1	Biotic and abiotic retention, recycling, and remineralisation of metals in the ocean
2	Revised Progress Article for Nature Geoscience
3	
4	2 December 2016
5	
6	Philip W. Boyd ^{1,2} , Michael J. Ellwood ³ , Alessandro Tagliabue ⁴ and Benjamin S. Twining ⁵
7	
8	
9	Affiliations
10 11	¹ Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
12	² Antarctic Climate and Ecosystems CRC, University of Tasmania, Australia
13 14	³ Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200 Australia
15	⁴ School of Environmental Sciences, University of Liverpool, Liverpool, UK
16	⁵ Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	

29 Abstract

30	Trace metals shape both the biogeochemical functioning and the biological structure of
31	oceanic provinces. Trace metal biogeochemistry has primarily focused on modes of external
32	supply of metals from aeolian, hydrothermal, sedimentary and other sources. However,
33	metals also undergo internal transformations such as abiotic and biotic retention, recycling,
34	and remineralization. The role of these internal transformations in metal biogeochemical
35	cycling is now coming into focus. First, the retention of metals by biota in the surface ocean
36	for days, weeks, or months depends on taxon-specific metal requirements of phytoplankton,
37	and on the ultimate fate of phytoplankton, that is viral lysis, senescence, grazing, and/or
38	export to depth. Rapid recycling of metals in the surface ocean can extend seasonal
39	productivity by maintaining higher levels of metal bioavailability, compared to the influence
40	of external metal input alone. As metal-containing organic particles are exported from the
41	surface ocean, different metals exhibit distinct patterns of remineralization with depth.
42	These patterns are mediated by a wide range of physico-chemical and microbial processes
43	such as the ability of particles to sorb metals, and are influenced by the mineral and organic
44	characteristics of sinking particles. We conclude that internal metal transformations play
45	an essential role in controlling metal bioavailability, phytoplankton distributions, and the
46	subsurface resupply of metals.

50	Trace metals such as iron set primary productivity across much of the ocean ^{1,2} . Other metals,
51	including zinc and cobalt, play more targeted physiological roles linked to specific
52	biogeochemical cycles ^{3,4} . Much emphasis in metal biogeochemistry has been placed on the
53	identification of external supply mechanisms ^{5,6} . However, in the case of iron much of this
54	supply, such as episodic dust plumes, may be chemically inaccessible ⁷ and/or biologically
55	unavailable ⁸ . Long-standing investigations of nitrogen and phosphorus biogeochemistry ⁹
56	established that internal recycling through efficient biological retention sustains productivity.
57	Likewise, solubilisation of elements from sinking particles, termed remineralisation,
58	replenishes nutrient inventories at depth ¹⁰ , which are seasonally re-supplied to surface
59	waters by mixing. Here, we exploit newly available insights to explore the abiotic and biotic
60	mechanisms that underpin internal metal cycling, focussing on iron as the best-
61	characterised metal ¹¹ , but drawing on illustrative examples for other metals. We contrast
62	recycling patterns between trace- and macro-nutrients, and link the former to external
63	supply mechanisms of metals to complete their biogeochemical cycles.
64	Trace metals have fundamentally different chemistry (speciation, reactivity, complexation ¹¹)
65	than macro-nutrients ¹² , and thus have distinctive modes of external supply and internal
66	recycling, with implications for the contribution of recycling versus external supply in
67	supporting productivity (i.e., the f ratio ¹² , see later). Additionally, macro-nutrients support
68	macromolecular synthesis ¹² whereas metals drive enzymatic catalysis ¹³ . These distinct
69	metabolic roles probably account for different taxon-specific requirements for metals ¹⁴ , a
70	trend not evident for macro-nutrients ¹⁵ . While some taxa target particular forms of
71	macronutrients (e.g., <i>Prochlorococcus/</i> ammonium; <i>Synechococcus/</i> nitrate ¹⁶), such

preferences are poorly-defined for metals, due to uncertainties such as how metal-binding
 ligands influence bioavailability¹¹.

74 We detail important advances across four specific themes: (i) pelagic iron retention/recycling; (ii) ratio of new/recycled iron and modes of supply; (iii) observed versus 75 76 modelled mesopelagic metal remineralisation; and (iv) controls on subsurface metal remineralisation. Our understanding has advanced substantially from prior reviews¹⁷ (S-77 Figure 1), catalysed by GEOTRACES¹⁸, and we highlight insights from GEOTRACES process 78 studies^{19,20}, surveys^{8,21,22}, GEOTRACES-inspired modelling^{23,24}, along with other recent^{7,25,26}, 79 and prior (corroborative) research^{27,28}. FeCycle II, a 12-day quasi-Lagrangian GEOTRACES 80 process-study¹⁹ characterised by an unprecedented combination of direct measurements of 81 pelagic recycling^{19,29} and subsurface metal remineralisation^{29,30}, serves to link our specific 82 themes. 83

84 Drivers of pelagic metal retention and recycling

85	Retention of externally-supplied metals, by abiotic and biotic mechanisms, within surface
86	waters is a prerequisite for internal cycling (for iron see Figure 1). External supply largely
87	occurs over winter ³¹ , with subsequent episodic supply ^{5,7} . For example, iron is initially
88	retained in surface waters by excess ligands, a trend evident across GEOTRACES sections ^{22,32} ,
89	regardless of the mode of external supply. Spring-time biological acquisition of iron ^{19,20}
90	results in both the retention ²⁹ , and loss to depth ^{29,30} of this 'winter reserve' stock.
91	Mechanisms including viral activity (lysis ¹⁹ , ligands ³³) and grazing ¹⁹ internally mobilise this
92	biologically-retained iron. Abiotic mechanisms play a key role in retaining episodically-
93	supplied iron, from dust deposition ⁵ (or passing eddies ⁷), through rapid 'cascades' between
94	particulate and soluble forms ⁷ , photochemically-mediated dissolution of colloids ³⁴ and the

95	putative mechanism of transformation to inorganic iron colloids ²¹ (Figure 1). Different
96	supply modes influence taxon-specific biological acquisition strategies: episodic supply can
97	stimulate microbial siderophore production ^{25,26} , whereas aerosols are transformed by
98	phagotrophy ³⁵ and/or active transport (diazotrophs ³⁶), and vertical diffusive supply
99	(potentially colloidal iron ⁷) is targeted by phytoplankton at depth ³⁷ .

100	A major advance in understanding pelagic internal cycling (S-Figure 1) is determining how
101	the biological ferrous wheel ³⁸ is structured by the intersection of taxon-specific iron
102	requirements 39 (i.e., quotas, total intracellular metal, mol/cell) and storage abilities 40 with
103	distinct taxon-specific pathways and 'fates' of the biologically-retained metal (i.e.
104	grazing/lysis/cell death/sinking) ²⁹ (Figure 1). Hence, the wide-ranging acquisition strategies,
105	employed by phytoplankton ⁴¹ , drive differences in the retention and recycling efficiency of
106	each element. Other metals such as nickel have differing characteristics from iron that
107	influence distinct physiological needs and acquisition (S-Table 1). This range of acquisition
108	mechanisms enables taxa with different metal requirements, which arise from specific
109	metabolic needs ^{13,39} , use efficiencies ⁴² , and/or cell sizes/abundances ²⁹ , to co-exist. A
110	critical unknown is how abiotic and biotic retention mechanisms interact (Figure 1).
111	Although there have been major advances in elucidating abiotic 7,21,34 and biotic 25,26,29,33
112	retentive mechanisms, our understanding of the latter is more advanced. Ligands ^{25,26,33} may
113	be a key linkage between mechanisms (Figure 1), however additional pathways will
114	probably connect abiotic and biotic processes, an emerging theme across geomicrobiology ⁴³ .

What proportion of 'new' trace metal inventories can be retained by biota? During FeCycle
 II¹⁹ mixed-layer dissolved iron decreased from ~0.5 to 0.1 nmol L⁻¹, but the biotic iron

inventory, based on quotas quantified with Synchrotron-X-Ray-Fluorescence (SXRF) cellmapping^{8,30}, remained ~0.1 nmol L⁻¹ throughout, and its rapid recycling extended seasonal
productivity¹⁹. This study¹⁹ suggests limits on the proportion of metal inventories biota can
access and recycle, likely constrained by temperature-dependent bounds on growth/grazing
rate, and/or lags in predator/prey couplings (e.g., gut passage). Moreover, not all of
dissolved metal inventories may be available to all taxa²⁹.

124

125 New versus recycled metals and ocean productivity

126	The <i>f</i> e ratio describes the contribution of externally-supplied iron to biological uptake
127	relative to that supported by both externally-supplied and internally-cycled iron ⁴⁴ and hence
128	is analogous to the f ratio for nitrogen ¹² . Calculation of the fe ratio requires detailed
129	estimates of both biological iron demand and recycling (S-Figure 1). Emerging datasets from
130	GEOTRACES process studies ^{19,20} enable the relationship between the f e ratio and different
131	modes of supply to be probed (Figure 2). Initial <i>f</i> e ratio estimates were from subantarctic
132	low-iron waters where, despite invariant dissolved iron vertical profiles, ~90% of
133	productivity was fuelled by internal cycling ⁴⁴ .
134	A major advance is the recognition that <i>f</i> e ratios change with locale, season and regional
135	inventories (S-Figure 1). Recycled iron is less important in high-iron waters sustained by

upwelling^{20,45} compared with that supplied by transient 'winter-reserves' (Figure 2A,B). *f*e

- ratios of ~1 were evident off Kerguelen at the onset of the diatom bloom²⁰, and were ~0.5
- after one month of bloom development⁴⁵. In contrast, subtropical Pacific waters²⁹ revealed

rapid removal of externally-supplied iron (i.e., decreased *f*e ratios) during the transition to
summer oligotrophy (Figure 2B).

Summer iron stocks are enhanced in subtropical Atlantic and Pacific waters via episodic dust 141 inputs (Figure 2C). Sustained high iron^{7, 28} suggests either a biological surfeit (i.e., indicative 142 of high fe ratio's, no available data) or that this iron is chemically inactive^{7,8} or biologically 143 inaccessible⁸ due to light and/or phosphate limitation². Despite regional differences in 144 145 dissolved iron stocks and fe ratios (Figure 2), surprising uniformity in biotic iron inventories emerges across contrasting sites²⁹. This raises questions such as: can recycled iron 146 (supplying 50-90% of demand) subsidise cells with high requirements (picoprokaryotes³⁹)? 147 148 If some taxa target episodically-supplied iron (Figure 1), do others focus on recycled forms? 149 If so, does iron speciation dictate such taxon specialisation?

150 Subsurface remineralisation length-scales

151 Sinking particles fuel the biological pump, and transformations attenuate particle flux with depth, replenishing dissolved nutrients¹⁰ and setting nutricline depths³¹. Remineralisation 152 length-scales (i.e., the attenuation (at some rate k (s⁻¹)) of the downward particulate flux of 153 an element settling gravitationally (speed ω (m s⁻¹)) is defined by ω/K (m)), vary among 154 major elements, causing vertical-decoupling at depth¹⁰. Length-scales also vary between 155 metals (Table 1A). Remineralisation length-scales are generally longer for metals, relative to 156 macro-nutrients²⁷, as metals comprise both lithogenic (relatively refractory) and biogenic 157 158 (labile) components of sinking heterogeneous particles (Figure 3). Indeed, for copper, the 159 sinking flux is essentially a 'lithogenic throughput' with little flux attenuation (S-Table 1). 160 Hence, directly comparing remineralisation length-scales between elements in

161 heterogeneous particles is problematic.

162	A study targeting export from a diatom-dominated bloom ³⁰ circumvented the lithogenic
163	influence on remineralisation by focusing analytically on diatoms. Two-dimensional
164	elemental maps of the dominant diatom species revealed depth-dependent elemental shifts
165	in the cellular and structural components (S-Figure 2A, Figure 3A). Significant differences
166	between remineralisation of major elements (e.g., sulfur/silicon) and between trace
167	elements (e.g., iron and zinc) emerged (Table 1A). Such studies ^{27,30} use the power of spatial
168	associations between elements in individual particles to explore if remineralisation patterns
169	are coupled (S-Figure 2A/B). Spatial co-location between major elements was evident in
170	surface waters only, indicative of selective remineralisation and decoupling in the
171	breakdown of major and trace elements with depth ³⁰ . These advances provide the detailed
172	mechanisms needed to better understand basin-scale cycling of major and trace elements
173	using global ocean models (S-Figure 1).
1/5	
173	Observed remineralisation length-scales are compared with state-of-the-art model
174	Observed remineralisation length-scales are compared with state-of-the-art model
174 175	Observed remineralisation length-scales are compared with state-of-the-art model simulations ²³ in Table 1. PISCES ²³ reflects observed trends in remineralisation
174 175 176	Observed remineralisation length-scales are compared with state-of-the-art model simulations ²³ in Table 1. PISCES ²³ reflects observed trends in remineralisation (carbon/phosphorus length-scales <iron<silicon), a="" but="" length-scale<="" shorter="" simulates="" td=""></iron<silicon),>
174 175 176 177	Observed remineralisation length-scales are compared with state-of-the-art model simulations ²³ in Table 1. PISCES ²³ reflects observed trends in remineralisation (carbon/phosphorus length-scales <iron<silicon), (table="" 1b).="" a="" all="" as="" but="" current<="" for="" globally="" in="" iron="" is="" length-scale="" observed="" remineralisation="" shorter="" simulates="" td="" than=""></iron<silicon),>
174 175 176 177 178	Observed remineralisation length-scales are compared with state-of-the-art model simulations ²³ in Table 1. PISCES ²³ reflects observed trends in remineralisation (carbon/phosphorus length-scales <iron<silicon), (table="" 1b).="" a="" all="" as="" but="" current="" for="" globally="" in="" iron="" is="" length-scale="" models<sup="" observed="" remineralisation="" shorter="" simulates="" than="">23,24 is tied to phosphorus, the ~two-fold longer remineralisation length-scale for iron</iron<silicon),>
174 175 176 177 178 179	Observed remineralisation length-scales are compared with state-of-the-art model simulations ²³ in Table 1. PISCES ²³ reflects observed trends in remineralisation (carbon/phosphorus length-scales <iron<silicon), (table="" 1b).="" a="" all="" as="" but="" current="" for="" globally="" in="" iron="" is="" length-scale="" models<sup="" observed="" remineralisation="" shorter="" simulates="" than="">23,24 is tied to phosphorus, the ~two-fold longer remineralisation length-scale for iron versus phosphorus arises, <i>in silico</i>, from additional scavenging and colloidal pumping of</iron<silicon),>
174 175 176 177 178 179 180	Observed remineralisation length-scales are compared with state-of-the-art model simulations ²³ in Table 1. PISCES ²³ reflects observed trends in remineralisation (carbon/phosphorus length-scales <iron<silicon), (table="" 1b).="" a="" all="" as="" but="" current="" for="" globally="" in="" iron="" is="" length-scale="" models<sup="" observed="" remineralisation="" shorter="" simulates="" than="">23,24 is tied to phosphorus, the ~two-fold longer remineralisation length-scale for iron versus phosphorus arises, <i>in silico</i>, from additional scavenging and colloidal pumping of remineralised iron onto particles. Observations suggest that models underestimate by four-</iron<silicon),>
174 175 176 177 178 179 180 181	Observed remineralisation length-scales are compared with state-of-the-art model simulations ²³ in Table 1. PISCES ²³ reflects observed trends in remineralisation (carbon/phosphorus length-scales <iron<silicon), (table="" 1b).="" a="" all="" as="" but="" current="" for="" globally="" in="" iron="" is="" length-scale="" models<sup="" observed="" remineralisation="" shorter="" simulates="" than="">23,24 is tied to phosphorus, the ~two-fold longer remineralisation length-scale for iron versus phosphorus arises, <i>in silico</i>, from additional scavenging and colloidal pumping of remineralised iron onto particles. Observations suggest that models underestimate by four-to ten-fold iron remineralisation length-scales (Table 1A), affecting projections of nutrient</iron<silicon),>

185 Subsurface controls on metal remineralisation

186	A better understanding of why element nutriclines vary ³¹ requires mechanisms to decouple
187	remineralisation (S-Table 1). For macro-nutrients, mechanisms include preferential
188	microbially-mediated nitrogen remineralisation (c.f. carbon) to meet nutritional
189	requirements ⁴⁶ . Elemental associations with different cellular components (e.g.,
190	membranes) probably influence their targeted regeneration by substrate-specific bacterial
191	enzymes (Figure 3A). For sinking diatoms ³⁰ , more cellular P/Ni/Zn/S was remineralised
192	compared to iron (suggesting re-adsorption due to irons' high particle reactivity ⁴⁷) and
193	silicon (no bacterial demand means dissolution requires prior carbon solubilisation ⁴⁸) by 200
194	m. This study ³⁰ provides novel linkages between elements, their biochemical role, cellular
195	location, metal-specific microbial enzymes, and hence differential, targeted remineralisation
196	(S-Figures 1,2).

197

198 Heterogeneous particles often dominate the sinking assemblage but are difficult to study 199 individually (S-Figure 2B/C). Figure 3 offers a conceptual approach to jointly consider disparate biotic/abiotic mechanisms (c.f. geomicrobiology 43) used independently to derive 200 chemical⁴⁹ or biological⁵⁰ rate constants for particle breakdown. The fates of particulate 201 202 biogenic iron, zinc and phosphorus diverge (Figure 3), because they each may encounter a 203 range of different biological (solubilisation) and physical ((dis)aggregation) transformation 204 mechanisms, such as for iron which likely sorbs onto (i.e., scavenged) and desorbs from particles^{47,49}. Moreover, once desorbed, iron can be re-sorbed to particles⁴⁹ and/or 205 206 consumed (particle-attached bacteria). It is also highly likely that abiotically-scavenged iron 207 can be remobilised by particle-associated grazers (see S-Animation, Figure 3), illustrating how abiotic/biotic transformations interact⁴³. This combination of abiotic and biotic 208

processes, along with the refractory nature of lithogenic iron⁸ (S-Figure 2B), help explain
why iron often has longer remineralisation length-scales than other elements. Since many
processes jointly set remineralisation length-scales of different elements, incorporating this
level of detail into biogeochemical models to more accurately simulate the stoichiometry of
nutrient supply is a major future challenge.

214

215 Teasing apart abiotic and biotic transformations

216 Advances in understanding internal cycling and remineralisation indicate that bioactive 217 metals are characterised by more complex transformations than for major elements. Hence, 218 elucidating the individual and interactive effects of biological and chemical transformations 219 on cycling and remineralisation represents a major challenge. In surface waters, a key goal 220 is to differentiate the roles of phytoplankton and microbes (differing metal quotas, fates), 221 and the function of ligands in setting the taxon-specific bioavailability and/or kinetic 222 constraints on the specific acquisition pathways for recycled versus 'new' metals. These 223 processes set the degree of metal retention and recycling (versus export). Research into 224 iron is most advanced, but we contend that this cannot be used as a biogeochemical 225 template for all trace metals. Other metals, often with different characteristics linked with unique biochemical roles^{8,13} and taxon-specific needs³⁹, require dedicated study and 226 227 modelling.

228

At depth, mixed lithogenic/biogenic particle populations, and their varying degrees of metal remobilisation, pose a major challenge to determine whether sinking particles mainly represent a throughput of metals to depth or a vector for the replenishment of dissolved metal inventories (in conjunction with the essential resupply of ligands which retain the

233	metals in solution 17). The specific fate of elements within particles also influences the
234	coupling between major and trace elements. Elemental and isotopic mapping of particles,
235	along with biogeochemical models, are powerful approaches to tease apart this puzzle.
236	However, models presently focus on large scales ²⁴ , limiting their utility in exploring
237	underlying biogeochemical processes in detail. We advocate a parallel approach, whereby
238	the next generation of biogeochemical models are used within simplified physical
239	oceanographic frameworks to develop new representations of metal cycling and assess the
240	biogeochemical significance of these complex transformations. Models would then reflect
241	both the progress in understanding external sources of metals ^{5,6} , their biogeochemical
242	cycling and the associated return pathways, encapsulated by the term remineralisation, in
243	the oceans' interior.
244	
245	
246	
247	
248	
249	
250	
251	References
252 253	1. Boyd, P.W. et al. A synthesis of mesoscale iron-enrichment experiments 1993-2005: key findings and implications for ocean biogeochemistry. <i>Science</i> 315 , 612-617 (2007).
254 255	2. Moore, C.M et al. Processes and patterns of oceanic nutrient limitation. <i>Nature Geosci.</i> 6 , 701-710 (2013)
256 257 258	3. Cullen, J. T. & Sherrell, R. M. Effects of dissolved carbon dioxide, zinc, and manganese on the cadmium to phosphorus ratio in natural phytoplankton assemblages. <i>Limnol</i> . Oceanogr. 50 , 1193–1204 (2005).

- 4. Koch, F. et al. The effect of vitamin B 12 on phytoplankton growth and community
 structure in the Gulf of Alaska. *Limnol. Oceanogr.* 56, 1023-1034 (2011).
- 5. Jickells, T.D. & C.M. Moore. The importance of atmospheric deposition for oceanic
 productivity. *Annu. Rev. Ecol. Evol. Syst.* 46, 481–501 (2015).
- 6. Resing, J. A. et al. Basin-scale transport of hydrothermal dissolved metals across the South
 Pacific Ocean. *Nature*, **523**, 200–203. (2015).
- 265 7. Fitzsimmons, J.N. et al. Daily to decadal variability of size-fractionated iron and iron-
- binding ligands at the Hawaii Ocean Time-series Station ALOHA. *Geochim. Cosmochim. Acta* **171**, 303–324 (2015).
- 8. Twining, B.S., Rauschenberg, S., Morton, P. & Vogt, S. Metal contents of phytoplankton
 and labile particulate material in the North Atlantic Ocean. *Prog. Oceanogr.* 137, 261-293
- 270 (2015)
- 9. Karl, D. M. et al. in *Ocean Biogeochemistry: The Role of the Ocean Carbon Cycle in Global Change* (ed Fasham, M. J. R.) Ch. 11, 239-267 (Springer Berlin Heidelberg, 2003).
- 10. Weber, T., Cram, J.A., Leung S.W., DeVries T. & Deutsch C. Deep ocean nutrients imply
 large latitudinal variation in particle transfer efficiency. *Proc. Natl. Acad. Sci.* 113, 8606–
 8611 (2016).
- 11. Bruland, K. W. & Lohan, M. C. in *The Oceans and Marine Geochemistry: Treatise on Geochemistry*, (ed Elderfield H.) Ch. 6.02, 23–47. (Elsevier, 2003).
- 278 12. Zehr, J. P. & Ward, B. B. Nitrogen Cycling in the Ocean: New Perspectives on Processes
 and Paradigms. *Appl. Environ. Microbiol.* 68, 1015-1024. (2002)
- 13. Morel, F. M. M. & Price, N.M. The biogeochemical cycles of trace metals in the oceans. *Science* 300, 944–947 (2003).
- 14. Quigg, A., Irwin, A.J. & Finkel, Z.V. Evolutionary inheritance of elemental stoichiometry in
 phytoplankton. *Proc. R. Soc. Lond. [Biol.]*, **278**, 526-534 (2011).
- 15. Singh, A., Baer, S. E., Riebesell, U., Martiny, A. C. & Lomas, M. W. C : N : P stoichiometry
- at the Bermuda Atlantic Time-series Study station in the North Atlantic Ocean
- 286 Biogeosciences, **12**, 6389-6403 (2015).
- 16. Martiny, A.C., Kathuria, S. K. & Berube P. Widespread metabolic potential for nitrite and
 nitrate assimilation among Prochlorococcus ecotypes. *Proc. Natl. Acad. Sci.* 106, 1078710792 (2009).
- 17. Boyd, P.W. & Ellwood, M.J. The biogeochemical cycle of iron in the ocean. *Nature* Geosci.
 3, 675-682 (2010).

292 18. <u>http://www.geotraces.org/</u>

- 19. Boyd, P.W. et al. Microbial control of diatom bloom dynamics in the open ocean. *Geophys. Res. Lett.* **39** L18601 (2012).
- 20. Bowie. A.R et al. Iron budgets for three distinct biogeochemical sites around the
- 296 Kerguelen Archipelago (Southern Ocean) during the natural fertilisation study, KEOPS-2.
- 297 Biogeosciences **12**, 4421–4445 (2015).
- 298 21. Fitzsimmons, J. N., Bundy, R. M., Al-Subiai, S. N., Barbeau, K. A. & Boyle, E. A. The
- composition of dissolved iron in the dusty surface ocean: An exploration using sizefractionated iron-binding ligands. *Mar. Chem.* **173**, 125-135 (2015).
- 301 22. Buck, K. N., Sohst B. & Sedwick, P. N. The organic complexation of dissolved iron along
- the U.S. GEOTRACES (GA03) North Atlantic Section. *Deep-Sea Res. PT II*. **116**, 152–165
- 303 (2015).
- 23. Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean
- biogeochemical model for carbon and ecosystem studies *Geosci. Model Dev.* 8, 2465-2513
 (2015).
- 24 Tagliabue, A. et al. How well do global ocean biogeochemistry models simulate dissolved
 iron distributions? *Global Biogeochem. Cycles.* **30**, 2015GB005289 (2016).
- 25. Adly, C. L.et al. Response of heterotrophic bacteria to mesoscale iron enrichment in the
 northeast subarctic Pacific Ocean. *Limnol. Oceanogr.* 60, 136–148 (2015).
- 26. Bundy R. M., Jiang, M., Carter, M & Barbeau, K. A. Iron-Binding Ligands in the Southern
 California Current System: Mechanistic Studies. *Front. Mar. Sci.* 3, 27. (2016).
- 27. Lamborg, C. H., Buesseler, K. O. & Lam, P. J. Sinking fluxes of minor and trace elements
 in the North Pacific Ocean measured during the VERTIGO program. *Deep-Sea Res. PT II*, 55
- 315 1564–1577 (2008).
- 28. Sedwick, P. N. et al. Iron in the Sargasso Sea (Bermuda Atlantic Time-series Study region)
- during summer: Eolian imprint, spatiotemporal variability, and ecological implications.
- 318 *Global Biogeochem. Cy.* **19**, GB4006 (2005),
- 29. Boyd, P.W. et al. Why are biotic iron pools uniform across high- and low-iron pelagic
- 320 ecosystems? *Global Biogeochem. Cy.*, **29**, 1028–1043 (2015)
- 321 30. Twining, B.S et al. Differential remineralization of major and trace elements in sinking 322 diatoms. *Limnol. Oceanogr.* **59**, 689–704 (2014).

- 323 31. Tagliabue, A., Sallee, J.-B., Bowie, A. R., Levy, M., Swart, S., & Boyd, P. W. Surface-water
- iron supplies in the Southern Ocean sustained by deep winter mixing. *Nature* Geosci. 7, 314320 (2014).
- 32. Boyd, P.W. & Tagliabue, A. Using the L* concept to explore controls on the relationship
- between paired ligand and dissolved iron concentrations in the ocean. Mar. Chem. **173**, 5266 (2015).
- 33. Bonnain, C., Breitbart, M, & Buck, K. N. The Ferrojan Horse Hypothesis: Iron-Virus
 Interactions in the Ocean. *Front. Mar. Sci.* 3, 82 (2016).
- 331 34. Wells, M. L., Mayer, L. M., Donard, O. F. X., de Souza Sierra, M. M. & Ackelson, S. G. The 332 photolysis of colloidal iron in the oceans, *Nature* **353**, 248-250 (1991).
- 333 35. Barbeau, K. A., & Moffett, J.W. Dissolution of iron oxides by phagotrophic protists: Using
- a novel method to quantify reaction rates. *Environ. Sci. Technol.* **32**, 2969-2975 (1998).
- 335 36. Rubin, M., Berman-Frank, I. & Shaked, Y. Dust-and mineral-iron utilization by the marine 336 dinitrogen-fixer Trichodesmium. *Nature Geosci.* **4**, 529–534 (2011).
- 337 37. Hopkinson, B.M. & Barbeau, K. Interactive influences of iron and light limitation on
- 338 phytoplankton at subsurface chlorophyll maxima in the eastern North Pacific. *Limnol.*
- 339 *Oceanogr.* **53**, 1303-1318 (2008).
- 340 38. Kirchman D.L. Microbial Ferrous Wheel. *Nature* **383**, 303–304 (1996).
- 341 39. Twining, B. S. & Baines S. B. The trace metal composition of marine phytoplankton. *Annu.*342 *Rev. Mar. Sci.* 5, 191–215 (2013).
- 40. Marchetti, A. et al. Ferritin is used for iron storage in bloom-forming marine pennate
 diatoms. *Nature*. 457, 467-470 (2009).
- 41. Lis, H., Shaked, Y., Kranzler, C. Keren N. & Morel, F. M. M. Iron bioavailability to
 phytoplankton: an empirical approach. *The ISME Journal*. 9, 1003-1013 (2015).
- 42. Sunda W. G. & Huntsman S. A. Iron uptake and growth limitation in oceanic and coastal
 phytoplankton. *Mar. Chem.* 50, 189–206 (1995).
- 43. Melton, C.D., Swanner, E.D., Behrens, S., Schmidt C. & Kappler A. The interplay of
- microbially mediated and abiotic reactions in the biogeochemical Fe Cycle. *Nat. Rev. Micro.* **12**, 797-808 (2014).
- 44. Boyd P.W. et al. FeCycle: Attempting an iron biogeochemical budget from a mesoscale
- 353 SF6 tracer experiment in unperturbed low iron waters. *Global Biogeochem. Cy.* 19
 354 2005GB002494 (2015).

- 45. Sarthou, G. et al., The fate of biotic iron during a phytoplankton bloom induced by
- natural fertilization: Impact of copepod grazing. *Deep Sea Res., PT II.* **55**, 734–751 (2008).
- 46. Smith, D. C., Simon, M., Alldredge, A.L. & Azam F. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. *Nature* **359**, 139–142,
- 359 (1992).
- 360 47. Frew, R. D. et al. Particulate iron dynamics during FeCycle in subantarctic waters
- southeast of New Zealand. *Global Biogeochem. Cy.* **20**, 2005GB002558 (2006)
- 48. Bidle, K. D. & Azam, F. Accelerated dissolution of diatom silica by marine bacterial
 assemblages. *Nature* 397, 508–512, (1999).
- 49. Clegg, S.L. & Whitfield, M. A generalized model for the scavenging of trace metals in the
- open ocean—II. Thorium scavenging. Deep Sea Res. **38**, 91–120 (1991).
- 366 50. Boyd, P.W. & Trull, T. W. Understanding the export of biogenic particles in oceanic
- 367 waters: Is there consensus? *Prog. Oceanogr.* **72**, 276–312 (2007).
- 368

369 Corresponding Author

- 370 Correspondence and requests for materials should be addressed to Philip Boyd via
- 371 Philip.boyd@utas.edu.au.
- 372

373 Acknowledgements

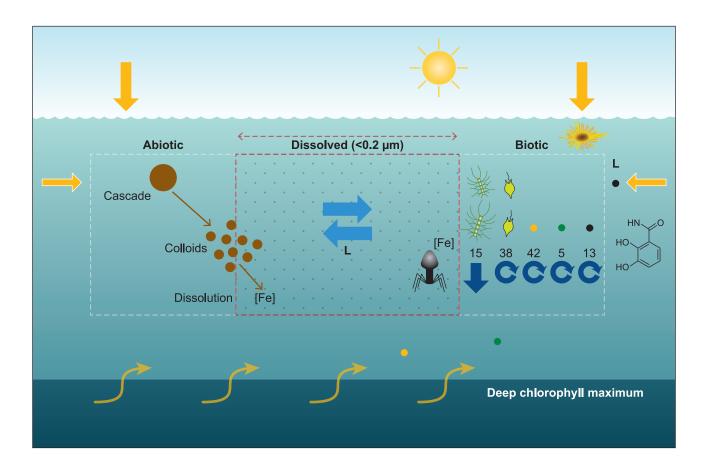
374 The authors thank G. Jackson (Texas A&M University) and T. Kiørboe (Technical University of 375 Denmark) for provision of unpublished data/video footage. The sinking particles presented 376 in Supplemental Figure 2C were collected by Z. Baumann (University of Connecticut) and analysed with the assistance of D. Ohnemus (Bigelow Laboratory for Ocean Sciences). This 377 378 analysis used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National 379 380 Laboratory under Contract No. DE-AC02-06CH11357. Support was provided by Australian 381 Research Council Australian Laureate Fellowship project FL160100131 and Antarctic Climate 382 and Ecosystems Cooperative Research Centre funding to P.W.B., and Australian Research 383 Council Discovery Project DP130100679 to M.J.E. and P.W.B. B.S.T. was supported by US 384 National Science Foundation grant OCE-1232814. Model simulations by A.T. are supported by N8 HPC Centre of Excellence, provided and funded by the N8 consortium and EPSRC 385

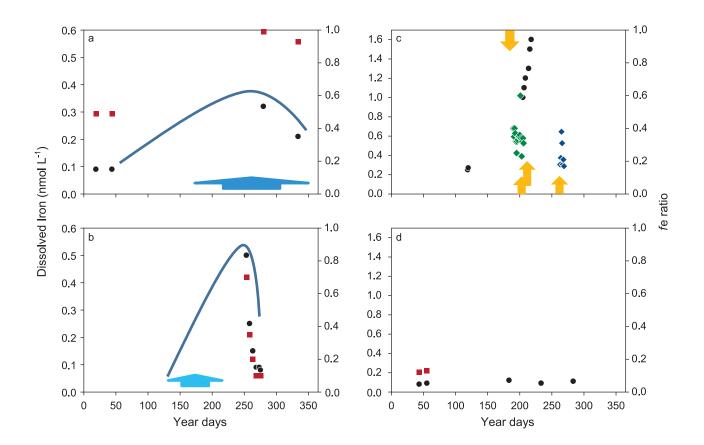
- 386 (Grant No.EP/K000225/1).
- 387

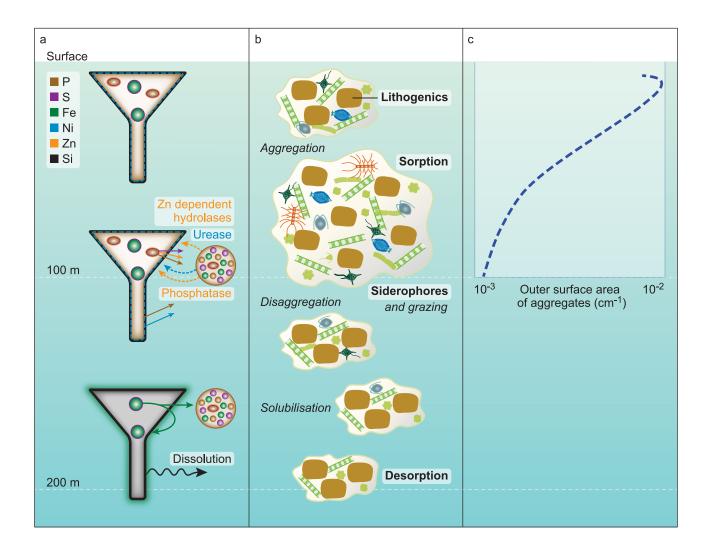
388	Author contributions
389 390	P.W.B., M.J.E., A.T. and B.S.T. contributed equally to conceiving and developing the material presented, and to writing the paper.
391	
392	Corresponding Author
393 394	Correspondence and requests for materials should be addressed to Philip Boyd via Philip.boyd@utas.edu.au.
395	Competing financial interests
396	The authors declare no competing financial interests.
397	
398	
399	
400	
401	Display items
402	Figure 1 Schematic of modes of 'new' iron supply (orange arrows) and iron retention mechanisms within the surface mixed-layer. Abiotic retention includes rapid transfer of
403	aerosol iron to soluble pools (i.e., Cascade ⁷); and photochemically-mediated colloid
404	dissolution ³⁴ . Biotic retention is driven by acquisition (e.g., aerosol capture by diazotrophs ³⁶)
405	
406	and interactions between iron supply, differing iron quotas (pmol L ⁻¹) within natural communities (left-to-right, diatom ³⁹ , autotrophic flagellate ³⁹ , picoprokaryote ³⁹ ,
407	communities (left-to-right, diatom), autotrophic flagellate, picoprokaryote,
408	picoeukaryote ³⁹ , heterotrophic bacterium ³⁹), and their fate (export (downwards arrow) or
409	grazing/lysis (circle)). Microbial ligand (L) release retains metals in solution (i.e., enterobactin siderophore) and is stimulated by 'new' metal supply ^{25,26} . The virus represents putative iron
410	22
411 412	recycling through progeny phages ³ .
412	
414	Figure 2 Influence of different supply modes on surface mixed-layer iron (black symbols)
415	and the ratio of new versus recycled iron (red symbols). Iron is mainly delivered to a)
416	Kerguelen from sustained deep-water supply (blue arrow denotes estimated duration);
417	b) seasonally-oligotrophic subtropical waters ¹⁹ from wintertime offshore lateral supply (blue
418	arrow); c) oligotrophic subtropical waters (Bermuda ²⁸ , black; Hawaii ⁷ , green (2012 dataset)
419	and blue (2013) symbols) from episodic dust supply (brown arrows). No fe ratio estimates

- 421 (days 250-100). In panels a)/b) observations were extrapolated (blue lines) based on
- 422 projected seasonality in dissolved iron inventories 23 .
- 423

Table 1 Synthesis of remineralisation length-scales of trace metals and major elements in
the ocean. Length-scales are expressed as (positive) b values (i.e., higher values denote
shorter length-scales) using power-law fitting of the vertical attenuation in particle flux⁵⁰).
Values are from observed sinking flux of: all particles (i.e., lithogenic/biogenic, 150-500m
depth)²⁷, and diatoms (50-200m)³⁰. b) remineralisation length-scales from biogeochemical
simulations (100-1000m) using PISCES²³. #denotes S as a C proxy. *POC and POP are interchangeable in model runs. Under "Regeneration processes" R denotes remineralisation, S


- 431 scavenging/sorption, Re redox state, C complexation, O oxygen concentration, M molecular
 432 lability, OC organic coatings. '?' denotes uncertainties.
- 433


434 Figure 3 Mechanisms that set the different remineralisation length-scales evident for trace


- 435 **metals and major elements.** a) hypothetical remineralisation mechanisms for a sinking
- 436 diatom (six-sided polygon) based on SXRF element mapping³⁰ (S is a C proxy^{30,39}).
- 437 Preferential subsurface regeneration of elements is linked to their association with
- 438 structural/biochemical cellular components (e.g., membranes) and microbial elemental
- 439 requirements (circle); b) idealised processes acting on sinking heterogeneous particles
- 440 (lithogenic/biogenic components with different labilities). Particle transformations drive
- remineralisation (highlighted terms are metal-specific); and c) depth-dependent changes in
- 442 particle aggregate surface area (bio-optical profiling float data, courtesy George Jackson)
- 443 which influences local chemistry and microbial processes (S-Animation).
- 444 445

446 Methods

- 447 Collection of aggregate image (displayed in S Fig 2C)
- The aggregate was collected from 15m depth in eastern Long Island Sound using an acid-
- 449 washed GO-FLO bottle. Particulate aggregates in whole water were settled by gravity into
- 450 small centrifuge tubes and frozen at -20°C. Samples were subsequently thawed and particles
- $\label{eq:gently-collected-washed 10} \ensuremath{\mu m}\ pore-size\ polycarbonate\ Isopore\ membrane\ filters$
- 452 (Millipore). Un-rinsed filters were frozen at -20°C prior to freeze-drying for 24 h. Aggregates
- 453 were analyzed with synchrotron X-ray fluorescence (SXRF) microscopy at GEOCARS
- 454 beamline 13IDE at Advanced Photon Source. Samples were held in a He environment and
- scanned with 10.5 keV incident X-rays focused to approximately $2\mu m$ spot with Kirkpatrick-
- 456 Baez mirrors. A dwell time of 200 msec at each pixel was used.

a) Element	b value	Relative difference (scaled to POC)	Regeneration processes and factors	Particle assemblage	Region
Ν	1.68 <u>+</u> 0.13	1.34	R, O, Re	All	North SubTropical Pacific Gyre (NSTPG) (27)
POC	1.25 <u>+</u> 0.09	1	R, O, M	All	NSTPG
C#	1.09 <u>+</u> 0.60	1	R, O, M	Diatoms	New Zealand (S Pacific) (30)
Р	0.88 <u>+</u> 0.48	0.70	R	All	NSTPG
Р	0.63 <u>+</u> 0.28	0.58	R	Diatoms	S Pacific
bSi	0.22 <u>+</u> 0.53	0.18	R, OC	All	NSTPG
Si	0.12 <u>+</u> 0.11	0.11	R, OC	Diatoms	S Pacific
Zn	0.77 <u>+</u> 0.34	0.70	R, C?	Diatoms	S Pacific
Ni	0.90 <u>+</u> 0.76	0.83	R	Diatoms	S Pacific
Al	0.52 <u>+</u> 0.29	0.42	R, S,	All	NSTPG
Fe	0.32 <u>+</u> 0.28	0.07	R, S, Re, C	All	NSTPG
Fe	0.13 <u>+</u> 0.17	0.12	R, S, Re, C	Diatoms	S Pacific
Cu	0.09 <u>+</u> 0.38	0.07	R, S?, Re?	All	NSTPG
b)					
POC	1.65±0.57	1	R, O	All	Global ocean > 1000 m depth
POP*	1.65±0.57	1	R, O	ditto	ditto
BSi	0.24±0.05	0.15	R,	ditto	ditto
PFe	0.88±0.32	0.53	R, O, S	ditto	ditto