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Abstract 
Liver flukes are helminth parasites of ruminants which cause economic losses and adverse 

effects on animal welfare. The common liver fluke Fasciola hepatica is prevalent in 

temperate regions, including the UK where up to 80% of dairy herds are exposed to the 

parasite, whilst the tropical liver fluke, F. gigantica, is found in tropical climates. Both flukes 

require an intermediate snail host to complete their life cycle, and this determines where 

infection occurs. Liver fluke is challenging to control, especially in dairy cattle.  

Chronic liver fluke infection moderates the host immune system towards a non- protective 

T helper cell type 2 (Th2) / regulatory T cell (Treg) response, characterised by IgG, IL4 and 

IL10, which suppress T helper cell type 1 (Th1) cytokines such as interferon (IFNγ). Previous 

studies have shown that this may affect the pathogenesis and diagnosis of other diseases, 

particularly bovine tuberculosis (bTB). However, most studies have been performed in 

experimentally infected animals under laboratory conditions, and the importance of the 

findings have not been verified in naturally infected cattle. The aims of this thesis were to 

investigate the effects of fluke infection on two mycobacterial diseases, bTB and Johne’s 

disease, and on the food poisoning bacterium Eschericia coli O157. 

Chapter 2 describes the dynamics of F. hepatica exposure in UK herds as measured by 

antibody detection ELISA. Individual results from 5937 cattle from 30 herds and 24 bulk 

milk tank results are used. The distributions of the antibody percent positivity (PP) values 

were right-skewed for all herds. The bulk milk result correlated with individual results. A 

significant effect of season was seen, but age was not significantly associated with antibody 

levels, both of which are in agreement with other recent studies.  

Chapter 3 contains the results of cross sectional and case-control studies looking at the 

association between liver fluke exposure with the bTB skin test. A comparison of IgG 

isotype ratios between fluke positive cattle testing positive and negative for bTB is also 

included. No significant effect was seen, but these studies were underpowered due to 

difficulties in obtaining samples. Overall there was a trend that fluke antibodies were 

associated with a decrease in the odds ratio (OR) of a positive bTB skin test. 

Chapter 4 is a systematic review of the literature on co-infection with liver fluke and 

tuberculosis. We extracted data on the association between fluke infection and the bTB 

skin test, interferon gamma test, lesion detection and culture/bacterial recovery. Evidence 

from nine studies included in the review points to liver fluke infection having the effect of 
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decreasing all of the four measures of bTB diagnosis, but most studies showed a small 

and/or non-significant effect, and there was a high risk of bias across all studies.  

In Chapter 5, the hypothesis that there is an association between F. hepatica and 

Mycobacterium paratuberculosis subsp. avium (MAP, which causes Johne’s disease) was 

tested. The spatial distribution of MAP was examined using MAP antibody results from 

885606 cows from 1245 herds, but no spatial pattern was seen.  3766 samples from 17 

herds were tested for MAP antibody and F. hepatica antibody. Subsequently six farms were 

followed longitudinally for 1 year and up to four samples for each animal were obtained. 

No association between the two pathogens was found using any of these approaches.  

Chapter 6 describes a study on co-infection between fluke and E. coli O157 in finishing 

cattle. A significant association between the log PP of the F. hepatica copro-antigen ELISA 

and E. coli O157 shedding was found when the fixed effects of day of sampling and the age 

of the youngest animal in the group, and the random effect of farm were adjusted for, 

although the result should be interpreted cautiously due to the many study limitations, 

particularly a very low level of fluke infection. The effect of this association was that a 

change from the 25th quartile of F. hepatica PP to the 75th quartile corresponded with a 

6.7% increased OR of E. coli O157 shedding (p = 0.01). 

Overall, these findings suggest that fluke infection may have an effect on bTB and E. coli 

O157 in naturally exposed animals, although conclusive evidence was lacking. Subtle effects 

may be obscured in field studies due to the large amount of natural variation between 

animals, and many unknown factors may introduce bias.  Concentrating research on 

particular subgroups of animals that may be disproportionately at risk of adverse effects of 

co-infection, and evaluating immune profiles alongside diagnostic measures, may help to 

provide more certain evidence.   
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Chapter 1: Introduction 

1.1 General introduction 
Animals have co-evolved with parasites, bacteria and viruses over millennia. These 

interactions are complex, with the effects on the host depending on many different intrinsic 

and extrinsic factors such as genetics, nutrition, age, reproductive state and environmental 

conditions. Parasites, bacterial and viral micro-organisms can alter host immunity and even 

host behaviour to increase their own chances of survival.  

In farmed animals, intensive conditions, lack of genetic variation, large numbers of animals 

being kept closely confined together and the stresses of production can increase 

susceptibility to infectious disease. Up until recently, this problem has been dealt with by 

the use of antimicrobial and parasitic drug treatments combined with vaccines and 

mandatory control programmes for certain diseases. The growing world demand for food 

combined with increasing resistance to antimicrobial and antiparasitic treatments make it 

important to find new ways of reducing the burden of parasitic and infectious disease in 

livestock.  

A significant proportion of animals that are infected with one pathogen are also co-infected 

with others, whether these are helminth parasites, viruses, bacteria or protozoa. These 

pathogens can have effects on each other,  either directly or through the host’s immune 

system, and can alter the transmission of disease, disease progression, clinical presentation 

and response to diagnostic tests (Cox, 2001; Griffiths et al., 2011). In a recent review, co-

infection was found to be detrimental to the host and was associated with an increased 

intensity of infection in most cases (Griffiths et al., 2011). Understanding the effects of 

parasite infestation on other co-infecting organisms should help to develop targeted 

control programmes that are more effective and better for overall health than the current 

approach where each infectious agent is treated in isolation (Griffiths et al., 2011).  

Studies on co-infections can be performed under laboratory conditions with standardised 

timings and doses of infectious agents, to minimise the risk of unknown biases interfering 

with results. However, there is the risk that the chosen conditions will not be the same as 

those that wild or farmed animals face. Under natural conditions, the order in which 

animals are exposed to each pathogen and the length of time between exposures are 

unknown. Repeated exposure to the same pathogens in varying doses and possibly via 
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different routes is likely to occur, and may affect the observed outcome. Consequently, 

study of naturally exposed populations is necessary to confirm laboratory observations, 

even though much greater variation occurs in naturally exposed populations, making subtle 

effects more difficult to recognise.  

Recently there has been interest in co-infections with the liver fluke Fasciola hepatica, 

because evidence from studies of experimentally infected animals have suggested that 

fluke infection reduces the sensitivity of the skin test used in cattle to detect bovine 

tuberculosis (Claridge et al., 2012; Flynn et al., 2007), and may also have an effect on the 

pathogenesis of the disease (Garza-Cuartero et al., 2016).  

In this thesis, the epidemiological association is examined between liver fluke and 

Mycobacterium bovis, and between liver fluke and two other infectious agents, 

Mycobacterium paratuberculosis subsp. avium, and Escherichia coli O157, in naturally 

exposed cattle.  

1.2 The liver fluke Fasciola hepatica 

1.2.1 Life cycle 

Fasciola hepatica, also known as the common liver fluke, is a trematode parasite. Adult liver 

flukes reside in the bile ducts and gall bladder of the definitive host, usually a ruminant 

although other species, including man, can also become infected. Fluke eggs are produced 

following self- or cross-fertilisation and are passed out onto pasture. Following 

embryonation, each egg produces a single miracidium which must find its way into the 

body of the intermediate snail host, Galba truncatula, within 24 hours (Graczyk and Fried, 

1999). Asexual replication occurs within the snail, giving rise to redia which become 

cercariae and are shed from the snail (Graczyk and Fried, 1999). These then encyst as 

metacercariae on plants, and may remain infectious for several months, depending on 

conditions (Andrews, 1999). The definitive host becomes infected by eating infected grass 

or other plants. Metacercariae excyst in the small intestine and migrate to the liver 

parenchyma where they take 6-8 weeks to mature (Andrews, 1999).  

1.2.2 Epidemiology of Fasciola hepatica  

Two distinct patterns of disease are seen in the UK. Large numbers of metacercariae appear 

on pasture in late summer and autumn, when sufficient weeks of warm weather have 

passed to allow completion of the development of parasite stages on the pasture and 
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within the snail intermediate host.  Acute fasciolosis is caused by juvenile fluke migrating 

through the liver parenchyma, and is seen 6-8 weeks after the ingestion of large numbers of 

metacercariae (Behm and Sangster, 1999). Acute disease is uncommon in cattle, but when 

it occurs is seen in autumn and early winter (Torgerson and Claxton, 1999). Clinical signs 

include anaemia, lethargy, dyspnoea and sudden death.  

Chronic fasciolosis is seen 4-5 months after ingestion of smaller numbers of metacercariae 

(Behm and Sangster, 1999) and is associated with adult fluke in the bile ducts. Typical signs 

include loss of condition, anaemia, submandibular oedema, ascites, decreased milk yield, 

and fibrosis and calcification of the bile ducts may be seen at post mortem. Chronic disease 

is seen in winter and early spring (Torgerson and Claxton, 1999). Additionally, sub clinical 

infections in cattle are common, and may result in considerable reduction in growth rates 

and milk production (Charlier et al., 2012, 2007; Howell et al., 2015; Mezo et al., 2011; 

Sanchez-Vazquez and Lewis, 2013; Schweizer et al., 2005). 

Recent studies have shown that 40-80% of dairy herds across the UK are infected, 

depending on region (McCann et al., 2010; Salimi-Bejestani et al., 2005a). The parasite is 

also prevalent in beef animals with 16.5% of livers being condemned due to infection in 

2015 (Ford and Hadley, 2015). 

Galba truncatula requires a specific habitat of damp, neutral to mildly acidic soil which is 

found in specific localised areas (Torgerson and Claxton, 1999). Parasite and intermediate 

host survival and development is favoured by mild, damp weather (Ollerenshaw and 

Rowlands, 1959). Therefore, the location of suitable snail habitats governs the range and 

distribution of the parasite, whilst weather and season influence the annual pattern of 

disease and year-to year variations in incidence (Bennema et al., 2011; Charlier et al., 2011; 

Graczyk and Fried, 1999). The effects of longer term climate change are difficult to predict, 

but it is likely that the seasonality and parasite burdens of fluke will be altered (Fox et al., 

2011; Morgan and Wall, 2009). 

Risk factors for fasciola hepatica infection in temperate climates at the herd level have been 

studied in dairy herds. Positive risk factors include being in an area of higher rainfall and 

with higher minimum temperatures, grazing on  damp or boggy pasture, access to a stream 

or pond, increased length of grazing season or proportion of grass in the diet, grazing 

improved pastures with a lower soil pH, grazing non-sloping pastures and being at a higher 

altitude (Bennema et al., 2011; Howell et al., 2015; McCann et al., 2010). Infection risk is 

highest in late summer/autumn and the highest numbers of diagnostic submissions occur in 
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winter (VIDA). However, antibody levels may remain high all year on farms with high 

selection pressure (Duscher et al., 2011). These risk factors reflect the risk of exposure 

directly or by intermediate host habitats. Presence of beef cattle on farm, smaller herd sizes 

and buying in cattle have also been associated with increased risk (Howell et al., 2015; 

McCann et al., 2010; Olsen et al., 2011). These are probably a reflection of general disease 

risks in different management systems. Treatment for liver fluke is strongly associated with 

presence of antibodies at the herd level, reflecting the fact the farmers are more likely to 

treat their animals if fluke is a problem (Broughan et al., 2009; Howell et al., 2015). 

Individual risk factors are not fully understood. Increasing age is not thought to be 

protective against fluke (Gonzalez-Lanza et al., 1989; Yildirim et al., 2007). Breed is difficult 

to separate from management effects, but one study suggested that dairy cattle are more 

likely to have fluke infection than beef cattle (DEFRA, 2005). Females have been found to 

be more likely to have liver fluke, but again this could be due to management differences 

(Affroze et al., 2013; Yildirim et al., 2007). Treatment for fluke should be protective at the 

individual level, although the antibody levels take several weeks to reduce and the risk of 

re-infection may be high, meaning that antibody levels may be high in treated animals 

(Salimi-Bejestani et al., 2005b). The effects of pregnany and lactation are not yet known.   

1.2.3 Diagnosis  

Fasciola hepatica can be diagnosed by faecal egg count, antibody detection in milk or 

serum, faecal antigen detection and post mortem by liver inspection. On dairy farms, bulk 

milk antibody detection is a convenient way of screening the whole herd (Bennema et al., 

2009; Duscher et al., 2011; Salimi-Bejestani et al., 2005b). Tests which detect antibodies can 

detect infection at an early stage, from 2-4 weeks post infection (Salimi-Bejestani et al., 

2005b), whereas eggs in faeces are only detectable after the pre-patent period which lasts 

around 7-10 weeks. Antibody tests are more sensitive than egg detection, so are more 

useful as a screening tool, but do not necessarily indicate a current infection, as antibody 

levels can remain high for several weeks after treatment. Table 1.1 shows the relative 

merits of each type of diagnostic test.  
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Table 1.1  A summary of the performance of some of the tests commonly used to 

diagnose liver fluke infection in cattle 

Test Sensitivity Specificity Comments References 

Faecal egg 
count 

43-65% 90-100% Does not become positive 
until 7-10 weeks 
following infection. 
Sensitivity depends on 
egg count and weight of 
faeces used. Most 
methods are based on 
sedimentation 

(Charlier et al., 
2008) 

Serology  79-95% 80-93% Can detect infection 2-4 
weeks post infection 
Remains positive for 
several weeks after cure 

(Charlier et al., 
2008; Salimi-
Bejestani et al., 
2005b) 

Milk antibody 
detection 

92%  
96% 

88% 
80% 

Individual 
Herd 

(Salimi-
Bejestani et al., 
2007, 2005b) 

Copro-antigen 
ELISA 

40-98% 92-94% Detects infection 6-8 
weeks post infection, 
Returns to negative 1-2 
weeks post treatment 

(Brockwell et 
al., 2013; 
Charlier et al., 
2008; Duscher 
et al., 2011) 

Post mortem 
diagnosis 

63-93% 100% Sensitivity varies: Lower 
at meat inspection, 
higher if liver is sliced up 
and soaked 

(Rapsch et al., 
2006) 

 

For all methods, sensitivity tends to be worse in animals harbouring only a light infection, 

where a missed diagnosis is likely to be of least importance (Vercruysse and Claerebout, 

2001). Specificity is good for all fluke diagnostic tests, with the milk antibody ELISA being 

the worst at around 80-88% specificity.  

1.2.4 Treatment and control 

Control of F. hepatica is aimed at limiting parasite burden in individual animals, and 

reducing contamination of pasture. Drugs active against F. hepatica licensed for use in 

cattle include albendazole, oxyclozanide, clorsulon, closantel and triclabendazole, all of 

which are at least partially active against the adult stages. Of these, only triclabendazole is 

active against all stages of the parasite whilst nitroxynil and closantel are active against the 

adult and juvenile stages.  Treatment of dairy cattle is restricted to three drench options: 

triclabendazole which cannot be used within 45 days of calving, closantel which cannot be 

used within 60 days of calving, or oxyclosanide or albendazole, which have a 72 and 60 hour 

milk withhold respectively and are not effective against juvenile stages. Cattle should be 
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treated at housing to prevent immediate re-infection, making things difficult if this does not 

co-incide with drying off (COWS, 2016). Fluke that are resistant to triclabendazole and 

albendazole have been identified, and triclabendazole resistance in particular is a major 

problem as there is no alternative drug available to treat acute fascioliosis (Gordon et al., 

2012; Sanabria et al., 2013; Sargison et al., 2010; Sargison, 2012; Sargison and Scott, 2011).  

Snail control is not practised in the UK due to the lack of an environmentally suitable and 

effective agent. Pasture management measures can be effective on many farms, although 

programmes need to be designed on a farm-specific basis  (Knubben-Schweizer et al., 

2010). Methods include avoiding risky pastures at certain times of year and fencing off snail 

habitats (Knubben-Schweizer et al., 2010). These can be difficult to implement, depending 

on the range of grazing available on individual farms. There are currently many unknowns 

concerning the distribution of metacercariae on pasture, the limits of snail habitats and 

other snail-related aspects of liver fluke transmission. Refinement of pasture management 

methods may be possible in the future, as our understanding of these areas improves  

(Knubben-Schweizer et al., 2010; Roberts and Suhardono, 1996).  

1.2.5 Immunology 

1.2.5.1 General immunology 

The innate immune system is the first line of defence against invading pathogens. The cells 

of the innate immune system, including macrophages, mast cells and dendritic cells, 

recognise conserved pathogen associated molecular patterns (PAMPs), and initiate an 

inflammatory response by releasing the cytokines tumour necrosis factor (TNF)α, 

interleukin (IL)1 and IL6. This serves to enable other immune cells present in peripheral 

circulation, such as neutrophils, monocytes and eosinophils, to access the site by increasing 

blood flow and the permeability of blood vessels. Chemokines produced by macrophages 

attract these immune cells to the area. Activation of the complement system stimulates 

phagocytosis of the pathogen by neutrophils and macrophages.  These responses are 

generic and act to protect the host during the first few hours or days of infection, before 

the adaptive immune system is fully activated. However, the response is not appropriate 

for every type of pathogen, and in some cases can assist the pathogen in invading the body 

(Tizard, 2013).  

B and T lymphocytes are the cells of the adaptive immune system. The innate immune 

system is required to activate these cells, and this is done by the antigen presenting cells 
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including macrophages and dendritic cells. Antigen is presented to helper T (Th) cells, which 

then activate and regulate other parts of the adaptive immune response. Th cells express 

CD4 and CD25. Each Th cell has a unique antigen specific receptor, and when activated, 

undergoes clonal expansion.  Th cells act within lymph nodes to activate other T cells and B 

cells, and also travel via the vascular system around the rest of the body  (Tizard, 2013).  

Two main types of Th cell response occur, depending, amongst other things, on the type of 

pathogen and the chronicity of infection: Th1 and Th2. Th1 cells are primarily responsible 

for pro-inflammatory and cell mediated immune responses, and produce IL2 and interferon 

(IFN) γ. These cytokines activate CD8+ cytotoxic T cells, which induce the death of 

pathogen-infected cells, and, in cattle, stimulate IgG2 production by B cells. They  also 

induce the classical activation of macrophages (Spellberg and Edwards, 2001). Classically 

activated macrophages attack pathogens by phagocytosis and production of oxidative free 

radicals, and secrete pro-inflammatory cytokines including TNFα, IL12 and IL18. Th1 

responses are generally referred to as cell-mediated immunity, and through the 

upregulation of IFN γ and induction of cytotoxic T cells, are more effective against 

intracellular pathogens (Tizard, 2013).  

Th2 cells produce IL4 and IL5 which induce eosinophils and activate humoral immunity by 

stimulating B cells to produce antibodies including IgG1, IgA and IgE (Falcon et al., 2010; 

Moreau and Chauvin, 2010). Antibodies bind to antigens, enabling complement fixation and 

killing of the pathogen by neutrophils, macrophages or eosinophils, termed antibody 

dependent cellular cytotoxicity (ADCC). Macrophages become activated via an alternative 

pathway in the presence of IL4 (Anthony et al., 2006). These alternatively activated 

macrophages exhibit reduced free radical and inflammatory cytokine production, and 

suppress Th1 responses through the production of IL10 (Flynn and Mulcahy, 2008). They 

have strong anti-inflammatory effects and contribute to fibrosis and repair of tissue 

damage. The Th2 response also mediates changes in the epithelial barrier which 

contributes to immunity to helminth parasites. Goblet cells increase mucus production and 

epithelial cells increase their permeability so that more fluid is excreted into the gut lumen. 

These combined with the increased contractility of smooth muscle aid in removing 

parasites from the gut (Gause et al., 2003).  

Th2 immune responses are associated with infection with extracellular pathogens and are 

also seen in chronic infections, where they are associated with the failure of immune 

control and escalation of clinical disease in some conditions (Begg et al., 2011). 
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Although either a Th1 or Th2 response usually predominates, they are not mutually 

exclusive and interact together and with other T cell types. γδT cells constitute around 20% 

of circulating lymphocytes in adult cattle (McGill et al., 2014). These have both innate and 

adaptive immune roles, and can present antigen and upregulate Th cells (Price and Hope, 

2009). γδT cells expressing workshop cluster (WC) 1.1 produce inflammatory cytokines and 

can be directly cytotoxic as part of the adaptive immune response (Rogers et al., 2005). WC 

1.2+ γδT  cells have a regulatory function which is mediated through the production of IL10 

and transforming growth factor (TGF)β, as well as through other independent pathways 

which suppress Th1, Th2 and Th17 responses (Hoek et al., 2009; Moreau and Chauvin, 

2010). This reduces tissue damage by regulating pro-inflammatory responses which 

otherwise would be deleterious to the host in chronic conditions (McCole et al., 1999). 

These WC 1.2+ γδT cells have the same function as human or mouse regulatory T cells 

expressing CD25, CD4 and a specialised transcription factor, FoxP3. In cattle, 

CD25+CD4+FoxP3+ cells are found, but do not have a regulatory function (Hoek et al., 

2009). Th17 cells have pro-inflammatory effects , secrete IL17, require TGFβ for activation, 

and are involved in defence against extracellular microparasites,  regulation of immune 

tolerance, and are also associated with immunopathology (Ma et al., 2014; Weaver et al., 

2006). Cattle have two types of IL17 producing cells, as in addition to Th17 cells found in 

mice and humans, their WC1.1+ϒδ T cells can also be induced to secrete IL17 (Peckham et 

al., 2014).  

Other factors can also affect the Th1/Th2 balance, for example high progesterone levels in 

pregnant cattle have been shown to suppress Th1/Th17 immunity and upregulate Th2 

immunity (Maeda et al., 2013). Similarly, high levels of glucocorticoids, whether of 

endogenous origin due to stress or resulting from exogenous corticosteroid administration, 

can also lead to a Th2 shift (Elenkov, 2004).  

1.2.5.2 Fluke specific immunology 

Cattle can become infected with fluke at any age (Clery et al., 1996; McCole et al., 1999). In 

early infection in experimentally infected animals, the host has a mixed Th1 and Th2 

immune response, characterised by production of IFN γ, TGFβ, IL2 and IL4 (Flynn and 

Mulcahy, 2008). The immunoglobulins IgE, IgG and IgA are produced by B cells to activate 

ADCC (Piedrafita et al., 2001). As a result, neutrophils, eosinophils and classically activated 

macrophages surround and attack the migrating juvenile fluke (Chauvin and Boulard, 1996; 

Sibille et al., 2004).  
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After about 3-5 weeks, the Th1 response tails off and a Th2 response predominates initially, 

with increasing regulatory influence probably mediated by WC1.2+ ϒδT cells (Bossaert et 

al., 2000; McCole et al., 1999; Rogers et al., 2005). Th2/regulatory responses are likely to be 

a host adaptation to chronic infections, to avoid excessive tissue damage resulting from 

inflammatory Th1 cytokines, but are also induced by fluke antigens (Moreau and Chauvin, 

2010; Spellberg and Edwards, 2001). IgG1 is the predominant antibody isotype with IgG2 

present at lower concentrations (Bossaert et al., 2000; Clery et al., 1996). Antibodies are 

detectable from 2-3 weeks after infection and levels remain high throughout the period of 

infection (Ortiz et al., 2000; Salimi-Bejestani et al., 2005b). Antibodies do not appear to 

have any protective function against liver fluke, and the magnitude of the antibody 

response correlates with the burden of infection (Bossaert et al., 2000; Clery et al., 1996).  

Th2 cells produce IL5, which causes increased eosinophil production, and IL4 and IL13, 

which induce alternatively activated macrophages, associated with healing and fibrosis 

(Kreider et al., 2007; MacDonald et al., 2002). The fibrosis associated with this response 

may limit the number of metacercariae that develop into adults and limits egg production 

by the fluke (Moreau and Chauvin, 2010). After around 5 weeks, a regulatory response is 

seen, as upregulation of IL10 and TGFβ cause the decline of IL2 and IFNϒ levels (Flynn and 

Mulcahy, 2008; Gazzinelli et al., 1992; McCole et al., 1999).  

However, these Th2/regulatory responses do not give protective immunity against liver 

fluke. A study in comparing Indonesian thin tailed sheep, which are inherently resistant to 

to F. gigantica, with susceptible sheep, found that the resistant sheep had a predominant 

Th1 response in early infection, whereas the susceptible sheep had a mixed Th1 and Th2 

type response (Zhang et al., 2005). Vaccine trials in cattle showed that the immunity 

induced in response to cathepsin L cysteine proteases was Th1-mediated (Mulcahy and 

Dalton, 2001). This evidence suggests that a fluke-specific Th1 response could potentially be 

protective against liver fluke (McNeilly and Nisbet, 2014).  

Most of the above findings have been shown in experimentally infected animals. In a recent 

study on the immune responses of naturally infected dairy heifers, Graham-Brown (2016) 

reported that there was no evidence of a Th1 response in early infection in these animals, 

with little IFNγ produced, and the Th2 type response described above was dominant from 

early infection onwards.  Other studies report higher serum IgG1 levels in animals infected 

with a trickle dose as opposed to a single larger dose of metacercariae (Bossaert et al., 

2000), and in naturally infected compared to experimentally infected (Oblitas, 1997). This 
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could be because the Th1 response only occurs after high doses of metacaercariae are 

ingested, which rarely occurs under natural conditions.  

1.2.5.3 Evasion and modulation of the host immune system by fluke 

Flukes have evolved various ways of evading the host immune response. The fast turnover 

of their protective outer tegument and glycocalyx reduces antibody binding and 

subsequent damage to the parasite surface by immune cells (Hanna, 1980). Around 80% of 

fluke ES products are cathepsin L cysteine proteases (Dalton et al., 2013). Cathepsins cleave 

IgE and IgG required for ADCC (Smith et al., 1993). ES also contains several antioxidants: 

superoxide dismutase,  glutathione peroxidase, glutathione-S-transferase, peroxiredoxin 

and fatty acid binding proteins (Jefferies et al., 2001). These inhibit ADCC by neutralising 

the free radicals produced by immune cells (Cervi et al., 1999; Ganga et al., 2007; Mulcahy 

et al., 1999; Sibille et al., 2004).  

Modulation of the immune system is mediated by both ES products and tegument antigens. 

Cathepsins suppress lymphoproliferation (Moreau et al., 2002; Prowse et al., 2002) and 

induce eosinophil apoptosis (Serradell et al., 2007). Cathepsins also inhibit the release of 

pro-inflammatory cytokines from macrophages (Donnelly et al., 2010), and can interfere 

with T cell function by cleaving CD4 (Prowse et al., 2002). Peroxiredoxin has been shown to 

induce alternatively activated macrophages (Cervi et al., 1998). Additionally, the ES contain 

products that mimic cytokines, for example, a molecule that acts like IL5 and attracts 

eosinophils to the site (Milbourne and Howell, 1993). Juvenile fluke have been shown to 

produce a TGFβ-like molecule that can bind to mammalian TGFβ binding sites, although 

further study is required to determine the effect on the host (Japa et al., 2015). 

Fluke tegument antigen induces TGFβ production which suppresses production of pro-

inflammatory cytokines TNFα, IL6 and IFNγ by innate immune cells. This prevents the 

induction of Th1 and Th17 responses (Flynn and Mulcahy, 2008; Vukman et al., 2013; Walsh 

et al., 2009). Tegument antigen also induces alternatively activated macrophages (Haçarız 

et al., 2011). Taken together, these immunomodulatory mechanisms show the complexity 

of the host-parasite relationship.  

1.3 Bovine tuberculosis 

1.3.1 Epidemiology of bovine TB in the UK 

Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is a serious animal health 

problem affecting UK farms, and £500 million was spent by the government in trying to 
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control it during the last decade (Department for Environment Food and Rural Affairs, 

2014a). In spite of this considerable investment, the number of TB-restricted herds in 

England and Wales has continued to rise (Department for Environment Food and Rural 

Affairs, 2014b). South west England and South Wales are considered endemic for bTB, with 

an increasing number of cases being seen in the midlands and mid Wales. Scotland 

currently has Officially TB Free status, with approximately 50 new TB breakdowns each year 

(Department for Environment Food and Rural Affairs, 2014c).  

The bTB control programme is compulsory in the UK, and all cattle over the age of 6 weeks 

are tested at regular intervals of between one and four years depending on whether they 

are in a high or low risk area. Cattle that test positive are culled from the herd, restrictions 

are applied to the herd to limit movement of animals, and more regular testing is carried 

out until no further positive cases are found. Many farms in the worst affected areas are 

more or less permanently under restriction, with infected badgers being the main reservoir 

of infection (Bessell et al., 2012; Biek et al., 2012; Donnelly and Nouvellet, 2013; Griffin et 

al., 2005; Johnston et al., 2011). 

Clinical bTB in cattle is rarely seen in the UK, as the disease progression is slow and the 

testing programme removes most infected animals before they become symptomatic. 

Pasteurisation of milk prevents virtually all zoonotic transmission, with only a handful of 

human M. bovis infections seen annually, most of which originate outside the UK (de la 

Rua-Domenech, 2006). 

Risk factors at the herd level include location, with herds in the endemic areas being at 

higher risk. Contact with badgers, buying in cattle, large herds and previous incidence 

within the herd also increase the risk (Bessell et al., 2012; Johnston et al., 2011). Dairy 

cattle are more likely to test positive than beef cattle (Brooks-Pollock et al., 2013). Risk 

increases with age up to around 3 years, after which it plateaus or decreases slightly 

(Brooks-Pollock et al., 2013). Vaccination against, Johne’s disease is known to decrease the 

sensitivity of the SICCT (Whelan et al., 2011), so it is possible that Johne’s infection could 

also have an effect, although this has not been confirmed. The effects of lactation and 

preganacy have not been established.  

Amongst reactor cattle, those with antibodies to Mycobacterium avium paratuberculosis 

are more likely to have confirmed bTB, whereas the opposite is true for those cattle 

without these antibodies. Meanwhile, beef cattle were more likely to have confirmed bTB 

than dairy cattle (DEFRA, 2005). 
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1.3.2 Immunology  

Mycobacterium bovis is a slow growing intracellular bacterium with a lengthy pre-clinical 

phase lasting months or years. M. bovis is taken up by macrophages but survives the acidic 

phagosome (Podinovskaia et al., 2013). Th1 cells produce pro-inflammatory cytokines 

including IFNϒ and TNFα. ϒδ T cells also produce IFNϒ and are thought to bridge innate and 

adaptive immunity in M. bovis infection (McGill et al., 2014). A strong IFNγ response is 

associated with lower pathology and better control of bTB (Welsh et al., 2005). IFNϒ and 

TNFα induce classically activated macrophages and activate CD8+ T cells and γδ T cells to 

produce factors which can directly kill mycobacteria within cells (Kaufmann, 2002). 

Macrophages form granulomas around the infected cells (Buddle et al., 2013; Flynn et al., 

1995), which prevents further spread of infection, but also protects the mycobacteria from 

attack by the immune system (Giacomini et al., 2001). In this way an equilibrium is reached 

where the infection is controlled but not eliminated.  

In chronic infection, Th2/regulatory responses increase (Flynn et al., 1995; Wangoo et al., 

2001; Welsh et al., 2005). Pathogenic mycobacteria induce regulatory T cells to produce IL-

10 and TGF-β and prevent macrophage apoptosis, hindering elimination of the pathogen 

(Balcewicz-Sablinska et al., 1998; Lee et al., 2009; O’Garra et al., 2013). In experimentally 

infected cattle, strong cell mediated immunity was observed at 16 weeks post infection, 

and by 25-34 weeks post infection Th1 immunity had declined to the extent that the cattle 

failed to respond to PPDb stimulation in the IFNγ test (Welsh et al., 2005). As the protective 

Th1 declines and is superseded by a humoral (Th2) type response, control over the infection 

is lost and active, disseminated disease occurs, together with increased antibody 

production (Welsh et al., 2005). Later in the course of disease, necrotic foci in the lungs 

enable extracellular survival of mycobacteria and this is when the disease becomes 

infectious (Lee et al., 2009).  

1.3.3 Diagnosis 

The single intradermal comparative cervical tuberculin test (SICCT, also known as the skin 

test) is the main element of the UK bTB control programme.  This detects a cellular immune 

response to M. bovis, which in most bTB cases is the predominant immune response. The 

SICCT involves injecting bovine and avian tuberculin purified protein derivative (PPD) 

respectively into two sites on an animal’s neck, following measurement of skin thickness. If 

the animal has been exposed to the antigens in the PPD, a type IV hypersensitivity reaction 

occurs. This is mediated by Th cells, macrophages and monocytes, and causes an 
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inflammatory response with localised swelling at the injection site after two to three days. 

Any reactions are measured 72 hours later and compared between the two sites. A chart is 

used to interpret the results, but in general, at the standard interpretation, a swelling at the 

bPPD site that is 4mm or more greater than the swelling at the aPPD site indicates that the 

animal is a bTB reactor (APHA, 2014a, 2014b). The aPPD is used as a control to avoid false 

positives due to exposure to environmental mycobacteria. 

In the UK, testing is usually carried out by private veterinary surgeons on the government’s 

behalf, but all bTB testing is under the control of the government, and veterinary surgeons 

or researchers are not allowed to perform the SICCT or any other bTB test of their own 

volition.  The sensitivity of the SICCT has been variously estimated at between 56% and 90% 

(Ameni et al., 2000; Clegg et al., 2011; Costello et al., 1997; Gonzalez Llamazares et al., 

1999; Karolemeas et al., 2012). As the SICCT detects a cellular immune response, low 

sensitivity may result from the a lack of response in the early stages of disease before the 

immune response is functional, lack of response due to predominating humoral immunity 

during advanced disease, and factors such as the peri-partum period, corticosteroid 

treatment, production related stress, and, possibly, co-infection with other pathogens 

(Strain et al., 2011). 

Cattle that test positive on the SICCT are then slaughtered and infection status is confirmed 

by visualisation of lesions, culture and histopathology. However, small lesions are difficult 

to detect. The sensitivity of visible lesion detection varies between 20% and 95%, 

depending on the post mortem procedure and stage of infection (Corner, 1994; Frankena et 

al., 2007; Liebana et al., 2008).  The pathogen can be cultured from approximately 70-90% 

of lesions (Department for Environment Food and Rural Affairs, 2014b; Liebana et al., 

2008). In TB test negative animals, between 53-67% of TB-like lesions seen in the 

slaughterhouse are later confirmed on culture (Liebana et al., 2008; Shittu et al., 2013).  

Other tests for bTB are commercially available and are useful in specific situations. The 

interferon gamma (IFNϒ ) ELISA (Bovigam®) is more sensitive than the SICCT. It is used in 

some circumstances as part of the mandatory bTB control programme in the UK, with the 

aim of identifying a higher proportion of infected cattle on farms where bTB is already 

known to be present (Strain et al., 2011). A blood sample is taken and peripheral blood 

mononuclear cells (PBMCs) stimulated with PPDa or PPDb, and the quantity of IFNϒ 

produced is then measured using an ELISA. Blood must be maintained at specific 

temperatures following extraction from the cow, and must be tested within a few hours of 
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collection, making it challenging in field situations. It is expensive and difficult to perform, 

and the lower specificity makes it unsuitable for routine use (Strain et al., 2011).  However, 

this test can detect animals exposed to lower doses of M. bovis and at earlier stages of 

infection (Dean et al., 2005; Pollock et al., 2005) and is therefore a useful adjunct to the 

SICCT. As the IFNϒ test detects cellular immunity, similar to the SICCT, its sensitivity is likely 

to be affected by the same factors that affect the SICCT. An antibody ELISA is not currently 

used in the UK, but may be useful for detecting cattle in the later stages of disease, when 

they become anergic to the bTB skin test but antibody levels rise. 

The difficulty in determining the true bTB infection status of naturally exposed cattle, in the 

absence of a gold standard test, is a challenge both for disease control programmes and 

epidemiological studies.   

1.4 Johne’s disease 

1.4.1 Epidemiology 

Johne’s disease is a contagious, chronic condition mainly affecting ruminants, caused by 

Mycobacterium avium subspecies paratuberculosis (MAP). MAP is found worldwide, and is 

able to survive for lengthy periods in the environment. In a recent UK-wide study, up to 

65% (95% CI 56-74%) of dairy herds were found to contain infected animals as determined 

by a MAP-antibody ELISA (Caldow et al., 2009).  

Cattle normally acquire infection as new born calves, although older animals are also 

susceptible if infection pressure is high (Mortier et al., 2014). Infected animals are not 

infectious to others unless they progress to the later stages of disease, characterised by a 

failing Th1 immune response and the onset of clinical signs. This usually does not occur 

until they are over two years of age (Nielsen and Ersbøll, 2006).  

Control measures are intended to avoid contact between the faeces of infectious cattle and 

new born calves, and also to keep the infection pressure generally low, and include 

selective culling, removal of calves from their dams shortly after birth and maintenance of 

hygiene in calving pens (Mortier et al., 2015). Costs are associated with deaths or culling as 

a result of disease, which may reach 1-5% of cattle in a herd annually, and subclinical 

effects such as reduced milk yield, reduced feed conversion and increased susceptibility to 

other diseases (Hasonova and Pavlik, 2006).  
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Risk factors for infection with MAP include poor farm hygiene and other management 

practices which increase infection pressure and lead to calves being exposed, such as 

feeding pooled colostrum (Mortier et al., 2015). The age at which the infection becomes 

clinical depends partially on the initial infective dose (Mortier et al., 2015). Poor nutrition, 

stress related to transport, lactation, parturition, and immunosuppression by co-infecting 

agents have been implicated in hastening the start of clinical Johne’s disease (McKenna et 

al., 2006).  

1.4.2 Immunology 

MAP primarily targets the ilium, where the mycobacteria survive and multiply within 

macrophages. During the early stages of infection, a T-helper (Th)1 type profile 

characterised by high levels of interferon gamma (IFN-γ) keeps infection under control 

(Begg et al., 2011; Cooper et al., 1993; Flynn et al., 1993).  In most cases, the infection is 

self-limiting although animals are thought to remain infected for life (Nielsen and Toft, 

2008). In a proportion of animals, progression to clinical disease occurs (Arsenault et al., 

2014). At this time, a Th2/regulatory response predominates, IFN-γ levels decline and 

clinical signs appear (Begg et al., 2011). Proliferation of mycobacteria is facilitated by 

increased production of IL-10, an anti-inflammatory cytokine induced by MAP (Weiss et al., 

2005). Inflammation of the intestinal tract results in reduced nutrient absorption, weight 

loss and diarrhoea. Once symptomatic, Johne’s disease is eventually fatal in most cases. 

1.4.3 Diagnosis 

Diagnostic tests include faecal culture (individual or pooled), serum or milk antibody ELISA, 

and faecal polymerase chain reaction (PCR). Antibody detection by ELISA is the most 

sensitive test (Caldow et al., 2009; Collins et al., 2005; Pinedo et al., 2008). In the early 

stages of infection, cattle shed MAP infrequently and antibody levels often do not rise to 

detectable levels until the later stages of disease, so infected animals are rarely detected 

before 2-3 years of age (Nielsen and Ersbøll, 2006). Hence for every detectable infected 

animal in a herd, there are likely to be several others which are infected and will progress 

to the clinical stage at a later time (Whitlock and Buergelt, 1996).   
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1.5 E. coli O157 

1.5.1 Epidemiology 

Escherichia coli O157 is a zoonotic bacterium that causes haemorrhagic diarrhoea in 

humans and occurs worldwide. It is highly virulent with a low infectious dose of less than 

700 cfu (Tuttle et al., 1999) and is a considerable public health problem. Cattle are 

considered the main source of human infection.  Recent studies have shown that 4-7% of 

UK finishing cattle are shedding E. coli O157. (Ellis-Iversen et al., 2007; Gunn et al., 2007; 

Paiba et al., 2003; Pearce et al., 2009).  

Cattle do not show clinical signs of disease as a result of E. coli O157, because they lack 

receptors for Shiga toxins (Pruimboom-Brees et al., 2000). Within groups of cattle housed 

together, infection is likely to spread rapidly through the group (Ellis-Iversen et al., 2007). A 

‘super shedding’ event is defined as >104 colony forming units (cfu) E. coli O157 being 

excreted at once. This occurs as a result of a biofilm of bacteria being shed from the distal 

gastro-intestinal tract. A small number of super shedding events can be responsible for up 

to 90% of E. coli O157 excretion (Chase-Topping et al., 2008). Most infected cattle probably 

‘super shed’ intermittently; there is more variation within individuals than between them 

(Paiba et al., 2003; Pearce et al., 2004; Williams et al., 2014). The intermittent nature of 

shedding and the uneven distribution of bacteria within faeces may hinder diagnosis 

(Pearce et al., 2004).  

Season has been found to affect the risk of E. coli O157 shedding, but the highest risk time 

of year was found to be either winter or summer, depending on the study (Milnes et al., 

2009; Smith et al., 2016). For calves, being housed in pens significantly increased the risk 

compared to grazing cattle (Gunn et al., 2007; Smith et al., 2016), particularly if bedding 

was wet (Ellis-Iversen et al., 2007). One study found that calving was associated with a 

decreased risk of shedding (Synge et al., 2003). Older cattle are less likely to shed or carry E. 

coli O157 (Gunn et al., 2007; Milnes et al., 2009). Stress was found to increase shedding in 

finishing cattle (Chase-Topping et al., 2007). 

1.5.2 Immunology 

Although cattle do not become ill as a result of E. coli O157 infection or colonisation, they 

do mount an immune response against it (Munns et al., 2015). E. coli O157 flagellin induces 

an innate immune response leading to the production of pro-inflammatory cytokines 

including IL8, IL1 and TNFα (Miyamoto et al., 2006). Lipopolysaccharide, a highly conserved 
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pathogen associated molecule and a component of E. coli, is also recognised by the innate 

immune system. E. coli produces anti-inflammatory effector proteins which interrupt the 

immune response, enabling its survival (Walle et al., 2010).  

It is not clear whether a protective adaptive immunity is induced (Walle et al., 2010). A 

humoral response is elicited, and IgG is protective in calves (Fröhlich et al., 2009). A variety 

of E. coli O157 antibodies have been found in experimentally infected cattle, however these 

alone are not protective against colonisation (Bretschneider et al., 2007). A cellular 

response has also been demonstrated with antigen specific lymphocyte proliferation and 

upregulation of IFNγ (Corbishley et al., 2014). In one study it was found that animals with 

higher level of antibodies to E. coli O157 were more likely to shed large numbers, 

presumably as a result of the ability to slough off the biofilm (Nart et al., 2008).  

1.6 Co-infections with F. hepatica 

1.6.1 Laboratory studies 

Experimentally infected cattle and rats have been used to investigate the effects of F. 

hepatica on animals infected with Salmonella dublin, Bordetella pertussis and M. bovis. 

Cattle infected with F. hepatica and S. dublin and took longer to clear infection, and shed 

higher numbers of bacteria, than fluke free animals, although survival was not affected 

(Aitken et al., 1981) and this was thought to be attributable to impaired cell mediated 

responses (Aitken et al., 1979). A similar effect was seen in rats (Aitken et al., 1980). 

Mice infected with F. hepatica had a suppressed Th1 response and delayed clearance of B. 

pertussis from the lungs, and had significantly higher bacterial loads (Brady et al., 1999). In 

a study on rats those infected with M.bovis and F. hepatica had fewer liver lesions from 

fluke than those infected with F. hepatica alone (Sadzikowski and Gundlach, 1985).  

Experimental infection of M. bovis infected cattle with F. hepatica was shown to result in a 

decreased response to the bTB skin test, although overall results were still all positive 

(Claridge et al., 2012). A much more marked effect was seen in cattle infected with Bacillus 

Calmette–Guérin (BCG) (Flynn et al., 2007). IFNγ levels were shown to be decreased in co-

infected cattle in three studies, although the observed effects were small (Flynn et al., 

2009, 2007; Garza-Cuartero et al., 2016). The numbers of fluke recovered from co-infected 

cattle were found to be lower than in fluke only infected animals, although again the 

differences were small (Flynn et al., 2009). Mycobacterial uptake by macrophages and 
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mycobacterial recovery from infected tissues was also found to be lower in co-infected 

animals (Garza-Cuartero, 2014; Garza-Cuartero et al., 2016). The ability of liver fluke to 

induce alternative macrophage activation could delay the uptake of M. bovis, and reduce 

tubercle formation (Garza-Cuartero, 2014).  

1.6.2 Field studies 

Studies on co-infection with liver fluke in naturally infected animals are concentrated on S. 

dublin and M. bovis. Salmonella infection was found to be strongly associated with F. 

hepatica infection in cattle at the herd level in the Netherlands (Vaessen et al., 1998), 

although another study found no effect (Taylor and Kilpatrick, 1975).  

An abattoir study of 200 TB reactors and 200 in-contact animals found that fluke positive TB 

test reactors were less likely to have confirmed bTB by lesions detection, histopathology or 

culture compared to the TB skin test positive, fluke negative cattle (DEFRA, 2005). A herd 

level study of 3000 UK dairy farms found that herds infected with F. hepatica were one 

third less likely to have a TB breakdown. However, in a ‘Fluke infected’ or ‘TB infected’ 

herd, there are usually only a minority of animals actually infected with either pathogen, so 

at the herd level, this is not conclusive evidence of an effect.  

Several early field studies on co-infection with fluke and bTB looked at presence of bTB 

lesions and the presence of fluke in the liver, and none of the authors were convinced of 

any significant effect (Keller, 1952; Ljesevic, 1957; Meyer, 1963). 

Of two studies of cattle naturally infected with the tropical liver fluke, F. gigantica, one 

found that fluke infected cattle had smaller reactions to the bTB skin test (Ameni and 

Medhin, 2000), whereas another found a strong positive relationship between fluke and 

bTB in an abattoir study (Munyeme et al., 2012). However, cattle in this study were likely to 

be at more advanced stages of diseases, as there is no regular bTB testing programme in 

this setting.  

1.6.3 Summary of co-infections with F. hepatica 

In general, it seems that Th1 responses are down regulated in fluke infected animals, which 

leads to reduced clearance of the bacterial pathogen in the case of S. dublin and B. 

pertussis, but in the case of M. bovis, there is an inverse relationship between the two 

pathogens. The reduced bacterial uptake and reduced granuloma formation can be 

explained by the effect of fluke on macrophage activation.  The appearance of false 

positives in the fluke infected cattle in DEFRA (2005) could also reflect reduced granuloma 
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formation as a result of alternatively activated macrophages. However, the observation 

that there are fewer flukes in M. bovis infected cattle is more difficult to explain. The results 

of the field studies were generally less consistent than those of the laboratory studies, 

which is likely to reflect both the increased risk of bias and the greater level of natural 

variation in naturally exposed populations. Various risk factors may overlap between the 

pathoogens being studied, and these are summarised in Table 1.3.
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Table 1.2. Risk factors for the four pathogens studied, highlighting in purple those that may cause confounding 

 Fasciola M. bovis MAP E. coli O157 References 

Herd size Smaller herds higher risk Larger herds higher risk Larger herds higher risk Unknown Howell et al., 2015; McCann et al., 
2010; Olsen et al., 2011; Bessell et 
al., 2012; Johnston et al., 2011 

Buying in 
cattle 

Increased risk Increased risk Increased risk Increased risk Howell et al., 2015; McCann et al., 
2010; Olsen et al., 2011; Bessell et 
al., 2012; Johnston et al., 2011 

Grazing vs. 
housed 

Probably no risk of infection 
whilst  housed but antibodies 
could still be high 

Effect depends on risk area 
(whether main risk is 
badgers or cattle) 

Probably no effect on 
clinical onset 

Increased risk if housed Bennema et al., 2011; Howell et al., 
2015; McCann et al., 2010; Gunn et 
al., 2007; Smith et al., 2016 

Age Risk increases up to two years 
and then plateaus 

Risk increases up to 2 – 3 
years then declines slightly 

Infected at young age but 
highest risk of becoming 
clinical at 2-5 years then 
declines slightly 

Older age is protective Gonzalez-Lanza et al., 1989; Yildirim 
et al., 2007; Brooks-Pollock et al., 
2013, Mortier et al., 2015, Gunn et 
al., 2007; Milnes et al., 2009 

Indoor 
hygiene  

No effect Unknown Poor hygiene increases both 
infection and clinical onset 

Poor hygiene increases 
shedding risk 

Mortier et al., 2015, Ellis-Iversen et 
al., 2007 

Calving Unknown Unknown Possibly hastens clinical 
onset 

Associated with decreased 
shedding 

McKenna et al., 2006, Synge et al., 
2003 

Lactation Unknown Unknown Possibly hastens clinical 
onset 

Unknown McKenna et al., 2006 

Stress Unknown Unknown Associated with clinical 
onset 

Associated with increased 
shedding 

McKenna et al., 2006, Chase-Topping 
et al., 2007 

Location Western areas most at risk Southern/western areas 
most at risk 

UK-wide UK-wide McCann et al., 2010, Claridge et al., 
2012 

Rainfall Rainy areas most at risk Probably no effect Probably no effect Probably no effect Howell et al., 2015; McCann et al., 
2010 

Season Infection levels highest in late 
winter, but antibodies may 
stay high throughout the year 

Unknown Probably no effect An effect exists but studies 
disagree on whether 
winter or summer are the 
highest risk times 

Duscher et al., 2011, VIDA, Milnes et 
al., 2009; Smith et al., 2016 

Breed/type Unknown Breed differences exist but 
not fully understood 

Unknown Unknown Brooks-Pollock et al., 2013, DEFRA, 
2005 
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1.7 Thesis aims 

The aim of this thesis was to investigate the interaction between liver fluke and other 

pathogens, to answer the question of whether fluke infection makes cattle more 

susceptible to certain bacterial pathogens. Following on from previous studies on co-

infection with liver fluke and M. bovis in experimentally infected animals, the aim of 

Chapter 3 was to investigate whether exposure to liver fluke affects the bTB skin test in 

naturally infected animals. In Chapter 4 we present a systematic review of the literature on 

co-infection with liver fluke and mycobacteria. In Chapters 5 and 6 we investigate the 

association of liver fluke infection with two further pathogens, MAP and E. coli O157.  
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Chapter 2: Dynamics of Fasciola 

hepatica exposure in whole herds of 

naturally infected cattle, and 

comparison of milk and serum ELISAs 

Abstract 
Fasciola hepatica, or the common liver fluke, a parasite affecting welfare and causing 

economic losses in ruminants, is estimated to affect around 70-80% of UK dairy herds. A 

total of 5937 cattle from 30 purposively selected UK beef and dairy herds were tested using 

an ELISA to detect antibodies to F. hepatica excretory-secretory products, applied to either 

a milk or serum sample. Bulk milk tank samples were also tested from 24 out of the 30 

farms. The percentage of animals testing positive for fluke in each herd ranged between 2 

and 89%, with a median of 46%. The distributions of the antibody percent positivity (PP) 

values were right-skewed for all herds. The bulk milk tank results were well correlated with 

individual results, although the results of both individual and bulk milk tank ELISAs tended 

to be higher than the serum ELISA results. This could have been due to the lower specificity 

of the individual and bulk milk tank ELISAs compared to the serum ELISA. Using multi-level 

models, a significant effect of season was seen, which is in agreement with other recent 

studies, but age was not significantly associated with antibody levels.  

2.1 Introduction 
Fasciola hepatica, or the common liver fluke, is a widespread parasite affecting welfare in 

ruminants and causing economic losses in farming, and around 70-80% of UK dairy herds 

are reported to be affected (Claridge et al., 2012; Howell et al., 2015; McCann et al., 2010). 

Cattle do not develop protective immunity to fluke infection and can become re-infected 

throughout life (Clery et al., 1996), although liver fluke do have a shortened lifespan in 

cattle compared to sheep, with most fluke surviving up to about 10 months compared with 

several years’ survival in sheep (Ross, 1967a, 1967b). In cattle older than 24 months, fluke 

prevalence tends to increase with age, approaching a maximum prevalence after a number 

of years (Gonzalez-Lanza et al., 1989). 

It has been noted that the typical distribution of parasite burdens within herds tends to be 

skewed, with a minority of animals having high parasite burdens, and the majority having a 
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low burden or being parasite free (Chaparro et al., 2016; Charlier et al., 2008). The reasons 

for this phenomenon are not fully explained. Some possible reasons include genetic 

variation, metabolic stresses or co-infecting pathogens making some individuals more 

susceptible to infection. Due to the limited habitat of the intermediate host, parasite 

distribution on pasture is very uneven (Graczyk and Fried, 1999). Individual cattle 

preferences for certain types of grazing, or variations in social status within the group might 

mean that some animals are more likely to graze certain areas, and hence be exposed to 

infection.  

Liver fluke requires an intermediate snail host, Galba truncatula, for the completion of its 

life cycle. Wet habitats such as river banks and boggy ground are the required habitat for G. 

truncatula, and, in the UK, the snail proliferates during the milder weather of late spring 

and summer. Following a period of intra-snail development, infectious metacercariae are 

deposited on pasture in high numbers during late summer and autumn. Therefore grazing 

ruminants are most likely to become infected at this time, although metacercariae are able 

to survive for several months given suitable weather conditions. The usual management 

practice in the UK of housing cattle over winter reduces their exposure to the parasite from 

October or November onwards.  

Antibody detection ELISAs have been widely used for epidemiological studies on F. hepatica 

(Charlier et al., 2005; Claridge et al., 2012; Howell et al., 2015, 2012; McCann et al., 2010). 

An ELISA to detect antibodies to excretory-secretory fluke products was developed at the 

University of Liverpool by Salimi-Bejestani et al. (2005b), and other ELISAs which detect 

antibodies to different fluke proteins are also commonly used. ELISAs are efficient 

compared to other fluke detection methods, and are versatile, as they can be performed on 

individuals or herds, on blood or milk samples.   

The aim of this chapter was to investigate the dynamics of fluke infection in dairy and beef 

herds, in order to determine the effect of seasonality and animal age on sero-positivity.  

This information was useful for the interpretation of further studies on the interaction 

between fluke infection and other pathogens, reported in later chapters.  

2.2 Methods 

2.2.1 Samples 
Thirty herds were sampled altogether. Thirteen herds were visited as part of a study on co-

infection between liver fluke and bovine TB (bTB). These farms were selected by their 
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private vets as they were thought likely to be exposed to both bTB and liver fluke. Ten 

farms were visited once, two farms were visited twice and one farm was visited three 

times. During each visit, all animals over the age of 24 months that were presented for the 

TB test were blood sampled from the tail vein. This was done under Home Office licence PIL 

40/3621 and was approved by the University of Liverpool Ethics Committee ref VREC290. At 

the University of Liverpool, the samples were centrifuged at 1000 g for 20 minutes and the 

serum separated off for testing. Age and sex data were obtained from 12 of these farms. 

One also provided drying off dates. On one of the farms, all animals were faecal sampled 

per rectum at the same time as being blood sampled.  

In addition, seventeen different herds with evidence of fluke exposure on ELISA were 

selected from those sampled as part of a whole-herd disease screening programme.  The 

samples were submitted to a commercial milk recording company for routine analysis and 

the remaining sample was sent to the University of Liverpool for fluke testing, following the 

addition of bronopolnatamyin (MSI, Nottingham) as preservative. On arrival samples were 

centrifuged at 1000 g for 20 minutes and aliquots of skimmed milk were taken for testing. 

Of these herds, 11 farms were sampled once, two farms were sampled three times and four 

farms were sampled four times. All lactating animals were sampled at each visit. 

2.2.2 Testing 
The blood and milk samples were all tested using an ELISA to detect antibodies to Fasciola 

hepatica excretory-secretory products developed by Salimi-Bejestani et al. (2005b).  

Briefly, 0.5 µg/ml ES antigen in 0.1M carbonate buffer (pH 9.6) was used to coat Immulon-2 

ELISA plates (Dynatech Laboratories, VA, USA). Plates were incubated for 1 h at room 

temperature (approx. 24° C) then refrigerated overnight (4° C).  

The plates were then washed with phosphate buffered saline (PBS) containing 0.05% 

Tween-20 (PBST): 2 short and 1 five-minute washes, repeated once. Blocking solution (200 

µl per well of 2% skimmed milk powder (Marvel, Premier Beverages, Stafford, UK) in PBST 

(MPBST) was added and plates incubated for 1 h at 37° C before washing as before. 

Previously prepared negative, medium and strong positive serum controls diluted 1 in 800 

in MPBST were added in quadruplicate at 100 µl per well. The positive control consisted of 

a pool of serum samples taken from known positive animals. The negative control came 

from a cow kept indoors and from a farm known to be free of F. hepatica and Galba 

truncatula. Samples were diluted as follows: serum samples, 1 in 800 in MPBST; individual 
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milks, 1 in 2 in MPBST; bulk tank milks, neat. One hundred µl of each diluted sample was 

added to duplicate wells. Two wells were left as blanks containing only 100 µl MPBST. 

Following incubation for 1 h at 37° C and washing, 100 µl per well of conjugate (IL2-A 

monoclonal anti-bovine IgG conjugated to horse radish peroxidase, sensitive to IgG1 and 

IgG2 (Williams et al., 1990)) diluted 1:45,000 in MPBST was added. The concentration of 

conjugate was first optimised by a checkerboard titration. After incubation for 1 hour at 37° 

C, the plate was washed and 100 µl tetramethylbenzidine (TMB) aqueous substrate 

(Uptima, Interchim) was added to every well. Following incubation for 30 min at room 

temperature, 100 µl stop solution (0.5 M HCL) was added and the colour change was read 

at 450 nm on an automatic ELISA reader (Infinite F50, Tecan, Salzburg, Austria).  The ELISA 

was considered valid if the optical density (OD) of the positive control was between 1 and 3 

and if the negative controls and blanks were less than 0.1 OD.   

Results were expressed as percent positivity (PP) of the strong positive control. Individual 

results were considered valid if the duplicate PP values were within 10 % of each other. A 

PP of above 15 and 20 for individual serum and milk respectively, defines a positive result. 

For bulk milk tank samples, a PP of 27 of above is considered positive and corresponds with 

more than 25% of the herd being infected (Salimi-Bejestani et al., 2007). 

The faecal samples were tested using Flukefinder® (Richard Dixon, ID, USA, 

www.flukefinder.com), a kit used for sedimentation of faecal samples. Three g of stool was 

homogenised in water before being tipped into the Flukefinder unit, which consists of two 

sieves of different sized mesh (exact sizes proprietary). The unit was then washed through 

with copious amounts of water, until the water ran clear. Remaining sediment was 

backwashed into a 40 ml beaker which was refilled with water. After 2 mins, most of the 

water was poured off, being careful not to disturb the sediment. The beaker was then 

refilled and the process was repeated several times, until the water in the beaker looked 

clean. The remaining sediment was collected in a 5 cm petri-dish, stained with a few drops 

of 10% methylene blue solution and viewed under the dissecting microscope at x40 

magnification. Eggs were categorised as F. hepatica based on morphological characteristics 

(Valero et al., 2009), and counted.   

2.2.3 Analysis 
Although a positive/negative cut off is defined for each ELISA, the analysis was performed 

mostly using the fluke PP values. This was because most false positives and false negatives 
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occur in values very close to the cut off, and the PP values give an indication of the severity 

of the parasite burden (Charlier et al., 2008; Salimi-Bejestani et al., 2008). 

2.2.3.1 Descriptive analysis 

R (R Core Team, 2011) with ggplot2 (Wickham, 2009) were used to perform descriptive 

analysis and draw maps and plots of the data.  

2.2.3.2 Comparison of bulk milk tank and individual results 

Plots were drawn of the individual and bulk milk tank results. Faecal egg count data and 

lactation status data, which were both available from two of the farms, were used to 

investigate this relationship further.  

2.2.3.3 Seasonality 

The data had a nested structure of visit within cow within farm. Cow and farm were 

inputted as random effects at level 2 and 3 respectively, to account for non-independence 

of observations clustered within farm or when sampling the same individual repeatedly. A 

variable intercept model was built with log of fluke ELISA PP (log PP) as the outcome 

variable. The month of sample collection was modelled as a fixed effect using a sin/cosine 

function:  

cos (2 𝜋 ×
𝑚𝑜𝑛𝑡ℎ

12
) + sin (2 𝜋 ×

𝑚𝑜𝑛𝑡ℎ

12
)  

Whether the sample tested was a milk or serum sample was included as a fixed effect.  

The model equation for an individual PP result was: 

log 𝑃𝑃 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑚𝑜𝑛𝑡ℎ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 + 𝑠𝑎𝑚𝑝𝑙𝑒 𝑡𝑦𝑝𝑒 + 𝑓𝑎𝑟𝑚 𝑒𝑓𝑓𝑒𝑐𝑡 + 𝑐𝑜𝑤 𝑒𝑓𝑓𝑒𝑐𝑡  

Other information such as type of cattle was not included in models, as the farms were 

purposively rather than randomly chosen, and so biased effects were likely. The Lme4 

package was used for multilevel modelling in R (Bates et al., 2015).  

2.2.3.4 Age 

A multi-level model was created using data for a subgroup of the farms. A similar approach 

was taken to that described for seasonality, with age in months added as an additional fixed 

effect.  
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2.3 Results 

2.3.1 Characteristics of the cattle and farms 
A total of 5937 cattle were sampled, from thirty UK dairy and beef herds (Table 2.1).  

Table 2.1 A summary of the characteristics of the animals and herds tested for fluke 

 Blood sampled Milk sampled 

 Farm 
information 

Cow-level 
information 

Farm 
information 

Cow-level 
information 

Number 
sampled 

13 farms 1584 cattle 17 farms 4355 cattle 

Number 
sampled per 
herd 

Range: 27-
192 
Median:133 

 Range: 80-438 
Median:202 

 

Beef  4 beef farms 263 cattle of beef 
breeds 

No beef farms Unknown 

Dairy  9 dairy farms 1321 cattle of 
dairy breeds 

17 dairy farms Unknown 

Age (months) Data 
available for 
12 farms 

Range: 24-208 
Median: 58 

No data Unknown 

Sex Data 
available for 
12 farms 

F:1485 
M:21 
Unknown:78 

 All female 
 

Cattle from thirteen herds had blood samples taken, whilst cattle from 17 herds had 

individual milk samples taken. Two farms were visited twice, three farms were visited three 

times, and four farms were visited four times. In total, 9673 individual samples and 24 bulk 

milk tank samples were taken. Figure 2.1 shows the locations of the sampled herds. 

 

Figure 2.1. The locations of the herds sampled for liver fluke, jittered randomly by 10 

km to preserve anonymity. The type of sample taken from cattle on each farm is 

shown by the colour of the point 
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2.3.2 Distribution of the fluke results 
4465 of samples (46%) tested positive for fluke on the ELISA. The overall distribution of 

fluke ELISA PP values was log normal (Fig. 2.2)  

    

Figure 2.2. Distributions of the individual fluke ELISA PP results for 9763 samples 

from 5937 cattle from 30 UK beef and dairy farms 

The PP results obtained by testing milk and serum had a similar median, but the range of PP 

values resulting from testing the milk samples was considerably greater (Table 2.2). The 

difference between the two groups was statistically significant (Wilcoxon signed rank test, 

W = 8322500, p = 0.0004). 

 

Table 2.2 Summary statistics for the PP values obtained by testing milk and serum 

samples using a Fasciola hepatica excretory-secretory antibody detection ELISA 

Method Median Mean Range 

Milk 17.0 29.4 0.0-229 

Serum 16.8 24.1 0.7-125 

 

 The percentage testing positive for fluke in each herd ranged between 2 and 89%, with a 

median of 46%. Figure 2.3 shows the distribution of fluke ELISA PP results on each farm at 

each visit. All of the farms showed a right skewed distribution. The tails were longer in 

those farms where milk samples were tested, with the maximum values reaching 229 PP, 

whereas for serum samples the maximum was 135 PP. 
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Figure 2.3. Histograms showing the distributions of fluke ELISA PP results for all farms.  
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Legend 

 
Each farm had either milk samples taken from lactating cattle 

or blood samples from cattle > 24 months. 

Farms where serum samples are taken were visited in 2013-14 

and have a pink background. Farms where milk samples were 

taken were visited in 2015-16 and have a blue background. 

Each farm is a different colour. Farms which were sampled 

more than once are shown by  

Enlarged histogram 

(left): The x axis was the 

same scale for all charts, 

whilst the y axis 

represents density. 
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2.3.3 Comparison of the bulk milk tank and individual results 
A positive bulk milk tank ELISA indicates that at least 25% of individuals in the herd are 

positive, which corresponds to the cow at the 75th percentile being positive. When bulk milk 

tank results were plotted against the ELISA PP result of the cow at the 75th percentile, a 

difference was seen between milk and serum samples. The bulk milk tank result, if positive, 

indicates that at least 25% of the herd are infected. In figure 2.4A it can be seen that there 

is a high level of agreement between the individual and the bulk milk tank results for milk 

samples. For serum samples however, the bulk milk tank result is higher than would be 

expected given the individual results. A similar effect is seen for the percentage of fluke 

positives on the farm for three of the serum-tested farms (Fig. 2.4B). In spite of this, in all 

but one serum-tested farm, use of the bulk milk tank result would have given the correct 

result in terms of whether or not the herd was positive.  

 

Figure 2.4. The result of the bulk milk tank ELISA is an accurate predictor for defining 

farms where at least 25% of cattle test positive for fluke on milk ELISA, but tends to 

over-estimate the number testing positive on serum ELISA. The sloped line is a 

regression line, the green dotted line indicates the cut off for the bulk milk tank ELISA, 

the red dotted line shows the cut off for the serum ELISA and the blue dotted line is 

the cut off for the milk ELISA. (A) shows the ELISA PP of the cow at the 75
th

 percentile 

on each farm(as a positive BMT ELISA indicates that this cow should be positive). (B) 

shows the percentage of cattle testing fluke positive on each farm 

One possible explanation for this discrepancy is that the herds that were serum-tested 

included non-lactating animals such as dry cows, heifers that had not yet calved and bulls, 

and that the lactating animals contributing to the tank had higher fluke PP values than the 

dry animals. Lactation information was available for one farm, so non-lactating animals 

were removed from the analysis. However, this did not alter the results as the PP values 

were similar for the dry and lactating groups of animals, and in any case only a small 

proportion of the cattle were not part of the milking herd.   

A B 
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Another possibility is that the serum ELISA is consistently under-diagnosing fluke-infected 

animals. Faecal egg count data were available to compare with ELISA data taken on the 

same day from one of the farms, so these were used to compare the two sets of results 

(Table 2.3). This showed that only 2.3% of cattle that were positive on faecal egg count 

were negative on ELISA. Therefore it does not seem likely that the serum ELISA is making a 

large number of false negative diagnoses.   

Table 2.3. Results of fluke ELISA and faecal egg counts for cattle from one of the 

farms 

 Faecal + Faecal - 

ELISA + 29 73 

ELISA - 4 67 

 

2.3.4 Seasonality 
A variable intercept model was built with log of fluke ELISA PP (log PP) as the outcome 

variable. The model was as follows: 

 

 Seasonality model  

Outcome: Log PP 

Fixed effects:  Month, sample type 

Random effects:   Farm, cow     

 Co-efficient Std Error t value p 

Intercept 2.795 0.141 19.86 <0.00001 

Cosmonth -0.009 0.012 -0.76 0.45 

Sinmonth -0.281 0.014 -20.12 <0.00001 

Serum sample -0.154 0.215 -0.72 0.47 

AIC = 23566, deviance = 23552, df=9666. 

Random effects: Variance between farms = 0.33 

  Intraclass correlation within farms = 0.35 

  Variance between cows = 0.38 

Intraclass correlation within cows = 0.31 

 

The predicted values were slightly lower for serum than for milk (Fig. 2.5), although the 

difference in the observed values was not statistically significant in the model (p =0.47).  
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Month was a highly significant predictor for log PP. The predicted PP values were plotted 

along with the median observed values for each month (Fig. 2.5). The observed results were 

somewhat distorted by the fact that all animals from each farm were all sampled at once, 

for example, several farms with little fluke infection were tested in June, resulting in the 

relatively low median seen for June, whereas only one very flukey farm was sampled in 

August causing a high median result. Nonetheless, the model is an approximation for the 

data, with the highest PP values occurring in late summer/early autumn, and the lowest 

values in late winter/early spring.  

 

Figure 2.5. The predicted log fluke ELISA PP values from the multi-level linear 

regression model and the observed median PP values for each month. The type of 

sample tested is shown. The difference between serum and milk samples was non-

significant. 

2.3.5 Age 
Ages of cattle were available for 12 of the serum tested farms, which had a total of 2020 

animals tested. Ages were missing for 171 of these cattle, and these were spread 

throughout the farms.  The age distribution was right skewed, with the oldest cow being 

over 17 years of age (Fig. 2.6). 
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Figure 2.6. The age distribution of cattle tested for fluke.  

Age was categorised into five groups to check for a linear relationship with fluke. There 

appeared to be a linear relationship, with higher ages associated with a higher fluke PP 

value, but this was non-significant. 

A mixed model was built with log PP as the outcome variable, age in months as a fixed 

effect, and cow within farm as level 2 and level 3 random effects. Month was also included 

as a fixed effect. The age of the cow in months was not a significant predictor for fluke PP (p 

=0.05).  

 Age model  

Outcome: Log PP 

Fixed effects:  Age, month 

Random effects:   Farm, cow     

 Co-efficient Std Error t value p 

Intercept 2.68 0.21 12.64 <0.00001 

Cosmonth 0.50 0.0007 1.11 0.27 

Sinmonth 0.11 0.05 9.82 <0.00001 

Age (months) 0.0007 0.06 1.96 0.05 

AIC = 4200, deviance = 4186, df=1842. 

Random effects: Variance between farms = 0.51 

  Intraclass correlation within farms = 0.26 

  Variance between cows = 0.28 

  Intraclass correlation within cows = 0.46 
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2.4 Discussion 
The distributions of PP values overall and within each herd were skewed to the right, with 

most animals having a low PP value and only a small number having a high value. This was 

seen across all herds, even in farms with 60-80% of animals testing positive.  PP value and 

fluke burden are correlated (Charlier et al., 2008; Salimi-Bejestani et al., 2008), so the 

observed distribution may reflect the fact that even in herds where most animals are 

infected, most animals have only a light parasite burden.  This is supported by other 

research on fluke numbers at post mortem (Byrne et al., 2016; Charlier et al., 2008) and 

using faecal egg counts (Chaparro et al., 2016). Some caution is needed in interpreting very 

high antibody levels because there are many other factors that may affect them, 

particularly in milk. However, fluke antibody levels have been shown to be negatively 

associated with milk yield (Charlier et al., 2005; Mezo et al., 2011), so provide an indication 

of the relative effect that the parasite is having on the cow’s health. Animals with high and 

low parasite burdens may not be affected in the same way, and a quantitative assessment 

of antibody levels may give an indication of this, which is potentially useful in interpreting 

the results of co-infection studies.  

The distribution was significantly different between the milk and serum tested cattle due to 

the higher maximum values seen in the milk test results, although the median values were 

very similar for both tests. The concentration of antibodies in serum is much higher than in 

milk, and this is reflected in the different dilutions used for the samples in the ELISA, so the 

results are not directly comparable. In addition, antibody levels in milk vary depending on 

the time of lactation and milk yield, which may contribute to the extreme high PP values.  

The finding that the bulk milk tank ELISA PP was higher than expected given the individual 

serum ELISA results was interesting. During the development of the bulk milk tank ELISA it 

was compared against serum ELISA results and faecal egg counts (Salimi-Bejestani et al., 

2005a). We did not have paired milk and serum samples or paired milk and faecal samples 

for any of the farms in this study, but comparison with the faecal egg count data available 

from one of the study farms indicates that the serum ELISA has high sensitivity. It is known 

that the specificity of both of the milk ELISAs are lower than that of the serum ELISA (80-

88% compared to 96%), whilst the sensitivity of all three tests is similar (Salimi-Bejestani et 

al., 2007, 2005a). The larger range of PP values and more extreme high values seen in 

individuals from the milk tested farms will affect the bulk milk tank result and are likely to 
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lead to some false positives, since a positive herd result is interpreted as more than 25% of 

the herd being infected. 

For the purposes of screening herds, all except one herd fell into the correct 

positive/negative category. For epidemiological purposes, if a single test is used for all study 

subjects, the slight difference between the ELISA results should not introduce bias, however 

it does highlight the importance of being aware of potential differences of performance 

between tests. 

The pattern of seasonality seen in condemnations of cattle livers at slaughter shows a peak 

in around January each year, with a trough in July (Skuce and Zadoks, 2013), and juvenile 

fluke are found only in autumn, indicating that this is when infections are occurring 

(Charlier et al., 2008). The peak seen here is a little earlier, and this could be partly because 

the ELISA detects infections from two weeks post infection (Salimi-Bejestani et al., 2005b), 

before the fluke become large enough to cause condemnation of the liver, which may not 

occur until 1-2 months post infection.  

The seasonal variability seen in ELISA PP in the current study is relatively small, with a 

difference between the predicted peak and trough of around 10 PP. This may reflect the lag 

period between decrease in liver fluke numbers (occurring due to treatment and fluke 

deaths without re-infection) and decrease in antibody levels, which remain elevated for 

some weeks after cure, by which time some animals may have become re-infected (Skuce 

and Zadoks, 2013). In high fluke areas, practitioners have observed that all grazing animals 

have a constantly elevated antibody level as a result of ongoing exposure, regardless of 

current infection status (Skuce and Zadoks, 2013). In addition there is considerable noise in 

the data due to the variation between individuals which may depend on other factors such 

as production stresses, food sources, grazing rotations and flukicide treatments. 

Fluke antibody levels showed an increase with age, which approached significance. Other 

studies report increasing fluke burdens with age (Chaparro et al., 2016; Gonzalez-Lanza et 

al., 1989), and this is likely to reflect ongoing exposure without the development of 

protective immunity (Torgerson and Claxton, 1999).  

Test performance and differences between tests, differing ages of cattle within a herd, the 

time of year that samples are collected and the variation in the effects of fluke infection 

between individuals should all be considered when interpreting the results of 

epidemiological studies on fluke.  
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Chapter 3: Can the effect of Fasciola 

hepatica infection on the bovine TB skin 

test be evaluated in naturally infected 

animals using on farm studies? 
 

Abstract 

Bovine tuberculosis is one of the most challenging diseases faced by the UK cattle industry. 

Laboratory studies have shown that liver fluke infection may reduce the sensitivity of the 

bovine TB skin test, the main component of the mandatory control programme. The aim of 

this study was to determine whether infection with liver fluke, as measured by antibody 

detection ELISA, affects the outcome of the skin test, in naturally exposed animals on UK 

farms. Whole herds were blood sampled at the same time as the statutory TB test was 

performed, and in a separate study, milk samples were obtained from TB reactors and 

controls in dairy herds. No significant difference in fluke ELISA results was seen between TB 

reactors and controls. However, in this study it was difficult to recruit farmers willing to 

take part in the study, and as a result the study was underpowered. 

3.1. Introduction 

Bovine tuberculosis (bTB) is a chronic infectious disease caused by Mycobacterium bovis. It 

is one of the most costly diseases affecting the UK cattle farming industry (DEFRA, 2015). A 

mandatory bTB control programme has been in operation in the UK since the 1950s, and 

initially this was successful in bringing bTB under control, with the nadir of bTB cases 

occurring in the early 1980s, and most bTB cases concentrated in the south west of England 

(TB Free England, 2015). Since then, bTB has been on the increase and is now endemic in 

South Wales, most of Southern England and the Midlands (Department for Environment 

Food and Rural Affairs, 2014c). However, clinical cases of bTB in cattle are rarely seen in the 

UK due to the control programme, and the public health risk is very low, as pasteurisation 

of milk kills M. bovis (de la Rua-Domenech, 2006). 

Changes in the cattle industry, such as larger herd sizes, more intensive conditions and 

more cattle movement around the country (particularly as a result of restocking following 
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the foot and mouth epidemic of 2001) are likely to have contributed to this rise (Gilbert et 

al., 2005; Griffin et al., 1993). The badger is the main wildlife reservoir, and the increasing 

protection of badgers in law from the late 1980s onwards is also likely to have had a 

significant adverse effect on the control of bTB, as this has led to a large increase in the 

badger population, inevitably leading to more contact with farm animals (Bessell et al., 

2012; Biek et al., 2012; Donnelly and Nouvellet, 2013; Griffin et al., 2005; Johnston et al., 

2011).   

The control programme involves compulsory testing of all cattle over 6 weeks of age at 

intervals of 1-4 years depending on whether they are in a low or high risk area. The high risk 

areas are in the South West and West Midlands in England, with an edge area bordering 

this region, where regular testing is also performed. Annual testing is also performed in the 

whole of Wales although most bTB is diagnosed in South Wales and the border areas of Mid 

Wales (TB Hub, 2016). Tests are performed by private veterinary surgeons acting on behalf 

of the government.  The single intradermal comparative cervical tuberculin test (SICCT) is 

used, which entails injecting bovine and avian tuberculin purified protein derivative (PPD) 

respectively into two sites on an animal’s neck, following measurement of skin thickness. 

The avian tuberculin increases the specificity of the test by acting as a control, as exposure 

to environmental mycobacteria strains can cause a non-specific reaction to the test. The 

skin thickness is measured again 72 hours later, and animals are classed as TB reactors, 

inconclusive reactors (IRs) or clear, based on the difference in skin thickness at the two 

sites. Tests can be read as ‘standard’ or ‘severe’; which interpretation to use is decided by 

DEFRA depending on the situation. A smaller difference in skin thickness is required to 

classify an animal as a reactor when using the severe interpretation. The severe 

interpretations also differ between England and Wales, with the Welsh version being more 

stringent (APHA, 2014a, 2014b). 

The SICCT can be technically challenging to administer due to fractious animals, poor 

handling facilities and time pressure. It is also a subjective test, depending on the 

consistency of the operator in measuring the skin thickness (Northern Ireland Audit Office, 

2009; Strain et al., 2011). The sensitivity of the SICCT has been variously estimated at 

between 56% and 90% at the standard interpretation, with a specificity of 99.5-100% 

(Ameni et al., 2000; Clegg et al., 2011; Costello et al., 1997; Gonzalez Llamazares et al., 

1999; Karolemeas et al., 2012). At the severe reading, sensitivity is increased to around 77-

85% whilst specificity is decreased to 99.2% (Clegg et al., 2011; Karolemeas et al., 2012). 

Low sensitivity in the SICCT can result from a lack of response in the early and advanced 
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stages of disease, interference from exposure to environmental mycobacterial species, and 

factors leading to immunosuppression such as the peri-partum period, corticosteroid 

treatment, production related stress, and co-infection with other pathogens (de la Rua-

Domenech et al., 2006; Pollock and Neill, 2002; Strain et al., 2011).    

Cattle that test positive on the SICCT are slaughtered and infection status is confirmed by 

visualisation of lesions, culture and histopathology. In the UK, no TB testing may be carried 

out unless under the direction of the Animal and Plant Health Agency (APHA). Thus we 

were not able to use ancillary TB tests (such as interferon gamma or antibody tests) for this 

study.  

Fasciola hepatica (liver fluke) is a parasite of cattle, causing health and welfare problems as 

well as financial losses. Immunity to M. bovis requires a T helper (Th) 1 type immune 

response, with interferon gamma production (Flynn et al., 1993). This cellular response is 

also required for diagnosis of bTB using the SICCT, and animals become non-responsive to 

the SICCT during active disseminated bTB when a Th2 response predominates (Strain et al., 

2011). F. hepatica has been shown to modify the immune response of cattle infected with 

M. bovis or BCG towards a Th2 type response, with decreased production of interferon 

gamma  and interleukin 4 (Flynn et al., 2009, 2007; Garza-Cuartero et al., 2016). This has 

implications for the SICCT, and an effect has been demonstrated in experimentally infected 

calves, where animals co-infected with fluke and M. bovis or BCG had a smaller response to 

the SICCT than those infected with M. bovis only (Claridge et al., 2012; Flynn et al., 2007).  

These findings show that F. hepatica has an effect both on the immune system and on the 

SICCT, under controlled conditions. In naturally exposed cattle, the balance of the cellular 

and humoral immune responses in those co-infected with bTB and fluke is likely to be 

variable (Strain et al., 2011), and to depend on factors such as the magnitude of the 

infectious dose, the effect of ongoing exposure, other undiagnosed infections, and 

production or reproductive stresses. Therefore, it is desirable to determine whether the 

effect of fluke on the SICCT observed under experimental conditions is also seen in 

naturally exposed cattle.  Field studies have shown a significant negative association 

between herds diagnosed with F. hepatica and bTB (Claridge et al., 2012), but these 

findings have not been confirmed in individual animals. The aim of this study was to 

determine whether infection with liver fluke, as measured by antibody detection ELISA, 

affects the outcome of the SICCT, in naturally exposed animals on UK farms. 
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3.2 Methods 

3.2.1 Cross sectional study 

3.2.1.1 Selection of farms and sample collection 

A sample size calculation showed that to have 80% power and 95% confidence to detect an 

odds ratio of 0.5 for a fluke infected cow having TB compared to a fluke uninfected cow, 

and with a TB prevalence within herds of 5% and a fluke prevalence of 30%, 71 bTB positive 

animals and 1420 bTB negative animals would be required 

(http://powerandsamplesize.com/Calculators, Table 3.1).  This assumed that the animals 

were not clustered within herds, however, as bTB is a relatively rare event and positive 

animals are removed from the herd prior to the next test, this is a reasonable assumption 

as long as herds all have a recent history of bTB, and other factors such as herd size and 

month of sample collection are taken into consideration. From previous discussions with 

veterinary surgeons in high risk areas, it was estimated that reaching this sample size might 

require testing 10-20 purposively selected herds.  

Table 3.1. Details of the sample size calculation 

Odds ratio of TB in fluke infected vs. fluke uninfected 0.5 

Expected percentage of controls exposed to fluke 30% 

Expected bTB prevalence 5% 

Power 80% 

Alpha 5% 

Number of bTB negative animals required 1420 

Number of bTB positive animals required 71 

 

Veterinary surgeons with practices in high risk areas for bTB were asked to identify farmers 

who might be willing to participate in the study. Farmers were then contacted and given 

information about the study, before they decided whether to take part. Participating farms 

were visited between November 2013 and December 2014, at the time of the herd TB test, 

and all cattle over the age of 24 months were blood sampled from the tail vein. This was 

done under Home Office licence PIL 40/3621 and was approved by the University of 

Liverpool Ethics Committee ref VREC290. The TB test results (clear, reactor or IR) were 

obtained from the veterinary surgeon. For the purposes of this study, all of the results were 

used according to the interpretation (standard or severe) applied at the time of the test.  

Due to the lower than expected prevalence of bTB in the sampled cattle, the required 
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number of bTB cases was not reached, as time and funds did not allow further herds to be 

tested. 

3.2.1.2 Testing of samples 

At the University of Liverpool, the samples were centrifuged at 1000 g for 20 minutes and 

the serum separated off for testing.  Serum was used to test for F. hepatica antibodies using 

an excretory-secretory ELISA (Salimi-Bejestani et al., 2005, see Chapter 2 for details). 

Results obtained were a percent positivity (PP) of a known positive control, and PP values 

of 15 or above were considered to be positive.  

An IgG isotype ELISA was used to compare F. hepatica specific IgG1 and IgG2 ratios in four 

reactors and four control (clear) animals. This was done using the same method as for the 

serum ELISA, with the following modifications:  a separate ELISA plate was used for each 

isotype, and samples were added to the plate in decreasing concentrations. Polyclonal IgG1 

and IgG2 conjugates were used (Sheep anti-bovine IgG1 horse radish peroxidase (HRP) and 

Sheep anti-bovine IgG2 HRP, Biorad, catalogue nrs AAI21 and AAI22). The conjugate 

concentrations were optimised using a checkerboard, and were 1 in 20,000 for IgG1 and 1 

in 2500 for IgG2. 

The mean optical density (OD) of the negative control was subtracted from the OD of the 

test samples, and the concentration of the last positive titre was recorded for each sample 

on each plate. This was used to calculate the ratio of IgG1 to IgG2 for each of the samples.  

3.2.1.3 Analysis 

Analysis was performed on both reactor and IR animals using R (R Core Team, 2011). Plots, 

summary statistics and logistic regression models were used to compare bTB diagnoses 

between fluke infected and uninfected animals. The month of sample collection modelled 

as a sinusoidal function (cos(2π*month/12) + sin(2π*month/12)), the age, sex and breed of 

cattle, and herd size and type were included as explanatory variables. These were added in 

different combinations and the best model was considered to be that with the lowest AIC. 

A longitudinal analysis was performed on data from one farm which was sampled three 

times.  

Bootstrapping analysis was performed on the collected data to estimate the power of the 

current study and the sample size that would have been required under the observed bTB 

prevalence:  
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yi  (the probability of a cow I being diagnosed with bTB) was simulated for each cow in the 

dataset as follows: 

 yi  was drawn from a Bernoulli distribution of πi , where  𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) =  𝛼 +   𝑥𝑖𝛽 

Logit (πi ) is the log odds of cow i having bTB, α is the log odds of a fluke negative cow 

having bTB, xi  is the fluke positivity (0 = negative, 1 = positive) of cow i, and β is the co-

efficient for fluke infection.  

A generalised linear regression model was constructed using these simulated values of Yi. 

The simulation and model were run 1000 times and the p value of β recorded each time. 

The proportion of significant β values is an estimate of the power. 

Values of α and β were varied. α depends on the prevalence of bTB whilst β depends on the 

magnitude of the effect of fluke. 

This method was first used to calculate the power of the dataset to detect a significant 

difference with the values of α and β as found in the observed data (the output of the 

logistic regression model). Next, the effect size that could be detected by the sample size 

reached in the current study was estimated, and finally, by sampling with replacement from 

the collected dataset, the required sample size needed to detect the observed effect size at 

the observed prevalence was calculated.  

3.2.2 Case control study 

3.2.2.1 Selection of farms and sample collection 

In a separate study, milk samples were obtained from reactor cattle and an equal number 

of controls from the same herd.  Due to the difficulty recruiting participants for the cross 

ectional study, a different approach was taken to obtain samples for this study. Obtaining 

milk samples through a milk recording company meant that the participating farmers would 

remain anonymous to the research team, which, it was hoped, would remove one of the 

barriers to recruitment. Although it is unlikely that any of the farms in the cross sectional 

study sent in samples for this study, the anonymous nature of the recruitment means that 

it is a possibility. 

The study was publicised through the milk recording company newsletter and through 

collection staff visiting farms. Interested farmers were then sent a pack containing consent 

form, sample collection tubes, bronopolnatamyin (MSI, Nottingham) tablets to add to 
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samples, and were asked to take samples from reactor cattle at or shortly after the next TB 

test, plus from a control animal, which should be the next one to enter the crush or race. 

Alternatively, if recording staff were visiting farms shortly after a TB test whilst reactor 

cattle were still on the farm, they took the samples then.  

From the sample size calculation in Claridge (2012), 167 matched pairs were required. Due 

to difficulty recruiting farmers, the required sample size was not reached.  

Samples were tested at University of Liverpool using an ELISA  to detect antibodies to F. 

hepatica excretory-secretory  products (Salimi-Bejestani et al. (2007), see chapter 2 for 

details). 

3.2.2.2 Analysis 

Following exploratory analysis, a logistic regression model was built with TB test result as 

the outcome measure, and month of sample collection (modelled as a sinusoidal function 

(cos(2π*month/12) + sin(2π*month/12)) and log fluke ELISA PP or fluke positivity as 

explanatory variables.  

3.3. Results 

3.3.1 Cross sectional study 
1582 cattle from 13 UK dairy and beef herds were sampled. Of these, two farms were 

visited twice and one farm was visited three times. In total, 2089 samples were taken.  

There were a total of nine reactor cattle from two farms, one of which was visited twice. 

Twenty-seven IRs were found on six different farms, one of which was visited three times. 

The characteristics of the farms are shown in Table 3.2.  

Table 3.2. Characteristics of the study farms  

 Number (%) 

Total samples tested 2089 

Number of herds 13 

Median herd size 133 

Type 9 dairy farms 
4 beef farms 

Reactors 9 (0.43%) 

IRs 27 (1.3%) 

Number testing positive for fluke 1101 (53%) 

Median fluke PP 16.8 
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The distribution of the fluke ELISA PP results for the clear, IR and reactor cattle is shown in 

Figure 3.1. The median of the clear, IR and reactor cattle are 17, 7.5 and 12.8 respectively.   

 

Figure 3.1. The distributions of fluke ELISA PP results for cattle that tested clear, IR 

and reactor for bTB, on farms where all animals over 2 years of age were sampled. 

The red dotted line shows the positive/negative cut off 

The best logistic regression models in all four combinations of reactor, IR, fluke positivity 

and log fluke ELISA PP included the month of sample collection as a significant explanatory 

variable, but fluke was not a significant predictor for either R or IR in any model once the 

month of sample collection was adjusted for (Table 3.3). Inclusion of other variables such as 

age, breed and sex of cattle and type and size of herd did not improve model fit. 

Table 3.3. Results of logistic regression models for TB reactor and IR status. All 

models are adjusted for month of sample collection, modelled as a sinusoidal 

function (cos(2π*month/12) + sin(2π*month/12)) 

Outcome variable Explanatory variable Odds ratio p value 

TB reactor Fluke positivity (positive = 1) 0.53 0.38 

TB reactor Log fluke ELISA PP 1.05 0.89 

IR Fluke positivity 0.54 0.18 

IR Log fluke ELISA PP 0.74 0.11 

 

2.4.1.1 Longitudinal analysis 

Follow up of cattle with a reactor or IR diagnosis from one farm which was visited three 

times, during May, July and October 2014, showed that for most animals, fluke status did 

not change. Four of the animals with a change in bTB status during the study period had a 
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change in fluke status. Of these, two occurred at the same time as a change in bTB status: 

one animal went from fluke positive to negative and the other went from fluke negative to 

positive, whilst both changed from IR to clear. Two other cattle went from negative to 

positive but this did not coincide with a change in fluke status. The other cattle remained 

either positive or negative for fluke throughout (Fig. 3.2).  

 

Figure 3.2. Fluke ELISA PP results for individual animals that were reactors or IRs at 

one of the TB tests, from one farm sampled three times on visits 60-90 days apart, 

during May, July and October 2014. The blue dotted line shows the positive/negative 

cut off 

Similarly, fluke ELISA PP results did not change substantially between visits. Between the 

first two visits, mean PP values fell for the herd as a whole and also for most of those 

having a change in bTB status, with the exception of the group of cattle which went from IR 

to C (n=5), whose PP values rose slightly (Fig. 3.3).  Between the second two visits mean 

fluke PP increased for all the groups.  
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Figure 3.3. The mean change in fluke ELISA PP values between each pair of visits, for 

cattle with a change in bTB status and for the rest of the herd. R=reactor, 

I=inconclusive reactor, C=clear 

 

2.4.1.2 Bootstrapping analysis 

Bootstrapping analysis performed on the collected data showed that the study had an 11% 

power to detect an odds ratio of 0.44 with an apparent bTB prevalence of 0.44%, which 

were the values derived from the logistic regression coefficients of α = -5.08, β = -0.82.  

Next, the effect size that would be required to be detectable by a sample size of 2089, with 

an apparent prevalence of 0.44% was estimated. However, in this scenario, it was not 

possible to reach 80% power to detect even an odds ratio of 0.05, and the maximum power 

possible was around 50%.  

A sample size of around 10,000 cattle would be needed for 80% power for the observed 

effect size and prevalence.  

3.3.1.2 IgG isotype comparison 

Four TB reactor animals were each matched with an animal from the same farm with a 

similar fluke ELISA PP result. Three of the pairs were fluke positive and the fourth was fluke 

negative because there were no further fluke positive reactors. They were also matched as 

closely as possible on age. The IgG1 titres were the same for each pair of reactor and 

control, but the IgG2 titres were higher in the controls than in the reactors apart from in 
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the fluke negative pair. This meant that in all cases the IgG1:IgG2 ratio was higher in the 

reactors than in the controls, except for the fluke negative pair (Table 3.4).   

Table 3.4. Details of the cattle and samples used in the IgG isotype comparison 

Samples Fluke ELISA 
PP 

Age 
(months) 

IgG1 titre IgG2 titre IgG1:IgG2 ratio 

TB R 1 44 50 1 in 12800 1 in 6400 2 

Control 1 45 unknown 1 in 12800 1 in 12800 1 

TB R 2 95 74 1 in 25600 1 in 6400 4 

Control 2 94 56 1 in 25600 1 in 25600 1 

TB R 3  44 36 1 in 3200 1 in 3200 1 

Control  3 44 36 1 in 3200 1 in 12800 0.25 

TB R 4 13 45 1 in 1600 1 in 1600 1 

Control  4 14 40 1 in 1600 1 in 1600 1 

3.3.2 Case control study 

Seven dairy farms took part in the study (Fig. 3.4). Seventy one samples were obtained, 36 

from reactors and 35 from TB test negative controls. Twenty nine (41%) of cattle tested 

positive for fluke on the ELISA, and this varied between 0 and 100% across the farms (Table 

3.5).  

 

Figure 3.4. The approximate locations of the seven farms which took part in the study 

The distributions of the fluke ELISA PP results were similar for the reactor and control 

groups (Fig. 3.5). The median fluke ELISA PP of the reactors was 12.3 and the median of the 

controls was 9.6. 

 

 

 

 



48 
 

Table 3.5. The numbers of cattle testing positive for fluke and bTB on each farm  

Farm Number of TB reactors 
that tested positive for 
fluke 

Number of controls that 
tested positive for fluke 

Number of samples 
submitted 

1 7 (78%) 8 (89%) 18 

2 1 (50%) 0 (0%) 4 

3 0 0 12 

4 2 (40%) 2 (50%) 9* 

5 3 (100%) 3 (100%) 6 

6 1 (50%) 2 (100%) 4 

7 0 2 (20%) 20 

All farms 14 (39%) 17 (49%) 71 
*One sample was lost in transit so farm 4 had 5 cases and only 4 controls. Other farms had equal 
numbers 

 

 

Figure 3.5. Fluke ELISA PP values for cattle testing positive or negative in the bTB skin 

test. The red dotted line shows the cut off for the ELISA 

Logistic regression models showed that neither fluke ELISA PP nor fluke positivity were 

significant predictors for bTB when month of sampling was adjusted for (Table 3.6).  

Table 3.6. Results of logistic regression models for TB reactor status. Both models 

are adjusted for month of sample collection, modelled as a sinusoidal function 

(cos(2π*month/12) + sin(2π*month/12)) 

Outcome variable Explanatory variable Odds ratio p value 

TB reactor Fluke positivity (1=positive) 0.64 0.38 

TB reactor Log fluke ELISA PP 0.93 0.70 
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3.4 Discussion 

In this study we attempted to use SICCT results and fluke antibody ELISA results from 

naturally exposed animals to test the hypothesis that fluke infection reduces the response 

to the SICCT in bTB infected animals. No significant difference was seen in bTB test 

outcome between animals with different fluke results once month of sample collection was 

adjusted for. It was important to adjust for this because season has an effect on both bTB 

diagnosis (Moustakas and Evans, 2016) and fluke infection and failing to do so could lead to 

confounding. 

Although our study was underpowered, if there had been a strong effect of fluke infection 

on bTB diagnosis, we would expect a consistent trend to be seen. In all but one model, the 

odds ratio for a cow with fluke antibodies to be diagnosed as a reactor or IR compared to a 

cow without fluke (or with a lower antibody titre) was less than one (Tables 3.3 and 3.6). 

Although none of the models were statistically significant, the results do suggest that fluke 

infected cows may be less likely to be reactors to the SICCT, although a larger sample size is 

required for this effect to become statistically significant. This finding is also supported by 

other studies which found subtle effects, for example, in a study where cattle were 

experimentally infected  with controlled doses of M. bovis and fluke, the reduction in skin 

reactions observed in fluke infected cattle, although consistent, was not sufficient to lead to 

any of the cattle being reclassified from reactor to clear (Claridge et al., 2012).  

The longitudinal study did not provide much useful information because the fluke ELISA PP 

values of most of the cattle did not change much between visits. Only four cattle changed 

fluke status across the three visits, and two of these did not have a coincidental change in 

bTB status. Due to the milk withdrawal times for flukicidal drugs, treatment during the dry 

period is the most practical approach for controlling fluke in dairy cows, and this was 

practised on the farm from which these samples came. As it happened, none of the reactor 

or IR cattle were treated during the study period, although two were treated shortly before 

the start of the study period and their fluke results remained negative throughout. Treating 

infected cattle with a flukicide to ensure fluke PP values change before the next bTB test, 

together with a longer follow up period to allow PP values to rise again, may give more 

useful results in such a study in future, although this would only be possible for IRs as 

reactors would be removed from the herd. Using non-lactating cattle would allow more 

choice in the timing of flukicide administration for this purpose.  
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There was a difference in F. hepatica IgG isotype ratios with IgG1:IgG2 ratios being higher in 

the reactors than the controls. The anti-fluke IgG1 titres were the same in the reactors and 

fluke only infected cows and in 2/3 fluke only animals, the IgG1:IgG2 ratio was 1 (Table 3.4).  

But the IgG2 titres were consistently lower in the fluke infected reactors compared to the 

fluke only infected cattle.  Although we did not test sufficient samples to reach statistical 

significance, these data suggest that there was an interaction between fluke and TB 

infection and a difference in the cytokine milieu in the co-infected animals that warrants 

further investigation.  

In Fasciola infected cattle, there has been shown to be an increase in both IgG1 and IgG2, 

with IgG1 the dominant isotype, and the rise in IgG1 occurring earlier in the course of 

infection than the rise in IgG2 (Phiri et al. 2006; Bossaert et al. 2000). In vaccine studies, 

high levels of IgG2 were associated with protective immunity to fluke (Mulcahy et al., 

1998). Conversely, in a study of cattle experimentally infected with M. bovis, there was a 

strong IgG1 response but only 1/6 animals showed any increase in IgG2 levels (Welsh et al., 

2005). Similarly, in humans with TB caused by M. tuberculosis, IgG1 has been shown to be 

the predominant isotype , with no IgG2 upregulation evident (Hussain et al., 1995; Macedo 

et al., 2011). It appears that being infected with both M. bovis and liver fluke may 

downregulate the Th1 response even further than being infected with fluke alone. 

Legal restrictions on bTB testing and the rapid removal of reactors from the farm for culling, 

meant that the only way to approach the study was to blood sample at the same time as 

the bTB test. Unfortunately, the sensitive nature of bTB, which carries a considerable 

stigma for farmers and can often mean economic ruin and even suicide, made it very 

difficult to recruit farmers to take part in the study (Spedding, 2009). The low uptake was in 

contrast to that seen in Chapter 5 for a study on Johne’s disease, where all farmers who 

were approached agreed to take part. We relied on private veterinary surgeons to assist in 

recruiting farmers for the cross sectional study, and some stated that they did not want to 

add extra stress for their farming clients at a potentially difficult time. Reasons given by 

farmers for declining to take part in the study included not wanting to delay the TB test or 

cause additional stress to animals, and also confidentiality concerns and a feeling that the 

test procedure might be altered in the presence of researchers. These factors may have led 

to farms that were less likely to have bTB being included in the study, despite them being in 

high risk areas and having a recent history of bTB. Abattoirs dealing with reactors were also 

approached, but declined to be involved because of lack of time and health and safety 

concerns.  
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Since both bTB and fluke are chronic infections, they both, separately, bias the immune 

response towards a T-regulatory response (Bossaert et al. 2000; Bossaert et al. 2000; 

Wangoo et al. 2001; Flynn et al. 1995). There is also evidence that both liver fluke and 

pathogenic mycobacteria exert immunomodulatory effects on the host immune system 

(Arsenault et al., 2014; Balcewicz-Sablinska et al., 1998; Moreau and Chauvin, 2010). Our 

results, despite their limitations, suggest that fluke infection may reduce the sensitivity of 

the SICCT, and that the immune modulation seen in experimental studies is also observable 

in naturally exposed animals. This could have important effects both on the bTB control 

programme and on the overall health and welfare of cattle. Future research on this topic is 

still required, in particular to investigate the large effect reported by Claridge et al. (2012), 

who estimated that bTB was undetected by up to one third on farms with liver fluke. 

However, this may need to be done via official channels in order to gain access to the 

required information and samples. It would also be beneficial to look at post mortem 

examination results and alternative bTB tests such as the interferon gamma test, to 

understand any effect of fluke infection on the SICCT.  
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Chapter 4: A systematic review of the 

literature on co-infection with Fasciola 

hepatica and Mycobacterium bovis 

Abstract 

Liver fluke and bovine tuberculosis (bTB) are both common pathogens responsible for 

significant economic losses to farmers. Some research suggests that infection with liver 

fluke can decrease the sensitivity of the bTB skin test, but other studies have found the 

opposite effect. We undertook a systematic review of the literature on co-infection with 

these two pathogens and extracted data on the association between fluke infection and the 

bTB skin test, interferon ϒ test, lesion detection and culture/bacterial recovery. Of a large 

body of literature dating from 1950 to 2016, only nine studies met the inclusion criteria. 

These included studies of experimentally infected calves, case control studies on adult 

cows, cross sectional abattoir studies and a herd level study. All the studies had a medium 

or high risk of bias and there was a suggestion of reporting bias. Results should be 

interpreted cautiously as many of the results come from a small number of studies from the 

same group of authors. Much of the evidence points to liver fluke having the effect of 

decreasing all of the four measures of bTB diagnosis, but most studies showed a small 

and/or non-significant effect.  

4.1 Introduction 

4.1.1 Description of fluke 
Fasciola hepatica, also known as the common liver fluke, and F. gigantica (the tropical liver 

fluke) are helminth parasites which have adverse effects on cattle health, welfare and 

production. The common fluke affects up to 80% of UK dairy herds (McCann et al., 2010) 

whereas the tropical fluke is widespread in tropical regions (Abunna et al., 2010; Howell et 

al., 2012; Malone et al., 1998). Fluke infection may cause illness, subclinical effects such as 

reduced milk yield and growth rates, and occasionally, acute deaths. All ages of cattle are 

affected as protective immunity does not seem to develop (Clery et al., 1996). Treatment is 

restricted in lactating animals, and re-infection will occur unless animals are housed or 

grazed on safe pastures. Animals grazing damp and boggy pastures which provide habitats 

for the respective intermediate host snails, Galba truncatula and Lymnaea natalensis are at 
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risk. In many respects the two flukes have a similar biology and pathology, but there are 

thought to be some differences in the immune response to infection (Roberts et al., 1997; 

Toet et al., 2014; Zhang et al., 2005).  

Early infections with liver fluke are characterised by a mixed T helper (Th) 1 and 2 type 

immune response with upregulation of interferon (IFN) ϒ, immunoglobulin (Ig)G1, and 

interleukin (IL)4. The Th1 response fades later in infection and a Th2/regulatory T cell (Treg) 

response predominates, with upregulation of the cytokines IL4, IL5, IL13, transforming 

growth factor (TGF)β and IL10. It is thought that fluke have evolved to be able to moderate 

the host immune response in order to facilitate their own survival within the host (Altmann, 

2009; Moreau and Chauvin, 2010). An anti-inflammatory response also has some benefits 

for the host, as a strong pro-inflammatory reaction would lead to tissue damage. Low level 

infections are well tolerated by cattle, although little is known about the impact on the host 

immune response. 

4.1.2 Diagnosis of fluke 
Diagnostic methods for fluke include faecal egg count, serum or milk antibody detection 

ELISA or detection of fluke at post mortem examination (Table 4.1).  

Visualisation of fluke in the liver is considered the gold standard for fluke diagnosis. 

Specificity is excellent and if performed carefully, sensitivity should be high as well. In a 

commercial abattoir setting sensitivity may be considerable lower as the liver is not 

examined in as much detail (Rapsch et al., 2006). The antibody ELISAs are generally highly 

sensitive and specific. Serum testing is generally thought to be more reliable than milk 

testing, due to the fluctuations in milk antibody levels that occur throughout lactation 

(Chanlun et al., 2006; Schares et al., 2004). The bulk milk tank ELISA can be used to screen 

the herd for fluke exposure. Faecal egg count is a highly specific but relatively labour 

intensive diagnostic method. For most methods of fluke detection, sensitivity increases 

considerably as worm burden increases (Charlier et al., 2008). The sensitivity and specificity 

also vary depending on the population, and are usually lower in mixed groups of infected 

and uninfected animals than in the separated populations often used to evaluate the tests 

(Leeflang and Bossuyt, 2005; Ransohoff and Feinstein, 1978). 
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Table 4.1. A summary of some of the different diagnostic tests used for Fasciola spp.  

 Sensitivity  Specificity  Comments Ref 

Faecal egg 
count 

43-65% 90-100% Does not become 
positive until 7-10 
weeks following 
infection. Sensitivity 
depends on intensity of 
infection and weight of 
faeces used.  

Charlier et al., 2008 

Serum 
antibody 
ELISA 

79-95% 80-93% Can detect infection 2-
4 weeks post infection 
Remains positive for 
several weeks after 
treatment 

Charlier et al., 2008; 
Salimi-Bejestani et 
al., 2005b 

Milk antibody 
ELISA 

92-95%  
 

88-98% 
 

 Reichel et al., 2005; 
Salimi-Bejestani et 
al., 2007 

Bulk milk 
antibody 
ELISA 

96% 80% Convenient method for 
whole herd screening 

Salimi-Bejestani et 
al., 2005a 

Post-mortem 
detection of 
fluke in liver 

63% - 93% 100% Sensitivity varies widely 
depending on protocol 

Rapsch et al., 2006 

4.1.3 Description of bovine TB 
Bovine tuberculosis (bTB) is caused by Mycobacterium bovis and occurs in cattle 

throughout the world. M. bovis can be transmitted to humans, although the risk is low if 

milk is pasteurised and meat is cooked. Test and cull control programmes for cattle, 

combined with abattoir surveillance, have been successful in eliminating bTB as a public 

health problem in most European countries, although some countries are still seeing many 

test-positive cases in cattle, particularly the UK and Ireland. Clinical cases are rarely seen 

because most cattle are culled well before reaching the clinical stage of disease. Herds are 

usually tested between every 1 and 4 years, with more frequent retesting if there are 

positive results within a herd. Positive animals are compulsorily slaughtered and attempts 

are made to confirm bTB infection by lesion detection, histopathology and culture. Outside 

the EU, many countries do not have control programmes and cattle are more frequently 

seen with clinical bTB.  

M. bovis is a slow growing intracellular bacterium with a lengthy pre-clinical phase lasting 

months or years. Infection with M. bovis induces a cell-mediated immune response with 

the production of IFN ϒ and TNF α (Buddle et al., 2013; Flynn et al., 1995, 1993). Later in the 

course of disease a humoral (Th2) type response predominates with increased antibody 
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production. Latency is not reported as a feature of bTB infection in cattle, although it is 

widely recognised in humans (Flynn et al., 1993).  

4.1.4 Diagnosis of bTB 
BTB can be diagnosed pre-mortem by the single intradermal comparative cervical 

tuberculin test (SICCT) and by the Bovigam® TB Kit (Thermo Fisher Scientific Inc., MA, USA) 

which measures IFN ϒ response to bovine and avian purified protein derivative (PPDb and 

PPDa). Post-mortem diagnosis is by finding lesions in affected tissues, most commonly the 

lungs and lymph nodes, and also by culture and/or histopathology of tissues.  

No gold standard for the detection of bTB exists, with all tests having a relatively poor 

sensitivity (Strain et al., 2011) (Table 4.2). Currently in the UK, all bTB testing is under 

government control and cannot be carried out other than as part of the mandatory control 

scheme. The SICCT is the standard test used for screening of animals in the UK. It entails 

injecting bovine and avian PPD into two sites on the neck following measurement of skin 

thickness using calipers. If the animal is infected with M. bovis, a hypersensitivity reaction 

occurs and a swelling results. The injection sites are checked 72 hours later and any 

swellings are measured.  Different interpretations are used depending on the sizes of the 

swellings and whether or not oedema is present, but in general, if the increase in skin 

thickness at the PPDb is more than 4 mm greater than the increase in thickness at the PPDa 

site, the test is considered positive and the cow is described as a ‘reactor’. If there is a 

difference of 2-4 mm the cow is designated an ‘inconclusive reactor’ (IR). The PPDa is used 

as a control to avoid false positives due to exposure to environmental Mycobacterium spp. 

The SICCT is subjective, and relies on the operator’s judgement, and there are operational 

difficulties due to time pressure, poor handling facilities and safety (de la Rua-Domenech et 

al., 2006; Strain et al., 2011). In the UK, testing is usually carried out by private veterinary 

surgeons on the government’s behalf, and a considerable conflict of interest exists 

(Northern Ireland Audit Office, 2009). Some countries now recognise this and quality 

control their testers (Duignan et al., 2012).  Poor sensitivity is also due to the fact that 

immune responses in infected animals are variable and often lacking during early or late 

stages of disease (de la Rua-Domenech et al., 2006; Pollock and Neill, 2002; Strain et al., 

2011). A non-comparative test omitting the PPDa is used in some countries where 

environmental mycobacteria are less of a problem (Strain et al., 2011).  

The IFN ϒ (Bovigam®) test is used in the UK as an additional test in specific situations such 

as a known infected herd, where a test with higher sensitivity is required (Strain et al., 
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2011). A blood sample is taken and peripheral blood mononuclear cells (PBMCs) stimulated 

with PPDa or PPDb, and the IFN ϒ produced is then measured using an ELISA. Blood must be 

maintained at specific temperatures following extraction from the cow, and must be tested 

within a few hours of collection, making it challenging in field situations. It is expensive and 

difficult to perform, and the lower specificity makes it unsuitable for routine use (Strain et 

al., 2011).  However, this test can detect animals exposed to lower doses of M. bovis and at 

earlier stages of infection (Dean et al., 2005; Pollock et al., 2005) and is therefore a useful 

adjunct to the SICCT.  

Post-mortem examination at slaughter is a part of bTB surveillance in many countries. 

Between 7 and 50% of new herd breakdowns are detected this way in the UK (Broughan et 

al., 2014). Lesions can be visualised by slicing into the lungs, lymph nodes and other organs.  

The sensitivity of lesion detection can be poor, especially in a commercial abattoir where 

inspection is limited to a couple of slices into the lungs and lymph nodes (Liebana et al., 

2008). In experimental situations, the whole lung can be sliced into tiny pieces, and all 

lymph nodes and sundry other tissues examined, vastly improving sensitivity (Corner, 

1994).  

Lesion detection can also be poorly specific, especially in older cattle or those with 

concurrent diseases such as liver fluke, as the bTB lesions can be confused with those due 

to other conditions (Shittu et al., 2013). Under controlled conditions, using animals which 

are unlikely to have other lesion-causing conditions, the specificity is likely to be far higher. 

Culture and/or histopathology can be carried out to confirm the cause of lesions. However, 

culture of M. bovis is difficult and the failure to culture anything does not rule out bTB. In 

the field, culture is normally dependent on finding lesions whereas in experimental settings, 

tissues may be cultured even if no lesions are seen.  
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Table 4.2. A summary of some commonly used methods of bTB detection  

 Sensitivity Specificity Comments Ref 

SICCT 50-100% 99.9% Sensitivity adversely 
affected by metabolic 
stresses, concurrent 
infection with M. avium 
subsp. paratuberculosis 

de la Rua-
Domenech et al., 
2006; Karolemeas 
et al., 2012; Neill et 
al., 2001; Strain et 
al., 2011 

Interferon ϒ 
test 

67-100% 85-96% Able to detect early 
infection  

de la Rua-
Domenech et al., 
2006; Dean et al., 
2005 

Lesion 
detection 

20 – 95% 53-90% Test accuracy much 
poorer in commercial 
abattoir setting 

Corner, 1994; 
Department for 
Environment Food 
and Rural Affairs, 
2014; Frankena et 
al., 2007; Liebana et 
al., 2008 

Culture 53-90% >99%  Department for 
Environment Food 
and Rural Affairs, 
2014; Liebana et al., 
2008; Strain et al., 
2011 

 

4.1.5 Co-infection with parasites and other pathogens 
Several studies have shown that infection with parasites alters host response to co-

infecting pathogens. For example, children exposed to filarial nematodes or blood flukes 

have a reduced Th1 immune response to mycobacterial infections following BCG 

vaccination (Malhotra et al., 1999). Also in children, immunity to M. tuberculosis and M. 

leprae is reduced by infection with Onchocerca volvulus (Stewart et al., 1999). In the case of 

F. hepatica, there is evidence that infection can increase susceptibility to Bordetella 

brochiseptica in mice (Brady et al., 1999), and to Salmonella dublin in cattle (Aitken et al., 

1979). In these examples the effect of the parasite is to decrease immunity to co-infecting 

pathogens; these responses, however, should not be viewed in isolation, as parasites have 

co-evolved with their hosts over a long time. In some cases, treatment for parasites has 

been found to worsen symptoms of concurrent disease (Fenton, 2013). At the population 

level, there is a trade-off between the effects on the individual and the effects on the 

population, and co-infection may help to keep the population stable (Ezenwa and Jolles, 

2014; Fenton, 2008; Jolles et al., 2008). Ecological studies show that the relationship 

between parasites and host immunity is dynamic and context specific, depending on 
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infection pressure, host genetics, and environmental factors (Friberg et al., 2013; Graham 

et al., 2007).  

4.1.6 Reasons for doing the review 
For a long time there has been a concern that liver fluke may affect the outcome of the bTB 

skin test, and that this may hamper control programmes for bTB. Two small scale 

experimental studies and one herd-level study reported that fluke decreased the sensitivity 

of the SICCT (Claridge et al., 2012; Flynn et al., 2009, 2007). However, other research 

reported the opposite effect (Broughan et al., 2014). In addition, the poor sensitivity and 

specificity of diagnostic tests for bTB and the absence of a gold standard make it difficult to 

interpret findings of studies. In spite of this, the findings of the former three studies are 

now widely reported (Bovine TB info, 2016; Strain et al., 2011). There is a need to examine 

the evidence to try to better understand the complexities of the relationship between liver 

fluke and bTB diagnosis and disease.  

4.1.7 Objective 
To review primary research to find out whether liver fluke infection affects the diagnosis of 

bTB. 

4.2 Methods 
The recommendations for systematic reviews from the Cochrane Collaboration were 

followed (The Cochrane Collaboration, 2011). 

4.2.1 Type of studies 
All types of study were considered for inclusion, as long as they included animals co-

infected with liver fluke and tuberculosis, and a control group testing negative for one or 

both pathogens to compare them with. We searched for studies concerning F. hepatica, F. 

gigantica, M. bovis and M. tuberculosis, in any species of host. Observational studies and 

experimental studies were considered.  

4.2.2 Fluke measures 
Any method of herd or individual fluke diagnosis was considered. 

4.2.3 TB measures 
The outcomes of interest were TB diagnostic measures, whether pre- or post-mortem. 

Some studies had looked at various other measures of immune response, but for the 

purposes of this study, we only included those measures that were directly related to 
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diagnosis: SICCT response, IFN ϒ test, lesion detection, culture or bacterial recovery, and 

other commercially available tests such as antibody assays.  

4.2.4 Search methods 
Searches were carried out in Google Scholar, Scopus, Web of Science and Pub Med using 

combinations of the following search terms: Fasciola, liver fluke, tuberculosis, tuberculin, 

mycobacterium and BCG. Searching was performed separately by two researchers. Further 

searches were carried out in Google and in the conference proceedings of the World 

Association for Advances in Veterinary Parasitology, Society for Epidemiology and 

Preventive Veterinary Medicine, the International Mycobacterium bovis Conference, 

International Conference of Parasitology and British Society for Parasitology. Hand searches 

of reference lists from recovered papers were performed. Finally, personal contacts from 

other research institutions were approached to ask for any unpublished studies.  

4.2.5 Data collection and analysis 

4.2.5.1 Selection of studies 

Search results were merged and duplicates removed. Titles and abstracts were examined 

and obviously irrelevant papers removed. The full text of reports was then obtained where 

possible, through the British Library or by contacting the main research institutions in the 

countries of origin. For foreign language studies, these were initially screened by one 

researcher able to read the language. Where papers were felt to be of interest, another 

colleague was then sought for a second opinion. For the English language papers, these 

were all read independently by two researchers initially. Included papers were then read by 

two additional colleagues.  

Papers were discarded at this stage according to the following criteria: a review or letter 

rather than an original study, a different research question addressed, no control group, did 

not separate fluke effect from other parasites, did not mention co-infections between the 

two parasites, or did not include both pathogens.  

4.2.5.2 Data extraction and management 

Studies were then read in detail by at least two researchers to assess the quality of 

evidence and extract the data (data extraction forms can found in the appendix). In the 

case of disagreement, a consensus was reached by discussion or by seeking a third opinion. 

Studies were numbered in order of date of publication. Where a single study was reported 

in more than one place, the reports were grouped together and given a single number. A 

small number of studies were rejected at this stage due to inability to extract useful data.  
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4.2.6 Assessment of the risk of bias 
This was a difficult assessment, given the heterogeneity of the studies. There was much 

discussion between team members and further details of aspects of the decision making 

process are given in the results. The risk of bias was categorised as low, medium or high for 

each study, based on consideration of the following:  

4.2.6.1 Study design 

Low: Randomised experiment  

High: All other study designs including observational studies, cohort, case control and cross 

sectional designs.  

4.2.6.2 Sampling bias 

Low: Animals were randomly selected from the population  

High: Study design made bias likely, eg. selection from different populations or selected 

based on features related to the outcomes of interest 

4.2.6.3 Randomisation 

This is applicable only to studies which included an intervention.  

Low: Animals were randomly allocated to a control or intervention group, with a suitable 

method of randomisation.   

High: No appropriate method of randomisation was reported, or randomisation was not 

used 

4.2.6.4 Blinding 

Low: There was blinding at all of the following stages: administration of intervention (if 

possible), data collection, diagnoses or measurements taken, laboratory work, and 

statistical analysis 

High: No blinding was used at one or more of these stages 

4.2.6.5 Comparability of groups 

Low: Groups were compared and found to have similar characteristics with regard to 

relevant factors such as age of animals, breed, region of origin 

High: Groups were not compared, or were compared and seemed different 
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4.2.6.6 Confounders 

The main confounders were considered to be age, breed, use, region, and previous 

treatment 

Low: Confounders were adjusted for at the analysis stage e.g. by inclusion in a regression 

model  

High: Confounders were not adjusted for 

4.2.6.7 Incomplete outcome data 

This refers to animals that were selected to be part of the study but for which some or all 

results were not reported. 

Low: All data was complete, or reasons for incomplete data were analysed and found to be 

unlikely to introduce bias 

High: Incomplete information for a proportion of study subjects with no explanation, or for 

reasons likely to introduce bias 

4.2.6.8 Selective reporting 

Low: All aspects of the study that were mentioned in the methods were fully reported in 

the results. Interpretation of results and discussion of the implications fitted what the 

results showed  

High: Some procedures that were mentioned in the methods were missing from the results. 

Results were over interpreted or claims were made that were not supported by the results.  

4.2.7 Data synthesis 
As the studies were heterogenous in their methods and outcome measures, as well as 

being few in number, a meta-analysis was not possible. Instead a harvest plot and narrative 

synthesis was used to synthesise the results (Ogilvie et al., 2008). For the harvest plot, each 

outcome measure for bTB was plotted against the ‘effect’ of fluke infection/exposure: 

decreased, no difference or increased. Studies were plotted with a box showing effect size, 

and colour coded for quality of evidence. This is to be interpreted alongside the narrative 

synthesis, which gives further details about the evidence.  
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4.3 Results 

4.3.1 Results of search 
A total of 67 studies were identified through database searches, eight through hand 

searching reference lists of other papers, four through personal contacts, two through 

searching the internet using Google, and one from conference proceedings. Full details of 

the sources of the papers can be found in figure 4.1. Following removal of duplicates and 

initial screening, 54 papers remained. These were published between 1950 and 2016, were 

published in seven languages, and included peer reviewed published studies, PhD theses 

and unpublished data.  

A total of eight studies were excluded because the full text could not be obtained. Five full 

texts could not be obtained; these were Russian or Eastern European studies dating from 

the 1950s-70s. Two studies were not used because they were unfinished at the time this 

review was carried out. One study was omitted because it was reported in conference 

proceedings with insufficient details.  

The full text was screened for 46 studies. Thirty-five of these were excluded because they 

did not meet the study requirements, or because they were a letter or review (further 

details can be found in figure 4.1).  Six reports were combined into three because they were 

found to be using the same animals with different aspects reported in various places (Table 

4.3 and DEFRA 2005/Broughan et al, 2009).  

4.3.2 Included studies 
Nine studies were included in the final analysis, and are summarised in table 4.4. Their 

publication dates ranged from 1962 to 2016. Eight were published in peer reviewed 

journals, one was reported in a thesis, and part of one study was unpublished.  

Three studies used experimentally infected calves, and were performed by the same 

research group in Ireland. BCG was used to infect calves in one experiment (Flynn et al., 

2007) and M. bovis was used in the other two. The latter two experiments were reported in 

three different papers (see table 4.3).  
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Figure 4.1. Numbers of studies found and removed at each stage of the systematic 

review 

Records identified through databases 

Google Scholar  39 
Web of Science  10 
Pub Med 9 
Scopus 9 

Records identified from other sources 

Personal contacts 4 
Reference lists 8 
Google 2 
Conference proceedings 1 

Records screened 

61 

Full text searched for 

54 

Full text screened 

46 

Studies included 

9 

Records excluded 

7 

Could not obtain full text 8 

Old Russian/Eastern European articles 5 

Report unfinished at time of review 2 

Conference proceedings 1 

Records excluded 35 

Review 6 

Letter 3 

Addressing different question 6 

No control group 4 

Did not separate fluke effects from other 

parasites 1 

No correlations between 2 pathogens 

mentioned  2 

Did not include both pathogens 9 

Not enough detail reported 1 

 

 

Total found 

82 

 

Duplicates removed 

21 

Translated 

German 6 

Russian 2 

Czech 1 

Polish 1 

Spanish 1 

French 2 

Reports combined  

6 into 3 

2 

12 
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Table 4.3. A summary of where the outcomes from experimental studies of two groups 

of calves infected with M. bovis were published 

Experiment Aspect of study Reported in 

1 SICCT Unpublished 

 Lesions Flynn et al., 2009 

 Bacterial recovery Garza-Cuartero et al., 2016 

 IFN ϒ Flynn et al., 2009 

2 SICCT Claridge et al., 2012 

 Lesions Garza-Cuartero et al., 2016 

 Bacterial recovery Garza-Cuartero et al., 2016 

 IFN ϒ Garza-Cuartero et al., 2016 

 

Claridge et al. (2012) investigated the association between bTB herd breakdown and the 

fluke antibody level in a bulk milk tank sample.  A case control study looking at the fluke 

antibody levels of adult cattle and their TB test result was reported in a PhD thesis by 

Claridge (2012). These were both UK studies.  

There were three cross-sectional abattoir studies, one from Czechoslovakia (Schanzel and 

Stolarik, 1962), one from Germany (Meyer, 1963) and one from Zambia (Munyeme et al., 

2012). The Czech and German papers compared numbers of cattle with liver fluke and bTB 

lesions at abattoir between those testing positive and negative on the bTB skin test. The 

Zambian study was on the tropical liver fluke F. gigantica, and investigated the association 

between bTB lesions and presence of fluke in the liver. 

Finally there was a case control study carried out by DEFRA in the UK. This was a large study 

looking at many aspects of bTB infection in cattle, of which liver fluke was one small part. 

The population looked at was different compared to other studies, as there were two 

groups, reactors and ‘in contacts’ (cattle which were in contact with bTB reactors but not 

from the same farm as the bTB reactors), and no ‘TB free’ cattle were included. Fluke 

exposure was measured by antibody ELISA and bTB was defined as lesions confirmed by 

either culture or histology (DEFRA, 2005).  Some aspects of this study were written up in a 

poster (Broughan et al., 2009).  
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Table 4.4. A summary of the studies meeting the criteria for inclusion in the systematic review 

Study Reported in Sample 
size 

Country Type of study Species/type Findings 

1 Schanzel and 
Stolarik, 1962 

10,711 Czechoslo-
vakia 

Cross-sectional, bTB tested cattle slaughtered 
and examined for bTB lesions and fluke 

Cattle, 
slaughtered. 
Different ages 
included 

No difference in the sensitivity or specificity of the bTB skin test in fluke-infected 
compared to fluke-free cattle 

2 Meyer, 1963 320 East 
Germany 

Cross sectional, bTB tested cattle slaughtered 
and examined for bTB lesions and fluke 

Cattle, 
slaughtered. 
Details not given  

The authors report slightly fewer lesions seen in TB test positive cattle in the fluke 
positive group (more ‘false positives’). Statistical significance not reported, but the 
authors did not consider it clinically important 

3 Broughan et al., 
2008; DEFRA, 2005 

400 UK Case control 
200 TB reactors, 200 in contacts (partially 
matched but not from same farm). 
Detailed post mortem, culture from lesions and 
antibody ELISA for fluke 

Adult cattle, beef 
and dairy 

Cattle with fluke antibodies less likely to have confirmed bTB in both SICCT positive 
and negative animals. Significant in dairy reactors only (adjusted for confounders) 
 

4 Flynn et al., 2007 18 Ireland Experimental, infected with BCG and/or fluke. 4 
groups: Fluke only, Fluke first then BCG 4 weeks 
later, BCG then fluke 4 weeks later, and BCG 
only. SICCT carried out 13w after BCG infection 

Calves 1. Co-infected calves more likely to test negative on both Bovigam test and SICCT 
than BCG only – in both the BCG first and the fluke first groups.  

2. No difference in IFN γ response to bPPD 
3. Fluke only calves had higher fluke numbers than co-infected, and fluke-BCG had 

more fluke than BCG-fluke (non-significant) 

5 Flynn et al., 2009; 
Garza-Cuartero et 
al., 2016, 
unpublished 

18 Ireland Experimental. 3 groups: fluke only, fluke and M. 
bovis and M. bovis only 
 

Calves. 
 

1. Fluke only calves had higher fluke numbers than co-infected (non-significant) 
2. Co-infected had lower IFN ϒ production than M bovis only (non-significant) 
3. Co-infected group had fewer TB lesions (non-significant) 
4. Co-infected group had fewer culture positive lesions 
5. Bacterial recovery was lower in co-infected (significant) 
6. Fewer SICCT positives in the co-infecteds than in M. bovis only (non-significant) 

6 Munyeme et al., 
2012 

1680 Zambia 
(Fasciola 
gigantica) 

Cross sectional, abattoir study, gross TB lesions 
and presence of fluke 

Adult cattle of 
various breeds 

Cattle infected with fluke were significantly more likely to have bTB lesions 

7 Claridge, 2012 80 UK Case control. 40 matched pairs, 20 each of 
reactors and inconclusive reactors. 

Dairy cattle No difference between groups in terms of fluke antibody levels, p=0.5 

8 Claridge et al., 
2012[obs] 

3026 
herds 

UK Cross sectional, bulk milk tank (BMT) sample 
taken from each herd and tested against herd 
bTB breakdown status using logistic regression. 
Confounders controlled for: environmental, 
herd size, nearest neighbour with bTB 

Dairy cattle, 
whole herd 

1. Positive fluke test is significant protective predictor for TB breakdown 
2. Fluke antibodies and TB breakdown are spatially separated 

9 Claridge et al., 
2012[exp]; Garza-
Cuartero et al., 
2016 

12 Ireland Experimental: two groups:  M. bovis only and 
fluke and M. bovis 

Calves 
 

1. Co-infected had smaller response to SICCT (all still positive)(significant) 
2. M. bovis bacterial load lower in co-infected (significant) 
3. No difference in lesions between groups 
4. IFN γ response lower in co-infected (non-significant) 
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4.3.3 Risk of bias in included studies 

4.3.3.1 Study design 

Of the nine studies considered, three were laboratory studies, and there were two case 

control studies and four cross sectional studies.  

4.3.3.2 Sampling bias 

This did not apply to the experimental studies, where animals were selected to be similar 

and there were small numbers included. Convenience sampling was used in five of the 

other studies, which could introduce bias. This was suspected in Schanzel and Stolarik 

(1962) because the rate of bTB was nine times higher in the fluke infected than the fluke 

uninfected animals, suggesting that there are other differences between the groups. One 

study (DEFRA, 2005) used matched TB reactors and controls, although the matched pairs 

came from different farms, so there is a risk that other differences between farms, such as 

location or management, could introduce confounders.  

4.3.3.3 Randomisation 

None of the experimental trials gave a method of randomisation. 

4.3.3.4 Blinding 

Many of the studies included blinding of the SICCT administrator, but none of the studies 

mentioned blinding at the analysis stage.  

4.3.3.5 Comparability of groups 

This did not apply to the experimental trials as the small numbers of animals included were 

all of a similar age, sex and breed and kept under controlled conditions. For the other 

studies, only one had thorough comparisons available (DEFRA, 2005). Often information 

was not available to researchers due to the nature of sample collection. 

4.3.3.6 Confounders 

The main confounders were considered to be age, breed, use, region, and previous 

treatment, and again, these data were often not available to researchers.  

Two of the studies controlled for the main confounders in the analysis (Claridge et al., 2012; 

DEFRA, 2005).  

4.3.3.7 Incomplete outcome data 

Only one of the studies (Munyeme et al., 2012) explicitly mentioned missing data. Some of 

this related to the region of origin of the cattle and could have introduced bias. One of the 
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other studies had unexplained differences between sampling times between the different 

groups of calves (Flynn et al., 2007).  

4.3.3.8 Selective reporting 

The reporting of studies 5 and 9 shows possible confirmation bias in the way in which the 

results have been interpreted  (i.e. the authors believed that fluke infection could affect the 

TB test, and this has led them to interpret the results to confirm this). There is a statistically 

significant difference between the mean IFN- γ results of the groups only at 3 out of 8 

(study 5) or 2 out of 15 time points (study 9), yet this is interpreted as being likely to affect 

the outcome of diagnostic tests. These studies did not report qualitative Bovigam® results 

although use of the test was reported. 

In study 9, the mean skin thickness was significantly different between the two groups of 

calves but the qualitative result of the SICCT was still the same (all were still considered 

positive under the normal interpretation of the test), yet this is reported as likely to cause 

under diagnosis of bTB. The skin measurements for study 5 were not statistically 

significantly different, and have never been published.  

4.3.3.9 Other sources of bias 

Study 8 used smoothed fluke ELISA PP values for each farm as independent variables in a 

logistic regression model. Smoothing is a statistical process which aims to capture patterns 

in data whilst reducing noise. It is assumed that all variability in bulk milk tank (BMT) results 

between nearby farms is due to error.  If, however, a proportion of this variability is real, 

for example if it is due to differences in fluke exposure on different farms, then the 

regression co-efficients will appear greater than they are, artificially enhancing the 

observed effect of fluke exposure.  

4.3.3.10 Summary of potential for bias 

None of the studies met the required criteria for avoiding bias. This is not surprising for the 

observational studies, but even for the experimental studies, missing information in both 

the methods and results made it difficult to interpret the validity of the findings. Most of 

the recent studies were done by the same group of collaborators and some also on the 

same calves, increasing the risk of confirmation bias, as authors who have previously 

reported one result are probably more likely to publish similar findings in the future. None 

of the studies accounted for the poor sensitivity of the tests.  

Experimental studies may provide more consistent evidence due to similarity of infectious 

doses and the animals used, whereas in naturally infected animals it may be difficult to be 
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sure whether an animal is infected at all. In the three laboratory studies included here, the 

infectious doses of the pathogens and routes of infection were fairly similar to what 

animals might experience in the field (Dean et al., 2005). However, experiments are 

generally to maximise the chance of finding an effect by infecting with each pathogen in a 

particular order and measuring outcomes at optimal time points. Table 4.5 summarises the 

assessments of bias for each study. 

Table 4.5. Summary of bias for the different studies. Red denotes a high risk of bias, 

yellow, medium, and green, a low risk of bias. NA (not applicable) refers to measures 

which do not apply to the study due to its design. 
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1 Schanzel and Stolarik, 1962   NA      

2 Meyer, 1963  
 

NA 
 

 
   

3 Broughan et al., 2008; DEFRA, 2005  
 

NA 
 

 
   

4 Flynn et al., 2007  NA 
  

NA NA 
  

5 Flynn et al., 2009; Garza-Cuartero et al., 

2016, unpublished 
 NA 

  
NA NA 

  

6 Munyeme et al., 2012   NA      

7 Claridge, 2012  
 

NA 
 

 
   

8 Claridge et al., 2012[obs]  
 

NA 
 

 
   

9 Claridge et al., 2012[exp]; Garza-Cuartero 

et al., 2016 
 NA 

  
NA NA 

  

 

4.3.4 Effects of co-infection 
Overall, most of the studies found that liver fluke exposure was associated with a 

decreased response to all of the four aspects of bTB diagnosis assessed: SICCT, IFN ϒ, lesion 

detection and mycobacteria cultured or recovered. Most of the studies found only a small 

effect. Those showing a clinically significant effect were those where the evidence was 

deemed of poorer quality.  
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Four of the studies which contribute the most to figure 4.2 are from the same group of 

authors. Therefore these results should be viewed with caution, as there is a possibility of 

confirmation bias.  

 

 

Figure 4.2. A harvest plot showing the results from the nine included studies. The 

numbers correspond to study numbers given in Tables 4.4 and 4.5. Studies which 

cover more than one aspect are included more than once. It should be noted that 

studies 4, 5, 8 and 9 were all by the same collaborating group of authors. Quality of 

evidence relates to the study design and likelihood of bias. Poor quality evidence is 

that which is dubious and unreliable, either because of the study design, bias in 

reporting, or a poor standard of reporting. Medium quality evidence has some merit, 

but is regarded with caution due again to study design causing a high risk of bias, 

errors in the report or the study being underpowered. Fair quality evidence is from 

studies which are overall good.  The size of the box is an assessment of the likely 

importance of the finding, if it were true. Large boxes are shown for results where the 

effect size would be large enough to matter in a clinical situation. Small boxes are 

shown where either the effect size is too small to make any difference in practice. This 

includes some results considered statistically significant.  

4.3.4.1 SICCT 

Five studies investigated the effect of fluke on SICCT. Study 1 and study 7 found no effect. 

The nine-fold higher bTB prevalence in the fluke-infected versus fluke-free cattle in study 1 
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seems likely to indicate that there are fundamental differences between the groups so this 

result is interpreted with caution. Study 7 was under-powered and because all samples 

were taken during one unusually wet season from south west Wales, most animals were 

positive for fluke antibody.  

Studies 4, 5 and 9 found that the response to the SICCT was reduced in fluke-infected 

calves. Study 4 had the largest effect, with 4/5 BCG infected calves testing positive whilst 

1/9 co-infected calves tested positive. Study 4 also investigated the relative timing of the 

infections, and found that the greatest effect was seen when the animal was infected with 

F. hepatica before M. bovis, but the effect was still observed when the animal was infected 

with M. bovis first. Studies 5 and 9 had similar experimental designs, using M. bovis to 

infect the calves. In study 5 (unpublished results), 6/6 of the M. bovis calves tested positive 

whilst only 4/6 of the co-infected calves did. In study 9, all M. bovis and co-infected  calves 

tested positive but there was a significantly greater reaction in the M. bovis only group 

compared to the co-infected group (raw skin measurements unpublished but differences 

between avian and bovine reactions published in Claridge et al. (2012)).  

Study 8 showed that fluke infected herds were one third less likely to have a cow test 

positive for bTB on the skin test. However, the effect size may be inflated by the 

assumption that all variation in fluke ELISA PP result between nearby farms is due to error. 

Secondly, fluke infection levels vary widely between individuals and usually only a very 

small proportion of animals test positive for bTB at any herd breakdown, so we cannot tell 

whether the cattle testing positive for bTB are the same ones that have fluke. Therefore the 

large effect seen in this study should be interpreted cautiously.  

Overall, our interpretation is that fluke infection probably reduces the response to the 

SICCT, although whether this effect is large enough to be of clinical significance in naturally 

infected adult cattle on farms is far from certain.  

4.3.4.2 Interferon ϒ 

Three studies looked at IFNϒ, all under experimental conditions. Study 4 reported both 

Bovigam® qualitative results (positive/negative) and the quantitative IFN γ response to 

bPPD stimulation for individuals. However, some of those reported as testing positive using 

Bovigam® had lower IFN γ levels than those reported as testing negative. This was because 

the response to the PPDa was much higher in the co-infected animals (R. Flynn, personal 

communication), but this was not seen in any other study, so could be an artefact resulting 

from the use of BCG. In studies 5 and 9 the mean IFN γ was consistently higher in the M. 
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bovis group than in the co-infected group, but this is a small difference and is only 

statistically significant at a small number of time points. The qualitative interpretation is not 

reported, and overall, the effect of fluke on the Bovigam® test is probably not clinically 

important.  

4.3.4.3 Lesions 

Four studies reported on lesions. In experimentally infected animals, study 5 reported 

reduced numbers of lesions in co-infected animals compared to M. bovis only, although this 

was not a statistically significant difference, whilst study 9 reported no difference between 

the groups.  

Study 2, a cross sectional abattoir study, reported that fluke-infected animals were around 

5% less likely to have bTB lesions whether or not they had a positive bTB skin test (although 

the authors considered the difference too small to be of practical importance). They were 

also more likely to be negative on both bTB skin test and lesion detection than fluke–free 

animals. These were naturally occurring infections, and thus the result could have arisen by 

chance or due to bias. In naturally occurring infections, we cannot tell whether the absence 

of lesions is due to the animal not being infected or because it did not produce any lesions 

in spite of infection.  

Study 6, also a cross sectional study, reported that fluke infected cattle were five times 

more likely to have bTB lesions than those without fluke. This is a big difference from the 

other studies, for which there are several possible reasons.  This is an observational study 

and bias is likely, moreover,  there are major errors in the analysis of the results, and 

inconsistencies as to what is defined as a fluke-infected liver, so the result could simply be 

wrong. Nonetheless, from the raw data shown there appears to be a large difference in bTB 

prevalence between fluke-infected and fluke-free cattle. The study is in a tropical setting, 

where F. gigantica is the endemic species of fluke. F. gigantica induces a different immune 

response from F. hepatica, for example certain species of sheep are immune to F. gigantica 

but not F. hepatica, and IL10 is upregulated more strongly in F. hepatica infected sheep 

(Roberts et al., 1997; Zhang et al., 2005). The most intriguing possibility is that, due to there 

being no routine bTB testing programme in Zambia, bTB infections in this study were more 

advanced, altering the apparent effect.    

In conclusion, the evidence for the effect of fluke on the development of TB lesions is not 

clear cut. Still, the data suggest that fluke infected animals may, on average, have fewer 

visible lesions, at least in the early stages of infection.  
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4.3.4.4 Culture 

Three studies looked at culture/bacterial recovery. Studies 5 and 9 were experimental 

studies, and all lung and lymph node tissues with or without lesions were examined, rather 

than culturing only from lesions as would be the case in the bTB control programme. A 

greater number of bacteria were recovered from M. bovis only calves compared to co-

infected calves in study 9, whilst no difference was reported in study 5. There were only six 

calves per group in each study and the data were skewed with most calves having low 

numbers of bacteria. Study 3 was a case control study with bTB reactors and in contact 

animals. Fluke was found to be a significant negative predictor for confirmed bTB in both 

reactors to the SICCT and non-reactors, but only in dairy animals. The authors interpreted 

these findings as fluke causing false positives to the SICCT. However, an alternative 

explanation would be that fluke decreases likelihood of finding visible lesions. The study 

design and absence of a gold standard diagnostic test for bTB makes it impossible to say 

which is the true interpretation.  

4.4 Discussion 

4.4.1 Summary of main findings 
This review aimed to bring together and synthesise the literature on co-infection with bTB 

and liver fluke to answer the question of whether liver fluke infection has an effect on the 

diagnosis of bTB. There was a variety of different study designs and types of animals 

studied, making interpretation difficult, and all of the studies were considered to have a 

high or medium risk of bias. 

The overall consensus from the nine studies included here is that liver fluke-infected 

animals are likely to have fewer visible lesions, fewer bacteria recovered/cultured from 

their lesions, and a reduced response to both the SICCT and the Bovigam® test, however 

the clinical and practical importance of this effect is likely to be small. The effect size may 

vary depending on the relative timings of the infections (as seen in Flynn et al., 2007), and 

magnitude of infection, so the effect may be considerable in some individuals.  

Studies of co-infection with fluke and other pathogens including Bordetella pertussis and 

Salmonella dublin have found that fluke increases the susceptibility  of the host to these 

pathogens (Aitken et al., 1979; Brady et al., 1999). The fact that fluke induces a Th2 type 

response whilst dampening down the Th1 response required for immunity to bTB makes it 

surprising that fewer visible lesions and lower burdens of mycobacteria were seen in fluke-

infected cattle.  
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If we accept that there is an inverse relationship between fluke and bTB (at least in the 

early stages of disease) there are several possible explanations.  

It is possible that fluke is protective against infection with bTB, and this would explain the 

negative relationship seen with all measures of bTB. This was suggested by Garza-Cuartero 

(2014), who found reduced mycobacterial uptake by macrophages from fluke infected 

animals, which would effectively increase resistance to bTB. There is some evidence that 

there is a genuine inverse association between the two pathogens as two of the studies 

reported that co-infected animals had fewer flukes at post mortem than those infected 

with F. hepatica only (Flynn et al., 2009, 2007).  

Alternatively, it could be that fluke infected animals are equally (or even more) likely to be 

infected with bTB, but that progression of disease is altered. A fluke-induced modulation of 

the immune system may affect the SICCT by reducing the reaction, whilst also limiting the 

formulation of granulomatous lesions making lesion detection less likely. The decreased 

mycobacterial recovery from lung and lymph nodes reported by Garza-Cuartero et al. 

(2016) would not support this hypothesis, although this result was only seen in a small 

proportion of animals examined. A further possibility is that M. bovis may colonise atypical 

locations in fluke infected animals, with small numbers of mycobacteria in widely 

disseminated sites making it more difficult to detect. This phenomenon has been suggested 

in human TB infection (Parrish et al., 1998).  

A third possibility suggested by Garza-Cuartero (2014) is that helminths may induce latency, 

a phenomenon not reported in cattle but widely seen in humans (Pollock and Neill, 2002). 

Latency occurs when the animal has become infected and mounted an immune response 

which keeps the infection from progressing (Parrish et al., 1998). In this case, the immune 

modulation caused by fluke infection could reduce mycobacterial phagocytosis, thereby 

limiting the ability of the M. bovis to enter and replicate within macrophages, which is 

required for infection to progress (Podinovskaia et al., 2013). However, humans with latent 

TB still react to the skin test (Parrish et al., 1998), so this would not explain the effect of 

fluke on the SICCT.  In humans, immunosuppressive events lead to reactivation of latent 

infections (Parrish et al., 1998), so it seems more likely that fluke infection would end the 

latent state rather than cause it.   

4.4.2 Findings in the excluded studies 
Many of the earlier studies stated a hypothesis that fluke caused false positives on the 

SICCT, and many were designed to prove or disprove this, and therefore did not include bTB 
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infected animals. However, several studies showed that fluke infected animals did not have 

false positives on the TB skin test (El-Ahwal, 1969; Hartwigt and El-Ahwal, 1968; Kokurichev 

and Karabainov, 1957; Manukyan, 1955), and so it seems more likely that, in the absence of 

a gold standard test for bTB, so-called ‘false positives’ to the SICCT seen in populations 

where bTB is endemic are actually due to a lack of lesions rather than a lack of bTB 

infection.  Interestingly, none of the studies published since 2000 made reference to the 

earlier ones.  

4.4.3 Completeness and applicability of the evidence 
The review includes data from a variety of different situations and study types, and four 

different aspects of bTB diagnosis have been covered. There is a lack of information about 

the use of the Bovigam test in naturally co-infected animals, which probably reflects the 

fact that this test is not widely used, and where it is used this is in conjunction with the 

SICCT (for example, in the UK the Bovigam test is only used in herds already under TB 

restrictions (DEFRA, 2016)). Due to the bTB control programme in the UK and other 

developed nations, the later stages of bTB are rarely seen, so most of the available 

evidence only relates to the early stages of bTB infection.  

4.4.4 Quality of the evidence 
There is a medium to high risk of bias in all of the included studies. Blinding at the analysis 

stage, whilst potentially challenging to arrange, would greatly reduce the risk of bias. The 

poor sensitivity of the SICCT is also an issue, as we do not know which animals really are 

bTB free. The effect of a number of bTB infected animals being undetected for reasons 

other than parasite co-infection may be to confuse and hide any small effect of fluke 

infection. Studies where animals are infected with standardised doses avoid this problem, 

but may have the effect of inducing a larger effect than would be seen in naturally infected 

animals. Nonetheless, in this review, the results of the different studies were generally 

consistent, indicating that experimentally infected animal models are likely to be 

reasonably representative of naturally infected cattle.  

4.4.5 Potential biases in the review process 
The authors of some of the included studies have collaborated with the research group at 

the University of Liverpool. This meant that we were able to obtain some extra unpublished 

information which improved our understanding of these studies. This is likely to have 

improved the review by enabling us to include more complete data. 
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Conversely, due to the difficulties associated with obtaining and reading some of the older 

foreign language studies, and the fact that methods were reported very briefly and authors 

were not contactable, some studies had to be excluded.  This may have biased the 

conclusions reached in this analysis.  

4.5 Author conclusions 

4.5.1 Implications for research 
Evidence shows that different animals are differently affected by co-infection, with a much 

greater effect seen in dairy cows than beef cows (Broughan et al., 2008; DEFRA, 2005), and 

large variations in immune responses seen even between individual calves infected with 

identical doses of the two pathogens (Flynn et al., 2007). Genetics, management factors 

and metabolic stress may play a role. Therefore, for studies of naturally infected animals, 

targeting particular types of animal that may be at higher risk of immunosuppression, for 

example those with heavy parasite burdens or under great metabolic stress, may help to 

avoid effects getting lost in the background noise.   

Longer follow up of experimentally infected animals would be useful to understand how 

fluke infection affects the progression of bTB, and whether the effect on diagnostic tests 

varies throughout the course of infection. Related to this, methods of following up naturally 

infected animals are required, which would need to involve either research in settings 

without routine bTB testing, or an ecological model, to avoid the compulsory culling of 

infected animals and the restrictions which apply under EU law.  

When interpreting results, the poor sensitivity of the bTB diagnostic tests and the poor 

specificity of fluke serology or milk testing should be considered. Blinding at the analysis 

stage would greatly help to reduce the potential for bias, and results for individual animals 

should be reported where available.  

4.5.2 Implications for practice 
The current evidence suggests that fluke-infected animals are likely to have a decreased 

response to the commonly used diagnostic methods for bTB, although this difference is 

probably only rarely great enough to affect the quantitative results of the tests. Caution 

should be used when the results of laboratory studies are applied to clinical situations, as 

the interaction of co-infections within naturally exposed populations is much more complex 

and dynamic. The effects of the relative timings and intensity of infection are likely to be 

important, but currently very little is known about this. Nevertheless, fluke status should be 
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borne in mind as a factor that may contribute towards the occurrence of false negative bTB 

tests.  
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Chapter 5: Cross-sectional and 

longitudinal study of co-infection with 

Fasciola hepatica and Mycobacterium 

avium subsp. paratuberculosis  

 

Abstract 

Johne’s disease is a contagious, chronic condition mainly infecting ruminants, caused by 

Mycobacterium avium subspecies paratuberculosis (MAP). Fasciola hepatica is a common 

parasite of ruminant livestock which is able to modulate the host immune response. The 

hypothesis that there is an association between F. hepatica and MAP was tested. The 

spatial distribution of MAP was examined using MAP antibody results from 885606 cows 

from 1245 herds, but no spatial pattern was seen.  3766 samples from 17 herds were tested 

for MAP antibody and F. hepatica antibody. No association between the two pathogens 

was found at either the herd or individual level, once farm level effects were adjusted for. 

Subsequently six farms were followed longitudinally for 1 year and up to four samples for 

each animal were obtained. Data were analysed using a 3-level nested model of sample 

within cow within herd, and also by categorising cows into red, orange and green based on 

the combination of their MAP results. No association between the two pathogens was 

found using any of these approaches.  

5.1 Introduction 
Johne’s disease is a contagious, chronic condition mainly infecting ruminants, caused by 

Mycobacterium avium subspecies paratuberculosis (MAP). MAP is found worldwide, and is 

able to survive for lengthy periods in the environment. Fasciola hepatica, or the common 

liver fluke, is a common parasite of ruminant livestock, affecting around 80% of UK dairy 

herds (McCann et al., 2010). F. hepatica is able to modulate the host immune response, 

altering susceptibility to other infections (Cox, 2001; Moreau and Chauvin, 2010). 

In a recent UK-wide study, up to 65% (95% CI 56-74%) of dairy herds were found to contain 

infected animals as determined by a MAP-antibody ELISA (Caldow et al., 2009). In individual 

herds, the culling/mortality rate may be between 1-5%; however, subclinical losses such as 
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reduced milk yield, reduced feed conversion and increased susceptibility to other diseases 

add further to costs (Hasonova and Pavlik, 2006). Apart from the economic and welfare 

effects on cattle farming, MAP is of importance because it has been associated with Crohn’s 

disease in humans (Feller et al., 2007; Waddell et al., 2015).  

New born calves are most susceptible to MAP, which is thought to be due to their immune 

system being immature and therefore less able to mount the cellular immune response 

that is required for protection from MAP (Mortier et al., 2014). Older cattle including adults 

can also acquire infection, especially if infection pressure is high, although this is less 

frequent (Mortier et al., 2014).  

MAP primarily targets the ileum, where the mycobacteria survive and multiply within 

macrophages, facilitated by increased production of IL10, an anti-inflammatory cytokine 

(Weiss et al., 2005). During the early stages of infection, a T-helper (Th)1 type profile 

characterised by high levels of interferon gamma (IFNγ) keeps infection under control (Begg 

et al., 2011; Cooper et al., 1993).  In most cases, the infection is self-limiting although 

animals are thought to remain infected for life (Nielsen and Toft, 2008). There is much 

variation between the immune responses of individuals even under controlled 

experimental conditions, suggesting that genetics contributes to resistance (Begg et al., 

2011; van Hulzen et al., 2012).  Reactivation may be due to immunosuppression (Nielsen et 

al., 2013), although other factors such as initial MAP dose, continued exposure and age at 

first infection are also important and the reasons are not fully understood (Coussens, 2001; 

Espejo et al., 2013; Nielsen and Toft, 2006; R. L. Smith et al., 2016).  In a proportion of 

animals, progression to clinical signs occurs, usually after at least 2-3 years of age 

(Arsenault et al., 2014). At this time, a Th2 response predominates, IFNγ levels decline and 

clinical signs appear (Begg et al., 2011). Inflammation of the intestinal tract results in 

reduced nutrient absorption, weight loss and diarrhoea. Once symptomatic, Johne’s disease 

is eventually fatal in most cases. 

Diagnostic tests for MAP include faecal culture (individual or pooled), serum or milk 

antibody ELISA, and faecal PCR. ELISA is the most sensitive test (Caldow et al., 2009; Collins 

et al., 2005; Pinedo et al., 2008). In the early stages of infection, cattle shed MAP 

infrequently and antibody levels often do not rise to detectable levels until the later stages 

of disease, so infected animals are rarely detected before 2-3 years of age (Nielsen and 

Ersbøll, 2006). Hence for every detectable infected animal, there are likely to be several 
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others which are infected and will progress to the clinical stage at a later time (Whitlock 

and Buergelt, 1996).   

Nonetheless, for the purposes of limiting spread of MAP within the herd, it may be 

sufficient to identify cattle in the later stages of infection, as this is when high level MAP 

shedding occurs. Control measures are intended to avoid contact between the faeces of 

infectious cattle and new born calves, and also to keep the infection pressure generally low, 

and include selective culling, removal of calves from their dams shortly after birth and 

maintenance of hygiene in calving pens (Mortier et al., 2015). In naturally infected cattle, 

rising antibody levels correspond with shedding high levels of MAP, so individual milk 

antibody ELISA is a relatively low cost and convenient method of identifying infectious 

cattle (Collins et al., 2005; Kudahl et al., 2008). Antibodies are ineffective at fighting 

intracellular pathogens (Stabel, 1996) and rising antibody levels in mycobacterial infections 

signify a dysfunctional immune response (Begg et al., 2011). Several milk recording 

companies offer a 3-monthly individual MAP antibody testing scheme in the UK. 

Infection with helminth parasites moderates the cow’s immune response towards a Th2 

and T-regulatory type response, characterised by the cytokines interleukin (IL)4, IL5, IL10, 

IL3 and TGFβ, IgE, mast cells and eosinophils , which are aimed at attacking large 

extracellular parasites and limiting tissue damage (Maizels et al., 2004). It has been shown 

that in fluke-infested hosts this polarising effect is not just limited to the immune response 

to the parasite, but also affects the host response to other co-infecting pathogens, down 

regulating the Th1 response that is generally required for immunity to intra cellular 

pathogens such as mycobacteria (Brady et al., 1999; Cox, 2001; Kullberg et al., 1992). 

Because a Th2 response is associated with the failure of cellular immunity seen in the later 

stages of MAP infection, it is hypothesized that liver fluke infestation may hasten or cause 

the onset of the clinical phase of infection.   

Two previous studies investigated co-infection of cattle with fluke and MAP. One study 

found that the number of suspected Johne’s disease cases on a farm was significantly 

inversely related to the F. hepatica antibody ELISA PP of individuals on that farm, once 

farm-level random effects were adjusted for, although there was no association with the 

number of confirmed Johne’s disease cases (Claridge, 2012). Another found no association, 

when farm level bulk milk tank (BMT) PP and presence or absence of Johne’s cases on farm 

were modelled (Howell et al., 2015). Neither of these studies looked at the MAP status of 

individual animals.  



83 
 

The aims of this study were, firstly, to map the distribution of MAP infection across the UK 

to look for spatial patterns; and secondly, to determine whether there is any association 

between exposure to liver fluke and increased MAP antibody levels in individual cattle.  

5.2 Methods 

5.2.1 Data sources 

Samples and data were obtained from a UK commercial milk recording company which 

provides services to dairy herds, including quarterly MAP antibody testing. MAP results 

reported here are the results of the Mycobacterium paratuberculosis Antibody ELISA 

(IDEXX, part nr P07130-10) (manufacturer reported sensitivity and specificity of 80.7% and 

99.7% respectively), which was performed at the laboratories of the milk recording 

company. The results were given as S/P (sample to positive ratio) interpreted in relation to 

negative and positive controls as follows: 

 

𝑆

𝑃
= 100 ×  

𝑂𝐷450 𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑂𝐷450 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑂𝐷450 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝑂𝐷450 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
 

 

Samples with S/P ratio ≥ 0.3 are considered to be from a MAP infected cow, and for the 

purposes of this study are defined as MAP positive. An S/P ≤ 0.2 are considered to be from 

a cow which has not been infected by MAP. Samples with an S/P ratio between 0.2 and 0.3 

are considered to be suspect for MAP antibodies and a second sample from the animal 

would be required to confirm its status, and so these results were excluded from the 

analysis. Locations of herds by county level were provided, but due to the confidentiality 

requirements of the commercial company, no further information was available for the 

farms or animals.  

5.2.2 Spatial study 

MAP test results were obtained from every animal tested by the milk recording company 

between January 2014 and October 2015. Data were aggregated using R (R Core Team, 

2011), to give a code of ‘positive’ if one or more tests per county were positive, and 

‘negative’ if all tests in that county were negative. The results were mapped in R using the 

ggplot2 package (Wickham, 2009). Two maps were produced: one showing all the counties 

with at least one positive farm, and one showing the proportion of positive farms per 

county. For the latter map, only the most recent result for each farm was included.  
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5.2.3 Cross-sectional study 

Milk samples were obtained from animals tested as part of a quarterly MAP testing 

scheme, between May and September 2015.  A sample size calculation showed that to 

detect a 20% difference in MAP prevalence between fluke positive and fluke negative 

animals, with 90% power and 95% confidence, 121 test positive animals and 2420 controls 

were needed (the 20% difference between groups was chosen as a fairly small difference, 

due to the lack of literature) (http://powerandsamplesize.com/Calculators/Compare-2-

Proportions/2-Sample-Equality). Seventeen herds that had either 5% of a sample of cows 

positive for fluke antibody ELISA or a positive bulk milk tank test, and at least one MAP 

ELISA positive case, were used in the study. For these herds, milk samples from all animals 

were then tested at University of Liverpool using an ELISA  to detect antibodies to F. 

hepatica excretory-secretory  products (Salimi-Bejestani et al., 2007), see chapter 2 for 

details).  

Results were plotted for initial analysis and data cleaning in R (R Core Team, 2011). 

Percentage of animals testing positive for MAP was modelled against percentage testing 

positive for fluke to investigate herd level associations.  For individual animals, both fluke 

PP and binary fluke result (positive/negative) were used sequentially as explanatory 

variables in multi-level regression models. Fluke PP was logged to improve model fit. MAP 

positivity was used as a positive/negative to avoid outliers having too influential an effect, 

as the distribution of the data was very skewed. The effect of using log MAP S/P as 

outcome variable was tested. MAP S/P was also divided into five categories (≤0.025, 0.025-

0.05, 0.05-0.1, 0.1-0.3 and >0.3) and modelled against fluke PP in order to see what effect 

changing the test cut off would have. Further analysis was performed using a classical 

regression model with MAP positivity as the outcome measure and fluke exposure as the 

explanatory variable. Multi-level models were then built  using the lme4 package (Bates et 

al., 2015), with MAP positivity as the outcome measure, fluke exposure as a level one fixed 

effect, day of testing as a level 2 fixed effect and farm as a random effect, to allow for 

clustering within farms.  

5.2.4 Longitudinal study 

For the longitudinal study, the six farms with the most MAP-positive individuals and at least 

5% of cattle positive for fluke were chosen from the original 17, and followed for a year, 

with repeat testing every quarter for all cows in milk, for both MAP and fluke, using the 

assays described above. Plots of the data were used to look for patterns in results from 
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individual animals. Those with only a single result were excluded from further analysis.  

Modelling was approached as for the cross sectional study, with classical models and then a 

multi-level model constructed with MAP positivity as the outcome measure, fluke exposure 

as a fixed effect, date of sampling as a level 2 fixed effect, and farm and cow as random 

effects. Date was coded as a number with 1st January as 1. The effects of using log MAP S/P 

and of MAP S/P divided into five categories were also tested.  To analyse the possibility of 

cattle being affected differently by being consistently high for MAP antibody as opposed to 

just a single positive test, cattle were then separated into three groups by visually looking 

at their repeated MAP results. Those with all or the most recent three MAP results  as 

positive were classed as red, those with fluctuating results were classed as orange, and 

those with consistently negative results were classed as green (Nielsen and Toft, 2008). The 

mean fluke PP was then calculated for each animal, and a multilevel logistic regression 

model was constructed with farm as a level 2 random effect and MAP category (red or 

green) as the outcome measure. 

5.3 Results 

5.3.1 Spatial analysis 

MAP results from 885606 cows from 1245 herds were used. Out of 72 counties where at 

least one individual sample was tested, 71 had at least one positive test (Fig. 5.1A). The 

percentage of farms in each county with at least one MAP positive cow at the last test 

ranged between 0 and 40, with no discernable geographical pattern (Fig. 5.1B). These 

results should not be taken as a measure of prevalence as they are inherently biased 

towards those farms sending samples for MAP testing, and only a small number of farms 

were tested in most counties; however, they do demonstrate that MAP is widespread 

across GB. 
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Figure 5.1. A: Map of GB showing counties where at least one cow tested positive for 

MAP between January 2014 and December 2015. B: Map showing the percentage of 

farms with at least one cow testing positive for MAP.  Antibody ELISA MAP results 

from 885606 cows from 1245 herds were used. 

5.3.2 Cross-sectional study 

3766 samples from 17 herds were tested for MAP antibody and fluke antibody. Overall, 139 

(3.7%) samples tested positive for MAP and 1516 (40%) tested positive for fluke. A 

summary of the herd level information is shown in table 5.1.  

Table 5.1. Summary of herd information for the cross sectional MAP and fluke co-

infection study 

Information for each herd Range (%) Median Mean 

Nr samples tested 80-403 190 222 

Nr MAP positive (%) 1-34 (0.41-10.0) 4 (2.2) 8.2 (4.7) 

Nr fluke positive (%) 7-272 (6.2-78.9) 81 (33.6) 89.2 (37.3) 

Median fluke PP 4-44 15 18.9 

Date samples collected May 2015 to July 2015   

 

The farms were located mainly in Northern and Southern England. There was no obvious 

pattern of higher herd level prevalence of the MAP positives, whereas for fluke, a greater 

number of positives per herd were seen in Northern England.  (Fig. 5.2)  

A B
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Figure 5.2. Approximate farm locations (randomly placed within county) and colour 

coded for the percentage of animals per herd testing positive for fluke antibody ELISA 

(A) and MAP antibody ELISA (B).  

The individual fluke PP results followed a log normal distribution (Fig. 5.3A&B) and the 

individual MAP results were strongly positively skewed (Fig. 5.3 C&D).  

 

Figure 5.3. The distributions of the individual fluke and MAP ELISA results for 3766 

cattle tested from 17 farms between May and September 2015. A & B show fluke 

ELISA results. C & D show MAP ELISA results. 

A B 

A B 

C D 
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The percentage of cattle testing positive for each pathogen, by herd, showed no association 

(Fig. 5.4). Percentage testing positive for fluke had a high correlation with median herd 

fluke PP (R = 0.97, p< 0.00001). 

 

Figure 5.4. No association was seen between percentage of individuals testing 

positive for MAP antibody and fluke antibody. Each point represents one farm.  

5.3.2.1  Models 

The only information available was farm, fluke and MAP results. Spatial data were not 

included as there was not thought to be a spatial element to MAP risk. At the herd level, 

there was no association between percentage testing positive for each pathogen. At the 

individual level, log fluke PP was not significant in the classical logistic regression model. 

The null model with farm as random effect but no fixed effects was a better fit than the 

classical model. However, adding log fluke PP, or fluke positivity to this model did not 

improve model fit (Table 5.2).  Incorporating random slopes did not change the model fit. 

Using log MAP S/P or MAP S/P divided into five categories as the outcome measure did not 

give an improved model fit over using MAP positivity.  
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Table 5.2. Outcome of regression models for the cross sectional study on co-infection 

with MAP and fluke. Data from all 17 farms were used for all models. Farm was used 

as a level 2 random effect 

 Model Response 
variable 

Fixed effects 
in best model 

Random 
effects 

Outcome 

1 Classical linear 
regression - 
herds 

Percent testing 
positive for 
MAP 

Percent 
testing 
positive for 
fluke 

None R2=0.004 
Fluke percent p=0.8 

2 Classical 
logistic 
regression - 
individuals 

MAP antibody 
positivity 

Log fluke PP None AIC = 1191.3  
df = 3728 
Deviance = 1187.3 
Log fluke p=0.8 

3 Null multi-level 
model 

MAP antibody 
positivity 

None Farm AIC = 1115.3  
df = 3728 
Deviance = 1111.3 
Inter-farm variance = 
0.78 
Intraclass correlation = 
0.19 

4 Multi-level  
model with 
fluke 

MAP antibody 
positivity 

Log fluke PP Farm AIC = 1116.9  
df = 3727 
Deviance = 1110.9 
Inter-farm variance 
=0.77 
Intraclass correlation = 
0.19 
Log fluke p=0.5 

5 Multi-level  
model with 
fluke 

MAP antibody 
positivity 

Fluke 
positivity 

Farm AIC = 1117.2  
df = 3727 
Deviance = 1110.9 
Inter-farm variance 
=0.78 
Intraclass correlation = 
0.19 
Fluke p=0.8 

 

5.3.3 Longitudinal study 

A total of 5213 individual milk samples were tested from 6 farms, between May 2015 and 

May 2016. Four of the farms were visited four times and two were visited three times. 4852 

cows had two or more samples taken. Overall, 6.1% and 51% of samples tested positive for 

MAP and fluke respectively.  

For the colour coded analysis, where cows were categorised as red, orange or green 

according to the pattern of their MAP results over all visits, 1907 were coded green, 61 red 

and 101 orange.  
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When looking at the median fluke ELISA PP results over time, there were no significant 

differences either between farms or between time points. The proportion testing positive 

for MAP on each farm showed no significant difference between time points for each single 

farm, although there was a difference in the overall proportion testing positive between 

farms (Fig. 5.5).  

           

Figure 5.5. A: the median fluke ELISA PP for each farm at each visit. The error bars 

represent the interquartile range. The error bars represent the interquartile range. B: 

the proportion of cows testing positive for MAP on each farm at each visit. The error 

bars represent 95% confidence intervals.  

When cows were categorised as red, orange or green for MAP, there were no overall 

differences in fluke PP value between the categories (Fig. 5.6).  

 

Figure 5.6. The distribution of fluke ELISA PP results for cows colour coded green, 

orange and red for MAP antibody. Green cows are those which have never tested 

positive for MAP, orange are those with fluctuating results, and red cows are those 

which consistently test positive.  

A B 
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5.3.3.1 Models 

Models were built using all animals with more than one submitted sample. Two null models 

were constructed using all of the data, to compare a two- and three-level model. The 

addition of farm level random effects did not explain any extra variation, therefore only 

cow level effects were used. This was not surprising given that the farms were purposively 

selected to be similar in terms of their fluke and MAP results, and there were no farm-level 

explanatory factors. It is likely that there would be significant inter-farm variation if 

randomly selected farms were chosen. The addition of fluke to the two-level model 

including date of sample collection did not improve the model fit. Visit number and date of 

sampling were highly correlated (because the first visits for each farm took place within a 

three month period) so could not be included in the same model. When visit was included 

instead of date, it was seen that cows were significantly more likely to test positive for MAP 

at visits 2, 3 and 4 rather than visit 1. This could be a seasonal effect, as the effect was not 

consistent between visits.  Adding varying slopes prevented the model from converging 

(Table 5.3, Models 7-10).  

Use of log MAP S/P instead of MAP positivity as the outcome measure did not improve 

model fit.  

For the analysis of colour coded cows, the null model included farm level random effects 

and a single outcome for each cow (a red or green colour code assigned based on the 

repeated MAP results: red for consistently high, and green for consistently negative). The 

addition of the mean of fluke PP to this model did not improve model fit (Table 5.3, Models 

9 and 10).  
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Table 5.3. Summary of the regression models used to investigate interaction between 

fluke and MAP infection. Sine and cosine functions were used to model day of sample 

collection. Random intercepts only were used. 

 Logistic 
regression
model 

Response 
variable 

Fixed effects 
in best 
model 

Random 
effects 

Outcome 

6 Null multi-
level model 

MAP 
antibody 
positivity 

None Cow AIC = 1274.3 
df = 4850 
Deviance = 1270.3 
Variance between cows 
=116.4 
Intraclass correlation (within 
cow) = 0.97 

7 Null multi-
level model 

MAP 
antibody 
positivity 

None Cow 
within 
farm 

AIC = 1276.4 
df = 4849 
Deviance = 1270.4 
Variance between cows 
=116.3 
Variance between herds =0.0 
Intraclass correlation 
(within herd)= 0.00  
(within cow) =0.97 

8 Multi-level  
model  

MAP 
antibody 
positivity 

Log fluke PP, 
day of 
sample 
collection 

Cow Log fluke p=0.28 
AIC = 1245.6 
df = 4847 
Deviance = 1235.6 
Variance between cows 
=131.3 
Intraclass correlation = 0.97 

9 Multi-level  
model  

MAP 
antibody 
positivity 

Log fluke PP, 
visit 

Cow Log fluke p=0.28 
AIC = 1256.8 
df = 4846 
Deviance = 1244.8 
Variance between cows 
=126.6 
OR visit 2= 5.3 
OR visit 3=4.1 
OR visit 4=3.0 
Intraclass correlation = 0.97 

10 Null multi-
level model 

Red colour 
code for 
MAP 

None farm AIC = 558.8 
df = 1640 
Deviance = 554.8 
Variance between cows =0.58 
Intraclass correlation = 0.15 

11 Multi-level 
model  

Red colour 
code for 
MAP 

Log fluke PP farm Log fluke p=0.14 
AIC = 558.7 
df = 1639 
Deviance = 552.7 
Variance between cows =0.58 
Intraclass correlation = 0.15 

*day was included as “cosine(2pi*(date/365)) + sine(2pi*(date/365))” 
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5.4 Discussion 

The question of interest was whether fluke infected animals are more likely to have 

increased MAP antibody levels, as these correspond to clinical Johne’s disease. Hence they 

are of importance in controlling the spread of MAP within herds and reducing economic 

losses (Coussens, 2001). The analyses performed included a spatial study, a cross sectional 

study to ascertain whether animals with MAP antibodies were more or less likely to have 

fluke antibodies, and a longitudinal study to ascertain whether levels of antibodies to the 

two pathogens interacted over time. Analyses were performed at both herd and individual 

level, and overall, no association between MAP positivity and fluke PP was seen.   

There are many reasons why activation of MAP occurs in some animals whilst others seem 

to be resistant. These include the initial dose of MAP, the age at infection, genetic variation, 

metabolic stresses, the gut microbiome and current age (Espejo et al., 2013; Mortier et al., 

2015; Nielsen et al., 2013; Nielsen and Toft, 2006; Weber et al., 2010). Our models showed 

that there was far more variation between individual cattle than between farms, which 

indicates the importance of cow-level factors. This information, if we had been able to 

obtain it, would probably have considerably improved model fit. 

Only a small proportion of cattle tested MAP positive, which is to be expected even in herds 

with a large proportion of infected animals, given the low sensitivity of the test (McKenna 

et al., 2005). It has been estimated that as few as 20% of infected animals can be detected 

at two years of age, rising to 50-60% by five years of age (Nielsen et al., 2013; Nielsen and 

Ersbøll, 2006). There are likely to be a large number of latently infected cattle present in 

each herd, but for the purposes of this study, as we are interested in the later stages of 

infection when antibodies rise, this was not thought to affect the results.  

The MAP antibody ELISA cut off has been set to maximise specificity at the expense of 

sensitivity (Begg et al., 2011). Lowering the cut offs, to capture animals with lower level of 

antibodies which are likely to be MAP-infected but in the early stages of infection (with the 

trade-off of reduced specificity), was investigated in this study by dividing MAP results into 

five categories. However, no association was seen with fluke PP.  

A larger problem is that we cannot distinguish the latently MAP-infected cattle from the 

uninfected and this is important when attempting to model factors affecting disease 

progression (Groenendaal et al., 2002; Marcé et al., 2010). An added complication is that a 

small number of those in the ‘latent’ group may have high antibody levels, making them 
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appear to be in the active infection group, although they still have cellular immunity that 

protects them from disease. It has been shown that many infected animals will produce 

antibodies right from the start of infection, albeit at a lower level than during the later 

stages (Begg et al., 2011; Coussens, 2004; Koets et al., 2001; Mortier et al., 2015; Stabel, 

1996; Waters et al., 2003).  

To aid in determining which animals are infected in the absence of a gold standard test, 

longer follow up of animals to find out which eventually become positive (Eisenberg et al., 

2015; R. L. Smith et al., 2016) and using several tests in conjunction are suggested. Use of 

IFN-γ results to indicate the decline of cellular immunity (Begg et al., 2011), faecal culture 

and additional MAP antibody ELISA, alongside clinical signs such as reduced milk yield could 

be added into the models, as agreement between tests is poor (Collins et al., 2005; Huda 

and Jensen, 2003; Koets et al., 2001; Nielsen and Toft, 2008). 

Given the known immunomodulatory effects of F. hepatica, it seems surprising that it has 

no effect on the susceptibility of cattle to active MAP infection. However, the complexities 

of MAP epidemiology combined with the limitations of the MAP antibody ELISA make it 

likely that a small effect of fluke infestation on MAP reactivation would not be apparent 

against background noise. Nonetheless, our data suggest that infection with F. hepatica 

does not have a major effect on the reactivation of MAP in adult dairy cattle.  
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Chapter 6: Investigation into co-

infection with Fasciola hepatica and 

Escherichia coli O157 in finishing cattle 

on UK farms 

Abstract 
Escherichia coli O157 is a zoonotic bacterium which causes haemorrhagic diarrhoea in 

humans and occurs worldwide. Cattle are considered the main source of human infection. 

Fasciola hepatica is a helminth parasite of ruminant livestock which is able to modulate the 

host immune response, altering susceptibility to other infections. The current study 

obtained E. coli O157 results and fluke copro-antigen results from 334 cattle from 14 UK 

farms sampled between January and October 2015. A significant association was found 

between the log percent positivity (PP) of the F. hepatica copro-antigen ELISA and E. coli 

O157 shedding when the fixed effects of day of sampling and the age of the youngest 

animal in the group, and the random effect of farm were adjusted for. The effect of this 

association was that a change from the 25th quartile of F. hepatica PP to the 75th quartile 

corresponded with a 6.7% increased risk of E. coli O157 shedding (p = 0.01). The result 

should be interpreted cautiously due to the many study limitations, particularly a very low 

level of fluke infection in the sampled animals, and studies involving longitudinal sampling 

of cattle are required to investigate this relationship further. 

6.1 Introduction 
Escherichia coli O157 is a zoonotic bacterium which causes haemorrhagic diarrhoea in 

humans and occurs worldwide.  In a proportion of cases, mainly in young children, 

haemolytic uraemic syndrome may occur, and is potentially fatal (Chase-Topping et al., 

2008). Disease is caused by shiga toxins which block host protein production by damaging 

host cell RNA (Endo et al., 1988). Cattle are considered the main source of human infection 

(Gyles, 2007; Strachan et al., 2006). Fasciola hepatica, or the common liver fluke, is a 

common parasite of ruminant livestock, occurring world-wide in temperate regions. F. 

hepatica is able to modulate the host immune response, altering susceptibility to other 

infections (Cox, 2001; Moreau and Chauvin, 2010).  
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The annual reported incidence of human E. coli O157 is 1.8 cases per 100,000 population in 

England and Wales, and 4.5 cases per 100,000 in Scotland (Health Protection Network, 

2013; Public Health England, 2013). Up to 85% of human cases are sporadic, with the 

remainder occurring as part of identified outbreaks. Contact with farm animals, their faeces 

and farm environments are major risk factors for  sporadic cases (Locking et al., 2001). 

Infection also occurs via ingestion of contaminated food or water, with items such as 

salads, raw vegetables, beef products and unpasteurised milk being involved in recent 

outbreaks (Health Protection Network, 2013; Strachan et al., 2006). E. coli O157 is highly 

virulent with a low infectious dose of less than 700 colony forming units (cfu) (Tuttle et al., 

1999) and is a considerable public health problem. 

Two recent studies of groups of finishing cattle showed that 20% of Scottish herds had at 

least one animal positive for E. coli O157 (Gunn et al., 2007; Pearce et al., 2009). Four to 

seven percent of animals were shedding, which equated to around 25% of animals within E. 

coli positive herds. In England and Wales, a cross sectional study of young stock revealed 

that 30-40% of herds contained E. coli O157 positive animals, whilst within-herd prevalence 

was 4% (Ellis-Iversen et al., 2007; Paiba et al., 2003).  

Escherichia coli O157 infections in cattle are usually asymptomatic as cattle lack receptors 

for the pathogenic shiga toxins (Pruimboom-Brees et al., 2000). Within groups of cattle 

housed together, infection is likely to spread rapidly to all or most of the group, particularly 

where cattle are housed in wet bedding (Ellis-Iversen et al., 2007), although the 

intermittent nature of shedding and the uneven distribution of bacteria within faeces may 

hinder diagnosis (Pearce et al., 2004). In a proportion of cattle, the distal rectum becomes 

temporarily colonised by E. coli, and this may lead to the formation of a biofilm (Munns et 

al., 2015). A ‘super shedding’ event is defined as >104 cfu E. coli being excreted at once, and 

occurs as a result of the shedding of the biofilm, although the factors that cause the 

shedding are not understood (Munns et al., 2015). Only a small number of super shedding 

events can be responsible for up to 90% of E. coli O157 excretion (Chase-Topping et al., 

2008). Most infected cattle probably ‘super shed’ intermittently; there is more variation 

within individuals than between them (Paiba et al., 2003; Pearce et al., 2004; Williams et 

al., 2014).  

Both cellular and humoral immune responses are induced by E. coli O157 infection in cattle, 

and a characteristic inflammation of the mucosa occurs (Nart et al., 2008; Nataro and 

Kaper, 1998; Naylor et al., 2007). Epidemiological studies show that prevalence is higher in 
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weaned calves than in adult cattle, suggesting that immunity develops with age (Renter et 

al., 2004). This is supported by evidence from experimental studies showing that a partially 

and transiently protective immunity results from exposure, with re-infected cattle showing 

reduced shedding after a second challenge with the same strain (Naylor et al., 2007). E. coli 

O157 uses a type three secretion system (TTSS) to export effector proteins to host cells 

(Jarvis and Kaper, 1996). Amongst these are proteins which attach to and damage host 

cells, causing so-called attaching and effacing (A/E) lesions (Nataro and Kaper, 1998). Cattle 

produce antibodies which are protective against elements of the TTSE and A/E lesions 

(Asper et al., 2011; Pirro et al., 1995; Vilte et al., 2008), but these wane a few weeks after 

the end of infection (Naylor et al., 2007). A localised cellular response characterised by the 

induction of IFNγ and antigen-specific CD4+T cell proliferation, and an absence of IL4 and 

IL13, was observed in experimentally infected cattle (Corbishley et al., 2014). However, E. 

coli O157 shiga toxins are thought to be capable of suppressing cellular responses (Hoffman 

et al., 2006). It is thought that both cellular and humoral responses are required for 

immunity to E. coli O157 (Corbishley et al., 2016, 2014).  

Fasciola hepatica is a common parasite of ruminant livestock, with recent estimates 

showing around 50-80% of UK dairy farms have been  exposed (Howell et al., 2015;  

McCann et al., 2010; Pritchard et al., 2005). These studies were done by testing a single 

bulk tank milk sample per farm with an antibody detection ELISA based on fluke excretory-

secretory antigens.  The distribution within farms tends to be right skewed, with most 

animals having a lower antibody level, and a minority having higher levels (chapter 2).  

Prevalence studies on fluke in beef cattle have not been performed in the UK. These studies 

would require a much more labour intensive diagnostic method, involving collection of 

multiple individual animal samples from each farm, followed by either faecal egg counting 

or serum or copro-antigen ELISA. Therefore it is unknown whether the prevalence in beef 

suckler herds, or indeed amongst the non-milking animals in dairy herds, is similar to that of 

milking cows in dairy herds. Figures released by the Food Standards Agency report that 

16.5% of cattle livers were condemned due to liver fluke during 2015 (Ford and Hadley, 

2015). 

Infestation with F. hepatica  induces a Th2 and T-regulatory response, with increased 

production of IL4, IL5, IL10, IL3 and IGFβ, whilst Th1 responses are down regulated (Flynn et 

al., 2010; Graham-Brown, 2016; Maizels et al., 2004). Various studies have shown that 

helminth parasites can affect host immunity to other pathogens (Moreau and Chauvin, 
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2010), including by making the host more susceptible to infection (Aitken et al., 1981, 1979; 

Brady et al., 1999), changing the pathogenesis of disease (Garza-Cuartero et al., 2016), 

interfering with diagnostic tests (DEFRA, 2005; Flynn et al., 2007) and vaccination (van Riet 

et al., 2007). The Th2 response also mediates changes in the epithelial barrier which 

contributes to immunity to helminth parasites. Goblet cells increase mucus production and 

epithelial cells increase their permeability so that more fluid is excreted into the gut lumen. 

These combined with the increased contractility of smooth muscle aid in removing 

parasites from the gut (Gause et al., 2003). It is possible that these effects could also alter 

the ability of E. coli to colonise the intestinal mucosa, or increase the potential for 

shedding.  Co-infection is complex due to the many other factors that may affect pathogen 

interactions, including host genetics, other possibly undetected pathogens and the stresses 

that animals may be under (Moreau and Chauvin, 2010). Accurate diagnosis of disease and 

interpreting the meaning of multiple different tests can also be challenging. 

To date, to our knowledge, there has been little research to determine if there is an 

interaction between co-infection of E. coli O157 and F. hepatica. The present study aims to 

gather pilot data to determine whether shedding of E. coli O157 is associated with F. 

hepatica infection in cattle. 

6.2 Methods 

This study was designed as an add on to an existing larger study on  E. coli O157 in beef 

cattle intended for human consumption by the UK Food Standards Authority (FSA; Project 

FS101055). For the FS101055 study, sample size calculations showed that 110 Scottish 

farms and 160 farms from England and Wales were required, to give 95% confidence that 

the true herd prevalence would fall within a tolerance of 16.8%, given an estimated 

prevalence of 20%.  

A sample size calculation to assess the feasibility of the current study was performed by 

Hickey et al. (2015) using simulated datasets. The estimated prevalence of E. coli O157 was 

set at 4% of cattle and 20% of farms (Pearce et al., 2009) whilst the estimated prevalence of 

F. hepatica was set at 20% of cattle and 80% of farms (McCann et al., 2010; Salimi-Bejestani 

et al., 2005b).  100% sensitivity and specificity of both tests were assumed.  The result of 

these parameters was that 50 farms and 1645 individual samples were required, and the 

study would have a power of 87% to detect an odds ratio of 2 (i.e. cattle with fluke are 

twice as likely to shed E. coli O157). 



99 
 

6.2.1 Data collection 

Two hundred and seventy farms were sampled in the FS101055 study, and included a 

variety of types of enterprise and breeds of cattle. Of these, 110 were Scottish farms. These 

were randomly selected from all Scottish farms that had participated in either of two earlier 

studies, which in turn were selected by random sampling stratified by region (Gunn et al., 

2007). The inclusion criterion was that there was at least one male or female cow without 

calves on the farm, as these farms were most likely to contain animals that would end up in 

the food chain. In addition, 160 farms for England and Wales were recruited from a 

randomly selected subset with either a male of any breed aged over 1 year, or a female of a 

non-dairy breed aged over 1 year. Farmers were initially notified by letter and given the 

chance to opt out, and were then contacted by phone in a randomised order to enrol them 

in the study.  

Farms were visited once between September 2014 and October 2015. The unit of sampling 

was fresh faecal pats as this was comparable to previous research, and accurately 

represents environmental on-farm contamination.  Individual faecal pat samples were 

taken from the floor or ground, for a group of cattle from each farm. The number of 

samples collected from each group was determined by a protocol assuming 8% of animals 

to be positive, there would be a 0.9 probability of identifying groups containing at least one 

positive animal (Chase-Topping et al., 2007). The group of cattle chosen was one containing 

animals closest to going off the farm for slaughter. These were then sent to the 

Epidemiology Research Unit (ERU) microbiological facilities, SAC Consulting Veterinary 

Services Disease Surveillance Centre, Inverness, within 48 hours of collection, and tested for 

E. coli O157. The recruitment and visits were done by members of Scotland’s Rural College 

(SRUC) project team in Scotland, and the ADAS UK Ltd project team in England and Wales.  

For farms for which samples were submitted to SRUC’s ERU laboratory on or after 5th 

January 2015, and which consented to taking part in this further study, 2g of faecal material 

for all animals from the sampled group was frozen at -20° C in polypropylene tubes and 

retained for liver fluke testing. Delays due to funding and contractual issues meant that 

samples received prior to this date were not retained.  

Of 39 farms with one or more cattle testing positive for E. coli O157, two declined to take 

part in further research and samples from two farms were delayed in transit and were 

therefore no longer suitable for analysis. Therefore, samples from 35 herds were sent to 
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Moredun Research Institute (MRI), Edinburgh where they were tested for fluke. MRI staff 

members were blinded to the E. coli O157 status of the samples. 

In addition, information on animal characteristics and farm management was collected 

from the livestock keeper or farm manager on each farm, via a questionnaire administered 

by the survey staff. The information was collected in an electronic format and was a 

shortened version of a questionnaire used in a previous study (Chase-Topping et al., 2007). 

The questionnaire was piloted with several farmers before use. The finalised questionnaire 

was approved by the FSS Survey Control team (see Appendix). The questionnaire was 

conducted in Welsh for Welsh-speaking respondents.  

The information was at the farm level, for example the age of animals was given as a range 

for the group, and all animals were treated as having been managed the same in terms of 

housing, feeding and treatments given. The information relevant for the fluke study was 

identified and extracted. As the aim was to develop a model to determine the presence of 

an association between fluke and E. coli O157, rather than a predictive model, only 

management information relevant to fluke was taken for use in the model, to control for 

possible confounders which may be linked to both fluke and E. coli O157.  A summary of 

these is shown in Table 6.1. 

6.2.2 E. coli testing 

One gram (1g) of faeces was added to 20 ml of buffered peptone water (BPW, Thermo 

Scientific, UK).  The BPW was incubated for six hours at 37°C (±1°) then subjected to 

immunomagnetic separation (IMS). Briefly, a 1 ml aliquot from each 20 ml BPW sample was 

added to 20 µl paramagnetic beads coated with polyclonal antibody for E. coli O157 

lipopolysaccharide (Lab M Ltd., UK).  The aliquots were mixed on a rotary mixer for 30 

minutes before being washed three times in PBS with 0.05% Tween 20 (PBST, Sigma-Aldrich 

Co. Ltd.).  After the third wash, the beads were re-suspended in 100 µl PBST and cultured 

onto MacConkey agar containing sorbitol, cefixime (0.05 mg/l) and tellurite (2.5 mg/l) (CT-

SMac, Thermo Scientific, UK).   

Following overnight incubation at 37°C (±1°) plates were examined for non-sorbitol-

fermenting colonies and any suspect colonies were subcultured onto Chromocult coliform 

agar (Merck KGaA., Germany).  After a further overnight incubation at 37°C (±1°) any 

resulting red colonies were tested with anti-E. coli O157 latex (Thermo Scientific, UK) for 
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agglutination.  Colonies that agglutinated were identified as presumptively positive and 

enumerated by limiting dilution.   

Polymerase Chain Reaction (PCR) was used to confirm the serogroup of the isolates as 

E. coli O157 (Jenkins et al., 2003). For all positive samples, the number of E. coli O157 were 

enumerated by culturing 10-fold dilutions of faeces in minimum recovery diluent, starting 

from 1:10, on duplicate CT-SMac  plates. Typical colonies were counted after overnight 

incubation at 37°C (±1°) and counts expressed as colony forming units (cfu) per gram of 

faeces. 

IMS is considered to be a highly sensitive method of identifying E. coli O157, and has a 

lower limit of detection of 50 cfu/g (Aydin et al., 2014). For the positive/negative analysis, 

an E. coli O157 positive cow was defined as one that tested positive by IMS. The limit of 

accurate enumeration was 100 cfu/g of faeces (Pearce et al., 2004), and samples from 

which too few E. coli were cultured to be enumerated were assigned a cfu/g of 10.  

6.2.3 Fluke testing 
The remaining samples were frozen at -80˚ C and transported to MRI where they were 

tested using a copro-antigen ELISA according to the manufacturer’s instructions (Bio-X 

Diagnostics, Jemelle, Belgium).  The effect of freezing the samples on ELISA results was 

tested beforehand and was found to make no difference to the sensitivity or specificity of 

the test (Personal communication, Dr Philip Skuce). 

The result was determined by calculating the percentage positivity (PP) of each sample 

relative to the optical density (OD) of the positive control, after subtracting the OD of the 

negative control (provided in the kit). The positive/negative cut off was determined by the 

quality control insert supplied with the kit, and was either 7 or 8 for all the kits used for this 

study.  

6.2.4 Statistical analysis 

For each animal, the following results were obtained: E. coli O157 positive/negative, E. coli 

O157 cfu count, F. hepatica positive/negative derived by applying the cut off to the copro-

antigen ELISA results, and F. hepatica PP result (on a continuous scale). Farms without a 

single fluke positive animal were excluded from further analysis, because we wanted to be 

sure that cattle at least had a possibility to be infected by fluke, which would not 

necessarily be the case if there was no fluke on the farm.  R (R Core Team, 2011) was used, 

with the lme4 (Bates et al., 2015) and ggplot2 (Wickham, 2009) packages.  Due to 
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restrictions for confidentiality, figures or data relating to groups of fewer than five farms 

cannot be shown. 

6.2.5 Spatial analysis 

Maps were drawn showing the locations of the farms and the proportions testing positive 

for the two pathogens on each farm.  

6.2.6 Multilevel model  

Correlations between the numerical explanatory variables were checked to ensure highly 

correlated variables were not entered simultaneously into the model. All models were 

fitted using maximum likelihood. Either a positive E. coli result, for logistic regression, or 

log10 E. coli cfu (for linear regression) was used as the outcome variable. The organisation of 

the data is shown in figure 6.1. The fluke result (either positive/negative or log PP) was the 

only level 1 explanatory variable, and all other animal and farm management information 

was at level 2. 

 

Figure 6.1. Structure of the data. Only the fluke result is known for individual animals, 

all other variables were the same for each animal from a single farm. Some examples 

of fixed effects farm level data are shown. 

For a variable intercept mixed model, where all farms have the same slope for the 

relationship between fluke and E. coli, the log odds of any animal having E. coli is 

represented by the following equation: 

Log(odds(Positive E. coli result)) =    intercept   +   β x fluke     +        farm effect       +        error 

Where intercept is the mean log odds when all other variables are set to zero, β  is the 

coefficient of the slope, fluke is the animal’s fluke test result, farm effect is the same for all 

animals on the farm, and the error is made up of individual differences between animals, 

which could be accounted for by variables not included in the model or currently unknown. 

And, for example: 

farm effect =  Intercept      +       ϒ x herd size     +      α  x  grazing     +     random effect of farm 
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Where intercept is the grand mean of the log(odds(positive E. coli result)) when all 

explanatory variables  = 0. ϒ and α are coefficients for the slopes which correspond with the 

relationship between herd size or grazing and log(odds(positive E. coli result)). The 

coefficients are the same for all farms, whilst the magnitude of the variables (e.g. Herd size) 

will vary between farms. Additional explanatory variables can be added in. Random effect 

of farm is different for every farm and is made up of unknown variables or those not 

included in the model.  

The starting point was a variable intercept model including a positive fluke result as a level 

1 explanatory variable and farm as a level 2 random effect. Management variables which 

met the inclusion criteria were then added one at a time. The same process was repeated 

with fluke PP as the explanatory variable. The process was then repeated again with log10 E. 

coli cfu as a continuous outcome variable (equation as above, except the outcome is simply 

log10 E. coli cfu). Variable slopes were also tested. The Akaike information criterion (AIC) 

was used to compare models, with a lower AIC considered better than a higher one.  

6.3 Results 

Between 13th January and 19th October 2015, 35 farms that consented for further testing 

had at least one E. coli O157 positive sample, and of these , sufficient sample remained for 

testing using the F. hepatica copro-antigen test for 810 animals (there was insufficient 

sample for 5 cows).  Of these, 14 farms had at least one cow testing positive for F. hepatica. 

The 334 animals from these farms were included in the following analysis. Between 7 and 

40 cattle were sampled from each farm (median = 22). 

6.3.1 Descriptive statistics 

The characteristics of the farms are shown in Table 6.1. The data were also examined to 

find out whether groups of cattle were housed or grazing, how long they had been housed 

or grazing for, and whether they had received a worming or flukicide treatment within the 

past 3 months. However, even in groups which had received a flukicide, fluke cases were 

still present, and similarly some groups of cattle which had been housed for several months 

still had significant numbers of fluke cases. Therefore treatment history was not used to 

exclude farms and all animals which came from groups with at least one fluke case were 

included, on the basis that they would all have had the chance to become fluke infected.  
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6.3.1.1 Animal level  

Overall, 50.9% of cattle tested positive for E. coli O157 and 13.2% tested positive for F. 

hepatica.  The distributions are shown in figure 6.2. 

Table 6.1. Characteristics of the animals and farms in the fluke and E. coli O157 study 

 Farm-level  (n=14) Individual animals 
(n=334) 

Day of sample collection (Day 1=1st Jan 
2014) 

Range = 20-293 
Median = 126 

 

Grazing 
Housed 

3 (21.43 %) 
11 (78.57 %) 

 

Dairy 
Suckler beef 
Finisher 
Other 

2 (14.29 %) 
8 (57.14 %) 
2 (14.29 %) 
2 (14.29 %) 

 

Youngest in group (months) 
 
Oldest in group 

Range = 6-26 
Median = 14.5  
Range = 11-48 
Median = 20 

 

Total number of cattle on farm Range = 41-516 
Median = 117 

 

Total number of cows on farm 
(Females that have had a calf) 

Range = 0-208 
Median = 33 

 

Total number of heifers on farm Range = 0-65 
Median = 6 

 
 

Total number of cattle under 1 year on 
farm 

Range = 0-215 
Median = 30 

 

Total number of ewes on farm Range = 0-700 
Median = 0 

 

Total number of sheep overwintering on 
farm 

Range = 0-433 
Median = 0 

 

Water supply from mains 
Water supply from spring or well 
Water supply from natural source 

10 (71.43 %) 
6 (42.86 %) 
11 (78.57 %) 

 

Median percentage of fluke positive 
cows1 
Range of positive cows 
Fluke positive 
Median PP 
Range PP 

6.55% 
 
2.13-100% 

 
 
 
44 (13.17%) 
0.82 
-1.07-73.74 

Median percentage of E. coli O157 
positive cows2 
Range of positive cows 
E. coli positive   
Median cfu/g3 

Range cfu/g3 

43.10% 
 
4.00-100% 

 
 
 
170 (50.9%) 
10 
0-1.45 x 105 

1
’Fluke positive’ refers to an animal with a copro-antigen ELISA result of 7PP or above. ‘Negative’ is below 7 PP. 

2’
E. coli O157 positive’ refers to an animal with a positive IMS E. coli test  

3
Samples from which E. coli numbers fell below the limit of enumeration were assigned cfu = 10 
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Figure 6.2. Distribution of Fasciola hepatica coproantigen PP results and E. coli O157 

cfu counts for animals across all farms 

 

6.3.1.2 Farm level 

Within farms, between 4 and 100% of cattle tested positive for E. coli (mean = 43.5%, 

median = 43.1%) whilst for F. hepatica the range was 2.1 to 100% (mean = 14.7%, median = 

6.5%). The distribution of log E. coli O157 cfu varied between farms, but in general it was 

right skewed in ten farms whilst four farms showed a more symmetrical platykurtic 

distribution. For fluke PP, all except one farm had a right skewed distribution. The natural 

log of fluke PP value was used for multi-level models. 

6.3.1.3 Spatial analysis 

The farms were spread throughout Great Britain with 6 from Scotland 4 from England and 4 

from Wales. North Wales, South Wales, the Welsh borders, Northern England and a variety 

of Scottish locations were represented. There was no spatial trend visible in terms of either 

fluke or E. coli distribution (maps not shown for confidentiality reasons). 
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6.3.2 Associations between fluke and E. coli O157 

6.3.2.1 Animal level 

Inspection of scatterplots revealed no visible association between the fluke PP and log E. 

coli O157 cfu (data not shown). 

6.3.2.2 E. coli O157 super shedders 

Ten cattle from six farms were classed as super shedders (had a cfu>104). Of these, only one 

had fluke. The sample size was too small to formally test the difference whilst adjusting for 

farm effects, however, there did not appear to be any association between fluke PP and 

being a super shedder (fig. 6.3) 

 

Figure 6.3. The relationship between the log PP of the super shedder and the median 

log PP of the farm, showing that fluke PP is similar for super shedders and other 

cattle on each farm. The diagonal line shows equivalence.  

6.3.2.3 Between farms 

Inspection of scatterplots revealed no visible association between the proportion of  E. coli 

O157 and fluke cases on a farm, or between the median fluke PP and median log E. coli 

O157 cfu.  

6.3.2.4 Within farms 

More detailed inspection of three farms with more than 10% cases of fluke revealed that 

there was no consistent pattern with regard to which individuals were positive for which 
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pathogen. In one farm all of the fluke positive animals were also E. coli positive, in a second 

farm all of the fluke positives were E. coli negative, and in a third farm all animals had fluke 

and the PP values were evenly spread between the E. coli positive and negative animals.  

6.3.3 Multi-level models  

The starting point was a variable intercept logistic regression model with E. coli O157 

positive as the outcome measure. Compared to the null model containing only farm level 

random effects and no fixed effects (Model  AB), the addition of fluke to the model (Model 

A1) did not improve the model fit, or explain any of the variance between the farms. 

However, a model including a random effect for farm was a better fit for the data than the 

classical logistic regression model (Model A2) indicating that there were important 

differences between farms.  

 

Model AB: null multi-level logistic regression model  

Outcome: Log odds E. coli O157 positive 

Fixed effects: None 

Random effects:    Farm          

 Co-efficient Std Error Z value p 

Intercept -0.28 0.58 -0.47 0.64 

AIC = 317.5, deviance = 313.5, df=332. 

Random effects: Variance between farms = 4.34 

Intraclass correlation = 0.57 

 

 

 Model A1: multi-level logistic regression model 

Outcome: Log odds E. coli O157 positive 

Level 1 fixed effects:  Fluke positive 

Random effects:   Farm     

 Co-efficient Std Error Z value p 

Intercept -0.28 0.59 -0.47 0.64 

Fluke positive 0.01 0.59 0.02 0.98 

AIC = 319.5, deviance = 313.5, df=331. 

Random effects: Variance between farms = 4.33 

Intraclass correlation = 0.57 
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Model A2: classical logistic regression model 

Outcome: Log odds E. coli O157 positive 

Level 1 fixed effects:  Fluke positive 

Random effects:   None        

 Co-efficient Std Error Z value p 

Intercept -0.028 0.12 -0.23 0.81 

Fluke positive 0.49 0.33 1.48 0.14 

 AIC = 464.7, deviance = 460.7, df=332. 

  

Using log fluke PP instead of the binary fluke result showed that log PP was highly 

significant when interfarm variation was not accounted for (Model B2), but became non 

significant when this was included (Model B1).  

 

 Model  B1: multi-level logistic regression model 

Outcome: Log odds E. coli O157 positive 

Level 1 fixed effects:  Log fluke PP 

Random effects:   Farm     

 Co-efficient Std Error Z value p 

Intercept -0.74 0.66 -1.12 0.26 

Log fluke PP 0.33 0.23 1.44 0.15 

AIC = 317.5, deviance = 311.5, df=331. 

Random effects: Variance between farms = 4.14 

Intraclass correlation = 0.56 

 

Model B2: classical logistic regression model 

Outcome: Log odds E. coli O157 positive 

Level 1 fixed effects:  Log fluke PP 

Random effects:   None        

 Co-efficient Std Error Z value p 

Intercept -0.46 0.21 -2.23 0.03 

Log fluke PP 0.37 0.13 2.79 0.005 

  AIC = 458.49, deviance = 454.5, df=332. 

The null linear regression model (Model CD) for the outcome variable log E. coli cfu had a 

much lower farm level variance than null model AB. This showed that adding fluke to this 
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null model did not improve the model fit (Model C1). There was no association between E. 

coli O157 positivity and fluke PP. 

 

Model CD: null multi-level linear regression model 

Outcome: Log E. coli cfu 

Fixed effects: None 

Random effects:    Farm          

 Co-efficient Std Error Z value p 

Intercept 0.95 0.25 3.77 0.0002 

AIC = 953.1, deviance = 947.1, df=331. 

Random effects: Variance between farms = 0.84 

Intraclass correlation = 0.49 

 

 Model C1: multi-level linear regression model 

Outcome: Log E. coli cfu 

Level 1 fixed effects:  Fluke positive 

Random effects:   Farm     

 Co-efficient Std Error t value p 

Intercept 0.96 0.25 3.78 0.001 

Fluke positive -0.07 0.21 -0.37 0.72 

 AIC = 954.9, deviance = 946.9, df=330. 

Random effects: Variance between farms = 0.85 

Intraclass correlation = 0.49 

 

Model C2: classical linear regression model 

Outcome: Log E. coli cfu 

Level 1 fixed effects:  Fluke positive 

Random effects:   None        

 Co-efficient Std Error t value p 

Intercept 1.11 0.08 13.84 <0.00001 

Fluke positive 0.06 0.22 -0.25 0.80 

 AIC = 1163.1, deviance = 624.9, df=332. 
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Model D1: multi-level linear regression model 

Outcome: Log E. coli cfu 

Level 1 fixed effects:  Log fluke PP 

Random effects:   Farm     

 Co-efficient Std Error t value p 

Intercept 0.86 0.28 3.08 0.002 

Log fluke PP 0.07 0.09 0.78 0.54 

AIC = 954.4, deviance = 946.4, df=330. 

Random effects: Variance between farms = 0.83 

Intraclass correlation = 0.49 

 

Model D2: classical linear regression model 

Outcome: Log E. coli cfu 

Level 1 fixed effects:  Log fluke PP 

Random effects:   None        

 Co-efficient Std Error t value p 

Intercept 0.92 0.14 6.78 <0.00001 

Log fluke PP 0.15 0.08 1.78 0.08 

  AIC = 1160, deviance = 619.2, df =332. 

  

The plotting of management variables against log10 E. coli O157 cfu did not reveal any non- 

linear relationships. No correlations of >0.7 were seen between any of the explanatory 

variables, except between numbers of animals of different ages/types. It was not possible 

to add more than two extra explanatory variables at once because of the relatively small 

number of fluke cases which led to non-convergence of the model, due to perfect 

partitioning. The explanatory variables shown in Table 6.1 were each tested. A seasonal 

pattern was expected for E. coli (Ferens and Hovde, 2011), so day was modelled as a 

sinusoidal function to allow for this. The model fitted better with day as a linear variable, 

which could be due to the possible true seasonal pattern being hidden by the relatively few 

farms and all animals from each being sampled on the same day.   

The best models for each combination of E. coli O157 positive and log10 E. coli O157 cfu, 

and log fluke PP and fluke positive are shown (Models A3-D3). Day and youngest in group 

were included in all of the models. The higher the age of the youngest animal in the group, 

the lower the risk of infection with E. coli O157. Risk of E. coli O157 was found to decrease 
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throughout the year, from January until October . Log fluke PP was significant when 

modelled against positive E. coli O157 result (Model B3), but not in any other combination.  

Model A3: multilevel logistic regression model 

Outcome: Log odds E. coli O157 positive 

Level 1 fixed effects:  Fluke positive 

Level 2 fixed effects: Day, Youngest in group 

Random effects:   Farm       

 Co-efficient Std Error Z value p 

Intercept 4.27 0.72 5.98 <0.00001 

Fluke positive 0.50 0.52 0.96 0.34 

Youngest in 
group 

-0.18 0.04 -4.85 <0.00001 

Day -0.02 0.003 -5.65 <0.00001 

  AIC = 298.3, deviance = 288.3, df=329. 

Random effects: Variance between farms = 0.34 

Intraclass correlation = 0.09 

 

Model B3: multilevel logistic regression model 

Outcome: Log odds E. coli O157 positive 

Level 1 fixed effects:  log fluke PP 

Level 2 fixed effects: Day, Youngest in group 

Random effects:   Farm       

 Co-
efficient 

Std 
Error 

Z value p Effect on risk of 
being E. coli 
positive of 
changing from 25th 
to 75th percentile 

Intercept 3.6 0.67 5.40 <0.0001  

Log fluke 
PP 

0.48 0.19 2.57 0.010 Odds increases by 
0.067 (6.7%) 

Youngest in 
group 

-0.18 0.033 -5.5 <0.0001 Protective* 

Day -0.02 0.002 -6.13 <0.0001 Protective 

 AIC = 293.2, deviance = 83.2, df=329. 

Random effects: Variance between farms = 0.19 

Intraclass correlation = 0.05 

* The higher the age of the youngest animal in the group, the lower the risk of 
infection with E. coli O157 
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Model C3: multilevel linear regression model 

Outcome: Log E. coli O157 cfu 

Level 1 fixed effects:  Fluke positive 

Level 2 fixed effects: Day, Youngest in group 

Random effects:   Farm       

 Co-efficient Std Error t value p 

Intercept 2.92 0.38 7.64 <0.00001 

Fluke positive -0.02 0.20 -0.12 0.90 

Youngest in 
group 

-0.08 0.02 -3.53 0.0004 

Day -0.006 0.001 -4.52 <0.00001 

  AIC = 941.5, deviance = 929.5, df=328. 

Random effects: Variance between farms = 0.22 

Intraclass correlation = 0.20 

 

Model D3: multilevel linear regression model 

Outcome: Log E. coli O157 cfu 

Level 1 fixed effects:  log fluke PP 

Level 2 fixed effects: Day, Youngest in group 

Random effects:   Farm       

 Co-efficient Std Error t value p 

Intercept 2.80 0.38 7.32 <0.00001 

Log fluke PP 0.09 0.08 1.14 0.26 

Youngest in 
group 

-0.08 0.02 -3.71 0.00024 

Day -0.006 0.001 -4.64 <0.00001 

  AIC = 940.2, deviance = 928.2, df=328. 

Random effects: Variance between farms = 0.20 

Intraclass correlation = 0.18 

 

The introduction of random slopes worsened the model fit in each case so this was not 

pursued.  

To investigate whether one particular farm with higher than average fluke levels might be 

having an excessive influence on the model, the model was run again without this one 

farm. Fluke PP was no longer significant although the co-efficients for the other two 

explanatory variables were almost unaltered.  However, a logistic regression model 

including animals from just this one farm did not show fluke PP as a significant predictor for 
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E. coli shedding, indicating that the other farms are also contributing to the effect seen in 

model B3. 

6.4 Discussion 

E. coli O157 results from 334 cattle from 14 farms were modelled against their fluke results. 

Of the four combinations tested, a significant association between the log PP of the F. 

hepatica copro-antigen ELISA and E. coli O157 shedding was found when the fixed effects of 

day of sampling and the age of the youngest animal in the group, and the random effect of 

farm were adjusted for, on farms where both E. coli O157 and F. hepatica are present. The 

effect of this association was that a change from the 25th quartile of F. hepatica PP to the 

75th quartile corresponded with a 6.7% increased odds of E. coli O157 shedding (p = 0.010).  

The effect of this change in odds depends on the propensity of each animal that sheds to 

contaminate others. It is known that 5% of high shedding animals infect 80% of the others 

(Matthews et al., 2006). Therefore, a small increase in the number of cattle shedding would 

probably have little effect unless they were shedding large quantities of bacteria. Our study 

found no effect of fluke infection on the quantitiy of E. coli O157 shed.  

E. coli O157 shedding varies widely from day to day (Robinson et al., 2009), and sensitivity 

may be as low as 40% for a one-off faecal sample (Echeverry et al., 2005). However, 

enumeration of E. coli cfu is likely to be even more subject to error so the binary measure 

(E. coli O157 positive or negative) which was derived by IMS could be expected to be a 

more accurate measure to use in a model. With the fluke copro antigen ELISA, the cut-off 

has been subject to debate, with some studies setting their own cut-off to increase 

sensitivity (Brockwell et al., 2014). However, this would have an unknown effect on the 

specificity and in the absence of an alternative fluke test to give an indication of the likely 

effect, we decided against arbitrarily reducing the cut off. A continuous measure of PP 

avoids this problem and gives a more reliable variable for modelling. Antigen level is 

correlated with fluke burden (Kamaludeen, 2016), so this is also a more biologically 

meaningful measure.  

Day of sample collection and age of youngest animal in the group are relevant to both fluke 

and E. coli O157 levels. Younger animals are thought to have both a higher level of E. coli 

infection and to shed more (Chase-Topping et al., 2007). The reported seasonality of E. coli 

shedding varies between studies, with housed or feedlot cattle seeing a greater seasonality 

than cattle which are grazed in the summer (Ellis-Iversen et al., 2007). The linear 
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relationship between day and E. coli shedding seen here may be due to the fact that farms 

were sampled between January and October, with no samples taken during November and 

December. The fact that all animals from each farm were sampled on the same day is likely 

to contribute to the strong effects of the farm level variables. Geographical factors such as 

rainfall which may affect fluke were not included because there was no reason to suspect 

that E. coli was spatially clustered in this study or previously (Gunn et al., 2007). 

The addition of further variables was prevented by insufficient variability within the data; 

the reasons for this are discussed below. Therefore there may be other explanatory or 

confounding variables that are not included in these models. The result should therefore be 

interpreted with caution, as the effect size is small and it is only seen in one of the model 

combinations.  

There were 60 E. coli O157 positive farms in the FS101055 survey, thus it should have been 

possible to reach the 50 farms required. However, samples from only 35 farms were 

available for this study. This was mainly due to it being an add-on to a larger project. The 

study was also under powered due to the very low levels of fluke seen. F. hepatica only 

occurred in 43% of farms which was considerably less than the predicted 80%, meaning 

that only 14 farms were included in the analysis. This was despite a feasibility study having 

been conducted and published (Hickey et al., 2015).  

Two references (McCann et al., 2010; Salimi-Bejestani et al., 2005a) were used to estimate 

a herd-level fluke prevalence of 70-80% for the sample size calculations in the feasibility 

study, and the effect of lower prevalence was not considered (Hickey et al., 2015). The type 

of animals tested differed between the fluke reference studies, which targeted dairy 

animals mainly because they are easy to test for the presence of F. hepatica presence via 

Bulk Milk Tank (BMT) samples, and the current study, in which animals due to enter the 

food chain were targeted. This meant that most animals sampled were beef animals. There 

are no current prevalence estimates for fluke in beef cattle, and there are various 

differences between beef and dairy animals. Dairy cows are under a great deal of metabolic 

stress and this may induce a Th2 shift in immune response (Elenkov, 2004), which may 

make them more susceptible to fluke infection. Treatment for fluke is more difficult in dairy 

animals due to the long milk withhold times of flukicides. Even though not all farms 

mentioned it in the questionnaire (only the previous three months of worming history was 

requested), it is likely that beef animals would be treated for fluke at housing if in a fluke 

risk area, particularly those that are due to go for slaughter soon.  
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Fluke prevalence varies by season and most prevalence studies take this into account and 

collect samples during the peak seasons of late summer and autumn, whereas in the 

current study the collection times were determined by other factors and were throughout 

the year. Partly due to season but also the nature of farming units tested, of the 35 groups 

of cattle sampled, only 9 were currently grazing, and of these, 3 had been turned out within 

the past 3 weeks. It is likely that some of the groups were permanently housed, which 

would put them at low risk for fluke exposure; however, this information was not detailed 

in the questionnaire.  

The copro-antigen test has a similar diagnostic sensitivity to faecal egg count (FEC) at 

around 50%-60% sensitivity in sheep and lower in cattle, presumably due to lower fluke 

burdens and a greater volume of faeces (Duscher et al., 2011; Gordon et al., 2012), whereas 

the BMT antibody ELISA used to get prevalence estimates in previous studies has a 

sensitivity of 96% (Salimi-Bejestani et al., 2005a). An antibody ELISA can be expected to 

return more positive results as it can detect cases 2 weeks post-infection, whereas the 

copro-antigen ELISA does not reliably detect pre-patent infections (Gordon et al., 2012; 

Valero et al., 2009). Residual antibodies persisting for weeks or months after treatment will 

also result in false positives on the antibody ELISA. Some authors state that in high 

prevalence areas, all cattle can be expected to be positive on antibody ELISA regardless of 

current infection status (Skuce and Zadoks, 2013).  The difference in sensitivity and 

specificity between the two types of test were not taken into consideration in the feasibility 

study (Hickey et al., 2015).  

Biologically, the shedding of E. coli O157 is related both to colonisation, and also to triggers 

for a shedding event. Immune stress could be a reason for increased colonisation and also 

possibly for a shedding event although the mechanism for this has not been established 

(Munns et al., 2015). Stressful events and poor hygiene have been found to contribute to 

high level shedding  (Chase-Topping et al., 2007; Ellis-Iversen et al., 2007). It is possible that 

infection with F. hepatica, which is known to modulate the immune response, may affect 

the propensity of an individual to be either infected with or shed E. coli O157. However as 

fluke levels do not change dramatically from day to day, it is difficult to relate the fluke 

infection of an individual to a single shedding event. There were insufficient samples in the 

study to test for an association between fluke infection and super shedding, but there did 

not appear to be a relationship.  



116 
 

The results of this study are not conclusive, but indicate that further research is required to 

investigate the possible association between E. coli O157 shedding and F. hepatica 

infection. A better approach would be to use a smaller number of herds which are known 

to have fluke, but to recruit a larger number of animals from each, thereby avoiding some 

of the inter-herd variation and ensuring fluke exposure, and to follow these animals up over 

a longer time frame and test a larger volume of faeces, thereby avoiding the issues of 

intermittent shedding and uneven distribution of bacteria within the faeces.  
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Chapter 7: General Discussion 

7.1 Background to this thesis 

The growing world demand for food, combined with increasing resistance to antimicrobial 

and antiparasitic treatments, make it important to find new ways of reducing the burden of 

parasitic and infectious disease in livestock. Infection with liver fluke is known to modulate 

the immune system of co-infected hosts, altering the diagnosis and disease progression of 

other infections such as bovine tuberculosis (bTB), caused by Mycobacterium bovis.  

BTB is a serious problem for the livestock industry, and much research has focussed on the 

effect of liver fluke on the bTB skin test (see chapter 4). Interest in this topic has persisted 

over the past 70 years and it has been investigated in countries all over the world. In earlier 

times it was thought that liver fluke infection caused false positives on the skin test, 

because bTB lesions were not always observed in skin test positive cattle (e.g. Manukyan, 

1955; Merlen, 1950; Strelchenok, 1953). Suggested mechanisms for this hypothesis 

included the introduction of saprophytic mycobacteria by the migrating fluke (Keller, 1952; 

Nyiredy et al., 1966; Zorawski et al., 1987), or that migration of liver fluke through the lungs 

led to a false positive in the absence of bTB infection (Kochnev, 1950). However, the 

majority of cross sectional studies and all of studies on experimentally infected animals 

known to us, did not confirm that fluke infection led to false positives (El-Ahwal, 1969; 

Meyer, 1963; Yamaguchi et al., 1955).  

More recently, improved knowledge of the immune system has changed our understanding 

of the interaction between fluke and bTB. Chronic liver fluke infection has been shown to 

induce a non- protective T helper cell type 2 (Th2) / regulatory response, characterised by 

IgG1, IL4 and IL10, which suppress T helper cell type 1 (Th1) cytokines such as interferon 

(IFN) γ (Bossaert et al., 2000; Bossaert et al., 2000; Graham-Brown, 2016). This has been 

shown to alter disease progression and diagnosis of bovine tuberculosis (bTB) in 

experimentally infected calves: co-infected calves had weaker responses to the bTB skin 

test, to the IFNϒ test, and their macrophage function was altered leading to less bacterial 

uptake (Flynn et al., 2009, 2007; Garza-Cuartero et al., 2016). A field study at the herd level 

found that fluke infection was associated with a bTB under-ascertainment rate of about 

one-third using the single intradermal comparative cervical tuberculin test (SCITT), 

compared to the expected rate in the absence of fluke (Claridge et al., 2012). One of the 
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aims of this thesis was to establish whether this effect on the bTB skin test was seen in 

individual cattle naturally exposed to M. bovis and F. hepatica.  

Other previous work has shown that fluke infection alters immunity to Salmonella dublin 

and Bordetella pertussis (Aitken et al., 1981; Brady et al., 1999), and we therefore asked if 

immunomodulation due to liver fluke has an effect on susceptibility to other pathogens of 

cattle.  Mycobacterium avium subsp. paratuberculosis (MAP) is of particular interest 

because of its similarities to M. bovis in terms of chronicity and immunomodulatory effects, 

although there are also some important differences, for example, the fact that very young 

calves in the first two weeks of life are the most susceptible, which is not the case for M. 

bovis. MAP is a common pathogen in the UK, and currently is not subject to restrictions, 

which makes it easier to study than M. bovis. We therefore investigated the effect of fluke 

in cows infected with Mycobacterium avium subsp. paratuberculosis (MAP), to find out 

whether fluke infection was associated with the onset of clinical signs of Johne’s disease.  

Finally, we tested for an association between fluke infection and the shedding of the food 

poisoning bacterium Escherichia coli O157 in finishing cattle. E.coli O157 does not usually 

cause disease in cattle, but around 4-7% are colonised (Ellis-Iversen et al., 2007; Gunn et al., 

2007; Paiba et al., 2003; Pearce et al., 2009), and it is a cause of severe disease in people 

(Chase-Topping et al., 2008; Strachan et al., 2006). This study came about through 

collaboration with the Moredun Research Institute and Scotland’s Rural College. Samples 

and data were obtained through a prevalence study undertaken by the Food Standards 

Agency (FSA).   

7.2 Summary of findings 

7.2.1 Bovine tuberculosis 

In chapter 3, we report on cross sectional and case control studies looking for an 

association between antibodies to liver fluke and the result of the bTB skin test. No 

significant association was found, but in 5/6 models the odds ratio for a cow with fluke 

antibodies to be diagnosed as a reactor or IR compared to a cow without fluke/with a lower 

antibody titre was less than one. This suggests that fluke infected cows may be less likely to 

be reactors to the SICCT. However, both thecross sectional and case control studies were 

under-powered, due to difficulty obtaining samples, so these results are not conclusive.  
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In the systematic review (chapter 4), the evidence from the nine included studies showed 

that liver fluke infection was associated with a reduction in the sensitivity of the bTB skin 

test, and was negatively associated with other measures of bTB disease progression 

including IFNϒ production, lesions and bacterial recovery. These findings serve to confirm 

the results of chapter 3, however, associations were relatively small and the clinical 

significance in naturally exposed animals has not been adequately established. Moreover, 

the reason for the association has not been determined, and it is as yet unclear whether 

fluke infected animals are less likely to be infected with bTB, or whether they are only less 

likely to test positive for it.  

7.2.2 Johne’s disease 

In chapter 5, no association was found between MAP antibodies and fluke antibody ELISA 

percent positivity (PP) values in dairy cattle, in either cross sectional or longitudinal studies. 

To our knowledge this is the first research study to examine the relationship between these 

two co-infecting pathogens, and there have been few studies of co-infection with MAP and 

other bovine pathogens. It is known that liver fluke infection causes the down-regulation of 

pro-inflammatory immunity with bystander effects on co-infecting pathogens, and that a 

decrease in Th1-type immunity is associated with the onset of clinical Johne’s disease (Begg 

et al., 2011; Moreau and Chauvin, 2010). It has been suggested that within-herd prevalence 

is increased in the presence of pathogens that cause immunosuppression, such as bovine 

leukaemia virus (BLV) and bovine viral diarrhoea virus (BVDV) (Tiwari et al., 2009). 

Therefore, it would seem plausible that fluke could have an effect on MAP infection, but 

that this was not detected in our study. Possible reasons for this are discussed below.  

7.2.3 E. coli O157 

In chapter 6, a significant association between increasing F. hepatica copro-antigen ELISA 

result and E. coli O157 shedding was found, in a model controlling for the effects of season, 

farm and animal age.  The effect of this association was that a change from the 25th quartile 

of F. hepatica copro-antigen ELISA PP to the 75th quartile corresponded with a 6.7% 

increased risk of E. coli O157 shedding (p = 0.01). This implies that fluke-infected cattle are 

more likely to shed E. coli O157. To our knowledge there is no previous research on co-

infection with liver fluke and E. coli O157. Further research is required to support these 

findings, especially given the limitations of the study. However, it is logical that the 

immunomodulation induced by liver fluke would have an effect on the immune response to 

E. coli O157, because a Th1 type immune response with upregulated IFNϒ is associated with 
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clearance of E. coli from the gut of cattle (Corbishley et al., 2016, 2014). If liver fluke does 

increase the likelihood of cattle being colonised with or shedding E. coli O157, this has 

public health implications.  

7.3 Interpreting co-infection studies in naturally 

exposed populations 

It is widely acknowledged that the interactions between pathogens seen in observational 

co-infection studies may not be consistent with those seen in laboratory studies under 

controlled conditions (Bradley and Jackson, 2008; Fenton et al., 2014). Interactions 

between co-infecting pathogens are changeable, depending on the relative timings and 

infectious burdens (Fenton, 2013), and vary between subsets of the population such older 

animals, males or females, and the immunocompromised (Fenton et al., 2014). In the case 

of bTB, the obvious effect of fluke in reducing the response to the bTB skin test reported in 

experimentally infected calves (Claridge et al., 2012; Flynn et al., 2009, 2007) was not 

always seen in cross sectional studies, some of which reported no association or an 

interaction in the opposite direction (Claridge, 2012; Munyeme et al., 2012; Schanzel and 

Stolarik, 1962).  

In addition, the results may be difficult to interpret, as the finding that fluke positive 

animals are less likely to have visible lesions could be due to false positives on the bTB skin 

test, or because lesions are atypical in fluke infected animals (e.g. DEFRA, 2005). In diseases  

of wild animals, similar observations of inconsistencies between studies have been made 

(Fenton, 2013; Fenton et al., 2014). Interactions between pathogens at the individual level 

can appear to be cancelled out by the effects of other pathogens which come into play in 

the absence of one of the co-infecting pathogens of interest (Bradley and Jackson, 2008). 

These factors indicate why supporting evidence from experimental studies is required to 

increase confidence in the results of the E. coli and MAP studies. 

The method used for analysis can also enhance or obscure the true effects (Fenton et al., 

2014; Haukisalmi and Henttonen, 1998). Comparing statistical methods in a simulated 

cross-sectional dataset, Fenton et al. (2014) reported that different approaches led to 

statistically significant results of the opposite sign. In general, generalised linear models 

(GLMs) were thought to be the most reliable method as these are able to include 

adjustments for confounders. Nonetheless, there are always likely to be other confounders 

which are not controlled for, because it is difficult to collect detailed enough information 
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about large numbers of naturally infected animals. Examples of variables that are 

particularly difficult to measure include variation in exposure risk due to behavioural 

differences, and intrinsic immune variation between individuals. Longitudinal GLMs are the 

best tool of statistical analysis as these control for the intra-individual variation that cannot 

easily be measured (Fenton et al., 2014). In this thesis, GLMs and longitudinal GLMs were 

used but the information required to control for confounders was not available in most 

cases, due to the anonymous nature of the data collection. For example, the MAP study 

was compromised by the lack of data on the animals’ age, and for the E. coli study data on 

grazing and treatment history was incomplete.  

Inherent immunity varies, but immune responses are also acquired as a result of exposure 

to pathogens, and the order in which pathogens occur is important. This was seen 

experimentally when the effects of liver fluke infection on M. bovis immunity were greater 

in cattle infected with  F. hepatica before M. bovis, than in those which were infected with 

M. bovis first (Flynn et al., 2007). However, in naturally exposed populations it is difficult to 

know the order that infections occurred. Some assumptions may be justified: for example, 

young calves are likely to be infected with MAP before they are exposed to liver fluke. This 

could be one possible explanation for the lack of association observed between liver fluke 

and MAP antibodies in chapter 5. In the case of bTB, exposure to fluke may precede 

exposure to bTB, particularly if the herd has no previous history of bTB. However, in some 

persistently infected herds or where badgers are a source of infection, young calves could 

be exposed to M. bovis first. This could mean that the effect of fluke on the bTB skin test 

may be greater in herds with new bTB breakdowns, because fluke infection precedes 

exposure to M. bovis.  

Ecological interference occurs when individuals are removed from the pool of susceptibles 

due to mortality (Rohani et al., 2003). In herds with persistent bTB, this could cause 

individuals with strong immune reactions to bTB being removed, and could inadvertently 

select for individuals that are more susceptible to fluke, if these are indeed less likely to 

respond to the bTB skin test. Treatment options for fluke-infected dairy cattle are limited, 

and even if treated, complete and lasting parasite clearance is unlikely as re-infection will 

occur unless the animals are housed. Over time, this could explain why, within an area of 

fluke prevalence, herds with high levels of fluke are less likely to have a bTB breakdown, as 

reported by Claridge et al., (2012).  
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7.4 Difficulties encountered 

For various reasons, the bTB and E. coli studies were under-powered. There were also 

limitations relating to the sensitivity and interpretation of the diagnostic tests used.  

Consideration of some of the difficulties encountered may increase the likelihood of gaining 

useful results in future studies.  

7.4.1 Reaching the required sample size 

The bTB case control and cross sectional studies both failed to reach the required sample 

size, in spite of considerable efforts made to recruit participants (chapter 3). A previous 

case control study on naturally exposed animals in the UK also failed to reach the required 

sample size (Claridge, 2012). The restrictions applied under the bTB control programme and 

the stigma surrounding this made recruitment of farmers difficult.  Other research on co-

infection with liver fluke and bTB in individuals has either been performed in laboratory 

animals (Flynn et al., 2009, 2007; Garza-Cuartero et al., 2016) or in settings where 

restrictions do not apply such as in developing countries (Ameni et al., 2000; Munyeme et 

al., 2012) or prior to the introductions of bTB restriction in Europe (e.g. Ljesevic, 1957; 

Meyer, 1963). The exception was a study performed by DEFRA (2005), where access to 

information on bTB infected herds and samples from bTB test reactor animals were 

available due to the fact that the study was performed by the state animal health service. 

The E. coli study was under powered due to the very low levels of fluke seen. This was 

despite a sample size calculation having been conducted and published (Hickey et al., 

2015). Difficulties resulting from adding our study onto the FSA study meant that resources 

were not ready in time, meaning that 35% of the samples were not available to us. 

Secondly, fluke prevalence in the tested samples was much lower than anticipated, at least 

partly because the feasibility study did not take into consideration the low sensitivity of the 

copro-antigen ELISA compared to the antibody ELISAs on which prevalence estimates were 

based (Duscher et al., 2011; Salimi-Bejestani et al., 2005a). Another reason was that the 

study population was finishing cattle, which as a group are less likely to graze outside than 

other groups, and may be more likely to be proactively treated for parasites to maximise 

weight gain, and therefore may be less likely to have fluke than the populations of dairy 

cattle on which prevalence studies have been done (Howell et al., 2015; McCann et al., 

2010). This study was intended to be a pilot study, using samples obtained through another 

study in order to save resources. However, the problems encountered demonstrate the 

importance of designing a study to answer the particular question of interest.  
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7.4.2 Diagnostic test sensitivity 

In chapter 3 and 5, diagnosis of fluke, MAP and bTB was via the immune response rather 

than direct identification of the pathogen: antibodies in the case of MAP and fluke, and the 

cellular response in the bTB skin test. The antibody titres give an indication of the burden of 

infection, but vary widely between individuals (Graham-Brown, 2016). They may give a 

more accurate indication of the immune response of the animal than absolute parasite 

numbers, but it may not be straightforward to tell the difference between protection and 

exposure (Bradley and Jackson, 2008). Direct identification of bTB and fluke is difficult in 

live animals, as faecal egg count (FEC) has low sensitivity and bTB infected cattle, in the 

early stages, are often not infectious and therefore the diagnostic methods used in humans, 

such as examination of a sputum smear, are not useful (DEFRA, 2005). 

In general, error in the independent variable is likely to bias the effect size seen in a 

regression model towards zero, so determining the true infection status of an animal is 

important to accurately estimate the effect of risk factors (Schennach and Schennach, 

2012). The relatively poor sensitivity of the bTB skin test can be mitigated to some extent 

by performing different tests in parallel, but as bTB testing in the UK is controlled by DEFRA, 

this was not possible in our study.  

The main limitation of the MAP study concerns the poor sensitivity of the test used to 

detect MAP, although this is considered to be the most sensitive test available (Caldow et 

al., 2009). The ELISA is only suitable for detecting cattle in the later, clinical stages of 

disease. In the clinical situation, the test is used alongside other information such as age 

and clinical signs, and tests are interpreted as one of a sequence, with the animal coded 

red, orange or green, depending on the results of the entire series . In our study, follow-up 

was only possible for 1 year, but given the long incubation period of MAP, a longer follow 

period would be preferable.  

In the E. coli study, direct diagnosis of both pathogens was performed, with no measures of 

immune response. Due to the fact that the study was an add-on to another study, the 

samples available were faecal samples, which were tested for fluke using the copro-antigen 

ELISA. This has a similar, or according to some studies, lower sensitivity than FEC (Brockwell 

et al., 2014, 2013; Duscher et al., 2011). Both only detect current, patent infections, which 

accounts for some of the reduced sensitivity compared to antibody tests that become 

positive early during infection and remain positive for some weeks afterwards (Brockwell et 

al., 2013). However, even when used on cows with patent infections, test sensitivity is low. 
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One study reported that only 30% of seropositive animals were identified, compared to 

45% of animals that were detected by faecal egg count (Duscher et al., 2011). There has 

also been debate about the cut-offs used. Some studies reported a higher sensitivity for the 

copro-antigen ELISA but used lower cut-offs than recommended by the manufacturer 

(Brockwell et al., 2013; Charlier et al., 2008). In our study, in the absence of any alternative 

method of fluke diagnosis, we did not alter the cut-off.  

Whilst use of a poorly sensitive test may acceptable in clinical cases, where results are 

interpreted in conjunction with farm history and clinical signs, a sensitivity this low is 

probably not appropriate for epidemiological studies where no supporting information is 

available, as the increased error is likely to cause an unacceptable loss of power.  

The pattern of E. coli O157 shedding is known to be intermittent, and in groups of animals 

where one is found to be shedding, one or most are thought to be infected (Robinson et al., 

2009). The original FSA study was designed to determine whether a group was infected, 

and thus the intermittent nature of shedding was not a problem, but a single negative E. 

coli test does not determine that an animal in uninfected. 

7.4.3 Other confounding factors 

In these studies, the amount of data available on confounding factors was limited. This was 

due to the anonymous nature of the sample collection in the MAP study and the bTB case 

control study. For the E. coli study, information was available but only at the group level. 

For the bTB cross sectional study, information was collected but the dataset was not big 

enough to allow its inclusion in the model.  

7.5 Ways forward 

7.5.1 Optimising study design 

As bTB is a rare disease occurring in only a small proportion of cattle in most infected herds, 

it is relatively inefficient to study using a cohort study, however, longitudinal follow up of 

individuals maximises the likelihood of genuine interactions being detectable (Fenton et al., 

2014). Confounding factors include age, risk of exposure,  lactation stage, whether 

pregnant, whether home bred or originating from another farm, body condition score, 

treatment history, general health, time of year and area of the country, and it is difficult to 

adjust for all of these (Fenton et al., 2014). Acquired immunity to previous infection may 

also affect the current ‘co-infecting’ pathogen  (Lello et al., 2008), and individual differences 
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in risk of infection result from genetic and behavioural variation. Longitudinal follow-up 

allows this individual variation to be controlled for. However, gaining co-operation of 

farmers to participate in a long and involved research project may be difficult. Longitudinal 

studies also need to be timed with reference to the changes in parasite status, and their 

effects, and the dataset needs to be large enough to allow for potential confounders to be 

included in a model (Fenton et al., 2014). A longer period of follow up would ideally be 

required, over at least two grazing seasons to allow for inter-seasonal variation. Treatment 

with a flukicide would also be useful to ensure a change in fluke levels, although the 

limitations of treating dairy cattle mean that the effects of flukicide treatment may be 

difficult to separate from immunological changes around calving.  

Similar considerations should be made for study of MAP. Longer follow up, possibly lifelong, 

would give a more accurate estimate of whether a cow was in the red/clinical phase, or 

whether it was in the orange/intermittent phase of infection. 

Finite resources lead to trade-offs between immune responses, with one type of response 

being dominant (Bradley and Jackson, 2008). This trade-off has been found to be more 

marked in resource limited situations in wild animals (Ezenwa et al., 2010; Hayward et al., 

2014; Nussey et al., 2014), and this may also apply to farmed animals under metabolic 

stress.  Selective breeding for characteristics such as milk yield, growth rate and carcase 

conformation may have caused decreased genetic variation in immune response between 

individuals within a herd and between herds. There was evidence of differences between 

beef and dairy cattle in a study that showed an association between fluke and bTB in dairy 

cattle but not in beef cattle which may have been due to inherent differences between 

different types of cattle (DEFRA, 2005). In the same study, dairy cattle were significantly 

less likely to have visible bTB lesions than other cattle, demonstrating a difference in 

pathology. Other sub-populations may be more susceptible to infection due to age, 

pregnancy, production stresses or immunosuppressive disease. Fluke infection generally 

only affects a small proportion of the herd, with 20% of animals having 80% of the fluke 

burden (see chapter 2). Focusing on these 20% could be a more effective way to 

concentrate resources than testing the whole herd (Lloyd-Smith et al., 2005; Woolhouse et 

al., 1997).   

7.5.2 Choice of diagnostic tests 

As none of the tests used here are perfect in terms of both sensitivity and specificity, 

utilisation of more than one type of test will add certainty to the results. This may involve 
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getting more than one type of sample. We found that individual cattle fluke results did not 

change significantly over three sampling sessions three months apart. There is a time lag of 

at least 11 weeks after parasitological cure before antibody levels return to negative using 

the ELISA (Salimi-Bejestani et al., 2005b), and this may take up to 6 months (Castro et al., 

2000). Thus another method of fluke diagnosis would be useful to confirm diagnosis. The 

relatively poor sensitivity of FEC could be increased by using large volumes of faeces and 

testing over several days, although this is time consuming (Charlier et al., 2008; Rapsch et 

al., 2006).  

For bTB, use of ancillary tests such as the IFNϒ test and antibody test would add much 

useful information. The antibody test would have been of particular interest to discover any 

effect of fluke in enhancing Th2 responses.  Ideally this would be followed by post mortem 

examination combined with culture and histopathology.  An investigation into cattle-to-

cattle transmission of bTB (DEFRA, 2005) took the approach of keeping SCITT-negative in-

contact cattle for seven weeks to see whether these animals would become test positive 

and develop lesions eventually. This method, although logistically difficult, could be useful 

to improve the sensitivity of the two tests, as 11.5% of the initially SCITT-negative cattle 

were confirmed to have bTB at post mortem examination. In view of the restrictions 

surrounding bTB cases and the resulting difficulty in obtaining samples, collaboration with 

DEFRA is probably required for the effective study of bTB in the UK.  

Due to the poor sensitivity of the MAP antibody test, parallel testing of faecal samples to 

confirm shedding would be very useful. In the case of the E. coli study, given the 

intermittent nature of shedding, re-sampling over several days is required to confirm 

whether or not an individual animal is infected, and determining the proportion of days 

that an individual sheds could be used to provide an indication of its infectivity to others.  

7.5.3 Measurement of immune profiles 

Different types of response are characterised by specific cytokine production, and 

measurement of these can be used to categorise the immune response and can aid causal 

inference (Bradley and Jackson, 2008). This is because the broad consequences of infection 

(Th1/Th2/Th17/regulatory) are fairly consistent for certain types of pathogen, even though 

the consequences in terms of pathogen interaction may differ for every co-infecting 

combination and are difficult to predict (Graham et al., 2007).  
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A recent study by Graham-Brown (2016) defined the cytokine profiles of cattle naturally 

infected with liver fluke. IL4, IL5 and eosinophilia were observed, although these were also 

seen with nematode infected, fluke-negative cattle, showing the importance of obtaining as 

much information about co-infecting pathogens as possible. There was also considerable 

variation between individuals. In bTB infected cattle, IFNϒ levels were raised initially, and 

bTB specific IgG1 antibodies were detected  later in the course of disease, from 60-100 days 

post infection in experimentally infected animals, although this varied depending on 

antigen used (Hanna et al., 1992). In naturally infected cattle, IFNϒ and IL10 were higher in 

cattle with confirmed bTB than in those without lesions (DEFRA, 2005). Measurement of 

cytokine production from infected host cells stimulated with pathogen specific and non-

specific antigens can provide information about the effect on the host of the co-infecting 

pathogens, and on the overall immune environment (Bradley and Jackson, 2008).  

A pitfall of measuring only the infection status without any idea of the underlying immune 

responses is that any correlations seen may have multiple explanations. There may be 

external factors related to transmission that cause an apparent correlation, for example 

underlying host susceptibility that is independent of both pathogens, or a spatial 

correlation (Fenton et al., 2014). In a study of two co-infecting parasites in children, 

measurement of the immune response showed that cross-protective immunity was 

induced, whereas analysis of parasite burden alone gave the impression that infection with 

the two species were correlated. This was due to spatial correlation resulting from where 

the study subjects lived, which was not easily controlled for (Booth, 2006). If two pathogens 

compete within the host but the host is susceptible to both, whereas other hosts are 

resistant to one, the infections could be correlated and the competitive aspect obscured, 

unless immune responses are measured (Bradley and Jackson, 2008). Cytokine 

measurement can also give information about interactions when altered outcomes are not 

apparent until a later time. For example Ezenwa and Jolles (2014) measured IFNϒ alongside 

the bTB skin test to identify a difference in immune response between animals co-infected 

with bTB and nematodes, and singly infected animals. The risk of bTB infection was no 

different in the nematode-infected and nematode-free cattle, but further evidence that a 

difference existed was later shown by the finding that mortality in co-infected animals was 

more than nine times as likely. These examples show how an appreciation of the immune 

response can aid interpretation of infection status as well as facilitating causal inference in 

co-infection studies.  
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7.5.4 Other research priorities 
Experimentally infected animals are the most reliable way of detecting interactions of co-

infecting pathogens in the first instance (Fenton et al., 2014). This has been done for fluke 

and bTB, but not, as yet, for fluke plus E. coli O157 or MAP.  

Other common pathogens of cattle which would be of interest to investigate in terms of co-

infections include nematodes, leptospirosis, BVDV and infectious bovine rhinotracheitis 

(IBR).  

Also yet un-investigated are the production effects of co-infections. For example, clinical 

Johne’s disease and fluke infections have both been shown to decrease milk yield (Charlier 

et al., 2007; Hasonova and Pavlik, 2006; Howell et al., 2015), but their combined effect is 

unknown.   

7.6 Conclusion 

Co-infections are complex and difficult to study in naturally exposed populations. Carefully 

planned studies with longitudinal follow up and consideration given to the most effective 

use of diagnostic tests are required. Despite the problems encountered during the 

completion of this research, we have found evidence for an effect of fluke on the bTB skin 

test and on E. coli O157 shedding. This adds to the body of evidence that liver fluke 

infection has bystander effects on immunity to other pathogens. Future research in 

naturally exposed populations should include cytokine measurement to aid understanding 

of underlying immune mechanisms.   
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APPENDIX: Bovine TB and Liver Fluke Systematic Review data collection 

form 

 

Study ID 

 

Author(s) Year 

Report ID Reviewed by 

 

Date  

 

 

Methods: 

Age  

Number  

Study population  

Selection method  

Duration  

Setting  

Country  

Fluke detection 
methods 

 

TB detection methods  

Details of 
intervention/dose rate 
etc 

 

Design Retrospective/prospective 

Data source of retrospective 

  

 

Risk of bias 

Comparability of groups assessed? 

How? 

No 

Groups materially different 

Selection bias 

No 

Yes/possible 

Response bias 

No 

Yes/possible 

Random allocation (RCT only) 

Yes 

No 

Allocation concealment (RCT only) 

Yes 

No 

Detection bias 

No 

Yes/possible 

Blinding 

Yes (Who, At which stage of study) 

No and may cause bias 
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No but probably not causing bias 

Measurement bias 

No 

Yes/possible 

Recall bias 

No 

Yes/possible 

Ascertainment bias 

No 

Yes/possible 

Confounders considered? 

Which ones? 

[Age, herd size, region,  

No 

Missing data:  

None 

Present, accounted for, not causing 
bias 

Present but not accounted for 

Present, accounted for causing bias 
or unclear 

Not mentioned 

 

All methods performed and reported 
as described 

Some results missing or analysed 
differently to methods 

Overall risk of bias 

Low 

High 

Quality of study 

High 

Low 

 

Analysis: 

Described fully? 

 

Results: 

 

Data 

 

 

Author conclusions: 

 

 

Funding source 

 

References to be followed up: 

 

Author correspondence required 

 

Any other comments 
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