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Abstract 

Systems orientated research offers the possibility of identifying novel therapeutic 

targets and relevant diagnostic markers for complex diseases such as osteoarthritis. This 

review demonstrates that the osteoarthritis research community has been slow to 

incorporate systems orientated approaches into research studies, although a number of 

key studies reveal novel insights into the regulatory mechanisms that contribute both to 

joint tissue homeostasis and its dysfunction.  The review introduces both top-down and 

bottom-up approaches employed in the study of osteoarthritis.  A holistic and multiscale 

approach, where clinical measurements may predict dysregulation and progression of 

joint degeneration, should be a key objective in future research.  The review concludes 

with suggestions for further research and emerging trends not least of which is the 

coupled development of diagnostic tests and therapeutics as part of a concerted effort 

by the osteoarthritis research community to meet clinical needs. This article is protected 

by copyright. All rights reserved 
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Introduction  

 

Osteoarthritis (OA) has been recognised in the earliest forms of man, and throughout 

animal species, located wherever there is a diarthrodial articular surface.  Yet, as we 

approach 275 years since William Hunter’s description of ulcerated cartilage as ‘a 

very troublesome disease’ [1] the therapeutic strategies available range from benign 

neglect to whole joint replacement.  OA cannot be considered a single disease with a 

linear narrative describing its pathogenesis, rather it is a heterogenous condition of 

multiple causation with a degenerate, non-functional joint the common end-point [2]. 

Subject to repetitive cycles of loading over many years the joint represents the 

functional product of integrated multisystem, multiphysics, and multiscale units [3].  

The objective of this review is to consider afresh whether the osteoarthritis research 

community has tackled the need for novel OA therapeutics and diagnostics by 

applying recent developments in systems biology.  Suggestions are made for areas of 

research that require further development and methods, which have shown utility in 

other disciplines, as described.  We consider mechanotransduction in osteoarthritis as 

a systems orientated case-study, but there are no OA studies that demonstrate the 

iterative and cyclical process of testing, validation, and refinement consistent with a 

systems biology approach.  Additionally, we wish to consider why, given the decades 

of research and prevalence of OA [4], that there are still no disease modifying 

therapeutics or prognostic markers and how progress should proceed with respect to 

trends and regulatory frameworks.  Not all tissues contributing to OA are well-

represented in systems orientated studies and where possible pertinent examples are 

provided.   
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Biology as a system 

A biological system is a set of elements (for example genes, proteins, and 

metabolites) with multiple and diverse functions; these elements interact in a specific 

and non-linear manner to produce coherent behaviours over time.  Evolution has 

defined specialised interactions creating functional systems and sub-systems at the 

cell, tissue, organ, organismal, and population/ecological levels [5].  Critically, the 

functional nature of the system is neither a characteristic of single elements, or only of 

the interactions of these elements; rather, behaviour arises from a combination of 

these characteristics.  The Human Genome Project demonstrated that biology is an 

information science.  Information is hierarchical [6] and this structure is replicated in 

biological systems (DNA-mRNA-proteins).  Therefore, complexities inherent to 

biological systems must be addressed using computational solutions as traditional 

reductionist strategies, intuition, and cognitive capacity alone will not be sufficient to 

develop a predictive understanding of biological systems and their derangements [7].  

It is the primary purpose of a systems biology approach to harvest high-quality data in 

a systematic and comprehensive manner from all levels of the biological hierarchy 

and integrate this data with the intention of developing predictive models of the 

system.  With this objective in mind it is necessary to consider that not only is the 

quality of the data variable, but often incomplete and biased.  Genes of unknown 

function, or unknown interacting partners, are often ignored and emphasis is often 

placed on those most studied.  Functional annotations relating to musculoskeletal 

disease, especially OA, are poor and result in spurious descriptors.  These important 

issues have been realised [8] and methods to improve annotations are being developed 

[9].   
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Systems Biology: a paradigm shift in science  

Fundamental definitions and frameworks for a systems approach have been well-

described [6, 10-13] and are covered briefly with respect to OA research, Figure 1.  

In this review we consider ‘systems orientated’ [7] approaches to OA; frequently OA 

studies do not fulfill the requirements of a holistic systems biology approach.  

Systems orientated studies may begin without a clear hypothesis and are often 

agnostic to pre-existing knowledge of molecular biology.  This initial stage 

comprehensively catalogues the elements present in the system under investigation 

and consists of single or multi-omics surveys (transcriptome, proteome, epigenome, 

metabolome).  Time is an important component of this approach and dynamic 

observations should be made.  Much of the contemporary OA literature achieved the 

first stage, however, a systems biology approach must proceed with an iterative series 

of systematic perturbations and quantifications to measure elements from all the 

distinct levels of a biological system. In an attempt to recapitulate the behaviour of the 

system all the quantitative data must be integrated into a network model. This 

mathematical model is reconciled with observed responses then a new hypothesis is 

formulated and tested experimentally.  It is not the purpose of this review to assess the 

extent to which an OA study conforms to the ideals of a systems biology approach 

rather recognise the contribution each study makes towards such an approach, and 

define the gaps in our understanding of OA pathogenesis.  In time this should aid the 

design of future studies with view to ultimately establishing OA diagnostic tests and 

therapeutics.   
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Complexity in osteoarthritis 

OA is the most prevalent chronic joint disease and the most common co-morbidity of 

the ageing population.  Incidence increases with age and is also associated with other 

predisposing factors such as obesity and joint trauma [14].  The biomechanical failure 

of articular cartilage, together with changes in other joint tissues, demonstrates that 

OA is a whole joint disease as early changes are also evident in subchondral bone [15] 

and synovium [16].  OA should be considered a complex disease; the disease 

phenotype is a consequence of the interplay between heterogeneous and multiple 

genomic variants, dysfunctional regulatory systems, and environmental contributions 

with spatiotemporal distributions [17-19]. The identification of genes responsible for 

common Mendelian traits, by linkage and linkage disequilibrium analysis [17], has 

not been possible for OA; defining causative mutations from phenotypic associations 

has demonstrated few candidate risk loci.  Whilst insidious degeneration results in a 

common end-point, a non-functional articulation, the initiating causes or mechanisms 

are often unclear.  For the homeostasis or health of the joint stability of the system 

arises as a function of the integrated behaviour of the biological, mechanical, and 

structural elements of the system [20].  In Chu, et al [21] an apt analogy is made 

between the probability of developing OA and the alignment of biological, 

mechanical, and structural factors as a slot/fruit machine. With each of these factors, 

and other associated risks, there is a probability of incitement of pre-osteoarthritis as 

the homeostatic mechanism becomes dysregulated.  The early consideration of the 

abnormal characteristics of these components, and inclusion of known prior risk 

factors promoting a propensity to OA, would be useful in determining at risk groups. 

When considered in this way it is clear that the historical focus on the end-stage OA 

phenotype has distracted from recognising the relationship between all factors.  
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Despite understanding that the inciting factors are likely to be heterogeneous we still 

recognise similar disease phenotypes; this suggests that at least some common 

elements of the system are likely to be dysregulated at some stage [18].  

Fundamentally, those elements that preserve the homeostatic system are still poorly 

understood.  Using systems biology approaches it becomes possible to understand 

how these elements interact or infer the missing nodes.  Through understanding how 

the homeostatic system responds to perturbations, rational approaches to diagnostic 

tests and therapeutic development can be made.  When considering publications since 

the turn of the century, explicitly considering systems biology and OA, only a small 

increase in investigations in this field in recent years is evident, Figure 2.      

 

Systems orientated studies exploring OA  

In the interest of brevity notable systems orientated studies in OA will be considered 

generally as ‘top-down’ (‘omics integration, network-based, metabolic and image-

based studies) and ‘bottom-up’ (dynamical models and molecular and pathway 

analyses).  The studies are chosen as examples of the research objectives associated 

with a systems orientated approach to OA.   

 

In vitro models - Routes to regeneration and cell therapies  

Tissue engineering and regenerative therapies are a major focus of attempts to modify 

the progression of OA [22].  In general, much of the in vitro basic OA research, in 

particular for chondrocytes, is still undertaken using monolayer or well-established 

three-dimensional culture models.  Two transcriptomic studies have considered the 

underlying mechanisms associated with differentiation transitions for in vitro 

chondrocytes using systems approaches.  By understanding the regulatory 
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mechanisms of de- and re-differentiation transitions chondrocytes may be 

manipulated in tissue-engineering and regenerative medicine.  Work from our group 

defined mechanistic networks associated with phenotypic transitions in two- and 

three-dimensional culture systems relative to native cartilage [23].  Revealing gene 

expression in chondrocytes at the single cell level Cote and colleagues [24] found 

considerable cell-to-cell heterogeneity in gene expression both in chondrocytes and 

mesenchymal stem cells under directed differentiation toward a chondrocytic 

phenotype.  Both studies have implications on our understanding of how chondrocytes 

may be manipulated (directed differentiation) in cell-based regenerative therapies for 

OA and the validity of current mechanistic models using established laboratory 

approaches.  An obvious future approach would be the application of stochastic 

modelling techniques to quantify the biological variability and uncertainty in single 

cell measurements [25, 26]; failing to consider this may influence the interpretation of 

in vitro experiments.    

   

Network medicine 

Interaction networks may be generated from the elements of a biological system; 

abstractions of these networks can facilitate an understanding of the architecture, 

activity, and key players in that system.  Much like a spider’s web a perturbation in 

one part of a network will be propagated throughout.  Network medicine postulates a 

‘disease module’ hypothesis, where disease-associated genes or proteins are likely 

share the same topological neighbourhood in a network.  Defining communities of 

network elements (genes, proteins) is a useful way to identify elements that have a 

close relationship, shared functionality, or disease association.  A systems biology 

approach to comprehending OA is founded on the hypothesis that OA is a multi-
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system disorder resulting from the dysfunction of a number of networks that, together, 

alter the homeostatic balance of the joint.  Therefore, comprehensive and multisystem 

approaches are necessary to understand the complexity of OA and direct the 

development of innovative treatment strategies. To date most studies pertaining to 

using a systems approach in OA research are principally based on interrogation of a 

single ‘omics survey in a single tissue at a single time point.  A reference set for 

transcriptomic and proteomic studies is provided in Table 1.  Genome-wide 

association studies in OA are reviewed elsewhere [27-29].     

 

Network-based systems orientated studies 

Network-based approaches make use of known or inferred functional and physical 

interactions between the elements of a system or can be developed from statistical 

associations (e.g. correlations between expression values) a priori giving a high-level 

understanding of the organisation of the system [18].  Data is often collected from 

disparate sources and organised into a coherent structure that can be interrogated by 

graph theory or logical (probabilistic) approaches [25].    Additionally, they can be 

applied in a flexible manner to multi-omics and clinical data, and across scales.  

Several studies have used network-based approaches to define communities of 

molecules that share the same neighbourhood within a network as molecules 

implicated in OA.  Work by Nacher, et al, [30] made use of the Google PageRank 

algorithm to define novel disease candidate proteins that share a network 

neighbourhood with known OA proteins.  These high-ranking proteins were derived 

from an interactome constructed from multiple proteomic studies of chondrocytes.  

The assumption is that membership by novel candidate proteins of an OA-associated 

sub-network means they are more likely to be subjected to the same perturbations.  
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The small, ubiquitin-related modifier SUMO4 was shown to interact with 15 OA-

associated proteins with the main interacting partners related to glycolysis and redox 

regulation.  Using existing protein-protein interaction data and an automated sub-

network searching tool (jActiveModules [31]) Loeser, et al, defined a sub-network 

associated with genes up-regulated during the initial 4 weeks after destabilisation of 

the medial meniscus (DMM) in a murine model, including heparin-binding EGF-like 

growth factor (HB-EGF) [32].  Olex and colleagues [33] developed this strategy 

further using time-course gene expression data from a whole mouse joint model of 

OA to define perturbed sub-networks.  ECM-receptor interaction and focal adhesion 

canonical pathways were enriched across all time-points.  This approach facilitated an 

understanding of the global phasic changes in expression of classic OA-associated 

genes following joint trauma.       

Protein-protein interactions represent compound data arising from many cell 

types and biological contexts so may not be indicative of the biological system under 

investigation and so generic networks without biological specificity may arise.  Soul, 

et al [34] developed an integrated tool (PhenomeExpress) to define context-specific 

sub-networks in an unbiased manner.   This method utilised prior knowledge of cross-

species phenotype-to-gene connections to establish sub-networks containing 

differentially expressed genes describing associations with a phenotypic correlation in 

the disease of interest.  The largest sub-network identified was annotated with immune 

function terms consistent with an understanding of pro-inflammatory changes in sub-

chondral bone in OA.  Further work by this group [35] using the PhenomeExpress 

approach in a small, paired RNA-seq analysis of OA cartilage versus normal sites 

defined several sub-networks associated with Wnt-signalling, apoptosis, matrix 

organisation, and mitotic cell cycle.  
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Other network approaches have included the use of Boolean dynamics to 

consider the coupled sequential reactions (signal propagation) between elements of a 

pathway to define a mechanistic network that was predictive of the response of primary 

chondrocytes to different ligands, including those associated with OA pathophysiology 

[36].  Our own work has included the use of weighted gene co-expression analysis 

(WGCNA) [37] to define sub-networks of highly connected genes (modules) that have 

strong associations with sub-groups of human osteoarthritic cartilage.  We 

demonstrated cross-species preservation of system development and immune-

associated modules between gene expression profiles from human OA and rodent 

models (unpublished data).  As these examples perhaps confirm, the frequency with 

which comparable key regulators and functional descriptors arise in these studies may 

be attributable to the data bias previously described.    

   

Mechanistic studies and dynamic models 

The limitation of many network approaches is that they require mapping of expression 

data onto pre-existing protein interactions and so rely heavily on prior knowledge of 

signalling and metabolic pathways.  Furthermore, statistical associations are made 

with respect to end-stage disease phenotypes, rather than having pre-osteoarthritis as 

the focus of investigations.  Critically, network approaches cannot capture 

spatiotemporal, dynamic changes in the system.  Generally, network approaches in 

OA have been useful in identifying novel targets and sub-networks, however, further 

mechanistic evaluation, perturbation, simulation, or validation of the proposed sub-

networks are performed infrequently.  Complex disease phenotypes change with time 

and are subject to biochemical and biophysical fluxes.  Often, the signals of interest 

may be spatially constrained, e.g. cell-matrix interface.  Network models cannot 
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capture this and so require to be coupled to dynamic models to provide a description 

of how a system progresses both in space and time.  Only a few studies have 

considered this for chondrocytes or with respect to OA.  Using observed 

immunohistochemical changes in cartilage from ageing mice and candidate proteins 

associated with cartilage destruction and ageing Hui, et al, developed an integrated 

computational model accounting for progressive collagen loss and increased MMP13 

production [38].  By modulating pathway elements the study demonstrated oxidative 

stress and the IL-1 pathway were integral to progressive loss of cartilage matrix.  

Notably, the model predicted differential temporal expression of MMP13 through the 

simulated inhibition of IL-1 or ALK1.  This approach is more useful than descriptive 

‘omics studies for developing a detailed, tissue-specific, mechanistic understanding 

and simulating temporal responses to perturbations facilitating rational hypothesis 

development for further testing.  Both network-based and molecular approaches 

provide useful insights into the pathophysiology of OA, but have not been used as 

part of a systems-biology continuum.  Kerkhofs, et al [39], developed a mathematical 

model to examine the switch from resting/proliferating chondrocytes to hypertrophy 

[40, 41].  The systems approach included a form of Markov chain model to predict the 

probability of particular factors pushing a chondrocyte towards a proliferative (Sox9) 

or hypertrophic (Runx2) phenotype.  There is currently a dearth of validated dynamic, 

mechanistic models and a critical need to link these ‘bottom up’ studies to the 

network models generated by ‘top-down’ approaches.    
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Constraint-based models of metabolism 

An understanding of the metabolic derangements associated with the joint tissues 

contributing to OA, and their molecular context, would be invaluable to defining 

pathogenic pathways especially given the evidence of whole-body metabolism effects 

on OA risk [42].  A number of contemporary studies have provided useful reference 

metabolomic and proteomic data from osteophytic cartilage [43], subchondral bone 

[44], and synovial fluid [45], or considered the role of metabolic pathways derived 

from transcriptomics data [33, 46]. However, our understanding of the homeostatic 

control of metabolic fluxes in cartilage, bone, and synovial fluid is limited.  

Constraint-based (CB) models facilitate a large-scale understanding of metabolic 

fluxes without the necessity for detailed kinetic information (see example from Hui, et 

al [38]), which is often lacking.  Information on the stoichiometry of all the metabolic 

reactions is considered within a pseudo-steady state that is optimised for a particular 

‘objective function’; methods include metabolic flux and flux-balance analysis (FBA).  

There are few examples in the literature relating to constraint-based approaches to 

modelling metabolic fluxes in joint tissues and no large-scale FBA simulations, 

including gene-knockout simulations, have been carried out for OA associated tissues.  

In Salinas, et al [47], the authors used metabolic flux analysis to determine the 

changes in central metabolism pathways in chondrosarcoma-derived SW1353 cells in 

response to mechanical loads.  Although this study makes a novel contribution to our 

understanding only limited metabolic pathways are considered.  Furthermore, it 

becomes difficult to attribute metabolic changes arising from transduced mechanical 

signals to pro-matrix synthesis pathways. The limitations of the FBA approach relates 

to the inability to incorporate dynamic information or regulatory elements.  This 

requires the integration of ‘omics data into generic genome-scale metabolic 
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reconstructions [48, 49] to generate cell- and tissue-specific models.   Generic 

metabolic reconstructions serve as templates for more specific contexts.  High quality 

genome-scale generic human metabolic models are freely available and have recently 

been revised [50].  Considerable resources (e.g. COBRA Toolbox 2.0, [51]) have 

been made available to generate context-driven tissue/cell-specific metabolic models. 

This has been successfully performed either in a draft or high-quality model form for 

many cells and tissues [49] but, musculoskeletal tissues are poorly represented 

(skeletal muscle [52], foetal cartilage [53]), if not absent from these analyses.   

Unlike constraint-based metabolic flux analyses of micro-organisms a 

metabolic understanding of OA requires the construction and coupling of metabolic 

networks for multiple tissues from the same organism.  Common interactions may be 

defined by metabolites that are secreted or consumed between tissues, but defining 

these elements, the post-transcriptional modifications that govern tissue-specific 

metabolic activity profiles [52],  and the extent to which this coupling occurs in vivo 

is a considerable challenge.  In the case of micro-organisms, or neoplastic tissues, the 

functional objective is growth.  In trying to develop a multi-scale model of the 

articular joint in the adult human the functional activities of each tissue are will be 

distinct from growth, but likely to have an optimisation or efficiency objective [48].  

Practical frameworks for the development of these context-driven models are 

available [49]; it should be a priority in osteoarthritis research to develop joint tissue-

/cell- specific metabolic models.  Overall, there is a necessity to make use of the 

available data to define cell-/tissue-specific metabolic models that incorporate 

molecular information from ‘omics studies.  Large-scale simulation and perturbation 

studies using CB analysis should be undertaken.  Gene knock-outs can by simulated 

in tissue-specific models to direct further molecular validation of regulatory 
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mechanisms [54].  Methods to infer missing or unidentified metabolites in untargeted 

metabolomic studies, incorporating network techniques, will facilitate a tissue-

specific understanding [55].    These studies, in due course, will provide the input to 

the development of coupled, multi-tissue whole joint metabolic models.  Such 

projects are on the scale of those undertaken for the liver, brain, and kidney or for 

particular diseases (e.g. diabetes); as such, they will require collaborative efforts.   

 

Image-based physiological models 

Physiological models derived from advanced imaging techniques (computed 

tomography (CT), micro-CT, magnetic resonance imaging (MRI), and in vitro 

techniques, e.g. quantitative microscopy) may be used to simulate musculoskeletal 

systems and are useful approaches to developing a systems understanding of OA.  The 

data is derived directly from the applicable study group, physiological conditions may 

be applied in a repeatable manner, and temporal changes may be simulated. 

Predictions of the material properties of the constituent tissues may be made that 

could not otherwise be easily measured experimentally; multiple tissues, or specific 

tissue elements, may be considered in their physiologically relevant setting.  The 

approach is non-destructive and tissue-failure conditions may be estimated in a non-

invasive manner.  The temporal impact of pathology or treatment can be simulated in 

the model.  Overall, these approaches are cheaper, faster, and knowledge-driven than 

in vivo models.  The integration of high-resolution geometry available from advanced 

imaging techniques and constraints defined by biomechanical data may be used to 

develop finite element simulations of the joint tissues.  Although these imaging 

techniques have been more widely applied to muscle and bone this modelling 

approach is uncommon for cartilage and sub-chondral bone in the context of OA 
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although some reports are found in the literature.  For example, using high-resolution 

micro-CT of the mouse tibia it has been possible to estimate the mechanical 

characteristics of the femoro-tibial joint DMM surgery using finite element analysis 

(FEA) [56].  The dynamic structural damage that occurs at the articular cartilage, 

which would otherwise be difficult to test, was explored in silico.  Mononen, et al, 

[57] also used finite element modelling to simulate cartilage degeneration using MRI 

data of knee joints from normal weight and obese OA patients.  Using a functional 

imaging approach to reveal bone metabolism Hirata and colleagues [58] correlated 

changes in 18F-fluoride PET (positive-emission tomography)  uptake with stress 

distributions in the subchondral bone of coxo-femoral joints from patients.  These few 

examples suggest that there is still considerable work required to link clinical or 

functional measurements with in silico models for a number of OA-associated tissues.  

There are efforts to develop standardised, open-source finite element joint models 

[59], but this requires not only to capture the variation in human anatomy, mechanics, 

and kinematics, but they are also required for model species where the majority of 

basic studies will be validated.    

 

Multiscale modelling 

The purpose of multiscale models is to develop early patient-orientated intervention 

packages based upon a realisation of trauma risk, the predicted performance of an 

intervention, and the prognostic capacity of biomarkers or clinical measurements as 

proxies for cell-level responses [3, 60].  As we have highlighted in the sections above, 

there are approaches to integrating high-throughput data into tissue-coupled, 

constraint-based metabolic models, and across scales for mechanical studies [61], but 

this is not yet a common approach in OA.  Additionally, there is no evidence of clear 
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‘omics integration approaches relevant to OA in the literature.  To make significant 

progress in our understanding of OA pathogenesis, metabolic and biomechanical 

models will have to be coupled across multiple temporal and spatial scales, Figure 3 

and Figure 4.  Biological systems already integrate all this information, however, for 

researchers this is a non-trivial concern with a large number of complex modelling 

and data integration techniques available [62, 63].  Ageing and sex manifests as 

anatomical and mechanical changes [64] that must also be integrated into multiscale 

models.  It is evident that there is still insufficient basic structural and molecular 

understanding of the elements of OA-associated tissues to fully realise multiscale 

approaches at this time.  One alternative strategy that offers a way to approach 

multiscale problems and simulate complex systems behaviour is agent-based 

modelling (Figure 4) [25]. The activity and interaction of autonomous ‘agents’ (e.g. 

cells), consisting of simple behavioural rules, may be formulated to simulate the 

collective behaviour of these agents.  As yet, this is not an approach that has been 

applied to the study of osteoarthritis associated cells and tissues, but has found utility 

in other complex conditions [65]. 

 

A systems biology case study: mechanotransduction in osteoarthritis 

Mechanotransduction is the transfer of biomechanical forces into intracellular 

chemical or electrical signals and many diseases are associated with dysregulation of 

this activity [66, 67].  OA may also be considered a disorder of mechanotransduction 

given that forces on the joint are integral to the health of the cartilage [68] and 

evidence that OA and aged chondrocytes have altered mechanical properties [69-71].  

Biomechanical signals are also multiscale responding to age and disease, Figure 3, 

with effects at a tissue level (differential loading across joint, load sharing across 
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particular tissues), within a tissue (differential compression on zonal regions of 

cartilage) and cell-associated (mechanotransduction through the pericellular matrix of 

the chondron) [60].  Critically, there is not a single mechanical signal that transduces 

into an electrical or chemical signal intracellularly and different forces require a level 

of integration (compression, osmolarity, fluid shear, hydrostatic pressures); the 

contribution of each still needs to be defined [72].  Given that mechanical signals 

have to be transduced through the extra- and peri-cellular matrix to allow 

chondrocytes to respond to their physical environment mechanotransduction 

mechanisms are potential therapeutic targets.  

Work by Guilak and colleagues, has considered numerous modelling 

strategies, including FEA, to deduce mechanical responses in chondrocytes and 

associated peri-cellular matrix, which helped define the complex mechanical 

environment consisting of changes in tension, fluid pressure/volume, shear, etc [73, 

74].  Using a mechanistic approach a Ca2+ responsive osmomechano-TRP channel 

TRPV4 was found to be critical to transduction of mechanical and osmotic signals 

[75] with enhanced anabolic gene expression and increased matrix production 

demonstrated using a chemical agonist [72].  Further work, using a cartilage-specific, 

inducible knock-out of Trpv4 revealed a reduction in age-associated OA at 12 months, 

but not in a DMM model [76].  This is in contrast to the severe OA phenotype 

observed in ageing mice with a global Trpv4 knockout.  Defining differential 

mechanotransduction pathways for age- and trauma-associated OA could establish 

therapeutic targets.  Modifications to a known small molecule TRPV4-antagonist has 

shown analgesic and anti-inflammatory properties that could have potential in a 

number of conditions including osteoarthritis [77]. This case-study demonstrates that 

a systems orientated approach (running in this case from ‘top down’) can reveal 
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regulatory targets by modelling the integration of mechanical signals to establishing 

common mechanotransduction mechanisms and unravelling age-associated 

contribution to biomechanical failures.  By integrating clinical level mechanical and 

kinematic data with an understanding of cell-level, molecular responses preventative 

and early therapeutic approaches may ultimately be employed in patient-specific 

programmes.  

 

Physiology-based models 

As discussed earlier there are limits to the application of in vitro models of OA tissue 

derangement.  Physiology–based models allow perturbations to be integrated into a 

physiological environment so it is relevant to the scope of this review.  Animal 

models of complex disease can facilitate a deeper understanding of the natural history 

of the pathology by providing controlled representations of subsets of human disease, 

however, there is no single standardised in vivo model and models that better 

represent the dynamics of human OA are required [78-80].  Animal models build in 

another level of complexity, not least of which are differing temporal dynamics.  

Often systems biologists will use genetically simple organisms (e.g. Caenorhabditis 

elegans) to reduce the complexity of the systems under investigation.  This has not 

been possible with OA given the particular complexity of the mammalian skeleton.  

However, recently some advances have been made in developing the zebrafish as a 

model of cartilage dysregulation [81, 82].   

Using developmental stages is often useful in systems orientated studies as 

they are conceptually simpler and easier to visualise.  Depending on the model, 

spatiotemporal changes in expression profiles can be followed and contribute 

parameters to dynamic in silico simulations.  Chondrogenesis, endochondral 
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ossification, and OA pathways share regulators [83] switching between proliferative 

and hypertrophic differentiation phenotypes is critical in these cases [84, 85]; 

mechanisms are employed to prevent or instigate this switch during development of 

articular cartilage, for example.  Unlike endochondral ossification, the core regulatory 

network in articular cartilage development has not been resolved.  It remains unclear 

how spatiotemporal patterns of gene expression in articular cartilage are associated 

with loss of function.  Some studies that develop mathematical models of 

endochondral ossification and the balance between proliferating and hypertrophic 

chondrocytes have been undertaken [86, 87], but further mechanistic studies of 

development pertinent to an understanding of OA pathogenesis should be undertaken.  

Spatiotemporal expression mapping and reference atlases has been used to understand 

the dynamics and localisation of key factors in developing tissues [88]; such an 

approach in joint tissues from model species would help span anatomical and 

molecular scales facilitating the development of cartilage expression networks and has 

been used in the zebrafish [82].  There is a clear need for integration of work and tools 

pioneered in the field of developmental biology to be extrapolated to OA systems 

biology.    

Applying systems approaches in the clinical setting 

We have highlighted the inherent complexity that researchers face in trying to answer 

the many unresolved questions in OA pathogenesis; this complexity it also 

demonstrable at the clinical level, not least given the multiple co-morbidities that may 

be present in clinical presentations of OA.  There are systems orientated approaches 

that may be applied to integrate mixed predictors (both qualitative and quantitative) of 

risk.  Decision trees are one form of machine-learning (ML) classification tools that 

may be applied to systems biology problems including clinical decision-making for 
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complex conditions [89].  The tree structure develops from the recursive branching at 

binary decision points that splits a clinical data set into two mutually exclusive 

subsets.  They are useful because they are intuitive (classification proceeds through a 

series of hierarchical logic questions) and are flexible in their application, being able 

to handle both real-value and categorical features (e.g. biomarker levels in blood and 

radiographic scores) and multiple classes [90] compared to some other forms of ML.  

Some examples of simple decision tree approaches have been published for clinical 

decision making in OA relating to imaging [91] and arthroplasty [92, 93], but there is 

no evidence in the literature of more complex clinical decision trees for the 

classification of early osteoarthritis risk using predictors from multiple sources (e.g. 

imaging and biomarkers, SNPs).  Further application of machine-learning approach, 

such as decision trees and random forests (ensembles of decision trees) are required to 

deal with the multi-scale predictors of OA risk that will emerge with systems-

orientated studies to aid clinical decision making.   

 

Applying systems approaches in the drug development pipeline 

Standard treatments in OA have broadly consisted of physical interventions and 

behavioural modifications (e.g. weight loss), pharmacological, and surgical 

interventions.  The limitations of traditional pharmacological approaches to the 

symptomatic treatment of OA arise from their equivocal efficacy and/or unacceptable 

side-effects.  A number of next-generation therapeutics are in clinical trial, though 

few have been developed to a point where regulatory approval has been granted [22].  

Exciting new approaches, such as the use of poly-micelle protected Runx1 mRNA 

[94], demonstrates that, in principle, articular cartilage is amenable to RNA-based 

therapeutics.  Given that small molecules with Runx1-mediated chondroprotective 
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properties, including kartogenin [95] and TD-198946 [96, 97], have been defined 

using high-throughput candidate molecule screens and not systems biology 

approaches, can systems orientated approaches solve the problem of defining novel 

therapeutic targets?  Systems orientated approaches augment, but do not replace 

reductionist strategies.  They should, however, make reality the objectives of 

personalised medicine by understanding that network derangements, which are 

unlikely to be the same between individuals, are the core of complex disease 

pathogenesis.  With respect to the indications for therapeutic use the lack of sensitive 

staging and phenotypic descriptors (OA phenome) means OA clinical trials will have 

a ‘one-size-fits-all’ approach; in demonstrating efficacy this may become problematic, 

requiring large and expensive trials.  Systems approaches can facilitate the integration 

of clinical and ‘omics data, stratify clinical sub-populations, and facilitate translation 

between animal and human through an understanding of shared network structure 

[98].  In isolation the relative contributions of biology, structure, and mechanics may 

not result in OA, but rather an understanding of the interplay, and common regulatory 

mechanisms, between these components of joint health is required [21].  It is likely 

that we need to consider therapeutic options that target multiple tissues to tackle OA, 

consequently, appropriate mechanistic modelling approaches to compare between cell 

types is required to establish therapeutic targets within signalling pathways that are 

relevant to both tissues [25]. This is exemplified by the emerging discipline of systems 

pharmacology.  Here traditional quantitative pharmacological approaches 

(pharmacodynamic/kinetic models) are combined with computational modelling of 

the regulatory networks of the cell [99].  This will become particularly relevant with 

the maturation of RNAi and CRISPR technology as therapeutic options.  We have 

already mentioned that in complex diseases it is unlikely that a single regulatory 
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target will suffice as a therapeutic option.  As an example, a standard 

pharmacodynamic approach may be based on a single biomarker of interest, whilst an 

understanding of the multiple interactions of the drug with other components of a 

network, applicable in systems pharmacology, will help determine its efficacy.   

 

Systems orientated objectives for OA diagnostics 

High-throughput screening has become possible with ‘omics technologies to define 

prognostic markers for OA (reviewed here [100]).  Without a clearer understanding of 

the biological mechanisms involved in the aetiopathogenesis of OA the search for 

reliable predictors or markers of phenotypic groups would be especially challenging 

[101].  Joint space narrowing is still the FDA-approved standard for clinical efficacy 

and many of the other outcomes are inferred. MRI provides moderate sensitivity and 

there are few biochemical tests that are prognostic or diagnostic [102, 103].  

Currently, efforts to validate and qualify new biomarkers are focussed on further 

imaging and biochemical tests (Osteoarthritis Biomarker Consortium).  It is notable 

that integrative and predictive modelling of multiscale data is not an objective for this 

programme.  Within other drug development pipelines, e.g. oncology, the co-

development of companion diagnostic tests is now either common or strongly 

recommended [104].  The lack of validated and specific biomarkers will retard 

advances in OA therapeutic development, as well as increase the cost of the 

associated clinical trials [105]; the potential benefit of OA therapeutics will only come 

from early identification of susceptible individuals and their appropriate stratification.  

This concurs with the work of Chu and others who maintained that the key to 

prevention and treatment is the capacity to define pre-osteoarthritis [21, 106].  

Systems approaches will encourage this type of approach to develop predictive 
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models with diagnostic and prognostic capacity.  An understanding of the interaction 

networks can be useful in defining similarities in phenotypes, classifying phenotypes, 

response to treatment, in addition to revealing potential targetable components of the 

cellular system [18].  For example, in work from our group (unpublished data) the 

Rho GTPase dissociation inhibitor Arhgdib was found to discriminate between 

healthy and diseased cartilage derived from the RAAK dataset [107].  Other machine 

learning tools have been used for discriminatory analysis of a combination of 

biochemical markers, including citrullinated protein expression, between individuals 

with musculoskeletal disorders including early OA [102].  As systems approaches bed 

down in OA research a key objective is to undertake discrimination analysis to 

establish genetic sub-populations.  For the part of the clinicians this requires accurate 

recording of phenotypic information, which is often lacking from public data 

repositories.     

 

Verification and validation in systems biology  

Systems biology requires considerable resources and high returns are expected.  

Critical appraisal of the capacity of systems biology to meet its aims in the context of 

OA research is required.  In systems approaches where many thousands of predictions 

are left unverified [108] attention to robust validation strategies is essential whilst 

reproducibility remains an unresolved issue in particular within the field of high-

throughput ‘omics.  Rationale methods to verify competing models must be in place 

[109], to quantify the uncertainty in the models, ensure evidence for their application, 

and assess the credibility of the predictive capacity of such models.  Some calls for 

model standardisation in systems biology have been made [110], however, transparent 

publication and model sharing, release and reuse of data and code, standardised peer-
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review processes and open-source resources will be integral to progress of OA 

systems orientated studies.  Early efforts should be made in the OA research 

community.   

 

Conclusions and directions for future research 

In the course of the review we describe a number of approaches used by colleagues to 

gain a systems understanding of basic biology and OA development, but the 

functional output and clinical impact – changing research and clinical practice, 

reliable diagnostics and disease-modifying therapeutics – arising from these studies is 

not apparent at this time.  The promise of systems approaches has been heralded for 

the last two decades as a source of new therapeutics and robust diagnostics [111].  It 

is clear that this has not been the case for OA.  The future success of systems 

orientated research in OA will rely on a number of points raised in this review.  

Firstly, concerted, community-based (clinicians and researchers) approaches are 

required, with the use of standardised models and multi-disciplinary teams, advances 

should be possible.  The comprehensive collection of data, integration, discriminatory 

analysis, and predictive models should be a primary objective.  What is becoming 

clear is that we do not require more bioinformatics or ‘dead’/static descriptions rather 

dynamic (‘living’) mechanistic models and robust validation frameworks for models 

and we offer examples of approaches that, having shown utility in other disciplines, 

may have application in OA research (Figure 4).  We stress that modelling itself is 

not an end-point for osteoarthritis research, rather it can facilitate the design of more 

direct and relevant experimental approaches.  More subtle descriptors and 

development of the OA phenome, in addition to a refocusing of research strategies 

towards pre-osteoarthritis, is critical.  Clinical measurements need to be coupled to 
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predictive models of cellular response to help direct rational intervention 

programmes for patients at high risk.  The advent of mobile health and wearable 

technologies, and an understanding of social network trends on health, will facilitate 

collection of clinical and mechanical meta-data to incorporate into patient-specific 

models.  Systems pharmacology approaches recognise that single therapeutic 

interventions for complex diseases are unlikely to be efficacious and insufficiently 

tailored to patients.  RNA therapeutics will emerge as an important tool in network 

medicine and have the potential to promote personalised interventions in 

osteoarthritis.  Ultimately, there is still much that is unclear about the mechanisms 

regulating the homeostatic system that still requires resolution before relevant 

multiscale models may be employed.    
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Figure Legends 

 

Figure 1: The iterative systems biology approach to defining novel diagnostic and 

therapeutic targets.  Schematic demonstrates a prototypical, multi-stage, systems 

orientated approach to develop novel diagnostic and therapeutic solutions to a 

complex disease problem such as osteoarthritis.  Not all options may be applicable in 

every study.  Omics surveys are depicted as intersecting ‘snap-shots’ of the biological 

hierarchy. Recursive profiling of the biological hierarchy is relevant in systems-

orientated approaches as it may reveal: a) patterns of activity and isolated structures 

are repeated at different levels; b) information at one hierarchical level may not 

represent activity at another; c) multi-directional causality, i.e. information passes 

both within and between levels in the hierarchy, and d) non-locality of function; i.e. 

the functional activity may occur distant to other system elements (e.g. synapses in a 

neuron, actin filaments at the leading edge of a cell).  The integration of these 

elements is critical to the development of mechanistic models; this may include 

defining scales by which to couple levels or use approaches that span scales (e.g. 

phenotype and gene expression).  The exposome defines an individual’s cumulative 

risk factors over their life (e.g. obesity, joint trauma).  Validation at the molecular 

level may give insights into regulatory principles to produce initial in silico 

simulations.  Testing the simulation, perturbing the system, and subsequent re-

profiling are further elements of the cycle.  The co-development of OA diagnostics 

and therapeutics is consideration within this process.  Given the considerable time and 

resources that are required to sustain this continuum suggests that community-

orientated approaches using standardised methodologies are essential.  Subsequently, 

patient feedback, adverse events, data from mobile health technologies, can be 
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incorporated into iterative rounds of improvement. The review demonstrates that in 

the last decade studies have only considered elements of this continuum, e.g. ‘omics 

surveys.  In general, studies are incomparable limiting that capacity to integrate.  

Figure developed from concepts introduced in [112, 113].  

 

Figure 2: Publication trends associated with the following query terms: ‘rheumatoid 

arthritis’ (ra), ‘osteoarthritis’ (oa), ‘systems biology’ (sb), or combinations of these 

terms (sbOA and sbRA) expressed as a percentage of the total number of publications 

(https://www.ncbi.nlm.nih.gov/pubmed) per year (2000-2014).  Trend lines for sbOA 

and sbRA have been ‘jittered’ to avoid over-plotting. Data for 2015/16 are incomplete 

and are not included.  Publications associated with OA have grown slowly with 

respect to RA; in contrast systems biology publications have shown a rapid increase 

in the decade following the publication of the Human Genome (2001) to represent 

~0.9% of publications in 2014.  Publications referencing either OA or RA and 

systems biology still account for a very small contribution to the total number of 

annual publications (0.001%).   

 

Figure 3: Multiscale complexity in developing systems models in osteoarthritis.   

a: Selecting and defining the appropriate sub-system for analysis is critical in a 

systems-orientated approach to complex diseases such as osteoarthritis.  Osteoarthritis 

presents multiscale, -system, and –physical problems.  Approaches may be considered 

‘top-down’ or ‘bottom-up’, though in practice this is not a sequential process with 

many studies adopting a ‘middle-out’ approach.  b: Coupling scales and integrating 

data across levels of the biological hierarchical is non-facile when attempting to 

derive useful prognostic, predictive or therapeutic outputs.  Osteoarthritis is presented 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

This article is protected by copyright. All rights reserved 

 
41 

as a series of spatiotemporal problems.  For examples, time ranges from microsecond 

interactions in metabolic reactions to the course of human longevity, collagen 

turnover, and the requirement for a functional joint.  Spatially, anatomy, load sharing, 

propagation of mechanical signals, and localised responses at interfaces show 

considerable breadth. c: Network scales range from gene networks to social networks.  

The component of a network that is being considered is important, whether this is a 

simple interaction, a regulatory motif, or multiple sub-networks.    Additional 

complexity arises from a diverse phenome and inciting factors, stochasticity in gene 

expression, and non-local events. The use of animal models adds a layer of 

complexity to this problem and appropriate regard must be given to the spatial and 

temporal differences in these models.  Figure developed from concepts described in 

[3, 21, 60, 62].   

 

Figure 4: Future strategies for systems orientated studies in osteoarthritis – a: 

Coupling constraint-based, tissue-specific metabolic models requires the identification 

of metabolites that are shared across systems [48], e.g. sub-chondral bone and 

cartilage; simulation of single or multiple gene knock-outs [54] has also yet to be 

explored  b: Most analysis of cellular behaviour occurs at the population level and 

considers average responses.  More finely-grained appreciation of cellular behaviour, 

such as spatially-restricted signalling, requires stochastic modelling at a single-cell (or 

sub-cellular) level [26]; c: Most network models are static and have not been 

validated.  Dynamic models, using a series of ordinary differential equations, may be 

used to simulate a hypothetical regulatory mechanism (e.g. positive feedback), which 

may then inform in vitro validation studies; d: Agent-based modelling is a ‘bottom-

up’ approach that uses the activity and interactions of autonomous ‘agents’ (e.g. cells) 
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to simulate and predict the observed complex behaviour.  In this schematic the 

interaction space and potential states are depicted by a chess board where agents are 

represented by chess pieces; each has rational constraints to its behaviour.  Decision-

making heuristics and learning processes may be applied to simulate the complex 

behaviour of the system.  Such approaches have been frequently applied to multi-

scale problems [65] and may be applicable to modelling the complex behaviour 

within, and between, tissues [25].  e: Highly-detailed geometric information derived 

from advanced-imaging techniques and material properties can be used in finite-

element models of multiple musculoskeletal tissues [61].   

 

Table 1:  Example studies using systems biology approaches in OA relevant samples 

applicable to osteoarthritis research. 
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Figure 4 
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Question Sample     

Type Origin Species Goal Principle 

Platform(s) 

Reference 

Descriptive Tissue Cartilage Human OA; intact and 

damaged 

transcriptome 

RNASeq Dunn 2016 

[41] 

Descriptive Tissue Cartilage Human OA secretome Mass 

spectrometry 

proteomics, 

relative 

quantification 

Lourido 

2014 [91] 

Descriptive Tissue Cartilage Human  OA  secretome Mass 

spectrometry 

proteomics, 

absolute 

quantification 

Peffers 2013 

[92] 

Descriptive Cells Chondrocytes Equine Ageing 

transcriptome 

RNASeq Peffers 2014 

[93] 

Descriptive Cells Chondrocytes Human OA post 

transcriptome 

Microarray Tew 2014 

[94] 

Descriptive Cells Chondrocytes Human OA methylome Methylation 

arrays 

Rushton 

2014 [95] 

Descriptive Cells Chondrocytes Human OA  genetic 

loci 

GWAS Evangelou 

2014 [96] 

Descriptive Tissue Cruciate 

ligament 

Human Sex-related 

proteome 

Mass 

spectrometry 

proteomics, 

relative 

quantification 

Little 2014 

[97] 

Descriptive Fluid Synovial fluid Horse OA Mass 

spectrometry 

proteomics, 

relative 

quantification 

Peffers 2015 

[98] 

Descriptive Fluid Synovial fluid Human OA 

metabolome 

NMR 

metabolomics 

Zhang 2014 

[99] 

Descriptive Tissue Subchondral 

bone 

Rat OA 

transcriptome 

Microarray Zhang 2012 

[100] 

Descriptive Organ Joint Mouse Age and OA 

transcriptome 

Microarray Loeser 2012 

[101] 

Integrative Cells Cartilage, 

tendon 

Rat Transcriptomic 

changes in 

culture  

Microarray Mueller 

2016 [34] 

Integrative Cells Bone-marrow 

derived MSCs 

Human Transcriptome 

and methylome 

ageing 

RNASeq, 

methylation 

array 

Peffers 2016 

[102] 

Integrative Tissue Synovial Human OA 

Transcriptome 

and proteome 

Microarray Lorenz 2003 

[103] 

Integrative Organ Joint Mouse OA time course Microarray Olex 2014 

[39] 

Integrative Cells Chondrocytes Human OA Microarray and 

protein 

microarray 

Illiopoulos 

2008 [104] 

Pertubation/

model testing 

Cells Chondrocytes Human OA microRNA miRNASeq Crowe 2016 

[105] 

Computer 

model-led 

Organ Joint Mouse Age Computer 

modelling 

Hui 2014 

[44] 
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Computer 

model led 

Cells  Chondrocytes Human Cartilage 

breakdown 

Computer 

modelling 

Proctor 2014 

[106] 

Computer 

model led 

Cells  Chondrocytes Human  Cytokine 

response 

Computer 

modelling and 

proteomics 

Melas 2014 

[42] 

Computer 

model led 

Cells Periosteal 

derived stem 

cells 

Human Chondrocyte 

hypertrophy 

Computer 

modelling and 

gene 

expression 

analysis 

Kerkhofs 

2016 [46] 

Computer 

model led 

Organ Knee joint Human Assessing 

surgical 

treatments for 

osteoarthritis 

Computer 

modelling, 

MRI of knee 

joints 

Mootanah 

2014 [60] 

Computer 

model led  

Organ Brain 

(endocannabinoi

d system) 

Human Pain response 

in osteoarthritis  

Computer 

modelling  

Benson 2014 

[107] 

Computer 

model led 

Organ Knee joint Human  Stresses in 

response to 

cartilage 

overloading 

Computer 

modelling  

Mononen 

2016 [61] 

 

Table 1 

   


