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Abstract

The recognition of human actions in images is a challenging task in computer

vision. In many applications, actions can be exploited as mid-level semantic fea-

tures for high level tasks. Actions often appear in fine-grained categorization,

where the differences between two categories are small. Recently, deep learn-

ing approaches have achieved great success in many vision tasks, e.g., image

classification, object detection, and attribute and action recognition. Also, the

Bag-of-Visual-Words (BoVW) and its extensions, e.g., Vector of Locally Aggre-

gated Descriptors (VLAD) encoding, have proved to be powerful in identifying

global contextual information. In this paper, we propose a new action recog-

nition scheme by combining the powerful feature representational capabilities

of Convolutional Neural Networks (CNNs) with the VLAD encoding scheme.

Specifically, we encode the CNN features of image patches generated by a re-

gion proposal algorithm with VLAD and subsequently represent an image by

the compact code, which not only captures the more fine-grained properties

of the images but also contains global contextual information. To identify the

spatial information, we exploit the spatial pyramid representation and encode

CNN features inside each pyramid. Experiments have verified that the pro-

posed schemes are not only suitable for action recognition but also applicable
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to more general recognition tasks such as attribute classification. The proposed

scheme is validated with four benchmark datasets with competitive mAP re-

sults of 88.5% on the Stanford 40 Action dataset, 81.3% on the People Playing

Musical Instrument dataset, 90.4% on the Berkeley Attributes of People dataset

and 74.2% on the 27 Human Attributes dataset.

Keywords: Actions, Convolutional Neural Networks, VLAD encoding, Spatial

Pyramids

1. Introduction1

In computer vision, many human actions such as ‘using a mobile phone’,2

‘riding a bike’ or ‘reading a book’, provide a natural description for many still3

images, which could provide significant meta-data to many applications such4

as automatic scene description, and the indexing and searching of very large5

image repositories. Compared with more well-established video-based action6

recognition, these tasks are more difficult as there are a number of possible7

obstacles to find the satisfactory solutions, e.g., large variances in illumination8

conditions, the viewpoint, and the human pose, and more importantly, lack of9

motions.10

Unlike the video-based action recognition which heavily relies on the spatial-11

temporal features, the solutions to human action classification from still images12

hinge on the acquisition of local and global contextual information. To be more13

specific, local information associated with discriminative parts provides detailed14

appearance features which would be particularly pertinent to fine-grained recog-15

nition. This is because human actions are often localized in space, e.g., the facial16

region for expressions and the wrist and hand regions for many common actions.17

Additionally, the global contextual information about the configuration of ob-18

jects and scenes is also instrumental. For example, the articulation of body19

parts, the pose, the objects a person interacts with and the scene in which the20

action is performed, all contain useful information. This is well illustrated by21

the action types in sports. For example, for the action of ‘playing football’, the22
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football itself and playground are both strong evidence for this action category.23

To represent the contextual information of images, many methods have been24

proposed. Bangpeng et al. [1] proposed to use probabilistic graphical models,25

e.g, conditional random fields, to model the mutual contextual information. In26

this approach, the objects and humans or human body parts are described as27

nodes in conditional random fields. By modeling the conditional probabilities,28

the system can generate labels by discriminating not only on input features but29

also on the relationships between them.30

Compared to holistic contextual features, local features or patches have the31

advantage of being more robust to misalignment and occlusions, and have been32

widely used for generic image classification. Popular local feature or patches en-33

coding strategies include the Bag of Visual Words (BoVW) [2], Fisher Vectors34

(FV) [3], and Vector of Locally Aggregated Descriptors (VLAD) [4]. Among35

these, the FV often perform best on a number of benchmark image datasets.36

VLAD aggregates information of several features such as Scale-Invariant Fea-37

ture Transform (SIFT) into a compact and fixed length descriptor, which can be38

regarded as a simplified non-probabilistic version of FV and also show compara-39

ble performance [5]. Another advantage of VLAD is its computational efficiency40

as it mainly involves primitive operations [6]. Recently, VLAD has been widely41

applied in computer vision, demonstrating an excellent performance in many42

tasks including object detection, scene recognition and action recognition [7],43

[8], [9], [10].44

While the dominate patch encoding strategies are all based on hand-crafted45

features, deep neural networks, and Convolutional Neural Networks (CNN) in46

particular, emphasize the significance of learning robust feature representations47

from raw data. Krizhevsky et al. [11] shown that CNNs trained with large48

amounts of labeled data outperforms FV. Since then CNNs have consistently49

led the classification task in the ImageNet Large Scale Visual Recognition Com-50

petition (ILSVRC) [12]. Much of the published work considered the problem51

of incorporating contextual information in the CNN framework. For example,52

recurrent neural networks (RNNs) have been proposed to embed the contex-53
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tual information into CNNs. Bell et al. [13] proposed a deep CNN structure54

by plugging in the RNNs to integrate contextual information for object detec-55

tion. In [14], a conditional random field was formulated as RNNs and plugged56

into the CNN model, which was optimised using mean field for image semantic57

segmentation.58

To date, convolutional neural networks (CNNs) have achieved a consider-59

able success in many vision tasks [11], [15], [16]. Despite these achievements,60

deep CNN architectures meet with new challenges, which include the require-61

ment for large amounts of training data, and the high computational cost with62

solutions relying on GPUs and other hardware acceleration techniques. Addi-63

tionally, Convolutional Neural Networks still have some limitations, e.g., their64

lack of geometric invariance and their inability in conveying information on local65

elements. A promising direction for their improvement is to combine the CNN66

with traditional encoding approaches like VLAD to better express the local in-67

formation of the images [17], [18], [19]. For example, Gong et al. [5] extracted68

CNN activations at multiple scale levels, and performed orderless VLAD pooling69

separately, which were then concatenated together to form a high dimensional70

feature vector which is more robust to global deformations.71

In this paper, we follow that direction to further explore the potential of72

augmenting CNN with VLAD in the context of human action classification73

in still images. To take advantages from both CNN and the patch feature74

encoding strategy, we encode the CNN features upon sub-regions of the image75

for a compact representation. Our approach shares similarities with [19], in76

which the FV encoding scheme was applied on CNN features and each image77

was represented as a bag of windows. Our method can also be regarded as a bag78

of patches or windows as the image patches are extracted using region proposal79

algorithms such as Edgeboxes [20], which are subsequently encoded by VLAD80

for image representation.81

Aiming to preserve crucial local features and identify contextual information82

from neighbouring objects and scenes, the proposed approach is more likely83

to capture the fine-grained properties of an image than the conventional ap-84
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proaches. To take account of the spatial information which is absent in VLAD85

[17], spatial pyramids of the image were generated and matched to region level86

CNN features. Then, VLAD encoding was applied on separate pyramids with87

the resulting VLAD codes concatenated and forwarded to a classifier for final88

classification. With extensive experiments, we achieved state-of-the-art results89

on the Stanford 40 action dataset [1] and People Playing Musical Instrument90

dataset (PPMI) [21].91

For many tasks in computer vision such as video surveillance, image search92

and human-computer interaction, objects can often be conveniently identified93

by a set of mid-level, nameable descriptions termed as semantic attributes or at-94

tributes [22]. For example, a human object can be described by hair-length, eye95

color, clothing style, gender, ethnicity and age. Therefore, recognition of visual96

attributes often directly leads to many high-level tasks. To give an intuition97

that our proposed approach can also be generalized to attribute classification,98

we conducted experiments on Berkeley Attributes of People dataset [22] and the99

27 Human Attributes dataset (HAT) [23], with promising results.100

The rest of the paper is organized as follows. In section 2, we briefly introduce101

previous research in action classification, which is followed by our proposed102

approach explained in section 3. Section 4 provides our experimental procedure103

and presents results to prove the effectiveness of the proposed approach on104

attributes classification, with the conclusions presented in section 5.105

2. Related works106

2.1. Action Recognition107

Still image-based human action recognition has been much addressed in re-108

cent years [24], [16], [25] due to the potential for providing useful meta-data to109

many applications such as image understanding, human-computer interaction110

and the indexing and searching of large-scale image archives.111

The most popular conventional method for the task is the BoVW [26], [18],112

[27], which is capable of achieving a global representation of an image. Delaitre113
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et al. [28] applied a BoVW for image representation and an SVM classifier for114

action recognition in still images. Later on, two extensions of BoVW, namely,115

FV [3] and VLAD, have attracted wide attention due to their advantages. Sun116

et al. [29] utilized FV in large-scale web video event classification. Jain et al.117

[30] combined the dense trajectory descriptors with new features computed from118

optical flow, and encoded them using VLAD for final action recognition. How-119

ever, a significant problem with FV and VLAD is the absence of spatial layout120

information. A number of methods have been proposed to overcome the problem121

by incorporating spatial information into the BoVW representation. For exam-122

ple, the issue was addressed by Savarese et al. [31] with a BoVW encoding over123

spatially neighbouring image regions. A related problem to learn discriminative124

spatial representation for image classification, action and attributes recognition125

was emphasized by Sharma et al. [23]. Fahad et al. [32] directly utilized CNN126

features and semantic pyramids for action and attribute recognition, achieving127

impressive results on several datasets.128

A special feature of action recognition is the modelling of a human-object129

interaction. Yao and FeiFei [33] exploit both pose information and the ob-130

jects people interact with in the context of object-action interaction. Prest et131

al. [34] proposed a weakly supervised learning scenario for learning the rela-132

tionship between humans and objects. Though some satisfactory results have133

been achieved, ignorance of the background or scene information limits the ap-134

proaches to human-object interaction.135

Also, when a person is interacting with objects, it is often termed activity136

recognition [35], [36], [37]. This is normally addressed in egocentric videos. For137

instance, with the aid of the saliency-based object recognition and contextual in-138

formation incorporation, Diaz et al.[35] recognized activities in egocentric videos139

in the instrumental activities of daily living for medical research. Crispim-Junior140

et al. [36] proposed a hybrid framework with a concept-based knowledge frame-141

work and a probabilistic inference method for activity recognition in egocentric142

videos, with promising results. Karaman et al. [37] also worked on this domain143

with a Hierarchical Hidden Markov Model for the purpose of dementia studies.144
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For more general action recognition, part-based modeling has been one of145

the mainstream paradigms, with the Deformable Part Model (DPM) [38] as146

the most influential one. The Poselets model [39], which employs key points to147

build an ensemble model of human body parts, achieves improved performance148

in some vision tasks. The model proposed by Gkioxari et al. [25] combines149

CNNs and Poselets, for human action and attributes classification. However,150

Poselets need strong supervision and extensive annotations on key body parts151

are necessary which is time-consuming and labor intensive.152

2.2. Deep Learning Powered Approach153

In the last two years, visual object classification, detection and many other154

vision tasks have advanced quickly with the application of deep learning and155

CNNs [11], [15] [40], [41]. For action recognition, Oquab et al. [42] investigated156

the transfer learning [43] capability from a pre-trained CNN model. Transfer157

learning, allows the domains, tasks, and distributions involved in training and158

testing to be different [43]. Oquab et al. [42] showed that the pre-trained CNN159

parameters can be adapted to new domains of data by only retraining the clas-160

sifier. Gkioxari et al. [25] emphasised the importance of parts for the tasks161

of action and attribute classification and developed a part-based approach by162

leveraging convolutional network features, with the effectiveness being experi-163

mentally confirmed on the Berkeley Attributes of People dataset. Gkioxari et164

al. [16] also used a scheme similar to R-CNN [15], by combining context with165

deep networks for two tasks, namely, action classification and detection. Re-166

cently, Diba et al. [44] proposed a method for action recognition and attribute167

determination by mining CNN mid-level patterns, which also showed promising168

results.169

Compared with the previous approaches, we emphasize the importance of170

spatial pyramid VLAD coding on CNN features for action recognition. VLAD171

[45], [4], and FV [46], have been mainly applied in image classification or re-172

trieval [47], [19]. With the accumulation of residuals on each visual word con-173

catenated into a single vector, VLAD achieves reasonable trade-offs on both174
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search accuracy and memory usage [4]. Also, VLAD coding is ignorant of spa-175

tial information, which has not been sufficiently stressed. The conventionally176

popular approach of encoding spatial information is spatial pyramid matching177

(SPM) by Lazebnik et al. [49] which was leveraged by Zhou et al. [50] in their178

proposal of spatial pyramid VLAD. The methodology was further developed by179

Shin et al. [17] for image captioning. [48] proposed a unified deep CNN model180

by implementing VLAD encoding as a layer for a weakly-supervised place recog-181

nition. However, their system performance largely depends on the initialization182

value of clusters. Hence, in this paper, instead of developing a homogeneous183

system, following a similar train of thought of [17], we extracted deep activa-184

tion features from local patches at multiple scales, and then coded them with185

VLAD. While the emphasis of [50] and [17] was on scene classification and ob-186

ject classification, our focus is on the explicit abstraction of local objects and187

their corresponding spatial information, which was not obviously evident in [50],188

[17].189

3. Methods190

In this section, the main components of the proposed method will be de-191

scribed, which include patch generation, deep feature extraction and Spatial192

Pyramid VLAD encoding. The system pipeline is illustrated in Fig.1.193

3.1. Deep Feature Extraction194

Region proposals have become a standard practice for many vision tasks in-195

volving object detection as a component. In our proposed scheme, a set of image196

regions are generated using a bottom-up object proposal algorithm. From the197

recently published work, we applied Edgeboxes [20] because of its computational198

efficiency and high-level performance [51].199

Different from Shin et al. [17], in which the pre-trained ImageNet model [52]200

was directly applied for feature extraction, we further fine-tuned the CNN model201

with the labelled candidate regions provided by Edgeboxes, this is beneficial to202
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Figure 1: Full pipeline of the proposed method: Each window is generated by a region proposal

algorithm and represented by FC6 features, Principle Component Analysis(PCA) is applied

for dimension reduction, followed by K-means for centroid learning(the larger blue dots).

Actions can thus be classified with VLAD code and a SVM classifier.

the performance improvement. During training, all boxes extracted from the203

original image using the Edgeboxes algorithm acted as candidate regions for204

the fine-tuning of the fast R-CNN framework. In our work, the VGG16 model205

from [53] was applied for action classification. Further details of the model206

architecture are outlined in Table.1. For the task of action classification, as it207

is essentially a multi-class classification problem, Softmax Loss layer(Softmax208

activation with cross-entropy loss) from the Caffe platform [54] is suitable for209

the task as Softmax activation transfers the model outputs to a probability value210

for all categories. To prove that our method can also be applied to more general211

recognition tasks, we further tested the methods for attribute recognition. As212

attribute classification is a multiple two-class classification problem, [16] applied213

a Sigmoid Cross Entropy Loss layer as the cost layer for attribute recognition.214

When the Softmax Loss layer is replaced by a Sigmoid Cross Entropy Loss layer,215

each input can have multiple label probabilities [55]. Hence, it is applicable for216

attribute classification, we also set this layer as the cost function for attribute217
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Table 1: Architecture of the CNN Model

Number Layer Kernel Size Output Number

1 Conv1 1 3 64

2 Conv1 2 3 64

3 Conv2 1 3 128

4 Conv2 2 3 128

5 Conv3 1 3 256

6 Conv3 2 3 256

7 Conv3 3 3 256

8 Conv4 1 3 512

9 Conv4 2 3 512

10 Conv4 3 3 512

11 Conv5 1 3 512

12 Conv5 2 3 512

13 Conv5 3 3 512

14 RoI Pooling 7X7 512

15 FC6 Fully-Connection 4096

16 FC7 Fully-Connection 4096

17 Cls Score Fully-Connection Class Categories

prediction.218

After fine-tuning, the CNN features for the top 1000 boxes produced by219

Edgeboxes for each image were extracted from the first fully connected layer220

(FC6). From our experiments, we found that 1000 regions are sufficient for the221

representation of an image. Empirically, as the Edgeboxes algorithm provides222

ranking for the generated boxes with confidence values, the top ranked 1000223

boxes have higher probabilities which implies they contain objects. For the224

same reason as [17], we do not apply non-maximum suppression. However, fea-225

ture extraction of multiple regions in a CNN is time-consuming. Consequently,226

we implemented our algorithm on top of a fast R-CNN [40] in which the RoI227
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projection and RoI pooling scheme enable the completion of feature extraction228

of one image in only one feed forward process, thus significantly reducing the229

computational cost and running time. The final dimension of the VLAD code230

is the number of clusters times the dimension of CNN features after PCA di-231

mensionality reduction.232

3.2. VLAD Encoding233

VLAD is a type of global discriminative feature descriptor generated on a234

set of local features (say, SIFT) extracted from an image. The basic principles235

are as follows:236

Let X = {xi}Ni=1 be a set of local descriptors. Then a codebook C =237

{c1, ..., ck} of k visual words can be learnt by the k-means algorithm. Each local238

descriptor xi can be quantized to the nearest visual word. For each visual word,239

the sum of the differences between the center and each local descriptor assigned240

to this center can be subsequently obtained. This can be expressed as241

δj(X) =

N∑
i=1

aij(cj − xi) (1)

where aij is a binary assignment weight indicating if the local descriptors belongs242

to this visual word, and N is the number of local descriptors. Then the VLAD243

code is a concatenation vectors of cumulated differences δj of each cluster:244

v(X) = [δT1 (X), δT2 (X), δT3 (X), ..., δTk (X)] (2)

The overall dimension of the VLAD code d×k, where d is the dimension of245

local descriptors and k is the number of dictionary entries (clusters).246

3.3. Spatial Pyramid VLAD247

Although VLAD encoding performs well in preserving local features, spatial248

information is largely ignored. To compensate for this, recent papers [50], [17]249

have proposed spatial pyramid VLAD. In this paper, we apply it to CNN fea-250

tures following the same train of thought described in [19] and demonstrate the251
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significance of the scheme in the explicit abstraction of local objects and their252

corresponding spatial information for action and attribute recognition. Also,253

Lazebnik et al. [49] also applied spatial pyramid scheme for recognizing natural254

scene categories. They extracted conventional image features and place them255

inside corresponding spatial grids whilst we fully made use of CNN features256

and assigned candidate regions into the spatial pyramids. Fig. 2 provides an257

illustration of the spatial pyramid VLAD approach. More specifically, we im-258

plemented a 3 level spatial pyramid: 1×1, 2×2, and 4×1 as shown in Fig. 2.259

Regions are allocated into each spatial grid, with assignments determined by260

the distribution of the centers of the regions.261

With the CNN features (4096 dimensions), VLAD encoding is performed for262

each spatial pyramid separately. As has being pointed out in [56] , appropriate263

dimension reduction on original features would further improve the performance264

of the VLAD encoding. Subsequently, we apply PCA on the CNN features of265

each region. However, as the number of features is large, training conventional266

PCA on all of the features would be unrealistic. As an effective alternative,267

we first randomly select a number of features for training, and then perform268

PCA on all of the remaining features. This method may poorly generalize as269

only limited samples are applied for PCA training. In our implementation, an270

incremental PCA [57] was utilized due to its merit of high efficiency in memory271

usage. We perform PCA on all the features to reduce from 4096 dimensions to272

256.273

Following the steps of VLAD, codeword learning with k-means clustering is274

subsequently performed, with the number of clusters set at 12, 16, 24, and 64.275

The efficient k-means++ algorithm [58] was chosen to improve the performance276

of the conventional k-means as the random initialization of it often result in277

poor performance. The final dimensionality of the VLAD codes is the number278

of clusters multiplied by the CNN features after PCA dimension reduction.279
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Figure 2: VLAD encoding with a spatial pyramid: The image was divided with a 3 level

spatial pyramid: 1×1, 2×2 and 4×1. Each pyramid is encoded separately with VLAD.

4. Experiments and Results280

In this section, the experimental set up will be briefly described, followed281

by the details of the experiments on the four benchmark datasets: the Stanford282

40 Action dataset, the People Playing Musical Instrument dataset (PPMI) for283

action recognition, the Berkeley Attributes of People dataset and the 27 Human284

Attributes dataset (HAT) for attribute classification.285

4.1. Deep Learning Model286

All of the models have been implemented on the Caffe deep learning frame-287

work. The VGG16 from [53] was employed with the network pre-trained on288
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ImageNet and then fine-tuned on specific datasets. As pointed out by Girshick289

[40], it is not necessary to fine-tune weights from all layers in VGG16. Hence,290

during fine-tuning, we kept the weights of the first two convolutional layers un-291

changed and adjusted the other layers. The maximum training iterations and292

learning rate were chosen as 40000 and 0.001 respectively. During training, we293

set all the boxes generated from Edgeboxes as candidate regions for training.294

As action recognition is a general multi-class classification problem, we used the295

widely applied Softmax Loss function in deep convolutional neural networks.296

However, as attribute classification is a multiple independent two class classi-297

fication problem, another loss function, namely Sigmoid Cross Entropy Loss298

would be preferable. The other parameters are the same as the fast R-CNN299

[40].300

The reasons for choosing VGG16 as the CNN model are as follows:301

1. In terms of the system efficiency, VGG16 model is more GPU demanding302

compared with some other shadow network structures. In practice, the303

VGG16 is more straightforward to use than those complicated structures304

such as GoogleNet [59] or ResNet [60]. On the other hand, the RoI pool-305

ing in our VGG16 model inherits the advantage of fast R-CNN [40] to306

efficiently extract the CNN features from candidate regions.307

2. Another reason for using VGG16 is to compare the proposed spatial pyra-308

mid VLAD encoding scheme with previous state-of-the-art methods which309

employed VGG16 as their basic model, e.g., R*CNN [16] and Action parts310

[25] for action and attribute classification.311

4.2. VLAD Encoding312

We completed our experiments under the Linux operating system, with the313

incremental PCA and k-means++ implemented using the scikit-learn machine314

learning package [61]. VLAD encoding was realized in Matlab using the VLFeat315

toolbox [62]. Action recognition is a multi-class classification problem in which316

the data can only belong exclusively to one class. For such a multi-class prob-317

lem, a multinomial classifier implemented by logistic regression using a Softmax318
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Figure 3: Some examples of the Stanford 40 action dataset, each image corresponds to one

action type of the 40 actions.

classifier and its MLP variant is better than an SVM implemented as multiple319

binary classifiers. As noted in [40], Softmax , unlike one-vs-rest SVMs, intro-320

duces competition between classes and shows better results than SVMs [40].321

Hence, this task was achieved with the aid of a multi-layer perceptron (MLP)322

neural network provided in the Matlab Neural Network toolbox. As for attribute323

prediction, it can be considered as a multiple of the two-class classification prob-324

lem. SVM is a superior two-class classifier as it directly optimizes the decision325

boundaries from the data [63]. Hence, a SVM linear classifier was used from the326

LIBSVM toolbox [64] for attribute classification.327

4.3. Stanford 40 Action Dataset328

To evaluate the system performance on action recognition, we experimented329

using the Stanford 40 Action dataset [1], which has 9532 images in total cor-330

responding to 40 classes of actions. The dataset was split into training and331

testing sets of 4000 and 5532 images respectively. There are 180-300 images for332
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Figure 4: Results on the Stanford 40 Action dataset and comparison with the baseline ap-

proach.

Table 2: The Mean AP results on the Stanford 40 dataset using different pre-trained models

Methods Mean AP(%)

FC6 features(VGG-M-1024 [65]) 43.8

FC6 features(VGG16 [53]) 61.3

each class. The images within each class have large variations in human pose,333

appearance, and background clutter. Fig.3 presents 40 examples corresponding334

to the 40 action categories in this dataset.335

Details on the experiments on this dataset are explained as follows:336

1. CNN features337
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Table 3: The Mean AP results on Stanford 40 Action dataset and comparison with different

approaches.

Methods Mean AP(%)

FC6 features(pre-trained model) 61.3

FC6 features(fine-tuned model) 81.2

PCA256+16clusters(No Spatial Pyramid) 84.9

PCA256+16clusters(With Spatial Pyramid) 85.9

PCA256+16clusters+FC6 features(No Spatial Pyramid) 86.6

PCA256+16clusters+FC6 features(With Spatial Pyramid) 88.5

Table 4: Mean AP results on the Stanford 40 Action dataset and comparison with previous

results.

Method Mean AP(%)

Object bank [66] 32.5

LLC [67] 35.2

EPM [68] 40.7

DeepCAMP [44] 52.6

Khan et al. [24] 75.4

Semantic parts [69] 80.6

(Ours)PCA256+24clusters+FC6 features 81.5

(Ours)PCA256+64clusters+FC6 features 81.8

(Ours)PCA256+12clusters+FC6 features 87.7

(Ours)PCA256+16clusters+FC6 features 88.5

Before selecting the model for subsequent experiments, we first evaluated338

the performance from different models. The VGG-M-1024 [65] and VGG16339
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Table 5: The Mean AP results on the Stanford 40 Dataset using different PCA reduced

dimensions.

Methods Mean AP(%)

PCA512+16clusters+FC6 features 88.4

PCA256+16clusters+FC6 features 88.5

Table 6: Comparative study of the Stanford 40 dataset on the different number of patches to

form VLAD code.

Method Mean AP(%)

PCA256+16clusters(3000 regions)+FC6 features 87.8

PCA256+16clusters(2000 regions)+FC6 features 88.1

PCA256+16clusters(1000 regions)+FC6 features 88.5

model [53] were selected for comparison. VGG16 turns out to be much340

better than the VGG-M-1024 model in terms of recognition rates as shown341

in Table.2. Hence, we chose the VGG16 model for subsequent experiments.342

Also, to prove that fine-tuning of the CNN model can significantly improve343

the feature representation capability, we extracted FC6 features from both344

the pre-trained CNN model and the fine-tuned model. As can be seen in345

Table.3, with the same experimental setting, the fine-tuned model gains346

about a 20% increase in recognition performance, from 61.3% to 81.2%.347

2. VLAD coding with different learnt clusters348

To select the best number of centroids learnt with k-means, we performed349

extensive comparative experiments. From Table.4, the best performance350

was achieved when the cluster number of CNN features is 16. This is an in-351

teresting result which matches the findings in [4] that only a small number352

of clusters can generate promising results. The advantage of small num-353

ber of feature clusters also stem from the characteristics of VLAD, which,354
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(a) Writing on a

book: 0.9966

(b) Applauding:

0.9933

(c) Cleaning the

floor: 1.0000

(d) Drinking:

0.9954

(e) Fixing a bike:

0.9969

(f) Riding a horse:

0.9979

(g) Brushing teeth:

0.6578

(h) Fishing:

0.9996

(i) Blowing bubbles:

0.8351

(j) Cutting trees:

0.9425

(k) Cooking:

0.9996

(l) Climbing:

0.9997

Figure 5: Some examples of correct recognition in the Stanford 40 action dataset: The pre-

dicted label and corresponding confidence values are provided.

unlike traditional BoVW, is based on the accumulation of the differences355

between a local descriptor and each learnt cluster. Also, VLAD can be356

considered as a simplified version of FV, which is more efficient than FV357

and more powerful than traditional BoVW. As noted in [56], dimension358

reduction plays a significant role in VLAD encoding. The same procedure359

was repeated with the setting up of dimensionality-reduced CNN features360

of 512 dimensionality, with slightly poorer mAP results (Table.5). Hence,361

the CNN features of 256 dimensionality will be the focus in most of the362

experiments.363
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3. VLAD coding without CNN features364

As can be seen from Table.3, to evaluate the stand-alone performance of365

the VLAD encoding scheme, each image was represented by a VLAD code366

from 256 dimension features and 16 learnt clusters. Adding the spatial367

pyramid boosted the performance from 84.9% to 85.9%.368

4. VLAD coding with CNN features369

The ground-truth region was provided to indicate the target person within370

the image, hence it is instrumental for recognition. Adding the CNN fea-371

tures of the ground-truth region further raised the performance to 88.5%.372

5. VLAD coding from different number of regions373

To validate that 1000 regions per image is sufficient for the VLAD encoding374

scheme, recognition results from 2000 and 3000 boxes per image were375

also provided. It is clear from Table.6 that 1000 boxes yields the best376

performance. This is partly because regions generated from the Edgeboxes377

algorithm are ranked and the top 1000 boxes include most of the important378

patches in the images. Including more regions may add noise to the final379

representation.380

6. Standard Deviation of AP results from different methods381

As there are 40 action categories in our task, it is important to see whether382

the proposed methods have improved robustness over different categories.383

Hence, we calculated the Standard Deviation (SD) values on AP results384

from different methods. The SD on AP values from method only using385

CNN FC6 features is 11.5 while the SD on AP results from the proposed386

methods (PCA256+16clusters+FC6features) is 9.2 which indicates our387

approach has improved robustness over different categories.388

The comparisons with previously published methods are shown in Table.4,389

which demonstrates that our method has the highest mean AP. It is noteworthy390

that Khan et al. [24] did not utilize a ground-truth bounding box during action391

recognition. In our configuration (PCA256+16clusters), the proposed method392

yields a 10.5% increase in mean AP even without ground truth. This results393
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Figure 6: Some examples in the PPMI dataset, the images in the first row correspond with

the action of ‘Playing Instrument’ while the images from second row correspond with ‘With

Instrument’.

further demonstrate the suitability of spatial pyramid VLAD encoding in action394

recognition. Fig.4 shows the AP value of each categories of our approach and a395

comparison with results from CNN features.396

It can seen from Fig.4 that the spatial pyramid VLAD encoding scheme397

outperforms plain CNN features in all action classes except ‘riding a bike’, in398

which the performances are similar. More importantly, VLAD performs sig-399

nificantly better in the more fine-grained action classes, for instance, ‘writing400

on a board’. This is because VLAD encoding preserves local information from401

small patches, and the important spatial information is retained with the spa-402

tial pyramid VLAD. Fig.5 provides some examples of correct recognition in the403

Stanford 40 Action dataset.404

4.4. People Playing Musical Instruments Dataset405

PPMI [21] is a dataset emphasizing subtle difference in interactions between406

humans and objects (fine grained classification). PPMI consists of 12 different407

musical instruments. Each class includes 150 PPMI+ images (humans playing408

instruments) and 150 PPMI- images (humans holding the instruments). Fig.6409

provides some examples of the PPMI dataset. Hence, there are 24 categories to410

classify. We evaluated our approaches on the 24 categories classification task.411

The dataset did not provide a ground-truth region for each person. Hence,412

different from Standford 40 Action dataset, we fine-tuned the pre-trained VGG16413
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Table 7: The Mean AP results on PPMI dataset and comparison with different approaches.

Methods Mean AP(%)

FC6 features 80.7

PCA256+16clusters(No Spatial Pyramid) 74.3

PCA256+16clusters(With Spatial Pyramid) 76.6

PCA256+16clusters+FC6 features(No Spatial Pyramid) 80.8

PCA256+16clusters+FC6 features(With Spatial Pyramid) 81.3

Table 8: Comparison with other published methods on PPMI dataset.

Methods SPM [49] Grouplet [21] LLC [67] Spatial Saliency [70] Ours

Mean AP(%) 35.6 36.7 39.8 49.4 81.3

model following the common image classification procedure in the Caffe plat-414

form [54]. The learning rate is set as 0.0001 and the batch size as 128. We set the415

maximum iterations as 40000. Once the model was trained, FC6 features were416

extracted from top the 1000 regions generated from Edgeboxes. The VLAD417

encoding was accomplished after PCA dimensionality reduction and codeword418

learning with k-means++.419

From Table.7, the following results can be observed: On this dataset, Image-420

level CNN features alone provide satisfactory results. However, with CNN421

features combined with VLAD spatial pyramid, the performance increased to422

81.3% which proves the VLAD and CNN features are complementary. The SD423

of AP results on image-level features are 9.7 while the SD of AP results from424

our methods is 9.5 which indicates the proposed method has good robustness425

over different categories. Also, We also achieved state-of-the-art results on this426

dataset when compared with other approaches as shown in Table.8.427
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4.5. Berkeley Attributes of People Dataset428

Classification of people’s attributes is an important task in computer vision429

as semantic attributes can often bridge the gap between low-level and high-level430

features in computer vision tasks. The main task of human attribute recognition431

is to recognize a person’s multiple features such as gender, hair style and type432

of clothes for the purpose of describing a person under realistic viewpoints, pose433

and occlusion.434

To see if our method can be applied to attribute classification, we evaluated435

our method on the Berkeley Attributes of People Dataset [22], which includes436

4013 images for training, and 4022 test images collected from the PASCAL and437

H3D datasets. This is a very challenging dataset as the people in the images438

often have large appearance variance and occlusion. Fig.7 shows some examples439

from this dataset. Compared with the many other benchmark computer vision440

datasets, only limited research has been published on experiments using it [71]441

[22].442

We followed the Spatial Pyramid VLAD encoding of CNN features previ-443

ously explained, and applied an SVM classifier for the final prediction. Specifi-444

cally, the pre-trained VGG16 model [53] was utilized for subsequent fine-tuning.445

The training process was implemented in the fast R-CNN [40] framework. The446

region proposal algorithm Edgeboxes was applied on each image, and FC6447

features were then extracted for each region. The VLAD encoding was ac-448

complished after PCA dimensionality reduction and codeword learning with449

k-means++.450

More details about the experiment procedure and three comparative settings451

are described as follows:452

1. CNN features453

As shown in Table.9, CNN features from the first fully connected lay-454

ers (FC6) corresponding to the ground truth region were extracted, and455

directly applied for attribute classification as a comparative baseline. De-456

spite the effective representational capability of VGG16, the mean AP is457
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Figure 7: Some examples of the Berkeley Attributes of People dataset.

only 78.1%, which implies that CNN feature alone are insufficient.458

2. VLAD coding without CNN features459

To evaluate the stand-alone performance of VLAD encoding, each image460

was represented by CNN features of 256 dimensionality and then VLAD461

was applied to the 16 learnt codewords. The mAP from this configuration462

is 78.3%. There is no ground-truth region in this scenario and the spatial463

pyramid has not been taken into account.464

3. CNN features combined with VLAD coding465

In this configuration, CNN features of the ground-truth region are com-466

bined with VLAD coding. The concatenated features yield a mAP per-467

formance increase of up to 8.5%, which suggests that the local features468

(ground-truth region) and compact global representation (image-level VLAD469

code) are complementary. A ground-truth region specifies a target person470

in an image. Subsequently, the combination of features for ground-truth471

regions and the image level VLAD coding introduces the contextual in-472

formation associated with the target person, which is beneficial to the473

improvement in action classification. The increase in performance agrees474

with our intuition that global contextual information is helpful for the475

recognition task.476

4. CNN features combined with the spatial pyramid VLAD coding477

Finally, to test the influence on overall performance of the spatial pyramid478
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Table 9: The AP results of the Berkeley Attributes of People dataset and comparison of

different approaches.

Attribute male long hair glasses hat tshirt longsleeves shorts jeans long pants Mean AP(%)

FC6 features of Ground truth region 90.1 80.8 77.6 80.6 57.4 84.2 64.9 71.1 96.5 78.1

PCA256+16clusters(No Spatial Pyramid) 88.9 76.4 74.7 68.2 68.5 88.5 73.3 71.8 94.2 78.3

PCA256+16clusters+FC6 features(No Spatial Pyramid) 92.5 87.4 85.2 90.4 68.3 89.7 85.5 83.9 98.0 86.8

PCA256+16clusters+FC6 features (With Spatial pyramid) 94.1 90.4 89.4 94.0 74.0 92.5 91.9 88.6 98.5 90.4

VLAD encoding, we added spatial pyramid encoding, and concatenated479

the VLAD codes of each pyramid into one representation, respectively,480

with CNN features with and without ground-truth regions. Experimental481

results showed that adding the spatial pyramid does improve the overall482

mAP performance, by 3.6%. The SD of the AP values is 6.3 while the SD of483

AP values from CNN features is 11.5 which proves our method’s improved484

robustness on different categories. More interestingly, as can be seen from485

Table.9, the AP values from all categories increased by adding a spatial486

pyramid which proves that the spatial information is very important for487

recognition. Fig.8 provides some examples of recognition results on this488

dataset. The precision-recall figure of the proposed approach can be seen489

in Fig.9. It is clearly seen from the figure that our method on all categories490

has higher AP values than the method purely based on CNN features.491

We also evaluated the influence of the number of k-means clusters by per-492

forming VLAD encoding with 12, 16, 24 and 64 centroids separately. The results493

show that 16 clusters works the best from the comparative experiments. Addi-494

tionally, when comparing with other published methods, our approach generates495

competitive results as shown in Table.10.496

4.6. 27 Human Attributes Dataset(HAT)497

This human attributes dataset was collected by Sharma et al. [23]. The498

dataset contains 9344 images, split into 7000 training images and 2344 test499

images. A total of 27 attribute annotations are presented in the dataset toolkit.500

As explained in [23], the dataset contains a wide variety of human images in501
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(a)

Male:0.0064, No

Long-hair:0.7897, Yes

Glasses:0.0643, No

Hat:0.0001, No

T-shirt:0.6533, No

Long-sleeves:0.0054, No

Shorts:not-certain, Not-certain

Jeans:0.0276, No

Long-pants:0.0088 No

(b)

Male:0.8289, Yes

Long-hair:0.0748, No

Glasses:not-certain, Not-certain

Hat:0.9430, Yes

T-shirt:0.0416, No

Long-sleeves:0.2946, No

Shorts:0.0030, No

Jeans:0.0126, No

Long-pants:0.9929, Yes

Figure 8: Examples of attribute classification: the probabilities of certain attributes are pro-

vided, the blue text are the ground truth labels. the red text show an incorrect classification

example.

different poses, with different ages, wearing different clothing and with diverse502

accessories. Also, there might be more than one person in an image for attribute503

query, thus increasing the difficulties in recognizing attributes.504

Fig.10 illustrates some examples from the HAT dataset. As can be seen from505

the figure, there exist large variations in the viewpoint, people’s clothing style506

and illumination. Also, people in the image are performing various activities507

with different poses, which make attribute recognition more challenging.508

In our experiment, we applied PCA dimension reduction on the FC6 features509

from the trained VGG16 CNN model, following the similar procedure used with510

the Berkeley Human Attributes Dataset. PCA, clustering with k-means++511
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Table 10: The AP results of Berkeley Attributes of People dataset and comparison with

previous methods.

Attribute male long hair glasses hat tshirt longsleeves shorts jeans long pants Mean AP(%)

Poselets [22] 82.4 72.5 55.6 60.1 51.2 74.2 45.5 54.7 90.3 65.0

PANDA [71] 91.7 82.7 70.0 74.2 49.8 86.0 79.1 81.0 96.4 79.0

R*CNN [16] 92.8 88.9 82.4 92.2 74.8 91.2 92.9 89.4 97.9 89.2

Gkioxari et al. [25] 92.9 90.1 77.7 93.6 72.6 93.2 93.9 92.1 98.8 89.5

Ours (PCA256+12clusters+FC6 features) 93.8 90.0 88.5 93.4 72.9 92.2 90.8 87.7 98.4 89.7

Ours (PCA256+64clusters+FC6 features) 93.8 92.2 89.1 93.8 73.1 92.1 91.4 87.8 98.4 90.0

Ours (PCA256+24clusters+FC6 features) 94.1 90.4 89.5 94.0 73.8 92.5 91.9 88.5 98.4 90.3

Ours (PCA256+16clusters+FC6 features) 94.1 90.4 89.4 94.0 74.0 92.5 91.9 88.6 98.5 90.4

Figure 9: The precision recall curve of Berkeley Attributes of People Dataset. The red curves

indicate results only based on CNN features while the blue curves show the results based on

the proposed method.

and VLAD encoding with the spatial pyramid were performed consecutively to512

generate the concatenated features for final classification.513

We treated the prediction of each attribute as an independent two-class514

classification problem. The final results on Average Precision (AP) are presented515

in Table.11. Specifically, we achieved 74.2% mean AP with SD 20.1 on this516
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Figure 10: Some examples from the HAT dataset.

Table 11: AP results on the 27 Human Attributes Dataset(HAT).

Attributes AP(%) Attributes AP(%) Attributes AP(%) Attributes AP(%)

Female 97.5 Crouching/bent 30.8 Small kid 71.0 Female short skirt 50.0

Frontal pose 97.4 Sitting 87.9 Small baby 31.9 Wearing short shorts 69.2

Side pose 83.0 Arms bent/crossed 97.3 Wearing tank top 65.5 Low cut top 89.1

Turned back 96.6 Elderly 69.0 Wearing tee shirt 88.8 Female in swim suit 55.0

Upper body 98.6 Middle aged 80.1 Wearing casual jacket 60.7 Female wedding dress 75.1

Standing straight 99.1 Young (college) 73.9 Formal mens suit 75.6 Bermuda/beach shorts 77.7

Running/walking 80.0 Teen aged 38.4 Female long skirt 62.5 Mean AP 74.2

dataset. In Table.12, a comparison with previously published results is also517

presented. The Deep Semantic Pyramid (DSP) proposed in [32] also utilized518

Deep Convolutional Neural Networks and Spatial Pyramid, which shows a better519

performance than other published methods.520
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Table 12: Comparison with previous methods on the HAT dataset.

Methods DSR [23] SPM [49] EPM [68] DSP [32] Ours

Mean AP(%) 53.8 55.5 59.7 71.5 74.2

5. Conclusion521

Action recognition in static images is a challenging task, partly due to the522

fine-grained property and the absence of motion information. Our study indi-523

cates that information from local patches and the global contextual informa-524

tion are critically important contributing factors to improve the performance525

of action recognition. This is validated by our re-implementation of Vector of526

Locally Aggregated Descriptors (VLAD) on top of a spatial pyramid for CNN527

features to identify local information and global spatial information simulta-528

neously. Experiments were conducted not only with ground-truth regions but529

also with images without ground-truth annotations where the neighboring ob-530

jects and scenes are comprehensively coded into compact representations. Our531

experiments revealed that the combination of CNN features and VLAD codes532

brings performance gains for both action recognition and general recognition533

tasks such as attribute prediction from still images. The beneficial effect of534

spatial pyramids has also been confirmed by demonstrating the performance535

enhancement. Four different datasets have been tested, namely, the Stanford536

40 Action dataset, the People Playing Musical Instrument dataset (PPMI), the537

Berkeley Attributes of People dataset and the 27 Human Attributes dataset538

(HAT) with the results all demonstrating the advantages of our proposed deep539

Spatial Pyramids VLAD coding scheme. We will develop a prototype system540

in future works by implementing the proposed scheme in a more homogeneous541

way.542
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