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ABSTRACT  

 

Three-dimensional structures were robocasted from a 10 mol% ceria-stabilized zirconia 

and alumina composite (10CeTZP-Al2O3). A hydrogel-based printable ink was developed 

using a unique non-ionic copolymer surfactant. Self-supporting and free-standing 

structures, including round lattices with interconnected pores (200-600 μm pores; 30-

50% porosity), rectangular bars (95 % density on average) and cones were successfully 

printed. The round lattices of 200 μm pores and 30% porosity showed compression 

strengths similar to those of cortical bone, reaching almost 200 MPa. The maximum 

flexural strength value attained for the rectangular bars was 575 MPa. In vitro biological 

studies demonstrated that the samples allow for practically 100% cell viability, confirming 

their non-cytotoxic nature. Cell differentiation tests were performed using osteoblasts 

incubated for 7 days in supplemented cell culture medium. Quantification of specific 

osseous differentiation genes showed that the robocasted structures induced a higher 

degree of osseous differentiation than tissue culture polystyrene. 

 

Keywords: 3D printing, robocasting, ceramic composites, scaffolds, osseous 

differentiation 

 

  



1. Introduction 

Artificial devices fabricated from biomaterials have saved and improved millions of 

lives to date [1,2]. In upcoming years the need for biomaterials will increase 

exponentially, mainly due to a continuously ageing population [3,4]. In terms of bone 

related diseases, in particular, the development of biomaterials with enhanced 

mechanical properties and tailored osseo-stimulative designs [5,6] and the improvement 

of current scaffold manufacturing techniques are urgently required to cope with current 

and future clinical demands [7,8]. 

 

The biomedical field has evolved and expanded in all directions in the search for the 

ideal bone scaffold, covering many different types of materials: from metals and calcium 

phosphates to other ceramics, bioglasses, composites, organic/inorganic hybrid 

networks, [9-15] etc. In this regard, ceramic materials, such as zirconia (ZrO2) and 

alumina (Al2O3), are gaining importance due to their biocompatibility, aesthetics, 

mechanical properties and negligible ion release.  

 

In general, ceramic materials are brittle and have virtually no plasticity; however, there 

are exceptions, such as ceria-stabilized zirconia (CeTZP), which presents an important 

intrinsic reinforcement mechanism associated to its phase transformation, called 

transformation toughening  [16]. Throughout this work we study a ceria-stabilized 

zirconia and alumina composite (10CeTZP-Al2O3) which, as a ceramic biomaterial, 

resists corrosion and wear and has high chemical stability. Furthermore, it has better 

fracture toughness and ageing properties than conventional yttria-stabilized ZrO2 and 

shows enhanced mechanical performance when compared to monolithic Al2O3 [17-21]. 

CeTZP itself has high fracture toughness but low flexural strength [22]; the dispersed 

Al2O3 phase suppresses grain growth and increases the composite’s strength without 

affecting its fracture toughness [17,23,24]. This material’s superior fracture toughness is 

due to its stress-induced martensitic transformation [25,26].  

 

Ceramic scaffolds with controlled 3D architectures are essential in biomedical 

applications that imply taking specific structural requirements into account, such as 

having sufficient open and interconnected porosity to allow for bone tissue formation and 

vascularization and achieving a precise compromise between scaffold porosity and 

strength [14]. Robocasting is an additive manufacturing technique that offers the 

possibility to rapidly create complex structures with controlled morphologies, following a 

predesigned digital model, via a layer-by-layer deposition process. It is gaining ground 

over conventional production methods in circumstances that require short or individual 

production series, tailored sizes, intricate shapes, controlled porosity, etc.  

 

Up to date, most additive manufacturing (AM) techniques have focused on certain 

metallic and polymeric materials, whereas 3D printing of ceramic components has been 

very limited. In terms of research, ceramics have been used in robocasting for more than 

a decade; however, printing ceramics still implies challenges such as developing simple-

to-formulate inks of appropriate composition, flow consistency and behaviour and 

viscoelastic properties. Ceramic inks for 3D printing must contain a high solids volume 

fraction to minimize shrinkage during drying and thus resist the involved capillary 

stresses [27-29]. They must also be shear thinning, to flow through very narrow 



deposition nozzles, and have a predominant elastic behaviour, to recover their initial 

structure immediately after deposition while maintaining their filament shape, bonding to 

the underlying layer and supporting the weight of the successive layers [27-31]. Using 

water as a means of formulation in these thermo-responsive inks provides multiple 

advantages, especially in comparison to organic solvent-based alternatives [27]. These 

inks are relatively simple, clean, non-toxic, low-cost and easily up-scalable. Additionally, 

the use of hydrogel-based ceramic inks avoids both the need to closely control the pH 

and the use of additives [27,28,30,32]. The use of a non-ionic polyethylene oxide and 

polypropylene oxide copolymer surfactant, Pluronic F-127, is becoming a common 

approach in robocasting due to its unique thermal behaviour. Pluronic in water below 

~17°C - at concentrations above ~15 wt% - behaves like a low viscosity liquid, but when 

the temperature rises above ~17°C it changes conformation, forming micelles that result 

in a highly viscous gel [30]. This behaviour is very convenient for printing at room 

temperature and ideal for ceramic materials such as calcium phosphates or glasses, as 

demonstrated in previous studies [28,30,32]. 

 

Taking all of the above into account, the main objectives of the present work are to 

print robust dense and porous 10CeTZP-Al2O3 structures using a hydrogel-based 

ceramic ink and prove their mechanical and biological suitability for load-bearing 

applications within the biomedical field. 

 

  



2. Materials and methods  

 

2.1 Ceramic ink formulation, production and printing 

 

Ink preparation. A printable ceramic ink was attained by mixing 10CeTZP-Al2O3 

powder (35 vol%), prepared by following a patented colloidal synthesis route [33] and 

sieved below <15 µm, and an aqueous solution of Pluronic® F-127 by Sigma Aldrich (25 

wt% in deionized water at 4°C). The Pluronic® F-127 solution components were mixed 

at 2000 rpm for 6 min and degassed at 1000 rpm for 4 min using a Thinky ARE-250 

planetary mixer, they were then refrigerated at 4°C for 24 h to allow for bubble 

dissipation. The ceramic ink constituents were mixed at 2000 rpm for 15 min and 

degassed at 1000 rpm for 15 min using the same apparatus.  

 

Ink rheology. The flow behaviour and viscoelastic properties of the Pluronic® F-127 

solution and the ceramic ink were measured using a Discovery Hybrid Rheometer HR1 

(TA Instruments) equipped with a parallel plate (ø = 40 mm) and a solvent trap cover. 

Flow behaviour was measured applying a flow ramp (viscosity vs. shear rate). The 

viscoelastic properties (storage modulus, G′, and loss modulus, G′′) were assessed with 

strain and frequency sweeps; in detail, with stress-controlled amplitude sweeps (from 

0.01 % to 10 %) at a fixed frequency of 1.0 Hz, and stress-controlled frequency sweeps 

(from 0.1 Hz to 100 Hz) at a fixed strain of 0.1 %. The effect of temperature was 

monitored by applying a temperature ramp at fixed strain and frequency. 

 

Printing. 3D structures were printed using a robotic assisted deposition device (3-D 

Inks, Stillwater, OK). Robocad 4.0 software was used to design the 3D structures and to 

configure and operate the printing equipment. The ink was placed in 3 cm3 syringes and 

extruded through conical tips of 580 µm in diameter at a speed of 6 mm/s, which allowed 

for a continuous and stable flow. A wide range of 3D structures were printed on both 

porous (newspaper, sieves) and non-porous (teflon) substrates and in different media 

(air and oil). The optimised ink was used to build dense rectangular test bars for 

mechanical strength evaluation, round lattices with interconnected pores for biological 

assaying and conically shaped structures (Fig. 1). Two main patterns were applied when 

designing the round lattices: a) the simple round lattice pattern (Fig. 2a and Fig. 2c), and 

b) the complex round lattice pattern, consisting of an ABAB type configuration (Fig. 2b 

and Fig. 2d). The round lattices were designed to have final pore sizes between 200-800 

µm, previously reported as optimal for bone tissue growth [13,14,34].  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: 3D designs: (a) rectangular bar, (b) round lattice and (c) cone, and printed 

structures: (d) rectangular bar, (e) round lattice and (f) cone.   

 

 

Fig. 2: Round lattice design grid configurations: (a) simple pattern and (b) complex 

pattern. SEM images of (c) a sintered simple round lattice and (d) a sintered complex 

round lattice, both printed in air through a 580 µm tips. (e) SEM image of the 

microstructure of a sintered round lattice ink filament. 

 

Post-processing. The printed structures were left to dry at room temperature for 24-

48 h. Additionally, the dense bars were regularly and gently turned over to aid 

evaporation in all directions and avoid warping and cracking. Once dry, the printed 

structures were pre-sintered at 1 °C/min up to 800 °C, to eliminate organics and allow 

for up built tension relaxation, and cooled down to  40 °C. Then, they were once again 

heated up to 800 °C, this time at a heating rate of 5 °C/min, before complete sintering at 

10 °C/min up to 1500 °C, temperature which was held for 2 h before final cooling (Table 

1). 



 

Table 1  

Sintering cycle applied to the 3D printed structures. 

 

Cycle Ramp Heating rate 
(°C/min) 

Final temperature 
(°C) 

Holding time 
(min) 

1 1 1 800 0 
1 2 free cooling 40 0 

2 3 5 800 0 
2 4 10 1500 0 
2 5 0 1500 120 
2 6 free cooling 40 0 

 

 

2.2 Structural characterization of the printed samples 

 

Density. The density assessment of the printed structures was performed following 

the buoyancy method, based on Archimedes’ Principle. A Sartorius VRD analytical 

balance and a Sartorius density determination kit were used to weigh the samples under 

the appropriate conditions. The density test procedure and evaluation were performed in 

accordance with European standard EN 993-1 [35].  

 

Mechanical testing. The dense rectangular probes were mechanically tested via 

three-point bending at room temperature, using an Instron 8562 equipped with a 10 kN 

load cell at a constant rate of 1 mm/min [36]. The bending strengths of the printed bars 

were compared to those of standard test bars produced by powder mixing, an alternative 

conventional ceramic processing route. The compression strengths of the porous lattices 

were obtained using an Instron 5582 equipped with a 100 kN load cell at a crosshead 

speed of 0.5 mm/min, following the ASTM C133 standard [37].  

 

Microstructure. The printed structures were qualitatively studied via scanning 

electron microscopy (SEM). The FEI Quanta 650 FEG ESEM (INCAR-CSIC, Spain) and 

the SEM JEOL JSM 5610 LV (Imperial College London, UK) were used depending on 

image requirements. The samples were finely coated with Au or Ir to improve imaging.  

 

2.3 Biological characterization of the printed samples 

 

Samples. Three different round lattice designs were tested in vitro: simple round 

lattices of 200 µm pores, simple round lattices of 600 µm pores and complex round 

lattices of 600 µm pores. Tissue culture polystyrene (TCPS) was used as the control 

substrate. 

 

Cell culture. Human primary osteogenic sarcoma cells (SAOS-2 cells) were used for 

in vitro tests. The liquid medium applied to provide the essential nutrients for survival and 

growth consisted of DMEM medium (GIBCO®, Invitrogen) with glucose (500 mg/l), 

sodium pyruvate (110 mg/l) and L-glutamine (2 mM) (Sigma Aldrich) supplemented with 

10% heat-inactivated fetal calf serum (FCS) (PAA Laboratories GmbH) and 20 U/ml 

HyClone® penicillin (10000 unitsl/ml) – streptomicin (10000 ug/ml) solution (1 μl/ml) at 

37 °C and 5 % CO2. 



 

Cell viability. Cell death was evaluated by quantifying the number of living cells in 

the media. SAOS-2 cells were seeded onto sterilized material samples in 48-well plates 

at a density of approximately 1×104 cells/ml. Empty wells, seeded with the same amount 

of cells, were used as controls (blank). Cell viability was determined after 48 h using the 

CellTiter 96® AQueous MTS Reagent Powder (Promega). All assays were conducted in 

triplicate. The quantity of formazan product, as measured by absorbance (Abs) at 490 

nm, is directly proportional to the number of living cells in culture. Thus, the % viability 

was calculated as: %Viability=100×Abssample/Absblank. 

 

Alkaline phosphatase (ALP) activity determination. The osseous differentiation 

ability of the SAOS-2 cells cultured on the porous substrates was evaluated by 

quantification of ALP activity. SAOS-2 cells were seeded onto sterilized porous 

substrates in 48-well plates at a density of approximately 2×104 cells/ml. Empty wells, 

with the same amount of cells, were used as controls. Cells were incubated for 7 days 

using supplemented culture medium, replaced every 2-3 days. The osteogenic factors 

that were added to the cell culture medium were: ascorbic acid (0.2 mM final 

concentration), β-glycerophosphate (10 mM final concentration) and dexamethasone 

(0.1 μM final concentration) (Sigma Aldrich). ALP activity was determined using the 

SensoLyte® pNPP Alkaline Phosphatase Assay Kit (AnaSpec Inc.). Absorbance at 405 

nm was measured on a BIO-RAD Model 680 Microplate Reader. 

 

Gene expression quantification. Gene expression studies were used to quantify the 

level of expression of specific osseous differentiation-related genes (BGLAP: bone 

gamma-carboxyglutamate protein, COL1A1: collagene type 1 alpha 1, IBSP: integrin-

binding sialoprotein and SPARC: secreted protein acidic and rich in cysteine). A highly 

conserved protein that is involved in cell motility, structure and integrity, beta-actin 

(ACTB), was used as the endogenous control for relative gene expression quantification 

[38]. SAOS-2 cells were seeded onto duplicate sterilized material samples in a 48-well 

plate at a density of approximately 5×105 cells/ml and incubated in supplemented culture 

medium, following the procedure specified for ALP activity determination. RNA was 

extracted after 7 days of incubation. First of all, the culture medium was removed and 

500 μl of TRIzol (TRI-Reagent® from Sigma-Aldrich) were added to each well. The 48-

well plate, containing the samples and the TRIzol, was frozen for 48 h at −80°C. After 

thawing, the TRIzol solutions were transferred to RNase-free 1.5 ml tubes. 100 μl of 

molecular biology grade 1-Bromo-3-chloropropane (Sigma-Aldrich) were added to each 

tube, mixed, incubated at room temperature for 3 min and centrifuged at 12000×g and 

4°C. The resulting upper aqueous phases were transferred to clean tubes and 250 μl of 

cold (4°C) isopropyl alcohol (Sigma Aldrich) were added to each tube. This solution was 

incubated for 10 min at room temperature and then centrifuged at 12000×g and 4°C for 

10 min. The supernatants were removed and the remaining pellets (RNA) were washed 

with 500 μl of a 75% ethanol solution (obtained by diluting absolute ethanol AnalaR 

NORMAPUR®, VWR) via centrifugation at 7500×g and 4°C for 5 min. The resulting RNA 

pellets were dried, without reaching total dehydration, and resuspended in 30 μl of PCR 

grade water (Sigma Aldrich). RNA quantity and purity were obtained by measuring 

sample absorbance at 260 and 280 nm, using the Thermo Scientific NanoDrop ND-1000 

spectophotometer. Once verified, 500 ng of every total RNA sample were reverse-

transcribed in reaction sizes of 20 µl to single-stranded cDNA, using the Applied 



Biosystems High Capacity cDNA Reverse Transcription Kit and the Bioer’s LifePro 

Thermal Cycler. Finally, we used the Power SYBR® Green PCR Master Mix (Applied 

Biosystems), the KiCqStart TM SYBR® Green Primers (Sigma Aldrich) (Table 2) and 1 

µl of each cDNA type (in reaction sizes of 20 µl) for real-time polymerase chain reaction 

(RT-PCR), which was run at 40 cycles in a 7900HT Fast Real-Time PCR System with a 

Fast 96-Well Block Module (Applied Biosystems). For statistical purposes, two 

measurements were made per sample. 

 

Table 2 

Sigma Aldrich KiCqStart TM SYBR® Green Primers applied for DNA amplification (base 

pairs = bp). 

 

Oligo Code Tm° Sequence (5’-3’) Sequence Size (bp) 

FH1_ACTB 59.7°C GACGACATGGAGAAAATCTG 
131 

RH1_ACTB 58.0°C ATGATCTGGGTCATCTTCTC 

FH1_BGLAP 60.8°C TTCTTTCCTCTTCCCCTTG 
97 

RH1_BGLAP 59.3°C CCTCTTCTGGAGTTTATTTGG 

FH1_COL1A1 61.1°C GCTATGATGAGAAATCAACCG 
199 

RH1_COL1A1 61.6°C TCATCTCCATTCTTTCCAGG 

FH1_IBSP 57.9°C GGAGACTTCAAATGAAGGAG 
80 

RH1_IBSP 56.4°C CAGAAAGTGTGGTATTCTCAG 

FH1_SPARC 52.9°C AGTATGTGTAACAGGAGGAC 
143 

RH1_SPARC 57.6°C AATGTTGCTAGTGTGATTGG 



3. Results and discussion  

 

3.1 Ink formulation and rheology 

 

A hydrogel-based 10CeTZP-Al2O3 ink with appropriate rheological properties was 

developed for 3D deposition. Preliminary experiments and previous work [27] proved 

that a 25 wt% Pluronic® F-127 stock solution is a suitable carrier for the composite. The 

ink composition was adjusted to reach optimal flow and structure for 3D printing, attained 

at 35 vol% ceramic powder and 65 vol% Pluronic® F-127 solution at room temperature 

(25 wt% in deionized water). This ink is highly viscous at rest but flows easily under 

shear. At rest it shows viscoelastic behaviour with a predominant elastic component 

(G’>G’’, Figure 3) and high G’ values (around 10 MPa). Under shear, as will be seen 

later, the ink network breaks down easily but quickly recovers its initial structure once 

deposited on the substrate, making the 3D printing process in air possible without the 

need for supporting structures. 

 

The thermoresponsive behaviour of the Pluronic® F-127 solution is clearly illustrated 

in its temperature ramp (Fig. 3); its structure goes from solid-like (G’>G’’), where the 

storage modulus (G’) dominates  with values of around 10 kPa, to liquid-like (G’’>G’) at 

low values of G’ (<1 Pa) with a considerable drop of both moduli (Fig. 3). This is due to 

the transition temperature of the hydrogel (at 17°C), which becomes liquid at low 

temperatures. However, the ink does not show the same behaviour with temperature (17 

°C) (Fig. 3). This is because the ink is a complex system with a high concentration of 

ceramic particles, resulting in a stiff structure with G’ values of up to 10 MPa. The ink 

moduli (G’, G’’) do not significantly change with temperature; G’ dominates throughout 

the tested temperature range, due to the small contribution of F-127 to the total stiffness 

of the ink (G’ of F-127 25wt% is around 10kPa) (Fig. 3).  

 

 
Fig. 3: Temperature sweeps illustrating and comparing the behaviour of the ceramic ink 

and the F-127 solution with temperature. The ink moduli do not change significantly with 

temperature; the ink’s stiff structure causes G’ to dominate throughout the tested 

temperature range, reaching values close to 10 MPa. However, we can appreciate a 
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clear change in the behaviour of the F-127 solution with temperature: at temperatures 

below ~17°C it shows a liquid-like low viscosity behaviour, and, when temperature rises 

above ~17°C, G’ increases up to 10 kPa and dominates over G’’, proving the 

thermoresponsive behaviour of the hydrogel.  

 

Frequency and amplitude sweeps provide additional structural information. The ink is 

very sensitive to frequency (Fig. 4), unlike the Pluronic® F-127 solution alone, which 

shows linear viscoelastic behaviour with frequency (Fig. 4). In the case of the ceramic 

ink, frequencies above 4 rad/s easily break down its structure. The amplitude sweep 

performed on the ink shows a linear viscoelastic region (LVR) at strains below 0.02% 

(Fig. 5). The ink moduli crossover (G’=G’’, showing the transition from solid to liquid) 

takes place at 0.6%. These very low strains manage to break down the ink network 

enabling it to flow through narrow nozzles during the printing process. In the LVR, at 

strains below 1%, the G’ and G’’ values of the ink (up to 10 MPa) are much higher than 

those of the Pluronic® F-127 solution alone (around 10kPa) (Fig. 5) due to the strong 

contribution of the ceramic particles. This stiffness (high values of G’) combined with the 

shear thinning behaviour is what makes this ink excellent for robocasting. F-127 acts as 

a lubricant and as a carrier, facilitating the flow and establishing a network across the 

ceramic particles that can be easily broken down to flow under shear and immediately 

heal and recover its structure when the shear eases off. Once printed, the filaments are 

strong enough to retain their shape and support the weight of the layers on top without 

deformation, leading to self-supporting structures.  

 

 
Fig. 4: Ceramic ink and F-127 solution (25 wt%) frequency sweeps, at fixed strain (0.1 

%), and a Cox-Merz transformation of the ink frequency sweep. The ink is a stiff network 

that shows shear thinning behaviour and is very sensitive to frequency; frequencies 

above ~4 rad/s break down its structure. Conversely, the Pluronic® F-127 solution shows 

linear viscoelastic behaviour with frequency.  
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Fig. 5: Strain sweep, at fixed frequency (1 Hz), illustrating and comparing the behaviour 

of the ceramic ink and the F-127 gel with amplitude. The ink shows a linear viscoelastic 

region (LVR) at strains below 0.02%, while the F-127 solution shows a LVR at strains 

below 0.6%. The moduli crossover (G’=G’’) takes place at 0.6% for the ink and at 3% for 

the F-127 solution. At strains below 1%, the moduli of the ink (up to 10 MPa) are much 

higher than those of the F-127 solution alone (~10 kPa) due to the strong contribution of 

the ceramic particles towards the rheological behaviour of the ink. 

 

3.2 Robocasting process considerations and parameters 

 

A wide range of 3D designs were printed using the optimised ink formulation (Fig. 1), 

including rectangular test bars for comparison of their mechanical performance with 

those made using other conventional processing methods. In this case, the 3D design is 

critical to guarantee high density within the bars and avoid any defects and voids due to 

spacing between the filaments, for example. The design is based on the close 

superposition of 6 layers; each one consists of a single perimeter rim and a solid space-

filling pattern, which is printed perpendicularly to that of the preceding layer (Fig. 6). This 

configuration allowed us to print a compact structure by minimizing pores and defects 

that could involve a drop in mechanical property values. The use of conical tips 

minimized the presence of dead zones along the extrusion path and decreased the 

extrusion pressure by almost one order of magnitude [30].  
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Fig. 6: SEM images of a sintered rectangular test bar printed in air through a 580 µm 

tip. (a) Transversal cut, (b) image taken from the top of the structure and (c) image taken 

from the side of the structure. 

 

3.3 Post-printing processing 

 

Sample drying is a critical processing step and must be carefully controlled to avoid 

defects such as cracking, distorting and warping, caused by the stresses produced by 

differential shrinkage [39,40]. Drying defects usually appear when the drying process 

occurs too fast or unevenly and are especially likely to develop in thick and dense 

samples. From a set of printing tests on diverse porous and non-porous substrates 

(mesh-like stainless steel, aluminium foil, newspaper and Teflon) and in different media 

(air and oil), it was found that the most efficient way to prevent cracking and bending due 

to uneven drying was printing on a Teflon substrate in air. The most effective drying 

conditions for the printed samples were found to be drying in air at room temperature (20 

°C, approximately) for 24-48 h. Additionally, the dense rectangular bars were turned over 

extremely carefully, from time to time, to aid evaporation in all directions.  

 

Likewise, the sintering conditions had to be carefully defined to avoid destabilization 

of the composite material due to spontaneous tetragonal-monoclinic zirconia phase 

transition, which can cause sample cracking and critical failure. Completely sintered 

samples, without signs of cracking, distorting or warping were obtained when applying a 

two-step sintering cycle consisting of two distinct but complimentary heat treatments; the 

first one was applied to slowly pre-sinter the material, eliminate organics and allow for 

up built tension relaxation before complete sintering during the second treatment (Table 

1). 

 

3.4 Printed structure characterization 

 

Dense and porous 3D architectures were successfully printed and sintered. The 

densities of the rectangular bars (Fig. 6) varied between 92 and 97%.The average σf 

value obtained from 10 bars by three point bending was 408 MPa, which corresponds to 

58% of the conventionally processed 10CeTZP-Al2O3 σf value, 700 MPa [22,23]; the 

maximum σf value reached was 575 MPa, which corresponds to 82% of the 

conventionally processed 10CeTZP-Al2O3 σf value [22,23]. No direct correlation appears 

to exist between the density of the samples and the σf value obtained in each specific 

case. Thus, the lower σf values may be due to the existence of random critical flaws in 

some of the samples, such as isolated pores and superficial defects (Fig. 6a.). Some of 

these imperfections could be due to remaining air bubbles in the ink, which is also highly 



likely to be the reason behind the samples having densities below theoretical for this 

composite. 

 

3D freestanding porous structures with round lattice designs and interconnected pore 

networks were successfully fabricated. They all matched the CAD design showing no, or 

very slight, bending of the ink filaments, which retained their shape across spans of 200-

600 µm (Fig. 2c & 2d). The external surfaces of the printed filaments after sintering have 

a very homogeneous microstructure (Fig. 2e). The porous designs selected for 

mechanical and in vitro evaluation have porosities between 32 and 50%, average 

mechanical strengths in compression ranging from 32 to 178 MPa and Young’s modulus 

values of 0.4 – 1.7 GPa (Fig. 7a). As expected, compression strengths decrease as 

porosity increases. The compression strength values of the simple round lattices of 200 

µm pores fall inside the compression strength range reported for cortical bone [41-43]; 

moreover, the compression strength values of the tested samples are, in every case, 

noticeably higher than those reported for tricalcium phosphate (TCP)-based 3D printed 

scaffolds of similar porosities [34]. Comparing the simple and complex round lattice 

patterns in terms of compressive strength, for the same pore size (600 µm), porosity 

(~50%) and ink filament thickness (580 µm), we find that the complex pattern (~43 MPa) 

is 34% more robust than the simple pattern (~32 MPa) (Fig. 7a). Finally, the stress-strain 

curve shows that the printed structures can reach high strain values (20-30%), attributed 

in part to the material’s inherent plasticity but mainly to its staggered architecture, which 

causes it to break down gradually, rather than catastrophically, under stress (Fig. 7b). 

 

a)                                                                            b) 



       
 Fig. 7: (a) Average compression strength and Young’s moduli values of the round lattice 

designs used for biological testing, all of them printed in air through 580 µm tips. Each 

value represents the average of three measurements. Sample names indicate their 

internal pattern, pore size and porosity. The error bars represent standard deviation 

values. (b) Stress-strain curve of one of the simple lattice designs with 200 µm pores. 

The corresponding elastic modulus is 2.16 GPa, which confirms the elasticity of the 

porous structure. Sample failure is gradual, as opposed to catastrophic. 

 

 

3.5 In-vitro biological characterization of the printed samples 

 

In-vitro assay results lead us to believe that our 3D printed composite structures can 

be considered suitable for biological applications. 

 

A material is considered non-cytotoxic when it allows for over 70% cell viability, as 

specified in ISO 10993-5 [44]. Cytotoxic effects were analysed by quantifying the number 

of living cells in the media after culturing SAOS-2 cells for 48 h on the 3D printed 

samples. None of the tested structures induced sufficient cell death to be considered 

cytotoxic (Table 3); in fact, they all allowed for almost 100% cell viability. 

 

ALP levels increase when active bone formation (osseous differentiation) is occurring 

as ALP is a by-product of this process. pNPP (p-Nitrophenyl phosphate) is a 

chromogenic substrate for ALP and can be used to detect its activity in biological 
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samples. Upon dephosphorylation, pNPP turns yellow and can be detected by 

measuring absorbance at 405 nm. Therefore, the amount of osseous differentiation 

achieved on our ceramic scaffolds, after incubating SAOS-2 cells on the printed 

structures for 7 days in supplemented culture medium, was evaluated by measuring 

sample absorbance at 405 nm after the enzymatic reaction with pNPP. The level of ALP 

activity present on and/or inside the 3D printed samples after the 7 days of incubation is 

shown in Table 3. The simple round lattices seem to induce more osseous differentiation 

than the complex ones, possibly due to them allowing a more efficient cell and medium 

penetration, which favours cell proliferation and subsequent differentiation. 

 

Table 3  

Percentage viability of SAOS-2 cells after incubation during 48 h on TCPS and the 3D 

printed structures and ALP expression (OD405) achieved after SAOS-2 incubation during 

7 days on the surfaces of TCPS and the 3D printed structures. Sample names indicate 

their internal pattern and their pore size. 

 

Sample Cell viability (%) ALP expression (OD405) 

TCPS (control) 100 ± 0.8 0.70 ± 0.05 
Simple_200µm 98.7 ± 0.5 0.49 ± 0.11 
Simple_600µm 98.9 ± 0.3 0.50 ± 0.01 

Complex_600µm 98.6 ± 1.0 0.19 ± 0.01 

 

Polymerase chain reaction (PCR) is the most sensitive and reliable method for the 

detection and quantification of nucleic acid (DNA, cDNA and RNA) levels [22]. We used 

real-time PCR to determine the degree of osseous differentiation reached on TCPS 

(control substrate) and on the scaffolds that had shown the highest compression strength 

and ALP activity values (simple 200 μm pores) by measuring the relative quantities of 

specific osseous differentiation genes (BGLAP, COL1A1, IBSP and SPARC) after 

incubating SAOS-2 cells on the substrates for 7 days in supplemented culture medium. 

The 3D printed simple round lattice with 200 μm pores shows an increase in the 

expression of COL1A1, IBSP and SPARC with respect to TCPS while the expression of 

BGLAP was recorded to be very similar in both cases (Fig. 8). These results lead us to 

believe that the stage of osseous differentiation reached by the SAOS-2 cells on these 

3D printed structures is more advanced than that reached on TCPS after the same time 

of incubation. The early stage differentiation genes, COL1A1 and SPARC [45,46], show 

more expression than the late stage differentiation genes, BGLAP and IBSP [46,47]; 

however, both final stage osseous differentiation makers do show some expression, 

which indicates that the cells are reaching the final stage of osseous differentiation. 



 
Fig. 8: Relative quantities (RQ) of BGLAP, COL1A1, IBSP and SPARC found on TCPS 

(control measurement, RQ=1) and on the simple round lattice structures with 200 μm 

pores after SAOS-2 incubation for 7 days. We can appreciate an increase in the 

expression of COL1A1, IBSP and SPARC on the printed structures with respect to 

TCPS, while the expression of BGLAP is very similar in both cases. Sample names 

indicate their internal pattern and pore size. The error bars represent standard deviation 

values. 

 

4. Conclusions 

 

A printable ceramic ink was developed from 10CeTZP-Al2O3 powder and a hydrogel. 

Robust three-dimensional ceramic structures were successfully printed, including 

different round lattice designs with interconnected pores, rectangular bars and cones. 

The selected round lattice structures showed compression strength values similar to 

those of cortical bone. The maximum flexural strength value recorded for the dense 

rectangular bars was 575 MPa, which is 82% of the conventionally processed 10CeTZP-

Al2O3 σf value. In vitro tests demonstrated that none of the printed samples can be 

considered cytotoxic and, furthermore, that the round lattices induced more osseous 

differentiation than tissue culture polystyrene.  

 

In summary, porous robocasted 10CeTZP-Al2O3 structures show good mechanical 

and biological performance in addition to their good aesthetics, chemical stability and 

negligible corrosion and wear. Therefore, they could be considered for the production of 

bone scaffolds for load bearing applications, as they can provide the required structural 

integrity during the osseous integration process. 
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