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Green, inexpensive, and robust copper-based heterogeneous
catalysts achieve 100 % conversion and 99 % selectivity in the

conversion of furfural to furfuryl alcohol when using cyclo-
pentyl-methyl ether as green solvent and microwave reactors

at low H2 pressures and mild temperatures. The utilization of

pressurized microwave reactors produces a 3–4 fold increase
in conversion and an unexpected enhancement in selectivity

as compared to the reaction carried out at the same conditions
using conventional autoclave reactors. The enhancement in

catalytic rate produced by microwave irradiation is tempera-
ture dependent. This work highlights that using microwave ir-

radiation in the catalytic hydrogenation of biomass-derived

compounds is a very strong tool for biomass upgrade that
offers immense potential in a large number of transformations

where it could be a determining factor for commercial exploi-
tation.

Furfural (FAL) has recently gained a lot of attention as a key

platform chemical derived from hemicellulosic biomass.[1, 2] FAL
hydrogenation may lead to several value-added products such

as furfuryl alcohol (FOL), tetrahydrofurfuryl alcohol (THFA), 2-
methyl-

furan (MF), and 2-methyltetrahydrofuran (MTHF) as depicted in
Scheme 1.[3–5] The development of an adequate catalytic
system to control the selectivity to a desired product is a critical

step that still deserves as much attention as developing green-
er and highly active catalysts.

FOL is an important furan derivative that has application in
the production of resins;[6] as an intermediate for the produc-

tion of lysine, ascorbic acid, and lubricants;[6, 7] as well as a hy-
pergolic fuel in rocketry.[8] FOL is currently produced on indus-

trial scale by liquid- or vapor-phase hydrogenation of FAL em-

ploying a copper chromite catalyst, with an annual production
of 400 000 t.[9] The main drawbacks of the current process are:

the toxicity of the catalyst used; relatively high pressures of H2,
in case of liquid-phase hydrogenation; and high temperatures,

meaning high energy consumption for the vapor-phase hydro-
genation.[9]

The majority of the scientific papers addressing the produc-

tion of FOL either use harsh conditions;[10–17] high pressures of
H2 ;[14, 18] or noble metals,[19–21] which are becoming scarce, more

expensive, and raise many sustainability concerns. Kyriakou
and co-workers.[7] recently tested Pt nanoparticles supported

on g-Al2O3, SiO2, CeO2, and ZnO, obtaining 80 % conversion of
FAL and 99 % selectivity to FOL after 7 h at 50 8C using metha-

nol as solvent and Pt/g-Al2O3 as catalyst. On the other hand,

J8rime and co-workers[9] presented a very promising result
using a partially recyclable Co/SBA-15 catalyst that achieves

88 % yield of FOL after 1.5 h at 150 8C and 20 bar of H2. Howev-
er, the conversion decreased from 92 to 81 % between the first

two cycles and continued to decrease slowly in subsequent
cycles. Xie and co-workers.[14] reported a maximum yield of

FOL of 90 % after 5 h at 160 8C and 90 bar of H2 using a Cu–Fe

catalyst, which was also active for the hydrogenation of levu-
linic acid.

Cyclopentyl methyl ether (CPME) emerged in the past few
years as a new, safe, and green solvent alternative to other

ether solvents such as 1,4-dioxane, tetrahydrofuran, and MTHF.
This is because CPME offers low peroxide formation and toxici-

ty, narrow explosion range, high hydrophobicity and stability
under acidic and basic conditions, and a relatively high boiling
point.[22–27] Overall, CPME addresses eight out of the twelve

principles of Green Chemistry.[28] Therefore, herein, CPME was
evaluated as a potential green solvent for FOL production yet

unexplored for this reaction.
Recently, microwave-assisted reactions have become more

popular among the scientific community. Microwave irradiation

enables a fast, uniform, and efficient dielectric heating of the
reaction media, generating an increase in reaction rates as well

as reducing the energy consumption.[29–34] The use of this tech-
nique represents a breakthrough in terms of sustainability, effi-

ciency, development of new materials, and cost reduc-
tion.[31, 35–37] To the best of our knowledge, the use of micro-
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wave irradiation has not been reported in FAL hydrogenation

aiming at producing FOL.

Herein, we report a green and efficient catalytic system for
the selective hydrogenation of FAL to FOL that combines

a more sustainable, highly active, and recyclable catalyst,
Cu/TiO2, with using a green solvent (CPME) under conventional

and microwave heating under H2 pressure.
Powder X-ray diffraction (PXRD) patterns of the calcined and

reduced Cu/TiO2 catalysts are shown in Figure 1. In the case of

the reduced catalyst, we identified only diffraction peaks relat-
ed to the cubic Cu0 phase, that is, 2q = 43.18 (111), 50.28 (200),

and 73.98 (220) (JCPDS 00-004-0836). Concerning the calcined
sample, only characteristic peaks of CuO, 2q = 35.38 (002) and

38.58 (111) were observed, as expected (JCPDS 00-048-1548).
The remaining diffraction peaks could be attributed to the ana-

tase (JCPDS 00-021-1272) and rutile (JCPDS 01-075-1748)

phases of TiO2.

Thermal gravimetric analysis (TGA) was performed to assess

the evolution of the decomposition of the copper precursor, as
depicted in Figure S1 in the Supporting Information. The re-

sults show that the calcination conditions employed (400 8C,
4 h) were enough to decompose all of the copper precursor

salt.

To evaluate the reducibility of the calcined catalyst,
temperature-programmed reduction (TPR) analysis

with hydrogen was performed (Figure 2). In the case
of Cu/TiO2, two sharp and narrow peaks were ob-

served at 127 and 175 8C. It is common to assign the
first reduction peak to the stepwise reduction of

Cu2 + to Cu1 + whereas the second peak should corre-
spond to the reduction of Cu1 + to Cu0.[38–40] However,
another possible explanation would be based on the

existence of different copper species present on the
support. Therefore, the first peak could be owed to
the reduction of highly dispersed copper nanoparti-

cles whereas the second could correspond to the reduction of
bulk copper-oxide species or larger particles.[41, 42] TEM of the

freshly reduced Cu/TiO2 catalyst along with particle-size distri-
bution are shown in Figure 3. It is possible to see that the cata-
lyst is comprised of relatively small copper nanoparticles with

a narrow size distribution, having an average size of approxi-
mately 2.2 nm. Figure S2 shows a TEM image of the TiO2 sup-

port, highlighting the lattice d-spacing corresponding to the
(101) plane of the anatase phase.

Catalytic tests were performed using the synthesized
Cu/TiO2 catalyst in a microwave reactor at 125 8C and 10 bar of

H2, as depicted in Table 1. The blank test done in the absence
of catalyst showed a negligible FAL conversion at these condi-
tions. We can see that the catalyst is highly active and highly

selective towards FOL, reaching 97 % conversion with 100 %
selectivity to FOL in 2 h. Moreover, 99 % yield of FOL was ob-

tained after 3 h with a minor formation of MF due to FOL hy-
drogenolysis. These are particularly good results considering

that low hydrogen pressures and low temperatures were

utilized.
It is well known that deactivation of copper-based catalysts

is one of the major drawbacks for copper catalysis and it is
very often neglected; thus after these promising preliminary

results, we decided to test the recyclability of the Cu/TiO2 cata-

Figure 1. Powder X-ray diffraction of the calcined and reduced Cu/TiO2

catalyst.

Figure 2. H2-TPR curve of the calcined Cu/TiO2 catalyst. Experimental condi-
tions: 5 % H2 in N2, 50 mL min@1, 10 8C min@1, 50 mg sample.

Scheme 1. Main products obtained from FAL hydrogenation and side reactions: FAL (1),
THFA (2), 1,5-pentanediol (3), FOL (4), MF (5), MTHF (6), 1-pentanol (7), furan (8), tetra-
hydrofuran (9), and 1-butanol (10).

ChemSusChem 2016, 9, 3387 – 3392 www.chemsuschem.org T 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim3388

Communications

http://www.chemsuschem.org


lyst. Figure 4 shows the results of the three cycles of recycling

tests performed with the Cu/TiO2 catalyst.
We can observe that the catalyst is reusable under the

tested conditions, showing a minor decrease in conversion
from 100 to 94 % after the third reaction cycle, maintaining,

however, a high selectivity to FOL. The most common reason

for the deactivation of copper-based catalysts is metal nano-
particle sintering, which reduces the metallic surface area avail-
able for catalysis. Concerning the Cu/TiO2 catalyst, no signs of
severe sintering were observed, which we believe is owed to

a strong metal–support interaction (SMSI),[41, 42] or an electronic
metal–support interaction (EMSI), as proposed by Lykhach

et al.[43] and Campbell.[44] This metal–support interaction would
allow the catalyst to retain the majority of its activity, prevent-

ing particle sintering. Similar effects were reported in the litera-
ture that support our conclusions for the hydrogenation of

FAL under microwave heating in the presence of the Cu/TiO2

catalyst.[42, 45, 46] In this sense, we attribute the slight decrease in

activity between each cycle to a very small sintering of the Cu

nanoparticles or to a minor surface oxidation occurring during
the recycling process. The combination of a high activity/

selectivity with good stability makes this material a promising
catalyst for FOL synthesis from FAL.

Subsequently, we decided to perform an additional set of re-
actions under conventional heating in an autoclave at the

same conditions employed in the microwave studies: 125 8C

and 10 bar of H2. The comparison between the reaction profile
using both heating systems is shown in Figure 5.

The differences between the two systems are striking: the
reaction carried out under microwave heating has a much

higher reaction rate, reaching full conversion at 180 min; in
contrast, only 35 % conversion is achieved under conventional

heating. Although microwave reactors have been used for

a few years in organic reactions, the real influence and effects
that microwave irradiation has upon the reaction medium are

not yet completely understood and these microwave effects
are particularly complex for reactions catalyzed by solid cata-

lysts.[47, 48] The existence of “non-thermal” microwave effects or
specific microwave effects is still a very controversial topic, and

our findings do not show evidence toward a definitive conclu-
sion.[48–50] However, we believe that our results can be ex-

Figure 3. a) TEM micrograph of freshly reduced Cu/TiO2 catalyst. b) Particle-
size distribution for Cu/TiO2 as catalyst. SD stands for standard deviation.

Table 1. FAL selective hydrogenation to FOL.[a,b]

Entry Reaction time [min] FAL Conversion [%][c] FOL Selectivity [%][c] MF Selectivity [%][c] FOL Yield [%] MF Yield [%]

1 20 3 100 0 3 0
2 60 46 100 0 46 0
3 120 97 100 0 97 0
4 180 100 99 1 99 1
5 240 100 99 1 99 1

[a] Experimental conditions: reactions performed in the microwave reactor at 125 8C, 10 bar of H2, 10 mg of 10 % Cu/TiO2, 5 mL of a 40 mm FAL solution in
CPME. [b] Reaction without catalyst at the same conditions resulted in a negligible FAL conversion (ca. 1 %). [c] Determined by GC.

Figure 4. Recycling tests for FAL hydrogenation to FOL over Cu/TiO2. Experi-
mental conditions: 125 8C; 10 bar of H2 ; 180 min; 10 mg of 10 % Cu/TiO2 ;
5 mL of a 40 mm FAL solution in CPME; microwave reactor.
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plained by means of thermal effects only.[51] Microwaves have

the ability, through dielectric heating, to selectively heat specif-

ic parts of the reaction medium, which may lead to higher re-
action rates and changes in selectivity.[30, 32, 49] Several authors

observed the formation of hot spots in heterogeneous cata-
lysts during microwave irradiation as a result of the materials’

high dielectric constants and loss tangent.[31, 32, 51, 52] This could
increase the temperature of the active sites of the catalysts lo-

cally above the temperature of the bulk, which could explain

higher reaction rates.[31, 47, 51] Following this hypothesis, TiO2 has
a high dielectric constant of approximately 50, which suggests

that it absorbs microwave irradiation very well, getting super-
heated above the solvent bulk temperature.[47] However, we

have not come to a conclusion as to how this effect could ex-
plain the enhancement in selectivity we observe in Figure 5 as
hot spots would typically result in a loss of selectivity. Indeed,

the reaction in the microwave is not only faster but also hin-
ders the consecutive conversion of methyl furfural to methyl
furan resulting in almost 100 % selectivity. We also know that
higher reaction temperatures result in loss of selectivity at iso-

conversion (Figures S3 and S4) ; this would suggest that hot
spots should have a negative effect on selectivity as well. Inter-

estingly, Holzgrabe and co-workers[52] have proposed that

when hydrogen is adsorbed at the catalyst surface, a dipole
moment can be induced, which would allow the microwaves

to interact with the adsorbed hydrogen. Although we have no
evidence for such phenomenon taking place during reaction,

we cannot exclude that it is responsible for the unexpected
enhancement in selectivity we observe. In any case, the choice

of support plays a crucial role, not only improving the catalyst

stability, preventing nanoparticles sintering, but also boosting
the reaction rate when coupled with microwave irradiation.

For practical applications, and despite the very mild tempera-
tures utilized, it is important to stress that the time required to

reach the temperature set point in microwave-assisted reac-
tions was usually less than 3 min. In contrast, the reactions

under conventional heating took 15–20 min to reach the same
temperature.

Moreover, we decided to study the effect of the reaction
temperature for both systems. Therefore, we carried out anoth-

er set of reactions at 150 and 175 8C (Figures S3 and S4) and
10 bar of H2 under conventional and microwave heating. We
see in Figure S3 that the disparities between reaction rates of
the two systems at 150 8C are less pronounced compared to
the reactions performed at 125 8C. Surprisingly, at 175 8C (Fig-

ure S4) no significant differences in conversion and selectivities
were observed. This observation could also be attributed to

thermal effects owed to the metal–support superheating. At
low temperatures, the reactions proceed slowly because of
energy limitations; therefore when microwave irradiation is
employed, hot spots generate localized higher temperatures in

the metal and support, enhancing the reaction rate. At higher
temperatures, the microwave heating effect is attenuated as
the available energy starts to be high enough to quickly con-

vert the molecules, gradually decreasing the differences be-
tween both systems until no significant microwave-irradiation

effect is noticeable.
In conclusion, we have shown that a simple impregnation

method provides a cheap, active, stable, and sustainable cata-

lyst (Cu/TiO2), that works at low temperatures (125 8C) and low
H2 pressures (10 bar of H2) for the furfural (FAL) hydrogenation

to furfuryl alcohol (FOL). High yields of FOL were achieved
(>99 %), employing cyclopentyl methyl ether (CPME) as

a promising green solvent for hydrogenation reactions. In addi-
tion, we have assessed and compared the differences regard-

ing the reaction evolution under conventional heating and mi-

crowave irradiation at different temperatures. We have ob-
served much higher reaction rates under microwave irradiation

at mild temperatures, which are temperature dependent and
could be explained by localized thermal effects. We can con-

clude that the system composed of Cu/TiO2 as catalyst, CPME
as solvent, and microwave irradiation as heating source is
a promising, efficient, and green system for FOL production.

Importantly, microwave dielectric heating has the potential
to be a great tool, aiming at improving overall reaction con-
ditions and ensuring high reaction rates for bio-derived
reactions. Furthermore, this work is a first example highlighting

that using pressurized microwave reactors in the catalytic hy-
drogenation of biomass-derived compounds can offer huge

advantages in terms of conversion and selectivity and we be-

lieve this offers great potential in a large number of hydroge-
nations as well as oxidative transformations, where it could be

determinant for commercial exploitation.

Experimental Section

CPME (+99.9 %) and Cu(NO3)2 puriss. pa. (99–104 %) were pur-
chased from Sigma–Aldrich. TiO2 (AeroxideTM P25) was purchased
from Fisher Scientific. All reagents were used as received.
The Cu/TiO2 catalyst was prepared using a simple wet-impregna-
tion method. The amount of dissolved Cu(NO3)2 precursor was cal-
culated, aiming at achieving a 10 % copper loading. After the im-
pregnation, the catalyst was dried overnight at 100 8C. The Cu/TiO2

Figure 5. Comparison between FAL hydrogenation over Cu/TiO2 under con-
ventional heating (dashed lines) and microwave irradiation (solid lines).
Legend: conversion (*), FOL selectivity (^) and MF selectivity (~). Parr reac-
tor conditions: 125 8C; 10 bar of H2 ; 60 mg of 10 % Cu/TiO2 ; 30 mL of
a 40 mm FAL solution in CPME. Microwave reactor conditions: 125 8C; 10 bar
of H2 ; 10 mg of 10 % Cu/TiO2 ; 5 mL of a 40 mm FAL solution in CPME.
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catalyst was calcined at 400 8C for 4 h under air. After calcination
and prior to all catalytic tests, the catalyst was reduced at 400 8C
for 4 h under flow of pure H2.
PXRD patterns were recorded in transmission mode using a
PANalytical X’Pert Pro HTS diffractometer with a slit of 0.048 from
2q= 4 to 908 using a CuKa radiation. TPR analyses were performed
using a Micromeritics AutoChem II 2920 equipped with a thermal
conductivity detector. The samples (50 mg) were heated up to
800 8C at 10 8C min@1 at a flow of 20 mL min@1 of 5 % H2 in N2. TEM
characterization was performed using a JEOL JEM 2100 LaB6 instru-
ment at 200 kV accelerating voltage. The samples were sonicated
in methanol and supported on holey carbon film on gold grids
(300 mesh). Particle-size distributions were determined by counting
at least 200 particles.
The reactions performed under conventional heating were carried
out in a Parr reactor Series 4590 with a volume of 50 mL. The reac-
tor was loaded with a stock solution of FAL in CPME (40 mm,
30 mL) and the catalyst (60 mg). The vessel was then closed,
purged five times with nitrogen and heated up to the desired tem-
perature while stirring at 1000 rpm. Finally, after reaching the set
temperature, the reactor was pressurized with 10 bar of H2 and the
reaction was considered to have started.
A CEM Discover SP microwave reactor was employed to perform
the microwave-assisted hydrogenation reactions. The reactor was
equipped with a gas addition kit containing an in situ fiber optic
temperature control and a 10 mL reaction vessel operable up to
200 8C and 14 bar. The reactor was loaded with the same stock so-
lution (5 mL) used in the Parr reactor and the catalyst (10 mg). Fi-
nally, the vessel was purged five times, loaded with the desired H2

pressure and heated up at the maximum stirring speed available.
The reaction was considered to have started as soon as the tem-
perature ramp started and the temperature set point was usually
reached in less than 3 min.
The reaction products were identified using GC–MS (Agilent 5975,
HP-5 ms capillary column) and quantitatively determined using GC
(Agilent 7820A) employing a flame ionization detector and a HP-5
capillary column (30 m V 0.32 mm V 0.25 mm). The carrier gas used
was N2 at a flow of 2 mL min@1.
Recycling tests were performed in the following manner: after
each reaction, the catalyst was recovered by centrifugation,
washed three times with methanol, dried, and then recharged in
the reactor following the same procedure as described before.
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