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Abstract. An ontology signature (set of entities) can express more than
its constituent concept, role and individual names, since rewriting per-
mits defined entities to be replaced by syntactically different, albeit se-
mantically equivalent definitions. Identifying whether a given signature
permits the definition of a particular entity is a well-understood prob-
lem, while determining the smallest (minimal) signature that covers a set
of entities (i.e. a task signature) poses a challenge: the complete set of
alternative definitions, or even just their signature, needs to be obtained,
and all combinations of such definition signatures need to be explored,
for each of the entities under consideration. In this paper, we present
and empirically evaluate our novel approach for efficiently computing an
approximation of minimal signature cover sets.

1 Introduction

An ontology provides a reference vocabulary for a given domain of interest, where
the meaning of the terms in the vocabulary (entities) is defined inductively
in terms of other entities [1]. Beth definability [2,6] is a well-known property
from classical logic that has also been studied in the context of Description
Logics (DLs); it relates the notion of implicit definability to the one of explicit
definability, by stating that every implicitly defined concept is also explicitly
definable [11]. In definitorially complete DLs ontologies (i.e. those modelled in a
dialect where the Beth definability property holds), defined ontological entities
can be rewritten into syntactically different, albeit semantically equivalent forms,
thus it is possible to convey the meaning of an entity without using its actual
name [11].

For example, in the ontology O = {C=AUB,C=D,AC —-B,E C 3r.T}, the
concept C is defined explicitly, i.e. C = A U B. Additionally, the concept A is im-
plicitly defined in O by the set of general concept inclusions {C = AL B, A C —B}.
Thus, A can be explicitly defined by the axiom A = CM-B, where X = {C, B}
is a definition signature (DS) of A.

A concept or role can either be defined explicitly or implicitly in an ontology,
or it could be undefined (and hence not rewritable, e.g. E, r). For instance,
apart from the concept E, X provides coverage for all concept names of O, as in
addition to the asserted entities, both A and D are definable by an axiom whose
signature is in Y. Therefore, a signature potentially enables the expression of not
only its asserted concept, role and individual names, but also of those defined
entities whose definition is permitted with the given signature.



Semantic interoperability between individually designed ontologies is typ-
ically hindered by heterogeneity, as distinct ontologies typically differ in their
vocabularies and in the meaning they associate with particular entities [3]. Ontol-
ogy matching (alignment) resolves heterogeneity between different ontologies by
producing an alignment, i.e. a set of correspondences that describe relationships
between semantically related entities of distinct ontologies. Ontology alignment
negotiation has become an established and active research area that is concerned
with supporting opportunistic communication within open environments [9, 10].
In order to be able to carry out meaningful communication, different systems
must cooperatively establish a mutually acceptable alignment, whilst adhering to
internal preferences, without compromising confidential knowledge, and prevent
alignment-based conservativity violations to occur [8]. The mutual alignment
emerges as a result of a bilateral negotiation between two systems, whereby it
is clearly beneficial to minimise the considered correspondences (i.e. the aligned
part of an ontology signature), in order to reduce the overall cost of the process,
and to support privacy and conservativity constraints of the interacting parties.

van Harmelen and colleagues [12] have shown that semantic interoperability
tasks can be characterised (amongst other parameters) by their signature, thus
the prerequisite for performing a knowledge-based task is that the tasks’s sig-
nature must be covered by the terms available to the party that performs the
given task. In order to determine whether a given task signature (e.g. a query
signature) is covered by a given ontology signature, each entity of the task sig-
nature must be individually examined; an entity is covered either if it appears
in the ontology signature, or if it is rewritable using only the members of the
ontology signature. Although task coverage is trivial to establish, determining
the minimal signature that covers a given task signature poses a challenge, as the
complete set of rewriting forms (definitions) needs to be known, and all combina-
tions of such definition signatures (the sets of entities that permit the rewriting
of a defined entity) are required to be explored, for each entity in question.

In our previous work, we have presented a pragmatic approach to computing
the complete set of Definition Signatures for a given ontology [4]. In this paper
we introduce the signature coverage problem and a novel algorithm that can
efficiently compute an approximation of the smallest set of entities that covers
a given task signature, starting from a previously obtained complete set of DSs.
The paper casts the signature coverage problem as a set coverage problem, which
is in Section 2, whilst Section 3 introduces the signature coverage problem. Sec-
tion 4 presents our approach to approximate minimal cover sets. The approach
is empirically evaluated in Section 5, that describes the experimental framework
and the results. Finally, Section 6 outlines future work and concludes the paper.

2 Background

In this section we review two classical problems that address the issue of cov-
erage: the set coverage problem and the minimal functional dependency cover.
The set coverage problem (or minimal set cover problem) is a classic problem in



combinatorics, complexity theory and computer science, in general [14]. Let U be
a set of elements (referred to as the universe) and S a collection of subsets of U,
whose union equals the universe. The set cover problem identifies the smallest,
minimal sub-collection C C S, called the cover set, such that the union of sets
in C covers U (Vz{z € U|z € C}).

Ezample 1 (Minimal set cover problem). Consider the set U = {1,2,3,4,5},
and let S be the collection {S1, Sa, S3,84}, where S1 = {1,2,3}, S = {1, 2},
Ss = {3,4} and Sy = {4,5}. The union of subsets of S contains all members of
U, thus U can be covered by an S’ C S. Although there are a number of possible
solutions, there is only one minimal cover set, {S7, S4}.

Finding the minimal cover set is an NP-complete problem, however, there is a
greedy algorithm that is able to find approzimations (i.e. not necessarily minimal,
but small cover sets) in polynomial time [14]. In the weighted set cover problem,
each set S; € S is assigned a weight w(S) > 0, and in this case, the goal is to
find a cover set C with the minimal total weight » ¢ - w(S) (where the weight
of a set does not correspond to its cardinality but emerges from the particular
context where the set is used).

Another classical problem that has influenced the approach presented in this
paper comes from relational database theory, and concerns finding the minimal
functional dependency cover. A functional dependency (FD) is a constraint be-
tween two sets of attributes in a relation from a database [13]. For instance,
given two attribute sets X and Y, then the FD X — Y means that the values
of the attribute set Y are determined by the values of X, or in other words, two
tuples in a database sharing the same values of X would also share the same
values for Y. The closure of a set of attributes X with respect to a set of FDs
F is the set X of all attributes that are functionally determined by X using
the closure of F, denoted by F . Before computing the closure, a set of FDs F
is usually normalised by exhaustively applying inference rules (e.g. reflexivity,
transitivity and augmentation) [13], as illustrated by the following example:

Ezample 2 (FD set attribute closures). Let us consider a set of FDs F such that
F={1)A—-B, 2)C—E, 3)E—~F, (4) A,C — D}

F is already normalised (in third normal form), i.e. each FD contains exactly
one attribute on the right-hand side (RHS), and each FDs’ left-hand side (LHS)
is irreducible. The closure of all attributes in F is given as follows:

AT . A, B (A by reflexivity, B by (1))

B* : B (B by reflexivity)

Ct:C,E, F (C by reflexivity, E by (2), F by transitivity and (2, 3))

DT : D (D by reflexivity)

F* : F (F by reflexivity)

(A,C)T : A,B,C,D,E, F (A,C by reflexivity, B by (1), D by (4), E by (2),
F by transitivity and (2, 3))

S e



The closure of a set of attributes with respect to a set of FDs allows us to deter-
mine the minimal cover for a set of functional dependencies. A set of functional
dependencies F covers another set of FDs G if every functional dependency in
G can be inferred from F, i.e. if Gt C Ft. F is a minimal cover of G if F is
the smallest set of functional dependencies that covers G. It can be proven that
every set of functional dependencies has a minimal cover, however this is not
unique, as there may be more than one minimal cover.

3 The Signature Coverage Problem

The signature coverage problem determines whether a given task signature (S)
is covered by a restricted signature (R), where both are subsets of the same
vocabulary, i.e. the ontology signature (R,S C Sig(QO)). The restricted signature
R could be obtained by considering only those entities in O) that are mapped
in an alignment. A task signature is said to be covered if all of its constituent
entities are covered; by default, i.e. considering explicit coverage, this requires
that S C R. Beth definability supports implicit coverage, where a task signature
entity is replaceable by a definition axiom, if, given its signature X', X’ C R. In
order to achieve implicit coverage, the complete set of DSs needs to be obtained,
where the number of possible rewritings (thus the number of unique DSs) of
a defined concept or role is potentially exponential in the size of the ontology.
Definition signatures may contain redundant elements, and could be as large as
the ontology signature, thus we introduce the notion of signature minimality, that
aims at minimising the size of a signature, by eliminating superfluous entities.

Definition 1 (Minimal Definition Signature (MDS)). A signature X is a
minimal definition signature of a defined entity e under a TBox T, if none of
its proper subsets are definition signatures of e.

In previous work we have presented a pragmatic approach to compute in
practice all Minimal Definition Signatures (MDSs). The approach focusses on the
feasible defined entities (where given pre-defined complexity bounds all MDSs
are computable) described using a DL language for which the Beth definability
property holds [4]. Individual names can only be covered explicitly by an asserted
entity, however, definable signature entities (concepts and roles) can also be
covered implicitly as follows:

Definition 2 (Explicitly or implicitly covered entity). Given an ontology
O, a task signature S, and a restricted signature R such that S, R C Sig(O), an
entity e € S is covered explicitly by R iff e € R; or covered implicitly by R, if
there exists a DS X¢, such that X C R; otherwise e is uncovered.

A defined concept or role can simultaneously be covered explicitly and implicitly,
thus a task signature entity e € S may assume one of the four different coverage
status w.r.t. a restricted signature R, as shown in Table 1. Determining whether
a given task signature is coverable by a particular, restricted signature is the
trivial process of identifying the coverage status of each task signature entity;



COVERABILITY REQUIRED COVERAGE

uncoverable cERNTELR explicit coverage: e €2 R
explicitly only eERNYIR P Be: e =7

coverable  explicitly and implicitly e e RA XY C R .. . - . +
implicitly only cdRASCR explicit and implicit coverage: e €2 R

Table 1: Entity coverage status

i.e. for each entity e € S, we search for an MDS X¢ such that X¢ C R. The set
of entities covering all members of a task signature S is defined as follows:

Definition 3 (Cover set). Given an ontology O, a task signature S, and a
restricted signature R such that S, R C Sig(O), C is a cover set of S with respect
to R, if and only if C CR and Ve{e € S|le € C v IX¢|X° C C}.

In other words, a cover set is a DS of all entities of the task signature. As an
ontology signature can cover more than its constituent entities, due to the fact
that a given signature may permits some defined entities to be implicitly covered,
we adopt the notion of closure from FD computation, to provide a representation
which describes the set of all entities covered by a given signature:

Definition 4 (Signature closure). Given an ontology O, and a signature X
such that X C Sig(O), the signature closure X contains all explicitly and im-
plicitly covered entities of Sig(O) by X, i.e. Ve{e € Sig(O)|e € XvIXe|Xe C X}.

This permits a more succinct definition of coverage: a task signature S is covered
by a set C iff S C CT. Once it has been established, that the S is coverable by
R, the problem is to identify the smallest subset C C R which covers S. This is
referred to as the minimal cover set and defined as follows:

Definition 5 (Minimal cover set). Given an ontology O, a task signature S,
a restricted signature R such that S,R C Sig(O), and the set C which covers S
with respect to R, C is minimal if and only if there is no other cover set C' C R
such that |C'| < |C|.

There can be more than one, unique minimal cover set, i.e. two sets with the same
cardinality whose complement is not an empty set. Finding a minimal cover set
is an non-polynominal problem, because it requires all cover sets to be identified,
by exhaustively testing each subset of the power set of the ontology signature,
in order to find all valid covers and select the one with the minimum cardinal-
ity. Approximation algorithms are commonly used for problems with NP time
complexity, such as the set cover problem, to provide sub-optimal solutions in
polynomial-time. The greedy algorithm design is one of the standard techniques
for approximation algorithms [14]. The next example illustrates the signature
cover problem, and outlines a cover set approximation approach.

Ezample 3 (Signature Coverage). Let O be an ontology, S a task signature, R
a restricted signature, and M the complete set of MDSs of each defined entity
of S (an MDS m € M is represented as the tuple (e, X), where e is the defined
concept or role name,and X denotes the MDS), where S, R C Sig(O), such that



— Sig(0) = {A,B,C,D,E,F,r,s,q}
- M = {(C,{A,B}) . (C,{E,r}).(C,{a}).(B.{D}),(D,{B}),{s. {r})}
- S8={B,C,D,E,s,q}

- R={A,B,C,D,E,r,q}

Without accounting for definability, i.e. by only considering explicit coverage, the
R does not cover the task signature because S \ R # 0. However, considering
implicit coverage shows that the closure of the restricted signature is R+t =
{A,B,C,D,E,r,s,q}, thus S can be covered by R, because S C R™. Following a
naive, greedy approach, one may select those entities that appear both in § and
R as these entities can be covered explicitly, i.e. C; = SNR = {C,D, E, q}; then
attempt to cover the remaining task signature entities, by adding a corresponding
MDSs for each uncovered task signature entity; in this case covering s by adding
r to C1, as there is an MDS (s, {r}) thus s is implicitly definable by the signature
{r}. As aresult C; = {B,C,D,E,r,q} covers S. However, the smallest cover set
is Co = {B,E,r,q}, because Cy = {B,C,D,E,r,s,q}, S C Cy, and |Cy| > |Ca|.

In example 3, a naive, greedy approach ( Greedy #1) has produced a non-minimal
cover set C7, which was an approximation of the minimal cover Cy. The cover
set C7 can be improved by removing redundant entities (resulting in the set
Cf = Cy), i.e. producing a non-redundant cover set:

Definition 6 (Non-redundant cover set). Given an ontology O, a task sig-
nature S, a restricted signature R such that S, R C Sig(O), and C which covers
S w.r.t. R, C is non-redundant iff none of its proper subsets cover S.

Non-redundant cover sets are typically small, however, as there can be more
than one non-redundant cover set with different cardinality, a non-redundant
cover set is not necessarily the minimal cover set. It is worth noting that every
minimal cover set is also a non-redundant set.

4 Approximating Minimal Cover Sets

In order to tackle the exponential time complexity of the minimal signature
cover problem, we introduce a greedy, approximation algorithm that provides a
sub-optimal solution in polynomial-time; where the resulting cover set is always
non-redundant. The basic idea behind the approach is that by starting from an
empty set, the cover set is built up incrementally until all task signature members
are covered, however, instead of selecting individual entities from the restricted
signature, at each iteration the approach selects an entity set. The entity sets
that are being considered are MDSs, because individual entities typically only
provide explicit coverage (for themselves or their synonyms), while MDSs can
cover defined entities implicitly (in addition to explicitly covering all those task
signature entities that appear in the MDS as well). The selection is made by
assigning a cost and wvalue score to each MDS, and then picking the MDS which
provides the maximum value and the minimum cost with respect to the task
signature and the incomplete cover set, prioritising on the value score. The cost



quantifies the number of entities required to be added to the cover set (i.e. the set
difference of the cover set and the particular MDS), while the value represents
the number of entities that the given signature covers (an MDS can be a DS for
more than one defined entity, thus it can cover several task signature entities).
In case there are more than one MDSs with the same cost and value, a random
MDS is selected.

In order to evaluate the actual value of a given MDS, i.e. the set of all entities
of the task signature that the MDS covers either explicitly or implicitly, similarly
to FDs, its closure needs to be identified, thus we represent MDSs in the form of
FDs to facilitate this notion. There is a strong resemblance between the concept
of an FD and an MDS, meaning that an MDS can be thought of as a dependency
between entities of an ontology, where the relation between the signature of the
LHS and the entity on the RHS is implicit definability. For example, the MDS
X¢ = {A, B} which defines concept C using entities {A, B} may be represented as
m: (A,B — C); such an MDS is referred to as an fMDS, and defined as follows:

Definition 7 (fMDS). Given a defined entity e, and its minimal definition
signature X, where e € Sig(O) and X C Sig(O), the corresponding fMDS is the
function m : (X — e), which, given the entity set X, implicitly covers e.

Analogously to functional dependencies, the closure of an fMDS is computed
from the set of all f MDSs, by identifying all relevant MDSs:

Definition 8 (fMDS closure). Given an fMDS m; : (X —> e), and a set of
fMDSs M where m; € M, the closure of m; is the function m} : (¥ — E) such
that

E=XU{e}U (UVm;rRHS{mj € M|mj+LHS C m;EISY)

where mTLHS denotes the signature X, and mTRHS refers to signature E.

The closure of a set of fMDSs M is the set M T, where each m; € M* is the
closure of the corresponding m; € M; this is illustrated by the next example:

Ezample 4 (f MDS set closure). Let M be a set of fMDS such that

— M:{mlz(A,B—>C),m2:(B—>D)}
— Mt ={m{:(A,B— A,B,C,D),m] : (B—B,D)}

The closure of fMDSs (M ™) is computed as follows:

1. m +LH 5 in addition to implicitly covering concept C, also explicitly covers

concepts A, B, hence mj #15 = i ItHS UiA B};
2. mf 1mphc1tly covers D as m+LHS Cm
3. mgy explicitly covers concepts B, hence m
4. no more MDSs apply, thus the closure is complete.

thus D € m 9,

+RHS __ mé%HS U {8}7

The cost and value calculation of an fMDS is formalised as follows:

Definition 9 (fMDS value and cost). Given an f MDS m, an ontology O, a
task signature S, a cover set C, and M the complete set of fMDSs in O, where
m,S C O, the value and cost of m with respect to S and C is given by the value
function v(m) = |R\ CT Nnm*EHS| and the cost function c(m) = |CT\ mIH5|,
where both v(m) and c(m) assign a natural number i € Ny to m.



Algorithm 1: COMPUTEMINIMALSIGNATURECOVER(O, R, S, M)
Input : O: ontology; S: task signature; R: restricted signature;
M: the complete set of MDSs of each defined entity e € O
Output: C: non-redundant cover set of S w.r.t. R if and only if S C R*
C+C U Velec SNRle g mi S m; €¢ M}
M™ « Initialise(M)
C*t <+ ComputeSignatureClosure(C, M ™)
M+ « MT\Vm;{m; € M*|mFiS Ccty
while (S\C*") # () do
V < ComputeValueCostVector(M ™, S,CT)
m’ + select an m € M+ according to V, with max v(m), and min ¢(m)
C«+cumtts
C*t < ComputeSignatureClosure(C, M)
M+ « M+ \ ({m'} U¥mi{m; € MT|mE?S C ct})
end
return C
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Algorithm 1 formalises the approximation approach, which employs two sub-
routines for computing the closure of signatures, and the closure of f MDSs. The
algorithm first applies an optimisation heuristic, which reduces the search space
by initialising cover C with the only explicitly coverable entities of S (line 1).
Next M, which is used as the search space, is initialised with the complete set
of fMDSs. In addition, the process generates an ‘artificial’ MDS and stores it
in M, for each entity that can be covered both explicitly and implicitly. For
instance, given a concept A, the generated fMDSs is m: (A — A), i.e. the en-
tity can cover itself. By including such artificial fMDSs that do not originate
from actual MDSs, the algorithm ensures that the search space is complete, i.e.
for each e € S the search space M includes all possible ways of cover. The
initialisation is concluded by computing the fMDS set closure (line 2). Before
the process begins the search, CT, the cover closure is computed. This facilitates
the termination condition of the search process (line 5) that halts the algorithm
when S is covered (i.e. S\ C* = ()). Then M+ is created as a copy of M, the
former is the actual search space which is continuously pruned at each iteration
(to optimise the process, by reducing the search space and subsequently the ef-
fort required to calculate the cost and value scores of fMDSs), while the latter
is left intact for the purpose of computing signature closures during the search.
M+ is pruned out by removing any fMDS whose value (and cost) w.r.t. C is
zero (line 4). During the search (line 5-11), the value and cost of each fMDS in
m; € M7 is evaluated w.r.t. the cover (line 6), then the best fMDS is selected
(line 7) and the LHS of the fMDS (i.e. the MDS) is added to the cover (line 8).
The cover is then reevaluated by updating its closure (line 9), finally M+ is
pruned according to the updated cover set. These steps are repeated until S is
covered, at which point the algorithm returns the completed cover.

The algorithm always finds a non-redundant cover set, this is ensured by the
selection function, and the fact that the entities added to the cover are MDSs,
i.e. already minimal entity sets that are required to cover an other entity. At



the worst case, the process covers at least one entity at each iteration, thus the
maximum number of steps performed by the algorithm is n, where n = |S|. As
both subroutines employed by this algorithm have polynomial time computa-
tional complexity, it holds that the overall complexity is polynomial in the size
of the input as well. Moreover, as both of subroutines terminate, and the halting
condition (line 5) suspends the main loop of Algorithm 1 when the cover set is
complete, it follows that the Algorithm 1 also terminates. A more exhaustive
description of the presented algorithms can be found in [5].

5 Empirical Evaluation

In this section, we empirically determine how effective our approximation ap-
proach is in finding cover sets. The evaluation tested the hypothesis that the pre-
sented approach (Greedy #2), by considering both explicit and implicit coverage,
produces a cover set that, although not minimal, is still significantly smaller than
cover sets obtained by only explicit coverage. Thus approximations of minimal
cover sets are typically smaller than explicit covers, if the given task signature
contains defined entities w.r.t. a restricted signature (clearly, for a task signature
which lacks defined entities only explicit coverage is possible).

The evaluation corpus was assembled from several semantically rich OWL on-
tologies that are commonly used for empirical evaluation in the ontology match-
ing and alignment negotiation literature. We have selected 7 small ontologies
(average 114.57 concepts and roles, and 307.57 axioms per ontology) from the
Conference dataset', which describes the conference organisation domain; and
2 large (average 13397.00 entities, and 14663.00 axioms) ontologies from the
Large biomedical dataset?. For every concept and role in each ontology, we have
pre-computed the definability status and the complete set of MDSs. Table 2
presents a summary of the corpus, showing the DL expressivity, the number of
logical axioms, number of concept and roles (C UR) in the ontology signature,
the ratio of defined entities to all entities (Def%), and the average number of
different MDSs per defined entity (M). Both datasets contain ontologies with
varying level of definability, as shown by the ratio of defined ontology signature
entities and the number of different MDSs per entity.

The experimental framework was implemented in Java; the OWL API [7]
was used for ontology manipulation; entity definability status, and MDSs were
computed using the OntoDef API [4]. In all experiments, for each task signa-
ture, we have computed cover sets by using the approximation approach. We
have only considered coverable task signatures (i.e. S C RT), thus in all cases,
the restricted signature R was equivalent to the T-Box signature, while the task
signature S was allocated several differently sized T-Box signature subsets (i.e.
R = Sig(T), and S C Sig(7)). Varying the composition of only one of the two
signatures simplified both the experiment conduct and the result analysis pro-
cess. Experiments were conducted with 8GB maximum memory allocated for the

! http://oaei.ontologymatching.org/2014/conference/index.html
? http://oaei.ontologymatching.org/2014/largebio/index.html



Ontology g}ﬁ:)ressivi ty Axioms (CUR) Def% M Idealcvaover cC;:)eedy #"I?ime
Conference corpus
cmt ALCIN (D) 226 88 50.00% 1.09| 50.00% |72.73% 3.62 ms
conference ALCHIF (D) 285 123 57.72% 1.54| 42.28% |70.73% 11.79 ms
confOf SIN (D) 196 74 12.16% 3.33| 87.84% |89.19% 0.43 ms
edas ALCOIN (D) 739 153 26.14% 2.80| 73.86% |86.27% 8.70 ms
ekaw SHIN 233 106 28.30% 1.00| 71.70% [85.85% 2.30 ms
iasted ALCIN (D) 358 181 17.68% 1.75| 82.32% |87.85% 3.18 ms
sigkdd ALEI(D) 116 7 25.97% 1.55| 74.03% [81.82% 1.12 ms
AVG. 307.57 114.57 31.14% 1.87| 68.86% |82.06% 4.45 ms
LargeBio corpus
NCI_fma ALC 9083 6551  29.98% 1.32| 70.02% [70.02% 3.09 s
SNOMED _fma ALER 20243 13430  21.47% 1.09| 78.54% |78.56% 8.64 s
AVG. 14663.00 13397.00 25.72% 1.16| 74.28% |74.29% 5.86 s

Table 2: Comparing ideal covers with approximations produced by approach #2,
for covering the entire ontology signature.

JVM, running on a machine equipped with 16GB RAM and a 4-core 2.9 GHz
64-bit processor architecture.

Experiment 1: Full signature. This experiment compares the size of the
approximated covers to the ideal cover. The only cover which is potentially min-
imal and can be computed efficiently, is obtainable when the task requires the
entire signature of an ontology to be covered (S = Sig(O)). This special case
provides the opportunity to evaluate the difference between an actual, and an
approximated minimal cover set. The ideal cover is obtained by removing all
non-redundant, defined entities from the ontology signature. Considering non-
redundancy in role removal is necessary in order to avoid removing those entities
that are both defined, and provide the only DS to another entity. For example,
the axiom r = s implies that both roles r and s are defined, however removing
both entities from the ideal cover would make them both uncoverable. Table
2 presents the experiment results, showing the size of the cover set in relation
to the an explicit cover (which is always equivalent to the task signature hence
cov = %), while the RHS partition present the result obtained by the greedy
algorithm, in terms of the cover to task signature size ratio, and computation
time (wall time). The approach achieves considerable reduction in all ontologies,
on average the approximated cover is 82.06% of the explicit cover in the Confer-
ence, and 68.86% in the LargeBio corpus (which only falls short by 0.01% from
the optimal solution, i.e. the ideal cover).

Experiment 2: Varying signatures. The second experiment was carried
out using different task signature sizes, in order to assess the reduction pro-
vided by a minimal cover in comparison with the baseline (explicit cover), and
to evaluate the computation time on a wider scale of possible tasks sizes. The
experiment included 20 test cases for each ontology, where the task to ontology
signature ratio ranged between 100% and 5%. Due to the fact that cover com-
putation includes a non-deterministic part, where a random choice is made to
select an MDS from a set of equally good options (MDSs with the same value
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Fig. 1: Cover set sizes (a, b) and computation times (¢, d) in the corpus.

and cost scores), each test case was repeated over 100 times (we have tested
several different repetition counts, and by comparing their relative standard de-
viation established that 100 repetitions were sufficient for both datasets). Figure
1 (a, b) presents the cover set cardinality results, where the y-axis represents the
approximated minimal cover to task signature ratio (%), and the x-axis shows

the task signature to ontology signature ratio (%); for brevity, error bars

are only shown for the ontologies with the highest and lowest covers. The ap-
proach achieves varying level of reduction in all ontologies, where the efficiency
decreases with the size of the task signature (due to the lower probability of the
signature containing defined entities). Figure 1 (¢, d) presents the computation
time (wall time) results, where the y-axis shows the time (either in milliseconds
for the Conference, or in seconds for the LargeBio corpus), and the x-axis shows
the task to ontology signature size ratio. The results suggest that the approach
is in practice feasible for both small and large ontologies.



6 Conclusions and Future Work

In this paper, we have introduced and characterised the ontology signature cov-
erage problem, which is a non-polynomial time problem that concerns whether
an ontology signature can be covered by another signature, under a given ontol-
ogy. Furthermore, we have presented and empirically evaluated a novel approach
that, by exploiting the notion of Beth-definability in DL ontologies and using
the pre-computed, complete set of different MDSs, provides a sub-optimal so-
lution to the minimal signature cover problem. The evaluation has confirmed
that, although the resulting covers are not necessarily minimal, the presented
greedy approximation approach provides significant reduction in cover set size
than only explicit coverage. The approach identifies a single cover, however, there
can be more than one minimal cover set, hence as future work we will explore
identifying multiple covers.
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