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Abstract

In this paper, we examine the impact of increasing the size of a data
set in detecting structural breaks. Based on an empirical application,
supported by theoretical justification and a simulation experiment, we
find that larger sample sizes may make it more rather than less diffi cult
to determine the existence of a structural break.
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1 Introduction

This paper investigates a curious phenomenon in structural change testing
whereby a break, initially found in a given set of observations, is subsequently
not detected when additional observations are obtained thereby increasing the
sample size, T . The plan of the paper is as follows. Section 2 introduces the
regression model used in the analysis, the CUSUM procedures employed to
detect breaks and the numbers cq used to assess how diffi cult it is to detect
a break should it occur at position q ∈ [2, T ] in the sample span. Section 3
conducts some simulations to quantify the effect of increasing the sample size
on the power of the CUSUM tests to detect the existence of a break. Section
4 attempts to detect the presence of a structural break in an interest rate-bond
yield relationship based on data spanning 1972 to 2010 and does indeed show
that a break detected with a given set of observations is not discoverable when
the data set is augmented, doubling the sample size. The paper finishes with
some conclusions.

2 Structural Breaks in Regression

The set of models we consider for the observations is the multiple regression

y = Xβ + ωqδ + ε (1)

ε ∼ (0, σ2I)

where y is a N ×1 vector of observations, X is a N ×k full rank matrix of
variables that is conditioned on, β is a vector of unknown coeffi cients and ε is a
vector of independent disturbances with zero mean and variance σ2. The form
of the structural break is captured by ωqδ with ωq being a vector and δ a scalar
which may be positive or negative and q is a member of a set Q. So for example,
if we set ωq = iq = (0, ..., 0, 1..., 1)

′ where the 1’s start at q = NB + 1, then
we are considering models with a shift, in the intercept only, at the unknown
position NB ∈ [1, N − 1]. For ease of reference, we use τ = q/N to indicate
the fraction of the sample span where a break may take place. Other notation
used in the sequel includes r = My, M = I − X (X ′X)−1X ′, the studentised
r, r̃ = r/ (r′r)

1/2, and cq = ω′qMωq. Two procedures for examining structural
breaks were applied: a traditional residual based CUSUM (see McCabe and
Harrison (1980) and Ploberger and Krämer (1990, 1992)) and a weighted cusum,
W -CUSUM , which is equivalent to the minimum sum of squares test of Bai
(1997); see McCabe and Rao (2017)2 . The two-sided detection procedure based
on the W -CUSUM statistic is to accept the hypothesis of no break if

max
q=2,...,N

c−1q
(
ξ′q r̃
)2 ≤ K

2This working paper provides a source of background material and additional detail for
the readers.
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(where K is a critical value to control the size the test) and decide there is a
break at the argmax position when the test rejects. The ordinary CUSUM
procedure is identical in structure but the test is based on maxq=2,...,N

(
ξ′q r̃
)2
.

Thus the procedures consist of an initial test followed by an identification step
if the test rejects3 .

A way to shed light on cq is to note that change point detection may be
thought of testing δ = 0 in (1) over every possible configuration of models
specified by ωq. It is straightforward to show that the variance of δ̂q, the OLS
estimator of δ in y = Xβ + ωqδ + ε, is proportional to c−1q so that accurate
estimates correspond to large values of cq. More specifically, it follows that

c−1q
(
ξ′q r̃
)2
= cq δ̂

2

q and
(
ξ′q r̃
)2
= c2q δ̂

2

q. Thus, if the cq are small in some region
of the sample span, there is little chance of a break being detected should it lie
therein by comparison with regions where the cq are large. In addition, we can
deduce that the W -CUSUM test will perform worse than the CUSUM test in
regions with a high cq when the true break point lies there.

3 More OR Less?

To assess the effect of data additions in structural break problems, it is con-
venient to use a stylised model as the cq values do not then depend on the
realisation of the x-variable involved. We considered linear trend model with a
fixed set of 100 observations which contains the break at position 80 and sub-
sequently these data are supplemented with additional observations from the
same model, increasing the original sample size from T to T ∗. The models are

Model 1:
{

yt = α+ βt+ εt; t = 1, ..., 80
yt = α+ (β + δ) t+ εt; t = 81, ..., 100

Model 2:
{

(y1, x1) , ..., (y100, x100) of Model 1
plus yt = α+ (β + δ) t+ εt; t = 101, ..., T ∗

We choose T ∗ to be 120, 150 and 200. Now the plot of the cq values for the
trend Model 1 are given in Figure 1. It is unimodal, peaks roughly at τ = 0.8
and gives little weight to the earlier part of the span. Thus, a break at location
80 in Model 1 would correspond τ = 0.8 but in Model 2 with T ∗ = 200 a break
at location 80 would correspond to τ = 0.4, a position where high power is not
expected.
The regression parameters were set at α = β = 1 with εt ∼ N (0, 1). We

tested for a break in the trend slope, t, with 2, 000 replications and δ = 0.01.
The results are given in the Table below. When using Model 1 with T = 100, the
CUSUM test suggested a break in 62% of cases when rejecting at the α = 0.05
level, critical values being computed via the bootstrap. Then, increasing the size
of the original data to T ∗ = 200 whilst keeping the break in the same position,

3Under normality, in a decision theory framework, CUSUM procedures can be shown to
have certain optimality properties for identifying the location of the break; see McCabe and
Rao (2017).
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Figure 1: Cq values in trend model

the test was applied again to Model 2. With the additional observations, the
CUSUM test now rejects just 5% of the time, a dramatic drop, indicating that
more may sometimes be less, as the effect of shifting the relative position of the
break from the advantageous τ = 0.8 to τ = 0.4 takes its toll. The corresponding
figures for the W -CUSUM are from 51% rejections in Model 1 to 4% in Model
2. As expected the W -CUSUM has less power than the CUSUM in Model
1. From the Table, it is clear that additional data, that increasingly places the
break location in less favourable τ positions, progressively worsens performance.

T = 100 T ∗= 120 T = 100 T ∗= 150 T = 100 T ∗= 200
τ 0.80 0.67 0.80 0.53 0.80 0.40
CUSUM 60% 56% 62% 20% 62% 5%
WCUSUM 49% 45% 49% 18% 51% 4%

Of course, there is no suggestion that additional data are never useful and it
is easy to design experiments where additional data reposition the break point
to a more favourable position in the span.

4 Interest Rate and Bond Data

This section looks at the specific relationship between the 3-month US Treasury
bill rate (T -Bill) and the 10-year bond yield (B10Y). The data are taken from
the Federal Reserve data base FRED4 and are monthly from January 1972

4FRED database at the Federal Reserve Bank of Saint Louis, from the interest rates
category: http://research.stlouisfed.org/fred2/categories/22
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until December 2010, giving 468 observations. More recent observations are not
included due to the effect of quantitative easing in keeping short term rates very
near zero. The data are plotted in Figure 2. Economic theory suggests that these

Figure 2: 3-month T-Bill and 10 Year Bond

data should individually be integrated, I(1), and also be cointegrated, i.e., there
exists a linear combination of the B10Y and T -Bill rates which is stationary.
Further, the short term T -Bill rate should drive the long term bond yield with
a regression slope coeffi cient of 1, i.e. the spread (difference between the rates)
should be stationary. Since the regression slope should remain at 1, we might
expect to see exogenous breaks show themselves in the intercept term of the
model

B10Yt = α+ 1 ∗ T -Billt + εt,

εt being some stationary process.
To check for structural change, we performed an intercept stability test on

the first 20 years of data from 1972:1 till 1992:12 looking for a possible break date
which would match the recession of 1980-1982 and then a test on the last 20 years
using 1990:1 till 2010:12 whose span covers the period of the Asian currency
crisis. We used fixed-X bootstrap critical values, extracting an AR(1) term from
the estimated residuals before resampling to deal with possible autocorrelation
in the disturbances. The T -Bill variable is conditioned on as it is ancillary
under the model.
For the first 20 years of data, the p-values for the CUSUM andW -CUSUM

tests were 0.244 and 0.392 respectively and, despite the obvious increase in
volatility evident in Figure 2, no break was identified in the regression intercept.
For the last 20 years of data, the p-value of the CUSUM test was 0.047 and
subsequently June 1997 was identified as a break date. This position corresponds
closely to the accepted date of the Asian crisis i.e. July 1997. The W -CUSUM
strictly did not find a break at the 5% level but the p-value was close at 0.064
Since no break was identified in the earlier data set we tested the complete

set from 1972:1 to 2010:12 hoping that the additional observations would lead
to a more emphatic conclusion with respect to the currency crisis by means of
lower p-values. However, the p-values for the full set of observations increased
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Figure 3: Cq values

to 0.176 and 0.267 for the CUSUM andW -CUSUM respectively and no break
was identified. To shed some light on the bill rate/bond yield puzzle, we looked
at (normalised) plots of the cq values for both the most recent 20 years and
complete sets of observations and these are shown in Figure 3. The cq for
the recent observations (right panel) have a clear peak in the mid to late 90’s
indicating that the confounding effect of the regression is not strong there,
making it easier to find a break. On the other hand, the cq for the full data (left
panel) peak around 1980 with a smaller sub-peak in the early 90’s and are in
further decline by the late 90’s, the time of the Asian crisis, making it diffi cult
to overcome the impact of the regression design.

5 Conclusion

It appears that the position of the break location in the sample span is an
important determinant of the power of break tests. As a rule of thumb, data
augmentation that changes the position of the true break point from a rela-
tively favourable to an unfavourable one may be unhelpful and may make find-
ing breaks more diffi cult. These suggestions offer a plausible explanation for the
perplexing finding sometimes encountered in empirical investigations as exem-
plified by the Treasury bill relationship with the bond yield as analysed here.
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