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Abstract 

 

Non-thermal air plasma discharges for food and water security 

applications 

 

Yuan Ni 

 

The use of cold atmospheric pressure plasma for applications related to microbial 
decontamination has grown enormously over the last decade. Non-thermal plasmas 
generated in ambient air contain a wide variety of reactive oxygen and nitrogen 
species, or RONS. When such species interact with microorganisms they induce a 
number of biological changes, ultimately resulting in inactivation of the organism.  

This thesis focuses on the design, development, optimisation and application of air 
plasma systems for microbial decontamination. The aim of the work is to gain a 
better understanding of how RONS are produced in air plasma and how they are 
transported through different phases of matter, including gases and liquids. It is 
shown that RONS generation is highly dependent on the discharge conditions and 
two distinct modes of operation are observed. Downstream of the discharge, the 
transport of RONS to the sample region is of paramount importance as many highly-
reactive species are lost. To address this challenge, the structure of the plasma 
generating electrodes was systematically studied to optimise the plasma generated 
air flow and therefore the transport of species downstream. Optimised electrode 
structures were shown to generate flow velocities in excess of 1m/s which is an 
order of magnitude improvement over transport by diffusion alone. 

Using the optimised plasma system, the impact of RONS in real decontamination 
scenarios linked to food and water security were considered. This included 
investigation of plasma decontamination of liquid samples, solid surfaces and tissues. 
It was shown that plasma decontamination can be extremely effective but many 
factors influence the efficacy of the approach. Microorganisms shielded within a 
liquid layer or by a complex surface morphology were shown to be particularly 
difficult to inactivate. Overall, this work has demonstrated that plasma can be a 
highly effective tool for microbial decontamination but careful consideration of both 
the discharge parameters and the sample properties is required to achieve the 
highest level of decontamination.  
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Chapter 1 Introduction to food safety challenge and non-thermal 

air plasma 

 

1.1 Plasma & non-thermal plasmas 

Plasma, also referred to as the fourth state of matter, is an ionised gas, where its 

atoms or molecules are fully or partially ionised. By ionised, it means that at least 

one electron is not bound to the atom or molecule, thus changing neutral atoms or 

molecules into positively charged ions. As these ions and electrons are unbound 

plasma is electrically conductive and strongly responsive to electrical field [1]. 

Plasma comprises 99% matter of the universe, it presence ranges from stars, 

nebula, to aurora and lighting. The Sun itself is a giant plasma ball, where nuclear 

fusion in its core provides the energy to break down hydrogen atoms into free 

electron-ion pairs. The streams of charged particles project from the upper 

atmosphere of the Sun form the solar wind. When it is captured by Earth’s magnetic 

field, the upper atmosphere of the earth near the poles is no longer in neutral state 

and an aurora is generated [1, 2].  

In addition to naturally generated plasma, man-made plasma is widely used in 

laboratory and industry. A great number of applications benefit from plasma 

technology, including semiconductor fabrication, energy efficient lighting and 

materials synthesis. 

Both natural and man-made plasma can occur over a large range of pressures, 

electron temperatures, and electron densities, as shown in Figure 1.1. The 

temperature of man-made plasma can be as low room temperature or as high as to 

the inner core of a star. The electron densities of different plasma ranges from 104 

to 1018 cm-3. In addition, both natural and man-made plasmas are quasi-neutral, 

which means the concentrations of positively charged particles is equal to 

negatively charged particles [1]. 
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The degree of ionisation can vary enormously in a plasma, there are highly ionised 

plasmas and weakly ionised plasmas; the former has an ionisation degree close to 

unity, where almost all the particles are ionised; on the contrary, the latter has a 

relatively low degree of ionisation, where considerably less than 1% of the particles 

are ionised. Completely ionised plasma can be found in many thermonuclear plasma 

systems, such as tokomaks, stellarators, plasma pinches, etc. [1]. 

In partially ionised plasma, which forms the focus of this thesis, the ions, electrons 

and neutral particles can have very different temperatures depending on how they 

are generated. When the temperature of electrons is equal to the temperature of 

ions and neutral particles, the plasma is said to be in thermodynamic equilibrium 

and is thus called thermal plasma. Stars are examples of natural thermal plasmas. 

In the laboratory and industry, thermal plasma is usually generated at atmospheric 

and higher pressures, where the particles collide more frequently. The energy 

density of thermal plasmas ranges from 100 W cm-3 to above 10 kW cm-3 and, thus, 

Figure 1.1 Electron temperature and electron densities for natural and manmade plasmas. 
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a great number of active species is created which leads to variety of industrial 

applications, such as plasma cutting, welding, deposition, etc. [1, 3]. On the 

contrary, when the electrons receive more energy and have a much higher 

temperature than ions and neutral particles, the plasma is called non-thermal 

plasma or cold plasma. Typically, in such plasmas, the electron temperature ranges 

from 10,000 K to 100,000 K while the gas temperature remains between 300 K and 

1000 K.  

Non-thermal plasmas produced in laboratory are usually in the form of an electric 

discharge between two electrodes inside a gas chamber. With the application of a 

strong electric field between the electrodes, a small group of “seed” electrons are 

generated and accelerated [3]. If the electric field is strong enough, these electrons 

gain sufficient energy that they can ionise other neutral particles through collision. 

As this process repeats, the density of electrons and ions grow exponentially and 

leads to a chain reaction. This is known as the electron avalanche process. Since 

most of the electrons lose their energy or are themselves lost during collisions, an 

insufficient electric field cannot sustain the avalanche process. At a point when the 

density of the electrons is high enough so that electric current can pass through the 

gas between the electrodes, it is said that the breakdown of the gas has occurred. 

After breakdown, the electrical properties of the gas are changed and thus it has 

become a weakly ionised plasma [1–3]. 

Depending on the applied voltage and current, gas composition and pressure and 

electrode arrangement, different types of discharge can be generated and 

sustained; typical examples include glow discharge, corona, discharge, dielectric 

barrier discharge (DBD), radiofrequency (RF) and microwave (MW) discharges.   

 

1.1.1 Glow discharges 

The glow discharge is one of the most widely used non-thermal discharges in 

industry. The name glow discharge indicates the discharge is luminous compared to 

the low-power dark discharge. The simplest glow discharge configuration can be 

defined as two electrodes placed in a low pressure (0.1 to 10 Torr) gas chamber 
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filled with neon or argon. A DC voltage of several hundred volts is usually applied 

between the two electrodes, with sufficient magnitude to initiate the process of gas 

breakdown. When the applied voltage is just above the breakdown point, a weak 

plasma is generated known as a Townsend discharge, with a current-voltage 

characteristic as shown in Figure 1.2. As the applied voltage increases, the 

discharge current increases and a subnormal glow discharge develops. This region 

has a lower discharge voltage and the plasma becomes more intense. When the 

electrodes are fully covered by the plasma, it is said that the discharge enters the 

normal discharge region. At the end of the normal glow region, the discharge enters 

the unstable anomalous glow region, or abnormal glow, where voltage and current 

rises to relatively high levels. With further increases in voltage and current, the 

anomalous glow discharge transits to an arc discharge with the current usually at 1 

A or higher [2]. 

 

 

1.1.2 Corona discharges 

A corona discharge is a weak luminous discharge, which can usually be found near 

high electric field points such sharp points on electrodes, edges of ungrounded 

metallic objects, or thin wires. The electric field is sufficiently strong to form an 

ionised region, but not strong enough to cause electrical breakdown or arc 

Figure 1.2 Voltage and current characteristics of a DC glow discharge. 



 

5 

 

discharge to reach nearby objects. In comparison to the glow discharge, the 

intensity of a corona discharge falls somewhere between the Townsend discharge 

and subnormal glow discharge. Corona discharges can be observed around high-

voltage transmission lines which have a strong electric field to create a region of 

plasma [1]. 

 

1.1.3 Dielectric Barrier Discharges and Surface Barrier Discharges 

 

As the current grows in a discharge, there is chance to form a spark or even an arc, 

as shows in Figure 1.2. To prevent this, a dielectric material, or an air gap, can be 

applied between the electrodes, hence a dielectric barrier discharge (DBD) device is 

formed. A DBD device generally consists of one or more layers of dielectric material 

that are sandwiched by two metal electrodes. The layer of dielectric can be made 

from a variety of materials, such as glass, quartz, ceramics, or other materials of 

low dielectric loss and high breakdown strength. A DC current cannot pass through 

a dielectric, so an AC, or pulsed DC, is usually required to operate a DBD. When a 

time-varying high voltage is applied (typically in the kV, kHz range), a strong 

electric field is formed between the two metal electrodes, which can break down 

the gas between the electrodes.  

For a DBD operating at atmospheric pressure, the main source of ‘seed’ electrons is 

from photoionisation. In comparison to low pressure conditions, ions are more likely 

Figure 1.3 A general configuration of the dielectric-barrier discharge (DBD) 
which consists of a power supply, two electrodes and a dielectric. 
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to lose energy through collision with other particles, so they cannot be accelerated 

to the energy required for secondary electron emission. However, a portion of the 

neutral atoms are elevated to an excited state through collision with energised 

electrons. A portion of these excited atoms lose energy via a radiative decay and 

release a photon. If the photon has an energy high enough to ionise another atom, 

a new ‘seed’ electron is hence created and the electron avalanche process continues 

[3].  

The growing electron avalanches create a net charge density where a self-

propagating streamer is formed. A streamer is a narrow ionised channel that 

bridges the electrode and the head of the primary electron avalanche. As the 

density of electrons and ions increases, an internal electric field is generated inside 

the streamer, pulling the newly generated electrons towards the positively charged 

tail of the primary avalanche. As soon as the avalanche head reaches the other 

electrode, all the electrons flow into the electrode and leave an ionic trail in the 

gap, and the internal electric field of the streamer collapses at the same time. This 

process terminates the electron current in the conductive channel formed by the 

streamer and also leaves charges on the dielectric surface. As the charges 

accumulate on the dielectric surface, the local electric field is neutralised, resulting 

in the choking of the ionisation process and extinguishing of the discharge in a few 

nanoseconds [4, 5]. For this reason, an AC power input is usually required for the 

operation of a DBD. When the voltage polarity reverses, the charges deposited on 

the dielectric surface can help to create new avalanches and a large number of 

small streamers form [1]. 

A surface barrier discharge (SBD), or surface discharge, is a plasma device that is 

based on the principals of a DBD. The electrodes in a surface discharge are placed 

asymmetrically on both sides of a dielectric panel. This increases the non-uniformity 

of the electric field and thus decreases the breakdown voltage which is often 

considered an advantage. In addition, due to the distorted electric field, an 

Electrohydrodynamic (EHD) body force is created during the process of gas 

breakdown, making the surface discharge plasma a popular tool in aerodynamic 

researches [5]. 
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1.2 Typical applications of laboratory plasmas 

Plasma technologies have a wide spectrum of applications in industry. Depending 

on the characteristics of the plasma systems, the applications vary considerably. 

Due to the rich ions generated by the plasma in gaseous phase, surface treatment 

is widely applied to modify the property of different materials. 

 

1.2.1 Low pressure plasma applications: Plasma surface 

modification 

In the electronics industry, plasma etching plays a vital part in microelectronic 

circuit fabrication. The idea of plasma etching is to remove undesired materials from 

the surface and etch specific shape of trenches by applying a mask. Plasma can also 

be used in metal surface cleaning, with its rapid ion bombardment to react with the 

grease, oils, oxides, and fibres on the metal surface, providing a better condition for 

further processes such as bonding, soldering and gluing. Plasma treatment of 

polymer surface forms radicals that can increase the adhesion of the material. 

Further finishing such as painting and coating can be improved following plasma 

treatment. Plasma can also be used for polymerisation and deposit coatings on to a 

wide range of materials. Depending on the gas injection, different layers with 

different properties can be deposited on the material surface, such as hydrophobic 

layers, hydrophilic layers, and protective barrier layers. All these plasma surface 

treatment techniques have been widely applied in modern manufacturing, such as 

automotive, aerospace, home appliance, etc. [1]. 

 

1.2.2 Low pressure plasma applications: Energy efficient lighting 

Lighting is one of the traditional field for plasma applications. 80% of the general 

lightings in our daily lives are plasma light sources, such as fluorescent lamp, high-

intensity discharge lamps, low-pressure sodium lamps and light-emitting diodes [1] 

[2][6]. These light sources are widely used in offices, homes, factories, stores, and 

road ways. Among these light sources, mercury-containing fluorescent lamps have 
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an advantage of low power consumption and high efficiency compare to mercury-

free ones, but have the cons in the toxicity of mercury [2]. Recently, a novel low-

pressure metal halide discharge plasma lamp was reported with efficiency 

comparable to the mercury-containing fluorescent lamps but far less toxic [6].  

 

1.2.3 Atmospheric pressure plasma applications:  Plasma in 

environmental control  

Each year, the industrial emission of SO2 from power plants, steelworks, and oil 

refineries, that causes air pollutions, acid rain and other serious environmental 

pollutions. SO2 released in air can be later oxidised in to SO3 and then transfer into 

sulfuric acid (H2SO4) which leads to acid rains. Non-thermal atmospheric pressure 

plasma system can be installed and oxidise the SO2 into SO3 before it is released to 

the air. Non-thermal plasma can not only remove SO2, but also able to control the 

emission of NOx and volatile organic compound (VOCs). VOCs are toxic pollutants 

and can lead to global warming. Conventional methods, such as carbon adsorption 

and catalytic/thermal oxidation, are cost too much annually and not efficient for 

large gas flow rate and low VOC concentrations. Non-thermal plasma is a popular 

alternative method in this situation for its low energy cost and high efficiency [1]. 

 

1.2.4 Atmospheric pressure plasma applications: Plasma in 

medicine  

Plasma science and engineering is developing rapidly in the areas of biology and 

medicine. Plasma technologies are not only capable of basic surface 

decontamination but also more complicated applications like the treatment of living 

tissues, healing of wounds, blood coagulation, and treatment of skin diseases [7].  

Non-thermal atmospheric plasma generates rich species of radicals, ions, excited 

atoms and molecules, and even UV radiation which make it a powerful microbial 

decontamination agent capable of inactivating viruses, fungal spore, and other 

microorganisms [7]. Consequently, non-thermal plasma has become a widely used 
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technique for surface decontamination, such as dry surface decontamination, liquid 

water decontamination, animal and human living tissue decontamination [7]. 

In addition to microbial decontamination, non-thermal plasma is able to assist blood 

coagulation in surgery. The traditional argon plasma coagulator was used in this 

application but could generate too much heat, causing localised tissue damage [7]. 

Recently, non-thermal plasma has been considered as a more effective means of 

blood coagulation without any thermal effects. Blood coagulation is important 

because the flowing blood can prevent wound closure and introduces a risk of 

microorganism invasion. Non-thermal plasma assisted blood coagulation can cause 

rapid coagulation of the flowing blood in a wound and at the same time, 

decontaminate the potential bacterial, fungal, or viral infection [1, 8]. 

 

1.2.5 Atmospheric pressure plasma applications: Plasma use in 

agriculture 

According to the United Nations Food and Agriculture Organisation (FAO), in 2010, 

the total grain production of the world was approximately 2.216 billion tons, while 

the total consumption reached 2.254 billion tons, resulting a 38 million ton gap 

which led 9 million people in hunger [8]. As the progress of urbanisation and 

industrialisation, the demand of higher grain yield and grain quality has become the 

new challenge. Traditional methods to improve crop yield usually depends on the 

improvement of fertilisation and irrigation but limited by economic and 

environment. Novel methods merged recently including genetic engineering and 

plasma seed treatment.  

Many reports stated that early germination of seeds could be achieved using cold 

plasma treatment [1, 9]. The penetration of plasma generated reactive species 

through the seed coat and directly affect the cells inside. The treatment can cause 

surface ablation and increase the transmission of oxygen and moisture to the 

embryo, resulting an increase in seed germination [9]. Experiments revealed that 

the cold plasma treatment of seed could increase the germination rate by up to 

50 % [9]. Additionally, plasma treated seed resulted in better growth than 
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untreated ones. The plasma treated wheat was observed 21.8% higher in weight 

than the controls and the yield was found 5.89% more [8]. 

 

1.3 The challenge of water safety 

People in many parts of the world still have no access to safe water and are 

blighted by water-borne and foodborne illness. The contamination agents, such as 

bacteria and fungus, are highly sensitive to the non-thermal plasma generated 

species. Given the low power and low cost nature of non-thermal plasma devices, 

such technology present a very promising solution for food and water 

decontamination [9].  

Water is essential to sustain life and access to safe potable water is vital, despite 

this, ensuring potable supplies still remains a global challenge. Contaminated 

drinking water is a significant environmental contributor to the human disease 

burden. In 2011, approximately 768 million people still relied on inadequate water 

supplies, which are thought to have high levels of chemical and pathogen 

contamination [10]. Contaminated potable water is one of the most important risks 

to human health and contributed averagely 1.9 million deaths each year [11]. 

Bacterial contamination of potable water is the most common cause of disease 

compared to chemical contaminants. In 2012, over 500,000 people were killed due 

to Diarrhoea caused by inadequate potable water and estimate 3000 children were 

killed each day from diarrheal diseases [12]. 

 

1.3.1 Waterborne disease outbreaks 

Although most of the threats are in low-income and developing countries, 

waterborne disease is still a burden for people living in developed countries. In the 

USA, it has been estimated that each year, inadequate drinking water contributes to 

10 % of all hospitalisations. From 1991 - 2002, 207 cases of waterborne disease 

outbreak (WBDO) and 433,947 illness were reported in USA. While in UK, from 
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1991 - 2000, there were 38 WBDO and more than 4000 cases of illness reported 

[14, 15]. 

Most bacterial pathogens can infect the gastrointestinal tract via faecal-oral route, 

in which pathogens in faecal particles passing from one host to the oral cavity of 

another host. Etiologic analysis has shown that the most common bacterial 

pathogens implicated with WBDO include Salmonella, Cryptosporidium, norovirus, E. 

coli, Campylobacter and Legionella. Legionella was responsible for 55% of WBDO’s 

in 2001 in USA; these are typically linked to contaminated distribution systems. In 

2012, 92,438 confirmed cases caused by Salmonella were reported in the EU, 

meaning a rate of 21.9 cases per 100,000 populations [13–15]. 

 

1.4 The challenge of food safety 

Besides water, food is also essential to sustain human lives as it provides nutrition 

to the body. Access to safer food is important to human health and is a global 

challenge area. However, food security and safety remains as a huge challenge to 

society. According to the World Health Organisation (WHO), there are an estimated 

600 million people that suffer from foodborne illness (2010 data) and approximately 

420,000 die due to the consumption of contaminated food [15]. Although children 

under 5 years of age take up only 9% of the global population, a disproportionate 

43% of all foodborne diseases are among this group. In addition, pregnant women 

and elderly are at a greater risk from common foodborne diseases, as foodborne 

pathogens take advantage of their weaker immune systems [15]. 

Critically, it is in developing countries where challenges such as unsafe water is 

used for cleaning and processing of food products; inappropriate and poor food 

processing and handling; lack of adequate food storage infrastructure or poorly 

enforced food safety regulations have an enormous impact. All these factors 

contribute to making developing regions a high-risk situation. In addition, regions in 

tropical climate also suffers from pests and the natural emergence of toxins and 

parasitic diseases, including worm infestations [16]. 
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Due to increased poverty and a challenging environment, it is difficult for people 

living in developing countries to prevent and deal with foodborne disease. According 

to research from the WHO, foodborne illness perpetuates the cycle of poverty for 

many living at or below the poverty line [15]. As the symptoms of foodborne illness 

can range from mild nausea, vomiting and diarrhoea to life-threatening cases, like 

kidney and liver failure, brain and neural disorder to even potential cancer, which 

may lead to long periods of absenteeism and premature death [15]. Foodborne 

diarrhoeal diseases are lethal particularly to malnourished infants and children. 

Infections from this disease in turn exacerbate the malnutrition and lead to a 

desperate circle of debilitation and mortality. Even those children who survive may 

still suffer from delayed physical or mental development which deprive them from 

fulfilling their full potential in society in the future.  

Beyond the individual level, food safety issues negatively affect a region’s economic 

development, especially in agriculture, food industries, food export and tourism. 

Agreement on the Application of Sanitary and Phytosanitary Measures (SPS) of the 

World Trade Organization (WTO) is the regulatory requirement for international 

food export and those that failed to meet the requirement may suffer significant 

economic losses from food export [15]. 

 

1.4.1 Foodborne disease outbreak 

Foodborne illnesses are usually infectious or toxic in nature and caused by bacteria, 

viruses, parasites or chemical substances entering the body through contaminated 

food or water. Table 1.1, highlights the origin of foodborne illness worldwide, 

indicating that 91.3% of the foodborne illness were caused by diarrhoeal disease 

agents, such as norovirus and E. coli, and 5.8% were due to invasive infectious 

disease agents, like Hepatitis A virus and Salmonella, the rest, nearly 2.8%, were 

caused by parasites, like Helminths and Trematodes, and Chemicals and toxins 

[15]. 

 



 

13 

 

Table 1.1 Global number of foodborne illness and deaths by WHO (2010). 

Hazard Foodborne Illness Foodborne Death 

Diarrhoeal disease agents 548,595,679 230,111 

Viruses 123,803,946 34,929 

Bacteria  349,405,380 187,285 

Protozoa 67,182,645 5,558 

Invasive Infectious disease 

agents 

35,770,163 117,223 

Viruses 13,709,836 27,731 

Bacteria 10,342,042 85,269 

Protozoa 10,280,089 684 

Helminths 12,928,944 45,226 

Cestodes 430,864 36,500 

Nematodes 12,285,286 1,012 

Trematodes 218,569 7,533 

Chemicals and toxins 217,632 19,712 

Total 600,652,361 418,608 

 

In the case of diarrhoeal diseases, norovirus is a major concern, as are the bacteria 

including Campylobacter spp., Enteropathogenic E. coli – EPEC, Enterotoxigenic E. 

coli – ETEC, Shiga toxin-producing E. coli – STEC, Non-typhoidal S. enterica, 

Shigella spp. and Vibrio cholerae; for Protozoa, the species including 

Cryptosporidium spp., Entamoeba histolytica and Giardia spp.. In terms of invasive 

infectious disease agents, the most common virus is Haptitis A virus, and the most 

common bacteria include Brucella spp., Literia monocytogenes, Mycobacterium 

bovis, Salmonella Paratyphi A and Salmonella Typhi. Other invasive infectious 

disease agents include Toxoplasma gondii for Protozoa; Echinococcus granulosus, 

Echinococcus multilocularis and Taenia solium for Cestodes; Ascris spp. and 

Trichinella spp. for Nematodes; Clonorchis sinensis, Fasciola spp., Intestinal flukes, 

Optithochis spp. and Paragonimus spp. for Trematodes; finally, there are chemicals 

and toxins, like aflatoxin from Aspergillus flavus, Cassava cyanide and Dioxin.  
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It is noticeable that bacteria accounted for 59.9% of the foodborne illness and 65% 

of the death; virus, on the other hand, caused 22.9% of the illness and 15% of the 

death. 

A report from the Centers for Disease Control and Prevention of the U.S. 

Department of Health and Human Services shows that, during 1998 to 2008, there 

were 13,405 cases of foodborne disease outbreaks reported in the U.S., which 

resulted in 273,120 cases of illness reported, 9,109 cases of hospitalizations and 

200 deaths. Of all the cases reported approximately 45% were caused by viruses, 

45% were caused by bacteria, 5% were due to chemical and toxic agents and 1% 

were caused by parasites [17]. 

In the UK, the Food Standards Agency released a report in 2002 that showed in 

2000, there were estimate 1,338,772 cases of foodborne illness, 20,759 hospital 

admissions, and 480 deaths in England and Wales [18]. 

 

1.4.2 Environmental factors 

Different regions have different food safety challenges. The situations differ by 

income level, diets, local environment, civil infrastructures and development of 

economics.  

In developing countries, typical food safety concerns include: the inappropriate use 

of agricultural chemicals; the use of untreated or partially treated water; the use of 

sewage or animal manure on crops; the absence of food inspection, including meat 

inspection; a lack of infrastructure, such as adequate refrigeration; and poor 

hygiene, including a lack of clean water supplies. 

In these countries, the food trader and the consumer usually have a closer 

connection. Traditional markets provide most of the fresh food and there are fewer 

processed and packed foods compared to developed regions. Also, street vendors 

are popular and supply a large portion of food consumed outside the home. 

Moreover, due to the lack of preservation infrastructure and storage, perishable 

food is often processed and consumed immediately [16]. 
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However, as the economy develops in these regions, there are some trends that 

can increase food safety challenges in both developed and developing countries, 

which include changes in animal husbandry, changes in agronomic process, 

increase in international trade and travel, increase in susceptible populations and 

changes in life style.  

In order to maximise productivity, intensive animal husbandry practices have been 

applied in industry. One disadvantage of this is that it has increased the prevalence 

of human pathogens in flocks of production animals, for example, Salmonella can 

be found on poultry, cattle and pigs. In addition, the increased dose of antibiotics 

used in crowded animal farms has been linked to the emergence of new strains of 

antibiotic-resistant bacteria [15]. 

As to agricultural practices, the use of manure, chemical fertilizers, untreated 

sewage and irrigation system have increased the food safety risk associated with 

fresh fruits and vegetables. Outbreaks linked to fruits and vegetables have 

increased in some regions. For instance, the E.coli O157:H7 outbreak in Japan in 

1996 resulted in 9,000 hospitalised and the E.coli O104:H4 outbreak in Germany 

2011 that has killed 53 people [16, 20]. 

An increase of international trade and travel promotes the rapid transfer of 

microorganisms from one region to another. The longer the time between 

processing and consumption of the food can result in higher opportunities for 

contamination and thus increasing the risk of foodborne illness. Also, persons can 

be exposed to foodborne illness pathogens that originate from thousands of miles 

away.  

Meanwhile, due to advances in medical treatment, people are living longer, yet the 

use of antibiotic can indifferently kill essential bacteria within the human body. 

Thus, new strains of antibiotic-resistant bacteria or foodborne illness pathogens 

may have a higher chance to colonise and cause disease.  

Finally, the habits and attitudes of consumers are also a key factor in foodborne 

illness. In both developed and developing countries, the share of food budget has 
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been increasingly spent on food prepared outside the home. Street food, ready-to-

eat meals and takeaways have become an important part of the daily diet.  

 

1.4.3 Conventional food decontamination methods in Food industry 

From section 1.3 to 1.4.2 it is obvious to see that, despite a small percentage of 

chemical contamination, the leading cause of foodborne illness is linked to 

microorganisms or their products. Moreover, microorganisms also cause food 

spoilage, which leads to food waste and economic losses. Therefore, in order to 

produce food efficiently and safely, whilst minimising spoilage and the risk of illness, 

it is necessary to control microorganisms on food by reducing their numbers or 

completely eliminating them. To achieve this goal, several methods have been 

used, which include: limiting the access of the microorganisms in food; physically 

removing the microorganisms in food; preventing or reducing the growth of 

microorganisms and germination of spores present in food; and killing microbial 

cells and spores present in food. 

Food pathogens come from many sources, sometimes it is impossible to fully 

prevent their access to food, but it is possible to control their initial load and 

minimise the risk to food safety. In the modern food industry, a high level of 

sanitation has been introduced to help reduce the microbial load from various 

sources at all stages of food processing and handling. From the very basic food-

processing plant design, quality control of water and air, training of personnel to 

cleaning of processing facilities, significant efforts have been implemented to 

minimise the opportunity for contamination of food products by pathogenic bacteria 

and thus reduce the incidence of foodborne diseases. Such efforts are both time 

consuming and costly, with new approaches being constantly sought to expedite 

the sanitation process without compromising the safety [20–22]. 

During food processing, microorganisms can also be physically removed from solid 

and liquid foods in order to control the microbial level. For liquid foods, like milk, 

fruit juice and syrups, centrifugation is used to remove some undesirable 

substances, such as dust and solid particles. Under high force, 90% of the microbial 
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population can be removed due to their heavier mass. For other liquid drinks, such 

as beer, soft drinks and wine, due to their sparkling nature, in which centrifugation 

is not appropriate, filtration can be used to remove undesirable solids and 

microorganisms. In addition, damaged fruits and vegetables which have a greater 

chance of microbial contamination and spoilage are usually trimmed, so that parts 

contaminated with microorganisms are removed. Trimming can also be used for 

food products with visible mould growth and spoilage, such as cheeses, bread, 

fermented meat products and sausages. However, just removing the visible tainted 

area by trimming is often not efficient enough to remove the pathogens nor the 

toxin produced by some strains of fungi from the surrounding areas.  

Washing is another common physical decontamination method. Fruits and 

vegetables are washed regularly to remove soil and microorganisms from dirt; some 

meat products, like chicken and turkey, are also washed to remove gut materials 

and blood stains. Yet spray washing process can spread undesirable 

microorganisms and result in unexpected contaminations [20]. 

Heating, in the processing of food is not only a way of cooking but also a method to 

destroy vegetative cells and spores of microorganisms, including moulds, yeasts, 

bacteria and viruses. Heating of food can help destroy some enzymes that would 

affect the quality of food. Sufficient heating can degrade some heat sensitive toxins 

so that food will not cause health issues. Usually, holding food at a temperature 

above 50 ºC, often around 60 ºC for a certain amount of time is required to achieve 

the control of growth of many microorganisms, such as the pasteurization method 

for milk preservation. Unfortunately, while heating is extremely effective, it is 

unsuitable for many products such as fruit and vegetables and can have a negative 

impact on organoleptic properties [20]. 

In contrast to heating, lowing the temperature can also preserve food by preventing 

or reducing growth of microorganisms. Low temperature as well reduces metabolic 

activities of many microbial enzymes, especially for those heat-resistant proteinases 

and lipases. Freezing can also be lethal to microbial cells, 90% or more of the 

population can die during low temperature preservation. Although germination of 

spores is reduced, low temperature cannot kill spores [20]. 
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Microorganisms need water for basic biological functions such as transport of 

nutrients, nutrient metabolism, and removal of cellular wastes. In food, the 

moisture is present in two ways, namely, free water and bound water, and only the 

former is important for microbial growth. When reducing the free water in food, 

microbial cells will suffer reversible damage and death. Thus, drying of food can 

effectively reduce the growth of microorganisms and germination of spores, and in 

such way the food can be preserved. Common drying method can be used on fruits, 

vegetables, fish, meat, and milk, however, depending on the situation, some strains 

of pathogenic bacteria, yeasts and moulds can still grow during drying [20]. 

As technology develops, there are many novel food preservation techniques that 

have started to emerge in order to meet the changes in consumer demand. The 

desire for fresh food and food with lesser preservatives has increased. In the early 

20th century, food preservation of packaged food using a modified gas atmosphere, 

typically nitrogen (N2) or carbon dioxide (CO2), was invented. In a high 

concentration of CO2, the growth of moulds can be greatly reduced and ripening of 

fruits and vegetables can be delayed, as many of the metabolic activities are 

dependent on the level of oxygen (O2). In raw meat, a composition of 75% CO2, 

15% N2, and 10% O2 is found to be most effective composition to limit the growth 

of P. fragi [20]. The advantage of this method is that the shelf life of fresh food is 

prolonged and no physical damage nor chemical substance is left on the food. 

However, even under these conditions, anaerobic and facultative anaerobic bacteria 

can still grow [20]. 

Chemical antimicrobial preservatives are also used in food to kill undesirable 

microorganisms or to retard their growth. But these chemical substances are either 

harmful to human body, such as Nitrites (NaNO2 and KNO2) that can cause 

potential cancers, or can affect the nutritional value of the food, such as sulphur 

dioxide and sulphites destroying vitamin B1 [20]. 

More recently, more advanced food processing technologies have been studied. 

Such as microwave and radio-frequency processing, pulsed electric fields, high-

pressure processing, ultrasound, ultraviolet and non-thermal plasma processing 

methods [1]. 
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Of these new methods, non-thermal plasma has shown enormous promise as an 

effective and low-cost means of food preservation. Non-thermal plasma is proven to 

be very effective in killing bacteria, yeasts, moulds and other hazardous 

microorganisms, including spores and biofilms that are generally very difficult to 

inactivate by conventional methods. In addition, the plasma method may be 

suitable for a large range of food types due to its non-thermal and gaseous nature. 

Although plasma food processing is regarded as a promising technique in future 

food industry, its elementary mechanism and potential hazardous effects are still 

under study and investigation. This thesis aims to address some of the gaps in our 

understanding relating to the application of plasma to food and water for the 

purpose of decontamination. 

 

1.5 Outline of the thesis 

Chapter 1 introduces the basic principles of plasmas and their typical applications. 

Followed by the background of the food safety challenges recently and potential of 

plasma techniques in food industry.  

Chapter 2 comprises a comprehensive review of the plasma for food-borne 

pathogen decontamination in recent years. The review includes the plasma sources 

and configurations that has been used in food-borne pathogen decontamination 

studies, the exploration of the plasma microbiocidal mechanisms and a highlight of 

recent food sample decontamination experiments.  

In Chapter 3, the plasma sources, experimental setups and the diagnostic method 

for plasma are elaborated. The details and principles of the experimental equipment 

used in this study is presented. Also, the designs of the plasma sources are 

discussed.  

In Chapter 4, the characterisation results of the plasma system described in Chapter 

3 is presented. Two scenarios are considered during the experiment, namely the 

afterglow species in gas phase and species interact with the liquid phase. This 

chapter not only talk about the test of the plasma systems but also determine the 
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optimal power conditions of systems for reactive species generation. In later 

experiments, the setups are optimised based on the results of the characterisation.   

Chapter 5 explores the plasma species transport. Experiments are designed to 

determine the factors that can affect the mass-transport of the plasma generated 

species. Different geometric configurations of the plasma reactor are investigated. 

Optimisations inspired by the results are applied in the plasma system design for 

later experiments.  

In Chapter 6, the plasma decontamination of bacteria in potable water and fungi on 

agar surface is discussed. In the first part of the chapter, the decontamination 

effect using plasma on potable water is described. Water samples inoculated with 

two strains of bacteria were subjected to treatment by the plasma system designed 

in Chapter 3 and used the power conditions set in Chapter 4. The second part 

involves the decontamination of fungi spores using plasma treatment. The results 

are presented and discussed.  

Chapter 7 investigated the plasma decontamination of muscle meat and packaging 

materials. Differ to the situation in Chapter 6, which was a typical laboratory model 

system, Chapter 7 describes a study aimed at real world application. Muscle meat 

samples and packaging materials were prepared according to industrial standards. 

The capability of plasma decontamination on muscle meat and packaging materials 

was explored and the effects of plasma on muscle meat quality was studied.  

Finally, the overall conclusions are set down and the suggestions for future studies 

are presented in Chapter 8.  
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Chapter 2 Literature review 

 

2.1 Sources for the generation of non-thermal atmospheric 

pressure plasma 

This chapter focuses on the applications and evolutions of non-thermal atmospheric 

plasma sources in food and water decontamination area. In recent years, a wide 

variety of non-thermal atmospheric pressure plasma sources have been explored for 

food safety applications. There are many advantages of using non-thermal 

atmospheric plasma sources, primarily there is no need for a vacuum chamber 

compared to low- or high-pressure plasma sources. Consequently, atmospheric 

pressure plasma sources are usually lower in cost, easier to build and more flexible 

in certain conditions. Atmospheric pressure plasma sources vary in configuration, 

electrical parameters and input gases. Different configurations include parallel 

plates, jets, surface discharges etc.; the operating frequency can be DC, pulsed DC 

and sinusoidal from a few Hz right up to microwave frequencies (GHz). Also, they 

can be operated in ambient air, noble gases (He or Ar) or other mixtures of gases.  

One of the most common configurations for non-thermal atmospheric pressure 

plasma generation is the dielectric barrier discharge (DBD). The DBD was first 

investigated by Siemens in 1857 for ozone generation applications [4]. Later, at the 

beginning of the 20th century, the DBD gained more attention and the first 

laboratory for extensive investigation of the DBD was built by Emil Warburg [4]. 

The characteristics of a DBD plasma has been thoroughly studied and investigated 

since then. The DBD’s major contribution is its use as an ozone generator in 

numerous industrial applications. In the 1970s, modern diagnostic technology and 

modelling tools were applied in DBD plasma research, this led to a better 

understanding of the plasma physics and plasma chemistry and also the invention 

of more applications using DBD, such as surface modification, chemical vapor 

deposition, pollution control, etc. Later in the 1990s, the application of DBD plasma 

in the biology and medicine area was considered. The first report of using DBD 

plasmas for inactivation of bacterial was made in 1996 by Laroussi [22]. Later, more 
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reports of DBD plasmas researches in decontamination of microorganism has been 

published.  

 

2.2 DBD atmospheric pressure plasma system configurations 

 

 

Some popular configurations of non-thermal atmospheric pressure DBD systems 

used in microorganism inactivation applications are shown in Figure 2.1 [24], 

namely, (a) parallel plates, (b) surface discharges and (c) plasma jets. 

 

2.2.1 Parallel plate reactors 

Parallel plates DBD systems consist of two parallel and separate electrodes which 

are usually fitted on the walls of a gas chamber, the plasma is formed in the space 

between the two electrodes. Samples are placed inside the gas chamber and are 

exposed directly to the plasma. Therefore, highly reactive and short-lived plasma 

generated species are impinging directly on the sample, which can lead to a better 

or more efficient decontamination effect, but, on the other hand, may well lead to a 

non-uniform treatment of the sample or excessive heating [23]. 

Figure 2.1 Examples of plasma actuator configurations, including (a) parallel plates, (b) 
surface discharge panel, and (c) plasma jets. 
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In 1996, research was done to show that bacteria can be inactivated by parallel 

plate DBD plasmas system. The feed gas used in the chamber was a mixture of 

helium and air, and the plasma system was operating at a frequency range of 300 

Hz to 4 kHz and voltage up to 5 kV RMS. The sample consisted of Pseudomonas 

fluorescens inoculated in 10 ml suspension of YEPG (yeast extract polypeptone 

glucose) medium in a petri dish and a 6 log reduction after 10 minutes of treatment 

was observed [24]. 

Further exploration of the parallel plate DBD for microbial inactivation was 

conducted using other microorganism species, examples include E. coli inoculated 

on nitrocellulose filters and in liquid broth exposed to plasma generated at 17 kHz 

with 5 kV. On nitrocellulose filters, a 6 log reduction in 3 minutes was observed, 

while in liquid broth, only 2 log reduction was achieved in 10 minutes. P. aeruginosa 

was also test and it was shown to be more resilient than E. coli, taking 15 minutes 

for a 5 log reduction on nitrocellulose and only 1 log reduction in liquid broth in 15 

minutes [22]. 

An enhanced version of the parallel plate DBD system was developed in 2002 by 

Laroussi [25], in which the basic configuration remained the same but the dielectric 

material was substituted for a high resistivity material. The advantage of using high 

resistivity layer is the limitation of discharge current and hence the prevention of 

arcing. This also allows the device to be operated using low-frequency power even 

DC power. A 4 log reduction of vegetative B. subtilis after a 10 minute plasma 

treatment using this resistive barrier device at 60 Hz with a 97/3% mixture of He/O2 

gas was reported [22]. 

In 2000, similar DBD devices were also tested and reported by the UTK (University 

of Tennessee at Knoxville) Plasma Science Laboratory, USA [26]. A variety of 

microorganisms were tested with discharges in ambient air with a maximum 

humidity of 14%. Under an applied voltage of 10 kV RMS and a frequency of 7 kHz, 

an initial loading of 6 x 106 cells of E. coli was completely inactivated after 25 

seconds exposure time [27, 28]. The same device was used to test for inactivation 

of other microorganism species as well, including gram negative bacteria (P. 

aeruginosa, S. marcescens), gram positive bacteria (S. aureus), bacterial endospore 

(B. stearothermophilus, B. subtilis var. niger, B. pumilus), yeast (C. albicans, S. 
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cerevisiae), Virus (Bacteriophage Phi X174). The results showed that non-thermal 

atmospheric plasma is very effective against all these species on different surfaces, 

such as agar, glass, paper and polypropylene. For all the plasma treatments, at 

least 5 log reduction was achieved, depending on the treatment surface, the 

treatment time varies from 30 seconds to 15 min [28]. Another experiment using 

the UTK device was the inactivation of bacteria inoculated on to real food surfaces 

and showed that it was much harder to inactivate than those on fresh agar. The 

bacteria used was L. monocytogenes, a 1 minute exposure gave a 6 log reduction 

when treated on an agar surface, whereas it took 5 minute to reach the same 

inactivation on fresh iceberg lettuce [29]. 

The same group at UTK built an air filter system using multiple parallel plates. The 

electrodes were embedded in a chamber, and the test subject is place in a second 

chamber. A strong air flow is fed into the first chamber and the plasma generated 

reactive species transported into the second chamber. A 6 log reduction was 

observed for treatment of S. aureus in 10 minutes and a 4 log reduction for 

bacteriophage Phi X174 with the same treatment time. This device allowed the 

remote treatment using parallel plates, which reduce the heat dissipation, but 

inactivation rate was not as effective as the direct method [30]. 

 

2.2.2 Surface barrier discharge reactors 

Another common configuration is the surface discharge, in which the electrodes are 

mounted asymmetrically on either side of a single piece of dielectric material. In this 

configuration, the plasma is only generated on the dielectric surface, and as a 

result, the reactive species are transported to the afterglow region by diffusion and 

Electrohydrodynamic (EHD) forces. When used in food decontamination 

applications, the treated samples are not directly in contact with the plasma but are 

only exposed to the longer-lived reactive species. This indirect treatment has 

proven to be effective against microorganism without leaving any heat damage to 

the sample. However, the decontamination effect can be weakened by the large 

distance between the plasma and the sample, effectively filtering the short-lived 

reactive species in some experimental arrangements [23]. 
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An investigation exploring foodborne pathogen decontamination using a surface 

DBD discharge system was reported by Hähnal et al. in 2010 [31]. The 

configuration of the system used was very similar to the one shown in Figure 1(b). 

The system was operated with an applied voltage of 10 kV peak-to-peak and a 

frequency of 2 kHz in a pulse modulated mode of operation with a 50% duty cycle 

in ambient air. The microorganism species used was B. atrophaeus. The test results 

showed a strong dependence on ambient air humidity. At 60% humidity, a 4 log 

reduction was achieved after 150 seconds treatment time. The investigation also 

considered the impact of pulse modulation duty cycle, a 5 log reduction was 

achieved with 30% duty cycle in 5 minutes and an exponential correlation between 

the pulse on-time and reduction rate was concluded [28, 32]. 

Oehmigen et al. designed a round-shape surface discharge panel with a diameter of 

50 mm in order to fit onto a petri dish to analyse the decontamination effect of 

microorganisms in a liquid solution. B. atrophaeus was inoculated into a 0.85% NaCl 

solution and a buffered saline solution (PBS). The experiment was conducted in 

ambient air with a pulsed sinusoidal voltage of 10 kV peak-to-peak, 20 kHz and with 

33.8% duty cycle. The results showed a 6.5 log reduction from a 5 minute plasma 

exposure for bacteria in the 0.85% NaCl solution, while the bacteria in the PBS was 

only reduced by 3 logs following a 15 minute exposure. In addition, the pH value 

for the solution dropped as an effect of plasma treatment. For 0.85% NaCl solution, 

the pH value dropped to around 2.5, whereas the PBS stayed at 7 after the 

bacterial inactivation tests [32]. 

An experiment designed to decontaminate samples stored inside Tyvek packaging 

using a surface discharge was conducted by Eto et al. (2008). The device used a 40 

mm by 40 mm resin panel as the dielectric and stainless steel mesh electrodes, an 

AC voltage of 2.5 kV peak-to-peak with a frequency of 5 kHz was applied so that 

the plasma would be generated on the mesh. In the experiment, the mesh 

electrode was directly contacted with the permeable side of the Tyvek packaging so 

that the plasma generated species could diffuse into the package. G. 

stearothermophilus spores were placed inside the packaging and plasma was 

ignited with different mixtures of N2 and O2. The maximum inactivation rate was 

observed with a 50%/50% mixture of N2 and O2 after 15 minutes of treatment 

time, in which all the spores were inactivated. In addition, the effect of humidity 
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was also explored. When air with a 64.4% humidity was used, a complete 

inactivation was achieved within 5 minutes of plasma exposure [33]. 

Another device, named PlasmaLabel, was aimed at treatment of products sealed 

inside the package was designed by Schwabedissen et al. in 2007 [34]. The device 

used an enclosed package as the dielectric, and two pieces of high voltage 

electrodes were mounted on the outer side of the package, while the ground 

electrode was mounted on the inner side of package. The material of the package 

was polycarbonate (PC) and the electrodes were made of aluminium tape with 

plastic layers. The plasma was formed in the ambient air inside the package, with 

an applied voltage of 8 kV peak-to-peak and frequency up to several kHz. B. subtilis 

inoculated and spread on a paper strip was tested and a 4 log reduction within 10 

minutes of exposure was shown. Later the device was tested with cherry tomatoes 

and strawberries. Both treated group and control group were sealed in rigid plastic 

containers at room temperature. Mildew started to grow on untreated samples after 

14 days, whereas no effects showed on treated ones [34]. 
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2.2.3 Plasma Jets 

 

Plasma jets, or atmospheric pressure plasma jets (APPJ), are another popular 

system widely used in food safety applications. Depending on the configuration of 

the electrode, a jet is suitable for both direct and indirect treatment of a sample. A 

Figure 2.2 Configurations of plasma jets. Commonly consist of a wrapped tube and some 
have a ring electrode or a needle electrode. 
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common configure of the plasma jet consists of a high voltage electrode inserted 

within or wrapped around a dielectric tube, with a noble gas flowing through, as in 

Figure 2.2. The tubing of the jet typically serves as the dielectric layer, but in some 

cases the tubing can also be made of metal so as to use as the ground electrode. In 

all jet applications, a plasma plume forms and projects through the nozzle, 

delivering all the reactive species onto the sample. Depending on the feeding gases, 

the reactive species can be customised for different applications. One limitation of 

the APPJ is that the diameter of the jet nozzle is typically of millimetre dimensions, 

which limits its application in large area treatments. Plasma jets are frequently used 

in applications involving narrow gaps and complex geometries, such as micro 

structured cavities or capillaries; and the small dimension has the advantage of 

dealing with precise treatment, which makes it very often used in biomedical 

applications, such as dentistry [24, 28, 36, 37]. 

APPJs have a variety of configurations and driven by different power sources, as 

shown in Figure 2.2, (a) and (b) are configurations of DBD jets, the rest are non-

DBD jets that use RF or MW power supplies. 

The first use of a plasma jet for biological decontamination was reported in 1999 by 

Herrmann et al. [37]. The jet employed a coaxial configuration and was powered 

using RF excitation, it was designed for the decontamination of biological and 

chemical warfare agents. The RF power was applied at 13.56 MHz with a maximum 

dissipated power up to 250 W, under such conditions the gas temperature reached 

a maximum of 150 °C. The feed gas was a mixture of O2 and Helium at a ratio of 

0.7% to 1 %. The microorganism used was B. globigii which is a variation of the 

deadly warfare agent B. anthracis. B. globigii spores were inoculated in 10 µl 

solution with an initial population of 107 Colony-forming Unit per millilitre (CFU/ml), 

and then spread and dried on glass surfaces for plasma treatment. After plasma 

treatment, the results showed that it only required 4.5 seconds to reach a 1 log 

reduction and a total inactivation was achieved in a 30 second treatment time. To 

match the thermal effect, a further examination using hot gas heat up to 175 °C 

blow through the APPJ without plasma ignition and a 2.5 log reduction was 

observed [37]. 
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Another RF coaxial jet was reported in 2005 by Sladek and Stoffels. Using a 4 mm 

inner diameter Perspex tube as the nozzle and a 0.3 mm metal pin as the electrode 

plasma was generated in flowing helium gas at flow rate of 2 standard litre per 

minute (SLM). The electrode was driven at a frequency of 13.05 MHz and the 

dissipated power was up to 350 mW. E. coli inoculated on to agar plates with an 

initial concentration of 108 CFU/ml was used as the test subject and the distance 

between the pin electrode and agar surface was fixed at 1mm. The plasma 

treatment resulted in the formation of a bacteria-free circular area on the agar 

surface, the diameter of which was found to change as a function of treatment time 

and dissipated power. When using a power of 180 mW and treatment time of 10 s, 

a 6 mm diameter circle was formed; at 350 mW and with a treatment time of 60 s, 

the diameter of the circle increased to 12 mm [38]. 

A DBD plasma jet with a configuration similar to that shown in Figure 2(a) was 

designed and tested in 2006 by Laroussi et al. [39]. The dielectric tube of the jet 

was 12 cm long and had a diameter of 2.5 cm, two copper ring electrodes were 

mounted at 0.5 cm and 1 cm from the nozzle. The applied voltage was a 5 kV 

square pulse at a repetition rate of 1 - 10 kHz, the total power consumption was 

approximately 15 W. The plasma was ignited in a 1 – 10 SLM flow rate of Helium 

and 0.75% O2 gas mixture. E. coli was inoculated on to agar plates, after 30 

seconds of plasma treatment, a small area where the plasma had impinged on the 

agar surface showed complete inactivation. As the treatment time increased, the 

inactivation area also increased [39]. 

In 2007, a plasma jet device with a configuration similar to Figure 2(d) was 

reported by Uhm et al. [40]. The jet was made by using two dielectric coated 

coaxial cylinders: the inner one used as driven electrode and the outer one used as 

ground electrode. A radiofrequency power supply was applied to the driven 

electrode with a frequency of 13.56 MHz and a power up to 150 W. The 

microorganism used for the tests was Bacillus atrophaeus spread on to glass plates 

with a population of 2 x 109 spores/ml. In addition, the distance between the jet 

nozzle and the sample surface was fixed at 0.5 cm. The feed gas was argon with 

oxygen mixture, the volumetric percentage of oxygen was varied from 0 to 1 vol%. 

The optimum combination was using 0.15 vol% oxygen at 120 W power output. 
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The best decontamination efficiency was shown at 120, 130, and 150 W with 

oxygen volumetric percentage namely at 0.15, 0.25 and 0.35 vol% [40]. 

Another microorganism decontamination experiment carried out using a plasma jet 

with a configuration similar to that shown in Figure 2.2(e) by Daeschlein et al. [36]. 

The jet capillary was made from a quartz tube with an inner diameter of 1.6 mm, 

though which an 8 SLM argon gas flow was directed; the high voltage electrode 

was a metal pin with a diameter of 1 mm that was inserted in the tube. The system 

was driven by a 1.5 MHz, 1 – 5 kV voltage input. The plume of the plasma extended 

a length of 12 mm from the jet exit and heat up to 50 °C was measured depending 

on the dissipated power and gas flow rate. In the inactivation experiments, S. 

aureus, P. aeruginosa, E. faecium, and C. albicans were considered, these common 

wound pathogens were inoculated on to blood agar plates with an initial population 

of 7 x 102 CFU/plate.  The treatment distance between jet nozzle and agar surface 

was fixed at 7 mm and for each species 20 agar plates received treatment. The 

results differed among different species, for P. aeruginosa, 19 out of 20 agar plates 

showed a complete inactivation; for S. aureus and C. albicans, 8 out of 20 agar 

plates showed total inactivation and for E. faecium, there was no inactivation 

observed [36]. 

Due to the simple configuration and low-cost components, plasma jets can be 

tailored for specific applications. A jet specialised for the decontamination of 

catheters was designed by Ehlbeck et al. with a configuration similar to that shown 

in Figure 2.2(e). A T-shaped quartz nozzle mounted at the end of the jet was used, 

so that the catheters could go through and be treated. The jet was operated with a 

total power dissipation up to 20 W at 27.12 MHz and the feed gas was pure argon 

or argon with 0.25% air admixture. In order to examine the decontamination 

efficiency, S. aureus was spread on to the catheter surface. The results indicated a 

5 log reduction for pure argon treatment and a 6 log reduction for the mixture of 

argon and 0.25% air [41]. 

Another plasma jet device was designed specifically for the decontamination of fruit 

cutting surfaces by Kong et al. [42]. The electrode configuration was similar to that 

shown in Figure 2.2(b), the tubing was made of ceramic with an inner diameter of 

1.5 mm. The powered ring electrode was warped around the tube and the ground 
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electrode was placed 1 cm below the nozzle. The plasma was ignited in a mixture of 

5 SLM Helium and 0.025 SLM Oxygen, and an 8 kV peak-to-peak AC power supply 

with a frequency of 30 kHz. The maximum temperature measured on the ground 

electrode when operating was 30 °C. The samples selected for the study were two 

common foodborne pathogens, namely, E. coli and L. monocytogenes, and two 

common fruit spoilage organisms, namely G. liquefaciens and S. cerevisiae. The 

species were cultivated in melon (Cucumis melo var. reticulatus) and mango 

(Magifera indica) juices, which were spread on fruit cutting surfaces, with an initial 

concentration of 106 – 107 CFU/ml. The result of the experiment showed that a 2 

log reduction for G. liquefaciens in mango juice was achieved after a 10 seconds 

exposure. For E. coli and L. monocytogenes, a 2.5 log reduction was observed on 

mango juice spread following a 30 second plasma exposure. A similar reduction was 

observed on S. cerevisiae after 40 second exposure on mango juice spread. 

However, for samples on melon juice spread, no significant inactivation was 

observed [42]. 

 

2.2.4 Other configurations  

A flexible DBD device was reported by Kim et al. [43]. The system consists of a 

biocompatible tubing as the dielectric layer and a metal wire inserted into the 

tubing serving as the powered electrode. The device was wrapped around the 

sample to be treated, and the plasma was generated on the outside surface of the 

tubing in the ambient air. In one investigation, the tested sample was a whole 

chicken and the plasma was operated at a voltage of 15 kV peak-to-peak and a 

frequency of 32 kHz. Scanning electron microscopy was used to show that the 

dielectric tubing was not damaged during the discharge, but no further biological 

analysis was reported [43]. 

A food decontamination device using an afterglow corona discharge in air was 

designed and reported by Mok et al. [44]. The system contained a treatment 

chamber, in which samples were placed, connected to an air pump that was used to 

introduce air into the chamber with a flow rate of 2.5 m/s. In between the pump 

and the treatment chamber, a corona discharge electrode was mounted. The 
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system operated using 20 kV voltage pulses at a repetition frequency of 58 kHz. A 

mixture of E. coli, S. aureus, B. cereus, L. monocytogenes, V. parahaemolyticus, 

and S. typhimurium was cultured in broth for the test. The temperature of the 

treatment chamber was also monitored and maintained at 40 °C. The inactivation 

rates were presented as D-values (time required to achieve 1 log reduction) that 

refer to the decimal reduction time. As a result, the D-value range from 3.6 to 12.8 

s depending on different microorganisms [44]. 

 

2.3 Mechanisms of Plasma microorganism inactivation 

Non-thermal atmospheric pressure plasma has shown great potential to inactivate a 

wide range of microorganisms, yet in order to optimise its efficacy and efficiency in 

practical applications, it is important to understand the mechanisms underpinning 

the microbial inactivation effect. Plasma discharges contain a complex mixture of 

charged particles, reactive species, UV photons, high temperature filament and 

intense electric fields. All of these agents play a role in microorganism inactivation 

and their simultaneous generation results in a synergistic interaction. In recent 

years, many experiments have been conducted in an attempt to determine the 

effects of each individual agent generated by the plasma. In this section, a review 

of the plasma inactivation mechanism will be presented. 

 

2.3.1 Heat 

Although non-thermal atmospheric pressure plasma has a much lower gas 

temperature than thermal plasma, the heat dissipated can still be effective for some 

heat sensitive microorganisms. From the previous section it is clear that most non-

thermal plasma devices generate gas temperatures from 40 °C to 150 °C and many 

vegetative bacteria only have a heat tolerance up to 40 °C. A demonstration 

experiment conducted by Sladek and Stoffels has shown that E .coli could be 

inactivated by heat alone with a water bath of 42 °C for 5 min [38]. 
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A comparison experiment was carried out to study the impact of gas temperature in 

plasma inactivation efficiency. A sample of E. coli was subjected to two treatments 

using the same plasma system with the same applied power for 60 s, but with 

different initial temperature: one at 37.8 °C and one at 43 °C. The results showed 

that the group exposed to higher temperature achieved 2 log more reduction than 

the one at 37.8 °C. For E. coli, the optimal cultivation temperature is at 37.8 °C, 

and they are very sensitive to higher temperatures, therefore for an application 

involving heat sensitive bacteria like E. coli, the heat dissipated by plasma can make 

a huge impact [30]. 

Sometimes, short-duration and localised high temperatures can contribute to the 

microbial decontamination effect. For instance, the non-thermal gliding arc 

discharge can be considered ‘cold’ on average, but instantaneous gas temperatures 

can exceed 1000 °C on short time scales potentially having a significant impact on 

the level of decontamination. Additionally, DBD’s are considered strongly non-

equilibrium and while the gas is close to room temperature in general, the 

streamers can reach localised temperatures of hundreds of degrees [1]. Even 

though heat is assumed not to play an important role in decontamination by itself, 

the temperature increase can additionally enhance the decontamination effect of 

other mechanisms that will be introduced in the following sections. 

 

2.3.2 Ultraviolet (UV) radiation 

Ultraviolet radiation has been demonstrated to be a significant role in 

microorganism decontaminations in low pressure plasma systems. DNA has an 

absorption peak around the 260 - 265 nm region, when UV radiation strikes a 

biological cell, most of the energy is absorbed by DNA. Depending on the condition 

and intensity of UV exposure, DNA damage could occur and be beyond repair 

resulting in the inactivation of the cell [45]. In atmospheric pressure air plasma 

systems, short wavelength UV radiation (< 300 nm) is mostly absorbed in the 

ambient air, consequently the dose to a sample is not particularly high and it is 

often assumed that plasma generated UV contributes very little to the inactivation 

of microorganisms [23, 28].  
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A reference experiment explored the impact of UV radiation in inactivation of B. 

subtilis spores using a helium plasma jet system. An optical filter that only allowed 

UV to pass was placed between the jet and the sample. Another group received 

normal plasma treatment (3 SLM helium flow rate and 6.5 kV driven voltage for 10 

minutes). The normal plasma treatment resulted in a 4 log reduction of the B. 

subtilis spores, conversely, the UV treated sample showed only a 0.2 log reduction 

in 10 minutes [46]. In addition, many other researches showed similar results that 

UV radiation plays only a minor role in atmospheric pressure plasma microbiological 

decontaminations [23, 46, 48]. Nevertheless, the emission of UV radiation can be 

substantially increased with certain background gases. This makes UV radiation a 

potential important agent in atmospheric pressure microbiological inactivation 

applications under very specific experimental setups.  

 

2.3.3 Charged particles 

Charged particles in a low pressure plasma system are known to be highly effective 

for microorganism inactivation, in which high-energy ions bombard the 

microorganism resulting in the physical damage of cell membranes. However, in 

atmospheric pressure plasma, charged particles are considerably less energetic due 

to increased number of collisions with neutral particles in the background gas. In 

spite of this, several experiments considering charged particles effects in 

microorganism inactivation at atmospheric pressure have been reported in recent 

years. 

A scanning electron microscope (SEM) was used to analyse bacteria following a 

parallel plate DBD treatment. The microscope images showed that the membranes 

of the E. coli were damaged, whereas the membranes of B. subtilis were intact, 

even though both of the bacteria were inactivated. The difference was attributed to 

the structure of the different bacteria. E. coli is Gram-negative bacteria that has a 

rougher membrane surface compared to the Gram-positive B. subtilis. It was 

suggested that the charged particles generated by the plasma could accumulate on 

the rough membrane surface and lead to the formation of a large electric field. As 
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the electric field increased, the electrostatic tension also increased until the bacteria 

cell wall could not hold and eventually broke down [22]. 

A similar experiment conducted by Gallagher et al. revealed the same finding as 

above using a glow discharge for the treatment of airborne microorganisms. After 

the treatment, the results showed that the culturability of E. coli was decreased 

whereas other bacteria showed no sign of membrane damage and were able to 

retain their viability [48]. Several researchers have presented the membrane 

damage caused by plasma treatment using SEM images, although it is not explicitly 

clear if such damage was caused by charged particles or through the etching effects 

of reactive neutrals [50–52]. 

An interesting investigation to compare the effects of charged particles and neutral 

species was reported Lu et al. [52]. The investigation employed a pulsed DC plasma 

jet system and considered a direct and indirect treatment. The direct treatment was 

conducted with the sample placed on a downstream ground electrode, whereas the 

indirect treatment was carried out with a ground electrode placed between the jet 

nozzle and the sample. The sample consisted of bacteria inoculated on an agar 

surface. The first group of tests were carried out using a He/N2 gas mixture and the 

results showed similar levels of inactivation between direct and indirect methods. 

These results suggest charged particles played only a minor role in the microbial 

inactivation. A second group of tests used a He/O2 gas mixture and showed the 

direct method to achieve a better level of inactivation compared the indirect one. In 

this group of tests, charged particles had an impact on inactivation. In a third group 

of test, pure helium was used as the feed gas, and the results indicated that the 

direct method was slightly better than indirect method for bacteria inactivation. The 

results of the experiments suggested that the neutral species played a large role in 

inactivation and the effect of charged particles was dependant on the feed gas 

composition. SEM and Transmission electron microscopy (TEM) were used to 

examine the impact of plasma treatment on the bacteria membrane. The images 

revealed that Gram-negative bacteria and yeast had membrane damage after the 

plasma treatment [54–56]. 

As well as electrical effects, charged particles may also exhibit a high degree of 

chemical reactivity introducing chemical effects in microbiological treatments. The 
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chemical effect of both charged and neutral species is considered in the next 

section.  

 

2.3.4 Reactive species 

Reactive species generated in a non-thermal atmospheric pressure plasma are 

believed to play the key role in microbiological inactivation. The reactive species 

include ground, metastable and excitated states, many are short-lived and have 

high oxidation potentials. Many of the species produced can be grouped in the 

categories of Reactive Oxygen Species (ROS) or Reactive Nitrogen Species (RNS). 

The generation and composition of reactive Oxygen species and reactive Nitrogen 

species (RONS) in a plasma is highly dependent on the system configuration, such 

as background gas, temperature, humidity, driven power, etc. Nevertheless, typical 

RONS that can be detected from the air plasmas include O, O3, OH radicals, 

hydrogen peroxide (H2O2), nitric oxide (NO), nitrogen dioxide (NO2), nitrous oxide 

(N2O), nitrite (NO2
-), nitrate (NO3

-) and peroxynitrite (ONOO-). These species are 

known to have strong bactericidal effects and are considered to be the key species 

in bacterial decontamination applications. Table 2.1 presents a comprehensive of 

the reactive species generated in air plasma which is often used as a basis for 

computational simulations of air plasma [24, 46, 57–60]. 

Table 2.1 Species generated in air plasma. 

Plasma region Cations N+, N2
+, N3

+, N4
+, NO+, N2O+, NO2

+, H+, H2
+, H3

+, 

O+, O2
+, O4

+, OH+, H2O+, H3O+  

Anions e, O-, O2
-, O3

-, O4-, NO-, NO3
-, H-, OH-, N2O-, NO2

- 

Neutrals N, N2, H, H2, H2O, O, O2, O3, OH, HO2, H2O2, NO, 

NO2, NO3, N2O3, N2O4, N2O5, HNO2, HNO3, N2O, 

HNO 

Afterglow region NO, N2O, NO2, NO3, N2O3, N2O4, N2O5, HNO, HNO2, HNO3, N, 

N2, O, O2, O3, OH, H2O2, HO2, H2, H2O 
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Generally, both ROS and RNS have strong oxidative effects on the structure of 

microorganism cells. Cell membrane are made of lipid bilayers which consist of 

unsaturated fatty acids. This structure allows cell membrane to transport 

biochemical agents but unsaturated fatty acids are susceptible to OH radicals. The 

presence of OH radicals can compromise the function of the cell membranes [57, 

61]. Also, many protein molecules are imbedded in the lipid bilayer, which control 

the transport of various biochemical compounds. These proteins are comprised of 

linear chains of aminoacids which are also susceptible to oxidative effects of RONS. 

For example, peroxynitrite (OONO-) and NO2 can oxidise proteins at different sites. 

In addition, similar damage caused by RONS can occur in nucleic acid (mainly DNA) 

as well. DNA can be damaged by oxides at both nucleic bases and at the sugars 

that link the bases. Excessive oxidative damage to the cell can results in the 

compromise of cellular respiration system, mutations or even cell death [5, 61, 62]. 

Moreover, NO can release iron from metalloenzymes and produce iron depletion. 

The presence of RNS can lead to nitrosylation of free thiol groups and cause the 

inactivation of metabolic enzymes in the cell [63, 64]. Also, the interaction of ROS 

and RNS can lead to the creation of a variety of antimicrobial species such as H2O2, 

O2
-, OONO-, NO2, N2O3 and N2O4 [62]. Therefore, antimicrobial effect of plasma 

treatment is a result of synergistic action of both ROS and RNS. 

 

2.4 Food related studies 

A considerable amount of research in the use of cold plasma for food security 

applications have been carried out in recent years. Non-thermal atmospheric 

pressure plasma has shown promising antimicrobial effects, previous studied have 

not only focused on inactivation of food pathogens, but also on the direct treatment 

of actual food materials. In addition to the decontamination effect, the quality of 

food after treatment has also been investigated.  

Experimental evidence has shown that plasma is capable of being applied to most 

kinds of food for the purpose of decontamination. In this section the recent 

investigation on different kinds of food are reviewed.  
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2.4.1 Vegetables & fruits 

Table 2.2 shows the vegetative food decontamination applications using non-

thermal atmospheric pressure plasma in recent years. A variety of vegetables, fruits 

and nuts were selected and used, typically these were inoculated with a range of 

different foodborne pathogens and a vast array of different cold plasma systems. 

The recent literature indicates that cold plasma systems are quite effective for 

foodborne pathogen inactivation, generally a 1 – 6 log reduction can be achieved in 

timescales ranging from a few seconds to 15 minutes of plasma exposure.  

In addition, post processed food quality was monitored as well. In many reports, 

food surface colour measurements were recorded in order to assess the impact of 

plasma to the food surface. In some reports, other nutritional properties, such as 

moisture level, vitamin C content, and even photosynthetic activity were measured 

and compared before and after the plasma treatment. 

Wang et al. [64] conducted an investigation on plasma treated carrots, pears and 

cucumbers, L-ab colour spacing was used as colour measurement method. After 8 

minutes of treatment using a plasma jet with compressed air at 15 W output power, 

the total colour difference ΔE* changed from 0.6 to 1.3, meaning a small change 

had occurred (total colour differences (∆E*) are considered as very distinct (∆E* > 

3), distinct (1.5 <∆E* < 3), and small differences (∆E* < 1.5)). The plasma 

treatment also resulted in a < 5% moisture loss. Furthermore, vitamin C content 

was also measured. After the treatment, cucumbers, carrots and pears showed a 

vitamin C content loss of 3.6%, 3.2% and 2.8% respectively. Researchers 

suggested that vitamin C is light sensitive and the generation of UV from the 

plasma could have led to some degradation [64]. 

Baier et al. conducted a study on the plasma treatment of corn salad leaves, minor 

changes in total colour difference ∆E* after 90 seconds of cold plasma treatment 

was also reported. In this experiment, photosynthetic activity of corn salad leaves 

was measured. Results suggested that following treatment the leaves had severely 

lost their photochemical efficiency; however, the mechanism and reason was not 

revealed in the study and future investigations are required [65]. 
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Table 2.2 Non-thermal plasma treatment of vegetables and nuts. 

Food material Pathogens Results Plasma set-

up 

Reference 

Almonds E. coli 5 log reduction in 

30 seconds 

DBD 

Air 

Direct 

[66] 

Almonds E. coli O157:H7 1.3 log reduction 

in 20 seconds 

Jet 

N2 

Direct 

[67] 

Apples 

 

Salmonella  2.4-3.7 log 

reduction in 3 

minutes 

Gilding arc 

Air 

Indirect 

[68] 

E. coli O157:H7 2.6–3 log 

reductions in 3 

minutes 

Apples 

 

E. coli O157:H7 2 log reductions in 

2 minutes 

DBD 

Indirect 

 

[29] 

 
Salmonella 2 log reductions in 

1 minutes 

L. 

monocytogenes 

1 log reductions in 

1 minutes 

Apples E. coli 4 log reduction in 

20 seconds 

Jet 

Argon, 1% 

O2 

Direct 

[65] 

Carrots Salmonella 5 log reduction in 

4 seconds 

Jet  

Air 

[64] 
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Direct 

Corn salad 

leaves  

E. coli 5 log reduction in 

120 seconds 

Jet 

Argon, 1% 

O2 

Direct 

[65] 

Cucumber E. coli 4.5 log reduction 

in 60 seconds 

Jet 

Argon, 1% 

O2 

Direct 

[65] 

Cucumber Salmonella 1 log reduction in 

4 seconds 

Jet  

Air 

Direct 

[64] 

Lettuce 

 

E. coli O157:H7 3 log reduction in 

3 minutes 

DBD 

O2 

Indirect 

[69] 

Salmonella 5 log reductions in 

5 minutes 

Lettuce Salmonella 

typhimurium 

2.7 log reductions 

in 15 minutes 

Jet 

N2 

Indirect 

[70] 

Lettuce E. coli 1.7 log reductions 

after 10 minutes 

Needle 

Array 

Argon 

Indirect 

[71] 

 

Lettuce E. coli 3.6 log reductions 

after 15 seconds 

Jet 

Ar 

[72] 
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indirect 

Mango 

 

E. coli 2.5 log reductions 

after 30 seconds 

Jet 

He & O2 

Direct 

[42] 

L. 

monocytogenes 

2.5 log reductions 

after 30 seconds 

Cantaloupe E. coli 1.5 log reductions 

after 40 seconds  

Jet 

He & O2 

Direct 

[42] 

L. 

monocytogenes 

2 log reductions 

after 40 seconds 

Saccharomyces 

cerevisiae 

1 log reductions 

after 40 seconds 

Gluconobacter 

liquefaciens 

2 log reductions 

after 10 seconds 

Cantaloupe E. coli O157:H7 3 log reductions 

after 3 minutes 

DBD 

Air 

Indirect 

[68] 

Salmonella 5 log reductions 

after 5 minutes 

Pear  Salmonella 1 log reduction in 

4 seconds 

Jet  

Air 

Direct 

[64] 

Potatoes  Salmonella 

typhimurium 

0.9 log reduction 

in 15 minutes 

Jet 

N2 

Indirect  

[29] 

Strawberries Salmonella 

typhimurium 

1.8 log reduction 

in 15 minutes 

Jet 

N2 

Indirect 

[29] 

Tomatoes E. coli 1.7 log reduction 

in 10 minutes 

Needle 

Array 

[71] 
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Ar 

Indirect 

Tomatoes E. coli 3.1 log reduction 

in 10 seconds 

DBD 

Air 

Indirect 

[73] 

Salmonella 

typhimurium 

6.3 log reduction 

in 1 minutes 

Tomatoes E. coli 3 log reduction in 

20 seconds 

Jet 

Argon, 1% 

O2 

Direct 

[65] 

L.  

monocytogenes 

4 log reduction in 

20 seconds 

 

Attempts on inactivation of A. flavus using non-thermal plasma has been reported. 

S. Preechayan et al. has explored the capability of plasma decontamination on A. 

flavus by using glow discharge plasma [74]. The plasma electrode was set up in a 

glass tube with fans blowing the generated species into the sample chamber, in 

which were food samples, such as corn, bean, garlic, and shallot, incubated with A. 

flavus. The counted number of contaminated fungi was 7x104 CFU/g before the 

treatment. The plasma was operated at a low frequency range of 400-800 Hz and 

the applied voltage at 30 kV. After a treatment of 30 minutes, the fungi on corn and 

bean was completely reduced, and in the case of garlic and shallot, there was 2x104 

CFU/g left. 

Another attempt of eliminating Aspergillus using plasma was done by P. Basaran et 

al. using low pressure cold plasma using air and SF6 as feeding gas [75]. The 

plasma operating condition was 1k Hz at 20 kV peak-to-peak voltage. The pressure 

of the plasma chamber was controlled at 500 mTorr and the temperature was 

maintained at 20-30 ˚C. For the treat sample, Aspergillus parasiticus (A. parasiticus) 

was inoculated on hazelnuts, peanuts and pistachio nuts. After a treatment of 5 

minutes, 1-log reduction of CFU was achieved and a further 5 minute treatment 

resulted in addition 1-log reduction. The direct treatment of aflatoxins was also 
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conducted, with a 20-minute low pressure air plasma treatment, the total aflatoxins 

was reduced by 50%.  

 

2.4.2 Meat & Dairy Products 

Both fresh and processed animal products, such as pork, beef, chicken, eggs, 

bacon, and cheese were considered for plasma treatment to reduce foodborne 

pathogen inactivation. Table 2.3 summarises recent investigation using cold plasma 

to treat meat and dairy products. 

Plasma decontamination of animal products, especially meat, has received an 

increasing amount of attention in recent years. The experiments listed in table 2.3 

show a wide variation in decontamination efficacy from 1 – 6 log reduction with a 

treatment time up to 10 minutes for meat products. On the contrary, it usually took 

significantly longer to achieve a significant level of inactivation on eggs shells.  

Due to the different chemical composition between vegetable and meat foods, the 

analytical methods employed to assess the impact of plasma exposure are also 

different. In meat treatment, typical properties under consideration include pH, 

surface colour and lipid oxidation. In an investigation reported by Kim et al. [76], 

pork cutlets were treated using a plasma jet with an O2 and He mixture. The jet 

was driven by a 3 kV, 30 kHz bipolar square wave, the treatment times from 30 

seconds to 10 minutes. After the plasma treatment, the pH value of the meat was 

examined. The pH value drop was observed to drop slightly from 5.4 to 5.3 after 

treatment, which was a minor change and this was probably due to the feed gas 

consisting of only He and O2. In other reports using air plasma where large amount 

of RNS was generated, the pH value drop was more significant [77]. Surface colour 

is another property used to determine meat quality, this especially important to the 

consumer and off-coloured meat often goes unsold. The experimental results of Kim 

et al. revealed that the lightness of pork cutlet surfaces was decreased, as well as 

increased yellowness following plasma treatment. In addition, the redness was 

slightly decreased, however, the greenness increased slightly. This could be caused 

by the reaction of plasma generated hydrogen peroxide and the myoglobin in the 
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meat. Moreover, lipid oxidation was also investigated using the TBARS values, 

which is Thiobarbituric acid, a byproduct of lipid peroxidation. ROS were assumed 

to be the main species that contributed to the lipid oxidation. The TBARS value in a 

He and O2 plasma treatment was found to be higher than those recorded using a 

pure He plasma alone, 0.51 and 0.35 respectively, compare to the untreated sample 

with a value of 0.31. These results indicate that oxygen species played the key role 

in lipid oxidation [76]. 

Choi et al. (2015) also reported the measurement of L-ab colour spacing on plasma 

treated pork. The plasma system he used was a corona jet using ambient air, with a 

frequency of 58 kHz and 20 kV output. The results were varied considerably 

depending on treatment time, a 30 second treatment results in ∆E* 1.54 total 

colour difference, whereas for 60 seconds, ∆E* was 4.42, for 90 seconds, ∆E* was 

4.28, and for 120 seconds, ∆E* was 5.27. Additionally, the redness dropped 

significantly, while the yellowness increased slightly, and there was not much 

difference in lightness after treatment. In this investigation, no significant changes 

of the plasma treated pork TBARS value was observed [78]. 

 

Table 2.3 Non-thermal plasma treatment of meat and dairy products. 

Food 

material 

Pathogens Results Plasma set-

up 

Reference 

Bacon L.  

monocytogenes, 

Salmonella 

typhimurium, 

E. coli (Mixture) 

4.6 log reduction 

in 90 seconds 

DBD 

He & O2 

Direct 

[79] 

Beef (raw) Listeria 

monocytogenes 

1.9 log reduction 

in 10 minutes 

DBD [80] 
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E. coli 2.57 log reduction 

in 10 minutes 

Air 

Indirect 

Salmonella 

typhimurium 

2.58 log reduction 

in 10 minutes 

Beef (dry 

and cured) 

L.  

monocytogenes 

1.6 log reduction 

in 10 minutes 

DBD 

Air 

Direct 

[81] 

Cheese 

(sliced) 

L.  

monocytogenes 

8 log reductions 

after 2 minutes 

DBD 

He & O2 

Direct 

[82] 

Chicken 

(raw) 

Listeria innocua 3 log reductions 

after 4 minutes 

Jet 

He & O2 

Direct 

[83] 

Chicken 

(cooked) 

L. 

monocytogenes 

1.37 log reduction 

in 2 minutes (He) 

4.73 log reduction 

in 2 minutes 

(N2+O2) 

Jet 

He, O2, N2 

Direct 

[84] 

Shell Eggs  Salmonella 

enteritidis 

2.2–2.5 log 

reductions after 90 

minutes at 35% 

Relative Humidity 

(RH) 

DBD 

Air 

Indirect 

[85] 

Salmonella 

typhimurium 

3.8–4.5 log 

reductions after 90 

minutes at 65% 

RH 
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Ham L.  

monocytogenes 

1.9 log reductions 

after 2 minutes 

(He) 

6.5 log reductions 

after 2 minutes 

(N2+O2) 

Jet 

He, O2, N2 

Direct 

[84] 

Ham L. 

monocytogenes 

0.25–1.73 log 

reductions 

DBD 

He & O2 

Direct 

[72] 

Pork (raw) E. coli 6 log reductions 

after 30 seconds 

DBD 

Air 

Direct 

[86] 

Pork (raw) E. coli 2.54 log reduction 

in 10 minutes 

DBD 

Air 

Indirect  

[80] 

L. 

monocytogenes 

2 log reduction in 

10 minutes 

Salmonella 

typhimurium 

2.68 log reduction 

in 10 minutes 

Pork (raw)

  

E. coli 1.5 log reduction 

in 120 seconds  

Corona 

discharge 

Air 

Indirect 

[78] 

L.  

monocytogenes 

1 log reduction in 

120 seconds 

Pork (raw, 

frozen) 

E. coli 1 log reduction in 

60 seconds 

L.  

monocytogenes 

1 log reduction in 

120 seconds  
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2.4.3 Food processing materials 

Beside food itself, plasma has also been considered for the decontamination of food 

packaging materials and food processing equipment. As the protection for food 

materials during handling, transport and distribution, food packaging is required 

with high hygiene levels. It has been demonstrated that non-thermal plasma is 

effective in decontaminating many typical packaging materials, including polymer 

foils, aluminium foils, plastic trays, paper cups, and polyethylene terephthalate 

(PET) bottles [23]. 

An investigation exploring the decontamination of PET foils using two types of DBD 

plasma systems was reported by Heise et al. [87]. A parallel plate DBD device and a 

cascade DBD device were used in the experiment. B. subtilis and A. niger were 

inoculated and spread on to pieces of PET foil to mimic typical foodborne pathogen 

contamination. Different feed gases were considered including argon, nitrogen, and 

synthetic air (80% nitrogen + 20% oxygen). When using the parallel plate DBD 

system, a >4 log reduction of B. subtilis was observed in 10 seconds’ treatment 

with argon and nitrogen as the feed gas, whereas less than 1 log reduction was 

observed using synthetic air. A 6 log reduction was achieved for A. niger using 

argon within 10 seconds of treatment, while for synthetic air the log reduction was 

halved. With nitrogen alone, only 1 log reduction was achieved with the same 

treatment time. On the other hand, when using cascade DBD device, a 6 log 

reduction was observed for decontamination of B. subtilis using Oxygen combined 

with a 282 nm flat lamp in a treatment time of 10 seconds. When the feed gas was 

changed to Argon no colony forming unite was observed after 10 seconds of 

treatment [87]. 

Decontamination of other packaging materials such disposable plastic trays 

(polystyrene), aluminium foil, and paper cups, were considered by Yun et al. [88]. 

The plasma system used was a cylindrical DBD with a floating ground, powered by 

a radio frequency source operating at a frequency of 13.56 MHz with a maximum 

output power of 150 W. L. monocytogenes was inoculated uniformly on to the 

various packaging materials. The decontamination results showed that, at 150 W 

output power and exposure time of 120 seconds, a 6.79 log reduction was achieved 
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on plastic trays, a 3.09 log reduction on aluminium foil, and a 2.85 log reduction on 

paper cups [88]. 

In another experiment, the DBD decontamination effect of a rotating cutting blade 

was investigated by Leipold et al. [89]. A 100 mm x 100 mm aluminium plate was 

used as the powered electrode and placed 2 mm above the rotating cutting blade 

which served as the grounded electrode. Listeria innocua (L. innocua) was 

inoculated on the surface of the blade and was later treated by air plasma with a 

discharge power of 0.36 kW. Results showed that a 5 log reduction was observed 

after a 340 second treatment and the temperature of the blade was found lower 

than 30 °C after the exposure. 

 

2.5 Summary 

In this chapter, a comprehensive review of the recent developments of DBD plasma 

devices and their food related studies was presented. Non-thermal plasma has 

shown great promise for the decontamination of both biotic and abiotic samples; 

however, there is still an enormous potential for improvement as there is a wide 

variation in the reported efficiency of the plasma technique and the treatment times 

are still far too long to be industrially relevant (ideally an exposure < 1 seconds to 

fit in with line processing speeds). Although the mechanism of plasma 

decontamination effect was briefly explained in the chapter, many antimicrobial 

pathways are still not fully understood. Most of the studies focused mainly on the 

decontamination efficiency, the changes in the organoleptic and nutritional 

properties of the plasma treated food by specific plasma conditions are yet to be 

investigated. 
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Chapter 3 Plasma source & diagnostics techniques 

This chapter details the design and development of the plasma systems used for 

experiments throughout the thesis and the diagnostics techniques employed to 

understand it.   

 

3.1 Plasma source 

Chapter 1 and 2 shows that DBD systems can be highly effective for microbial 

decontamination, are low-cost to operate and can be developed to treat a large 

area. Based on this, it was decided to explore a DBD based device. Out of all the 

possible DBD configurations, the SBD was chosen because it is suitable for the large 

area generation of air plasma without requiring extremely high voltages. 

Additionally, the in-direct nature of the treatment prevents direct contact between 

hot filaments in the plasma and the food surfaces. It is also suitable for the 

treatment of both liquids and solids. However, a drawback of the configuration is 

the lack of mass transport of short-lived reactive species, such as OH and O.   

 

3.1.1 Surface Barrier Discharge design 

A Surface Barrier Discharge (SBD) is typically constructed on a flat dielectric sheet 

made from polymeric or ceramic materials. Electrodes are adhered to either side of 

the dielectric material. With one electrode held at ground potential and the other 

electrode raised to a high voltage using a time-varying voltage plasma forms 

around both electrodes. In this configuration, the visible plasma is confined to the 

edges of the electrodes, typically in a thin layer that extend 1 – 5 mm from the 

electrode edge. Highly reactive species are confined to the visible plasma region 

whereas longer-lived species are able to propagate beyond the visible region. It is 

generally assumed that longer-lived species diffuse in to the afterglow region (away 

from the plasma region) but this is not the only mechanism capable of mass 

transport. Electrohydrodynamic (EHD) forces produced by charged particles drifting 

in the electric field result in a flow of the neutral fluid surrounding electrode. The 
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details of the EHD force will be presented in Chapter 5. The flow generated by EHD 

forces can reach several m/s and manipulation of the electrode configuration on the 

dielectric surface can be used to steer the direction of the fluid flow to enhance 

mass-transport [90]. 

 

Figure 3.1 shows the cross section of a basic SBD plasma reactor design, with a 

quartz dielectric in the sandwiched between two copper electrodes. When a high 

voltage input is applied to the upper electrode and the lower covered electrode held 

at ground potential, the plasma discharge forms on the dielectric surface around the 

edge of the powered electrode. The direction of the electric field causes charged 

particles produced in the plasma to move toward the electrodes. Given that positive 

ions have a significantly larger mass than electrons, they are capable of imparting 

momentum on the background neutral gas through collisions, resulting in a gas flow 

in a given direction. In Figure 3.1, the induced flow occurs from the left to right of 

the Figure. The addition of a second powered electrode, at the opposite side of the 

covered electrode would induce a flow in the opposite direction (right to left). When 

the two induced flows meet, they coalesce resulting in a flow that moves away from 

the dielectric surface in a perpendicular fashion.  

In Figure 3.2 shows the different designs of SBD reactors used in the project, (a) is 

a single strip shaped design; (b) is a multi-strip shaped pattern design; (c) is a 

mesh electrode design; (d) is a ceramic dielectric panel with stainless steel strips 

design. 

Dielectric Upper electrode 

Covered electrode 

Figure 3.1 The cross section of a surface barrier discharge reactor design. 
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In this investigation, multiple SBD configurations have been developed and 

explored. Specific details of each electrode design are listed table 3.1. 

 

 

 

(a) (b) 

(c) (d) 

Figure 3.2 Different designs of SBD electrode. (a) is the single strip shaped design; (b) is 
the multi-strip shaped pattern design; (c) is the mesh electrode design; (d) is the 
ceramic panel. 
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Table 3.1 SBD Reactor specifications. 

Name Dielectric 

material  

Electrode material  Discharge 

length 

Single strip shaped design (5 

cm x 0.5 cm) 

Quartz plate Copper tape 11 cm 

Multi-strip shaped pattern 

design (handheld device panel) 

Quartz disc Aluminium tape 65.4 cm 

Mesh electrode design (5 cm x 

5 cm) 

Quartz plate Copper tape & 

Stainless steel 

mesh 

63 cm 

Ceramic panel Ceramic 

plate 

Stainless steel 

strips 

92.8 cm 

The single strip shaped design used a 6 cm x 2 cm quartz plate as a dielectric 

material, 50 µm copper tape was adhered to each side of the dielectric to form the 

electrodes, and the grounded electrode side was covered with Kapton tape to 

prevent plasma discharge forming on that side. 

The multi-strip pattern, shown in Figure 3.2 (b), used a 1 mm-thick and 10 cm-

diameter quartz disc as the dielectric material with electrodes adhered to both sides 

made from 50 µm aluminium tape. The width of each strip electrode is 1 cm and 

the gaps between them is 1 cm, this was determined as the optimum value based 

on comprehensive testing detailing in Chapter 5. On the ground side of the 

electrode, the strip edges were sealed with Kapton tape to prevent discharge 

formation. The total length of the strip edges that produced plasma was 

approximately 65.4 cm. 

The mesh electrode design shown in Figure 3.2 (c), is widely reported in literature. 

In this investigation a 5 cm x 5 cm quartz plate was used as the dielectric material. 

A hexagonal stainless steel mesh was used as a ground electrode. Each side of the 

hexagons was 3 mm in length, providing a plasma generation length of 18 mm per 
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hexagon. The driven electrode was made from 50 µm copper tape and covered with 

Kapton tape to prevent plasma formation.  

The ceramic electrode, in Figure 3.2 (d), consisted of an alumina dielectric printed 

with metallic grids as electrodes. The dielectric was 1 mm thick, 4.1 cm wide and 

11.7 cm long. The total length of the metallic grid was 92.8 cm. 

The designs mentioned above were mainly used in characterisation experiments, 

which will be discussed in the next chapter. It is worth noting that many designs 

were used to investigate and optimise plasma species transport, which will be 

introduced in Chapter 5. Additionally, a new design is introduced in Chapter 7 for 

use in the treatment of meat products.  

 

 

3.1.2 Power supply design and development 

The plasma source used in all experiments consisted of a home-made half-bridge 

switched mode power supply, shown in Figure 3.3. The half bridge configuration 

was chosen as it offers a good compromise between efficiency, cost and 

complexity; it is well suited to the generation of kHz waveforms up to 500 W. As 

shown in Figure 3.4 the input to the half bridge was fed from a 60 V DC power 

supply (GW Instek programmable DC power supply, model PSP-603) and TTI 

Figure 3.3 Typical connection diagram using an IR2184 half-bridge driver. 
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instruments function generator as a trigger source (TTi TG2000 20 MHz DDS 

function generator). The output of the half bridge was connected to a high-voltage 

transformer, during experiments several different transformers were tested, all had 

similar properties in that they operated resonantly with the electrode unit forming 

part of a series LC network. Given this configuration, the optimum frequency of 

operation differed between the differed SBD reactors employed. 

 

In order to monitor the electrical properties of the plasma and calculate the 

dissipated power within the discharge, a mixed signal oscilloscope (Tektronix 

DPO5054 digital phosphor oscilloscope 500 MHz 5 GS/s) combined with high 

voltage probe (Tektronix P6015A 1000:1 75 MHz) and current monitor (Pearson 

4100 1V/1A) were used in all experiments.  In all experiments, the high voltage 

output was sinusoidal wave and was typically in the 7 kV – 12 kV peak-to-peak 

voltage range, with an operating frequency in the 30 kHz – 40 kHz range. Figure 

3.5 shows typical applied voltage and current waveforms obtained from a discharge 

Half bridge 

circuit 

Transformer 

Function generator 

Oscilloscope 

DC power supply SBD 

Figure 3.4 Typical experimental setup for a SBD device. 
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operating at 10 W dissipated power. The current waveform clearly shows multiple 

spikes indicate that the discharge is filamentary in nature. The total dissipated 

power is calculated and monitored by the oscilloscope. 

In certain experiments the discharge temperature needed to be carefully controlled, 

in these tests a pulse modulated mode of operation was used. A pulse generator 

(TTi TGP110 – 10 MHz pulse generator) was used to modulate the trigger waveform 

to the plasma source resulting in a pulse modulated sinusoidal waveform (figure not 

shown). 

 

3.2 Fourier Transform Infrared spectroscopy  

Fourier transform infrared (FTIR) spectroscopy is a well-known technique for the 

analysis of solid, liquid and gaseous samples. It is an ideal technique to identify and 

quantify the long-lived chemical species in the afterglow of the plasma system. 

Figure 3.5 Voltage-current waveform of plasma discharge at 40 kHz. 
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The infrared spectrum is a result of transitions between quantised vibrational 

energy states of molecules. Depending on the number of atoms, the vibrations vary 

from the coupled motion of the two atoms in a diatomic molecule to the much more 

complex motion in a large polyfunctional molecule. For molecules consisting of N 

atoms, there are 3N modes of motion. These include three modes of translational 

motion, three modes of rotational motion, and the remaining 3N-6 modes are 

vibrational modes. Linear molecules only have two modes of rotational motion; 

thus, linear molecules have 3N-5 modes of vibrational motion. Due to this, diatomic 

molecules (N=2) only have one vibrational mode [1, 2]. 

Every motion mode is formed by harmonic displacements of the atoms in their 

equilibrium positions and all the atoms vibrate at a certain characteristic frequency. 

These vibrational frequencies are usually given in units of wavenumber, defined as 

the number of waves per unit length, usually having the unit of cm-1 [91]. 

Molecules have distinctive vibrational modes and frequencies, which results in a 

unique infrared spectrum for each species. The energy difference for transitions 

between the ground state and the first excited state of most molecule vibrational 

modes corresponds to the energy of radiation in the mid-infrared spectrum (400 to 

4000 cm-1), which is typical of the range of operation of a laboratory FTIR 

instrument. 

 

(1)                                                  (2)                                                 (3) 

Figure 3.6 Water, H2O, molecules consist of three atoms, according to the theory above, they 
have three modes of vibrational motions, namely: (1) Bending, (2) Symmetric stretch, (3) 
Asymmetric stretch.   
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3.2.1 Beer’s law 

The Beer Lambert law, or simply Beer’s law, is the fundamental law of quantitative 

spectroscopy analysis [91]. The transmittance T of any spectral sample at a certain 

wavenumber is given by the ratio of the radiant power emerging from the rear face 

of the sample at that wavenumber, 𝐼, to the power of the radiation at the front face 

of the sample, I0. In this case, the radiant power source is an infrared beam passing 

through the gas sample, some of which will be absorbed by the molecules at a 

certain wavenumber. The transmittance of the gaseous sample can be affected by 

the path length of the infrared beam, 𝑙, which is passing through the sample and 

the concentration of the sample, 𝑐. Beer’s law presents the relationship of these 

factors as follow [92, 94, 95]: 

 

𝐼 = 𝐼0𝑒−εcl                                                         (3.1) 

 

Where 𝜀 is the molar absorption coefficient. The absorption, 𝐴, of a sample at a 

given wavenumber can be described as: 

 

𝐴 =  − ln (
𝐼

𝐼0
) =  εcl                                                   (3.2) 

 

3.2.2 FTIR spectrometer components and setup 

The key components in any Fourier Transform infrared spectrometer include an 

infrared source, interferometer, optics and detectors. Figure 3.7 presents a basic 

setup of the components for a FTIR spectrometer. A broad range of infrared 

radiation, usually 500 cm-1 to 8000 cm-1, is produced by the infrared source. The 

source is usually a rod made of a rare earth oxide or a resistively heated silicon 

carbide rod known as Globar.  
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The interferometer of FTIR spectroscopy is based on the two-beam interferometer 

designed by Michelson in 1881 [91]. The interferogram is created by the 

interference of two beams with different path lengths, as shown in Figure 3.8. The 

infrared beam projected from the source is directed to a beam splitter which 

partially reflects the beam to a fixed mirror and partially transmits the beam to a 

movable mirror. The two partially split beams reflect back to the beam splitter 

where they will interfere with each other due to different path length caused by the 

moveable mirror. Thus, the interferogram is created by the interference and the 

FTIR spectrum can be calculated from it by using Fourier Transform [92, 95, 96]. 

Figure 3.7 Basic elements of a FTIR system. 

Figure 3.8 An example of FTIR interferogram. 
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3.2.3 FTIR spectral analysis and quantification of measurements 

For all FTIR measurements reported, a Jasco FT/IR-4000 series (Jasco analytical 

instruments) with a mid-IR optical bench from 7800 cm-1 to 500 cm-1 was used. The 

resolution for data acquisition was varied between 0.5 cm-1 and 8 cm-1 depend on 

the specific requirments of the test and all data was recorded between 10 and 25 

times to provide an average measurement.  

Two different gas cells were used for the gaseous species characterisation. A short 

path length gas cell (model Specac GS05000), which had a fixed path length of 10 

cm, and a multiple light passes gas cell (model Piketech 163-1600) with variable 

path length from 1 m to 16 m. Both gas cell used KBr windows for infrared 

transmission.  

The corresponding vibrational bands of key air plasma generated species are shown 

in table 3.2 [1, 7].  

Table 3.2 Corresponding infrared spectra wavenumbers of key species. 

Species Absorption Peak Wavenumber (cm-1) 

O3 1054, 1034 2123, 2107, 2097  

NO 1900, 1853   

N2O 2236, 2212 1299, 1272  

NO2 1628, 1602   

N2O5 1718 1245 742 

HNO3 1722, 1711, 1699 1339, 1325, 1317 895, 878 

 

The concentration of the gaseous species was estimated by fitting the measured 

FTIR absorption profile with the standard reference spectrum profiles which were 

taken by Pacific Northwest National Laboratory (PNNL) (http://www.pnl.gov/). 

These standard reference spectrums were collected as 1 part-per-million-meter 

(ppm-meter) at 296 K (room temperature) with a path length of 1 m.  To calculate 

the concentration, C, from the experimental spectrum the following equation is 

used: 

http://www.pnl.gov/
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𝐶 =
𝐴

𝐵×𝑙
                                                                                               (3.3) 

Where A is the experimental peak area of the spectrum, B is the standard peak 

area, 𝑙 is the difference of experimental gas cell path length and standard path 

length (usually 1 m) [94]. 

The HITRAN database (http://hitran.iao.ru/) was also used to simulate the 

absorption profile from certain species to be used as an alternative method for gas 

phase chemical quantification. By fitting the simulated spectrum to the experimental 

spectrum, the best fit can be found to estimate the concentration of species of 

interest. The advantage of this method is that the HITRAN database can simulate a 

single chemical species or several gases mixtures with adjustable apparatus 

settings, such as optical path length and FWHM. 

 

3.3 Ozone measurement 

The ozone concentration was measured using an ozone monitor from 2B 

technologies (model 106-M). The ozone monitor used had a measurement range up 

to 1000 ppm and a resolution of 0.01 ppm. The measurement interval of the 

instrument was 10 seconds. 

The measurement principle of the ozone monitor is quite similar to that of FTIR, 

both use optical absorption and beer’s law as foundation. In contrast to FTIR, the 

Ozone monitor uses ultraviolet light and focuses on one specific wavelength. Figure 

3.9 highlights that the ozone molecule has the highest absorption cross-section at 

approximately 254 nm. The monitor has a pump that pulls gas in to the absorption 

cell in which a mercury lamp projects a beam; at the receiving end, a photodiode is 

placed to sense the difference of radiation intensity at 254 nm, and hence the 

concentration of ozone.  

http://hitran.iao.ru/
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The concentration of ozone measured by the ozone monitor was recorded and used 

as a comparison with the measurement from FTIR and the simulation based on 

HITRAN database.  

 

3.4 Particle Image Velocimetry (PIV) 

Particle Image Velocimetry (PIV) is an optical method of flow visualisation and 

quantification that has been widely used to obtain instantaneous velocity 

measurements of fluids. Many researchers have used the technique to explore the 

use of SBD configurations in aerodynamics applications.  

 

3.4.1 PIV principle 

A typical PIV system consists of a high-speed camera, a strobe or pulsed laser with 

an optical arrangement to illuminate a certain region, a synchronizer to use as an 

external trigger for controlling the camera and laser and a seeding particle 

Figure 3.9 Ozone absorption cross-section at 300K. 
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generator, as shown in Figure 3.10. Furthermore, PIV software is used for post 

processing the optical images [96]. 

The seeding particles are a vital component in any PIV experiment. The choice of 

particles is decisive for the accuracy of the PIV analysis result. The nature of the 

particles must be able to match the fluid properties in order to yield the best 

results. Ideally, the density of the particles should be the same as the fluid being 

invested, and the size of the particles, usually range from 10 to 100 µm, should be 

small enough to be responsive to the motion of the fluid. In addition, the shape of 

the particles should be spherical or similar, so that the light beam can be scattered 

and reflected towards the camera. For investigations involving gases, such as those 

considered in this thesis, oil droplets are usually used as the seeding particles [8, 

9]. The Stokes numbers of the seeding particles used throughout this study was 

<0.1. This ensured that the seeding particles followed the fluid flow closely with 

tracing errors being <1% [98]. 

 

Figure 3.10 A typical setup of a PIV system. 
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To determine the flow velocity two laser pulses are used to illuminate the seeding 

particles in a given area with a short off-time between the pulses. The high-speed 

camera captures these two laser pulses in image pairs. By comparing the small 

displacement of the seeding particles between the image pairs, the flow speed and 

direction can be determined. The interval time between the two lasers pulses 

determines the maximum and minimum velocity that can be measured and is a 

critical parameter to obtain accurate measurements of the flow under investigation 

[8, 10, 11]. 

The laser lens consists of a spherical lens and a cylindrical lens, the former lens 

expands the laser into a plane while the later lens compresses the plane into a thin 

laser sheet. The thickness of the laser sheet is critical, as in a one-camera PIV 

system only a 2D-dimension region can be investigated. Thus, the motion that is 

perpendicular to the laser sheet cannot be measured. A thicker laser sheet can 

illuminate particles that move normal to the laser sheet and thus disturb the post 

processing analysis. It should be mentioned that the laser sheet could not be 

compressed into an ideal 2D-dimension plane. The thickness is on the order of 

hundreds of micrometres, depending on the wavelength of the laser light and it is 

divergence from the focal point of the spherical lens. Therefore, the ideal focus of 

view by the camera should be near the focal point [93, 94, 96]. 

The laser and the camera are triggered by using the synchronizer. Controlled by a 

computer, the synchronizer controls the timing of the high-speed camera such that 

it is synchronized with the firing of the laser within few nanoseconds [96]. 

After the image capture process, images are split into a large number of small 

subsections called interrogation areas, among which cross-correlations are 

established pixel by pixel, then a signal peak can be produced to indicate the 

particle displacement. Particles can be matched with a number of candidates, the 

correlation process is repeated many times to find all the matches. Wrong 

combinations will create a noise correlation and good matches will produce a strong 

correlation peak, identifying the common particle displacement and thus the 

velocity. To avoid in-pair loss or too much spatial averaging, each interrogation area 

is set to overlap with the previous one to maximise the dynamic range. By repeating 
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the cross-correlation process for each interrogation area over the image pairs, a 

velocity vector map over the whole target area can be obtained [96]. 

 

3.4.2 PIV instrument setup 

A standard TSI High-Speed High Resolution Particle Image Velocimetry System was 

used in the experiment.  

To create the space for plasma and airflow visualisation, a large enclosed black 

chamber (dimension 1 m x 1 m x 1.5 m) was built and featured windows for the 

laser light sheet to enter and camera, the windows were orientated in a 

perpendicular fashion. The enclosure is essential to ensure the airflow detected by 

the PIV is that induced by the SBD plasma without external interference, it is also 

important to prevent the seeding particles from escaping. 

A New Wave Research Pegasus PIV laser was used with a wavelength of 450 nm, 

and the laser sheet was aligned to the SBD reactor perpendicularly. A high frame 

rate camera (Photron APX RS) with 1024-by-1024-pixel resolution was used to 

capture image data. A synchronizer was used to control the capture rate, which was 

set to 750 frames per second, which collects 1500 image pairs, and used for 

triggering the laser and plasma system. The delay between laser pulses was varied 

from 100 - 750 microseconds depending on the plasma power input. 

Data collected was processed using INSIGHT 4G software from TSI. Vectors of 

plasma flow generated the software with a 32 x 32 pixel interrogation area with a 

50% overlap and a peak-to-noise rate at 1:1.2, which provided velocity data with a 

1 mm spatial resolution to an accuracy of 3-5 %. TecPlot 10 was used for vector 

display and analysis [12, 13]. 
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3.5 Temperature measurements   

Temperature measurements of solid surfaces were conducted using a K-type 

thermocouple probe (Apuhua TM-902C) with a measurement range of -50 ˚C to 

750 ˚C.  

In situations where a thermocouple was not viable, such as discharge area, a 

handheld infrared camera (model FLIR E40bx) was used. The infrared camera is 

capable of capturing an IR image with a resolution of 160 x 120 pixels, temperature 

ranges from -20 ˚C to 120 ˚C and has a thermal sensitivity smaller than 0.045 ˚C 

and an accuracy of ±2 °C. 
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Chapter 4 Characterisation of Air Plasma 

In this chapter, details of the characterisation of afterglow chemical species 

generated by an air SBD air presented. The number of species produced and the 

reactions they take part in is extremely complex. As highlighted in the review 

chapter, the species generated from an air plasma vary dramatically depending on 

the operating conditions and equipment configuration. While this complexity 

presents a number of challenges, it also indicated that air plasma systems may be 

tailored to generate desired species for specific applications. In order to achieve 

this, an understanding of the plasma chemistry arising is fundamental.  

This chapter will not only discuss the gas phase plasma chemistry but also the 

chemistry arising when such species interact with liquids; this is vital as many 

emerging applications involve the interaction of plasma with a liquid. 

 

4.1 Afterglow chemistry of SBD  

From Chapter 2, previous reports have revealed that atmospheric pressure air 

plasmas generate a wide variety of RONS, including O, OH, O3, N2O5, N2O, HNO3, 

HO2, NO3, H2O2, HNO2 and NO2. These RONS have been proven effective against 

food- and water-borne pathogens.  

It has also been reported that a typical SBD air plasma system exhibits different 

modes of operation when driven at different power conditions [4, 58]. Under low 

power excitation ROS is primarily produced, under high power conditions RNS are 

produced. Therefore, each particular plasma system must be carefully characterised 

before it can be used in a given application. 

 

4.1.1 Experimental setup 

The experimental setup for the SBD air plasma system afterglow chemistry 

characterisation, shown in figure 4.1, consisted of the plasma source, FTIR system 
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and an ozone monitor. The plasma source contained an SBD electrode panel placed 

within a polycarbonate enclosure and connected to a high voltage power source. 

The enclosure was not air-tight (a 1 mm diameter hole was made to allow gas to 

flow) and was connected to the FTIR via a short length of Tygon tubing. The outlet 

of the FTIR was connected to the ozone monitor which also acted as a pump to 

cause a gas flow through the entire system at a rate of 1 L/min. Depending on the 

size of the SBD reactor under consideration, the size of the enclosure varied.  

Different power settings for each SBD were used. The power density was calculated 

as dissipated power per unit length of the electrode that generates plasma. This 

was deemed as the most appropriate measure of power, albeit somewhat 

unconventional, as the discharge area and volume are both difficult to measure and 

vary widely according to discharge conditions and the power conditions for each 

SBD reactor are listed table 4.1. 

The absolute dissipated power ranged from 2 W to 30 W depending on the sizes of 

the electrode, but the power densities were usually set between 0.13 W/cm to 0.4 

Ozone Monitor 

HV 

FTIR 

Electrode 

Figure 4.1 Experimental setup for SBD air plasma system afterglow chemistry 
characterisation. 
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W/cm. These values are typical of those reported in the before literature and enable 

access to both the ROS and RNS mode of action [57]. The driving frequencies were 

set to the natural resonant frequency of the transformer secondary and dielectric 

capacitance.  

 

Table 4.1 Power conditions used for different plasma sources. 

Name Single strip reactor (5 cm x 0.5 cm) 

Details Discharge Edge length (cm):    11 Frequency (kHz): 35  

Power 

Density  

Dissipated (W): 2 2.5 3 3.5 

Density (W/cm): 0.18 0.23 0.27 0.32 

Name Multi-strip reactor (handheld system) 

Details Discharge Edge length (cm):  65.4 Frequency (kHz): 40 

Power 

Density  

Dissipated (W): 10 15 20 25 

Density (W/cm): 0.15 0.23 0.31 0.38 

Name Mesh electrode reactor (5 cm x 5 cm) 

Details Discharge length (cm): 63 Frequency (kHz): 35  

Power 

Density  

Dissipated (W): 10 12 15 18 

Density (W/cm): 0.16 0.19 0.24 0.29 

Name Ceramic reactor 

Details Discharge Edge length (cm): 92.8  Frequency (kHz): 15 

Power 

Density  

Dissipated (W): 12 20 28  

Density (W/cm): 0.13 0.22 0.3  

 

 

4.1.2 Gas Phase Species Characterisation 

The identification and quantification methods for gaseous plasma chemistry was 

introduced in Chapter 3. Infrared spectra were acquired using FTIR at 60 second 

intervals from the point of ignition of plasma. Figure 4.2 shows the spectra acquired 

from different power settings after 15 minutes of plasma operation. Figures 4.3 & 
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4.4 show the time evolution of reactive species generated by the plasma. Most of 

the absorption peaks of reactive species are found in the mid-infrared range, 2500 

cm-1 to 500 cm-1. From the recent literature, the peaks of nitrous oxide (N2O), nitric 

oxide (NO), nitrogen dioxide (NO2), ozone (O3) and nitric acid (HNO3) have been 

identified. Certain species are only found at certain power densities; for example, 

NO2 and NO are only seen in Figure 4.2(d), where the power density is high at 0.32 

W/cm. Under these high power conditions, O3 or HNO3 may be produced but 

quenched at stable state, appearing only in lower power cases. The production and 

loss pathways will be discussed later.  

It is interesting to note that HNO3 could only be observed in experiments using 

ambient air which contains water vapour. In later experiments, detailed in section 

4.3, synthetic air was used which contains far less water vapour than ambient air; 

under these conditions no trace of HNO3 was found but N2O5 instead. 
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In Figure 4.3, four quantified reactive species are presented as function of 

concentration versus time. It can be seen that the N2O concentration increased in a 

linear fashion with respect to time and the gradient of the line increased when 

power was increased. NO2 could only be detected at the highest power condition 

case (0.32 W/cm) and was seen to increase over 1000 ppm in 90 seconds. A 

concentration of approximately 800 ppm of ozone was measured at each power 

condition; however, the curves decay after reaching the peak, with the decay rate 

being strongly dependant on power. The higher the power the earlier the O3 peak 

and the faster the decay, with ozone being fully quenched within 10 minutes in the 

Figure 4.2 FTIR spectrum of reactive species at different power 
settings: (a) 0.18 W/cm, (b) 0.23 W/cm, (c) 0.27 W/cm and (d) 
0.32 W/cm.  Spectra were acquired at 15 min after the ignition 
of plasma. 
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0.32 W/cm case. HNO3 showed a similar linear trend to N2O in the low power cases, 

yet after 10 minutes it was fully quenched from above 1000 ppm to 0 ppm within 2 

minutes. The transition between HNO3 increase and decay matches the point where 

NO2 is seen to increase. Although NO was observed at 0.32 W/cm, its absorption 

profile was too small to quantify accurately; this is expected as NO has a relatively 

short lifetime and the distance between discharge and gas cell is likely to be a 

limiting factor.  

 

Figure 4.3 Evolution of reactive species under different power 
conditions as a function of time. 



 

72 

 

 

The dramatic change in chemistry under high power conditions is of particular 

interest as it can have significant consequences in any application. A comparison of 

the evolution of reactive species at 0.27 W/cm and 0.32 W/cm is presented in 

Figure 4.4. In the 0.27 W/cm case, shown in Figure 4.4 (a), the concentration of 

HNO3 and N2O increase with time, ozone decreases but is still above 0 ppm and no 

trace of NO2 is observed. In the 0.32 W/cm case, shown in Figure 4.4 (b), the 

evolution of the reactive species is similar to the 0.27 W/cm case up to 540 

seconds. After 540 seconds, the concentration of NO2 increases and HNO3 

decreases sharply, ozone is fully quenched within 90 seconds after the increase of 

NO2. 

Figure 4.4 Evolution of reactive species over 
time at (a) 0.27 W/cm and (b) 0.32 W/cm. 
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4.1.3 Discussion 

The evolution of plasma generated species under different power conditions are in 

agreement with those reported in the literature; the exact mechanisms leading to 

these trends are still under intense debate [102]. It is, however, clear that two 

different modes of operation occur. Under low power conditions, ozone is dominant, 

conversely high power conditions result in a NOx dominant mode. For all the 

reactors detailed in table 4.1, the two modes were observed. It is worth nothing 

that the experimental setup (enclosure volume, frequency, temperature and 

humidity) had a significant impact on the transition point between the two modes.   

By repeating the discharge characterisation with different SBD configurations and 

power levels, it was observed that the ozone quenching transition occurs only 

above a certain power density threshold. Below the threshold power density, ozone 

generation never ceases and its concentration slowly increases, finally reaching an 

equilibrium density. Above the power density threshold, ozone concentration 

decreases after reaching a peak concentration, eventually dropping to zero. Further 

increases above the threshold power density resulted in accelerated ozone 

quenching.  

Understanding the ozone quenching process requires a comprehensive 

understanding of the reactions in both the plasma region and afterglow, which are 

known to be extremely complicated. Sakiyama et al.’s developed an air plasma 

model for an SBD reactor including over 600 reactions and 53 species. Based on the 

reactions uncovered by Sakiyama, the ozone quenching mechanism are discussed 

below [57]. 

In ambient air, the main species include O2, N2 and H2O; CO2 and minor noble gas 

impurities are not considered to play a role. Following application of a voltage 

sufficiently high to cause breakdown, the plasma region is populated by a wide 

variety of highly reactive species such as N, N2
+, N2(A), N2(B), O, O2

+, H+, OH, etc. 

Beyond the discharge region, these highly reactive species are transported in to the 

afterglow region and take part in a wide variety of reactions, leading to the 

formation of RONS that eventually reach a downstream sample surface.  
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In all of the FTIR measurements conducted in the afterglow of an ambient air SBD, 

O3, N2O and HNO3 appear initially. 

The predominant ozone is shown in reaction 1 [57, 103, 104, 105].  

 

𝑂 + 𝑂2 + 𝑀 → 𝑂3 + 𝑀                                                               (1)    

          

Where M is a third-body collision partner, such as O2, N2 in the background gas. 

The main generation pathways for NO and N2O are given in reactions 2 and 3 [1, 

104, 105]. 

 

𝑁 + 𝑂2  → 𝑁𝑂 + 𝑂                                                                    (2) 

𝑁2(𝐴) + 𝑂2  →  𝑁2𝑂 + 𝑂                                                             (3) 

 

HNO3 is only formed in humid air, while in dry air, N2O5 production is favoured. N2O5 

is oxidised from NO via NO2 and NO3 [104]. The formation of N2O5 and subsequent 

formation of HNO3 is highlighted in reactions 4 – 9 [57, 104]. 

 

𝑂 +  𝑁𝑂 + 𝑀 → 𝑁𝑂2 + 𝑀                                                            (4) 

𝑁𝑂 +  𝑂3  →  𝑁𝑂2 +  𝑂2                                                             (5) 

 𝑂 +  𝑁𝑂2 + 𝑀 → 𝑁𝑂3 + 𝑀                                                           (6) 

𝑁𝑂2 +  𝑂3  →  𝑁𝑂3 +  𝑂2                                                            (7) 

𝑁𝑂2 +  𝑁𝑂3 + 𝑀 ↔  𝑁2𝑂5 +  𝑀                                                      (8) 
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𝑁2𝑂5 + 𝐻2𝑂 ↔  2𝐻𝑁𝑂3                                                               (9) 

 

Notably, reactions (5) and (7) consume ozone to form NO2 and NO3, which become 

the reactants in (8), leading to N2O5 production. These reactions tie in well with the 

results presented in Figure 4.2 (a) - (c), where HNO3 is seen to increase as ozone 

decreases. In addition to reactions (5) and (7), several other pathways for ozone 

destruction are shown in reactions 10 – 13. 

 

𝑁 + 𝑂3  → 𝑁𝑂 + 𝑂2                                                            (10) 

𝑁2 +  𝑂3  →  𝑁2 +  𝑂2 + 𝑂                                                       (11) 

𝑂 + 𝑂3  → 2𝑂2                                                                  (12) 

𝑂𝐻 + 𝑂3  → 𝐻𝑂2 +  𝑂2                                                          (13) 

 

According to Sakiyama et al.[57], reaction (7) and (13) are the main pathway for 

ozone destruction. Under the highest power conditions, no HNO3 or ozone are 

detected; the concentration of N2O and NO2 are high under such conditions and a 

small amount of NO is also present. Reaction 9, 14 and 15 highlight a potential 

reaction pathway to explain these observations. 

 

2𝐻𝑁𝑂3  ↔  𝑁2𝑂5 + 𝐻2𝑂                                                            (9) 

𝑁2𝑂5 +  𝑀  →  𝑁𝑂2 +  𝑁𝑂3 + 𝑀                                                (14) 

𝑁𝑂3 +  𝑁𝑂3  →  𝑁𝑂2 +  𝑁𝑂2 + 𝑂2                                               (15) 
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The quenching of N2O5 is mainly because of thermal decomposition as surface 

temperature would increase by 10 to 20 ˚C when reaching the ozone to NOx 

transition [105, 106]. However, this does not explain the rapid decrease of 

N2O5/HNO3 and the significant concentration increase of NO2. 

Moreover, the mechanism of ozone quenching is not well understood. Many 

researchers believed that the generation of NO and NO2 are the key to ozone 

quenching. Reactions involving NO and NO2 have larger rate coefficients, so the O 

needed for ozone formation are consumed rapidly. Moreover, as shown above in 

reactions (5) and (7), NO reacts with ozone to generate NO2 which further reacts 

with ozone to generate NO3. Shimizu et al. proposed an alternate explanation 

suggesting that N2(A) reacts with O to produce NO, under higher power operation 

more vibrationally excited N2 is produced, accelerating NO production quenching 

ozone [105]. 

From the experimental results, it can be seen that ozone and NOx can be found in 

both low and high power modes of operation. In the low power mode, the 

generation of NOx is not fast enough to consume all the ozone produced; while in 

high power mode, ozone dominates initially but is then quenched by NOx. N2O is 

stable in both modes. 

In the FTIR measurements not all of the species predicted by computer modelling 

are observed. Only four species appear in the FTIR measurements in significant 

concentrations, N2O, HNO3, O3 and N2O5. From the species predicted but not 

observed it is assumed that NO3 is too reactive at room temperature to be observed 

HNO2 is difficult to observe because its absorption spectrum overlaps with HNO3, 

and finally NO is observed but in very low concentrations.  

An understanding of the different modes of operation and what initiates their 

transition is extremely important for practical applications as the mode of operation 

could be used to tailor the composition of species produced. Indeed, the results 

from the FTIR measurements were used to optimise the chemistry of an SBD device 

for use in an antimicrobial application, discussed later.   
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4.2 Liquid phase species characterisation 

This section considers the interaction between the SBD afterglow species and a 

liquid phase. As discussed previously, many emerging applications of atmospheric 

pressure plasma involve the interaction between plasma and liquid. Examples 

include the use of plasma as an Advanced Oxidation Process for wastewater 

treatment, or the use of plasma for wound healing where the liquid could be 

biological in nature (e.g. blood).  

Differ to gas phase species characterisation, liquid phase species characterisation 

would be focus on reactive species dissolved in water, such as nitrite (NO2
-) and 

hydrogen peroxide (H2O2). Also, pH value of water after treatment would be 

monitored.  

In previous reports [32, 58, 107], plasma treatment of water led to a significant 

drop of pH value. Plasma treated water itself is a strong oxidant and could be used 

an effective disinfectant in many situations. However, in certain cases such as 

decontamination of potable water, the pH drop is not acceptable. Control of the 

plasma chemistry to minimise the production of NOx is one possibility to overcome 

this limitation. This section explores how plasma generation parameters can be 

manipulated to influence the plasma species transported to the liquid phase. 

 

4.2.1 Experimental setup 

The experimental setup used for liquid phase characterisation and treatment is 

shown in Figure 4.5. The SBD device used was the multi-strip design detailed in 

table 3.1 [108]. The dielectric disc had a diameter of 10 cm and could perfectly fit 

on the top of a petri dish, forming a reasonably tight seal. For the measurements, 

one set of samples consisted of 25 ml of autoclaved tap water, and a second set 

consisted of 3 ml of peptone broth. During all treatments, a magnetic stirrer was 

applied to ensure that the liquid sample was continuously mixed. In all cases, the 

SBD panel was placed on the petri dish with the grounded side facing the liquid 

surface. The distance between the surface of the panel and the surface of the liquid 

sample was roughly 0.5 cm.  
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Table 4.2 Continuous mode & pulse modulated mode power conditions for water treatment. 

Details Discharge Edge length (cm):  65.4 Frequency 

(kHz): 

40 

Continuous 

mode power 

Density  

Output 

(W): 

10 15 20 

Density 

(W/cm):   

0.15 0.23 0.31 

PWM mode 

Power density 

Output 

(W): 

2.5 3.75 5 

Density 

(W/cm): 

0.038 0.057 0.076 

All liquid samples were treated at three different power conditions as shown in table 

4.2. The output power and frequency settings was the same as those used in 

section 4.1. In addition, a pulsed modulated mode of operation was also used, in 

which the duty-cycle was set to 25%, with a 2.5 ms pulse width and a 10 ms 

period. The treatment time of each sample was between 15 seconds to 16 minutes.  

Following plasma treatment, the pH of the treated solution was obtained using a pH 

meter (Pocket Checker pH tester Hanna Instrument HI98103). A Hydrogen peroxide 

Powered 
Electrode 

Stirrer Bar 

Petri 
Dish

Sample 

HV 

Magnetic 
Stirrer 

Figure 4.5 Liquid phase air plasma treatment experimental 
setup. 
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(H2O2) assay with the ferric-xylenol orange complex (xylenole orange, sorbitol and 

ammonium iron sulfate; all obtained from Sigma-Aldrich) was used to determine the 

concentration of H2O2 produced after each treatment. The Nitrite (NO2
-) 

concentrations were also measured with standard Griess reagent assay (Promega: 

Griess reagent system). 

 

4.2.2 Results 

The results will be discussed in two parts; initially, plasma exposure of tap water 

will be considered. Secondly, the plasma treatment of broth solution is considered. 

The results for tap water treatment is focused on the comparison between 

continuous mode and pulsed modulated mode. As shown in Figure 4.6, the pH 

value of plasma treated water varies considerably under different plasma generation 

conditions. When treating water using a power setting of 0.15 W/cm in a 

continuous mode, which is the lowest possible power setting, the pH value of the 

water dropped to 3.5 in 3 minutes. In contrast, in PWM mode the pH value of 

treated water was maintained around 6 for the duration of the test. 

In order to have a better understanding of the two operating modes, the gas phase 

ozone and HNO3 were measured, as shown in Figure 4.7. It can be seen that ozone 

concentration in continuous mode reaches a peak of 2200 ppm within 180 seconds, 

after which there is a sharp decrease. Conversely, in the PWM mode ozone 

increases at a slower rate, reaching a plateau of 2100 ppm at 840 seconds of 

exposure and showing no appreciable decrease after a 960 second test duration. 

On the other hand, HNO3 concentration in the continuous mode increases in an 

almost linear fashion and reaches over 800 ppm by the end of the test. In the PWM 

mode, HNO3 gradually reaches 200 ppm by 360 seconds and plateaus for the 

reminder of the test. 
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The observed trends in water have been reported previously [109]. For the 

treatment of broth solution, the situation is more complex and few studies are yet 

to consider the impact of plasma treatment on the chemistry of the solution. 

Measurements of pH, H2O2 and NO2
- concentration from plasma treated broth 

solution are shown in Figure 4.7 - 4.9. These results focus on the comparison 

between different output power conditions. A drop in pH is desirable for many 

decontamination applications (with the exception of potable water), hence the 

pulsed modulated mode of operation is not required. 

Figure 4.6 Treated water pH value as a function of time at different 
operation mode. (a) the continuous mode and (b) the 25% duty cycle 
pulsed width modulated mode. Both mode operates at 0.15 W/cm. 
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From Figure 4.8 it can be seen that at the lowest power output of 0.15 W/cm, the 

pH drops to 4.5 after 8 minutes of treatment. The pH curves at 0.23 W/cm and 

0.31 W/cm are similar, they drop quickly after 60 seconds of treatment, probably 

when the natural buffering capacity of the broth is overcome. After 4 minutes of 

treatment the pH has fallen to 3.5 and is below 3 at the end of the test. 

Figure 4.7 Gas phase evolution of ozone and HNO3 during continuous 
mode (CW) and PWM mode operation. 

Figure 4.8 Treated broth pH value as a function of time at 
different power conditions. 
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Figure 4.9 shows the H2O2 concentration of the treated broth under different power 

conditions. At the lowest power, the concentration of H2O2 raises to a plateau of 

800 μM (10-3 mol/m3) within 120 seconds. Under the highest power conditions, the 

concentration reaches a plateau of 1720 μM in 120 seconds and remained at this 

level to the end of the test. At medium power 0.23 W/cm, the concentrations raise 

gradually, reach a peak of 1800 μM by the end of the test. 

 

Nitrite concentrations at different operating powers are shown in Figure 4.10 as a 

function of plasma exposure time. At the lowest power condition, nitrite 

concentration reaches a peak of 400 μM in 240 seconds then drops below 200 μM 

at 480 seconds after treatment. At the 0.23 W/cm medium power condition, the 

nitrite increases sharply and reaches the peak of 900 μM in 120 seconds followed 

by a rapid decay to 100 μM, finally dropping to 0 by the end of the test. For the 

highest power considered, the concentration raises sharply and reaches over 600 

μM at 120 seconds. After reaching the peak, the concentration drops slowly, finally 

reaching 0 at 480 seconds.  

 

Figure 4.9 Hydrogen peroxide concentration of treated broth as a 
function of time at different power conditions. 



 

83 

 

 

 

4.2.3 Discussion  

As discussed previously, many computer simulations have indicated that the major 

long-lived RONS in the gas phase are H2O2, N2O, NO2, HNO2, HNO3, O3 and N2O5. 

Among which, RNS are known to lead to an acidification of water. The distance 

between the SBD and water surface is only 0.5 cm, meaning all long-lived species, 

and even some short lived species, are transported to the liquid surface. 

The acidification of the solution is a consequence of the formation of nitrous acid 

(HNO2) and nitric acid (HNO3) [32]. NO2 and NO3 are abundantly formed in the gas 

phase, this can lead to the generation of NO2
- and NO3

- through reactions (16) and 

(17): 

 

𝑒 +  𝑁𝑂2 + 𝑀 → 𝑁𝑂2
− + 𝑀                                                           (16) 

𝑒 +  𝑁𝑂3 + 𝑀 → 𝑁𝑂3
− + 𝑀                                                           (17) 

Figure 4.10 The nitrite concentration of treated broth using different 
power conditions. 
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In humid air, or through the interaction with a liquid surface, NO2 can react directly 

with water molecules to form nitrite and nitrate through reaction (18):  

 

𝑁𝑂2 + 𝑁𝑂2 + 𝐻2𝑂 → 𝑁𝑂2
− + 𝑁𝑂3

− + 2𝐻+                                         (18) 

 

N2O5 can also contribute to the formation of HNO2 and HNO3 as detailed in the 

previous section, reactions (8) and (9). N2O5 can be decomposed in to NO2 and NO3 

which is then able to further react to form nitrites and nitrates through reactions 

(16) and (17), or it can directly react with water to form HNO3. 

In Figure 4.9, the concentration of NO2
- is observed to decrease after 120 seconds 

at high and medium powers, under low power conditions the decrease occurs after 

240 seconds. While in Figure 4.7, the pH continuously drops despite the decreasing 

NO2
- concentration. 

The decrease in nitrite (NO2
-) concentration could be a result of further oxidation, 

yielding nitrates (NO3
-). This explains why decreases in NO2

- did not lead to a rise in 

pH. O3 is both long-lived and a strong oxidising agent that could be responsible for 

the formation of NO3
- from NO2

-, as in reaction (19). In addition, NO3 can also react 

with nitrite to form nitrate, as shown in reaction (20): 

 

𝑂3 + 𝑁𝑂2
−  →  𝑂2 +  𝑁𝑂3

−                                                            (19) 

𝑁𝑂3 +  𝑁𝑂2
−  →  𝑁𝑂2 +  𝑁𝑂3

−                                                         (20) 

 

According to the work of D. X. Liu et al. [59], reactions (19) and (20) contribute 

90 % of the nitrite loss in plasma treated liquid. Noticeably, the drop of nitrite 
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accelerates under acidic conditions, as seen in Figure 4.9; according to Machala et 

al [110], reaction (21) is a significant contributor to this:  

 

3𝑁𝑂2
− +  3𝐻+ +  𝐻2𝑂 →  2𝑁𝑂 +  𝑁𝑂3

−  + 𝐻3𝑂+                                 (21) 

 

Furthermore, H2O2 can react with nitrite to form peroxynitrite (ONOO-), as shown in 

reaction (22): 

𝐻2𝑂2 + 𝑁𝑂2
−  →  𝐻2𝑂 +  𝑂𝑁𝑂𝑂−                                                    (22) 

 

Peroxynitrite is an unstable structural isomer of the nitrate ion. It is also considered 

a key oxidative species in plasma treated water for biological applications, as it 

leads to the damage of microbial DNA and protein. Peroxynitrite also reacts with 

dissolved NO3 to form nitrate as shown in reaction (23): 

 

𝐻2𝑂2 +  𝑁𝑂3  →  𝐻𝑂2 +  𝐻+ + 𝑁𝑂3
−                                                (23) 

 

Considering other RNS produced in the gas phase, N2O is very stable in both air and 

water, but plays a key role in antimicrobial applications. NO is consumed quickly in 

gas phase, but it still can be traced at high power conditions in Figure 4.2. Despite 

this, most of the NO in the liquid phase are likely to come from the decomposition 

of peroxynitrite and nitrous acid as shown in reaction (24) and (25): 

 

𝑂𝑁𝑂𝑂−  +  𝑂𝐻 →  𝑂𝐻− + 𝑁𝑂 +  𝑂2                                                   (24) 

2𝐻𝑁𝑂2  ↔   𝑁𝑂 +  𝑁𝑂2                                                              (25) 
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For the ROS, most (88%-100%) of the H2O2 is generated in the humid gas phase 

rather than formed directly in the liquid [59]. Although H2O2 cannot be detected by 

FTIR, it can be easily characterised in liquid phase. Another long-lived ROS in the 

liquid phase is ozone, which is entirely produced in the gas phase and transported 

in to the liquid. The concentration of dissolved ozone was not measured in the 

experiment, but from computer simulations it is known that small amount of ozone 

is consumed through the oxidation of RNS, such as reaction (19); the rest is 

relatively stable and reaches the liquid surface where it can be dissolved. 

The pulse modulated mode of operation was introduced to overcome the significant 

drop in pH observed under all power conditions in the continuous mode, which is 

unacceptable for water decontamination applications. As demonstrated, pulse 

modulation allows plasma to be produced using very low mean dissipated power, 

favouring ROS production, but does not compromise the discharge uniformity. Both 

in this study and in the previous experimental work of Ni et al. [108], an SBD 

operating in a pulsed mode of operation was shown to produce high levels of ozone  

with significantly lower levels of nitrous oxide. Such conditions cannot be achieved 

in a continuous mode of operation as further reductions in the applied power have 

the undesirable side-effect of reducing the spatial uniformity of the plasma on the 

SBD panel.  

 

4.3 Conclusion 

The chapter reports on a systematic characterisation of the chemical species 

produced by the SBD reactor designed in Chapter 3 for both the gas phase and 

liquid phase. Using FTIR analysis and a commercial ozone monitor the key species 

generated by the plasma were identified and quantified at different power 

conditions. Also the time-evolution of the key species was presented. Based on the 

measurements of key species, different operation modes were distinguished, which 

include a low power ROS dominated mode and a high power RNS dominated mode. 

To understand how these two modes of operation arise, the production and loss 
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pathways of key species was discussed. A key phenomena was the ozone poisoning 

effect and NO production was identified as the key that led to the rapid drop in 

ozone concentration, yet the exact mechanism is still not well understood.  

In addition to the gas phase species characterisation, the interaction between the 

afterglow region and a liquid phase was investigated. The concentration of key 

chemical species, such as H2O2 and HNO2, under different power conditions was 

measured. Pathways of other reactive species such as NO3
- and OONO- were 

explored based on the available experimental data. It was shown that a pH drop 

always occurred in the treated liquid sample, yet the amount of drop in pH and the 

concentration of other plasma generated species in the liquid phase depended 

strongly on the mode of plasma operation. Given that the applications considered 

later in this thesis are intended for decontamination of items that may be released 

in to the environment or consumed by humans and animals, such contaminates are 

undesirable. A pulsed width modulation technique was introduced to minimise the 

pH drop in the liquid by reducing the production rate of RNS.  
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Chapter 5 Plasma species transport 

A defining characteristic of the SBD reactor is the gas gap between the plasma and 

the sample. While this configuration offers some advantages, it has the 

disadvantage of limiting the mass transport of highly reactive species created in the 

plasma region to a downstream sample. In order to improve mass-transport for 

plasma generated species, the electrode geometry of the SBD can be optimised to 

generate a high gas flow perpendicular to the electrode unit, thus enhancing the 

transport of reactive species from the plasma region to the sample. 

 

5.1 Introduction  

It is well known that dielectric barrier discharges are capable of generating an air 

flow with a velocity of several m/s, the highest reported being 20 m/s [90]. Charged 

species produced in the plasma and drifting in the electric field transfer momentum 

to neutral species in the ambient air through collisions. This phenomena is known 

as the Electrohydrodynamic (EHD) effect and results in a net body force transmitted 

to the background gas [111]. While this effect has been explored widely for 

aerodynamic application, few (if anybody) has considered it as a means to improve 

the mass transport of species in an SBD reactor. 

Typically, the electrode geometry used in the area of plasma assisted aerodynamics 

comprises of a single strip electrode attached to a dielectric surface with a counter 

electrode attached to the opposite side, as shown in Figure 3.1. Operating this 

arrangement in quiescent air typically results in a filamentary plasma, Boeuf et al 

provided an approximate expression to calculate the EHD force generated under 

such conditions as equation: 

𝑓(𝐸𝐻𝐷)  ≈  𝜀0𝑉2𝑠−3 

Where V is the potential drop in the cathode sheath, s is the sheath length, and 𝜀0 

is the permittivity of air, although difficult to measure such parameters, numerical 

studies have shown that the range of forces expected to be on the order of 5 x 102 

to 5 x 104 N/m3, with resulting velocities in the m/s range [97]. In addition, 
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Kriegseis et al. demonstrated that the EHD force increases with an increase in 

operating frequencies and output voltage [112]. In such an arrangement, initiation 

of the discharge in quiescent air creates a starting vortex which moves along and 

away from the electrode in a direction parallel to the dielectric surface. However, 

for the applications considered in this thesis, it is desirable for the reactive plasma 

species to be transported perpendicular to the dielectric surface and towards the 

sample. In order to achieve this, two electrodes are placed side-by-side on the 

dielectric surface, such that a discharge forms in the gap between the two 

electrodes. 

In this chapter a combined analysis of SBD configuration, plasma operating 

condition and plasma generated airflows is provided, in order to optimise the 

electrode geometry to achieve the highest flow rate, promoting the transport of 

species to a downstream sample. 

 

5.2 Experimental setup 

Particle image velocimetry (PIV) was used for global measurements of the velocity 

field generated by SBD reactor. The Setup of the PIV system is detailed in Chapter 

3.4. For the capture of images, the frame rate of the camera was set at 750 Hz and 

the time gap between the laser pulses was 500 µs. For each test run, a sequence of 

500 captures were recorded for processing. Following processing, the instantaneous 

velocity vector field of the airflow around the SBD is obtained. In order to capture 

the starting vortex generated by the SBD, a pulse generator was used to trigger the 

laser of the PIV system and the power supply of the SBD simultaneously.  

For much of the optimisation activity a simple SBD reactor was considered, 

employing two parallel copper tape strips separated by a gap variable from 5 mm to 

35 mm in 5 mm steps. The dielectric comprised of a Kapton film was used as the 

dielectric, on which a third piece of copper tape was placed as driven electrode, as 

shown in Chapter 3.1.  

In order to scale the configuration, multiple electrodes are placed side-by-side, thus 

creating multiple airflow directed perpendicularly from the dielectric surface and 
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towards the sample. It should be noted that the airflows generated in such a 

configuration are always created perpendicular to the dielectric surface irrespective 

of the device orientation. 

The plasma power supply used was the same as that described in Chapter 3.1 and 

the SBD was setup in the chamber as shown in Figure 3.10. The power conditions 

are listed in table 5.1. For all the configuration tested, the frequency was fixed at 26 

kHz.  

Table 5.1 Power conditions of tested strip pairs. 

Name Strip Pairs 

Details Frequency = 26 kHz. Discharge length (mm): 5, 10, 15, 

20, 25, 30, 35.  

Output Power (W): 10 15 20 25 

Output Voltage (kVpp): 8.5 9.7 10.6 11.4 

 

5.3 Results  

PIV results are presented as velocity vector maps, where each vector denotes the 

magnitude and direction of the flow in that given region; the background colour 

indicates the mean velocity magnitude at a given point: √(𝑢2 + 𝑣2).  

Figure 5.1 shows the ensemble-averaged vector field of the plasma generated 

airflow at an applied voltage of 9.7 kVpp with an electrode separation distance of 10 

mm. Figure 5.2 shows the initial staring vortex generated by the plasma in a 

sequence of 6 graphs which capture at 20 t to 120 t, where 1 t equals 1/750 

seconds, approximately 1.33 ms. 

On initiation of the discharge two starting vortices are created, which move toward 

one another, collide, and lift vertically away from the dielectric surface by vortex 

induction, as shown in Figure 5.2. Under continual plasma forcing, the two counter-

rotating vortices are followed by a jet flow, which also moves vertically away from 

the dielectric surface, as seen in Figure 5.3, which shows the ensemble averaged 
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velocity field around one set of electrodes. Here, data close to the wall is omitted 

due to the glare caused by the laser reflection on the dielectric surface. As to 

compare the airflow velocity generated by the discharge with different electrode 

configurations and voltage conditions, the peak velocity at y = 40 mm from the 

dielectric surface were recorded from each condition, shown in Figure 5.2. To avoid 

the un-steady starting vortex, only the final 100 velocity maps from the PIV were 

used to determine the ensemble-average, after this point the steady-state jet flow 

conditions had been reached.  

At y = 40 mm, it can be seen that higher applied voltages result in a higher flow 

velocity except in the 0.5 cm gap case, where the 10.6 kVpp condition generates a 

slightly higher flow compared to the 11.4 kVpp case. For the lowest applied voltage 

of 8.5 kVpp, the highest flow rate was achieved with a 1 cm electrode separation, 

whereas for 9.7 kVpp the optimal flow rate was achieved at 1.5 cm separation with a 

peak flow rate of ~0.5 m/s. Flow rates at 10.6 kVpp show a similar trend as the 9.7 

kVpp case, but with a slightly 0.1 m/s higher flow. For the highest voltage, the flow 

rate increases linearly until the electrode separation of 2 cm is reached, at this point 

the velocity plateaus between and then drops sharply at 3.5 cm. 

Figure 5.1 Ensemble-averaged velocity vectors generated 
by SBD using an output voltage of 9.7 kVpp with a gap 
distance of 10 mm. This image is ensemble-averaged 
from t=400 to t=500, t=1.33 ms. 
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(e) 

(d) (c) 

(f) 

(b) (a) 

Figure 5.2 Starting vortex generated by SBD actuator at 11.4 kVpp with a gap distance of 
30 mm. Images are captured namely at (a) t=20, (b) t=40, (c) t=60, (d) t=80, (e) t=100 
and (f) t=120, t=1.33 ms. 
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5.4 Discussion  

Kriegseis et al. stated that the body force generated by plasma reactor is dependent 

on the operating voltage and frequency [112]. As to isolate the impact of operating 

voltage and gap distance on the body force magnitude, the operating frequency in 

this study was fixed. The velocity field measure at y = 40 mm shows agreement 

with previous reports that indicate that the airflow velocity increases as output 

voltage increases [90]. 

When using parallel strip electrodes, the gap distance between the two facing 

electrode edges is a key factor in determining the velocity of the flow generated 

from the dielectric surface. This provides a convenient way to enhance the mass 

transport of species from the discharge region without having to change the 

electrical parameters of the plasma, which could negatively impact the discharge 

chemistry (e.g. higher power gives higher flow, but also higher RNS production). If 

the gap between the two opposing electrodes is small (e.g. 5 mm or less, as shown 

in Figure 5.1), the two discharges interact, resulting in a lower induced velocity. In 

Figure 5.3 Ensemble-averaged velocity vectors generated by 
SBD actuator at 11.4 kVpp with a gap distance of 30 mm. 
Original data captured at between 400 t to 500 t, t=1.33 ms. 
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addition, as the wall jets travel over the dielectric surface the jet half-width 

increases, and energy is dissipated through skin-friction drag, which results in a 

lower induced velocity downstream of the discharge explaining why a large 

separation distant can lead to a lower flow velocity. Figure 5.4 show the impact of 

the gap distance between two strip electrodes at various applied voltages. Taking 

the 10.7 kVpp case as an example, it is clear that the peak velocity is achieved at an 

electrode separation of 1.5 cm; away from this optimum separation the velocity 

rapidly drops. Enhancing the electrode geometry to improve the mass transport of 

plasma generated species to a location is clearly advantageous for any application 

which relies on their subsequent reaction at the gas-surface interface. On the other 

hand, separating the electrodes by a significant distance ultimately means fewer 

strips can be placed within a given area, resulting in a lower density of plasma 

species produced. Clearly it is necessary to strike a compromise between the 

spacing of the electrodes (with large gaps resulting in higher velocities) and the 

amount of plasma coverage in a given area (with smaller gaps favour more plasma 

volume in a given area).  

These results were used to optimise the design of the SBD for the treatment of 

water (discussed in the previous chapter). In this application, the distance between 

the SBD surface and sample liquid was around 1 cm and ROS mode of operation 

highly desirable. Based on the PIV measurements, an electrode spacing of 1 cm 

was chosen to give a compromise between efficient mass transfer (with flow 

velocities in the 0.3–0.6 m/s range) whilst still generating a significant amount of 

plasma (1950 mm2 of plasma coverage on the 100-mm diameter dielectric disc at a 

8.5 kVpp operating voltage). Under such conditions, species in the plasma region are 

transported to the liquid surface in 20 ms. The velocities required for the strip 

arrangement are typically five times greater in magnitude than those measured 

from the widely used hexagonal mesh electrodes typically found in many SBD 

system (data not shown). 
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By opting for an electrode separation of 1 cm, rather than the optimum 1.5 cm 

observed in Figure 5.4, enabled six electrode pairs of varying length to be attached 

to the dielectric surface. Using the optimum of 1.5 cm reduced the number of 

electrode pairs to five, resulting in significantly less plasma generation.  

 

5.5 Conclusion 

The results presented in the chapter showed that the EHD force induced by the SBD 

reactor increases as the input power increases, resulting in an increased flow 

velocity. However, as discussed in chapter 4, a higher power input also leads to the 

generation of undesirable RNS and ultimately a quenching of the ozone.  

To enhance the transport of species, the effect of the electrode configuration on the 

flow velocity was explored. By changing the gap distance between the electrodes, 

the induced flow rate could be manipulated. The results showed a non-linear 

relationship between the gap distance and the flow rate: the highest velocities at 

different power conditions were observed mainly with 1 cm or 1.5 cm electrode 

separations. However, from an application perspective, a trade-off is required 

between plasma generation volume and induced velocity. A 1.5 cm electrode 

Figure 5.4 Velocity measured at y=40mm of a single electrode pair as 
a function of electrode gap distance at different power conditions. 
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separation gives a higher flow velocity but reduces the volume of plasma produced 

in a given area (so less species are produced). As a compromise, a 1 cm gap 

separation was chosen for the electrode configuration to enable a reasonable 

amount of plasma to be generated whilst benefiting from the enhanced flow 

velocity.   
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Chapter 6 Plasma decontamination of model systems 

This chapter explores the antimicrobial potential of air plasma for the 

decontamination of abiotic samples. In particular, the decontamination of typical 

waterborne organisms Escherichia coli (E. coli) and Pseudomonas fluorescens (P. 

fluorescens) in drinking-water are considered to highlight the potential for plasma 

to play a role in water security applications. Secondly, the inactivation of Aspergillus 

flavus (A. flavus) spores in both a peptone broth and on an agar surface are 

considered to highlight the potential for plasma to play a role in food-security 

applications. In all experiments, the optimised multi-strip SBD reactor was used. 

Results relating to potable water decontamination were reported in Ni et al. [108]. 

 

6.1 Microbial decontamination of potable water 

As detailed in the literature review, water decontamination with air plasma is 

primarily due to the generation of ROS with a high oxidation potentials, such as 

Ozone. Such species are ideal as they are capable of high levels of microbial and 

chemical removal with no resulting change in the colour, taste or odour of the 

water; this is in contrast to techniques such as chlorination.  

In SBD systems, ozone is assumed to be the primary decontamination agent, 

chapter 2 demonstrated that it is generated in high concentrations and it is known 

to be very effective against bacteria. Results in the literature have shown that 0.1 

ppm of chlorine requires 4 hours to achieve a 4 log reduction of E. coli, whereas for 

0.1 ppm of Ozone requires only 5 seconds to reach the same inactivation rate 

[113]. While Ozone is clearly effective, it is important to note that the inactivation 

rate is affected by the type of organism, temperature, pH, etc. In addition to ozone, 

air plasma produces a variety of other RONS that also contribute to the level of 

decontamination. The objective of this investigation was to explore different plasma 

generation conditions on the efficacy of plasma decontamination of potable water.  
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6.1.1 Water decontamination setup 

To assess the decontamination potential of plasma for potable water, two common 

waterborne bacterial species were used, E. coli and P. fluorescens. Solution samples 

with a volume of 25 ml were prepared with autoclaved tap water and with an initial 

concentration of approximately 108 CFU/ml of E. coli or P. fluorescens. While many 

reports in the literature detail plasma based decontamination of liquid, the vast 

majority consider extremely small liquid volumes (~ 1 ml). This investigation 

considers 25 ml, while this is still a relatively small volume it is more realistic to the 

real world situation where a small plasma system could be used to provide clean 

drinking water in an emergency situation. The experimental setup for the water 

decontamination tests is the same as that described in Chapter 4.2. Both the 

continuous mode and pulsed width modulation (PWM) mode were considered, as 

detailed in chapter 3.1. 

To analysis the decontamination results, plasma treated samples were later diluted 

to 10-5 in 96-well plates. Then 10 µL of each diluted sample was spread on TSA 

plates with three groups of repetitions for each dilution. Same protocols were 

applied to the control groups except for plasma treatment. Plates were incubated 

overnight at 37 °C for E. coli and 26 °C for P. fluorescens. The limit of detection 

was around 5.0 x 102 bacteria. 

 

6.1.2 Water decontamination results & discussion 

The decontamination efficiency of the optimised SBD system as a function of 

treatment time is shown in Figure 6.1, both continuous and pulse modulated modes 

of operation were considered. To provide additional insight the pH of the solution is 

also included (data discussed in chapter 4.2). Figure 6.1(a) shows the 

decontamination efficiency in a continuous mode of operation (0.15 W/cm), 6.1(b) 

shows results from a pulse modulated mode of operation, with an equivalent power 

dissipation 0.038 W/cm. In the pulse modulated case, samples were treated four 

time longer compared to the continuous mode, given that the duty cycle was 25 %, 
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the amount of plasma on time is equivalent in both cases. In all tests, the 

temperature of the sample after treatment was not found to surpass 25 ˚C. 

From the results of continuous mode in Figure 6.1(a), it can be seen that for the 

first 120 seconds of plasma treatment, both E. coli and P. fluorescens show a 

similar inactivation rate. After 120 seconds, the inactivation rate of E. coli 

accelerates, reaching a significant 8 log reduction, which is total inactivation, within 

180 seconds of plasma ignition. P. fluorescens shows a similar trend, albeit at a 

slow rate; a 3 log reduction is reached at 180 seconds and a total inactivation is 

achieved by 240 seconds. Conversely, in pulse modulated mode, E. coli is more 

responsive to plasma treatment than P. fluorescens. The level of inactivation rate 

reaches over 2.5 log for E. coli at 240 seconds, whereas only 0.5 log reduction is 

observed for P. fluorescens. Critically, longer treatment times did not lead to a 

higher level of inactivation of E. coli, even after 960 seconds of treatment, the log 

reduction remained around 2.5. The inactivation level of P. fluorescens increased 

slowly with treatment time, reaching a 1 log reduction after 720 seconds and a 2 

log reduction after 960 seconds. It is worth noting that the variation in 

decontamination results for P. fluorescens is large, varying between 1 and 3 log 

reduction, making it difficult to draw a firm conclusion.  

To interpret the decontamination results it is necessary to consider the gas phase 

chemistry produced above the liquid sample by the SBD. As highlighted in chapter 

4, Figure 4.7, the ozone concentration during both the continuous and pulse 

modulated modes of operation both exceed 2100 ppm. However, from the results 

presented in Figure 6.1, the decontamination efficiency under the two different 

modes of operation vary considerably. An 8 log reduction of E. coli and P. 

Fluorescens is observed within 4 minutes of continuous treatment, yet less than 3 

log reduction is observed within 16 minutes of pulse modulated treatment, this is 

despite the same amount of plasma being generated in both cases. From this 

result, it is possible to conclude that the microbial decontamination effect is not only 

attributed to ozone, but other ROS and RNS must play a role.  
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The pH of the treated solution provides a key insight in to the differing inactivation 

efficiencies between the two modes. Under pulse modulated operation the pH 

shows only a minor decrease from 6.8 to around 6; in contrast, the pH drops 

sharply to 3.5 in the continuous case. According to Small et al., the normal growth 

pH range for E. coli is between 5.0 and 9.0, but it can survive over 2 hours at a pH 

below 3.0 [114]. In the experiments reported here, samples were immediately 

recovered after plasma treatment then diluted and spread on to agar. Under these 

conditions, it is assumed that acidification of the water is not the only factor 

dictating microbial inactivation. 

Figure 6.1 Drinking-water treatment results with continuous 
mode (a) and PWM mode (b). 
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The level of inactivation of E. coli observed in the pulse modulated mode is 

consistent with that observed during the first 120 seconds of continuous mode 

treatment. From the temporal evolution of gas phase species shown in Figure 4.7, it 

is clear that the afterglow chemistry in the pulse modulated mode is very similar to 

that observed in the first 120 seconds of continuous operation, in which ozone is 

dominant and the concentration of HNO3 is at a low level. This suggests that ozone 

is one of the major inactivation pathways under neutral and weakly acidic 

conditions; this finding is in agreement with several previous studies, such Pavlovich 

et al., where aqueous phase ozone was identified as the dominant inactivation 

mechanism [58]. 

At lower pH levels, the enhanced level of decontamination is likely a consequence of 

the synergistic interaction between several ROS and RNS species. This includes the 

increased production of H2O2 and peroxynitrite radicals (ONOO-), both of which are 

readily able to penetrate cellular membranes and damage bacteria [115]. 

 

6.2 Decontamination of Fungi spores using plasma  

Moulds produced by fungi on food can be pathogenic to humans and lead to 

accelerated spoilage. In general, fungi are extremely problematic in agriculture and 

human health not only because they can cause illness and spoilage, but can 

produce mycotoxins that are the secondary metabolites and are typically highly 

carcinogenic [1, 2]. There are 30 species of fungi known to be pathogenic to 

humans and Aspergillus flavus (A. flavus) is one of them [116].  

A. flavus is found globally as a saprophytic soil fungus and can cause disease on 

many agriculture crops with the carcinogenic secondary metabolite aflatoxin. The 

threats from A. flavus are either caused by infection, which is called Aspergillosis, or 

poisoning from aflatoxin, called Aflatoxicosis [117]. Aspergillosis can be developed 

after exposure to A. flavus spores from the air or water, resulting in asthma, 

extrinsic alveolitis, or allergic bronchopulmonary [118]. Secondary transmission of 

fungal spores result from infection via wounds and smoking contaminated plant 

products such as tobacco [119]. According to reports, A. flavus attributed to around 
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65% of childhood aspergillosis in North America [120]. In addition, animals can also 

be infected by A. flavus, domestic animals like rabbits, chickens, turkeys and geese 

are prone to aspergillosis [117]. 

Aflatoxicosis is caused by aflatoxins produced by A. flavus and results in stunted 

growth, immune suppression, and cancer development [106][107]. Animal deaths 

caused by acute Aflatoxicosis are also frequently reported and are usually related to 

contaminated feeds [117]. In addition, long-term exposure of aflatoxin B1 produced 

by A. flavus can result in higher risk in cancer. B1 is a potent hepatocarcinogen and 

induces tumours mostly in the liver, but could also happen to kidney, lung or colon 

to humans and animals [4, 5]. 

The study of inactivation of fungi spore using atmospheric pressure air plasma is 

relatively scarce, and no record of treating fungi spore in liquid suspension is found 

according to review. Thus the experiment in the chapter will explore new area in 

cold plasma decontamination application. 

 

6.2.1 Fungi decontamination setup 

To explore the ability of plasma to inactivate fungi, two non-mycotoxigenic strains 

of A. flavus were used. Mycosomo microbiological bank Ex of Ljubljana, Slovenia, 

has provided the fungal strains. The fungi were first grown on fresh potato dextrose 

agar plates for 7 days at approximately 25 ˚C. After that the agar plates were 

flooded with peptone broth (half water half peptone, 0.5% Tween 20) and the 

spores on the surface were gently scraped with a sterile loop and thus the 

suspension of spores was made. In order to achieve the highest possible 

homogeneity, the suspensions were stirred evenly by using a vortex mixer. The 

number of spores in solution was estimated using a Neubauer Brightline 

haemotcytometer. Following this the suspension was divided into 3 ml test tubes, 

each with a concentration of 106 spores/ml. The samples were divided into two 

groups, the first group was prepared as 3 ml suspension containing 106/ml spore 

concentrations and then placed in a petri dish for treatment. In the second group, 
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the suspension was diluted and spread on fresh agar plates, each contained 103 

spores initially.  

During plasma exposure, a magnetic stirrer was used on which samples were 

placed. The discharge power conditions for the treatment are the same as those 

stated in chapter 4.2, which were 0.15 W/cm (low power), 0.23 W/cm (medium 

power) and 0.31 W/cm (high power) with exposure times from 15 seconds to 16 

minutes.  

For inactivation of A. flavus inoculated on agar surface, the samples would be 

treated directly by the plasma system with the same conditions and exposure time 

applied in suspension treatment and later incubated for 48 hours under 25 ˚C. Log 

reduction was later calculated by counting the number of new grown colonies.  

In addition, spores viability was also tested with MTT assay for A. flavus inactivation 

test. 100 µl of each sample was put into new microcentrifuge tubes to which 20 µl 

of MTT reagent (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) was 

added. The tubes were then incubated overnight at 25 ˚C. After that 1 ml of acidic 

isopropanol (1 ml of 12 N HCl in 100 ml of isopropyl alcohol) was added to each 

test tube followed by centrifugation for 20 minutes at 1900 relative centrifugal 

force. Supernatants were then collected and its UV-visible light absorbance was 

measured at 560 nm wavelength. Higher absorbance indicated higher number of 

viable spores. 

 

6.2.2 Fungi decontamination results 

Figures 6.2-6.4 show the fungi spore treatment results for different mediums and 

plasma conditions. For fungi spread on agar surfaces the log reduction of CFU was 

calculated; for fungi decontamination in liquid suspension, the log reduction of CFU 

was calculated and metabolic activity of the spores was measured. In all cases, 

treatment times of 15, 30, 60, 120, 240 and 480 seconds were considered. Only 

continuous plasma treatments were considered as the production of both ROS and 

RNS is likely to be advantageous for fungal decontamination. 
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The decontamination efficiency of fungal spores spread on agar is presented in 

Figure 6.2. All three plasma power conditions gave at least 3.5 log reduction after 

480 seconds of exposure. Differences in inactivation rate at different operating 

powers can be seen. At 0.31 W/cm, a 1.7 log reduction was observed within 15 

seconds of exposure, increasing to 3.3 log reduction after 30 seconds of exposure, 

the inactivation rate is then observed to reduce and a 4 log reduction after 480 

seconds is observed. Under medium power conditions, the inactivation shows a 

similar trend to that under low power conditions, but with slightly higher reductions.  

The decontamination results of fungi spore suspensions are presented in Figure 6.3. 

Both low and medium power conditions show an almost identical trend, with very 

little inactivation. Even under the highest power condition, the fungicidal effect is 

very limited, with a maximum reduction of 0.2 log after 480 seconds of treatment. 

Figure 6.4 shows the MTT test results for spores treated in broth solution. The 

absorbance at 560 nm reflects the level of metabolic activity of spores after 

treatment, with a lower absorbance indicating reduced metabolic activity. The level 

of spore activity is directly related to its proteases and aflatoxin productivity of the 

cell. From the Figure, it can be seen that under high power treatment, the 

metabolic activity drops with increasing exposure time. Under medium power 

Figure 6.2 Treatment results of spore spread on agar surface. 
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conditions, the metabolic activity is seen to increase slightly within the first 30 

seconds of treatment time then starts to decrease. For low power treatments, the 

metabolic activity drops within the first 30 seconds of and then begins to increase 

slowly. 

 

Figure 6.3 Treatment results of spore suspension in peptone broth. 

Figure 6.4 MTT assay test results. Metabolic activity level 
presented by the absorption at 560 nm. 
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Figure 6.5 shows the temperature change of treated samples as a function of 

exposure time. In all tests, samples were prepared and left at room temperature for 

at least 30 minutes to equilibrate prior to plasma treatment. As tests were 

conducted on different days, the initial temperature of the agar plates was 

measured at 23 oC and the broth suspension 18 °C. It is clear to see from the graph 

that the higher the power output the much more the heat dissipated on the 

samples, and the longer the exposure time the higher the temperature. For 

treatment on agar the temperature reaches 36, 49 and 56 °C under low, medium 

and high power exposure respectively. Treatment of broth suspension resulted in a 

temperature rise to 24, 31 and 34 °C under low, medium and high power conditions 

respectively. 

 

6.2.3 Fungi decontamination discussion 

The temperature rise shown in Figure 6.5 is significant; however, according to 

Agrios et al., A. flavus grows well in the 30 – 55 °C temperature range, with the 

optimum growth occurring at 37 °C; slow growth occurs in the 12 – 15 °C range, 

and almost ceases at lower temperatures [123]. Based on this evidence, the heat 

Figure 6.5 Temperature measurement of plasma treated 
samples. Solid line represents the temperature of the agar plate 
surface and the dot line represents the temperature of 
suspension after treatment at different times. 
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flux generated by the plasma is unlikely to lead to significant inactivation of A. 

flavus; in fact, the elevated temperature conditions favour their growth in the agar 

tests. As for the metabolic activity, Oyeleke et al. stated that the optimum 

temperature for proteases produced by A. flavus was at 30 °C [124]. In terms of 

aflatoxin production, the optimal temperature is at 25 °C [125]. Therefore, in agar 

treatments, the temperatures reached under the highest power treatment 

conditions may inhibit the toxigenic production of the fungi. While in broth 

treatment, the temperature after exposure lays in a range which promotes the 

activity and aflatoxin productivity of A. flavus at medium and high power conditions. 

The pH is also known to be an important factor that affects both growth and activity 

of A. flavus. At pH 5.5 A. flavus has the highest growth rate, with growth inhibited 

blow pH of 3.0 [126]. As for the protease production, it is known that A. flavus 

produces the most protease at pH 8.0, and the production decreases as pH value 

decreases [124]. For aflatoxin production, studies suggested that a pH of 5.9 results 

in the greatest amount of aflatoxin B1 and the production rate decreases with 

decreasing pH [125]. Based on these findings, it is suggested that the drop of pH 

value of the treated broth during plasma exposure would have a significant impact 

on growth, activity and toxigenic of A. flavus. Moreover, the pH measurements for 

plasma treated broth detailed in Figure 4.8 show significant changes, meaning 

some change to the behaviour of the fungi is expected, despite the low inactivation 

rate. 

In the tests involving the treatment of fungi in broth, the change in metabolic 

activity can be explained by considering the evolution of gas and liquid phase 

species detailed in Chapter 4. During plasma exposure, high concentrations of 

RONS are transported to the sample. Under high power conditions, the gas phase 

chemistry is dominated by RNS, including N2O, HNO2, HNO3 and N2O5. As described 

previously, the reaction between these species and the broth solution gives rise to 

NO3
- ions, resulting in a pH drop. While RNS dominate the gas phase chemistry, 

ROS species still occur and the concentration of H2O2 was also observed to increase 

rapidly. In contrast, under low power plasma conditions, ROS dominate the gas 

phase chemistry, with ozone being the main product. Under these conditions, the 

concentrations of aqueous species measured are significantly lower than those in 

high power conditions and the reduction in pH of the broth is reduced.  
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These trends can explain the changes observed in the spore metabolic activity. H2O2 

is a well-known disinfectant that has a high oxidation potential, higher 

concentrations of H2O2 increase inactivation of the fungi and a lower overall 

metabolic activity. When H2O2 production is halved in the lower power conditions, 

spore activity increases. The large amount of NO2
- produced reacts in the solution 

to form HNO2 and HNO3, leading to a pH drop. Under higher power conditions, the 

conversation of nitrite to nitrate is accelerated. The high concentrations of both 

Nitrites and H2O2 will lead to increased formation of peroxynitrite (ONOO-) which is 

a very strong disinfectant, combined with the reduced pH the environment for fungi 

spores is considerably harsher. 

Under low power treatment conditions, the concentration of nitrite is relatively low, 

shown in Figure 4.10. According to previous characterisation, plasma operates in 

ROS dominate mode at low power condition and hence higher the level of pH value. 

Furthermore, a lower concentration of H2O2 is produced resulting in less production 

of ONOO-. Consequently, the concentration of disinfectants is not high enough in 

the broth and the pH value lays in the range which in favour of fungi’s growth and 

activity, as a result that can be seen from Figure 6.4, the metabolic activity actually 

raised due to the treatment at low power condition. 

When considering the treatment of fungal spores spread directly on agar, the 

elevated temperatures during plasma treatment promote growth under all power 

conditions. All power conditions show a good level of decontamination, meaning 

both ROS and RNS dominant regimes are effective. Under higher power conditions, 

the inactivation rate is accelerated, reaching a 1.5 log reduction within 15 seconds. 

Under low power conditions, no decontamination is observed after 15 seconds. All 

three power treatments achieved a substantial 3 log reduction by the end of the 

test.  

Comparing the results presented in Figure 6.2 for agar and 6.3 for broth show very 

different levels of A. flavus inactivation. This is attributed to the presentation of the 

spores to the plasma generated species. When treating spores on the surface of an 

agar plate, plasma generated species directly interact with all spores on the surface. 

Stacking is assumed to minimal meaning all spores receive an even dosage of 

RONS. In broth treatments, a very minor reduction is observed in all cases, 
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although plasma treatment does impact metabolic activity. Comparing the two 

treatment scenarios, it is clear that spores suspended within broth are considerably 

more difficult to inactivate. The composition of the broth (half peptone and half 

water with 0.5% Tween 20) was a wealth of targets for plasma generated RONS to 

reactive with, meaning the number of species available to inactive the spores is 

considerably reduced; this is in direct contrast to the direct exposure achieved in 

the agar test. 

 

6.3 Conclusion 

The results reported in this chapter indicate that SBD reactors can be effective for 

the microbial decontamination of solid surfaces and liquids. For the treatment of 

potable water, the continuous mode of plasma operation gave better levels of 

microbial decontamination but a simultaneous drop in pH during treatment would 

render the water undrinkable. Using pulse modulation to reduce the power 

dissipated in the plasma was less efficient for microbial decontamination but the pH 

remained within acceptable range throughout the plasma exposure. Given that 

ozone is the main product under low power plasma conditions, it is most likely the 

main agent responsible for microbial decontamination; both UV irradiation and other 

low-concentration species are likely to play a synergistic role. 

For the decontamination of A. flavus spores two different conditions were 

considered, with the spores spread on a nutrient solid rich agar surface and 

suspended in a nutrient broth. Both conditions mimic typical environments that may 

be encountered in food security application. The results indicated that plasma 

decontamination was far more effective for spores spread on the agar surface 

compared to those in the broth solution. This was not an unexpected result, spores 

exposed directly to the plasma afterglow on a surface receive a significantly large 

dose of RONS compared to the scenario where they are surrounded by a nutrient 

rich fluid. These results indicate plasma could be an effective decontamination 

technique for fungal spores on a surface, but is unlikely to be useful when spores 

are suspended within complex liquids unless the parameters of the plasma are 

significantly different from those investigated here.  
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In all cases, the trends in decontamination efficiency and metabolic activity can be 

directly linked to the gas and liquid phase species produced by the plasma. The use 

of high power discharges tended to yield improved inactivation efficiency at the cost 

of acidification of liquid samples. From an application perspective, the acidification 

may or may not be problematic. Overall, the investigations have demonstrated that 

the effectiveness of plasma for microbial decontamination is highly dependent on 

the reactive species produced, which are in-turn, strongly influenced by the plasma 

generation parameters. While this adds to the complexity of the situation, it does 

provide numerous opportunities to optimise the discharge for enhanced efficiency. 
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Chapter 7 Plasma decontamination – Real world applications 

This chapter considers the use of an SBD to directly decontaminate both beef loins 

and the packaging materials they are transported in. This investigation was 

motivated by recent reports indicating the presence of foodborne pathogens on the 

outside of packed meat that is sold to the consumer. The experiments were carried 

out in collaboration with Prof. Frans Smulders at the Institute of Meat Hygiene, 

University of Veterinary Medicine, Vienna. To facilitate this collaboration, a large 

area SBD was developed in Liverpool and transported to Vienna where the meat 

testing was conducted, detailed later. As a result, the plasma system employed 

differed physically from those described in Chapter 3, yet it was design to 

maintained the key features of those discussed earlier. 

 

7.1 Introduction 

The antimicrobial effects of non-thermal atmospheric pressure plasma have in the 

past years been reported for various food items, particularly carbohydrate-based 

foods such as soft fruits and salads. Yet, data on its application for muscle foods is 

relatively scarce, as seen in Chapter 2. This investigation was aimed to explore the 

impact of plasma treatment on muscle foods, not only in terms of antimicrobial 

efficacy, but also the physical and chemical changes occurring on the meat surface 

as a result. In addition, it is well known that the outside of pre-packaged meat 

hosts a wealth of pathogenic bacteria that has the potential to cause illness in 

consumers [127]. As a potential solution to reduce the microbial loading on 

packaged meat, the efficacy of SBD decontamination was assessed and the ability 

of plasma species to breach the packaging barrier considered.  

 

7.2 Materials and Methods  

To assess the efficacy of plasma decontamination of meat, Staphylococcus aureus 

(S. aureus), Listeria monocytogenes (L. monocytogenes) and two Escherichia coli 

(E. coli) strains were inoculated on to beef loins. Additionally, to assess the ability of 
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plasma to decontamination typical packaging materials the same strains were 

inoculated on to polyamide-polyethylene (PAPE) packaging film. After plasma 

treatment, the CFU of bacteria remaining on the sample were counted and in the 

case of meat treatment, several quality parameters, such as surface colour, lipid 

peroxidation (TBARS), nitrite and nitrate uptake, and myoglobin (Mb) isoform 

distribution were assessed. All beef samples were vacuum packed for period of 10 

days and a subsequent 3 days of aerobic storage, which follows the industrial 

standards.  

 

7.2.1 Beef and packaging sample preparation  

Beef loins were excised from the carcass of three 17 - 18-month-old Fleckvieh bulls, 

which had been slaughtered, subsequently refrigerated at 2±2 °C, and sectioned to 

primal cuts, which were vacuum packed and further refrigerated. At 3 days post 

mortem, loin sub-primals were transported to the laboratory in refrigerated 

containers, and upon arrival portioned in approximately 2 x 5 x 5 cm cross sections 

to be assigned to plasma treatment or used as control.  

The packaging film used was a 90 μm thick polyamide-polyethylene (PAPE) food 

grade packaging film (Combivac, foil type 20/70), with O2 permeability of 50 

cm3/(m2∙24 h∙bar), CO2 permeability of 150 cm3/(m2∙24 h∙bar), N2 permeability of 

10 cm3/(m2∙24 h∙bar), and steam permeability of 2.6 g/(m2∙24 h∙bar). 

 

7.2.2 Plasma system setup  

A new plasma source was constructed to facilitate the experiments, it was similar in 

design to those detailed previously and consisted of a self-oscillating half-bridge 

circuit and an SBD electrode panel with a square quartz dielectric sheet, 10 x 10 cm 

in area. The SBD design mirrored that of the 5 x 5 cm mesh electrode design 

detailed in Chapter 3. A 50 V DC power supply (Gwinstek programmable DC power 

supply, model PSP-603) was used to power the system, and the natural resonant 

frequency of the system was found to be 9 kHz. Photographs of the system under 
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differing operating conditions were used to calculate the surface coverage of the 

plasma enabling power densities (W/cm2) to be calculated, which was different to 

the previous experiments where power per length (W/cm) was used. Based on FTIR 

measurements (detailed later), three operating power conditions were established, 

detailed in table 7.1. 

Table 7.1 Plasma operating conditions. 

Power 

conditions 

Power input 

(Pin) [W] 

Output Voltage 

(Vpp) [kV] 

Dissipated 

Power (Pout) 

[W] 

Power Density 

[W/cm2] 

Low 20.7 8.16 17.87 0.48 

Medium 25.4 8.88 21.73 0.56 

High 29.9 9.44 25.38 0.67 

For all tests, the SBD was suspended 2 cm above the sample, no enclosure was 

used meaning ambient air was free to move around the sample during treatment. 

To minimise any heating effects, treatment times were limited to one minute. 

 

7.2.3 Plasma gas phase species characterisation  

Key species generated by plasma were characterised using FTIR measurements 

under different operating power conditions, as described previously in Chapter 3. All 

characterisation activities on the system were carried out at the University of 

Liverpool.  

 

7.2.4 Microbiological analysis 

The antimicrobial efficacy of the SBD was assessed using four common pathogenic 

foodborne bacterial strains, namely, Staphylococcus aureus DSM 1104 (S. aureus), 

Listeria monocytogenes DSM 19094 (L. monocytogenes), Escherichia coli DSM 1103 

(E. coli) and an isogenic mutant of E. coli O157:H7 EHEC strain EDL 933 (E. coli 
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O157), provided by C. Martin, Unité Microbiologie, INRA Clermont-Ferrand-Theix, 

France. 

Bacteria were kept in 20% glycerol at -80 °C. Before use, strains were separately 

cultivated in LB broth (10 g/L tryptone, 5 g/L yeast extract, 5g/L NaCl) and 

incubated overnight at 30 °C to reach the stationary phase. The overnight cultures 

were diluted in 0.85% saline to 5 log CFU/ml and the bacterial suspension was 

ready for further tests.  

As a first test to ensure the efficacy of the new system, 0.1 ml volumes of bacterial 

suspension were spread on to agar plates. Once dry, the plates were subjected to 

SBD treatment. Controls consisted of agar plates inoculated with the original 

suspensions and decimal dilutions thereof. Plates after treatment were incubated 

for 48 h at 30 °C and colonies per plate then recorded. In order to exclude growth 

of contaminant bacteria, the colonies were examined for morphology and the 

density of colonies was confirmed by testing three colonies per plate with Gram 

stain and biochemical testing (API 20E, Staph, Listeria schemes, BioMerieux). For 

plates with no colony growth, a value of 1 CFU/plate was assigned. For each strain 

and treatment setting, six replicates were processed. 

In order to study the efficacy of the SBD treatment of bacteria contaminating a 

packaging film surface, suspensions (10 µl droplets) of the aforementioned bacteria 

were placed on a polyamide-polyethylene film and immediately subjected to SBD 

treatment. To determine the level of microbial reduction, the inoculated film was 

excised under sterile conditions and then vortexed with sterile glass beads in 10 ml 

of 0.85% saline, and the suspension processed as indicated above. In addition, for 

each strain and treatment setting, six replicates were treated. 

Finally, to determine the antimicrobial efficacy of the SBD on beef loin, two strains 

of bacteria were inoculated on to the prepared beef loins (E. coli and S. aureus). 

Each beef sample contained approximately 105 CFU. Six replicates were done for 

each strain and power condition.  
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7.2.5 Beef loin treatment 

Three different groups of tests were conducted. A pre-test (test 0) was conducted 

to examine the antimicrobial efficacy of SBD treatment on beef loins and any 

‘immediate’ effects of plasma treatment on muscle colour. The results from test 0 

inspired and motivated two further tests, named test 1 and test 2.  

In test 1, the effects of treating beef loins with high and low power plasma 

conditions were studied over a vacuum storage period of 10 days. Before 

treatment, samples were stored in refrigerator for 3 days. Furthermore, 

colourimetry, nitrite/nitrate, myoglobin (Mb) isoforms and lipid peroxidation 

(TBARS) were measured before and immediately after treatment.  

Test 2 included treatment with all 3 power conditions and, besides the 10 days’ 

vacuum storage, aimed at studying ‘delayed’ effects possibly observed after a 

subsequent final 3-day period of aerobic storage in a display refrigerator, fitted with 

a glass door and samples were exposed to day light, at 3±2 °C. Before treatment, 

samples were stored in refrigerator for 7 days. 

Notably, only one side of the beef loin samples were facing the SBD electrode, and 

all the tests included two control groups. The first control group did not receive any 

plasma treatment, which reflects the industrial standard currently achieved in 

commercial practice. The second control group were subjected to plasma treatment 

whilst being fully sealed in a vacuum pack, this enabled the comparison between 

directly exposed beef loins with the untreated control group and to examine if 

plasma species breached the packaging material of the second control group, which 

would show similar effects to the direct treated samples. 

 

7.2.6 Physical-chemical analysis of beef samples 

Temperature and pH measurements were only conducted in test 2. The surface pH 

and temperature immediately before and after plasma exposure were measured 

using a pH meter (Testo, model 230) combined with a surface pH electrode 
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calibrated at pH 4 and pH 7 (Blue Line SI Analytics), and an infrared thermometer 

(Testo, model 831). 

To evaluate changes in the meat surface colour, the L*, a*, b*, Chroma and Hue 

values were measured using a double beam spectrophotometer (Phyma Codec 

model 400) with an aperture radius of 8 mm.  Results are reported as an average of 

two scans. Measurements were taken on day 0 (before and immediately after SBD 

treatment) as well as after a further three and 10 days of vacuum storage at 

2±2 °C, this methodology is similar to that reported by Faustman & Phillips [128]. 

For measurements at seven and 10 days, the samples were unpacked, re-measured 

and subsequently repacked. The time interval between unpacking and repacking 

was approximately 1 minute. Colour values after further storage under atmospheric 

conditions were only measured during test 2 at 13 days after plasma treatment. 

During all tests, hygienic sample handling was assured by wearing surgical gloves. 

After 13 days of storage post-plasma treatment, 5 g of beef loin samples were 

taken from the treated surface of all vacuum packaged samples to establish 

sarcoplasmic protein solubility using the method of Hart, described by Swatland et 

al. [129]. The sarcoplasmic protein solubility has been widely used as an indicator 

of muscle meat quality, and the solubility drops as the meat denaturalise [130]. 

Although Hart’s 1962 test was primarily developed for studying intrinsic 

denaturation in PSE (pale, soft, exudative) pork, the method has been proven 

equally useful as an indicator for increased sarcoplasmic protein denaturation in 

bovine muscle, for example, as resulting from electrical stimulation [131].  

In order to measure Nitrite/Nitrate uptake in beef loin samples, 10 g of the 

homogenised meat samples was mixed with 40 ml distilled water, heated for 15 

minutes and filtrated through a folded filter paper (MN 625 ¼, Macherey Nagel, 

Düren, Germany) as well as a membrane filter (0.2 µm cellulose acetate) according 

to Schmidt & Schwedt [132]. Nitrate levels were determined using High 

Performance Liquid Chromatography (HPLC; Waters 600s Controller 626 Pump Bio-

Inert, PDA 996). Nitrate was separated on a Spherisorb-NH2, 5 μm, 250 × 4.6 mm 

anion-exchange column, equilibrated at 20 °C. The eluent was composed of 95% 

K2HPO4 solution (10 g/1000 ml, adjusted to pH=3 with orthophosphoric acid) and 
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5% acetonitrile, with a flowrate of 1 ml/min. Total run time was 5 min and the 

detection was at 205 nm. 

To assess the extent of lipid oxidation and its consequent possible effects on colour 

after plasma treatment [133], the content of Thiobarbituric Acid Reactive 

Substances (TBARS) was determined according to Witte et al. [134].  

Furthermore, spectral analysis was conducted on meat surface shavings in order to 

examine changes in the distribution of Myoglobin (Mb) isoforms following plasma 

treatment. In the analysis, 10 g of homogenised sample were mixed with either 

50 ml distilled water, or (for nitrosomyoglobin analysis) with 50 ml acetone and 

then cooled for 1 h. After filtration through a folded filter paper (MN 625 1/4; 

Macherey Nagel, Düren, Germany), the extinction of the filtrate was analysed using 

spectrophotometer (Hitachi U3000, Japan) at 450-700 nm. Myoglobin (Mb) is the 

substance that stores oxygen in the muscle and the primarily pigment that is 

responsible for meat colour. Before binding with oxygen, Mb is in isoform of 

deoxymyoglobin (DeMb) which is physiologically active and with the colour of 

purple. After binding with oxygen, oxymyoglobin (MbO) is formed and the colour 

changes to an attractive cherry-red. Further oxidation may lead to the formation of 

metmyoglobin (MMb) and the colour changes to an unattractive greyish-brown 

[135]. 

 

Figure 7.1 Evolution of IR spectrum of key species under different plasma operation 
conditions. 
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7.3 Results  

7.3.1 Plasma gas phase species 

Figure 7.1 shows the steady-state FTIR absorption spectra of the discharge effluent 

under the low, medium and high power operating conditions highlighted in Table 

7.1. Under low power conditions, shown in Figure 7.1 (a), Ozone is the predominate 

species produced. As the discharge power was increased Ozone production is 

inhibited due to accelerated thermal degradation and NOx generation as shown in 

Figure 7.1 (b) & (c). Under the highest power condition (Figure 7.1 c), NO2 is the 

dominant species, resulting from the oxidation of NO in the plasma region. The low 

power operating point was determined as the minimum dissipated power capable of 

sustaining plasma over the entire electrode area. The high power operating 

condition was determined from the FTIR data as the point at which Ozone 

production was completely inhibited. The medium power operating point was 

chosen as the mid-point between the high and low power conditions.  

 

7.3.2 Antimicrobial effects 

Plasma treated beef loin samples in test 0 did not achieve any significant 

inactivation of the two tested bacteria under any power conditions used (< 1 log).  

Plasma treatment of inoculated agar plates achieved a significant reduction of the 

four test strains, with low power condition yielding a higher level of reduction than 

the higher power conditions, as seen in Table 7.2. To demonstrate plasma species 

do not penetrate food packing material, inoculated agar plates were covered with a 

sheet of 90 µm polyamide-polyethylene film before treatment, in this scenario no 

significant reduction in microbial numbers was observed. These results indicate 

plasma species do not penetrate through the film in significant quantities. A 

significant reduction of bacteria was also observed when bacteria suspended in 

0.85% saline were placed on packaging film and exposed to the SBD, as shown in 

Table 7.3. This scenario, mimicking a ‘fresh’ contamination as could occur during 

packaging, resulted in a >1.5 log reduction at high power condition and a >2 log 
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reduction at low power condition. Again, the lower power treatment obtained 

greater bacterial reduction than high power treatment. 

 

Table 7.2 Effect of treatment with atmospheric air plasma (exposure 1 min, 2 cm distance) 
on bacterial test strains spread onto agar plate. Numbers are expressed as log CFU per 
plate. 

 
Untreated 

control (log 

cfu/plate) 

Treated with low 

power SBD 

Treated with high power 

SBD 

  
Direct Covered Direct Covered 

S. aureus DSM 1104 3.8 0.4±0.4 3.6±0.1 0.8±0.4 3.6±0.0 

L. monocytogenes 

DSM 19094 

3.4 0.2±0.3 3.5±0.2 0.3±0.3 3.5±0.3 

E. coli DSM 1103 3.6 0.1±0.2 3.6±0.0 0.8±0.2 3.7±0.1 

E. coli O157 3.4 0.1±0.2 3.5±0.2 0.8±0.2 3.4±0.3 

 

Table 7.3 Effect of treatment with atmospheric air plasma (exposure 1 min, 2 cm distance) 
on bacterial test strains inoculated onto a polyamide-polyethylene film. Unless indicated 
otherwise, numbers are expressed as log CFU/10 µl. * Note that the limit of detection is 2 
log CFU/cm2 when using 0.85% saline suspension. 

 
Native film 

(log 

cfu/cm2) 

Untreated 

Control 

Treated with 

low power  

Treated with 

high power  

S.aureus DSM 1104 <2* 7.2±0.1 4.2±0.2 5.5±0.2 

L. monocytogenes 

DSM 19094 

<2* 8.1±0.1 6.2±0.2 5.9±0.3 

E. coli DSM 1103 <2* 7.6±0.2 4.9±0.3 5.9±0.3 

E. coli O157 <2* 7.1±0.g 4.7±0.2 5.7±0.2 
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7.3.3 Physical-chemical effects on beef samples 

The pH and temperature measurements revealed that plasma treatment had no 

significant effect on the surface pH of the treated beef sample, which were 

essentially constant at 5.8 in all treatment groups. The surface temperature 

increase was on average between 1.5 to 2 °C under all power conditions. 

Colourimetry assessments in test 0 showed that SBD treatment of vacuum-packed 

beef at high or low power had no significant effect on colour parameters. When 

freshly cut beef surfaces were directly exposed to the plasma under high power 

conditions, statistically significant increases of 2.7±0.9 for a*, of 5.3±1.3 for Hue 

angle and a decrease of 2.2±1.1 for Chroma were observed at day 0; conversely, 

no significant changes were seen for direct exposure to low power plasma. In order 

to examine if such differences would persist when the meat was stored in a 

vacuum-package for up to 10 days, test 1 was designed and conducted.  

In test 1, before the plasma treatment, no significant difference was found for the 

colour parameters of the three sample groups. After 3 and 10 days storage, the 

exposed and then vacuum packaged group had significantly higher a*, b*, Chroma 

and Hue angle values than those of the untreated control, or those of vacuum-

packed then treated control group, as shown in table 7.4. 

Results for test 2 are shown in table 7.5. Comparisons of vacuum-packed beef with 

plasma treated vacuum-packed beef at three power conditions showed few 

significant differences.  

In terms of Sarcoplasmic protein solubility, no significant difference in transmission 

values existed between treatment groups, indicating a similar degree of 

sarcoplasmic protein denaturation (see Table 7.6). The variation in values is similar 

to that recorded by Den Hertog-Meischke et al. [136], who sampled refrigerated 

veal loin samples at two days’ post mortem and (relying on the same method used 

in this study) also observed mean transmission values to range from roughly 54 to 

59 %.  
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Table 7.4 Test 1: The effects of subjecting (non-packaged/vacuum packaged) beef loin 
cross sections to plasma treatment on surface colour parameters, as measured after 3 and 
10 days storage in vacuum at 2±2 °C; means and standard deviations of 6 replicate 
measurements. 

Test 1: Pre-treatment values at day 0 

 High power treatment Low power treatment 

 Control Treat - 

pack 

Pack-treat Control Treat - 

pack 

Pack-treat 

L* 37.1±2.8 36.1±2.6 37.5±2.3 39.3±2.2 36.9±2.5 38.2±3.3 

a* 14.5±1.7 14.0±1.0 14.3±2.3 11.2±1.1 11.3±1.2 10.7±1.0 

b* 8.9±1,1 8.6±1.1  9.0±2.2 7.9±1.3 7.4±0.9 7.6±0.8 

Chroma 17.0±1.9 16.4±1.6 17.0±3.1 13.7±1.6 13.3±1.6 12.9±1.8 

Hue∆ 31.5±1.7 31.4±1.9 32.0±2.1 35.1±2.0 33.1±2.0 33.4±2.6 

After 3 days of vacuum storage 

 High power treatment Low power treatment 

 Control Treat - 

pack 

Pack-treat Control Treat - 

pack 

Pack-treat 

L* 34.7±2.4 38.6±2.4 38.6±3.0 36.8±2.6 36.3±2.7 35.6±3.7 

a* 13.0±0.4 15.6±0.8 13.5±1.5 9.6±1.1 10.5±1.0 10.2±1.6 

b* 8.0±0.6 11.1±1.0 8.0±1.0 5.9±0.9 6.7±1.0 6.2±1.3 

Chroma 15.3±2.2 19.1±1.0 15.7±1.7 11.3±2.1 12.4±1.3 11.9±2.0 

Hue∆ 31.3±2.0 35.6±1.8 30.6±0.6 31.4±2.1 31.8±2.2 30.6±1.4 

After 10 days of vacuum storage 

 High power treatment Low power treatment 

 Control Treat - 

pack 

Pack-treat Control Treat - 

pack 

Pack-treat 

L* 40.0±2.2 41.2±3.8 39.3±2.7 39.5±3.7 39.8±2.1 38.9±3.3 

a* 12.2±0.9 14.0±1.3 13.0±0.7 10.8±0.9 10.9±1.1 10.5±1.4 

b* 8.1±1.1 11.0±1.4 8.0±0.8 7.6±0.8 7.9±1.0 7.8±1.1 

Chroma 14.7±1.2 17.6±1.4 15.6±0.9 13.2±1.1 13.5±1.4 13.1±1.7 

Hue∆ 33.4±2.5 37.0±2.9 33.4±1.7 34.9±1.7 35.5±1.3 35.7±0.8 
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Table 7.5 Test 2: The effects of subjecting vacuum packaged cross sections from beef loins 
to plasma treatment on surface colour parameters, as measured after 3 and 10 days of 
further storage in vacuum at 2±2 °C and after a subsequent 3 day aerobic storage in a 
display refrigerator (3±2 °C); means and standard deviations of 6 replicate measurements. 

Test 2: Pre-treatment values at day 0 

 High Power Medium Power Low Power 

 Untreated  Pack-treat Untreated  Pack-treat Untreated  Pack-treat 

L* 35.4±2,4 35.5±3.2 35.4±2,4 37.3±3.3 35.4±2,4 36.1±3.0 

a* 13.5±1.3 14.6±1.9 13.5±1.3 13.6±1.6 13.5±1.3 15.3±1.3 

b* 8.4±1.5 8.9±1.4 8.4±1.5 7.8±1.5 8.4±1.5 9.8±1.1 

Chroma 15.9±1.8 17.1±2.3 15.9±1.8 15.7±2.0 15.9±1.8 18.2±1.4 

Hue∆ 31.7±2.4 31.5±0.5 31.7±2.4 29,5±2,6 31.7±2.4 32.7±2.5 

After 3 days of further vacuum storage 

 High Power Medium Power Low Power 

 Untreated  Pack-treat Untreated  Pack-treat Untreated  Pack-treat 

L* 36.9±2.1 39.0±2.4 36.9±2.1 37.5±2.2 36.9±2.1 37.2±2.9 

a* 11.9±0.8 11.8±1.3 11.9±0.8 11.5±0.9 11.9±0.8 12.3±1.0 

b* 7.6±0.8 7.4±1.1 7.6±0.8 6.9±0.7 7.6±0.8 7.4±0.6 

Chroma 14.2±1.0 14.0±1.6 14.2±1.0 13.4±1.1 14.2±1.0 14.4±1.1 

Hue∆ 32.6±1.4 31.8±1.6 32.6±1.4 31.1±1.7 32.6±1.4 30.9±1.7 

After 10 days of further vacuum storage 

 High Power Medium Power Low Power 

 Untreated  Pack-treat Untreated  Pack-treat Untreated  Pack-treat 

L* 38.7±2.3 40.7±1.4 38.7±2.3 40.7±2.5 38.7±2.3 41.4±3.3 

a* 11.4±1.2 12.2±0.7 11.4±1.2 11.6±1.1 11.4±1.2 12.0±0.9 

b* 7.4±1.1 8.2±0.7 7.4±1.1 7.2±0.9 7.4±1.1 7.4±0.9 

Chroma 13.6±1.5 14.7±0.9 13.6±1.5 13.6±1.4 13.6±1.5 14.2±1.0 

Hue∆ 32.9±1.2 33.3±1.4 32.9±1.2 31.8±0.8 32.9±1.2 32.0±3.6 

After a further 3 days of aerobic storage (13 days after treatment) 

 High Power Medium Power Low Power 

 Untreated  Pack-treat Untreated  Pack-treat Untreated  Pack-treat 

L* 40.6±2.9 42.8±2.5 40.6±2.9 41.9±3.0 40.6±2.9 42.5±2.2 

a* 17.5±2.0 19.2±1.2 17.5±2.0 17.1±1.5 17.5±2.0 19.0±1.1 

b* 13.9±1.8 15.1±1.6 13.9±1.8 13.7±1.4 13.9±1.8 15.3±1.1 

Chroma 22.3±2.6 24.4±1.9 22.3±2.6 21.9±2.0 22.3±2.6 24.4±1.4 

Hue∆ 38.4±0.9 38.1±1.5 32.9±1.2 38.6±0.5 38.4±0.9 38.7±1.2 
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The level of nitrite observed in test 1 was consistently below the limit of 

quantification (1.4 mg/kg NaNO2), whereas nitrate concentrations, expressed as 

KNO3, were in the range of 0.1 to 0.23 mg/kg. The TBARS measurements were 

below 0.1 mg Malondialdehyde/kg, with the exception of a single sample (0.11 

mg/kg). The TBARS values recorded in Test 2 after 3 days of aerobic storage are 

presented in Table 7.6. 

 

Table 7.6 Lipid peroxidation (TBARS) and sarcoplasmic protein solubility of beef loin samples 
measured 13 days after treatment with High (HP), Medium (MP) and Low Power (LP) 
conditions. 

 Control Direct treated  Vacuum packaged then 

treated 

HP MP LP HP MP   LP 

TBARS 

(mg/kg MDA) 

0.17±

0.03 

0.15±0.0

3 

0.14±

0.02 

0.15±0.

02 

0.14±0.

02 

0.15±0.

03 

0.13±0.

03 

% 

Transmission 

52.6±

7.9 

56.9±15.

0 

- 60.1±18

.1 

53.9±10

.8 

- 58.2±12

.5 

 

Figure 7.2 shows the results of spectrometric analysis of myoglobin isoforms are 

presented graphically in tests 1 and 2. The results show the spectrographs of 

myoglobin isoforms in absorptions as a function of wavelength. 

Figure 7.2 (a) and (b) present the spectrograph of sample from four treatment 

groups in an aquadest homogenous mixture. The spectrum of acetone-mixed 

homogenates is shown in Figure 4 (c).  Numbers indicate the sample groups: (1) 

vacuum packed, then low power treatment; (2) ‘direct’ low power treatment, then 

vacuum packed; (3) vacuum packed, then high power treatment; (4) ‘direct’ high 

power treatment, then vacuum packed; (5) untreated control. Note the insert graph 

in Figure 7.2 subfigure (c), showing a characteristic spectrograph for 

nitrosomyoglobin in a cured meat product. 
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Figure 7.2 Spectrographs of myoglobin isoforms as prevalent in filtrates of aquadest 
homogenates of plasma treated and control beef loin samples: (a) for Test 1 and (b) for 
Test 2. Subfigure (c) (Test 1) shows results of nitrosomyglobin analysis (samples 
homogenised in acetone). 

(a) 

(b) 

(c) 
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Characteristic extinction peaks for MbO (typically at 544 and 582 nm) can be clearly 

distinguished, while the characteristic spectral profiles of deoxymyoglobin (peak at 

525 nm) and methmyoglobin (peaks at 503 and at 650 nm) cannot be observed 

[137]. Figure 7.2 (c) provides evidence that nitrosomyoglobin (which is typically 

observed in cured meats between 500 and 600 nm; see the reference graph insert 

in Figure 7.2 (c)) is not prevalent in plasma treated samples. 

 

7.4 Discussion  

Most studies reported in literature concentrate on the antimicrobial effects on foods 

directly treated with non-thermal atmospheric pressure plasma, few studies 

however consider meat, especially fresh beef. However, this study shows no 

antimicrobial effect of beef samples from the plasma, this is likely due to the in-

direct nature of the plasma treatment and the complexity of the sample surface. 

These tests do indicate the SBD has a marked antimicrobial potential for 

decontaminating packaging film surfaces. Given that plasma species do not 

penetrate the packaging film, the use of plasma to clean the outside of meat 

packages would not be subjected to the same regulatory requirements as the direct 

exposure of the product. One remaining challenge is that commercial meat 

processing and packaging lines operate at rather high speeds. Consequently, there 

are limitations as to the treatment duration. In this study the treatment time was 

limited to 60 seconds which approaches the maximum time a packaged product 

may remain on a conveyor belt. Obviously at longer durations, the antimicrobial and 

physical-chemical effects may be intensified.  

Major physical-chemical indications for sensory changes might have changed signs 

of sarcoplasmic protein denaturation, though which was reflected from observation 

in the result but possibly leading to higher L* values or oxidation, the latter leading 

to shifts in the myoglobin isoform distribution pattern, and both would affect meat 

colour [120, 126, 127]. 

In test 1, the Hue angles, observed for high power treatment to be consistently 

higher over time (Table 7.4), would appear to suggest that plasma treatment may 
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have induced some oxidation. Yet, the results of both TBARS analysis (indicative for 

lipid oxidation) and Mb isoform analysis (indicative for oxidation of Mb to MMb) 

failed to substantiate such. Surprisingly, under low power treatment conditions 

which are dominated by ozone and is known to initiate oxidation reactions, did not 

result in colour changes in any of the tests.  

Under high power conditions plasma treatment it is essential to determine if the 

samples take up nitrates, as they are toxic and even low quantities can lead to a 

minor superficial curing effect. As nitrite-uptake of the treated surface tissue was 

shown not to occur and thus nitrosomyoglobin formation was not observed. If 

curing had occurred due to plasma treatment, then the product would no longer 

classify as ‘fresh’ meat according to international standards (European Union, 2004) 

[140]. 

As plasma generated RONS are free to interact with the surface tissue containing 

intramuscular fat, the potential for lipid oxidation during plasma treatment is high. 

Reactive oxygen species are able to interact with the unsaturated fatty acid fraction 

which may lead to lipid peroxidation. Secondary oxidation products, such as 

aldehydes, may initiate conformational changes in myoglobin causing increased 

hemeoxidation (hemoglobin) and brown off-colours, and then lead to off-odours 

and, finally, result in rancid off-flavours [141]. The latter occurs at TBARS threshold 

values of 0.5-2.0 mg MDA/kg [142]. Results show that the TBARS values measured 

after 3 and 10 days of vacuum storage were all below the limit of detection of 0.11 

mg MDA/kg. 

This was not an unexpected finding as, firstly, the amount of intramuscular fat in 

beef is low (around 2%), this predominantly contains saturated and mono 

unsaturated fatty acids, but relatively little polyunsaturated fatty acids (PUFA) which 

are known to be particularly vulnerable to oxidative changes [143]. TBARS values 

are primarily expected to increase in a packaging environment with a high oxygen 

content and at extended storage times as discussed by Ulbin-Figlewicz & Jarmoluk 

[144]. 

In test 2, samples had been continually stored in vacuum until exposed to 

atmospheric oxygen and daylight at day 10 for a final 3 days. Observation indicates 
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that TBARS values increased to around 0.15±0.03 mg MDA/kg, which is below the 

threshold values for off-odours and off-flavours, and values were not different for 

plasma-treated and untreated samples. These findings correspond to those of 

Jayasena et al., who report an increase in TBARS values only when beef loin was 

subjected to ‘direct plasma treatment for 10 minutes, as opposed to treatment 

durations of 2.5, 5 and 7.5 minutes [80]. 

During the ~70 minute sample preparation time (homogenisation and filtration) 

preceding myoglobin analysis, the sample is exposed to oxygen. At ambient 

pressure  deoxymyoglobin (DeMb) will have been oxygenated to oxymyoglobin 

(MbO), and  there should only be traces of methmyoglobin (MMb) and 

deoxymyoglobin (DeMb) [135, 145]. This explains the findings shown in Figure 7.3. 

Hence, the data suggests that in all samples, treated and untreated alike, 

Methmyoglobin Reducing Activity (MRA) is still largely intact [146]. Consequently, in 

this study the ‘display life’ does not seem to be adversely affected by the plasma 

treatment. This finding is further supported by comparing the colorimetric data with 

the ‘colour acceptability standards’ suggested by Farouk et al., who conducted 

consumer panel studies involving over 500 panellists evaluating the appearance of 

beef loin steaks displayed under atmospheric conditions [147]. These authors 

determined the ‘cut off’ colour values above or below which a consumer is no 

longer willing to buy the product and consequently ‘display life’ has ended. 

Considering the colour measurement equipment used, desirable values would be: 

a*>14 and 33<Hue<41. Tables 7.6 through 7.8 indeed show that samples 

aerobically stored for the final 3 days still qualify for being displayed, regardless of 

the plasma power condition applied. 

The physical-chemical analysis conducted in this investigation primarily focused on 

the plasma treatment effects on meat colour. It could be argued that other major 

sensory attributes may also be subject to changes resulting from such treatment. 

For instance, plasma induced protein denaturation would affect water-holding ability 

[135]. Oxidative environments resulting from plasma treatment could conceivably 

decrease tenderization through inactivation of μ-calpain, or affect the degree of 

oxidation [135, 138, 148–151]. 
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However, it needs to be mentioned that these biochemical effects would be 

restricted to a very thin surface layer. Although this needs to be confirmed in 

further studies, it is questionable if such strictly localised effects would afford 

significant changes in waterholding/tenderness/flavour traits of the overall product. 

In contrast to treatment of meat with irradiation which depending on the 

wavelengths achieving a penetration depth of 3-6 cm with Beta rays and up to 1-

2 m with Gamma-rays, non-thermal plasma is a technology that restricts its action 

to the immediate surface only. Even in set-ups that achieve the highest penetration, 

such as plasma jet devices, plasma generated species only penetrates the tissue in 

the micrometers range. For instance, an effective tissue penetration depth of 

maximally 60 μm has been recorded for high rate flow plasma jet treatment [152]. 

Consequently, it is likely that the direct treatment of meat with plasmas potentially 

affects only those quality traits that are principally related to surface-associated 

phenomena.  

 

7.5 Conclusion  

This investigation is one of the first to consider the use of an SBD for the treatment 

of beef loins. While the decontamination results are far from impressive it is likely 

that there is considerable room for improvement given the short treatment times 

and rather large separation between the SBD and the meat surface. Notably, tests 

showed that plasma treatment did not adversely affect the major physical-chemical 

quality characteristics of the beef.  

Beyond the direct exposure of meat surfaces to plasma species, it was shown that 

standard food grade packaging films are able to act as a barrier to plasma 

generated RONS. This is especially important for applications where plasma may be 

used to decontaminate the outer surfaces of packaging materials. In the context of 

package decontamination, plasma was shown to be particularly effective at 

inactivating a wide range of foodborne pathogens on typical food packaging films. 

Overall, it is concluded that the SBD treatment of meat for the purpose of microbial 

decontamination is extremely challenging. Difficulties are assumed to arise due to 
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the complex nature of the sample surface (fibrous tissue with an abundance of 

proteinaceous and fatty matter). Plasma treatment was shown to cause relatively 

few changes to key quality attributes of the exposed meat. SBD treatment of 

packing material was highly effective and this promising application area should be 

further investigated to reduce the necessary treatment times. 

  



 

130 

 

Chapter 8 Conclusion  

 

8.1 summary  

Overall, this PhD thesis demonstrates that non-thermal air plasma is an effective 

tool for use in microbial decontamination applications. It is a low-cost, 

environmentally friendly approach that can be applied directly at the point of need. 

While the recent literature considered a vast array of discharge configurations, the 

emphasis of this project was on the Surface Barrier Discharge due to its ability to 

operate in a stable fashion in ambient air for long durations and its ease of 

scalability. A distinct disadvantage of the SBD configuration is the spatial separation 

between the plasma region and the sample, which typically ranges from 1 mm to 

100 mm. Many applications rely upon the highly reactive RONS produced in the 

plasma; yet, the spatial separation between the plasma and the sample acts as a 

filter, meaning only longer-lived species are able to play a role. 

In order to reduce the impact of the spatial separation between the discharge and 

sample and thereby improve application efficiency, this work has systematically 

explored the influence of the discharge parameters on both species production and 

transport of reactive species. Using FTIR analysis, two modes of operation were 

identified. Under low power conditions the gas phase chemistry was observed to be 

dominated by ozone, increasing the dissipated power led to an abrupt transition to 

a RNS dominated regime. In humid air, which is typical in many application, HNO3 

was the dominant species produced under high power conditions; in dry conditions, 

N2O5 was the main product. The reasons behind the abrupt transition between the 

ROS and RNS dominated modes were discussed and attributed to the accelerated 

production of NO and subsequent quenching of ozone 

While the plasma generated RONS impinge on the surface of a liquid, they react to 

produce a range of other long-lived RONS including H2O2, HNO2 and HNO3. 

Furthermore, ozone is soluble in water hence aqueous phase ozone increase with 

plasma exposure. HNO2 is less stable and can be oxidised to HNO3 during the 

plasma treatment. Under higher power conditions the high concentration of gas 
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phase species resulted in acidification of the liquid. Given that the pH level can be 

critical in certain applications, such as the treatment of potable water, such changes 

are undesirable. To overcome this challenge, a pulsed width modulation (PWM) 

mode was introduced to reduce power dissipated by the plasma without 

compromising the area of plasma generation. Measurements showed that no 

significant pH drop was observed when using PWM.   

Beyond the afterglow chemistry, the mass transport of key reactive species and a 

means to enhance it was also investigated. The body force generated by the SBD 

plasma system was systematically studied using the particle image velocimetry 

(PIV) techniques. The aim of these investigations was to increase the velocity of 

flowing gas in the direction of the sample, thus reducing the transit time of species 

to the sample. It was observed that both the input power and electrode geometry 

were key factors in dictating the flow velocity from the electrode unit. It was 

determined that the optimal electrode configuration consisted of parallel facing 

strips, with a 1.5 cm separation. It was deemed necessary to strike a compromise 

between electrode gap spacing and the volume of plasma generated, hence a 1 cm 

gap separation was chosen for the final SBD device. 

After optimisation of the SBD system, various bacterial decontamination scenarios 

were considered. This included bacteria incubated on agar surfaces, suspended in 

liquid solutions and inoculated on to muscle meat samples. Results indicated that 

both solid surfaces and liquid volumes can be effectively and efficiently 

decontaminated by the plasma, whereas no obvious decontamination was observed 

for meat samples. This highlights an important point regarding the nature of plasma 

treatments and the complexity introduced with real-world samples. Many reports in 

the literature focus on model-system (e.g. agar) and show excellent results, this 

work demonstrates that moving to realistic samples is far from a trivial matter.  

Particularly encouraging results were obtained on the treatment of fungal spores (A. 

flavus) where it was observed that plasma decontamination was highly effective. 

Fungus places a major burden on the food supply chain, if plasma system could be 

realised that achieves similar levels of reduction on a commercial scale the impact 

would be significant.  
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In conclusion, this project has demonstrated that SBD systems are valuable tools in 

the fight against microbial contamination. They are convenient, easily scaled and 

require no consumables, hence are extremely attractive for industry. The work has 

uncovered several novel routes to optimise SBD reactors for microbial 

decontamination applications and the published outcomes will undoubtedly 

contribute to the ongoing international effort to realise an industrial scale plasma 

decontamination system.  

 

8.2 Future research directions 

This work has uncovered that the plasma chemistry arriving at the sample is the 

dominating factor in dictating the efficiency of decontamination. Much work is still 

to be done on understanding the complex reaction pathways and how these link to 

the underlying physical properties of the discharge. In the future, modelling and 

advanced diagnostic techniques should be employed to gain a better insight in to 

the underpinning processes in the plasma region.  

Once a comprehensive understanding of the plasma chemistry has been achieved, 

further efforts should be devoted to enhancing the mass transport of species. 

Recent reports in the literature associated with plasma-aerodynamics have 

demonstrated that flow rates >10 m/s can be generated, this is an order of 

magnitude higher than what has been achieved in this work. Further efforts should 

be devoted in to improving this as an order of magnitude increase in flow velocity is 

likely to result in the transport of species which are typically considered to be 

confined to the visible discharge region (e.g. OH). Such species are key from 

microbial decontamination applications and increase the flux of these to the sample 

would be highly advantageous.   

Finally, treatment on beef samples showed comparatively poor levels of 

decontamination compared to model systems. In the future, the influence of the 

surface composition and morphology of the sample should be investigated further 

to identify situations where plasma treatment is highly unlikely to be effective (e.g. 

fibrous media where bacteria are shielded).  
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