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Gust Analysis using Computational Fluid Dynamics Derived Reduced Order 

Models 

 

Response to reviewers’ comments 

 

We thank the reviewers for their time and comments about the manuscript. We are 

pleased to see that all reviewers felt it is an interesting and novel work. We will 

concentrate in the reminder of this response on the comments raised by the reviewers. 

 

Reviewer #1 

The article is about the reduction of nonlinear models for gust load prediction. The 

method is capable of reducing the computational time and searching the worst case gust 

at no additional costs. I think there are minor issues that have to be addressed before the 

paper publication. 

 

Comment #1 

P.9: in Eq.(15), t0 is time dimension and lg is length dimension, please define the 

relationship between time and length. 

Response 

The equation appearing in the initial submission was incorrect and has now been 

reformulated in the revised manuscript as follows: 

 

We have also edited the text to account for this change, starting at line 131. 

 

Comment #2 

P.14, line 227: please define the form of gust vector, r 

Response 

We thank the reviewer for the comment and for the possibility that this comment gave 
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us to check the correctness of the statement. As discussed in the manuscript, lines 

220-240, the term gamma is a matrix as also evident from Eq. 29. We have therefore 

corrected the initial statement to account for this. 

 

Comment #3 

P.18: table 1, what's the response time of full order calculation and ROM, in other 

words, which response? 

Response 

CPU times in Table 1 are normalised by the CPU time needed to run an unsteady 

CFD/CSD analysis. This allows presenting information which is independent from the 

technical specifications of the computer machines used. We have applied no changes as 

this point was already addressed in lines 279-281 of the original manuscript. 

 

Reviewer #2 

The paper presents the derivation of ROMs including both aerodynamics, structure 

(modal representation) and a gust-type perturbation which is introduced as a grid 

motion term. This represents an extension of Ref [16], it is very interesting and very 

well presented.  

 

Comment #1 

On the negative side, the paper only presents one example (although it is relevant and 

well described).  

A second example would provide a significant added value.  

Response 

We have decided to discuss one test case only to produce a concise manuscript that 

focuses on the novel aspect of the work. It is evident that all reviewers agree on the 

interesting aspects of the method. Refs. 7, 10 and 11 present other test cases, and to 

keep the manuscript concise we have edited the text to direct the reader to these 

references for more information on other test cases. In particular, the revised 

manuscript now contains in line 247: 
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“For conciseness, the test case is for the Goland wing. Other test cases may be 

found in the references herein provided. In particular, the interested reader is 

referred to Ref. (7) for the initial investigation on a wing typical section, Ref. (10) 

regarding a three-dimensional wing test case, and Ref. (11) for the extension to a 

passenger transport aircraft.” 

 

Comment #2 

More specifically, I have the following comments: the (in)dependence of the ROM 

generating process on initial CFD flowfields is not explicitly stated, Ref [16] is slightly 

more detailed but maybe the point should be expanded for the benefit of the reader not 

familiar with such processes;  

Response 

The revised manuscript has been edited in line 171:  

“Finally, it is worth observing that the generation of the ROM is independent from 

the initial equilibrium point. The coefficients of the ROM, however, depend on the 

steady-state solution used in the generation process.” 

 

Comment #3 

I am also missing a more general discussion of the implication of the various 

assumptions and approximations vis-a-vis the accuracy of the solution; Ref [16] is a bit 

more generous for instance,  

Response 

The revised manuscript has been edited starting from line 232:  

“Before proceeding to analyse the computational cost and general predictive 

capabilities of the reduced model, considerations are given about the underlying 

assumptions. First, the linear reduced order model is as accurate as the nonlinear 

coupled solver in the limiting case that the response is small around the reference 

equilibrium. With second order effects dominant, that are characterised, for 

example, by strong moving shocks and large structural deformations, the 

predictions will degrade. Second, the model projection relies on a dominant 
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subspace of coupled modeshapes that reproduce the relevant dynamics of the full 

model. If needed, the basis for projection may be enriched by selection of 

additional modeshapes. The last consideration is about the Schur complement 

eigenvalue problem. This approach overcomes the limitation of the standard p--k 

method, which is valid for undamped vibrations, because it provides a correct 

identification of the aeroelastic damping using linearised CFD aerodynamics.” 

 

Comment #4 

provide references, if available, to application of the method to NS equation and/or 

present all possible implications (finer grid, NS Jacobians, smaller time step), 

Response 

The revised manuscript has been edited in line 282:  

“A recent application to a viscous simulation is reported in Ref. (17).” 

 

Comment #5 

is the "badness" of the response assessed on the basis of the tip displacement only? is 

twist also taken into account? is bending moment also taken into account?  

Response 

Figures 4 and 5 show the vertical displacement at two points located at the wing tip as 

well as the wing tip twist. The paper does not report the results in the typical shear, 

moment, torsion (SMT) approach, which can be calculated as a post-processing 

operation given the loads distribution along the wing. 

 

Comment #6 

can the sensitivity of the model to grid quality be assessed?  

Response 

The ROM is as good as the full order model, no matter the grid quality. Our work 

focuses on the reduction of a given full order model (including uncertainties due to grid 

refinement, numerical scheme, etc.). This does not matter for the ROM results: the task 

of the ROM is to reproduce the reference as precisely as possible. 
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Reviewer #3 

The paper expands a CFD-based ROM methodology that was formulated for stability 

analysis to produce a ROM for gust response analysis. The ROM is demonstrated on 

the Goland wing case, computing gust responses to gusts of various lengths. Linear and 

nonlinear ROMs are formulated, but only the linear ROM is demonstrated with 

numerical example. The formulation of the ROM is clear, but the results presented are 

insufficient to substantiate it.  

  

Comment #1 

Validate the ROM methodology by presenting full CFD and ROM responses to gusts of 

various profiles, and specifically to a sharp-edge gust on a 2D airfoil.  

Response 

For brevity and conciseness, we have included a three-dimensional test case only. The 

reviewer’s suggestion has already been investigated in Ref. (7) of the manuscript. That 

work investigated the response to a sharp-edge gust, and compared the CFD-based 

predictions with those obtained from a linear unsteady aerodynamic model. The reader 

is referred to that work in various parts of the manuscript. 

 

Comment #2 

The name of manuscript doesn’t reflect the content. Gust loads are not calculated in the 

paper.  

Response 

This is correct and we have now removed the word ‘load’ from the initial title and from 

the Abstract. 

 

Comment #3 

Present differences between full CFD and ROM in figure 4 as percentages of the full 

CFD response value. From figure 4 they don’t seem to be in “close agreement”, as the 

authors refer to them.  
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Response 

The revised manuscript has been edited in line 308:  

“A good agreement, for the purpose of rapid engineering simulations, …” 

 

Comment #4 

Figure 5 only shows time responses to gusts of Lg<=270 that don’t represent the worst 

case gust response.  

Response 

We have added the response to gusts of length between 180 and 540 ft in Figure 5, 

addressing the reviewer’s comment. 

 

Comment #5 

Line 52, extra word ‘and’. 

Response 

We have edited the manuscript accordingly along with other spelling mistakes we have 

found proof reading the revised manuscript. 
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Abstract

Time domain gust response analysis based on large order nonlinear aeroe-

lastic models is computationally expensive. An approach to the reduction of

nonlinear models for gust response prediction is presented in this paper. The

method uses information on the eigenspectrum of the coupled system Jaco-

bian matrix and projects the full order model, through a series expansion,

onto a small basis of eigenvectors which is capable of representing the full

order model dynamics. The novelty in the paper concerns the representation

of the gust term in the reduced model in a manner consistent with standard

synthetic gust de�nitions, allowing a systematic investigation of the in�uence

of a large number of gust shapes without regenerating the reduced model.

Results are presented for the Goland wing/store con�guration.
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1. Introduction1

Aircraft regularly encounter atmospheric turbulence, inducing changes2

in forces and moments, which cause rigid and �exible dynamic responses.3

These responses introduce loads on the structure which must be accounted4

for during the design stage to ensure structural integrity. The turbulence is5

regarded, for linear analysis, as a set of component velocities (gusts) super-6

imposed on the background steady �ow. The loads encountered form some of7

the critical cases used in the structural sizing of a passenger jet. The capabil-8

ity to calculate design loads with a high degree of accuracy would potentially9

allow reduced conservatism without compromising safety. Currently, conser-10

vatism is necessary because of the limited certainty of the possible forms of11

atmospheric gusts and the limited realism for some �ow regimes of linear12

methods used to predict the aircraft response.13

The well�established methods for gust load calculations are based on lin-14

ear aerodynamic models which are solved in the frequency domain. The use15

of high��delity models based on computational �uid dynamics (CFD) in the16

research setting has been reported, for example, in Ref. (1). Grid veloci-17

ties are used to apply a disturbance in a time domain CFD calculation (2),18

overcoming the problems associated with numerical dissipation of the distur-19

bance but also missing the in�uence of the aircraft �ow �eld and motion on20

the gust.21

The cost of time domain calculations makes the routine use of CFD in22

gust response analysis impractical, and system�identi�cation methods have23

been used as a cheaper alternative. Proper orthogonal decomposition has24

2

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112



been used as a model reduction technique (3) to generate reduced models25

for gust simulations, but this method su�ers from the usual limitations as-26

sociated with the necessity for a set of training data closely related to the27

�nal application cases, and the di�culty of accounting for nonlinearity in28

the reduced model. A systematic and cost e�ective approach to developing29

reduced models capable of describing both linear and nonlinear e�ects for a30

range of cases based on limited development cost has, to date, proved elusive.31

An approach to calculating a reduced order model from a large dimension32

CFD model which can calculate a nonlinear response has been reviewed in33

Ref. (4). The method �rst calculates the important modes of the problem34

from a large order eigenvalue problem. For an aeroelastic limit�cycle oscilla-35

tion (LCO), the system responds in the critical mode close to the bifurcation36

point. The approach presented in Refs. (5; 6) is to project the full order37

model onto the critical mode and expand the residual in a Taylor series, re-38

taining quadratic and cubic terms. The in�uence of the non�critical space39

on the critical mode is included through a centre manifold approximation.40

The method has been successfully applied to various test cases, including41

the LCO prediction dominated by the motion of a shock wave (5) and a42

prototype �ight dynamics instability of a delta wing (6). The approach to43

model reduction has been generalized in Ref. (7) by using multiple coupled44

system eigenmodes for model projection and introducing control de�ection45

and gust interaction e�ects in the formulation. Reference (8) introduced the46

�ight mechanics degrees of freedom to predict the dynamics of �exible �ying47

aircraft. The method has several strengths, namely: (i) it exploits informa-48

tion from the stability (�utter) calculation for the development of a reduced49
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order model (ROM) for dynamic response analyses; (ii) linear or nonlinear50

reduced models can be developed within the same framework; (iii) the re-51

duced model can be parameterised to avoid ROM regeneration; and (iv) the52

ROM in state�space form is suitable for control design studies.53

The current paper tackles the problem of how to introduce gust terms54

into the reduced model to allow a gust load analysis to be carried out. The55

objective is to develop a methodology that allows the reduced model to con-56

sider a whole range of gust excitations without recourse to the full order57

model. The outgrowth of this work is the capability to carry out the search58

of the worst case gust at no additional costs than those initially encountered59

in generating the reduced model.60

The paper continues with the formulation of the full order aeroelastic61

model in Sec. 2. The procedure to obtain a reduced model is discussed in62

Sec. 3. Then a new approach to calculating the gust term in the ROM is63

proposed. Results are then given in Sec. 4 for a test case to evaluate the64

method from the point of view of accuracy and computational e�ciency.65

Finally, conclusions are drawn in Sec. 5. The important features of the66

method developed are: (i) linear and nonlinear ROMs can be derived; and67

(ii) the model reduction is performed once, with application of any gust made68

without further recourse to the CFD code.69

2. Full Order Model70

The Euler equations are solved in the curvilinear form on block�structured71

body�conforming grids:72
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∂Ŵ

∂t
+
∂F̂

∂ξ
+
∂Ĝ

∂η
+
∂Ĥ

∂ζ
= 0 (1)

The transformation from Cartesian coordinates de�nes a curvilinear co-73

ordinate system from:74

ξ = ξ(x, y, z, t), η = η(x, y, z, t), ζ = ζ(x, y, z, t) (2)

with the Jacobian determinant of the transformation given by:75

J =

∣∣∣∣∂(ξ, η, ζ)

∂(x, y, z)

∣∣∣∣ . (3)

The conserved variables, Ŵ, and the �ux vectors, F̂, Ĝ and Ĥ, are then76

de�ned as follows:77

Ŵ =
1

J
W (4)

F̂ =
1

J

(
ξxF + ξyG + ξzH

)
(5)

Ĝ =
1

J

(
ηxF + ηyG + ηzH

)
(6)

Ĥ =
1

J

(
ζxF + ζyG + ζzH

)
(7)

where the subscripts •x, •y and •z denote di�erentiation with respect to x,78

y and z, respectively. The terms F, G and H are given by:79
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W = [ρ, ρu, ρv, ρw, ρE]T (8)

F =
[
ρu, ρu2 + p, ρuv, ρuw, u(ρE + p)

]T
(9)

G =
[
ρv, ρuv, ρv2 + p, ρvw, v(ρE + p)

]T
(10)

H =
[
ρw, ρuw, ρvw, ρw2 + p, w(ρE + p)

]T
. (11)

The Euler equations are discretised on curvilinear multiblock body�conforming80

grids using a cell�centered �nite�volume method. The residual is formed us-81

ing Osher's approximate Riemann solver with the monotone upwind scheme82

for conservation laws interpolation. Exact Jacobian matrices are formed.83

The mesh can be deformed using trans�nite interpolation. More details on84

the CFD formulation can be found in Ref. (9), and on the application to85

problems in aeroelasticity in Ref. (4).86

As given in Ref. (4), for general linear structural motions, the dimen-87

sionless structural equations of motion are de�ned in physical coordinates88

as:89

Mδẍs +Cδẋs +Kδxs = ϑ f . (12)

The de�ections δxs of the (linear) structure are de�ned at the set of physical90

coordinates xs by δxs = Ξ η, where the vector η contains the generalised91

coordinates (modal amplitudes). The columns of the matrix Ξ contain the92

mode shape vectors evaluated from a �nite�element model of the structure93

with the de�ections de�ned at the structural grid points. Projecting the94

�nite�element equations onto the mode shapes, while scaling to obtain gen-95

eralised masses of magnitude one (i.e. ΞT MΞ = I, with I as the identity96
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matrix) gives a system of scalar equations written in state�space with the97

structural residual given by:98

Rs =

 0 I

−ΞTKΞ −ΞTCΞ

 ws +

 0

I

ϑΞT f (13)

and the vector of structural unknowns ws = [ηT , η̇T ]T containing the gener-99

alised coordinates and their velocities. The vector f of aerodynamic forces100

(pressure) at the structural grid points follows from the wall pressure, the101

area of the surface segment and the unit normal vector, and thus is a function102

of �uid and structural unknowns. It is then projected using the mode shapes103

to obtain the generalised forces ΞT f . The parameter ϑ for the mass ratio104

is obtained from the nondimensionalisation of the governing equations, and105

depends on the reference density and the reference length. The method used106

to transfer the surface pressure forces to the structural nodes is described in107

Ref. (4).108

2.1. Gust Representation109

Synthetic gusts are de�ned by space�time functions of a velocity distur-110

bance that propagates through the �ow �eld, interacting with the aircraft. In111

principle, these disturbances can be introduced through the far �eld bound-112

ary conditions, with the propagation done within the CFD solution. In prac-113

tice, the gust disturbance will be dissipated by the discretisation. As an alter-114

native, assuming that the gust disturbance propagates without being altered115

by the background �ow �eld and interaction, a frozen gust can be applied116

by introducing the gust disturbance through additional contributions to the117
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mapping velocity terms ξt, ηt and ζt in Eqs. (8)�(11). The �ow variables are118

then altered in the discretised version of Eq. (1) through the resulting terms119

in the �uxes. This approach has been successfully demonstrated for CFD120

based gust analysis. A schematic in Fig. 1 shows the progressive application121

of the gust to the grid velocities.122

Figure 1: Demonstration of gust application to the CFD; the arrows indicate the grid

velocity at each point for a gust of length 6 ft; only the points on the symmetry plane for

z = 0 are shown

The disturbances used in this framework are of the discrete and contin-123

uous types, see for example Refs. (10; 11). For the vertical component of a124

discrete gust, for example, the disturbance at each grid point is de�ned by:125

ż (t) = f (x, t) (14)

where ż is the vector of the vertical component of the mesh velocities, f is126

the function de�ning these velocities, depending on the mesh point location,127
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x, and the time instant, t. For example, a discrete one�minus�cosine gust,128

for a single mesh point, is given by:129

ż (t) =
wg0

2

1 − cos

(
2π

Hg

(t − t0)

) for t0 < t < t0 + Hg (15)

130

where t0 is the nondimensional time at which the gust is set to begin, wg0131

is the gust intensity, and Hg is the nondimensional gust length (Hg = Lg/c132

where Lg is the gust length and c is a characteristic length). In this paper,133

the gust disturbance applied to each grid point in the mesh is de�ned as:134

ud = [..., ẋ, ẏ, ż, ...]T (16)

with one triplet of ẋ, ẏ and ż for each mesh point.135

3. Model Reduction136

The full order nonlinear aeroelastic model is written in semi�discrete form.137

Denote by w the n�dimensional state�space vector arising from the �uid and138

structural spatial discretisation, which is conveniently partitioned into �uid139

and structural degrees of freedom:140

w = [wT
f ,w

T
s ]T . (17)

The state�space equations in the general vector form are:141
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dw

dt
= R(w,ud) (18)

where R = [RT
f ,R

T
s ] is the (nonlinear) residual and ud is a vector denoting

the applied gust disturbance acting on the system. The homogeneous system

has an equilibrium solution, w0, for a given constant ud0, corresponding to a

constant solution in the state�space and satisfying the aeroelastic equilibrium

equation:

dw0

dt
= R(w0,0) = 0. (19)

The system often also includes an independent parameter (freestream speed,142

air density, altitude, etc.) which is varied to study stability of the equilibria.143

Denote by ∆w = w − w0 the increment in the state�space vector with144

respect to an equilibrium solution (12). The large order nonlinear residual145

formulated in Eq. (18) is expanded in a Taylor series around the equilibrium146

point:147

R (w) ≈A∆w +
∂R

∂ud

∆ud +
1

2
B (∆w, ∆w) +

1

6
C (∆w, ∆w, ∆w)

(20)

retaining terms up to third order in the perturbation variable. The treatment148

of the gust term, which appears as the second term on the right hand side,149

is considered below. The Jacobian matrix of the coupled system is denoted150

as A, and the vectors B and C indicate, respectively, the second and third151

order derivative operators. The full order system is projected onto a basis152

formed by a small number (denoted by m) of eigenvectors of the Jacobian153
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matrix evaluated at the equilibrium position. Right and left eigenvectors are154

scaled to satisfy the biorthonormality conditions (7). The projection of the155

full�order model is done using a transformation of coordinates:156

∆w = Φ zc + Φ̄ z̄c (21)

where zc ∈ Cm is the state�space vector governing the dynamics of the157

reduced order nonlinear system, and Φ is the matrix of right eigenvectors of158

A. The result is a system of ordinary di�erential equations in zc which have159

linear, quadratic and cubic terms in zc. The coe�cients of these terms are160

derived by using matrix�free approximations for the �rst, second and third161

order derivative operators applied to combinations of the columns of Φ (i.e.162

the basis vectors for the reduction). The matrix�free approximations work163

on residual evaluations, but require extended order arithmetic to be used164

to obtain accurate approximations. The full details of the methodology are165

given in Refs. (5; 7; 12; 13).166

In the current paper, the linear reduced model, obtained by neglecting the

terms B and C in Eq. (20), is generated for gust analysis. Substituting �rst

for ∆w of Eq. (21) into Eq. (20), and then pre�multiplying by Ψ̄T , which is

the matrix of left eigenvectors of A, one obtains the linear ROM:

żc = diag(λ) zc + Ψ̄T ∂R

∂ud

∆ud (22)

where diag(λ) is a diagonal matrix of size [m, m] containing the complex167

eigenvalues corresponding to the eigenvectors used in the projection. Through168

manipulation of the terms in B and C, a nonlinear ROM can be obtained if169

required (7; 12).170
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Finally, it is worth observing that the generation of the ROM is inde-171

pendent from the initial equilibrium point. The coe�cients of the ROM,172

however, depend on the steady�state solution used in the generation process.173

3.1. Nonlinear Eigenvalue Problem174

A major computational challenge arises, when using CFD as the source of175

the aerodynamic predictions, to calculate the system eigenvectors. To over-176

come this problem, the Schur complement eigenvalue formulation is used.177

The coupled system Jacobian matrix of Eq. (18) is most conveniently ma-178

nipulated by partitioning the matrix as179

A =

 ∂Rf

∂wf

∂Rf

∂ws

∂Rs

∂wf

∂Rs

∂ws

 =

 Aff Afs

Asf Ass

 . (23)

The block Aff represents the in�uence of the �uid unknowns on the �uid180

residual, and has by far the largest number of non�zeros for the structural181

models used in this paper. The term Afs arises from the dependence of182

the CFD residual on the mesh motion and speeds, which depend in turn on183

the structural solution, and is evaluated by �nite di�erences. The term Asf184

is due to the dependence of the generalized forces on the surface pressures.185

Finally, the blockAss is the Jacobian of the structural equations with respect186

to the structural unknowns.187

Write the coupled system eigenvalue problem as:188

 Aff Afs

Asf Ass

 φ = λφ (24)
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where φ and λ are the complex eigenvector and eigenvalue, respectively.189

Partition the eigenvector as:190

φ =
[
φT

f , φ
T
s

]T
(25)

In Eq. (24), substituting φf from the �rst set of equations into the second set191

of equations, one �nds that the eigenvalue λ, assuming it is not an eigenvalue192

of Aff , satis�es the nonlinear eigenvalue problem:193

S (λ) φs = λφs (26)

where S (λ) = Ass−Asf

(
Aff − λI

)−1
Afs. The matrix S (λ) is the sum of194

the structural matrix and a second term arising from the coupling of the �uid195

and structure. Equation (26), which is a nonlinear eigenvalue problem, is196

solved using Newton's method. To overcome the cost of forming the residual197

and its Jacobian matrix at each iteration, an approximation of
(
Aff − λI

)−1
198

is used. The calculation of the left eigenvector ψ involves solving the adjoint199

problem of Eq. (24). More details on the Schur complement eigenvalue solver200

and its application to realistically sized aeroelastic models can be found in201

Ref. (14).202

3.2. Gust Term in the Reduced Order Model Setting203

As described above, the gust is introduced into the full order model204

through the grid velocities, represented in Eq. (18) by the vector ud. The205

treatment of this component in the reduced model is the main contribution206

of this paper. The challenge is to manipulate the term ∂R
∂ud

∆ud in Eq. (22)207
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so that it is represented in a convenient way in the reduced model. Using the208

chain rule, the dependence of the nonlinear full order residual on the gust209

perturbation is rewritten as:210

∂R

∂ud

=
∂R

∂u

∂u

∂ud

(27)

where u is a vector of mesh velocities. The �rst term on the right side depends211

on mesh point velocities only and can be computed independently of the gust212

de�nition using �nite di�erences, analytical or automatic di�erentiation.213

The second term on the right side of Eq. (27) depends on both spatial214

and temporal coordinates. The reason for this is that, recalling Eq. (14),215

the prescribed gust is in general a function of space and time. The gust216

simulation using a ROM, as formulated in Refs. (7; 10), requires at each217

time step the calculation of the contribution arising from218

ψ̄T ∂R

∂u

∂u

∂ud

∆ud. (28)

The �rst two terms involve a matrix�matrix multiplication, and this can be219

carried out once during the generation of the ROM calculation independently220

of the gust de�nition. This de�nes a matrix, γ, which is constant and in-221

dependent of the gust shape. The term ∂u
∂ud

is simply the identity matrix222

when using the �eld velocity method to prescribe the gust, and ud is the223

time varying vector de�ning the propagation in time and space of the gust224

disturbances. At each time step iteration for solving the ROM, the vector on225

the right side needs to be updated to account for the gust translation, and226

a matrix�vector multiplication is then needed. It is worth noting that the227
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CFD code does not need to be accessed for this operation, which requires228

only the grid point coordinates, and the ROM can be applied to any gust229

shape (discrete and continuous).230

The linear reduced model is then written as:231

żc = diag(λ) zc + γT ∆ud (29)

Before proceeding to analyse the computational cost and general predic-232

tive capabilities of the reduced model, considerations are given about the233

underlying assumptions. First, the linear ROM is as accurate as the nonlin-234

ear coupled solver in the limiting case that the response is small around the235

reference equilibrium. With second order e�ects dominant, that are charac-236

terised, for example, by strong moving shocks and large structural deforma-237

tions, the predictions will degrade. Second, the model projection relies on a238

dominant subspace of coupled modeshapes that reproduce the relevant dy-239

namics of the full model. If needed, the basis for projection may be enriched240

by selection of additional modeshapes. The last consideration is about the241

Schur complement eigenvalue problem. This approach overcomes the limi-242

tation of the standard p�k method, which is valid for undamped vibrations,243

because it provides a correct identi�cation of the aeroelastic damping using244

linearised CFD aerodynamics.245

4. Results246

For conciseness, the test case is for the Goland wing. Other test cases247

may be found in the references herein provided. In particular, the interested248
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reader is referred to Ref. (7) for the initial investigation on a wing typical249

section, Ref. (10) regarding a three�dimensional wing test case, and Ref. (11)250

for the extension to a passenger transport aircraft.251

The Goland wing has a chord of 6 ft and a span of 20 ft. It is a rectangular252

cantilevered wing with a 4% thick parabolic section. The structural model for253

the wing/store con�guration follows the description given in Ref. (15). The254

four mode shapes shown in Fig. 2 were retained for the aeroelastic simulations255

herein presented. The CFD grid for Euler simulations has about 400,000256

points. All simulations are done for a freestream Mach number of 0.85 and257

one degree angle of attack chosen to allow the in�uence of static deformation258

on the symmetric wing model.259

First, a stability calculation was made using the Schur complement method260

as in Ref. (16). The traces of the aeroelastic eigenvalues are shown in Fig. 3261

as a function of the equivalent airspeed (EAS). One thousand altitude steps262

for the altitude traces were employed. The wing model shows the typical263

bending�torsion type of instability. The eigenvectors for the model reduc-264

tion were computed at the subcritical altitude of 40,000 ft corresponding to265

408 ft/s EAS.266

Then, the ROM was calculated with the gust terms. Four aeroelastic267

modes, corresponding to the four structural normal modes in Figure 2, were268

used for the reduction. The coe�cients of the linear reduced model, without269

reporting the gust term, were found to be:270

żc = diag(λ1, λ2, λ3, λ4) zc (30)

where λ1 = −1.636 ·10−3 + 7.888 ·10−2 i, λ2 = −9.453 ·10−3 + 1.209 ·10−1 i,271
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(a) Mode 1 (1.72 Hz) (b) Mode 2 (3.05 Hz)

(c) Mode 3 (9.18 Hz) (d) Mode 4 (11.10 Hz)

Figure 2: Modeshapes for the Goland wing/store con�guration; for illustration purposes,

a modal amplitude of 4 is used
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(a) Damped natural frequency, f (b) Damping ratio, ζ

Figure 3: Eigenvalue traces for Goland wing/store con�guration (Mach 0.85, one degree

angle of attack)

λ3 = −5.027 · 10−3 + 4.229 · 10−1 i, and λ4 = −7.716 · 10−3 + 4.867 · 10−1 i.272

Table 1 compares the computational e�ciency of the reduced model273

against that of the full order model. All calculations, based on full and274

reduced models, were run on a single process of a 4�core Intel Xeon 3.3GHz275

computer, and a nondimensional time step of 0.01 was used. For compar-276

ison, computational costs were normalised by the cost of the time domain277

full order model. It is worth noting that smaller time steps would likely be278

required for viscous simulations, with longer time histories also needed to279

determine a response involving a wider range of frequencies. The reduced280

model generation times do not scale with these factors, and hence the tim-281

ings given in Table 1 are considered conservative. A recent application to a282

viscous simulation is reported in Ref. (17). Timings start from a precursor283

eigenvalue calculation which would be done as part of a �utter calculation.284
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The generation of the ROM, which consists of the eigenvector calculation and285

the calculation of the gust term, γ, takes about 13% of the cost of the full286

order time response calculation. The time integration of the reduced model,287

Eq. (29), is essentially free.288

Step Cost

Time Domain Full Order Calculation 1 · 100

Reduced Model Generation:

a) Calculating Eigenvector Basis 3 · 10−2

b) Calculating Gust Vector, γ 1 · 10−1

Time Domain Reduced Model Calculation 1 · 10−5

Table 1: Computational cost for the generation and use of the ROM for gust analysis

To illustrate the potential bene�ts of the reduced model, the worst case289

gust search was carried out for the one�minus�cosine family of gusts. The290

wing response is characterised by the displacement at the wing tip leading291

and trailing edges, and the resulting twist of the wing tip. Figure 4 shows the292

peaks of the response for di�erent gust lengths computed by the full order293

(CFD) and reduced (ROM) models. The reduced model was generated once,294

and then deployed for the worst case gust search at no additional costs. A295

good agreement, for the purpose of rapid engineering simulations, between296

the reduced and full order predictions was found. The worst case gust is297

for a gust length of approximately 400 ft at a speed of 408 ft/s EAS, which298

excites the response predominantly in the �rst bending mode (normal mode299

at 1.72 Hz). The time responses for di�erent gust lengths are shown in Fig. 5,300
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and con�rm the predictive general capabilities of the reduced model for gust301

response analysis.302

5. Conclusions303

The introduction of a gust into a reduced model in a manner consistent304

with well�established gust de�nitions has been considered. A new method305

was proposed that allows a one�o� model reduction, with any gust sub-306

sequently applied to the reduced model. The formulation allows linear or307

nonlinear reduced models to be derived, based on a range of full order mod-308

elling options, including linear or nonlinear structural models, and linear or309

CFD aerodynamic models. In the current paper, linear reduced models of310

the CFD have proved adequate for the gust interaction simulations. Re-311

sults were presented for a wing test case (Golang wing/store con�guration)312

to demonstrate the capability of the method. The ability of the method to313

enable calculations for a variety of gusts was illustrated.314
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