D7_1405600 Q8IM38 ribonucleoside-diphosphate reductase small chain, putative Trophozoite + 

PF3D7_1408000 Q8I6V3 plasmepsin II Trophozoite + 

PF3D7_0608800 Q6LFH8 ornithine aminotransferase Trophozoite + 

PF3D7_0818900 Q8IB24 heat shock protein 70 Trophozoite + 

PF3D7_0922500 P27362 phosphoglycerate kinase Trophozoite + 

PF3D7_0930300 Q8I0U8 merozoite surface protein 1 Trophozoite + 

PF3D7_1020900 Q7KQL3 ADP-ribosylation factor Trophozoite + 

PF3D7_1117700 Q7KQK6 GTP-binding nuclear protein RAN/TC4 Trophozoite + 

PF3D7_1130200 Q8II61 60S ribosomal protein P0 Trophozoite + 

PF3D7_1354500 Q8IDF6 adenylosuccinate synthetase Trophozoite + 

PF3D7_0308200 O77323 T-complex protein 1 subunit eta Trophozoite noise + 

PF3D7_0318300 O77374 conserved Plasmodium protein, unknown function Trophozoite noise - 

PF3D7_0322900 O97313 40S ribosomal protein S3A, putative Trophozoite noise - 

PF3D7_0417200 Q8I1R6 bifunctional dihydrofolate reductase-thymidylate synthase Trophozoite noise + 

PF3D7_0711000 P46468 AAA family ATPase, CDC48 subfamily Trophozoite noise - 

PF3D7_0919000 Q8I2W3 nucleosome assembly protein Trophozoite noise + 

PF3D7_1035200 Q03400 S-antigen Trophozoite noise - 

PF3D7_1213800 Q8I5R7 proline--tRNA ligase Trophozoite noise + 
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Gene ID UniProt ID Product Description Artemisinin Acitivity-Based Probes GSH Binding 

PF3D7_1342600 Q8IDR3 myosin A Trophozoite noise - 

PF3D7_1407900 Q7KQM4 plasmepsin I Trophozoite noise + 

PF3D7_1427900 Q8ILI6 conserved protein, unknown function Trophozoite noise - 

PF3D7_1434300 Q8ILC1 Hsp70/Hsp90 organizing protein Trophozoite noise - 

PF3D7_1436000 Q8ILA4 glucose-6-phosphate isomerase Trophozoite noise + 

PF3D7_1439900 Q7KQM0 triosephosphate isomerase Trophozoite noise + 

PF3D7_1453800 Q8IKU0 glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase Trophozoite noise - 

PF3D7_0605800 C6KSQ6 DNA repair protein RAD50, putative none - 

PF3D7_0731500 Q8IBE8 erythrocyte binding antigen-175 none - 

PF3D7_1419300 Q8ILQ7 glutathione S-transferase none + 

PF3D7_API0030 
  

none - 
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6.4 Discussion 

6.4.1 Activity pairwise strategy 

IC50s of P4 and CP4 probes showed a similar pattern as seen with artemisinin activity-based probes and 

their non-peroxidic partners (section 3.3.1). P4 containing the 1,2,4-trioxolane structure and azide 

functional group exhibited antimalarial activity at a similar potency to artemisinin and 

dihydroartemisinin (Figure 6.2). This structure was also classified as an endoperoxide as with 

artemisinins. Earlier studies also reported that iron chelators (Stocks et al., 2007, Meshnick et al., 1993) 

and radical spin trap TEMPO (Fugi et al., 2010) reagents antagonised the antimalarial effects of the 

trioxolanes and that activation of these compounds is iron and/or haem dependent. These experiments 

confirm that the artemisinins and other trioxolanes have similar activation processes and, possibly, 

similar/identical mechanisms of action.  

 

6.4.2 Trioxolane probe shared similar profile with artemisinin probes 

Comparison of the proteins adducted by the trioxolane probe (Figure 6.3) with equivalent data from the 

semi-synthetic probes (Table 4.1) showed that 66% of the proteins identified by trioxolane activity-based 

probe were also identified by artemisinin activity-based probes from trophozoite stage or up to 94% 

when included the proteins identified by artemisinin activity-based probe from a few experiments 

(regarded as noise, Table A1.6). This finding strongly suggested that the fully synthetic trioxolane-based 

compounds might share similar mechanism of action with artemisinins. The parasites’ key metabolic 

pathways including glycolysis, haemoglobin digestion, nucleic acid and protein biosynthesis were 

affected by both the artemisinin and trioxolane (Table 6.1). Similar to artemisinin, proteins identified 

from the trioxolane activity-based probe were 68% S-glutathionylation proteins (Figure 6.4), suggesting 

that alkylation at cysteine residues might play an important role in mechanism of action of 

endoperoxide compounds. Furthermore the endoperoxome of the trioxolane and the artemisinins 

were quantitatively very similar (Figure 6.5) again suggesting significant overlap in the activation of these 

chemically distinct peroxides. 
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Figure 6.5 Comparison of protein adducts identified by fully synthetic (top) and semi-synthetic (bottom) 
endoperoxides. Proteins are sorted according to their molecular weight. This figure was generated by Dr Hanafy 

Ismail. 

 

The shared mechanism of action raises the concern of possible cross resistance among this group of 

compounds. Promisingly, there is no report of resistance or reduced sensitivity to OZ439 from the 

clinical trials to date but it is very early in development (Phyo et al., 2016). It is believed that the long 

elimination half-life of OZ439 is effective for current artemisinin resistant parasites with mutations in 

K13 gene (mediated through delayed development in early stage of the life cycle). Artemisinins with a 

short half-life, it is argued, do not provide adequate antimalarial cover  once the K13 mutant has made 

very early stage rings insensitive to peroxide action (Phyo et al., 2016).  

 

6.4.3 Adamantyl ester has no antimalarial activity and possibly not involved in protein 

alkylation 

There is a concern that alkylation profiles identified by trioxolane probe was not due to the radical of 

trioxolane radicals but adamantyl ester, the by-product of fully-synthetic trioxolane activation (Scheme 

6.1).  
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Scheme 6.1 Activation of trioxolane by iron (II), adapted from Fugi et al. (2010). 

 

Therefore adamantyl ester probes (Figure 6.6) were synthesised and evaluated for in vitro antimalarial 

activity. Preliminary results showed that both compounds failed to inhibit the parasite growth at up to 

1,000 nM, and unlikely to alkylate parasite proteins. However, further validation of the results by MS 

approach is required.   

 

   

SCR-AD-07   SCR-AD-08 

Figure 6.6 Adamantyl ester click probes. 
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6.5 Conclusions 

The data presented in this chapter confirm that the endoperoxome of the fully syhthetic peroxide 

trioxalones share significant overlap with that of the semi-synthetic artemisinins.  This overlap in 

adducted proteins suggests commonality in terms of mechanisms and sites of activation and possibly 

the same mechanism of parasite killing. It is notable that the probe tagging pattern were very similar 

both in terms both qualitatively (the specific proteins tagged) and quantitatively (the amount of protein 

adduct). The observation that again nearly 70% of these proteins can be glutathinoylated points to a 

common reactivity profile. This data does raise some concerns over potential cross-resistance 

mechanisms and the scope for development of second and third generation peroxides. Are all peroxide 

classes just a vehicle for delivering the endoperoxide warhead? However, this needs to be considered 

in the context of the potential for modified and improved human pharmacokinetics that may make the 

K13 mutant irrelevant in a clinical context.   
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Chapter 7 

Comparative genomics of artemisinin resistant Plasmodium 
falciparum  

 

7.1 Introduction 

The technology advancement in sequencing has accelerated genome research in the past years and 

coined the term next-generation sequencing (NGS). The benefits over the traditional Sanger sequencing 

are affordability and speed. However, most NGS platforms resulted in relatively shorter reads and 

higher error rates.   

 

Prior to NGS technology, whole genomes were sequenced by Sanger sequencing, shotgun sequencing, 

and yeast artificial chromosome (YAC) systems (Figure 7.1), but these techniques were limited to 

relatively small genomes, they were technically difficult, and they were expensive (Goodwin et al., 2016). 

The first genome ever sequenced was bacteriophage ΦX174 using the plus and minus method (Sanger 

et al., 1977). The first free-living organism to have its complete genome sequenced was the bacteria 

Haemophilus influenzae Rd using shotgun sequencing (Fleischmann et al., 1995), then in 1996 the first 

eukaryote genome, Saccharomyces cerevisiae, was completed (Goffeau et al., 1996). Not long after, the 

first multicellular organisms, Caenorhabditis elegans, genome was completed in 1998 by shotgun 

sequencing (Consortium, 1998). The Plasmodium falciparum genome was completed in 2002 with 

worldwide collaboration. Unlike many other genomes, the malaria genome is AT rich with multiple 

repeats. These unusual features of the Plasmodium genome poses technological and sequence 

processing challenges (Gardner et al., 2002).  

 

 

Figure 7.1 Timeline of key events in genome sequencing 

 

Next-generation sequencing arrived in the mid-2000s when the 454 sequencing method hit the market 

(Figure 7.1). The 454 sequencing is based on sequencing-by-synthesis (SBS), the newly incorporated 

nucleotide releases a pyrophosphate group (PPi) and a subsequent enzymatic reaction emits detectable 
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light, also referred to pyrosequencing (Rothberg and Leamon, 2008). Most NGS technologies rely on this 

SBS principle but might differ in the specific of the technique (Shendure and Ji, 2008).  

 

7.1.1 Next-generation sequencing (NGS) 

Next-generation sequencing (NGS) is a high-throughput sequencing technology. It is considerably faster 

and cheaper than the conventional Sanger sequencing technique, which relies on chain termination of 

DNA strands. NGS technologies include Illumina®, Roche 454, Ion Torrent™, and SOLiD® sequencing 

technologies. Each technology has its advantages and disadvantages, but mostly rely on sequencing-by-

synthesis principle (SBS). Most of NGS results in a very large data output but usually of short read length 

(~35-700 bp) (Goodwin et al., 2016). 

 

7.1.2 Illumina® sequencing 

Illumina® sequencing uses the sequencing-by-synthesis (SBS) technique. The technology involves 3 keys 

steps: library preparation, cluster generation, and sequencing-by-synthesis. Briefly, DNA samples 

(library) is prepared by excising DNA to a specific length and adding an adaptor to each end. The adaptor 

region is important for subsequent steps. Cluster generation generates clonal clusters of DNA via a 

bridge amplification process. Then each cluster is sequenced simultaneously. 

 

Library preparation is to prepare the DNA template for subsequent sequencing. The DNA template is 

simultaneously ligated and tagged with adapter using transposon, this process is called tagmentation. 

Then reduced cycle amplification adds additional motifs including sequencing primers, indexes, and 

flow cell complementary oligos (Figure 7.2). 

 

 

Figure 7.2 Modified DNA molecule (taken from Illumina® website) 

  

Cluster amplification is via bridge amplification (Figure 7.3). Briefly, the DNA molecule is hybridised to 

the flow cell via an adaptor flow cell complementary oligo at the end of each modified DNA molecule. 

Then polymerase synthesises complementary stand c. Both strands are denatured and the template is 

washed out d. The remaining strand is folded over and hybridised to the flow cell oligo, forming a bridge 

structure and the polymerase synthesises complementary a strand e, then the double strand is 
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denatured leaving each strand attached to the flow cell f. The process is repeated to generate clonal 

clusters g. After bridge amplification, the reverse strand is washed out from the flow cell, and the 

forward strand is sequenced h. 

 

 

Figure 7.3 Illumina® sequencing technology (adapted from Illumina® website) 

 

The forward strand is sequenced by sequencing-by-synthesis technique. Fluorescent-tagged nucleotide 

is incorporated into the newly synthesised strand and fluorescence is activated and recorded in each 

cycle. Then fluorescent tag is cleaved allowing new complement nucleotide to incorporate into the 

molecule. This process is repeated for a defined number of cycles resulting in equal read lengths for 

every cluster. Then product strand is denatured and washed off. The remaining strand is folded over 

and hybridised with another flow cell oligo. Polymerase synthesises complementary reverse strand onto 

the flow cell oligo. Both strands are denatured, and the forward strand is cleaved and washed out 

leaving the reverse strand tethered on the flow cell. The reverse strand is sequenced. This process is 

called paired-end sequencing (Figure 7.3). This paired-end sequence can be used to verify sequencing 

quality.  

 

In this study NGS was used to sequence the whole genomes of artesunate-induced resistant parasites 

developed in vivo SCID mouse model. The NGS is a high-throughput technology providing a greater 

opportunity to study a subtle change in the genomes.   
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7.2 Experimental 

7.2.1 Parasite isolates used in the study 

All parasite isolates used in this study were generated in collaboration with the GSK Open Lab, Tres 

Cantos, Spain, and generously given to LSTM. Parasites isolates were generated by subsequently 

repeated infection to SCID mice under artesunate dug pressure in vivo.  

 

Briefly, Plasmodium falciparum strain 3D7 parasites were injected to immunocompromised SCID mouse, 

initiating passage 1, and treated with artesunate monotherapy, 10 mg/kg for 3 days. Then mouse blood 

was collected and subsequently injected to another SCID mouse. The parasitaemia was monitored 

regularly in every passage to generate parasite clearance half-life. Parasite clearance half-life was 

plotted for each passage to establish the resistance break-point (data not shown). Parasite clearance 

times remained constant under drug pressure until passage 9 when the clearance time more than 

doubled. This slower clearance rate was maintained in subsequent passaged despite an increase 

artesunate dose of 50mg/kg (the highest dose tested) and was stable in the absence of drug selection 

over 3 years (GSK Tres cantos personnel communication). This phenotype was very similar to the slow 

clearance phenotype seen in clinical studies in S.E. Asia. 

 

7.2.2 Parasite culture 

Eighteen sequentially selected parasite isolates were received at LSTM and cryopreserved until retrieved 

for culture. Parasites were initiated from cryopreservation stock and maintained as described in Chapter 

2 section 2.13. Parasite pellets were collected once culture exhibited >10% parasitaemia at 2% 

haematocrit and preserved in 1 mL TE buffer at -80°C until extraction. 

 

7.2.3 Genomic DNA extraction and purification 

Parasite genomic DNA was extracted from parasite pellets preserved in TE buffer by adding 20 µL of 

proteinase K solution and heated to 65ºC for 5 h. An aliquot of 1 mL phenol:chloroform:isomoeyl alcohol 

(25:24:1) was added to extract DNA samples and centrifuged at 17,000g for 1 min at RT, then the upper 

layer (aqueous phase) was collected into a new tube. The phenol/chloroform purification step was 

repeated for 3 times, then 750 µL of molecular grade absolute ethanol was added to each sample to 

precipitate genomic DNA which was then stored overnight at -20ºC. Genomic DNA was retrieved by 

centrifugation to precipitate the genomic DNA sample in absolute ethanol at 17000g for 20 min at 4ºC. 

The supernatant was removed and the pellet was dried at 50ºC for 30-45 min until completely dry as 

ethanol can interfere subsequent PCR. Genomic DNA was resuspended in 50 µL pre-warmed molecular 

grade water.  
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7.2.4 Genomic DNA quality control 

The required quality of genomic DNA required for Illumina® platform sequencing is very high, only 

genomic DNA with a 260/280 ratio >1.8 and a 260/230 >2.0 was submitted for sequencing. NanoDrop™ 

was used to determine the 260/280 ratio (section 2.20). Agarose gel electrophoresis was used to check 

for genomic DNA quality, RNA contamination and genomic DNA integrity (section 2.21). A Qubit™ 

flourometric quantitation kit was used to determine DNA quantity (performed by the Centre for 

Genomic Research, UoL). 

 

7.2.5 Genomic DNA sequencing 

Purified genomic DNAs were submitted for sequencing using the Illumina® HiSeq™ 2500 platform at the 

Centre for Genomic Research (CGR), University of Liverpool (UoL). Illumina® TruSeq™ DNA sample 

preparation kit was used to prepare the library from PCR-free gDNA samples. Sequencing was 

performed in 2 different batches, LIMS2208 and LIMS4913.  

 

7.2.6 Sequence analysis 

This experimental part was performed by LSTM’s Bioinformatics Unit; Dr Simon Wagstaff, Dr Enrique 

Salsedo-Sora, Dr John Archer, and Dr Gareth Weedall all contributed to this analysis. The analysis 

pipeline is shown in Figure 7.4.  
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Figure 7.4 Analysis pipeline 

 

Briefly, sequences retrieved from CGR were in FASTQ format including paired-end reads (forward and 

reverse reads) and unpaired reads. The sequences were already trimmed for Illumina® adapter 

sequences using CUTADAPT version 1.2.1 (Martin, 2011) and further trimmed with a quality score of >20 

by SICKLE version 1.200 (Joshi and Fass, 2011). Only paired-end reads were used for mapping by BOWTIE2 

software with the default setting to the reference genome sequence Plasmodium falciparum 3D7 version 

28.0 (PlasmoDB). The resulting SAM files were converted to BAM files and indexed according to 3D7 

reference genome. The indexed BAM files were subsequently called for variation by MPILEUP function in 

SAMTOOLS and returned VCF files. The VCF files were used for subsequent analysis. 

Read mapping
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SNPs calling

by MPILEUP in SAMTOOLS

SNPs comparison by VCF-ISEC in VCFTOOLS
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• Unique post-break
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To compare SNPs between susceptible and resistant parasites, a bespoke bioinformatics pipeline 

including custom Perl and R scripts was developed for SNP calling, SNP annotation, and SNP 

visualisation as follows. SNP calling – forward and reverse FASTQ files from a total 16 samples were 

mapped to the reference genome sequence Plasmodium falciparum 3D7 version 28.0 (PlasmoDB) using 

BOWTIE2 with default parameters. Each alignment output (BAM) file was indexed then analysed by 

SAMTOOLS MPILEUP to produce a single variant call format (VCF) output describing the positions, frequency 

and quality of each variant detected relative to the reference genome. A break point (defined as loss of 

susceptibility to artesunate; data not shown) was identified between samples 9 and 10 defining 9 

isolates (Samples 1-9) and 7 isolates (10-16) as pre and post-break point sample groups. Pre and post 

break point VCF files were then intersected using the following commands to output merged pre and 

post break files retaining SNPs present in at least 7 of 9 samples (pre) and every samples (post).   

  

vcf-isec -f -n +7 Sample1 Sample2 Sample3 Sample 4 Sample5 Sample6 Sample7 Sample8 
Sample9 | bgzip -c > pre_break.vcf.gz 
 

vcf-isec -f -n +7 Sample10 Sample11 Sample12 Sample13 Sample14 Sample15 Sample16 | 
bgzip -c > post_break.vcf.gz 

 

In the final part of the SNP calling pipeline, single files or groups were further intersected to output the 

following comparisons summarised in table 7.1: 

 

Pattern #1 “Common_to_all” – this command reports snps present in sample groups 
both before (samples 1-9) and after (samples 10-16) the breakpoint. 
vcf-isec -f -n =2 post_break.vcf.gz pre_break.vcf.gz 
 
Pattern #2 “Unique post break point” - this command reports SNPs present in all 
samples after the break point (samples 10-16) but not present in any of the samples 
before the break point (samples 1-9). 
vcf-merge Sample1 Sample2 Sample3 Sample 4 Sample5 Sample6 Sample7 Sample8 Sample9 
| bgzip -c > merge.vcf.gz 
vcf-isec -f -c post_break.vcf.gz merge.vcf.gz 
 
#Pattern #3 – “Comparison” – this command reports SNPs that are present in the post 
break point file that are not present in the pre-break point file i.e. output 
positions that are common to all samples after the break point (samples 10-16) but 
that do not occur in all (7 of 9 samples) before the break point. 
vcf-isec -f -c post_break.vcf.gz pre_break.vcf.gz; 

 

SNP Annotation – Functional effects and the impact of SNPs on coding sequences were predicted by 

SNPEFF software (Cingolani et al., 2012) using information contained in the corresponding GFF files for 

the reference genome available on PlasmoDB and output as separate VCF files with functional 

annotation appended. Original and SNPEFF annotated VCF files were used as input for a bespoke R script 

written to output the SNPs comparison results for visualisation (section 7.3.7). 
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Table 7.1 SNP calling setting for VCF-ISEC function 

 SNP presented in 

 Before the break point 

(9 isolates) 

After the break point 

(7 isolates) 

Unique post-break point 0 Any 

Common-to-all At least 2 At least 2 

Comparison 7 out of 9 All 

 

7.2.7 GO enrichment and network analysis 

GO enrichment analysis is an algorithm to identify which GO terms are overrepresented or 

underrepresented in the set of genes. GO enrichment and network analysis were performed by Cluego 

plugin (Bindea et al., 2009) in Cytoscape 3.0 software (Shannon et al., 2003) using the following settings; 

GO biological process terms/KEGG pathways, enrichment analysis, Benjamini-Hochberg correction, and 

GO term fusion. Cluego plugin accepts only UniProt ID, therefore Plasmodium systematic gene IDs were 

converted to corresponding UniProt IDs in the PlasmoDB database and UniProt database. Psuedogenes 

were not included in the analysis as no protein products were provided.  

 

7.3 Results 

All genomes were analysed in 3 ways, namely unique post-break point, common-to-all, and comparison, 

in addition to global analysis of SNPs. Unique post-break point analysis only focuses on any SNPs that 

presented after the post-break point (resistance phenotype) isolates but not before the break point 

(susceptible phenotype), while common-to-all analyses any SNPs that differ from the 3D7 reference 

genome but are common in all studied isolates. Comparison analysis compares all SNPs in all studied 

isolates (section 7.2.6). Results from comparison analysis were of particular interest as there are 

associated with developing resistant phenotype.  

 

7.3.1 Genomic DNA quality 

The quality of genomic DNA samples was determined by NanoDrop™ spectrometer and quantified by 

Qubit™ spectrometry. The measured results were included in Table 7.2. Contamination of proteins and 

other contaminants were determined from 260/280 ratio. All genomic DNA samples met the minimum 

quality requirements of the CGR for Illumina® platform with the exception of TE1411, but CGR accepted 

the sample upon quality assessed by gel electrophoresis results (Figure 7.5). Agarose gel electrophoresis 

was also used to assess genomic DNA quality for contamination of RNA (Figure 7.5 and Figure 7.6) 
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Table 7.2 Genomic DNA quality and quantity 

  NanoDrop™ Quality 

Ba
tc

h 

Is
ol

at
e 

A
26

0 

A
28

0 

26
0/

28
0 

26
0/

23
0 

LI
M

S2
00

8 

TE616 16.06 7.453 2.15 2.53 

TE1201 16.253 7.336 2.22 2.65 

TE1211 18.261 8.597 2.12 2.48 

TE1389 2.585 1.253 2.06 2.15 

TE1411 4.646 2.293 2.03 1.77 

TE1419 14.303 6.624 2.16 2.7 

TE1423 2.694 1.354 1.99 2.03 

TE1439 0.965 0.442 2.18 1.96 

TE1475 4.612 2.369 1.95 1.94 

LI
M

S4
91

3 

TE1304 0.594 0.315 1.88 2.93 

TE1328 0.922 0.495 1.86 2.57 

TE1368 1.159 0.563 2.06 6.23 

TE1373 1.129 0.616 1.83 2.45 

TE1432 0.426 0.23 1.85 3.48 

TE1435 1.806 0.96 1.88 2.5 

TE1436 4.372 2.069 2.11 2.73 
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Figure 7.5 Agarose gel electrophoresis result of batch LIMS2208 samples, 1% agarose in 1X TBE buffer, 10 µL 
sample volume, 80V constant for 1 h 15 min. 
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Figure 7.6 Agarose gel electrophoresis result of batch LIMS2208 samples, 1% agarose in 1X TBE buffer, 10 µL 
sample volume, 80V constant for 1 h. 
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7.3.2 Sequencing results 

According to the library preparation, adapter sequences were introduced to genomic DNA samples 

required removal via trimming process. The reads were further trimmed to remove low quality section 

of reads (section 7.2.6). The trimming results are shown in Table A3.1. The number of reads from each 

sample is shown in Figure 7.7, with an average of ~45 million reads per sample. The average read quality 

score for each sample is shown in Table A3.1. 
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Figure 7.7 Number of reads for each sample. Paired reads are shown in green, unpaired reads are shown in grey. 
Thick dashed line represents mean of paired reads number and SD represented by thin dashed lines. 
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7.3.3 Genome mapping and SNP analysis 

Sequencing reads were mapped to the reference genome Plasmodium falciparum strain 3D7 version 

28.0 (PlasmoDB) with mapping coverage for each sample ranging from 85-98% (Table 7.3, section A3.2 

and A3.3) 

 

Table 7.3 Read mapping coverage 

Sample Mapping Coverage (%) 

TE616 96.09 

TE1201 98.31 

TE1211 92.71 

TE1304 95.34 

TE1328 98.43 

TE1368 96.10 

TE1373 96.11 

TE1389 93.14 

TE1411 85.60 

TE1419 98.39 

TE1423 98.12 

TE1432 95.98 

TE1435 98.45 

TE1436 90.47 

TE1439 97.66 

TE1475 98.05 

 

7.3.4 SNPs number and distribution 

The total SNP number was 2,851 positions, among these 806 SNPs were within gene regions (Table 7.4).  

  

Table 7.4 Number of SNPs from analyses 

Analysis No. of SNPs No. of SNPs in gene regions 

Unique post-break 6 1 

Common-to-all 288 62 

Comparison 2,557 743 

Total 2,851 806 

 

The SNP number in each chromosome is commensurate with the chromosome size (Figure 7.8). It is 

unlikely that there is a selective pressure on a particular chromosome as SNP numbers in each 
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chromosome are in accordance with chromosome size and equally distributed across all chromosomes 

(Figure 7.9). 
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Figure 7.8 Comparison between chromosome size and SNPs in each chromosome. Total number of 2557 SNPs 
were plotted (SNPs from comparison analysis). 
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Figure 7.9 SNPs distribution on 14 chromosomes of Plasmodium falciparum (generated by online tool PhenoGram 
at http://visualization.ritchielab.psu.edu). This figure showed SNPs were distributed randomly on chromosomes 

and that sequencing was well covered the whole genome of the parasite.  

 

7.3.5 Global analysis of SNPs 

Global analysis of SNPs aimed to determine the selective pressure on particular pathways by GO 

enrichment analysis. The results of a 733 SNP search showed that cell communication, signal 

transduction, and unfolded protein response systems are significantly enriched by artesunate drug 

pressure (Table 7.5, Figure 7.10, and Figure 7.11).  

http://visualization.ritchielab.psu.edu/
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Table 7.5 GO enrichment of 733 proteins from 743 SNPs by Cluego plugin 

ID Name Bgd count Pct of bgd P-value Benjamini 

GO:0043170 macromolecule metabolic process 157 13.57 0.00000014 0.0000098 

GO:0019538 protein metabolic process 106 15.75 0.00000013 0.000018 

GO:0007154 cell communication 23 30.26 0.00000058 0.000027 

GO:0044267 cellular protein metabolic process 90 15.52 0.0000033 0.000093 

GO:0044260 cellular macromolecule metabolic process 140 13.31 0.0000029 0.0001 

GO:0010467 gene expression 90 13.65 0.00036 0.0073 

GO:0009187 cyclic nucleotide metabolic process 4 80.00 0.00045 0.0078 

GO:0006508 proteolysis 29 19.21 0.00033 0.0078 

GO:0006511 ubiquitin-dependent protein catabolic process 12 26.67 0.0011 0.014 

GO:0006810 transport 43 15.93 0.001 0.014 

GO:0006464 cellular protein modification process 37 16.67 0.00097 0.015 

GO:0006796 phosphate-containing compound metabolic process 64 14.04 0.002 0.021 

GO:0035556 intracellular signal transduction 13 24.07 0.0019 0.022 

GO:0018108 peptidyl-tyrosine phosphorylation 6 37.50 0.0031 0.031 

GO:0016192 vesicle-mediated transport 14 21.88 0.0034 0.032 

GO:0071702 organic substance transport 22 17.74 0.0048 0.042 

GO:0006468 protein phosphorylation 20 18.02 0.0059 0.046 

GO:0043412 macromolecule modification 40 14.81 0.0058 0.047 
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Figure 7.10 Network analysis of 733 proteins encoded from corresponding SNP containing genes. Nodes shown in 
colours are significantly enriched (Benjamin p-value <0.05), non-significant nodes are greyed out. Network analysis 
performed by Cluego plugin in Cytoscape 3.0. Nodes in red rectangle expanded in Figure 7.11.   
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Figure 7.11 Expanded network of proteolysis and ubiquitin-mediated process shown in Figure 7.10. 

 

7.3.6 Genes similarly identified from proteomics experiments 

SNP associated genes from comparison analysis were cross referenced with the proteins identified 

using artemisinin activity-based probes from ring and trophozoite stages (Chapters 3-6). From 743 

genes, 30 protein encoded genes were identified from the proteomic experiments (Table 7.6).  

 

Table 7.6 SNPs associated genes similarly identified from proteomic experiments  

Gene ID UniProt 

ID 

Product Description Stage 

PF3D7_0619400 C6KT34 cell division cycle protein 48 homologue, 

putative 

Trophozoite and ring 

PF3D7_0628300 C6KTB9 choline/ethanolaminephosphotransfer

ase, putative 

Trophozoite and ring 

PF3D7_0709000 Q8IBZ9 chloroquine resistance transporter Trophozoite and ring 

PF3D7_0929400 C0H571 high molecular weight rhoptry protein 2 Trophozoite and ring 

PF3D7_1008700 Q7KQL5 tubulin beta chain Trophozoite and ring 
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Gene ID UniProt 

ID 

Product Description Stage 

PF3D7_1012400 Q8IJS1 hypoxanthine-guanine 

phosphoribosyltransferase 

Trophozoite and ring 

PF3D7_1129000 Q8II73 spermidine synthase Trophozoite and ring 

PF3D7_0500800 Q8I492 mature parasite-infected erythrocyte 

surface antigen 

Trophozoite 

PF3D7_0516900 Q8I3T9 60S ribosomal protein L2 Trophozoite 

PF3D7_0720400 Q8IBP8 ferrodoxin reductase-like protein Trophozoite 

PF3D7_0727400 Q8IBI3 proteasome subunit alpha type-5, 

putative 

Trophozoite 

PF3D7_0826700 Q8IBA0 receptor for activated c kinase Trophozoite 

PF3D7_0903200 C0H516 ras-related protein RAB7 Trophozoite 

PF3D7_0905400 Q8I395 high molecular weight rhoptry protein 3 Trophozoite 

PF3D7_0919400 Q8I2V9 protein disulfide isomerase Trophozoite 

PF3D7_0935800 Q8I2G2 cytoadherence linked asexual protein 9 Trophozoite 

PF3D7_1010700 Q8IJT8 dolichyl-phosphate-mannose protein 

mannosyltransferase, putative 

Trophozoite 

PF3D7_1116800 Q8IIJ8 heat shock protein 101 Trophozoite 

PF3D7_1118500 Q8III3 nucleolar protein 56, putative Trophozoite 

PF3D7_1211400 Q7KQK3 heat shock protein DNAJ homologue 

Pfj4 

Trophozoite 

PF3D7_1242700 Q8I502 40S ribosomal protein S17, putative Trophozoite 

PF3D7_1252100 Q8I4R5 rhoptry neck protein 3 Trophozoite 

PF3D7_1353900 Q8IDG2 proteasome subunit alpha type-7, 

putative 

Trophozoite 

PF3D7_1361800 C0H5J9 conserved Plasmodium protein, 

unknown function 

Trophozoite 

PF3D7_1438100 Q8IL86 secretory complex protein 62 Trophozoite 

PF3D7_1447000 Q8IL02 40S ribosomal protein S5 Trophozoite 

PF3D7_1474600 Q8IK92 conserved Plasmodium membrane 

protein, unknown function 

Trophozoite 

PF3D7_0317600 O77381 40S ribosomal protein S11, putative Ring 

PF3D7_1142500 Q8IHU0 60S ribosomal protein L28 Ring 

PF3D7_1351400 Q8IDI5 60S ribosomal protein L17, putative Ring 
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7.3.7 Visualisation of the SNP readout 

A specific R script was used to generate SNP readout from the final SNP effect prediction VCF files. This 

graphical readout is for graphical purpose with associated information from VCF file (Figure 7.12). 

  

 

Figure 7.12 SNP comparison readout generated by R script. Vertical red line indicates resistance break point. Y-axis 
represents SNP frequency expressed as the sum of all non-reference SNPs/all SNPs. Horizontal blue line indicates 
scaled depth score threshold of (20x), while red dots represent scaled depth score to maximum of 200. SNPs 
frequencies represented in black when quality score ≥30, and greyed out if quality is <30. SNP position and 
chromosome number printed in green if SNP position is within gene coding region, black if within non-coding region 
of gene, and greyed out when positioned outside gene region. Link to corresponding gene in PlasmoDB website 
provided when SNP identified in gene region.   

 

7.3.8 Unique post-break point analysis 

The unique post-break point analysis aims to search for any SNPs that emerge after the defined 

resistance break point and is the most stringent analysis applied. Analysis allows zero SNPs before the 

break point, only SNPs detected after the resistance break point are reported from the analysis. 

 

Search for SNPs that are unique in post-break point samples returned 6 SNPs, however, none of these 

SNPs were in coding regions of any gene. One SNP was within a gene but not in a coding region, 5 SNPs 

were in intergenic regions (Figure 7.13). 
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Figure 7.13 Unique post-break point SNPs 

 

Results from vcf file with predicted SNP effects from SnpEff were presented for each SNP position in 

Box 7.1 to Box 7.6.  

 

Box 7.1 VCF result for SNP 298840 on chromosome 6 

Pf3D7_06_v3 298840 . TTATATATATATATATATATATATATATAT

 TTATATATATATATATATATATATATAT 18.5 .

 INDEL;IS=2,0.060606;DP=33;VDB=1.701979e-

01;AF1=0.5;AC1=1;DP4=9,9,2,1;MQ=39;FQ=21.5;PV4=1,1,1,1;SF=0,1;ANN=TTATATATATATATATA

TATATATATAT|downstream_gene_variant|MODIFIER|PF3D7_0607000|PF3D7_0607000|transcript

|rna_PF3D7_0607000-

1|protein_coding||c.*2071_*2072delAT|||||2071|,TTATATATATATATATATATATATATAT|downstr

eam_gene_variant|MODIFIER|PF3D7_0607200|PF3D7_0607200|transcript|rna_PF3D7_0607200-

1|protein_coding||c.*3005_*3006delAT|||||3006|,TTATATATATATATATATATATATATAT|intron_

variant|MODIFIER|PF3D7_0607100|PF3D7_0607100|transcript|rna_PF3D7_0607100-

1|protein_coding|4/15|c.492-13_492-12delAT|||||| GT:PL:DP:GQ

 0/1:56,0,255:21:59 

Predicted affected genes: 

x MYND finger protein, putative (PF3D7_0607100), intron variant 

x Translation initiation factor IF-2, putative (PF3D7_0607000), downstream gene variant 

x RING zinc finger protein, putative (PF3D7_0607200), downstream gene variant 
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Box 7.2 VCF result for SNP 802196 on chromosome 3 

Pf3D7_03_v3 802196 . AATATATATATATATATATATATATATATATATA

 AATATATATATATATATATATATATATATATA 19.5 .

 INDEL;IS=14,0.138614;DP=101;VDB=1.922956e-

01;AF1=0.5;AC1=1;DP4=46,13,12,4;MQ=39;FQ=22.5;PV4=0.75,1,0.36,0.035;SF=0,1;ANN=AATA

TATATATATATATATATATATATATATA|downstream_gene_variant|MODIFIER|PF3D7_0319000|PF3D7_0

319000|transcript|rna_PF3D7_0319000-

1|protein_coding||c.*1057_*1058delTA|||||1057|,AATATATATATATATATATATATATATATATA|dow

nstream_gene_variant|MODIFIER|PF3D7_0319100|PF3D7_0319100|transcript|rna_PF3D7_0319

100-

1|protein_coding||c.*31_*32delTA|||||32|,AATATATATATATATATATATATATATATATA|downstrea

m_gene_variant|MODIFIER|PF3D7_0319200|PF3D7_0319200|transcript|rna_PF3D7_0319200-

1|protein_coding||c.*1363_*1364delTA|||||1364|,AATATATATATATATATATATATATATATATA|int

ergenic_region|MODIFIER|PF3D7_0319000-PF3D7_0319100|PF3D7_0319000-

PF3D7_0319100|intergenic_region|PF3D7_0319000-

PF3D7_0319100|||n.802228_802229delTA|||||| GT:PL:DP:GQ 0/1:57,0,255:75:60 

Predicted affected genes: 

x P-type ATPase, putative (PF3D7_0319000), downstream gene variant 

x E3 ubiquitin-protein ligase RBX1, putative (PF3D7_0319100), downstream gene variant 

x Endonuclease/exonuclease/phosphatase family protein, putative (PF3D7_0319200), 

downstream gene variant 

 

Box 7.3 VCF result for SNP 1066679 on chromosome 4 

Pf3D7_04_v3 1066679 . AATATATATATATATATATATATATATATATAT
 AATATATATATATATATATATATATATATATATAT 28.5 .
 INDEL;IS=8,0.129032;DP=62;VDB=3.266121e-
01;AF1=0.5;AC1=1;DP4=8,20,7,5;MQ=38;FQ=31.5;PV4=0.091,1,1,0.076;SF=0,1;ANN=AATATATA
TATATATATATATATATATATATATAT|upstream_gene_variant|MODIFIER|PF3D7_0423600|PF3D7_0423
600|transcript|rna_PF3D7_0423600-1|protein_coding||c.-84_-
83insAT|||||84|,AATATATATATATATATATATATATATATATATAT|downstream_gene_variant|MODIFIE
R|PF3D7_0423700|PF3D7_0423700|transcript|rna_PF3D7_0423700-
1|protein_coding||c.*4723_*4724insAT|||||4723|,AATATATATATATATATATATATATATATATATAT|
intergenic_region|MODIFIER|PF3D7_0423600-PF3D7_0423700|PF3D7_0423600-
PF3D7_0423700|intergenic_region|PF3D7_0423600-
PF3D7_0423700|||n.1066711_1066712insAT|||||| GT:PL:DP:GQ 0/1:66,0,255:40:69 

Predicted affected genes: 

x Conserved Plasmodium protein, unknown function (PF3D7_0423600), upstream gene variant 

x Early transcribed membrane protein 4 (PF3D7_0423700), downstream gene region. 
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Box 7.4 VCF result for SNP 137256 on chromosome 5 

Pf3D7_05_v3 137256 . TTATATATATATATATATATATATATATATATATATAT
 TTATATATATATATATATATATATATATATATATATATAT 10.8 .
 INDEL;IS=1,0.040000;DP=25;VDB=4.391815e-
02;AF1=0.5;AC1=1;DP4=3,5,2,0;MQ=40;FQ=13.7;PV4=0.44,1,1,0.49;SF=0,1;ANN=TTATATATATA
TATATATATATATATATATATATATATAT|upstream_gene_variant|MODIFIER|PF3D7_0503300|PF3D7_05
03300|transcript|rna_PF3D7_0503300-1|protein_coding||c.-1364_-
1363insAT|||||1364|,TTATATATATATATATATATATATATATATATATATATAT|upstream_gene_variant|
MODIFIER|PF3D7_0503400|PF3D7_0503400|transcript|rna_PF3D7_0503400-
1|protein_coding||c.-3417_-
3416insAT|||||3416|,TTATATATATATATATATATATATATATATATATATATAT|downstream_gene_varian
t|MODIFIER|PF3D7_0503200|PF3D7_0503200|transcript|rna_PF3D7_0503200-
1|protein_coding||c.*3901_*3902insAT|||||3902|,TTATATATATATATATATATATATATATATATATAT
ATAT|intergenic_region|MODIFIER|PF3D7_0503300-PF3D7_0503400|PF3D7_0503300-
PF3D7_0503400|intergenic_region|PF3D7_0503300-
PF3D7_0503400|||n.137293_137294insAT|||||| GT:PL:DP:GQ 0/1:48,0,149:10:50 

Predicted affected genes: 

x Serine/arginine-rich splicing factor 12 (PF3D7_0503300), upstream gene variant 

x Actin-depolymerizing factor 1 (PF3D7_0503400), upstream gene variant 

x Conserved Plasmodium protein, unknown function (PF3D7_0503200), downstream gene variant 

 

Box 7.5 VCF result for SNP 1104405 on chromosome 9 

Pf3D7_09_v3 1104405 . TTATATATATATATATATATATATAT
 TTATATATATATATATATATATAT 10.8 .
 INDEL;IS=2,0.153846;DP=13;VDB=9.639229e-
02;AF1=0.5;AC1=1;DP4=3,5,0,2;MQ=42;FQ=13.7;PV4=1,5.6e-
07,1,1;SF=0,1;ANN=TTATATATATATATATATATATAT|upstream_gene_variant|MODIFIER|PF3D7_092
7100|PF3D7_0927100|transcript|rna_PF3D7_0927100-1|protein_coding||c.-3599_-
3598delAT|||||3598|,TTATATATATATATATATATATAT|upstream_gene_variant|MODIFIER|PF3D7_0
927200|PF3D7_0927200|transcript|rna_PF3D7_0927200-1|protein_coding||c.-2714_-
2713delAT|||||2714|,TTATATATATATATATATATATAT|downstream_gene_variant|MODIFIER|PF3D7
_0927000|PF3D7_0927000|transcript|rna_PF3D7_0927000-
1|protein_coding||c.*4679_*4680delAT|||||4679|,TTATATATATATATATATATATAT|intergenic_
region|MODIFIER|PF3D7_0927100-PF3D7_0927200|PF3D7_0927100-
PF3D7_0927200|intergenic_region|PF3D7_0927100-
PF3D7_0927200|||n.1104429_1104430delAT|||||| GT:PL:DP:GQ 0/1:48,0,230:10:50 

Predicted affected genes: 

x conserved Plasmodium protein, unknown function (PF3D7_0927100), upstream gene variant 

x zinc finger protein, putative (PF3D7_0927200), upstream gene variant 
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Box 7.6 VCF result for SNP 565470 on chromosome 13 

Pf3D7_13_v3 565470 . TTATATATATATATATATATATATATATATAT
 TTATATATATATATATATATATATATATATATAT 18.5 .
 INDEL;IS=4,0.114286;DP=35;VDB=2.156019e-
02;AF1=0.5;AC1=1;DP4=1,9,3,2;MQ=42;FQ=21.5;PV4=0.077,1,1,1;SF=0,1;ANN=TTATATATATATA
TATATATATATATATATATAT|upstream_gene_variant|MODIFIER|PF3D7_1313200|PF3D7_1313200|tr
anscript|rna_PF3D7_1313200-1|protein_coding||c.-735_-
734insAT|||||734|,TTATATATATATATATATATATATATATATATAT|upstream_gene_variant|MODIFIER
|PF3D7_1313300|PF3D7_1313300|transcript|rna_PF3D7_1313300-1|protein_coding||c.-
3163_-
3162insAT|||||3162|,TTATATATATATATATATATATATATATATATAT|downstream_gene_variant|MODI
FIER|PF3D7_1313100|PF3D7_1313100|transcript|rna_PF3D7_1313100-
1|protein_coding||c.*250_*251insAT|||||251|,TTATATATATATATATATATATATATATATATAT|down
stream_gene_variant|MODIFIER|PF3D7_1313400|PF3D7_1313400|transcript|rna_PF3D7_13134
00-
1|protein_coding||c.*4338_*4339insAT|||||4338|,TTATATATATATATATATATATATATATATATAT|i
ntergenic_region|MODIFIER|PF3D7_1313100-PF3D7_1313200|PF3D7_1313100-
PF3D7_1313200|intergenic_region|PF3D7_1313100-
PF3D7_1313200|||n.565501_565502insAT|||||| GT:PL:DP:GQ 0/1:56,0,177:15:59 

Predicted affected genes: 

x methionyl-tRNA formyltransferase, putative (PF3D7_1313200), upstream gene variant 

x peptidyl-prolyl cis-trans isomerase, putative (PF3D7_1313300), upstream gene variant 

x conserved Plasmodium protein, unknown function (PF3D7_1313100), downstream gene variant 

x DEAD box helicase, putative (PF3D7_1313400), downstream gene variant 

 

7.3.9 Common-to-all 

The algorithm used in this analysis was designed to call any SNPs in studied isolates that are different 

from the reference 3D7 strain but common in all studied isolates (Table 7.1). This information is in 

general a normal genetic variation in an organism and might not contribute to artemisinin resistance 

phenotypes at all. Because it showed all SNPs that are fixed throughout the parasite line, regardless of 

phenotypes. So genes associated with these SNPs might not be important or play direct role in 

resistance to artemisinin.  

 

In the studied population 288 SNPs were reported as common-to-all SNPs as compared to the reference 

3D7 genome, 22 of which were SNPs within annotated coding sequence of genes (Figure 7.14). 

 

Fifthteen genes were identified from 22 SNPs as some genes contain more than 1 SNP (Table 7.7).  

Among these, 6 genes encode for conserved proteins with unknown function, 5 gene products are 

classified as parasite exported proteins (Table 7.7 in bold), including PfEMP1 and rifin. These gene 

products are parasite surface antigens involved in pathogenicity of parasites.  
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Figure 7.14 Twenty-two SNPs located within coding region from common-to-all analysis 
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Table 7.7 Genes identified from common-to-all SNPs in studied isolates. Genes in bold are classified as exported protein (GO term: parasite exported protein). 

   SNP Effect Prediction  

Gene ID UniProt ID Product Description Total High Moderate Low Modifier Genomic Location 

PF3D7_0632500 C6KTF7 erythrocyte membrane protein 1, PfEMP1 

(VAR) 

6 1 4 1 - Pf3D7_06_v3: 1,353,946 - 

1,366,430 (-) 

PF3D7_0407600 Q9U0L0 conserved Plasmodium protein, unknown 

function 

3 - 3 - - Pf3D7_04_v3: 373,039 - 

376,677 (+) 

PF3D7_1245800 Q8I4X4 epsin, putative 3 - 2 1 - Pf3D7_12_v3: 1,908,149 - 

1,909,764 (+) 

PF3D7_0406500 C0H491 conserved Plasmodium protein, unknown 

function 

2 - 2 - - Pf3D7_04_v3: 334,282 - 

344,054 (-) 

PF3D7_1036400 A0A143ZZD7 liver stage antigen 1 (LSA1) 2 - 1 1 - Pf3D7_10_v3: 1,436,316 - 

1,439,804 (+) 

PF3D7_1038400 Q8I6U6 gametocyte-specific protein (Pf11-1) 2 - 1 1 - Pf3D7_10_v3: 1,519,021 - 

1,547,825 (+) 

PF3D7_1325400 Q8IE65 conserved Plasmodium protein, unknown 

function 

2 - 1 1 - Pf3D7_13_v3: 1,052,751 - 

1,063,310 (+) 

PF3D7_1040600 Q8IJ03 rifin (RIF) 2 - 1 1 - Pf3D7_10_v3: 1,619,086 - 

1,620,244 (+) 

PF3D7_0106900 Q8I273 2-C-methyl-D-erythritol 4-phosphate 

cytidylyltransferase, putative (IspD) 

1 - 1 - - Pf3D7_01_v3: 290,386 - 

292,590 (+) 

PF3D7_0404600 Q8I1Y3 conserved Plasmodium membrane protein, 

unknown function 

1 1 - - - Pf3D7_04_v3: 247,731 - 

260,147 (+) 
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   SNP Effect Prediction  

Gene ID UniProt ID Product Description Total High Moderate Low Modifier Genomic Location 

PF3D7_0406900 C0H493 conserved Plasmodium protein, unknown 

function 

1 - 1 - - Pf3D7_04_v3: 353,655 - 

359,878 (-) 

PF3D7_1032000 Q8IJ86 ribosome maturation factor RimM, putative 

(RimM) 

1 - 1 - - Pf3D7_10_v3: 1,287,715 - 

1,290,045 (-) 

PF3D7_1146200 Q8IHQ6 conserved Plasmodium protein, unknown 

function 

1 - - 1 - Pf3D7_11_v3: 1,826,203 - 

1,826,792 (-) 

PF3D7_0107600 Q8I265 serine/threonine protein kinase, putative 1 - 1 - 1 Pf3D7_01_v3: 314,618 - 

319,405 (+) 

PF3D7_0831300 C0H4Z6 Plasmodium exported protein, unknown 

function (GEXP13) 

1 - 1 - 1 Pf3D7_08_v3: 1,339,659 - 

1,342,306 (+) 
  

Total 55 2 18 7 28 
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Box 7.7 VCF result for SNP 291538 on chromosome 1 (IspD gene) 

Pf3D7_01_v3 291538 . A G 204.22 .
 AC1=1;AC=9;AF1=0.5;AN=18;DP4=617,381,320,283;DP=1758;FQ=157;MQ=27;PV4=0.046,1
,0.095,1;RPB=-7.531736e+00;SF=0,1;VDB=1.988432e-
03;ANN=G|missense_variant|MODERATE|PF3D7_0106900|PF3D7_0106900|transcript|rna_PF3D7
_0106900-
1|protein_coding|1/1|c.1153A>G|p.Asn385Asp|1153/2205|1153/2205|385/734||,G|upstream
_gene_variant|MODIFIER|PF3D7_0107000|PF3D7_0107000|transcript|rna_PF3D7_0107000-
1|protein_coding||c.-
2104A>G|||||2104|,G|downstream_gene_variant|MODIFIER|PF3D7_0106800|PF3D7_0106800|tr
anscript|rna_PF3D7_0106800-
1|protein_coding||c.*2620A>G|||||2620|,G|downstream_gene_variant|MODIFIER|PF3D7_010
7100|PF3D7_0107100|transcript|rna_PF3D7_0107100-
1|protein_coding||c.*3762T>C|||||3762| GT:DP:PL:GQ 0/1:94:184,0,255:99
 0/1:109:246,0,255:99 0/1:311:255,0,255:99 0/1:165:235,0,255:99
 0/1:329:255,0,255:99 0/1:221:255,0,255:99 0/1:178:255,0,255:99
 0/1:81:198,0,255:99 0/1:113:225,0,255:99 

 

7.3.10 Comparison 

This analysis aimed to search for SNPs that change as the resistance phenotype developed under 

sequential in vivo passage. Figure 7.15 shows interesting SNP trends as the resistance phenotype 

changes. Searching using this criterion (Table 7.1) returned 18 SNPs that developed as the resistance 

phenotype evolved and became fixed in the resistance isolates, and have predicted SNP effects. Eight 

SNPs were within the coding regions and have high, moderate, or low effects on the gene product as 

predicted by SNP effect prediction, SNPEFF software. The other 10 SNPs were within the genes but not in 

the coding region and have modifier effects as predicted by SNPEFF (Cingolani et al., 2012) (Table 7.8). 

 

 

Figure 7.15 Interested pattern of SNP change over phenotype. The yellow dots represent parasite clearance half-life 
of each passage, whereas black dots indicate SNP frequency in corresponding passage. The resistance break point 

is shown in vertical red line. 
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Figure 7.16 SNP readouts from comparison analysis. 
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Table 7.8 Gene with SNPs developed with resistance phenotype in studied isolates. The gene in bold was identified from the proteomics experiments. 

   SNP Effect Prediction  

Gene ID UniProt ID Product Description Total High Moderate Low Modifier Genomic Location 

PF3D7_0111800 B9ZSJ0 eukaryotic translation initiation factor 4E, 

putative 

1 - 1 - - Pf3D7_01_v3: 446,026 - 

448,849 (+) 

PF3D7_0311500 Q9NFE5 conserved Plasmodium protein, unknown 

function 

1 - 1 - - Pf3D7_03_v3: 497,118 - 

497,363 (-) 

PF3D7_0320100 O97323 protein transport protein SEC22 (SEC22) 1 - - - 1 Pf3D7_03_v3: 840,362 - 

841,758 (+) 

PF3D7_0320500 O97284 nicotinamidase, putative (Nico) 1 1 - - - Pf3D7_03_v3: 860,813 - 

862,102 (+) 

PF3D7_0321900 C0H483 cyclic amine resistance locus protein (CARL) 3 - - - 3 Pf3D7_03_v3: 922,974 - 

927,942 (+) 

PF3D7_0418800 C0H4B4 conserved Plasmodium protein, unknown 

function 

1 - - - 1 Pf3D7_04_v3: 843,562 - 

845,169 (+) 

PF3D7_0522300 C0H4F7 S-adenosylmethionine-dependent 

methyltransferase, putative 

1 - - - 1 Pf3D7_05_v3: 902,613 - 

904,844 (-) 

PF3D7_0729100 C0H4Q1 conserved Plasmodium protein, unknown 

function 

1 - 1 - - Pf3D7_07_v3: 1,238,446 - 

1,246,188 (+) 

PF3D7_0729300 Q8IBG6 60S ribosomal export protein NMD3, putative 

(NMD3) 

1 - 1 - - Pf3D7_07_v3: 1,248,837 - 

1,251,503 (-) 

PF3D7_0811400 C0H4U0 conserved protein, unknown function 2 - - - 2 Pf3D7_08_v3: 575,986 - 

578,370 (+) 
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   SNP Effect Prediction  

Gene ID UniProt ID Product Description Total High Moderate Low Modifier Genomic Location 

PF3D7_0812220 A0A143ZZW7 GTPase, putative 1 - - - 1 Pf3D7_08_v3: 613,325 - 

614,862 (-) 

PF3D7_0919400 Q8I2V9 protein disulfide isomerase (PDI9) 1 - - - 1 Pf3D7_09_v3: 795,539 - 

797,470 (+) 

PF3D7_0922800 C0H552 conserved Plasmodium protein, unknown 

function 

1 - - 1 - Pf3D7_09_v3: 922,292 - 

935,372 (-) 

PF3D7_1022800 Q8IJH7 4-hydroxy-3-methylbut-2-en-1-yl diphosphate 

synthase (GcpE) 

1 - 1 - - Pf3D7_10_v3: 955,883 - 

958,357 (+) 

PF3D7_1034500 Q8IJ65 conserved Plasmodium protein, unknown 

function 

1 - - - 1 Pf3D7_10_v3: 1,370,731 - 

1,376,131 (+) 

PF3D7_1132400 Q8II41 conserved Plasmodium membrane protein, 

unknown function 

1 1 - - - Pf3D7_11_v3: 1,255,286 - 

1,259,671 (-) 

PF3D7_1360500 Q8IDA0 guanylyl cyclase beta (GCbeta) 1 - - - 1 Pf3D7_13_v3: 2,413,324 - 

2,425,261 (+) 

PF3D7_1428600 Q8ILH8 peptide chain release factor 1, putative 1 - - - 1 Pf3D7_14_v3: 1,127,042 - 

1,129,031 (+) 

  Total 21 2 5 1 13  
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Box 7.8 VCF result for SNP 957500 on chromosome 10 

Pf3D7_10_v3 957500 . GATAATAATAATAATAATAATAATAATAATA
 GATAATAATAATAATAATAATAATAATAATAATA,GATAATAATAATAATAATAATAATAATA 143.95 .
 AC1=1;AC=7,1;AF1=0.5;AN=10;DP4=96,85,168,168;DP=756;FQ=5.09;INDEL;IS=7,0.0679
61;MQ=42;PV4=0.34,0.092,0.00036,0.15;SF=0,1;VDB=2.553269e-
01;ANN=GATAATAATAATAATAATAATAATAATAATAATA|disruptive_inframe_insertion|MODERATE|PF3
D7_1022800|PF3D7_1022800|transcript|rna_PF3D7_1022800-
1|protein_coding|1/1|c.1646_1648dupATA|p.Asn549dup|1649/2475|1649/2475|550/824||,GA
TAATAATAATAATAATAATAATAATA|disruptive_inframe_deletion|MODERATE|PF3D7_1022800|PF3D7
_1022800|transcript|rna_PF3D7_1022800-
1|protein_coding|1/1|c.1646_1648delATA|p.Asn549del|1646/2475|1646/2475|549/824||,GA
TAATAATAATAATAATAATAATAATA|upstream_gene_variant|MODIFIER|PF3D7_1022700|PF3D7_10227
00|transcript|rna_PF3D7_1022700-1|protein_coding||c.-4951_-
4949delTAT|||||4949|,GATAATAATAATAATAATAATAATAATAATAATA|upstream_gene_variant|MODIF
IER|PF3D7_1022700|PF3D7_1022700|transcript|rna_PF3D7_1022700-1|protein_coding||c.-
4952_-
4951insTAT|||||4952|,GATAATAATAATAATAATAATAATAATA|downstream_gene_variant|MODIFIER|
PF3D7_1022900|PF3D7_1022900|transcript|rna_PF3D7_1022900-
1|protein_coding||c.*1409_*1411delTAT|||||1411|,GATAATAATAATAATAATAATAATAATAATAATA|
downstream_gene_variant|MODIFIER|PF3D7_1022900|PF3D7_1022900|transcript|rna_PF3D7_1
022900-
1|protein_coding||c.*1408_*1409insTAT|||||1408|,GATAATAATAATAATAATAATAATAATA|downst
ream_gene_variant|MODIFIER|PF3D7_1023000|PF3D7_1023000|transcript|rna_PF3D7_1023000
-
1|protein_coding||c.*3536_*3538delTAT|||||3538|,GATAATAATAATAATAATAATAATAATAATAATA|
downstream_gene_variant|MODIFIER|PF3D7_1023000|PF3D7_1023000|transcript|rna_PF3D7_1
023000-1|protein_coding||c.*3535_*3536insTAT|||||3535| GT:DP:PL:GQ .
 0/2:71:38,.,.,0,.,255:37 . 0/1:135:112,0,255,.,.,.:99 . .
 1/1:155:255,255,0,.,.,.:99 1/1:59:255,91,0,.,.,.:99
 1/1:97:255,139,0,.,.,.:99 

 

Box 7.9 VCF result for SNP 1257644 on chromosome 11 

Pf3D7_11_v3 1257644 . CTTTTTTTTTTT CTTTTTTTTT 122.15 .
 AC1=2;AC=8;AF1=1;AN=8;DP4=41,34,153,191;DP=508;FQ=-
39.5;INDEL;IS=83,0.410891;MQ=41;PV4=0.15,1,0.3,0.21;SF=0,1;VDB=7.086270e-
02;ANN=CTTTTTTTTT|frameshift_variant|HIGH|PF3D7_1132400|PF3D7_1132400|transcript|rn
a_PF3D7_1132400-
1|protein_coding|1/1|c.2017_2018delAA|p.Lys676fs|2018/4386|2017/4386|673/1461||,CTT
TTTTTTT|upstream_gene_variant|MODIFIER|PF3D7_1132500|PF3D7_1132500|transcript|rna_P
F3D7_1132500-1|protein_coding||c.-4105_-
4104delTT|||||4105|,CTTTTTTTTT|downstream_gene_variant|MODIFIER|PF3D7_1132300|PF3D7
_1132300|transcript|rna_PF3D7_1132300-
1|protein_coding||c.*3760_*3761delTT|||||3760|;LOF=(PF3D7_1132400|PF3D7_1132400|1|1
.00) GT:GQ:DP:PL . . . . . 1/1:9:166:124,5,0
 1/1:99:110:188,247,0 1/1:99:53:147,57,0 1/1:99:90:191,255,0 
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Box 7.10 VCF result for SNP 895153 on chromosome 7 

Pf3D7_07_v3 895153 . GATAATAATAATAATAATAATAATAATAATAATAATAATAATAATAATAATAATAA
 GATAATAATAATAATAATAATAATAATAATAATAATAATAATAATAATAATAA 154.28 .
 AC1=2;AC=10;AF1=1;AN=10;DP4=0,0,20,11;DP=832;FQ=-
46.5;INDEL;IS=2,0.012987;MQ=42;SF=0,1;VDB=5.749530e-
02;ANN=GATAATAATAATAATAATAATAATAATAATAATAATAATAATAATAATAATAA|disruptive_inframe_del
etion|MODERATE|PF3D7_0720700|PF3D7_0720700|transcript|rna_PF3D7_0720700-
1|protein_coding|3/4|c.2997_2999delTAA|p.Asn1000del|2997/6501|2997/6501|999/2166||,
GATAATAATAATAATAATAATAATAATAATAATAATAATAATAATAATAATAA|upstream_gene_variant|MODIFIE
R|PF3D7_0720800|PF3D7_0720800|transcript|rna_PF3D7_0720800-1|protein_coding||c.-
4545_-4543delTAA|||||4545| GT:PL:DP:GQ 1/1:146,12,0:4:21 1/1:119,9,0:3:16
 1/1:217,24,0:8:45 1/1:245,24,0:8:45 . 1/1:247,24,0:8:45 . .
 . 

 

Box 7.11 VCF result for SNP 446589 on chromosome 1 

Pf3D7_01_v3 446589 . CAATAATAATAATAATAATAATAATAATAATA
 CAATAATAATAATAATAATAATAATAATAATAATA 214.75 .
 AC1=1;AC=7;AF1=0.5;AN=8;DP4=10,15,163,166;DP=606;FQ=126;INDEL;IS=74,0.379487;
MQ=41;PV4=0.8,1,1,0.0033;SF=0,1;VDB=1.023815e-
01;ANN=CAATAATAATAATAATAATAATAATAATAATAATA|disruptive_inframe_insertion|MODERATE|PF
3D7_0111800|PF3D7_0111800|transcript|rna_PF3D7_0111800-
1|protein_coding|1/8|c.593_595dupATA|p.Asn198dup|596/1863|596/1863|199/620||,CAATAA
TAATAATAATAATAATAATAATAATAATA|upstream_gene_variant|MODIFIER|PF3D7_0111600|PF3D7_01
11600|transcript|rna_PF3D7_0111600-1|protein_coding||c.-3332_-
3331insTAT|||||3332|,CAATAATAATAATAATAATAATAATAATAATAATA|upstream_gene_variant|MODI
FIER|PF3D7_0111700|PF3D7_0111700|transcript|rna_PF3D7_0111700-1|protein_coding||c.-
2683_-
2682insTAT|||||2683|,CAATAATAATAATAATAATAATAATAATAATAATA|downstream_gene_variant|MO
DIFIER|PF3D7_0111900|PF3D7_0111900|transcript|rna_PF3D7_0111900-
1|protein_coding||c.*3422_*3423insTAT|||||3422|,CAATAATAATAATAATAATAATAATAATAATAATA
|downstream_gene_variant|MODIFIER|PF3D7_0112000|PF3D7_0112000|transcript|rna_PF3D7_
0112000-1|protein_coding||c.*4210_*4211insTAT|||||4210| GT:GQ:PL:DP . .
 . 0/1:99:255,0,161:107 . 1/1:99:255,255,0:128 .
 1/1:99:255,84,0:42 1/1:99:255,149,0:77 

 

Box 7.12 VCF result for SNP 497260 on chromosome 3 

Pf3D7_03_v3 497260 . C G 218.67 .
 AC1=2;AC=12;AF1=1;AN=12;DP4=7,10,509,349;DP=919;FQ=-
65;MQ=33;PV4=0.43,0.21,0.14,0.053;RPB=-1.030801e-01;SF=0,1;VDB=5.187392e-
01;ANN=G|missense_variant|MODERATE|PF3D7_0311500|PF3D7_0311500|transcript|rna_PF3D7
_0311500-
1|protein_coding|1/1|c.104G>C|p.Gly35Ala|104/246|104/246|35/81||,G|upstream_gene_va
riant|MODIFIER|PF3D7_0311600|PF3D7_0311600|transcript|rna_PF3D7_0311600-
1|protein_coding||c.-
2342C>G|||||2342|,G|downstream_gene_variant|MODIFIER|PF3D7_0311400|PF3D7_0311400|tr
anscript|rna_PF3D7_0311400-1|protein_coding||c.*750C>G|||||750| GT:DP:PL:GQ .
 . . 1/1:138:235,38,0:73 1/1:271:255,255,0:99
 1/1:169:255,255,0:99 1/1:149:255,255,0:99 1/1:68:255,205,0:99
 1/1:80:255,241,0:99 
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Box 7.13 VCF result for SNP 925818 on chromosome 9 

Pf3D7_09_v3 925817 . T A 174.75 .
 AC1=1;AC=4;AF1=0.5;AN=8;DP4=207,147,79,75;DP=526;FQ=40;MQ=42;PV4=0.35,1,0.09,
1;RPB=-5.044023e-01;SF=0,1;VDB=3.139301e-
01;ANN=A|synonymous_variant|LOW|PF3D7_0922800|PF3D7_0922800|transcript|rna_PF3D7_09
22800-
1|protein_coding|3/3|c.9243A>T|p.Val3081Val|9243/12768|9243/12768|3081/4255||,A|ups
tream_gene_variant|MODIFIER|PF3D7_0922700|PF3D7_0922700|transcript|rna_PF3D7_092270
0-1|protein_coding||c.-4515A>T|||||4515| GT:PL:DP:GQ . . . .
 . 0/1:67,0,255:212:70 0/1:255,0,255:113:99 0/1:242,0,255:74:99
 0/1:255,0,255:109:99 

 

Box 7.14 VCF result for 860814 on chromosome 3 

Pf3D7_03_v3 860814 . T C 202.0 .
 AC1=1;AC=13;AF1=0.5;AN=14;DP4=9,17,146,112;DP=365;FQ=92;MQ=39;PV4=0.71,4.4e-
05,1,1;RPB=-7.850690e-01;SF=0,1;VDB=1.122838e-
01;ANN=C|start_lost|HIGH|PF3D7_0320500|PF3D7_0320500|transcript|rna_PF3D7_0320500-
1|protein_coding|1/1|c.2T>C|p.Met1?|2/1290|2/1290|1/429||,C|upstream_gene_variant|M
ODIFIER|PF3D7_0320400|PF3D7_0320400|transcript|rna_PF3D7_0320400-
1|protein_coding||c.-
3310A>G|||||3310|,C|upstream_gene_variant|MODIFIER|PF3D7_0320700|PF3D7_0320700|tran
script|rna_PF3D7_0320700-1|protein_coding||c.-
4200T>C|||||4200|,C|downstream_gene_variant|MODIFIER|PF3D7_0320600|PF3D7_0320600|tr
anscript|rna_PF3D7_0320600-
1|protein_coding||c.*1927A>G|||||1927|;LOF=(PF3D7_0320500|PF3D7_0320500|1|1.00)
 GT:GQ:PL:DP . 0/1:99:119,0,255:35 . 1/1:99:255,91,0:40
 1/1:99:255,217,0:72 1/1:99:255,114,0:38 1/1:99:248,87,0:29
 1/1:99:255,96,0:33 1/1:99:255,111,0:37 

 

7.4 Discussion 

7.4.1 Sequence quality  

The overall quality of the sequences was acceptable for further analysis. The average read quality score 

was all over 30, read length was between 80-100 bp (section A3.1). Read mapping used in the study 

systematically reduced the errors and complications from de novo genome assembly. Even though PCR-

free library preparation is ideal for genomes that have AT-rich to reduce PCR associated errors, PCR-

free DNA library preparation kit was not available at the time of experiment. Read and mapping 

coverage for each sample was considered to be in the good range between 66-182% (Table A3.2) and 

85-98% (Table 7.3 and section A3.3), respectively.  

 

7.4.2 Global analysis of SNPs 

SNPs didn’t show any selection toward any particular chromosome but a more random distribution 

(Figure 7.8 and Figure 7.9). Proteolysis and ubiquitin-dependent protein catabolic process were enriched 

from the 733 proteins (Table 7.5, Figure 7.10 and Figure 7.11). These systems are involved in the later 

stages of the unfolded protein response (UPR). It was reported that upregulation in the UPR system is 

associated with resistance to artemisinin (Mok et al., 2015). It has been proposed that resistance to 
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artemisinin is due to the parasites’ ability to overcome the effect of stress generated by artemisinin via 

the UPR system (Mok et al., 2015, Paloque et al., 2016, Dogovski et al., 2015), together with delays in the 

erythrocytic developmental cycle (Hott et al., 2015, Teuscher et al., 2010). The result shown here 

suggests that there is a possible selective pressure on the UPR and ubiquitin-proteasome system under 

artesunate pressure in vivo and supports the current working hypothesis. The comparative proteomic 

results from ring and trophozoite stage parasites labelled with artemisinin activity-based probes in 

earlier chapters also supported the UPR as a potential resistance mechanism (section 5.4.1 and 5.4.3). 

Other enriched biological processes were gene expression, transport, and cell communication (Table 

7.5 and Figure 7.10).  

 

Interestingly, there seemed to be a selection pressure toward asparagine rich proteins. Nearly 50% of 

SNP associated genes were asparagine rich proteins (Table 7.9), although the organism has remarkably 

~30% asparagine repeats in its proteome (Muralidharan and Goldberg, 2013). This unusual protein 

feature is evolutionarily conserved in the Plasmodium falciparum and Plasmodium reichenowi genomes 

but apparently not in other Plasmodium species, although some are as AT-rich (Muralidharan and 

Goldberg, 2013). The Plasmodium falciparum genome is known for its AT-rich hallmark and that 

increases the chance of tri-nucleotide repeats, especially AAT (coding for asparagine) (Aravind et al., 

2003, Muralidharan and Goldberg, 2013). Even though the benefits of these repeats are uncertain the 

evolutionary conservation of the feature implies it is of biological importance and confers some benefit. 

One hypothesis is that asparagine repeats can lead to new protein domains or functions under heat 

shock proteins and stress responses (Muralidharan and Goldberg, 2013). Generally, proteins with 

repeated sequences are prone to aggregation and loss of function, but that was not the case for 

Plasmodium falciparum asparagine-rich proteins, at least with PfCDK2 (PF3D7_0923500); it was shown 

that PfCDK2 remains functional in the presence of Plasmodium falciparum heat shock protein 110 

(PfHSP110), but not in the PfHSP110 knockdown parasite (Muralidharan et al., 2012). Our limited 

knowledge on this particular area is intriguing offers a possible link with drug resistance mechanisms.        

 

Table 7.9 Number of genes with various asparagine runs (from 743 genes in comparison analysis) 

Number of asparagine runs 3 4 5 6 7 8 9 10 

Number of genes 375 244 188 164 142 121 96 80 

 

7.4.3 Unique post-break point 

The unique post-break point analysis, the most stringent analysis, returned only one SNP within the 

MYND finger protein, putative gene region (PF3D7_0607100). This SNP is not presented in the 3D7 

reference genome or any of the susceptible isolates and emerged straight after the break point (passage 

9), although not in the coding region. Other unique post-break point SNPs were intergenic regions, 
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therefore is concluded that they should have no direct effect on product proteins that could confer 

resistance.  

 

These SNPs seemed to be tandem repeat (TR) and indel variations which are the most common 

variations in the Plasmodium falciparum genome (Miles et al., 2016). These variations are possibly 

involved in the epigenetic regulation; however, there is no clear established mechanism of drug 

resistance associated with epigenetic regulation in the Plasmodium falciparum.  

 

7.4.4 Common-to-all 

In this section SNPs that appeared commonly in all study isolates but were different from the 3D7 

reference strain from common-to-all analysis are discussed (Table 7.7). These SNPs are unlikely to 

contribute to resistance to artemisinin phenotype observed in the mouse model but possibly benefit 

the parasites’ survival in the humanised SCID model.     

 

7.4.4.1 SNPs in erythrocyte membrane protein 1 (PfEMP1) gene 

PfEMP1 is a protein encoded by the multigene var family, so far there are 62 PfEMP1 encoded genes 

reported in PlasmoDB, including var, and var-like. PfEMP1 proteins play a role in cytoadhesion of 

infected RBCs to human endothelial cells. This phenomenon is linked with parasite pathogenicity and 

major clinical manifestations. Only single PfEMP1 gene is expressed by each infected RBC at any given 

time. Genes in the PfEMP1 family exhibit high polymorphism which provides parasites the tools to fight 

and/or evade host immunity. Together with clonal variation switching, PfEMP1 expression patterns are 

numerous.  

 

Genes encoding for PfEMP1 are structured in a 2-exon structure. Exon 1 encodes for the external part 

of PfEMP1 while exon 2 encodes for the transmembrane region and internal parts. Exon 2 sequences 

are extensively conserved among the parasites as this part is not beneficial in terms of parasite 

pathogenicity but rather provides the membrane anchoring structure for the protein. Unlike exon 2, 

exon 1 sequences are highly diverse, and its products contribute to cytoadhesion profile of parasites. 

 

Then general structure of the PfEMP1 protein is shown in Figure 7.17. Intercellular components of 

PfEMP1 contains an acidic terminal sequence (ATS) which is believed to act as an anchoring system for 

PfEMP1. However, Mayer et al. (2012) suggests that ATS associated with PHIST-type domain 

(PF3D7_0936800) might act in the parasites intra-erythrocyte protein network. Although PfEMP1 is part 

of parasite’s knob structure, there is no evidence showing interactions with knob-associated histidine-

rich protein (KAHPR), an important protein for knob formation (Watermeyer et al., 2016, Hviid and 
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Jensen, 2015). The ATS is connected with a transmembrane region, thrombomodulin (TM), which links it 

to the extracellular segment. 

 

The extracellular segment of PfEMP1 is highly diverse. The N-terminus segment is located at the end of 

the extracellular segment followed by a duffy binding-like domain (DBL), specifically DBL1α, and a 

cysteine-rich interdomain region (CIDR) followed by various DBL domains (Hviid and Jensen, 2015).  

 

Five SNPs were identified from the PfEMP1 gene, PF3D7_0632500, at positions 1365389, 1365409, 

1365410, 1365411, and 1365413. All these SNPs’ positions are located in the exon 1 region (1356045 to 

1366430). This finding was not surprising as the gene has a high number of SNPs in this area (PlasmoDB 

recorded 4238 SNPs). This increases diversity in the final protein product and enhances the chance to 

evade host recognition. Although PfEMP1 has high sequence diversity, there is evidence that it exhibits 

structural conservation to maintain its interaction with partner ligands, e.g. CIDRα1:EPCR (endothelial 

protein C receptor) (Lau et al., 2015).   

 

 

Figure 7.17 PfEMP1 protein general structure 

  

7.4.4.2 SNPs in rifin gene (PF3D7_1040600) 

Rifin is a parasite protein that modifies the host RBC and might play a role in parasite-host interactions 

e.g. binding to host cells (Kyes et al., 1999, Maier et al., 2009). The protein rifin is encoded by a var 

multigene family rif, like PfEMP1, that comprises the largest copy in the Plasmodium genome (Joannin et 

al., 2008). PlasmoDB searches returned 157 rif genes, excluding pseudogenes. Rifin is not as widely 

studied as PfEMP1 but it is likely that rifin has a similar role in parasite pathogenicity based on its 

presentation on host RBC surface, and the number of genes in the family. Rifin protein are part of knob 

structures of infected RBC but there is no evidence that the rifin protein interacts directly with PfEMP1.   

 

7.4.4.3 SNP in IspD gene (PF3D7_0106900) 

IspD is an enzyme in non-mevalonate pathway in the Plasmodium parasite catalysing the production of 

4-(Cytidine 5’-diphospho)-2-C-methyl-D-erythritol. The enzyme was reported as a therapeutic target (Wu 

et al., 2015, Imlay et al., 2015). MMV-08138 was shown to directly inhibit IspD by competitive binding 

with cytidine triphosphate (CTP) (Imlay et al., 2015), furthermore mutations in IspD gene rendered 

parasite resistance to the inhibitor (Wu et al., 2015). There is no evidence showing that mutations in the 

IspD gene are associated with artemisinin resistance. According to the predicted phenotype by SNPEFF 
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software, SNP at position 291,538 was a missense variant, 1153 AÆG (Asn385Asp). The result presented 

here is also not suggestive of a resistance determinant as this SNP presented in all studied isolates 

regardless of the phenotypes.  

 

The relevance of the changes highlighted by this type of analysis are probably more linked to 3D7 

adaptations to stable infection in the SCID mouse model and should be investigated with that in mind. 

 

7.4.5 Comparison 

In this section SNPs with predicted SNP effects will be discussed in more detail with the aim of trying to 

identify plausible links with a mechanism of resistance to artesunate. These mutations were apparently 

fixed in the resistant parasite isolates post break.  

 

7.4.5.1 SNP in IspG gene (PF3D7_1022800) 

SNP in gene encoding for 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase, IspG or GcpE 

(PF3D7_1022800), showed development in accordance with resistance phenotype and were fixed after 

the post-break point (Figure 7.18).  

 

Figure 7.18 SNP readout of position 957500 on chromosome 10 (PF3D7_1022800) 

 

IspG is the penultimate enzyme in non-mevalonate isoprenoid synthetic pathway in the apicoplast, non-

photosynthetic plastid (Hecht et al., 2001). IspG catalyses 2C-methyl-D-erythritol 2,4-cyclodiphosphate 

conversion into 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate which in turn is converted to 

isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) by 4-hydroxy-3-methylbut-

2-enyl diphosphate reductase, IspH, is the last enzyme in the pathway (Figure 7.19). Structural studies 

in bacterial IspG and IspH proteins revealed both IspG and IspH have 2 domains, a TIM barrel domain 

(A) and 4Fe-4S cluster domain (B). The TIM barrel domain (A) acts as a diphosphate binding site while 

the 4Fe-4S cluster domain (B) is involved in reduction (Lee et al., 2010, Guerra et al., 2014).  
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Figure 7.19 Non-mevalonate (MEP) isoprenoid biosynthesis pathway in Plasmodium falciparum (adapted from 
MPMP database). Protein indicated in red harbours SNP associated with artesunate resistance. 

 

Sequence analysis of the Plasmodium falciparum IspG sequence and other IspG sequences, including 

plant Arabidopsis thaliana, bacteria Escherichia coli, Aquifex aeolicus, and Bacillus anthracis, revealed that 

plants and parasite have an additional sequence (A*) of around 400-500 amino acids between TIM barrel 

domain (A) and 4Fe-4S cluster domain (B) (Figure 7.20). However, the additional sequence (A*) is less 

conserved suggesting more of structural role rather than catalytic role (section A3.6) (Liu et al., 2012).  

 

 

Figure 7.20 Sequence alignment of P. falciparum, A. thaliana, A aeolicus, B. anthracis, and E. coli 

 

In order to form an active enzyme, bacterial IspGs forms (AB)2 homodimer structure from 2 TIM domains 

and 2 4Fe-4S cluster domains. The TIM barrel domain of one monomer forms an active site with the 
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4Fe-4S cluster of another monomer, while plant and plasmodial IspG have the addition domain (A*) and 

function as 3-domain monomer (Figure 7.21) (Liu et al., 2012).  

 

 

Figure 7.21 Diagram showing (AB)2 homodimer structure of bacterial IspG (left) and proposed plasmodial IspG 
monomer (right). 

 

IspG utilises reduced ferredoxin in order to catalyse conversion of 2C-methyl-D-erythritol 2,4-

cyclodiphosphate into 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate, as does IspH. Ferredoxin is 

coupled with ferredoxin-NADP+ reductase (FNR), or FNR/fd, and serves as electron transport and/or 

redox system for the apicoplast. A recent study shows that SNPs in ferredoxin, apicoplast ribosomal 

protein S10 (arps10), multidrug resistance protein 2 (mdr2), and chloroquine resistance transporter (crt) 

are strongly associated with artemisinin resistance (Miotto et al., 2015). As these two proteins, IspG and 

ferredoxin, are closely linked together. Mutations in these genes might confer the delayed parasite 

clearance phenotype but a mechanism for this is unclear.    

 

IspG interacts with Kae1 (kinase-associated endopeptidase 1) and might be involved in transcriptional 

regulation (Chlamydia trachomatis). Work by Mallari et al. (2014) has demonstrated that Kae1 is 

expressed in the cytoplasm and apicoplast of Plasmodium falciparum and interacts with IspG, EF-Ts, and 

RNA helicase in apicoplast. These protein complexes further interact with other proteins in the 

apicoplast and might (control or) play a role in protein translation in the apicoplast. Immuoprecipitation 

experiment also shows that the Kae1-EF-Ts protein complex interacts with arps10, another SNP showing 

strong association with artemisinin resistance (Miotto et al., 2015).  

 

SNPs at position 957500 in the IspG gene were classified as disruptive in frame insertion/deletions 

according to SNP effect prediction by SNPEFF software (Box 7.8). These mutations resulted in an insertion 

or deletion of the amino acid asparagine, N, at position 549 which was located within a repeated 

asparagine sequence in domain A* (Figure 7.22) and was not a known lethal mutation. The Plasmodium 

falciparum genome is known for asparagine repeats, but the evolutional and functional purposes of this 
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asparagine repeats are still elusive (Muralidharan and Goldberg, 2013). However, the structural linker 

can play a role in maintaining protein symmetry which is important for protein function. For example, 

the study of P97 proteins revealed a linker between the P97 subunits is essential for catalytic activity of 

the enzyme. The truncated linkers resulted in reduced activity of ATPase activity (Tang and Xia, 2016). 

Although, it is possible that mutation in this position may contribute to catalytic activity of the enzyme, 

further specific experiment on this enzyme is needed to evaluate the protein function and resistance 

phenotype.  
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Figure 7.22 GcpE protein sequences. Wildtype (WT) on top, insertion (ins) sequence in the middle, and deletion (del) 
sequence on the bottom. Domain A is shown in blue, domain A* in red, and domain B in green. Affected amino acid 
is located within low complexity region of the protein containing asparagine repeat. 
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7.4.5.2 SNP in PF3D7_1132400 gene 

Another SNP that developed with increased parasite clearance half-life and fixed with the resistance 

phenotype is the apicoplast localised conserved Plasmodium membrane protein, (PF3D7_1132400, 

UniProt Q8II41). This protein is curated as unknown function but InterPro domain predicts a chloroquine 

resistance transporter (CRT)-like domain in the gene product at amino acid 844-980. Mutation at this 

position resulted in a frame shift variant and generated a stop codon at position 681, therefore the CRT-

like domain was lost. This variation was unlikely to be a sequencing error as it has very good depth 

coverage and read alignment (Box 7.8, Box 7.9, and Figure 7.24). The CRT-like domain in this protein is 

possibly involved in drug transportation across the apicoplast membrane, the absence of this domain 

might reduce the stress generated by artemisinin within apicoplast which is a critical organelle in the 

parasite. However, biological evidence of this mutant protein will be needed to provide more detail on 

the function of this protein.    

 

Figure 7.23 SNP readout of position 1257644 on chromosome 11 (PF3D7_1132400) 

 

 

Figure 7.24 Reads alignment (BAM) of studied isolates at position 1257644 on chromosome 11. 
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7.4.5.3 SNP in eIF4e putative gene (PF3D7_0111800) 

The SNP position 446,589 on chromosome 1 (Figure 7.25) belongs to the PF3D7_0111800 gene encoded 

for eukaryotic translation initiation factor 4E, putative (eIF4e, UniProt B9ZSJ0). SNPEFF predicted for a 

disruptive in frame insertion of asparagine at position 198 (Box 7.11) within the low complexity region 

(LCR) as identified by the SEG program (Wootton, 1994). WT protein contains a 10 asparagine repeat run 

in this region, while the mutation inserted 1 additional asparagine into this region. Similar to SNP 

position 957,500 on chromosome 10 encoded for the IspG protein, variations in low complexity regions 

of the protein possibly contribute to the response to antimalarial. It was evidence that the variations in 

the pattern of asparagine repeats in low complexity region of PfMDR1, a prominent antimalarial 

resistance determinant, is associated with several antimalarial responses (Okombo et al., 2013). The 

parasite eIF4e plays a role in translation initiation steps with other eIF4s and are regulated via PI3K/AKT 

pathway (Sonenberg and Hinnebusch, 2009), which was proposed as a direct target of artemisinins 

(Mbengue et al., 2015). A more detailed evidence and enquiry is required to get a greater understanding 

of the relevance if this finding.  

 

Figure 7.25 SNP readout of position 446589 on chromosome 1 (PF3D7_0111800) 

 

7.4.5.4 SNP in PF3D7_0311500 gene 

The SNP at position 497,260 on chromosome 3 resulted in nonsynonymous mutation, Gly35Ala, in 

PF3D7_0311500 encoded for the conserved Plasmodium protein of unknown function (Q9NFE5). The 

gene is conserved among Plasmodium species (~70-98% identity), and nearly 50% identical to 

Toxoplasma proteins. However, there is little known about this gene or its protein product. The transcript 

encodes for an 81 amino acid long protein with 2 transmembrane domains. Further experiments such 

as genetic modification of this gene and its association with artemisinin resistance is required. 

 

Figure 7.26 SNP readout of position 497260 on chromosome 3 (PF3D7_0311500) 

 



 

182 
 

7.4.5.5 SNP in PF3D7_0922800 gene 

The SNP at position 925,817 on chromosome 9 is localised in PF3D7_0922800 encoded for another 

conserved Plasmodium protein, unknown function (C0H552). This SNP resulted in a synonymous 

mutation, Val3081Val, thus it has no biological implication to the protein sequence. 

 

Figure 7.27 SNP readout of position 925817 on chromosome 9 (PF3D7_0922800) 

 

7.4.5.6 SNP in the nicotinamidase gene (PF3D7_0320500) 

The SNP at position 860,814 on chromosome 3 is in a nicotinamidase encoded gene (PF3D7_0320500, 

UniProt O97284). It has predicted with a high SNP effect causing loss of a start codon (Box 7.14). This 

gene orthologue in Plasmodium berghei ANKA strain (PBANKA_121800) is classified as likely to be 

dispensable (identified from PlasmoGEM database) (Gomes et al., 2015, Schwach et al., 2015), therefore 

the absence of this gene product is unlikely to affect parasite survival under normal conditions. This SNP 

appeared quite early in the parasite line (after the passage 6), midway before the defined artesunate 

resistance-break point (Figure 7.28). Nicotinamidase is a parasite enzyme involved in reversible catalytic 

process of nicotinic acid and nicotinamide, and it is therefore involved in redox metabolism in the 

parasite (Figure 7.29). The enzyme is absent in the host RBC.  

 

Figure 7.28 SNP readout of position 860814 on chromosome 3 (PF3D7_0320500) 
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Figure 7.29 Nicotinate and nicotinamide metabolism in Plasmodium falciparum (adapted from MPMP database). 

 

7.5 Conclusions 

The mouse model system has long been used in the disease biology. In malaria research, mouse 

malaria, Plasmodium berghei, has sometimes been used as a representative of Plasmodium falciparum. 

In this study the humanised SCID mouse model and Plasmodium falciparum system were used to 

generate artesunate resistant parasites after clinical relevant artesunate monotherapy by repeated 

exposure to artesunate and serial passage over 23 generations. Although the system closely 

represented clinical exposures, the system is obviously not completely same as to human system. 

However, in this system artesunate rapidly reduced parasite biomass after administration of 10 mg/kg 

with a relatively constant parasite clearance rate. However, between parasite passage 8 and 9 this 

clearance rate reduced by more than half and this phenotype was maintained under exposures up to 

50 mg/kg (the maximum dose investigated) and was stable in the absence of drug pressure. From an in 

vivo phenotypic perspective this looks very similar to artesunate resistance as it is seen in the clinical 

environment n S.E Asia. 

 

Interestingly, the published artemisinin resistance marker kelch propeller (K13) protein 

(PF3D7_1343700) was not identified from the current studied population, as a determinant of the 
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phenotype.  What this suggests is that there are more than one way in which the in vivo parasite 

response to artesunate exposure can be modified and highlights the need to look beyond K13 for 

resistance determinants in the clinical environment. Several interesting patters did emerge from this 

series of related parasite passage lines. Some of these were presumably linked to parasite adaptation 

to life within the SCID mouse whereas other presumably do help parasites tolerate artemisinins in some 

way. 

 

The approach is not without its limitations. It is expensive to conduct and takes many months/years to 

complete and it is essentially one sequential experiment. Coupled with natural and random genome 

variations over time this makes interrogation of the data and final interpretation very difficult. However, 

having said that the experiment resulted in a very clear phenotype and our inability to link this 

conclusively with one or more key genomic changes is both intriguing and important message to the 

“omics” community.  

 

Perhaps in future an alternative strategy will be required. One limitation in this study is the sample size 

so the study could not really be considered as a genome-wide association study (GWAS), therefore only 

comparative genomic approaches could be applied to the analysis. Mapping the relatively large genome 

is computational demanding, so all studied isolates were mapped against 3D7 reference genome. 

However, mapping passage isolates with its parents isolate would be the ideal situation to see 

progressive mutation in the parasite line. This information was not available. 

 

Despite these limitations the study has highlighted again the importance of the unfolded protein 

response (UPR) pathway and redox metabolism acquisition of resistance and this could be the focus of 

further more detailed study.  
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Chapter 8 

General Discussion 
 

Plasmodium falciparum the deadliest form of malaria pathogens remains a global economic and health 

burdens. The pursuit of eradication of malaria relies on vector control, management, and 

chemotherapy. Antimalarial drugs efficacies were challenged by resistant parasites; chloroquine was a 

good example, it was once the most effective and most affordable antimalarial drug, and raised the 

hope for successful eradication. However, the widespread of resistance to chloroquine had rendered it 

useless in the field. This could repeat with the present most important antimalarial drug artemisinins, if 

mechanism of action and resistance remains unknown.  

 

In the past decade, artemisinins became first line treatment for uncomplicated falciparum malaria as 

other antimalarial drugs are ineffective. Artemisinins are currently used in combination with other 

antimalarial as artemisinin combination therapies (ACTs). ACTs have been described to have favourable 

features; fast-acting artemisinins combined with a long acting partner drug. Artemisinins 

monotherapies failure rate had increased due to short half-life of artemisinins in plasma, therefore any 

parasites that survive the surge of artemisinin remain infectious. This could be easily addressed by long 

half-life antimalarial drug e.g. mefloquine or pyrimethamine/sulfadoxin. 

 

Although ACTs are globally implemented along vector control programs, malaria prevalence is not 

greatly reduced in most endemic areas. This is due to resistance of parasite and vector. Unlike other 

antimalarial drugs, artemisinins resistance is not easily determined by conventional IC50 value and 

mostly dependent on clinical features. In the past years, reduced sensitivity to ACTs was evidenced in 

the fields as reflected by delayed parasite clearance half-life. ACTs treatment failures were also reported. 

Recently, artemisinin in vitro resistance phenotype is assessed by ring survival assay (RSA) or delayed 

clearance assay (DCA). More recently, mutations in K13 gene was reported as a major artemisinin 

resistance marker as it is strongly correlated with delayed parasite clearance half-life in clinical samples. 

However, it seems that mutations in K13 gene is geographical divergence (Menard et al., 2016) and not 

utterly accurate prediction (Wilairat et al., 2016). K13 marker is useful for artemisinin resistance 

monitoring in Southeast Asia where reduced sensitivity to artemisinin is a topical concern.   

 

In this thesis, chemically modified artemisinin activity-based probes and desoxyartemisinin probes were 

used to study molecular targets of artemisinin in different stages of Plasmodium falciparum strain 3D7. 

By using these probes as activity pairwise strategy, parasite protein targets of artemisinin were 
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confidently identified by mass spectrometry-based proteomics approach. Chemical pairwise strategy of 

copper-catalysed and copper-free click reaction was also introduced to compare protein labelling 

profiles. The stringency of these pairwise strategies discussed in Chapter 3 of this thesis. Probe-labelled 

proteome (or ‘endoperoxome’) from trophozoite stage parasite was discussed in the context of plausible 

artemisinin targets and mechanism of action in Chapter 4. Then copper-free click reaction was selected 

to study artemisinin molecular targets in ring stage parasite. Although the background labelling from 

copper-free click reaction was higher than copper-catalysed click reaction, slightly higher sensitivity, less 

toxicity of the reaction and the absence of copper ion were the pluses, and activity pairwise strategy 

was also in place to increase confidence of protein labelling. Proteins identified from ring stage parasites 

were discussed in Chapter 5 in the context of plausible artemisinin mechanism, differential response to 

artemisinin, and possible mechanism of resistance. In Chapter 6, an artemisinin alternative 1,2,4-

trioxolane sharing similar core structure endoperoxide was used to study for its molecular targets. 

Lastly in Chapter 7, artemisinin susceptible and resistant parasites whole genomes were compared to 

identify similarities and differences that would underline the phenotypes.  

 

Artemisinin activity-based probes and desoxyartemisinin probes were tested for antimalarial activity. 

As expected, artemisinin activity-based probes exhibit potent antimalarial activity similar to artemisinin 

and dihydroartemisinin, while all desoxyartemisinin probes have no antimalarial activity. Probe-labelled 

proteomes were compared and clearly showed that artemisinin activity-based probes labelled more 

proteins that desoxyartemisinin. An order of magnitude of difference was achieved by alkyne probes 

via copper-catalysed click reaction. The 2 to 3-fold difference was obtained by azide probes via copper-

free click reaction. Similar observation was also depicted by protein gel electrophoresis. This finding 

established the firm foundation for modified probes and click reaction for pharmacological study.  

 

The trophozoite stage parasite is the most sensitive to artemisinin (Klonis et al., 2013), therefore target 

identification of artemisinin in this stage can provide some information on how artemisinin gains its 

potent activity in the parasite. Artemisinin activity-based probes labelled proteins involved in many 

major parasite biological pathways including haemoglobin digestion, glycolysis, redox metabolism, 

nucleic acid and protein synthesis metabolism, membrane transport, and unfolded protein response. 

This finding supports the hypothesis that artemisinin killing effect is a cluster bomb. This catastrophic 

effect is initialised by activation of artemisinin to activated artemisinin, secondary carbon centred 

radicals, by predominantly haem-mediated process and free iron within the parasite vacuole (Stocks et 

al., 2007, O'Neill et al., 2010, Tilley et al., 2016, Xie et al., 2016).  

 

The endoperoxome from ring stage parasites showed reduced number of protein partners compared 

to tropozoite stage. In addition, the absence of haemoglobin digestion pathway in ring stage implies 
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that the pathway is one of the major contributors of artemisinin action during later stage of parasites. 

Along with the reduction in protein partners in other pathway e.g. unfolded protein response (UPR) 

which was suggested as one of resistant mediator, redox metabolism, and nucleic acid and protein 

biosynthesis pathways. This finding highlights a possible mechanism of reduced sensitivity to 

artemisinin during early developmental stage. However, the reduced sensitivity is in accordance with 

the level of haemoglobin degradation activity during this stage. Therefore, parasites whose life cycle are 

prolonged during this stage can escape from the artemisinins pressure and is believed to be a 

mechanism of resistance to artemisinins.   

 

To further investigate the molecular targets of the fully synthetic endoperoxide antimalarial candidates, 

a set of trioxolane endoperoxide activity-based probes were synthesised and used to identify the 

protein partners. Interestingly, the endoperoxome of the fully synthetic endoperoxide shares similar 

profile with artemisinin. This raises a concern over a cross resistance between endoperoxide group of 

compounds as they may have similar or possibly identical mechanism of action and resistance. 

However, no resistance have been reported from the clinical trial yet thanks to its much longer 

elimination half-life over artemisinins.   

 

Finally, whole genome sequences of artesunate susceptible and resistant parasites were compared to 

identify genes associated with the phenotypes. Although variation in kelch 13 (K13) gene, a prominent 

artemisinins resistant marker, was not identified from the studied population, a selection towards genes 

involved in unfolded protein response and cell communication was observed from the analysis of SNPs. 

Strikingly, the indels variation were more common than the SNP, and asparagine repeat-rich proteins 

were enriched from the genes associated with SNPs. This area is very interesting for further study for 

possible mechanism of drug resistance.  

 

In summary, the chemical biology by click chemistry coupled with mass spectrometry proteomic 

approach was proved very useful for target validation of antimalarial drug artemisinin. These 

experiments have provided the strong pieces of evidence showing artemisinin molecular targets and 

agreed with proposed mechanism of artemisinin. Even though it is not enough to conclude the whole 

mechanism of action but a good starting point for further validation of target proteins. In addition, the 

whole genome sequencing comparative approach has shown that some genetic and protein features 

might be overlooked for mechanism of resistance to antimalarial drugs. Together these findings help 

guiding and shaping a future research.  
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Future perspective 

The results presented in this work showed that modified artemisinin and click chemistry-based 

proteomics approach can be used to study molecular targets of antimalarial drug. Further study with 

lower concentration, relevant to physiological condition, and shorter time period would provide some 

information on what happens during the very early stage of drug action as artemisinins gain a killing 

effect within the very first hours of administration (Sanz et al., 2012). In addition, using this approach to 

study molecular targets in the parasites with well-defined resistance phenotype would help to 

understand the mechanism of resistance to artemisinins. To further extend our knowledge on 

artemisinin action throughout the intraerytrocytic life cycle of the parasites, targets identification in 

gametocyte stages would fulfil the understanding of different effects of artemisinin between early and 

late gametocyte (in-house data not published).  

 

As this click chemistry coupled with MS proteomic approach provided a number of protein targets of 

artemisinin in form of drug-protein adducts, further validations of these artemisinin partner proteins 

are required for better understanding the killing effect of artemisinins and possible resistance 

mechanism to artemisinins. The genetic modification approach such as CRISPR technique is an 

emerging platform for Plasmodium falciparum and proven very useful and successful in this organism 

over other techniques (Lee and Fidock, 2014). By using CRISPR to knockout or insert particular genes 

and study its consequences on artemisinins sensitivity could be very useful. Another interesting genetic 

approach is genetic modification in Plasmodium berghei from PlasmoGEM project. The project has 

generated a large number of genetically modified Plasmodium berghei strains and could be used to study 

the effect of overexpression or deletion of interested genes in the mouse malaria model. The 

metabolomics, either global or targeted, would provide some more information on loss of function of 

an enzyme and a pathway as metabolites are linked with the protein functions (Tiwari et al., 2016, Creek 

et al., 2016). Metabolomics studies have been facilitated the studies of drug target validation (Cobbold 

et al., 2016, Becker et al., 2010) and becoming more mainstream in drug target validation as more tools 

and databases become available. 
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Appendix 1 

Proteins identified from the proteomics experiments 
Table A1.1 Proteins identified from DMSO treatments 

Gene ID UniProt ID Product Description Frequency 

PF3D7_0917900  Q8I2X4 heat shock protein 70 (HSP70-2)  5 

PF3D7_0818900 Q8IB24 heat shock protein 70 (HSP70) 4 

PF3D7_1105100 Q8IIV1 histone H2B (H2B)  3 

PF3D7_0617800 C6KT18 Histone H2A 3 

PF3D7_1343000 Q8IDQ9 Phosphoethanolamine N-methyltransferase 2 

PF3D7_0827900 C0H4Y6 Protein disulfide-isomerase 2 

PF3D7_0608800 Q6LFH8 ornithine aminotransferase (OAT) 1 

PF3D7_0922200 Q7K6A4 S-adenosylmethionine synthetase (SAMS) 1 

PF3D7_0922500 P27362 phosphoglycerate kinase (PGK) 1 

PF3D7_0930300 Q8I0U8 merozoite surface protein 1 (MSP1) 1 

PF3D7_1015900 Q8IJN7 enolase (ENO) 1 

PF3D7_1027300 Q8IJD0 peroxiredoxin (nPrx) 1 

PF3D7_1324900 Q76NM3 L-lactate dehydrogenase (LDH) 1 

PF3D7_1462800 Q8IKK7 glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 1 

PF3D7_1357000 Q8I0P6 Elongation factor 1-alpha 1 
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Table A1.2 Protein identified by 1-carbon alkyne desoxyartemisinin probe (ART-21) on trophozoite stage parasite treatment 

Gene ID UniProt ID Product Description Frequency 

PF3D7_0917900 Q8I2X4 Heat shock protein 70 2 

PF3D7_0617800 C6KT18 histone H2A (H2A) 1 

PF3D7_0818900 Q8IB24 heat shock protein 70 (HSP70) 1 

PF3D7_0827900 C0H4Y6 protein disulfide isomerase (PDI8) 1 

PF3D7_0917900 Q8I2X4 heat shock protein 70 (HSP70-2) 1 

PF3D7_0930300 Q8I0U8 merozoite surface protein 1 (MSP1) 1 

PF3D7_1027300 Q8IJD0 peroxiredoxin (nPrx) 1 

PF3D7_1104400 Q8IIV8 conserved protein, unknown function 1 

PF3D7_1105100 Q8IIV1 histone H2B (H2B) 1 

PF3D7_1129000 Q8II73 spermidine synthase (SpdSyn) 1 

PF3D7_1222300 Q8I0V4 endoplasmin, putative (GRP94) 1 

PF3D7_1352500 Q8IDH5 thioredoxin-related protein, putative 1 
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Table A1.3 Proteins identified from 4-carbon alkyne desoxyartemisinin probe (SCR-A-21) on trophozoite stage parasite treatment 

Gene ID UniProt ID Product Description Frequency 

PF3D7_0818900 Q8IB24 heat shock protein 70 (HSP70) 2 

PF3D7_1015900 Q8IJN7 enolase (ENO) 2 

PF3D7_1462800 Q8IKK7 glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 2 

PF3D7_1357000 Q8I0P6 Elongation factor 1-alpha 2 

PF3D7_0608800 Q6LFH8 ornithine aminotransferase (OAT) 1 

PF3D7_0617800 C6KT18 histone H2A (H2A) 1 

PF3D7_0708400 Q8IC05 heat shock protein 90 (HSP90) 1 

PF3D7_0917900 Q8I2X4 heat shock protein 70 (HSP70-2) 1 

PF3D7_0922200 Q7K6A4 S-adenosylmethionine synthetase (SAMS) 1 

PF3D7_1324900 Q76NM3 L-lactate dehydrogenase (LDH) 1 

PF3D7_1343000 Q8IDQ9 phosphoethanolamine N-methyltransferase (PMT) 1 
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Table A1.4 Proteins identified by 4-carbon azide desoxyartemisinin probe (SCR-A-22) on trophozoite stage parasite treatment 

Gene ID UniProt ID Product Description Frequency 

PF3D7_0307200 O97250 60S ribosomal protein L7, putative 4 

PF3D7_0317600 O77381 40S ribosomal protein S11, putative (RPS11) 4 

PF3D7_0322900 O97313 40S ribosomal protein S3A, putative 4 

PF3D7_0415900 C0H4A6 60S ribosomal protein L15, putative 4 

PF3D7_0422400 Q8IFP2 40S ribosomal protein S19 (RPS19) 4 

PF3D7_0507100 Q8I431 60S ribosomal protein L4 (RPL4) 4 

PF3D7_0516900 Q8I3T9 60S ribosomal protein L2 (RPL2) 4 

PF3D7_0520900 P50250 S-adenosyl-L-homocysteine hydrolase (SAHH) 4 

PF3D7_0608800 Q6LFH8 ornithine aminotransferase (OAT) 4 

PF3D7_0614500 C6KSY6 60S ribosomal protein L19 (RPL19) 4 

PF3D7_0618300 C6KT23 60S ribosomal protein L27a, putative 4 

PF3D7_0626800 C6KTA4 pyruvate kinase (PyrK) 4 

PF3D7_0708400 Q8IC05 heat shock protein 90 (HSP90) 4 

PF3D7_0710600 Q8IBY4 60S ribosomal protein L34 (RPL34) 4 

PF3D7_0721600 Q8IBN5 40S ribosomal protein S5, putative 4 

PF3D7_0813900 Q8IAX5 40S ribosomal protein S16, putative 4 

PF3D7_0818900 Q8IB24 heat shock protein 70 (HSP70) 4 

PF3D7_0903700 Q6ZLZ9 alpha tubulin 1 4 

PF3D7_0922200 Q7K6A4 S-adenosylmethionine synthetase (SAMS) 4 

PF3D7_0922500 P27362 phosphoglycerate kinase (PGK) 4 

PF3D7_1008700 Q7KQL5 tubulin beta chain 4 
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PF3D7_1019400 Q8IJK8 60S ribosomal protein L30e, putative 4 

PF3D7_1027800 Q8IJC6 60S ribosomal protein L3 (RPL3) 4 

PF3D7_1105100 Q8IIV1 histone H2B (H2B) 4 

PF3D7_1105400 Q8IIU8 40S ribosomal protein S4, putative 4 

PF3D7_1126200 Q8IIA2 40S ribosomal protein S18, putative 4 

PF3D7_1212000 Q8I5T2 glutathione peroxidase-like thioredoxin peroxidase (TPx(Gl)) 4 

PF3D7_1235600 Q8I566 serine hydroxymethyltransferase (SHMT) 4 

PF3D7_1246200 Q8I4X0 actin I (ACT1) 4 

PF3D7_1324900 Q76NM3 L-lactate dehydrogenase (LDH) 4 

PF3D7_1341200 Q8IDS6 60S ribosomal protein L18, putative 4 

PF3D7_1351400 Q8IDI5 60S ribosomal protein L17, putative 4 

PF3D7_1368200 Q8I6Z4 ABC transporter E family member 1, putative (ABCE1) 4 

PF3D7_1421200 Q8ILN8 40S ribosomal protein S25 (RPS25) 4 

PF3D7_1424100 Q8ILL3 60S ribosomal protein L5, putative 4 

PF3D7_1424400 Q8ILL2 60S ribosomal protein L7-3, putative 4 

PF3D7_1426000 Q8ILK3 60S ribosomal protein L21 (RPL21) 4 

PF3D7_1431700 Q8ILE8 60S ribosomal protein L14, putative 4 

PF3D7_1447000 Q8IL02 40S ribosomal protein S5 4 

PF3D7_1451100 Q8IKW5 elongation factor 2 (eEF2) 4 

PF3D7_1460700 Q8IKM5 60S ribosomal protein L27 (RPL27) 4 

PF3D7_1462800 Q8IKK7 glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 4 

PF3D7_1465900 Q8IKH8 40S ribosomal protein S3 4 
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PF3D7_1357000 Q8I0P6 Elongation factor 1-alpha 4 

PF3D7_0205900 O96153 26S proteasome regulatory subunit RPN1, putative (RPN1) 3 

PF3D7_0209800 Q9TY94 ATP-dependent RNA helicase UAP56 (UAP56) 3 

PF3D7_0214000 O96220 T-complex protein 1 subunit theta (CCT8) 3 

PF3D7_0306800 O97247 T-complex protein 1 subunit beta (CCT2) 3 

PF3D7_0308200 O77323 T-complex protein 1 subunit eta (CCT7) 3 

PF3D7_0309600 O00806 60S acidic ribosomal protein P2 (PfP2) 3 

PF3D7_0316800 O77395 40S ribosomal protein S15A, putative 3 

PF3D7_0320300 O97282 T-complex protein 1 subunit epsilon (CCT5) 3 

PF3D7_0322000 Q76NN7 peptidyl-prolyl cis-trans isomerase (CYP19A) 3 

PF3D7_0401800 Q8I207 Plasmodium exported protein (PHISTb), unknown function (PfD80) 3 

PF3D7_0406100 Q6ZMA8 V-type proton ATPase subunit B 3 

PF3D7_0424600 Q8IFM0 Plasmodium exported protein (PHISTb), unknown function 3 

PF3D7_0503400 Q8I467 actin-depolymerizing factor 1 (ADF1) 3 

PF3D7_0511800 Q8I3Y8 inositol-3-phosphate synthase (INO1) 3 

PF3D7_0513300 Q8I3X4 purine nucleoside phosphorylase (PNP) 3 

PF3D7_0517000 Q8I3T8 60S ribosomal protein L12, putative 3 

PF3D7_0517700 Q8I3T1 eukaryotic translation initiation factor 3 subunit B, putative (EIF3B) 3 

PF3D7_0524000 Q8I3M5 karyopherin beta (KASbeta) 3 

PF3D7_0525100 Q8I3L4 acyl-CoA synthetase (ACS10) 3 

PF3D7_0532300 Q8I3F1 Plasmodium exported protein (PHISTb), unknown function 3 

PF3D7_0606700 C6KSR5 coatomer alpha subunit, putative 3 
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PF3D7_0608700 C6KST5 T-complex protein 1 subunit zeta (CCT6) 3 

PF3D7_0617800 C6KT18 histone H2A (H2A) 3 

PF3D7_0619400 C6KT34 cell division cycle protein 48 homologue, putative 3 

PF3D7_0624000 C6KT76 hexokinase (HK) 3 

PF3D7_0627500 C6KTB1 protein DJ-1 (DJ1) 3 

PF3D7_0703500 Q8IC35 erythrocyte membrane-associated antigen 3 

PF3D7_0708800 Q8IC01 heat shock protein 110 (HSP110c) 3 

PF3D7_0716800 Q8IBT2 eukaryotic translation initiation factor 3 subunit I, putative (EIF3I) 3 

PF3D7_0719600 Q8IBQ6 60S ribosomal protein L11a, putative 3 

PF3D7_0722400 Q8IBM9 GTP-binding protein, putative 3 

PF3D7_0812400 Q8IAW0 karyopherin alpha (KARalpha) 3 

PF3D7_0813300 C0H4U4 conserved Plasmodium protein, unknown function 3 

PF3D7_0814000 Q8IAX6 60S ribosomal protein L13-2, putative 3 

PF3D7_0814200 Q8IAX8 DNA/RNA-binding protein Alba 1 (ALBA1) 3 

PF3D7_0818200 C0H4V6 14-3-3 protein (14-3-3I) 3 

PF3D7_0826700 Q8IBA0 receptor for activated c kinase (RACK) 3 

PF3D7_0827900 C0H4Y6 protein disulfide isomerase (PDI8) 3 

PF3D7_0831400 C0H4Z7 Plasmodium exported protein, unknown function 3 

PF3D7_0905400 Q8I395 high molecular weight rhoptry protein 3 (RhopH3) 3 

PF3D7_0915400 Q8I2Z8 6-phosphofructokinase (PFK9) 3 

PF3D7_0917900 Q8I2X4 heat shock protein 70 (HSP70-2) 3 

PF3D7_0929400 C0H571 high molecular weight rhoptry protein 2 (RhopH2) 3 
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PF3D7_0930300 Q8I0U8 merozoite surface protein 1 (MSP1) 3 

PF3D7_0934500 Q8I2H3 V-type proton ATPase subunit E, putative 3 

PF3D7_0934800 Q7K6A0 cAMP-dependent protein kinase catalytic subunit (PKAc) 3 

PF3D7_1003500 Q8IK02 40S ribosomal protein S20e, putative 3 

PF3D7_1004000 Q8IJZ7 60S ribosomal protein L13, putative 3 

PF3D7_1006800 Q8IJX3 RNA-binding protein, putative 3 

PF3D7_1007900 Q8IJW4 eukaryotic translation initiation factor 3 subunit D, putative (EIF3D) 3 

PF3D7_1008400 Q8IJW0 26S protease regulatory subunit 4, putative (RPT2) 3 

PF3D7_1011800 Q8IJS7 PRE-binding protein (PREBP) 3 

PF3D7_1012400 Q8IJS1 hypoxanthine-guanine phosphoribosyltransferase (HGPRT) 3 

PF3D7_1015900 Q8IJN7 enolase (ENO) 3 

PF3D7_1026800 Q8IJD4 40S ribosomal protein S2 (RPS2) 3 

PF3D7_1027300 Q8IJD0 peroxiredoxin (nPrx) 3 

PF3D7_1029600 Q8IJA9 adenosine deaminase (ADA) 3 

PF3D7_1033400 Q8IJ74 haloacid dehalogenase-like hydrolase (HAD1) 3 

PF3D7_1034900 Q8IJ60 methionine--tRNA ligase (MRScyt) 3 

PF3D7_1037300 Q8IJ34 ADP/ATP transporter on adenylate translocase (ADT) 3 

PF3D7_1105000 Q8IIV2 histone H4 (H4) 3 

PF3D7_1108400 Q8IIR9 casein kinase 2, alpha subunit (CK2alpha) 3 

PF3D7_1116800 Q8IIJ8 heat shock protein 101 (HSP101) 3 

PF3D7_1117700 Q7KQK6 GTP-binding nuclear protein RAN/TC4 (RAN) 3 

PF3D7_1120100 Q8IIG6 phosphoglycerate mutase, putative (PGM1) 3 
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PF3D7_1129000 Q8II73 spermidine synthase (SpdSyn) 3 

PF3D7_1130200 Q8II61 60S ribosomal protein P0 (PfP0) 3 

PF3D7_1134000 Q8II24 heat shock protein 70 (HSP70-3) 3 

PF3D7_1145400 Q8IHR4 dynamin-like protein (DYN1) 3 

PF3D7_1206200 Q8I5Y3 eukaryotic translation initiation factor 3 subunit C, putative (EIF3C) 3 

PF3D7_1211900 Q8I5T3 non-SERCA-type Ca2+ -transporting P-ATPase (ATP4) 3 

PF3D7_1212700 Q8I5S6 eukaryotic translation initiation factor 3 subunit A, putative (EIF3A) 3 

PF3D7_1219100 Q8I5L6 clathrin heavy chain, putative 3 

PF3D7_1222300 Q8I0V4 endoplasmin, putative (GRP94) 3 

PF3D7_1224300 Q8I5H4 polyadenylate-binding protein, putative (PABP) 3 

PF3D7_1229500 Q8I5C4 T-complex protein 1 subunit gamma (CCT3) 3 

PF3D7_1248900 Q8I4U5 26S protease regulatory subunit 8, putative (RPT6) 3 

PF3D7_1306400 Q8IEQ1 26S protease regulatory subunit 10B, putative (RPT4) 3 

PF3D7_1308200 Q8IEN3 carbamoyl phosphate synthetase (cpsSII) 3 

PF3D7_1309100 Q8IEM3 60S ribosomal protein L24, putative 3 

PF3D7_1311800 Q8IEK1 M1-family alanyl aminopeptidase (M1AAP) 3 

PF3D7_1311900 Q76NM6 V-type proton ATPase catalytic subunit A (vapA) 3 

PF3D7_1317800 C0H5C2 40S ribosomal protein S19 (RPS19) 3 

PF3D7_1318800 Q8IEC8 translocation protein SEC63 (SEC63) 3 

PF3D7_1325100 Q8IE67 phosphoribosylpyrophosphate synthetase 3 

PF3D7_1331800 Q8IE09 60S ribosomal protein L23, putative 3 

PF3D7_1332900 Q8IDZ9 isoleucine--tRNA ligase, putative 3 
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PF3D7_1338200 Q8IDV1 60S ribosomal protein L6-2, putative 3 

PF3D7_1338300 Q8IDV0 elongation factor 1-gamma, putative 3 

PF3D7_1342000 Q8IDR9 40S ribosomal protein S6 3 

PF3D7_1343000 Q8IDQ9 phosphoethanolamine N-methyltransferase (PMT) 3 

PF3D7_1346100 Q8IDN6 protein transport protein SEC61 subunit alpha (SEC61) 3 

PF3D7_1347500 Q8IDM3 DNA/RNA-binding protein Alba 4 (ALBA4) 3 

PF3D7_1349200 Q8IDK7 glutamate--tRNA ligase, putative 3 

PF3D7_1352500 Q8IDH5 thioredoxin-related protein, putative 3 

PF3D7_1357800 C0H5I7 T-complex protein 1 subunit delta (CCT4) 3 

PF3D7_1357900 Q8IDC6 pyrroline-5-carboxylate reductase 3 

PF3D7_1358800 Q8IDB0 40S ribosomal protein S15 (RPS15) 3 

PF3D7_1407100 Q8IM23 rRNA 2'-O-methyltransferase fibrillarin, putative (NOP1) 3 

PF3D7_1408600 Q8IM10 40S ribosomal protein S8e, putative 3 

PF3D7_1410600 Q8ILY9 eukaryotic translation initiation factor 2 gamma subunit, putative 3 

PF3D7_1428300 Q8ILI2 proliferation-associated protein 2g4, putative 3 

PF3D7_1437900 Q8IL88 HSP40, subfamily A, putative (ERdj3) 3 

PF3D7_1438900 Q8IL80 thioredoxin peroxidase 1 (Trx-Px1) 3 

PF3D7_1444800 Q7KQL9 fructose-bisphosphate aldolase (FBPA) 3 

PF3D7_1468700 Q8IKF0 eukaryotic initiation factor 4A (eIF4A) 3 

PF3D7_1471100 Q8IKC8 exported protein 2 (EXP2) 3 

PF3D7_1136500.1 Q8IHZ9 Casein kinase I 3 

PF3D7_0106300 Q76NN8 Calcium-transporting ATPase 3 
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PF3D7_0214100 O96221 protein transport protein SEC31 (SEC31) 2 

PF3D7_0217800 O96258 40S ribosomal protein S26 (RPS26) 2 

PF3D7_0302500 O77310 cytoadherence linked asexual protein 3.1 (CLAG3.1) 2 

PF3D7_0302900 O77312 exportin-1, putative 2 

PF3D7_0402000 Q8I206 Plasmodium exported protein (PHISTa), unknown function 2 

PF3D7_0413600 Q8I1V1 26S protease regulatory subunit 6B, putative (RPT3) 2 

PF3D7_0500800 Q8I492 mature parasite-infected erythrocyte surface antigen (MESA) 2 

PF3D7_0501000 Q8I490 Plasmodium exported protein, unknown function 2 

PF3D7_0513600 Q8I0W8 deoxyribodipyrimidine photo-lyase, putative 2 

PF3D7_0523000 Q7K6A5 multidrug resistance protein 1 (MDR1) 2 

PF3D7_0528200 Q8I3I5 eukaryotic translation initiation factor 3 subunit E, putative (EIF3E) 2 

PF3D7_0601200 C6KSL5 Pfmc-2TM Maurer's cleft two transmembrane protein (MC-2TM) 2 

PF3D7_0705700 C0H4K8 40S ribosomal protein S29, putative 2 

PF3D7_0706400 C0H4L5 60S ribosomal protein L37 (RPL37) 2 

PF3D7_0822600 Q8IB60 protein transport protein SEC23 (SEC23) 2 

PF3D7_0903900 Q8I3B0 60S ribosomal protein L32 (RPL32) 2 

PF3D7_0913200 Q8I320 elongation factor 1-beta (EF-1beta) 2 

PF3D7_0919000 Q8I2W3 nucleosome assembly protein (NAPS) 2 

PF3D7_1004400 Q8IJZ3 RNA-binding protein, putative 2 

PF3D7_1015800 Q8IJN8 ribonucleotide reductase small subunit, putative 2 

PF3D7_1103100 Q8IIX0 60S acidic ribosomal protein P1, putative (RPP1) 2 

PF3D7_1129200 Q8II71 26S proteasome regulatory subunit RPN7, putative (RPN7) 2 
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PF3D7_1130400 Q8II60 26S protease regulatory subunit 6A, putative (RPT5) 2 

PF3D7_1132200 Q8II43 T-complex protein 1 subunit alpha (TCP1) 2 

PF3D7_1142600 Q8IHT9 60S ribosomal protein L35ae, putative 2 

PF3D7_1143300 Q8IHT3 DNA-directed RNA polymerase I, putative 2 

PF3D7_1302800 Q8IET7 40S ribosomal protein S7, putative 2 

PF3D7_1311500 Q8IEK3 26S protease regulatory subunit 7, putative (RPT1) 2 

PF3D7_1323100 Q8IE85 60S ribosomal protein L6, putative 2 

PF3D7_1414300 Q8ILV2 60S ribosomal protein L10, putative 2 

PF3D7_1437200 Q8IL94 ribonucleoside-diphosphate reductase, large subunit, putative 2 

PF3D7_1441200 Q8IL58 60S ribosomal protein L1, putative 2 

PF3D7_1454700 Q8IKT2 6-phosphogluconate dehydrogenase, decarboxylating, putative 2 

PF3D7_0302200 O77309 cytoadherence linked asexual protein 3.2 (CLAG3.2) 1 

PF3D7_0312800 O77364 60S ribosomal protein L26, putative 1 

PF3D7_0512600 Q7K6A8,Q9BH

N1 

ras-related protein Rab-1B (RAB1b) 1 

PF3D7_0610400 C6KSV0 histone H3 (H3) 1 

PF3D7_0621200 C6KT50 pyridoxine biosynthesis protein PDX1 (PDX1) 1 

PF3D7_0807300 Q7K6B0 ras-related protein Rab-18 (RAB18) 1 

PF3D7_0912400 Q8I328 alkaline phosphatase, putative 1 

PF3D7_0914700 Q8I305 transporter, putative 1 

PF3D7_1010600 Q8IJT9 eukaryotic translation initiation factor 2 beta subunit, putative 1 

PF3D7_1011400 Q8IJT1 proteasome subunit beta type-5 1 

PF3D7_1124600 Q8IIB7 ethanolamine kinase (EK) 1 
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PF3D7_1142500 Q8IHU0 60S ribosomal protein L28 (RPL28) 1 

PF3D7_1229400 Q8I5C5 macrophage migration inhibitory factor (MIF) 1 

PF3D7_1237700 Q8I546 conserved protein, unknown function 1 

PF3D7_1252100 Q8I4R5 rhoptry neck protein 3 (RON3) 1 

PF3D7_1323400 Q8IE82 60S ribosomal protein L23 (RPL23) 1 

PF3D7_1328100 Q8I6T3 proteasome subunit beta type-7, putative 1 

PF3D7_1341300 C0H5G3 60S ribosomal protein L18-2, putative 1 

PF3D7_1342400 Q8IDR5 casein kinase II beta chain (CK2beta2) 1 

PF3D7_1353100 Q8IDG9 Plasmodium exported protein, unknown function 1 

PF3D7_1401800 Q8IM71 choline kinase (CK) 1 

PF3D7_1410400 Q8ILZ1 rhoptry-associated protein 1 (RAP1) 1 

PF3D7_1442300 Q8IL48 tRNA binding protein, putative 1 

PF3D7_1445900 Q8IL13 ATP-dependent RNA helicase DDX5, putative (DDX5) 1 

PF3D7_1456800 Q8IKR1 V-type H(+)-translocating pyrophosphatase, putative (VP1) 1 

PF3D7_0102900 Q8I2B1 Aspartate--tRNA ligase 1 
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Gene ID UniProt ID Product description Frequency 

PF3D7_0322900 O97313 40S ribosomal protein S3A, putative 4 

PF3D7_0507100 Q8I431 60S ribosomal protein L4 (RPL4) 4 

PF3D7_0516900 Q8I3T9 60S ribosomal protein L2 (RPL2) 4 

PF3D7_0608800 Q6LFH8 ornithine aminotransferase (OAT) 4 

PF3D7_0617800 C6KT18 histone H2A (H2A) 4 

PF3D7_0626800 C6KTA4 pyruvate kinase (PyrK) 4 

PF3D7_0818900 Q8IB24 heat shock protein 70 (HSP70) 4 

PF3D7_1004000 Q8IJZ7 60S ribosomal protein L13, putative 4 

PF3D7_1447000 Q8IL02 40S ribosomal protein S5 4 

PF3D7_1451100 Q8IKW5 elongation factor 2 (eEF2) 4 

PF3D7_1462800 Q8IKK7 glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 4 

PF3D7_1465900 Q8IKH8 40S ribosomal protein S3 4 

PF3D7_1357000 Q8I0P6 Elongation factor 1-alpha 4 

PF3D7_0818200 C0H4V6 14-3-3 protein (14-3-3I) 3 

PF3D7_1027800 Q8IJC6 60S ribosomal protein L3 (RPL3) 3 

PF3D7_1105100 Q8IIV1 histone H2B (H2B) 3 

PF3D7_1117700 Q7KQK6 GTP-binding nuclear protein RAN/TC4 (RAN) 3 

PF3D7_1343000 Q8IDQ9 phosphoethanolamine N-methyltransferase (PMT) 3 

PF3D7_0322000 Q76NN7 peptidyl-prolyl cis-trans isomerase (CYP19A) 2 

PF3D7_0708400 Q8IC05 heat shock protein 90 (HSP90) 2 

PF3D7_1246200 Q8I4X0 actin I (ACT1) 2 
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PF3D7_1324900 Q76NM3 L-lactate dehydrogenase (LDH) 2 

PF3D7_0826700 Q8IBA0 Receptor for activated c kinase 1 
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Table A1.6 All protein identified from artemisinin activity-based probes treatment ranking by identified frequency (n=12) 

Gene ID UniProt ID Product Description Frequency Confidence 

PF3D7_0207600 Q9TY95 serine repeat antigen 5 10 Very high 

PF3D7_0629200 C6KTC7 DnaJ protein, putative 10 Very high 

PF3D7_1306200 Q8IEQ3 conserved Plasmodium protein, unknown function 10 Very high 

PF3D7_0523000 Q7K6A5 multidrug resistance protein 1 10 Very high 

PF3D7_1121600 Q8IIF0 exported protein 1 10 Very high 

PF3D7_0702400 Q8IC43 small exported membrane protein 1 9 Very high 

PF3D7_0720400 Q8IBP8 ferrodoxin reductase-like protein 9 Very high 

PF3D7_1008900 Q8IJV6 adenylate kinase 9 Very high 

PF3D7_1118200 Q8III6 heat shock protein 90, putative 9 Very high 

PF3D7_1438100 Q8IL86 secretory complex protein 62 9 Very high 

PF3D7_1459400 Q8IKN7 conserved Plasmodium protein, unknown function 9 Very high 

PF3D7_0501200 Q8I488 parasite-infected erythrocyte surface protein 8 Very high 

PF3D7_0532100 Q8I3F3 early transcribed membrane protein 5 8 Very high 

PF3D7_0628300 C6KTB9 choline/ethanolaminephosphotransferase, putative 8 Very high 

PF3D7_0807300 Q7K6B0 ras-related protein Rab-18 8 Very high 

PF3D7_0903200 C0H516 ras-related protein RAB7 8 Very high 

PF3D7_0936800 Q8I2F2 Plasmodium exported protein (PHISTc), unknown function 8 Very high 

PF3D7_1016300 Q8I6U8 glycophorin binding protein 8 Very high 

PF3D7_1104400 Q8IIV8 thioredoxin, putative 8 Very high 

PF3D7_1108700 Q8IIR6 heat shock protein DnaJ homologue Pfj2 8 Very high 

PF3D7_1211800 Q7KQK2 polyubiquitin 8 Very high 
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PF3D7_1301700 Q8IEJ0 Plasmodium exported protein (hyp8), unknown function 8 Very high 

PF3D7_1408100 Q8IM15 plasmepsin III 8 Very high 

PF3D7_1410400 Q8ILZ1 rhoptry-associated protein 1 8 Very high 

PF3D7_1432100 Q8ILE3 voltage-dependent anion-selective channel protein, putative 8 Very high 

PF3D7_0309600 O00806 60S acidic ribosomal protein P2 8 Very high 

PF3D7_0709000 Q8IBZ9 chloroquine resistance transporter 7 High 

PF3D7_0823200 Q8IB66 RNA-binding protein, putative 7 High 

PF3D7_0912400 Q8I328 alkaline phosphatase, putative 7 High 

PF3D7_0914700 Q8I305 major facilitator superfamily-related transporter, putative 7 High 

PF3D7_0927900 Q8I2N0 phosphatidylserine decarboxylase 7 High 

PF3D7_1345700 Q8I6T2 isocitrate dehydrogenase [NADP], mitochondrial 7 High 

PF3D7_1347500 Q8IDM3 DNA/RNA-binding protein Alba 4 7 High 

PF3D7_0936000 C0H592 ring-exported protein 2 7 High 

PF3D7_0608800 Q6LFH8 ornithine aminotransferase 7 High 

PF3D7_1231100 Q8I5A9 ras-related protein Rab-2 7 High 

PF3D7_1105800 Q8IIU5 conserved Apicomplexan protein, unknown function 10 Very high 

PF3D7_1408000 Q8I6V3 plasmepsin II 10 Very high 

PF3D7_0823800 Q8IB72 DnaJ protein, putative 9 Very high 

PF3D7_1010700 Q8IJT8 dolichyl-phosphate-mannose protein mannosyltransferase, putative 9 Very high 

PF3D7_1237700 Q8I546 conserved protein, unknown function 9 Very high 

PF3D7_1410700 Q8ILY8 conserved Plasmodium protein, unknown function 9 Very high 

PF3D7_1360900 C0H5J5 polyadenylate-binding protein, putative 8 Very high 
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PF3D7_1311800 Q8IEK1 M1-family alanyl aminopeptidase 8 Very high 

PF3D7_1311900 Q76NM6 V-type proton ATPase catalytic subunit A 8 Very high 

PF3D7_0316800 O77395 40S ribosomal protein S15A, putative 7 High 

PF3D7_0500800 Q8I492 mature parasite-infected erythrocyte surface antigen 7 High 

PF3D7_0731600 Q8I6Z1 acyl-CoA synthetase 7 High 

PF3D7_1105000 Q8IIV2 histone H4 7 High 

PF3D7_1143200 Q8IHT4 DnaJ protein, putative 7 High 

PF3D7_1325100 Q8IE67 phosphoribosylpyrophosphate synthetase 7 High 

PF3D7_1456800 Q8IKR1 V-type H(+)-translocating pyrophosphatase, putative 7 High 

PF3D7_1468700 Q8IKF0 eukaryotic initiation factor 4A 7 High 

PF3D7_1471100 Q8IKC8 exported protein 2 7 High 

PF3D7_1020900 Q7KQL3 ADP-ribosylation factor 7 High 

PF3D7_1246200 Q8I4X0 actin I 7 High 

PF3D7_1324900 Q76NM3 L-lactate dehydrogenase 7 High 

PF3D7_1330400 Q8IE22 ER lumen protein retaining receptor 1, putative, unspecified product 7 High 

PF3D7_1330400 Q8IE22 ER lumen protein retaining receptor 1, putative, unspecified product 7 High 

PF3D7_0402000 Q8I206 Plasmodium exported protein (PHISTa), unknown function 6 High 

PF3D7_0422400 Q8IFP2 40S ribosomal protein S19 6 High 

PF3D7_0424600 Q8IFM0 Plasmodium exported protein (PHISTb), unknown function 6 High 

PF3D7_0501000 Q8I490 Plasmodium exported protein, unknown function 6 High 

PF3D7_0501300 Q8I487 skeleton-binding protein 1 6 High 

PF3D7_0532300 Q8I3F1 Plasmodium exported protein (PHISTb), unknown function 6 High 
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PF3D7_0601900 C6KSL9 conserved Plasmodium protein, unknown function 6 High 

PF3D7_0706500 C0H4L6 conserved Plasmodium protein, unknown function 6 High 

PF3D7_0709700 Q8IBZ2 lysophospholipase, putative 6 High 

PF3D7_0721100 Q8IBP0 conserved Plasmodium protein, unknown function 6 High 

PF3D7_0814200 Q8IAX8 DNA/RNA-binding protein Alba 1 6 High 

PF3D7_0818200 C0H4V6 14-3-3 protein 6 High 

PF3D7_0919100 Q8I2W2 DnaJ protein, putative 6 High 

PF3D7_0929400 C0H571 high molecular weight rhoptry protein 2 6 High 

PF3D7_1015600 Q8IJN9 heat shock protein 60 6 High 

PF3D7_1116700 Q8IIJ9 dipeptidyl aminopeptidase 1 6 High 

PF3D7_1129000 Q8II73 spermidine synthase 6 High 

PF3D7_1129100 Q8II72 parasitophorous vacuolar protein 1 6 High 

PF3D7_1134000 Q8II24 heat shock protein 70 6 High 

PF3D7_1222300 Q8I0V4 endoplasmin, putative 6 High 

PF3D7_1224300 Q8I5H4 polyadenylate-binding protein, putative 6 High 

PF3D7_1328300 Q8IE43 conserved Plasmodium protein, unknown function 6 High 

PF3D7_1344800 Q8IDP8 aspartate carbamoyltransferase 6 High 

PF3D7_1352500 Q8IDH5 thioredoxin-related protein, putative 6 High 

PF3D7_1451800 Q8IKV8 sortilin 6 High 

PF3D7_1454400 Q8IKT5 aminopeptidase P 6 High 

PF3D7_0106300 Q76NN8 Calcium-transporting ATPase 6 High 

PF3D7_1421200 Q8ILN8 40S ribosomal protein S25 6 High 
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PF3D7_0930300 Q8I0U8 merozoite surface protein 1 6 High 

PF3D7_1012400 Q8IJS1 hypoxanthine-guanine phosphoribosyltransferase 6 High 

PF3D7_1026800 Q8IJD4 40S ribosomal protein S2 6 High 

PF3D7_1117700 Q7KQK6 GTP-binding nuclear protein RAN/TC4 6 High 

PF3D7_1130200 Q8II61 60S ribosomal protein P0 6 High 

PF3D7_1444800 Q7KQL9 fructose-bisphosphate aldolase 6 High 

PF3D7_0303600 Q8I224 plasmoredoxin 5 Moderate 

PF3D7_0416800 Q8I1S0 small GTP-binding protein sar1 5 Moderate 

PF3D7_0501600 Q8I484 rhoptry-associated protein 2 5 Moderate 

PF3D7_0610400 C6KSV0 histone H3 5 Moderate 

PF3D7_0802000 Q8IAM0 glutamate dehydrogenase, putative 5 Moderate 

PF3D7_0813900 Q8IAX5 40S ribosomal protein S16, putative 5 Moderate 

PF3D7_0824400 Q8IB78 nucleoside transporter 2 5 Moderate 

PF3D7_0907400 Q8I377 ATP-dependent protease ATPase subunit ClpY 5 Moderate 

PF3D7_0919400 Q8I2V9 protein disulfide isomerase 5 Moderate 

PF3D7_0934500 Q8I2H3 V-type proton ATPase subunit E, putative 5 Moderate 

PF3D7_1011400 Q8IJT1 proteasome subunit beta type-5 5 Moderate 

PF3D7_1019900 Q8IJK2 autophagy-related protein 8 5 Moderate 

PF3D7_1037300 Q8IJ34 ADP/ATP transporter on adenylate translocase 5 Moderate 

PF3D7_1115600 Q8IIK8 peptidyl-prolyl cis-trans isomerase 5 Moderate 

PF3D7_1201000 Q8I635 Plasmodium exported protein (PHISTb), unknown function 5 Moderate 

PF3D7_1203700 Q8I608 nucleosome assembly protein 5 Moderate 
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PF3D7_1211400 Q7KQK3 heat shock protein DNAJ homologue Pfj4 5 Moderate 

PF3D7_1211900 Q8I5T3 non-SERCA-type Ca2+ -transporting P-ATPase 5 Moderate 

PF3D7_1212000 Q8I5T2 glutathione peroxidase-like thioredoxin peroxidase 5 Moderate 

PF3D7_1223100 Q7KQK0 cAMP-dependent protein kinase regulatory subunit 5 Moderate 

PF3D7_1343000 Q8IDQ9 phosphoethanolamine N-methyltransferase 5 Moderate 

PF3D7_1346100 Q8IDN6 protein transport protein SEC61 subunit alpha 5 Moderate 

PF3D7_1353900 Q8IDG2 proteasome subunit alpha type-7, putative 5 Moderate 

PF3D7_1359400 Q8IDB7 CUGBP Elav-like family member 1 5 Moderate 

PF3D7_1407800 Q8IM16 plasmepsin IV 5 Moderate 

PF3D7_1434800 Q8ILB6 mitochondrial acidic protein MAM33, putative 5 Moderate 

PF3D7_1465900 Q8IKH8 40S ribosomal protein S3 5 Moderate 

PF3D7_1466400 Q8IKH2 transcription factor with AP2 domain(s) 5 Moderate 

PF3D7_0105200 Q8I289 RAP protein, putative 5 Moderate 

PF3D7_0406100 Q6ZMA8 V-type proton ATPase subunit B 5 Moderate 

PF3D7_0708400 Q8IC05 heat shock protein 90 5 Moderate 

PF3D7_1405600 Q8IM38 ribonucleoside-diphosphate reductase small chain, putative 5 Moderate 

PF3D7_1228600 Q8I5D2 merozoite surface protein 9 5 Moderate 

PF3D7_1232100 Q8I0V3 60 kDa chaperonin 5 Moderate 

PF3D7_0204700 Q7KWJ5 hexose transporter 4 Moderate 

PF3D7_0316700 O77388 protein YOP1, putative 4 Moderate 

PF3D7_0509000 Q8I0X0 SNAP protein (soluble N-ethylmaleimide-sensitive factor attachment protein), putative 4 Moderate 

PF3D7_0512600 Q7K6A8 ras-related protein Rab-1B 4 Moderate 
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PF3D7_0516900 Q8I3T9 60S ribosomal protein L2 4 Moderate 

PF3D7_0517000 Q8I3T8 60S ribosomal protein L12, putative 4 Moderate 

PF3D7_0532400 Q8I3F0 lysine-rich membrane-associated PHISTb protein 4 Moderate 

PF3D7_0608300 C6KST1 conserved Plasmodium protein, unknown function 4 Moderate 

PF3D7_0621200 C6KT50 pyridoxine biosynthesis protein PDX1 4 Moderate 

PF3D7_0624600 C6KT82 SNF2 helicase, putative 4 Moderate 

PF3D7_0727400 Q8IBI3 proteasome subunit alpha type-5, putative 4 Moderate 

PF3D7_0807900 Q8IAR7 tyrosine--tRNA ligase 4 Moderate 

PF3D7_0821000 Q8IB44 conserved Plasmodium protein, unknown function 4 Moderate 

PF3D7_0827900 C0H4Y6 protein disulfide isomerase 4 Moderate 

PF3D7_0831400 C0H4Z7 Plasmodium exported protein, unknown function 4 Moderate 

PF3D7_1113300 Q8IIM9 UDP-galactose transporter, putative 4 Moderate 

PF3D7_1116800 Q8IIJ8 heat shock protein 101 4 Moderate 

PF3D7_1117300 Q8IIJ4 conserved Plasmodium protein, unknown function 4 Moderate 

PF3D7_1119000 Q8IIH7 acyl-CoA-binding protein, putative 4 Moderate 

PF3D7_1124600 Q8IIB7 ethanolamine kinase 4 Moderate 

PF3D7_1124700 Q8IIB6 GrpE protein homolog, mitochondrial, putative 4 Moderate 

PF3D7_1134100 Q8II23 protein disulfide isomerase 4 Moderate 

PF3D7_1149400 Q8IHM9 Plasmodium exported protein, unknown function 4 Moderate 

PF3D7_1229400 Q8I5C5 macrophage migration inhibitory factor 4 Moderate 

PF3D7_1241700 Q8I512 replication factor C subunit 4, putative 4 Moderate 

PF3D7_1242700 Q8I502 40S ribosomal protein S17, putative 4 Moderate 
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PF3D7_1242800 Q8I501 rab specific GDP dissociation inhibitor 4 Moderate 

PF3D7_1304500 Q8IES0 small heat shock protein, putative 4 Moderate 

PF3D7_1353100 Q8IDG9 Plasmodium exported protein, unknown function 4 Moderate 

PF3D7_1424100 Q8ILL3 60S ribosomal protein L5, putative 4 Moderate 

PF3D7_1429600 Q8ILG8 conserved Plasmodium protein, unknown function 4 Moderate 

PF3D7_1447000 Q8IL02 40S ribosomal protein S5 4 Moderate 

PF3D7_1447700 Q8IKZ8 conserved Plasmodium protein, unknown function 4 Moderate 

PF3D7_0108000 Q8I261 Proteasome subunit beta type 4 Moderate 

PF3D7_0307100 O97249 40S ribosomal protein S12, putative 4 Moderate 

PF3D7_0624000 C6KT76 hexokinase 4 Moderate 

PF3D7_0826700 Q8IBA0 receptor for activated c kinase 4 Moderate 

PF3D7_0917900 Q8I2X4 heat shock protein 70 4 Moderate 

PF3D7_0922500 P27362 phosphoglycerate kinase 4 Moderate 

PF3D7_1008700 Q7KQL5 tubulin beta chain 4 Moderate 

PF3D7_1015900 Q8IJN7 enolase 4 Moderate 

PF3D7_1354500 Q8IDF6 adenylosuccinate synthetase 4 Moderate 

PF3D7_1357000 Q8I0P6 Elongation factor 1-alpha 4 Moderate 

PF3D7_0310400 O77361 parasite-infected erythrocyte surface protein 3 Low 

PF3D7_0316600 O77389 formate-nitrite transporter 3 Low 

PF3D7_0415900 C0H4A6 60S ribosomal protein L15, putative 3 Low 

PF3D7_0507100 Q8I431 60S ribosomal protein L4 3 Low 

PF3D7_0523100 Q8I3N3 mitochondrial-processing peptidase subunit alpha, putative 3 Low 
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PF3D7_0524000 Q8I3M5 karyopherin beta 3 Low 

PF3D7_0614300 C6KSY4 major facilitator superfamily-related transporter, putative 3 Low 

PF3D7_0619400 C6KT34 cell division cycle protein 48 homologue, putative 3 Low 

PF3D7_0623500 C6KT71 superoxide dismutase [Fe] 3 Low 

PF3D7_0626800 C6KTA4 pyruvate kinase 3 Low 

PF3D7_0627800 C6KTB4 acetyl-CoA synthetase, putative 3 Low 

PF3D7_0631900 C6KTF1 stevor 3 Low 

PF3D7_0702500 Q8IC42 Plasmodium exported protein, unknown function 3 Low 

PF3D7_0714000 Q8IBV7 histone H2B variant 3 Low 

PF3D7_0801800 Q8IAL6 mannose-6-phosphate isomerase, putative 3 Low 

PF3D7_0807500 Q8IAR3 proteasome subunit alpha type-6, putative 3 Low 

PF3D7_0905400 Q8I395 high molecular weight rhoptry protein 3 3 Low 

PF3D7_0918300 Q8I2X0 eukaryotic translation initiation factor 3 subunit F, putative 3 Low 

PF3D7_0925900 Q8I2Q0 conserved Plasmodium protein, unknown function 3 Low 

PF3D7_0931800 Q8I0U7 proteasome subunit beta type-6, putative 3 Low 

PF3D7_0933600 Q8I2I2 mitochondrial-processing peptidase subunit beta, putative 3 Low 

PF3D7_0935800 Q8I2G2 cytoadherence linked asexual protein 9 3 Low 

PF3D7_1006700 Q8IJX4 conserved Plasmodium protein, unknown function 3 Low 

PF3D7_1008800 Q8IJV7 nucleolar protein 5, putative 3 Low 

PF3D7_1010300 Q8IJU2 succinate dehydrogenase subunit 4, putative 3 Low 

PF3D7_1017900 Q8IJM0 26S proteasome regulatory subunit p55, putative 3 Low 

PF3D7_1021900 Q8IJI4 PHAX domain-containing protein, putative 3 Low 
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PF3D7_1104000 Q8IIW2 phenylalanine--tRNA ligase beta subunit 3 Low 

PF3D7_1105100 Q8IIV1 histone H2B 3 Low 

PF3D7_1118500 Q8III3 nucleolar protein 56, putative 3 Low 

PF3D7_1126000 Q8IIA4 threonine--tRNA ligase 3 Low 

PF3D7_1126200 Q8IIA2 40S ribosomal protein S18, putative 3 Low 

PF3D7_1132200 Q8II43 T-complex protein 1 subunit alpha 3 Low 

PF3D7_1149000 Q8IHN4 antigen 332, DBL-like protein 3 Low 

PF3D7_1226900 Q8I5E9 conserved Plasmodium protein, unknown function 3 Low 

PF3D7_1238100 Q8I542 calcyclin binding protein, putative 3 Low 

PF3D7_1246800 Q8I4W4 signal recognition particle receptor, beta subunit 3 Low 

PF3D7_1252100 Q8I4R5 rhoptry neck protein 3 3 Low 

PF3D7_1318800 Q8IEC8 translocation protein SEC63 3 Low 

PF3D7_1331700 Q8IE10 glutamine--tRNA ligase, putative 3 Low 

PF3D7_1338200 Q8IDV1 60S ribosomal protein L6-2, putative 3 Low 

PF3D7_1342000 Q8IDR9 40S ribosomal protein S6 3 Low 

PF3D7_1355100 Q8IDF0 DNA replication licensing factor MCM6 3 Low 

PF3D7_1361800 C0H5J9 conserved Plasmodium protein, unknown function 3 Low 

PF3D7_1368100 Q8ID28 26S proteasome regulatory subunit RPN11, putative 3 Low 

PF3D7_1370300 C0H5L9 membrane associated histidine-rich protein 3 Low 

PF3D7_1408600 Q8IM10 40S ribosomal protein S8e, putative 3 Low 

PF3D7_1412300 Q8ILX1 nuclear transport factor 2, putative 3 Low 

PF3D7_1417500 Q8ILS0 H/ACA ribonucleoprotein complex subunit 4, putative 3 Low 
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PF3D7_1419700 Q8ILQ3 conserved Plasmodium protein, unknown function 3 Low 

PF3D7_1420700 Q8ILP3 surface protein P113 3 Low 

PF3D7_1424400 Q8ILL2 60S ribosomal protein L7-3, putative 3 Low 

PF3D7_1451100 Q8IKW5 elongation factor 2 3 Low 

PF3D7_1453700 Q8IKU1 co-chaperone p23 3 Low 

PF3D7_1464700 Q8IKJ0 ATP synthase (C/AC39) subunit, putative 3 Low 

PF3D7_1468100 Q8IKF6 conserved Plasmodium protein, unknown function 3 Low 

PF3D7_1474600 Q8IK92 conserved Plasmodium membrane protein, unknown function 3 Low 

PF3D7_0108300 Q8I259 Uncharacterized protein 3 Low 

PF3D7_0102900 Q8I2B1 Aspartate--tRNA ligase 3 Low 

PF3D7_0310600 Q9NFE6 eukaryotic translation initiation factor 3 subunit K, putative, unspecified product 3 Low 

PF3D7_0310600 Q9NFE6 eukaryotic translation initiation factor 3 subunit K, putative, unspecified product 3 Low 

PF3D7_0503400 Q8I467 actin-depolymerizing factor 1 3 Low 

PF3D7_0520900 P50250 adenosylhomocysteinase 3 Low 

PF3D7_0617800 C6KT18 histone H2A 3 Low 

PF3D7_0818900 Q8IB24 heat shock protein 70 3 Low 

PF3D7_1361900 P61074 proliferating cell nuclear antigen 1 3 Low 

PF3D7_0102200 Q8I0U6 Ring-infected erythrocyte surface antigen 3 Low 

PF3D7_1136500 Q8I274 Casein kinase I 3 Low 

PF3D7_0903700 Q6ZLZ9 alpha tubulin 1 3 Low 

PF3D7_0207500 Q9TY96 serine repeat antigen 6 2 Noise 

PF3D7_0209800 Q9TY94 ATP-dependent RNA helicase UAP56 2 Noise 
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PF3D7_0212900 O96210 leucyl/phenylalanyl-tRNA--protein transferase, putative 2 Noise 

PF3D7_0214100 O96221 protein transport protein SEC31 2 Noise 

PF3D7_0217500 P62344 calcium-dependent protein kinase 1 2 Noise 

PF3D7_0220000 O96275 liver stage antigen 3 2 Noise 

PF3D7_0302900 O77312 exportin-1, putative 2 Noise 

PF3D7_0305600 O97240 AP endonuclease (DNA-[apurinic or apyrimidinic site] lyase), putative 2 Noise 

PF3D7_0308600 O77325 pre-mRNA-processing factor 19, putative 2 Noise 

PF3D7_0309500 O77330 asparagine synthetase [glutamine-hydrolyzing], putative 2 Noise 

PF3D7_0312800 O77364 60S ribosomal protein L26, putative 2 Noise 

PF3D7_0317600 O77381 40S ribosomal protein S11, putative 2 Noise 

PF3D7_0320900 O97320 histone H2A variant, putative 2 Noise 

PF3D7_0322000 Q76NN7 peptidyl-prolyl cis-trans isomerase 2 Noise 

PF3D7_0401800 Q8I207 Plasmodium exported protein (PHISTb), unknown function 2 Noise 

PF3D7_0405400 Q8I1X5 pre-mRNA-processing-splicing factor 8, putative 2 Noise 

PF3D7_0405600 Q8I1X3 conserved Plasmodium membrane protein, unknown function 2 Noise 

PF3D7_0418200 Q8I1Q5 eukaryotic translation initiation factor 3 subunit M, putative 2 Noise 

PF3D7_0422700 Q8IFN9 eukaryotic initiation factor 4A-III, putative 2 Noise 

PF3D7_0511800 Q8I3Y8 inositol-3-phosphate synthase 2 Noise 

PF3D7_0523400 Q8I3N0 DnaJ protein, putative 2 Noise 

PF3D7_0608500 C6KST3 proteasome subunit alpha type-2, putative 2 Noise 

PF3D7_0608700 C6KST5 T-complex protein 1 subunit zeta 2 Noise 

PF3D7_0614500 C6KSY6 60S ribosomal protein L19 2 Noise 



 

216 
 

Gene ID UniProt ID Product Description Frequency Confidence 

PF3D7_0617000 C6KT11 mitochondrial import receptor subunit TOM40, putative 2 Noise 

PF3D7_0617900 C6KT19 histone H3 variant 2 Noise 

PF3D7_0627500 C6KTB1 protein DJ-1 2 Noise 

PF3D7_0627700 C6KTB3 transportin 2 Noise 

PF3D7_0701600 Q8IC51 Pfmc-2TM Maurer's cleft two transmembrane protein 2 Noise 

PF3D7_0708800 Q8IC01 heat shock protein 110 2 Noise 

PF3D7_0719600 Q8IBQ6 60S ribosomal protein L11a, putative 2 Noise 

PF3D7_0721600 Q8IBN5 40S ribosomal protein S5, putative 2 Noise 

PF3D7_0813300 C0H4U4 conserved Plasmodium protein, unknown function 2 Noise 

PF3D7_0819600 Q8IB31 conserved Plasmodium protein, unknown function 2 Noise 

PF3D7_0821400 Q8IB48 conserved Plasmodium protein, unknown function 2 Noise 

PF3D7_0821700 Q8IB51 60S ribosomal protein L22, putative 2 Noise 

PF3D7_0913200 Q8I320 elongation factor 1-beta 2 Noise 

PF3D7_0918000 Q8I2X3 glideosome-associated protein 50 2 Noise 

PF3D7_0922200 Q7K6A4 S-adenosylmethionine synthetase 2 Noise 

PF3D7_0932800 Q8I2I8 importin alpha re-exporter, putative 2 Noise 

PF3D7_0935900 Q8I2G1 ring-exported protein 1 2 Noise 

PF3D7_1007700 Q8IJW6 transcription factor with AP2 domain(s) 2 Noise 

PF3D7_1010600 Q8IJT9 eukaryotic translation initiation factor 2 subunit beta 2 Noise 

PF3D7_1011800 Q8IJS7 PRE-binding protein 2 Noise 

PF3D7_1029600 Q8IJA9 adenosine deaminase 2 Noise 

PF3D7_1106000 Q8IIU3 RuvB-like helicase 2 2 Noise 
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PF3D7_1108600 Q8IIR7 endoplasmic reticulum-resident calcium binding protein 2 Noise 

PF3D7_1132800 Q8II36 aquaglyceroporin 2 Noise 

PF3D7_1137300 Q8IHZ2 CLPTM1 domain-containing protein, putative 2 Noise 

PF3D7_1238800 Q8I535 acyl-CoA synthetase 2 Noise 

PF3D7_1302000 Q8IEI6 EMP1-trafficking protein 2 Noise 

PF3D7_1306600 Q8IEP9 V-type proton ATPase subunit H, putative 2 Noise 

PF3D7_1311500 Q8IEK3 26S protease regulatory subunit 7, putative 2 Noise 

PF3D7_1323400 Q8IE82 60S ribosomal protein L23 2 Noise 

PF3D7_1328100 Q8I6T3 proteasome subunit beta type-7, putative 2 Noise 

PF3D7_1341200 Q8IDS6 60S ribosomal protein L18, putative 2 Noise 

PF3D7_1341300 C0H5G3 60S ribosomal protein L18-2, putative 2 Noise 

PF3D7_1342400 Q8IDR5 casein kinase II beta chain 2 Noise 

PF3D7_1349200 Q8IDK7 glutamate--tRNA ligase, putative 2 Noise 

PF3D7_1357800 C0H5I7 T-complex protein 1 subunit delta 2 Noise 

PF3D7_1358800 Q8IDB0 40S ribosomal protein S15 2 Noise 

PF3D7_1407900 Q7KQM4 plasmepsin I 2 Noise 

PF3D7_1409800 Q8ILZ7 CUGBP Elav-like family member 2, putative 2 Noise 

PF3D7_1414300 Q8ILV2 60S ribosomal protein L10, putative 2 Noise 

PF3D7_1437200 Q8IL94 ribonucleoside-diphosphate reductase large subunit, putative 2 Noise 

PF3D7_1437900 Q8IL88 HSP40, subfamily A, putative 2 Noise 

PF3D7_1439000 Q8IL79 copper transporter 2 Noise 

PF3D7_1441200 Q8IL58 60S ribosomal protein L1, putative 2 Noise 
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PF3D7_1444300 Q8IL28 1-acyl-sn-glycerol-3-phosphate acyltransferase, putative 2 Noise 

PF3D7_1445900 Q8IL13 ATP-dependent RNA helicase DDX5, putative 2 Noise 

PF3D7_1460600 Q8IKM6 inner membrane complex sub-compartment protein 3 2 Noise 

PF3D7_1466300 Q8IKH3 26S proteasome regulatory subunit RPN2, putative 2 Noise 

PF3D7_1470900 Q8IKC9 proteasome subunit beta type-2, putative 2 Noise 

PF3D7_0106100 Q8I280 V-type proton ATPase subunit C, putative 2 Noise 

PF3D7_0103200 Q8I2A8 Nucleoside transporter 4 2 Noise 

PF3D7_0919000 Q8I2W3 nucleosome assembly protein 2 Noise 

PF3D7_0209300 P62368 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase 2 Noise 

PF3D7_0308200 O77323 T-complex protein 1 subunit eta 2 Noise 

PF3D7_0318200 O77375 DNA-directed RNA polymerase II subunit RPB1 2 Noise 

PF3D7_0318300 O77374 conserved Plasmodium protein, unknown function 2 Noise 

PF3D7_0322900 O97313 40S ribosomal protein S3A, putative 2 Noise 

PF3D7_0417200 Q8I1R6 bifunctional dihydrofolate reductase-thymidylate synthase 2 Noise 

PF3D7_0711000 P46468 AAA family ATPase, CDC48 subfamily 2 Noise 

PF3D7_0729900 Q8IBG1 dynein heavy chain, putative 2 Noise 

PF3D7_1035200 Q03400 S-antigen 2 Noise 

PF3D7_1213800 Q8I5R7 proline--tRNA ligase 2 Noise 

PF3D7_1252400 Q8I4R2 reticulocyte binding protein homologue 3, pseudogene 2 Noise 

PF3D7_1427900 Q8ILI6 conserved protein, unknown function 2 Noise 

PF3D7_1434300 Q8ILC1 Hsp70/Hsp90 organizing protein 2 Noise 

PF3D7_1436000 Q8ILA4 glucose-6-phosphate isomerase 2 Noise 
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PF3D7_1439900 Q7KQM0 triosephosphate isomerase 2 Noise 

PF3D7_1453800 Q8IKU0 glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase 2 Noise 

PF3D7_API02700 N/A apicoplast ribosomal protein S12 2 Noise 

PF3D7_0206800 P50498 merozoite surface protein 2 1 Noise 

PF3D7_0207800 O96165 serine repeat antigen 3 1 Noise 

PF3D7_0213700 O96217 conserved protein, unknown function 1 Noise 

PF3D7_0214000 O96220 T-complex protein 1 subunit theta 1 Noise 

PF3D7_0218000 O96260 replication factor C subunit 2, putative 1 Noise 

PF3D7_0302500 O77310 cytoadherence linked asexual protein 3.1 1 Noise 

PF3D7_0306800 O97247 T-complex protein 1 subunit beta 1 Noise 

PF3D7_0306900 O97248 40S ribosomal protein S23, putative 1 Noise 

PF3D7_0317000 O77396 proteasome subunit alpha type-3, putative 1 Noise 

PF3D7_0320300 O97282 T-complex protein 1 subunit epsilon 1 Noise 

PF3D7_0324100 O97307 Pfmc-2TM Maurer's cleft two transmembrane protein 1 Noise 

PF3D7_0413600 Q8I1V1 26S protease regulatory subunit 6B, putative 1 Noise 

PF3D7_0505800 Q8I444 small ubiquitin-related modifier 1 Noise 

PF3D7_0513300 Q8I3X4 purine nucleoside phosphorylase 1 Noise 

PF3D7_0513600 Q8I0W8 deoxyribodipyrimidine photo-lyase, putative 1 Noise 

PF3D7_0517700 Q8I3T1 eukaryotic translation initiation factor 3 subunit B, putative 1 Noise 

PF3D7_0518300 C0H4E8 proteasome subunit beta type-1, putative 1 Noise 

PF3D7_0525100 Q8I3L4 acyl-CoA synthetase 1 Noise 

PF3D7_0527000 Q8I3J5 DNA replication licensing factor MCM3, putative 1 Noise 
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PF3D7_0527500 Q8I3J0 Hsc70-interacting protein 1 Noise 

PF3D7_0528200 Q8I3I5 eukaryotic translation initiation factor 3 subunit E, putative 1 Noise 

PF3D7_0601200 C6KSL5 Pfmc-2TM Maurer's cleft two transmembrane protein 1 Noise 

PF3D7_0605100 C6KSP9 RNA-binding protein, putative 1 Noise 

PF3D7_0617200 C6KT13 conserved Plasmodium protein, unknown function 1 Noise 

PF3D7_0705700 C0H4K8 40S ribosomal protein S29, putative 1 Noise 

PF3D7_0728000 Q8IBH7 eukaryotic translation initiation factor 2 subunit alpha, putative 1 Noise 

PF3D7_0812400 Q8IAW0 karyopherin alpha 1 Noise 

PF3D7_0814000 Q8IAX6 60S ribosomal protein L13-2, putative 1 Noise 

PF3D7_0822600 Q8IB60 protein transport protein SEC23 1 Noise 

PF3D7_0823900 Q8IB73 dicarboxylate/tricarboxylate carrier 1 Noise 

PF3D7_0903900 Q8I3B0 60S ribosomal protein L32 1 Noise 

PF3D7_0904900 Q8I3A0 copper-transporting ATPase 1 Noise 

PF3D7_0915400 Q8I2Z8 6-phosphofructokinase 1 Noise 

PF3D7_0916500 C0H540 ubiquitin fusion degradation protein 1 1 Noise 

PF3D7_0923900 Q8I2R8 RNA-binding protein, putative 1 Noise 

PF3D7_0929200 C0H570 RNA-binding protein, putative 1 Noise 

PF3D7_1001200 Q8IK24 acyl-CoA binding protein, isoform 2, ACBP2 1 Noise 

PF3D7_1003500 Q8IK02 40S ribosomal protein S20e, putative 1 Noise 

PF3D7_1004000 Q8IJZ7 60S ribosomal protein L13, putative 1 Noise 

PF3D7_1012900 Q8IJR6 autophagy-related protein 18, putative 1 Noise 

PF3D7_1019400 Q8IJK8 60S ribosomal protein L30e, putative 1 Noise 
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PF3D7_1027300 Q8IJD0 peroxiredoxin 1 Noise 

PF3D7_1033200 Q8IJ76 early transcribed membrane protein 10.2 1 Noise 

PF3D7_1033400 Q8IJ74 haloacid dehalogenase-like hydrolase 1 Noise 

PF3D7_1035700 Q8IJ52 duffy binding-like merozoite surface protein 1 Noise 

PF3D7_1036900 Q8IJ39 conserved Plasmodium protein, unknown function 1 Noise 

PF3D7_1103100 Q8IIX0 60S acidic ribosomal protein P1, putative 1 Noise 

PF3D7_1104200 Q8IIW0 chromatin remodeling protein 1 Noise 

PF3D7_1108400 Q8IIR9 casein kinase 2, alpha subunit 1 Noise 

PF3D7_1109900 Q8I713 60S ribosomal protein L36 1 Noise 

PF3D7_1115300 Q8I6U5 cysteine proteinase falcipain 2b 1 Noise 

PF3D7_1115700 Q8I6U4 cysteine proteinase falcipain 2a 1 Noise 

PF3D7_1116500 Q8IIK1 folate transporter 2 1 Noise 

PF3D7_1120100 Q8IIG6 phosphoglycerate mutase, putative 1 Noise 

PF3D7_1127000 Q8II93 protein phosphatase, putative 1 Noise 

PF3D7_1128100 Q8II82 prefoldin subunit 5, putative 1 Noise 

PF3D7_1129200 Q8II71 26S proteasome regulatory subunit RPN7, putative 1 Noise 

PF3D7_1130400 Q8II60 26S protease regulatory subunit 6A, putative 1 Noise 

PF3D7_1135900 Q8II05 3-oxo-5-alpha-steroid 4-dehydrogenase, putative 1 Noise 

PF3D7_1142500 Q8IHU0 60S ribosomal protein L28 1 Noise 

PF3D7_1144000 Q8IHS5 40S ribosomal protein S21 1 Noise 

PF3D7_1227100 Q8I5E7 DNA helicase 60 1 Noise 

PF3D7_1229500 Q8I5C4 T-complex protein 1 subunit gamma 1 Noise 
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Gene ID UniProt ID Product Description Frequency Confidence 

PF3D7_1239600 Q8I527 hydroxyethylthiazole kinase 1 Noise 

PF3D7_1302800 Q8IET7 40S ribosomal protein S7, putative 1 Noise 

PF3D7_1309100 Q8IEM3 60S ribosomal protein L24, putative 1 Noise 

PF3D7_1323100 Q8IE85 60S ribosomal protein L6, putative 1 Noise 

PF3D7_1331600 C0H5F1 protein tyrosine phosphatase-like protein, putative 1 Noise 

PF3D7_1332900 Q8IDZ9 isoleucine--tRNA ligase, putative 1 Noise 

PF3D7_1338100 Q8IDV2 26S proteasome regulatory subunit RPN3, putative 1 Noise 

PF3D7_1338300 Q8IDV0 elongation factor 1-gamma, putative 1 Noise 

PF3D7_1341900 Q8IDS0 V-type proton ATPase subunit D, putative 1 Noise 

PF3D7_1342600 Q8IDR3 myosin A 1 Noise 

PF3D7_1344200 C0H5H0 heat shock protein 110, putative 1 Noise 

PF3D7_1346300 Q8IDN4 DNA/RNA-binding protein Alba 2 1 Noise 

PF3D7_1347200 Q8IDM6 nucleoside transporter 1 1 Noise 

PF3D7_1358700 Q8IDB8 YOP1-like protein, putative 1 Noise 

PF3D7_1364100 Q8ID66 6-cysteine protein 1 Noise 

PF3D7_1365500 Q8I6T0 aminomethyltransferase, mitochondrial, putative 1 Noise 

PF3D7_1401800 Q8IM71 choline kinase 1 Noise 

PF3D7_1417800 Q8ILR7 DNA replication licensing factor MCM2 1 Noise 

PF3D7_1419200 Q8ILQ8 thioredoxin-like protein, putative 1 Noise 

PF3D7_1426000 Q8ILK3 60S ribosomal protein L21 1 Noise 

PF3D7_1429800 Q8ILG6 coatamer beta subunit, putative 1 Noise 

PF3D7_1437000 Q8IL96 N-acetyltransferase, putative 1 Noise 
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Gene ID UniProt ID Product Description Frequency Confidence 

PF3D7_1438900 Q8IL80 thioredoxin peroxidase 1 1 Noise 

PF3D7_1446200 Q8IL11 M17 leucyl aminopeptidase 1 Noise 

PF3D7_1447900 Q8IKZ6 multidrug resistance protein 2 1 Noise 

PF3D7_1454700 Q8IKT2 6-phosphogluconate dehydrogenase, decarboxylating, putative 1 Noise 

PF3D7_1456700 Q8IKR2 conserved Plasmodium protein, unknown function 1 Noise 

PF3D7_1457000 Q8IKQ9 signal peptide peptidase 1 Noise 

PF3D7_1462300 Q8IKL1 conserved Plasmodium protein, unknown function 1 Noise 

PF3D7_1462800 Q8IKK7 glyceraldehyde-3-phosphate dehydrogenase 1 Noise 

PF3D7_1463200 Q8IKK4 replication factor C subunit 3, putative 1 Noise 

PF3D7_1474800 Q8IK90 proteasome subunit alpha type-1, putative 1 Noise 

PF3D7_1477300 Q8IK62 Plasmodium exported protein (PHIST), unknown function 1 Noise 

PF3D7_0109800 Q8I246 Phenylalanine--tRNA ligase alpha subunit 1 Noise 

PF3D7_0111500 Q8I231 UMP-CMP kinase, putative 1 Noise 
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Appendix 2 

Molecular docking of protein-ligand binding 
 

A2.1 Method 

A2.1.1 Ligand and protein structures 

Artemisinin PDB file was obtained from www.wiki.jmole.org, while carbon centred artemisinin radical 

(section 1.6.1 and Figure 4.5) was generated in ChemDraw Profession 15.1 and optimised for structural 

energy using MM2 protocol in Chem3D 15.1 software. All protein 3D structures were retrieved from PDB 

database. Structures with bound inhibitors are preferable.  

 

A2.1.2 Molecular docking 

Computational docking model was performed by AutoDock Vina plugin in the UCSF Chimera software 

suite. The known inhibitor of each protein was removed manually. Structure was prepared for docking 

by Dock Prep tool (Dunbrack, 2002); remove solvents, add hydrogens and charges, default settings were 

selected unless solvents or ions known for binding requirement.  

 

AutoDock Vina settings were default. Search space was defined in vicinity of the known inhibitor binding 

sites and not larger than 2700 Å3.  

 

A2.2 Results and discussion 

A2.2.1 3D structure of carbon centred radical 

The input 3D structure was optimised for the most stable conformation by MM2 function. The total 258 

iterations result was as follows;  

 

 

 

 

 

 

 

 

 

http://www.wiki.jmole.org/
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Figure A2.1 MM2 structural optimisation result for carbon centred radical artemisinin 

Minimization terminated normally because the gradient norm is less than the 

minimum gradient norm 

  Stretch: 2.6257 

  Bend: 20.5500 

  Stretch-Bend: 1.4170 

  Torsion: 11.9120 

  Non-1,4 VDW: -5.4153 

  1,4 VDW: 21.2078 

  Dipole/Dipole: 3.3767 

  Total Energy: 55.6740 kcal/mol 

  Calculation ended 

 

Figure A2.2 MM2 structural optimisation result for artemisinin 

Iteration 325: Minimization terminated normally because the gradient norm is less 

than the minimum gradient norm 

  Stretch: 3.1754 

  Bend: 19.5958 

  Stretch-Bend: 1.6894 

  Torsion: 8.6174 

  Non-1,4 VDW: -3.4642 

  1,4 VDW: 23.5598 

  Dipole/Dipole: 13.3861 

  Total Energy: 66.5597 kcal/mol 

  Calculation ended 
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A2.2.2 Docking model of plasmepsin II (PDB 1W6I) 

Parameters: 

- Removed ligand: pepstatin A 

- Ligand docking: artemisinin 

- XYZ coordinate: 15,100,60 

- XYZ size: 20,30,20 

 

Table A2.1 AutoDock Vina result for plasmepsin II with artemisinin 

Score RMSD lb RMSD ub Hbond all 

Hbond 

ligand 

atoms 

Hbond 

receptor 

atoms 

-8.4 0 0 1 1 1 

-8.0 1.681 4.197 1 1 1 

-7.3 4.199 6.878 2 2 1 

-7.0 10.969 13.339 2 2 1 

-6.9 4.601 6.224 2 2 2 

-6.8 2.284 5.714 0 0 0 

-6.7 4.387 6.679 0 0 0 

-6.6 5.312 8.193 1 1 1 
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Parameters: 

- Removed ligand: pepstatin A 

- Ligand docking: carbon centred radical artemisinin 

- XYZ coordinate: 15,100,60 

- XYZ size: 20,30,20 

 

Table A2.2 AutoDock Vina result for plasmepsin II with carbon centred radical artemisinin 

Score RMSD lb RMSD ub Hbond all 

Hbond 

ligand 

atoms 

Hbond 

receptor 

atoms 

-7.1 0.0 0.0 0 0 0 

-7.0 2.851 5.278 0 0 0 

-6.8 3.156 6.108 2 1 2 

-6.7 3.698 7.023 8 4 6 

-6.7 4.385 7.33 2 1 2 

-6.7 3.517 5.297 10 5 8 

-6.5 3.67 6.317 2 1 2 

-6.3 1.771 4.651 6 3 6 

-6.3 2.196 4.206 4 2 4 
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Figure A2.3 Molecular docking model of Plasmodium falciparum plasmepsin II with carbon centred radical 
artemisinin (carbon shown in yellow), bound inhibitor pepstatin A shown in wire yellow. (B) Artemisinin binding 
pocket shared with pepstatin A. (C) Close pocket formed by Val78 and Leu292 are shown in orange. 
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A2.2.3 Ornithine aminotransferase (PfOAT, PDB 3LG0) 

Parameters: 

- Removed ligand: no bound ligand 

- Ligand docking: artemisinin 

- XYZ coordinate: 20,65,-20 

- XYZ size: 30,30,30 

 

Table A2.3 AutoDock Vina result for PfOAT with artemisinin 

Score RMSD lb RMSD ub Hbond all 

Hbond 

ligand 

atoms 

Hbond 

receptor 

atoms 

-7.9 0 0 3 2 2 

-7.7 23.067 25.157 3 2 2 

-7.7 1.905 3.292 3 2 2 

-7.6 22.507 24.564 2 2 1 

-7.5 1.372 4.058 3 3 3 

-7.4 1.639 4.267 1 1 1 

-7.3 23.724 25.517 1 1 1 

-7.2 2.35 3.45 1 1 1 

-7.1 22.532 24.477 1 1 1 
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Figure A2.4 (A) Molecular docking of Plasmodium falciparum ornithine aminotransferase, OAT (PDB 3LG0) with 
artemisinin best fit pose (carbon shown in yellow). Residue 149-170 are shown in dashed orange line. (B) Close up 
image of artemisinin binding site near Ser291. (C) Binding pocket of OAT possibly under flexible loop between residue 
149-170. 
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A2.2.4 Cell division cycle protein 48 (PfCDC48)  

Homology model  

- Template: human P97 (PDB 5FTK),  

- Homology model server: SWISS-MODEL 

 

 

Figure A2.5 Comparison of homology models. Only chain A of each crystal structure are shown. PfCDC48 homology 
model from ModBase is shown in pink. PfCDC48 modelled by SWISS-MODEL is shown in yellow. Human P97 (PDB 
5FTK) is shown in blue (used for SWISS-MODEL). Mouse P97 (PDB 3CF3) is shown in grey. Both crystal structure, 5FTK 
and 3CF3, are lacking a region between residue 707-726 due to flexibility of the protein sequence. 

 

Parameters: 

- Removed ligand: no bound ligand 

- Ligand docking: artemisinin 

- XYZ coordinate: 65, 130, 280 

- XYZ size: 30,30,30 
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Figure A2.6 Molecular docking of artemisinin (carbon shown in magenta) with homology model of PfCDC48 shown 
in yellow (SWISS-MODEL). The human P97 template used to generate homology model is shown in blue (PDB 5FTK). 
The bound inhibitor Is shown in yellow wire (inset).  
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Table A2.4 AutoDock Vina result for PfCDC48 with artemisinin 

Score RMSD lb RMSD ub Hbond all 

Hbond 

ligand 

atoms 

Hbond 

receptor 

atoms 

-7.2 0 0 2 1 2 

-7.1 1.627 4.121 0 0 0 

-6.9 1.926 5.264 1 1 1 

-6.5 1.524 2.228 1 1 1 

-6.4 1.703 3.982 0 0 0 

-6.0 5.736 8.277 5 4 5 

-6.0 1.922 3.913 0 0 0 

-5.9 21.264 23.172 1 1 1 

-5.9 1.611 3.9 0 0 0 

 

A2.2.5 Spermidine synthase (PDB 2I7C) 

Parameters: 

- Removed ligand: AdoDATO 

- Ligand docking: artemisinin 

- XYZ coordinate: 17,115,30 (chain A) 

- XYZ size: 20,20,20 

 

Table A2.5 AutoDock Vina result for HGXPRT with artemisinin 

Score RMSD lb RMSD ub Hbond all 

Hbond 

ligand 

atoms 

Hbond 

receptor 

atoms 

-4.3 0.0 0.0 0 0 0 

-4.2 1.36 4.021 0 0 0 

-4.1 1.452 3.899 0 0 0 

-4.0 5.118 6.704 1 1 1 

-4.0 2.266 5.209 0 0 0 

-3.9 1.99 4.693 1 1 1 

-3.3 1.941 4.859 0 0 0 

-3.1 4.54 7.144 2 2 1 

-2.2 15.792 17.267 3 2 2 
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A2.2.6 Hypoxanthine guanine xanthine phosphoribosyltransferase (HGXPRT, PDB 3OZG) 

Parameters: 

- Removed ligand: S-SerMe-ImmH phosphonate 

- Remaining ligand: Mg2+ 

- Ligand docking: artemisinin 

- XYZ coordinate: 60,35,75 (chain A) 

- XYZ size: 20,15,15 

 

Table A2.6 AutoDock Vina result for HGXPRT with artemisinin 

Score RMSD lb RMSD ub Hbond all 

Hbond 

ligand 

atoms 

Hbond 

receptor 

atoms 

-10.3 0.0 0.0 2 1 2 

-9.8 1.728 4.163 2 1 2 

-9.5 2.085 4.019 2 1 2 

-9.3 2.11 4.93 3 2 2 

-9.1 1.517 3.964 2 1 2 

-8.7 2.03 4.244 2 1 2 

-8.7 1.651 3.856 2 1 2 

-8.4 1.941 4.395 0 0 0 

-8.2 1.776 2.705 0 0 0 
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Figure A 2.7 Molecular docking model of PfHGXPRT with artemisinin 
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Appendix 3 

Comparative genomics 

A3.1 Sequencing read summary 

Table A3.1 Trimmed reads summary 
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LI
M

S2
20

8 

TE616 R0 264155 100 85.9 24.7 2 41 34.6 6.7 39.3 11.4 10.7 38.2 0.2 

R1 10977540 100 95.4 14.9 2 41 37 5.6 40.2 10 10.2 39.2 0.4 

R2 10977540 100 93.9 17.4 2 41 37.3 5 40.7 10 10.3 39 0 

TE1201 R0 270284 100 85 25.4 2 41 34.4 6.8 38.3 12 10.7 38.8 0.2 

R1 12050734 100 95.7 14.4 2 41 37 5.7 39.2 10.7 10.6 39.2 0.4 

R2 12050734 100 94.5 16.5 2 41 37.3 5 39.7 10.6 10.7 39 0 

TE1211 R0 596719 100 86.8 24.1 2 41 34.4 6.8 36.8 13.8 12.3 37 0.2 

R1 27788412 100 95.9 14.2 2 41 36.9 5.7 38.4 11.5 11.4 38.3 0.4 

R2 27788412 100 94.7  16.2 2 41 37.2 5.1 38.9 11.5 11.5 38.2 0 

TE1389 R0 222182 100 84.8 25.7 2 41 34.4 6.9 37.5 12.9 11.7 37.6 0.2 

R1 9091159 100 95.5 14.8 2 41 36.9 5.7 38.7 11.1 11 38.7 0.4 

R2 9091159 100 94.3 16.8 2 41 37.3 5 39.2 11.1 11.1 38.6 0 
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TE1411 R0 382010 100 86.4 24.6 2 41 34.7 6.8 36.7 13.9 12.8 36.3 0.2 

R1 13022321 100 95.5 14.8 2 41 36.8 5.8 38.2 11.9 11.8 37.7 0.4 

R2 13022321 100 94.5 16.6 2 41 37.2 5.1 38.5 11.9 11.9 37.7 0 

TE1419 R0 278956 100 86 24.8 2 41 34.6 6.7 39.4 11.3 10.6 38.5 0.2 

R1 11194907 100 95.4 14.9 2 41 37 5.6 39.9 10.2 10.3 39.2 0.4 

R2 11194907 100 94 17.4 2 41 37.3 5 40.5 10.2 10.4 39 0 

TE1432 R0 401561 100 86 24.8 2 41 34.6 6.8 38.7 11.8 10.8 38.4 0.2 

R1 16878116 100 95.5 14.8 2 41 37 5.7 39.4 10.5 10.5 39.1 0.4 

R2 16878116 100 94.2 17 2 41 37.3 5 39.9 10.5 10.7 38.9 0 

TE1439 R0 292244 100 85.8 24.9 2 41 34.5 6.8 38.4 12.1 11 38.3 0.2 

R1 11541471 100 95.6 14.7 2 41 36.9 5.7 38.9 11 10.9 38.8 0.4 

R2 11541471 100 94.4 16.7 2 41 37.2 5 39.5 11 11.1 38.4 0 

TE1475 R0 356017 100 86.4 24.5 2 41 34.7 6.7 38.7 11.8 10.9 38.4 0.2 

R1 13325079 100 95.7 14.5 2 41 36.9 5.7 39.1 10.9 10.8 38.8 0.4 

R2 13325079 100 94.5 16.6 2 41 37.3 5 39.5 10.9 11 38.6 0 

LI
M

S4
91

3 TE1304 R0 164219 100 89.1 22.3 2 41 35.9 6.1 37.2 12.9 11.6 38.3 0 

R1 8605982 100 95.8 14.3 2 41 37.6 4.7 39.1 10.9 10.8 39.3 0 

R2 8605982 100 95.3 15.1 2 41 37.7 4.6 39.7 10.8 10.8 38.7 0 
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R0 278406 100 84.3 24.6 2 41 34.6 6.2 39 10 8.5 42.5 0 

R1 12656341 100 95.7 14.2 2 41 37.3 4.7 40.8 9.5 9.3 40.4 0 

R2 12656341 100 93.6 18 2 41 37 5 41.5 9.5 9.4 39.6 0 

TE1328 R0 246638 100 90.9 20.7 2 41 36 6 36.6 13.5 11.7 38.2 0 

R1 12854121 100 96.8 12.6 2 41 37.7 4.6 38.5 11.2 11.1 39.2 0 

R2 12854121 100 95.9 14.2 2 41 37.8 4.6 39.1 11.1 11.1 38.6 0 

R0 421340 100 84.9 24 2 41 34.6 6.1 38.8 10.2 8.6 42.4 0 

R1 19783597 100 96.1 13.5 2 41 37.3 4.7 40.4 9.7 9.4 40.5 0 

R2 19783597 100 94 17.5 2 41 37 5 41.1 9.6 9.6 39.7 0 

TE1368 R0 271644 100 89 22.6 2 41 35.8 6.1 36.2 14.2 12.3 37.3 0 

R1 12303744 100 96.1 13.9 2 41 37.6 4.8 38.1 11.7 11.7 38.5 0 

R2 12303744 100 95.4 15 2 41 37.6 4.7 38.7 11.7 11.6 38 0 

R0 429962 100 84.8 24.2 2 41 34.5 6.2 38.3 10.9 9.1 41.7 0 

R1 17085191 100 95.9 13.8 2 41 37.2 4.7 40.1 10.2 9.9 39.9 0 

R2 17085191 100 93.6 18 2 41 36.9 5.1 40.8 10.1 10 39.1 0 

TE1373 R0 149981 100 89.3 22.1 2 41 35.9 6 37.6 12.5 11.2 38.6 0 

R1 8269167 100 95.8 14.3 2 41 37.7 4.7 39.4 10.5 10.5 39.5 0 

R2 8269167 100 95.2 15.3 2 41 37.8 4.6 40.1 10.5 10.6 38.8 0 
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R0 273857 100 84 24.8 2 41 34.7 6.1 39.4 9.5 8.2 42.9 0 

R1 12836726 100 95.6 14.4 2 41 37.3 4.7 41.2 9.2 9 40.6 0 

R2 12836726 100 93.5 18.2 2 41 37.1 5 42 9.1 9.2 39.7 0 

TE1432 R0 157838 100 89.7 21.9 2 41 35.9 6.1 37.2 13.1 11.7 38 0 

R1 7978437 100 96 14 2 41 37.6 4.7 39 10.9 11 39.1 0 

R2 7978437 100 95.4 14.9 2 41 37.7 4.7 39.7 10.9 11.1 38.3 0 

R0 280284 100 84.7 24.3 2 41 34.6 6.1 39.2 10 8.6 42.2 0 

R1 12624168 100 95.7 14.2 2 41 37.3 4.7 40.8 9.5 9.3 40.3 0 

R2 12624168 100 93.6 18 2 41 37 5 41.7 9.4 9.5 39.4 0 

TE1435 R0 293041 100 91 20.6 2 41 36 6 36.5 13.5 11.7 38.2 0 

R1 14524603 100 96.9 12.5 2 41 37.7 4.7 38.3 11.3 11.2 39.2 0 

R2 14524603 100 96 14 2 41 37.7 4.7 38.9 11.3 11.3 38.5 0 

R0 479907 100 85 24.1 2 41 34.5 6.2 38.8 10.5 8.7 42.1 0 

R1 21927102 100 96.1 13.4 2 41 37.3 4.7 40.2 9.8 9.6 40.4 0 

R2 21927102 100 94.1 17.4 2 41 37 5 40.9 9.8 9.7 39.6 0 

TE1436 R0 230412 100 88.4 23 2 41 35.9 6 37.5 12.4 11.8 38.2 0 

R1 10986472 100 95 15.4 2 41 37.5 4.8 39.3 10.7 10.8 39.2 0 

R2 10986472 100 94.8 15.8 2 41 37.7 4.7 40 10.7 10.8 38.5 0 
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R0 372670 100 84.3 24.8 2 41 34.8 6.1 39.1 9.9 8.7 42.3 0 

R1 15488183 100 95.5 14.5 2 41 37.2 4.7 40.8 9.6 9.6 40 0 

R2 15488183 100 93.4 18.2 2 41 37 5 41.6 9.6 9.7 39.1 0 

Note R0 is unpaired read, R1 and R2 are forward and reverse paired-reads, respectively.   
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A3.2 Read coverage 

Read coverage was calculated as; 

 

(𝑅1 + 𝑅2) × 𝑋̅𝑅1𝑅2

𝐺𝑒𝑛𝑜𝑚𝑒 𝑠𝑖𝑧𝑒  

 

Where genome size is 22,900,000 bp. 

 

Table A3.2 Read coverage for each sample 

Sample Read Coverage (%) 

TE616 90.74447 

TE1201 100.0895 

TE1211 231.287 

TE1389 75.34943 

TE1411 108.0455 

TE1419 92.59019 

TE1432 139.8157 

TE1439 95.75893 

TE1475 110.6738 

TE1304 
71.81673 

104.6221 

TE1328 
108.1655 

164.2298 

TE1368 
102.8894 

141.3818 

TE1373 
68.96991 

106.0011 

TE1432 
66.6844 

104.3561 

TE1435 
122.3492 

182.1194 

TE1436 
91.05818 

127.7606 
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A3.3 Read mapping coverage 

The read mapping coverage was calculated by BOWTIE2 and reported in BOWTIE stat file. 

 

TE616 

10977540 reads; of these: 

  10977540 (100.00%) were paired; of these: 

    1015848 (9.25%) aligned concordantly 0 times 

    8667646 (78.96%) aligned concordantly exactly 1 time 

    1294046 (11.79%) aligned concordantly >1 times 

    ---- 

    1015848 pairs aligned concordantly 0 times; of these: 

      389301 (38.32%) aligned discordantly 1 time 

    ---- 

    626547 pairs aligned 0 times concordantly or discordantly; of these: 

      1253094 mates make up the pairs; of these: 

        858139 (68.48%) aligned 0 times 

        231410 (18.47%) aligned exactly 1 time 

        163545 (13.05%) aligned >1 times 

96.09% overall alignment rate 

 

TE1201 

12050734 reads; of these: 

  12050734 (100.00%) were paired; of these: 

    1089637 (9.04%) aligned concordantly 0 times 

    9538048 (79.15%) aligned concordantly exactly 1 time 

    1423049 (11.81%) aligned concordantly >1 times 

    ---- 

    1089637 pairs aligned concordantly 0 times; of these: 

      593953 (54.51%) aligned discordantly 1 time 

    ---- 

    495684 pairs aligned 0 times concordantly or discordantly; of these: 

      991368 mates make up the pairs; of these: 

        408100 (41.17%) aligned 0 times 

        357402 (36.05%) aligned exactly 1 time 

        225866 (22.78%) aligned >1 times 

98.31% overall alignment rate 
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TE1211 

27788412 reads; of these: 

  27788412 (100.00%) were paired; of these: 

    2770231 (9.97%) aligned concordantly 0 times 

    22001621 (79.18%) aligned concordantly exactly 1 time 

    3016560 (10.86%) aligned concordantly >1 times 

    ---- 

    2770231 pairs aligned concordantly 0 times; of these: 

      496302 (17.92%) aligned discordantly 1 time 

    ---- 

    2273929 pairs aligned 0 times concordantly or discordantly; of these: 

      4547858 mates make up the pairs; of these: 

        4053423 (89.13%) aligned 0 times 

        271589 (5.97%) aligned exactly 1 time 

        222846 (4.90%) aligned >1 times 

92.71% overall alignment rate 

 

TE1304 

21262323 reads; of these: 

  21262323 (100.00%) were paired; of these: 

    5573327 (26.21%) aligned concordantly 0 times 

    13573208 (63.84%) aligned concordantly exactly 1 time 

    2115788 (9.95%) aligned concordantly >1 times 

    ---- 

    5573327 pairs aligned concordantly 0 times; of these: 

      3094753 (55.53%) aligned discordantly 1 time 

    ---- 

    2478574 pairs aligned 0 times concordantly or discordantly; of these: 

      4957148 mates make up the pairs; of these: 

        1983178 (40.01%) aligned 0 times 

        1934555 (39.03%) aligned exactly 1 time 

        1039415 (20.97%) aligned >1 times 

95.34% overall alignment rate 

 

TE1328 



 

244 
 

32637718 reads; of these: 

  32637718 (100.00%) were paired; of these: 

    1581027 (4.84%) aligned concordantly 0 times 

    27087844 (83.00%) aligned concordantly exactly 1 time 

    3968847 (12.16%) aligned concordantly >1 times 

    ---- 

    1581027 pairs aligned concordantly 0 times; of these: 

      693492 (43.86%) aligned discordantly 1 time 

    ---- 

    887535 pairs aligned 0 times concordantly or discordantly; of these: 

      1775070 mates make up the pairs; of these: 

        1027722 (57.90%) aligned 0 times 

        441018 (24.85%) aligned exactly 1 time 

        306330 (17.26%) aligned >1 times 

98.43% overall alignment rate 

 

TE1368 

29388935 reads; of these: 

  29388935 (100.00%) were paired; of these: 

    4996138 (17.00%) aligned concordantly 0 times 

    20720980 (70.51%) aligned concordantly exactly 1 time 

    3671817 (12.49%) aligned concordantly >1 times 

    ---- 

    4996138 pairs aligned concordantly 0 times; of these: 

      2475748 (49.55%) aligned discordantly 1 time 

    ---- 

    2520390 pairs aligned 0 times concordantly or discordantly; of these: 

      5040780 mates make up the pairs; of these: 

        2295015 (45.53%) aligned 0 times 

        1630959 (32.36%) aligned exactly 1 time 

        1114806 (22.12%) aligned >1 times 

96.10% overall alignment rate 

 

TE1373 

21105893 reads; of these: 

  21105893 (100.00%) were paired; of these: 
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    4620803 (21.89%) aligned concordantly 0 times 

    14333349 (67.91%) aligned concordantly exactly 1 time 

    2151741 (10.19%) aligned concordantly >1 times 

    ---- 

    4620803 pairs aligned concordantly 0 times; of these: 

      2611912 (56.53%) aligned discordantly 1 time 

    ---- 

    2008891 pairs aligned 0 times concordantly or discordantly; of these: 

      4017782 mates make up the pairs; of these: 

        1640599 (40.83%) aligned 0 times 

        1567983 (39.03%) aligned exactly 1 time 

        809200 (20.14%) aligned >1 times 

96.11% overall alignment rate 

 

TE1389 

9091159 reads; of these: 

  9091159 (100.00%) were paired; of these: 

    1500572 (16.51%) aligned concordantly 0 times 

    6601422 (72.61%) aligned concordantly exactly 1 time 

    989165 (10.88%) aligned concordantly >1 times 

    ---- 

    1500572 pairs aligned concordantly 0 times; of these: 

      582253 (38.80%) aligned discordantly 1 time 

    ---- 

    918319 pairs aligned 0 times concordantly or discordantly; of these: 

      1836638 mates make up the pairs; of these: 

        1246709 (67.88%) aligned 0 times 

        372883 (20.30%) aligned exactly 1 time 

        217046 (11.82%) aligned >1 times 

93.14% overall alignment rate 

 

TE1411 

13022321 reads; of these: 

  13022321 (100.00%) were paired; of these: 

    2763738 (21.22%) aligned concordantly 0 times 

    8958299 (68.79%) aligned concordantly exactly 1 time 
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    1300284 (9.99%) aligned concordantly >1 times 

    ---- 

    2763738 pairs aligned concordantly 0 times; of these: 

      549605 (19.89%) aligned discordantly 1 time 

    ---- 

    2214133 pairs aligned 0 times concordantly or discordantly; of these: 

      4428266 mates make up the pairs; of these: 

        3750837 (84.70%) aligned 0 times 

        425074 (9.60%) aligned exactly 1 time 

        252355 (5.70%) aligned >1 times 

85.60% overall alignment rate 

 

TE1419 

11194907 reads; of these: 

  11194907 (100.00%) were paired; of these: 

    1077527 (9.63%) aligned concordantly 0 times 

    8814137 (78.73%) aligned concordantly exactly 1 time 

    1303243 (11.64%) aligned concordantly >1 times 

    ---- 

    1077527 pairs aligned concordantly 0 times; of these: 

      611219 (56.72%) aligned discordantly 1 time 

    ---- 

    466308 pairs aligned 0 times concordantly or discordantly; of these: 

      932616 mates make up the pairs; of these: 

        360204 (38.62%) aligned 0 times 

        338219 (36.27%) aligned exactly 1 time 

        234193 (25.11%) aligned >1 times 

98.39% overall alignment rate 

 

TE1423 

16878116 reads; of these: 

  16878116 (100.00%) were paired; of these: 

    1801694 (10.67%) aligned concordantly 0 times 

    13056598 (77.36%) aligned concordantly exactly 1 time 

    2019824 (11.97%) aligned concordantly >1 times 

    ---- 
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    1801694 pairs aligned concordantly 0 times; of these: 

      992077 (55.06%) aligned discordantly 1 time 

    ---- 

    809617 pairs aligned 0 times concordantly or discordantly; of these: 

      1619234 mates make up the pairs; of these: 

        636092 (39.28%) aligned 0 times 

        584354 (36.09%) aligned exactly 1 time 

        398788 (24.63%) aligned >1 times 

98.12% overall alignment rate 

 

TE1432 

20602605 reads; of these: 

  20602605 (100.00%) were paired; of these: 

    4517564 (21.93%) aligned concordantly 0 times 

    13903087 (67.48%) aligned concordantly exactly 1 time 

    2181954 (10.59%) aligned concordantly >1 times 

    ---- 

    4517564 pairs aligned concordantly 0 times; of these: 

      2447466 (54.18%) aligned discordantly 1 time 

    ---- 

    2070098 pairs aligned 0 times concordantly or discordantly; of these: 

      4140196 mates make up the pairs; of these: 

        1655202 (39.98%) aligned 0 times 

        1581143 (38.19%) aligned exactly 1 time 

        903851 (21.83%) aligned >1 times 

95.98% overall alignment rate 

 

TE1435 

36451705 reads; of these: 

  36451705 (100.00%) were paired; of these: 

    1511582 (4.15%) aligned concordantly 0 times 

    30435822 (83.50%) aligned concordantly exactly 1 time 

    4504301 (12.36%) aligned concordantly >1 times 

    ---- 

    1511582 pairs aligned concordantly 0 times; of these: 

      610942 (40.42%) aligned discordantly 1 time 
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    ---- 

    900640 pairs aligned 0 times concordantly or discordantly; of these: 

      1801280 mates make up the pairs; of these: 

        1131747 (62.83%) aligned 0 times 

        373890 (20.76%) aligned exactly 1 time 

        295643 (16.41%) aligned >1 times 

98.45% overall alignment rate 

 

TE1436 

26474655 reads; of these: 

  26474655 (100.00%) were paired; of these: 

    15646532 (59.10%) aligned concordantly 0 times 

    9048895 (34.18%) aligned concordantly exactly 1 time 

    1779228 (6.72%) aligned concordantly >1 times 

    ---- 

    15646532 pairs aligned concordantly 0 times; of these: 

      9178412 (58.66%) aligned discordantly 1 time 

    ---- 

    6468120 pairs aligned 0 times concordantly or discordantly; of these: 

      12936240 mates make up the pairs; of these: 

        5046379 (39.01%) aligned 0 times 

        5451541 (42.14%) aligned exactly 1 time 

        2438320 (18.85%) aligned >1 times 

90.47% overall alignment rate 

 

TE1439 

11541471 reads; of these: 

  11541471 (100.00%) were paired; of these: 

    1603009 (13.89%) aligned concordantly 0 times 

    8593516 (74.46%) aligned concordantly exactly 1 time 

    1344946 (11.65%) aligned concordantly >1 times 

    ---- 

    1603009 pairs aligned concordantly 0 times; of these: 

      894900 (55.83%) aligned discordantly 1 time 

    ---- 

    708109 pairs aligned 0 times concordantly or discordantly; of these: 
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      1416218 mates make up the pairs; of these: 

        539362 (38.08%) aligned 0 times 

        533875 (37.70%) aligned exactly 1 time 

        342981 (24.22%) aligned >1 times 

97.66% overall alignment rate 

 

TE1475 

13325079 reads; of these: 

  13325079 (100.00%) were paired; of these: 

    1400361 (10.51%) aligned concordantly 0 times 

    10387800 (77.96%) aligned concordantly exactly 1 time 

    1536918 (11.53%) aligned concordantly >1 times 

    ---- 

    1400361 pairs aligned concordantly 0 times; of these: 

      762493 (54.45%) aligned discordantly 1 time 

    ---- 

    637868 pairs aligned 0 times concordantly or discordantly; of these: 

      1275736 mates make up the pairs; of these: 

        518827 (40.67%) aligned 0 times 

        459426 (36.01%) aligned exactly 1 time 

        297483 (23.32%) aligned >1 times 

98.05% overall alignment rate 
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A3.4 SNPEFF software 

The classification of SNP effect prediction by SNPEFF software was implemented from the VCF annotation 

standard ‘ANN’ field version 4.3a (28th October 2015) as follows; 

 

Table A3.3 SNP effect prediction 

Sequence Ontology Term 

HIGH chromosome_number_variation 

HIGH exon_loss_variant 

HIGH frameshift_variant 

HIGH rare_amino_acid_variant 

HIGH splice_acceptor_variant 

HIGH splice_donor_variant 

HIGH start_lost 

HIGH stop_gained 

HIGH stop_lost 

HIGH transcript_ablation 

MODERATE 3_prime_UTR_truncation+exon_loss 

MODERATE 5_prime_UTR_truncation+exon_loss_variant 

MODERATE coding_sequence_variant 

MODERATE disruptive_inframe_deletion 

MODERATE disruptive_inframe_insertion 

MODERATE inframe_deletion 

MODERATE inframe_insertion 

MODERATE missense_variant 

MODERATE regulatory_region_ablation 

MODERATE splice_region_variant 

MODERATE TFBS_ablation 

LOW 5_prime_UTR_premature start_codon_gain_variant 

LOW initiator_codon_variant 

LOW splice_region_variant 

LOW start_retained 

LOW stop_retained_variant 

LOW synonymous_variant 

MODIFIER 3_prime_UTR_variant 

http://sequenceontology.org/browser/current_svn/term/SO:1000182
http://sequenceontology.org/browser/current_svn/term/SO:0001572
http://sequenceontology.org/browser/current_svn/term/SO:0001589
http://sequenceontology.org/browser/current_svn/term/SO:0002008
http://sequenceontology.org/browser/current_svn/term/SO:0001574
http://sequenceontology.org/browser/current_svn/term/SO:0001575
http://sequenceontology.org/browser/current_svn/term/SO:0002012
http://sequenceontology.org/browser/current_svn/term/SO:0001587
http://sequenceontology.org/browser/current_svn/term/SO:0001578
http://sequenceontology.org/browser/current_svn/term/SO:0001893
http://sequenceontology.org/browser/current_svn/term/SO:0001580
http://sequenceontology.org/browser/current_svn/term/SO:0001826
http://sequenceontology.org/browser/current_svn/term/SO:0001824
http://sequenceontology.org/browser/current_svn/term/SO:0001822
http://sequenceontology.org/browser/current_svn/term/SO:0001821
http://sequenceontology.org/browser/current_svn/term/SO:0001583
http://sequenceontology.org/browser/current_svn/term/SO:0001894
http://sequenceontology.org/browser/current_svn/term/SO:0001630
http://sequenceontology.org/browser/current_svn/term/SO:0001895
http://sequenceontology.org/browser/current_svn/term/SO:0001582
http://sequenceontology.org/browser/current_svn/term/SO:0001630
http://sequenceontology.org/browser/current_svn/term/SO:0001567
http://sequenceontology.org/browser/current_svn/term/SO:0001819
http://sequenceontology.org/browser/current_svn/term/SO:0001624
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MODIFIER 5_prime_UTR_variant 

MODIFIER coding_sequence_variant 

MODIFIER conserved_intergenic_variant 

MODIFIER conserved_intron_variant 

MODIFIER downstream_gene_variant 

MODIFIER exon_variant 

MODIFIER feature_elongation 

MODIFIER feature_truncation 

MODIFIER gene_variant 

MODIFIER intergenic_region 

MODIFIER intragenic_variant 

MODIFIER intron_variant 

MODIFIER mature_miRNA_variant 

MODIFIER miRNA 

MODIFIER NMD_transcript_variant 

MODIFIER non_coding_transcript_exon_variant 

MODIFIER non_coding_transcript_variant 

MODIFIER regulatory_region_amplification 

MODIFIER regulatory_region_variant 

MODIFIER TF_binding_site_variant 

MODIFIER TFBS_amplification 

MODIFIER transcript_amplification 

MODIFIER transcript_variant 

MODIFIER upstream_gene_variant 

 

http://sequenceontology.org/browser/current_svn/term/SO:0001623
http://sequenceontology.org/browser/current_svn/term/SO:0001580
http://sequenceontology.org/browser/current_svn/term/SO:0002017
http://sequenceontology.org/browser/current_svn/term/SO:0002018
http://sequenceontology.org/browser/current_svn/term/SO:0001632
http://sequenceontology.org/browser/current_svn/term/SO:0001791
http://sequenceontology.org/browser/current_svn/term/SO:0001907
http://sequenceontology.org/browser/current_svn/term/SO:0001906
http://sequenceontology.org/browser/current_svn/term/SO:0001564
http://sequenceontology.org/browser/current_svn/term/SO:0000605
http://sequenceontology.org/browser/current_svn/term/SO:0002011
http://sequenceontology.org/browser/current_svn/term/SO:0001627
http://sequenceontology.org/browser/current_svn/term/SO:0001620
http://sequenceontology.org/browser/current_svn/term/SO:0000276
http://sequenceontology.org/browser/current_svn/term/SO:0001621
http://sequenceontology.org/browser/current_svn/term/SO:0001792
http://sequenceontology.org/browser/current_svn/term/SO:0001619
http://sequenceontology.org/browser/current_svn/term/SO:0001891
http://sequenceontology.org/browser/current_svn/term/SO:0001566
http://sequenceontology.org/browser/current_svn/term/SO:0001782
http://sequenceontology.org/browser/current_svn/term/SO:0001892
http://sequenceontology.org/browser/current_svn/term/SO:0001889
http://sequenceontology.org/browser/current_svn/term/SO:0001576
http://sequenceontology.org/browser/current_svn/term/SO:0001631
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A3.5 Genomic DNA library preparation 

Genomic DNA samples were summited to CGR, UoL, for sequencing. All the library preparation step was 

performed by the CGR members, Dr Pia Koldkjaer and Dr Anita Lucaci. DNA libraries were prepared by 

commercial kit, Illumina® TruSeq™ DNA sample preparation kit. Adapters, indexes, and primer 

sequences were ligated to fragmented DNA sample. Prepared libraries were measured by Agilent 2100 

Bioanalyzer for fragment lengths. Then the range of desired insertion sizes was determined for each 

sample. Next, size selection of prepared DNA libraries by gel-based assay, Pippen™ Prep (Sage Science) 

was performed to obtain desired length fragments, and confirmed by Agilent 2100 Bioanalyzer.  

 

During library preparation step, there were 6 and 5 PCR cycles involved for LIMS2208 and LIMS4913, 

respectively. Defined fragment length libraries for LIMS2208 and LIMS4319 were 420-650 bp and 400-

700 pb, respectively.  

 

Table A3.4 Illumina® quality scores 

Quality Score Error Probability 

Q40 0.0001 (1 in 10,000) 

Q30 0.001 (1 in 1,000) 

Q20 0.01 (1 in 100) 

Q10 0.1 (1 in 10) 
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A3.6 Comparative sequence analysis of IspG 

 

Figure A3.1 Protein sequence alignment comparison of IspG of Escherichia coli (ECOLI), Oryza sativa (BACAN), Aquifex 
aeolicus (AQUE), Plasmodium falciparum (PLAF7), and Arabidopsis thaliana (ARATH), from top to bottom. Sequence 
alignment was performed on Clustal Omega web server and coloured by Taylor conservation pattern. All compared 
protein sequences share similar domain A and B, while parasite (PLAF7) and plant (ARATH) have inserted domain in 
between.  
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Figure A3.2 Protein sequence comparison of parasites and plant IspG. From top to bottom, Chlorobium tepidum 
(CHLTE), Osornophryne guacamayo (LEPIG), Plasmodium falciparum (PLAF7), Babesia bovis (BABBO), Thalassiosira 
pseudonana (THAPS), Physcomitrella patens subspecies patens (PHYPA), Oryza sativa subspecies japonica (ORYSJ), 
Ginkgo biloba (GINBI), and Arabidopsis thaliana (ARATH). Sequence alignment was performed on Clustal Omega web 
server and coloured by Taylor conservation pattern. Conservation pattern shows that domain A and B are highly 
conserved among all species while domain A* is less conserved among all species.  
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