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A B S T R A C T

christodoulos kypridemos. modelling the effectiveness and eqity of

primary prevention policies in england

introduction: Cardiovascular disease and cancers are the main causes of premature

death and disability in England. This thesis uses a microsimulation modelling methodo-

logy to examine and quantify the e�ectiveness and equity of existing primary prevention

policies and feasible alternatives.

methods: I created and validated IMPACTNCD, a dynamic stochastic microsimulation

model from �rst epidemiological principles, to simulate the life course of synthetic indi-

viduals under counterfactual scenarios. First, I used the model to quantify the contribution

of statins to the observed decline in total cholesterol in England. Then, I examined a na-

tional screening programme known as ‘NHS Health Checks’. Afterwards, I estimated the

e�ectiveness and equity of the national salt reduction strategy. Finally, I studied two pro-

posed policies for the tobacco ‘endgame’; a total sales ban, and a sales ban restricted to

those born in or after 2000.

results: The model suggested that statins contributed only about a third of the ob-

served total cholesterol decline in England since 1991-92. Their impact on reducing so-

cioeconomic inequalities in total cholesterol was generally positive, contrary to what was

anticipated. NHS Health Checks may prevent or postpone about 19 000 cases of cardiovas-

cular disease by 2030; however, population wide structural policies could be three times

more e�ective and generally more equitable. IMPACTNCD estimated that the national salt

reduction strategy may have prevented or postponed about 52 000 cases of cardiovascular

disease and 5000 cases of gastric cancer since 2003. Additional legislative policies from

2016 onwards could further prevent or postpone approximately 20 000 more cases by 2030,

while reducing inequalities. Finally, a total ban on sales of tobacco products could prevent

or postpone about 90 000 cases of cardiovascular disease, 79 000 cases of lung cancer, and

tremendously reduce health inequalities by 2045. The age restricted ban could have small

bene�ts overall within the simulation horizon.

conclusions: Increasing the structural elements of existing policies or complement-

ing them with new structural policies might maximise their e�ectiveness and equity. Sim-

ulation modelling is valuable for the evaluation of existing policies and the design of new

�t for purpose policies that will take into account the complex nature and dynamics of the

populations.
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“You can analyse the past, but you
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1
G E N E R A L I N T R O D U C T I O N

The 20th century was an exciting time for public health worldwide and in the United

Kingdom (UK) speci�cally. Improvements in living conditions, better hygiene, universal

immunisation programmes, and e�ective treatments led to the control of infectious dis-

eases in high- and middle-income countries. Infant and child mortality declined rapidly

and in the UK, the National Health Service (NHS) was established to provide universal

healthcare free at the point of need. Over the last century, life expectancy at birth in-

creased by almost 30 years in the UK and re�ects the public health achievements of the

era.

Despite the numerous successes in the previous century, a substantial proportion of

deaths and disability worldwide remains preventable and potentially avoidable.

For high- and middle-income countries cardiovascular disease (CVD), cancers, and other

non-communicable diseases (NCDs) cause the highest burden of avoidable morbidity and

mortality. Many of today’s public health challenges have their roots in the 20th century.

The emergence of NCDs, the tobacco, and the obesity epidemics are a few striking ex-

amples. Similarly to the infectious disease epidemics of previous centuries, these new

challenges are immensely preventable. Causes, challenges, and solutions have only been

evolved. Infectious agents have now been overtaken by contagions of tobacco and food

industry tactics; the need for food hygiene has been replaced by the need for healthy and

sustainable food supply systems; and the need for smog free cities has evolved into the

more wide ranging need for a cleaner environment. As epidemics in previous centuries

shared poverty, poor hygiene, and unhealthy living conditions of the population as com-

mon determinants; current NCD epidemics share tobacco, unhealthy diet, and sedentary

lifestyle.

Inequalities in health have also evolved over time. A lot has changed since Edwin Chad-

wick and the Public Health Act in 1848. Undeniably, living conditions and health have

been improved in absolute terms in the course of time. However, dramatic di�erences

in health related outcomes and health remain between countries and more worryingly

within countries. In the UK, striking di�erences exist in life and healthy life expectancy

of sub-populations, powerfully re�ecting inequalities in the burden of NCDs and overall

health throughout the life course. Reassuringly, tackling inequalities has recently become

a priority for policy makers and the public health community in the UK.

It is well accepted now that a large proportion of health inequalities in the UK and

elsewhere can be attributed to existing socioeconomic inequalities. Nevertheless, tackling

socioeconomic inequalities in health can be achieved even without radical changes in the

established socioeconomic conditions. This is possible by identifying and disassembling

the mechanisms that generate health inequalities from socioeconomic inequalities and

by designing and implementing health policies that can reverse the association between

3



4 general introduction

low socioeconomic status and poor health. Despite current theoretical evidence regarding

the type of policies that could achieve this, it appears that their implementation is the

exception rather than the rule. In fact, some of the existing health promotion policies may

have even increased socioeconomic inequalities in health.

Hence, policy makers need to maximise e�ectiveness and equity of current and future

public health policies and to bridge the gap between the evidence base and the formula-

tion of such policies. Simulation modelling can provide policy makers with a tool that

integrates all the relevant information from multiple sources and the complex dynamics

within the population in order to design better policies. Modelling can provide a platform

where potential future policies can be evaluated and rejected or improved before imple-

mentation. Furthermore, modelling can be used to analyse the e�ectiveness and equity of

existing policies, explain their e�ciencies and ine�ciencies, and complement traditional

evaluation methods.

This thesis aims to provide further evidence regarding the type of primary prevention

policies that are likely to be both e�ective and decrease socioeconomic health inequalities.

It also aspires to be a proof of concept that simulation modelling is mature enough to

inform public health policy and be used as a decision support tool from policy makers,

planners, and practitioners.

thesis structure

Elements in this thesis span from epidemiology and public health policy to computational

statistics and software engineering. I hope the readers will appreciate that this is the very

nature of simulation modelling. The modeller has to understand the phenomenon and its

dynamics, reduce it to its main components, and �nally recreate it computationally.

chapter 1 All the background information that is necessary to conceptualise the aims

and objectives of the thesis. It includes an overview of the epidemiology of CVD, lung and

gastric cancers, and their associate modi�able risk factors; a conceptual framework of the

social determinants of health and how socioeconomic inequalities in health are generated;

a typology of primary preventive interventions; and �nally the aims and objectives of this

thesis.

chapter 2 A detailed description of IMPACTNCD, the model that was used in this

thesis. The concepts are presented in a non-technical manner and from an epidemiological

perspective.

chapter 3 An extensive validation of IMPACTNCD main components. Face, internal,

cross, and external validity are assessed.

chapter 4 The �rst chapter of the results. The contribution of statins to the observed

serum total cholesterol decline in England since 1991 is assessed and quanti�ed.
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chapter 5 The potential impact and equity of a national screening programme for

primary CVD prevention known as ‘NHS Health Checks’ is assessed and quanti�ed. It is

then compared with feasible alternative policies.

chapter 6 The potential impact and equity of the national salt reduction strategy

is assessed and quanti�ed. Current strategy is then compared with a stricter legislative

strategy.

chapter 7 Two proposed policies for the tobacco ‘endgame’; a total sales ban and

the ‘tobacco free millennial generation’ proposal are simulated. The focus here is on the

dynamics of the e�ectiveness and equity of the two policies.

chapter 8 The general discussion. The emerging overarching themes are discussed.

Implications for public health policy makers, planners, and practitioners are discussed.

Limitations, future plans, and re�ections are o�ered.

chapter 9 Conclusions.
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1.1 an overview of cardiovascular disease epidemiology

In this section, I will brie�y describe the current burden of CVD globally and in the UK

speci�cally. CVD incidence and mortality rates have been declining for at least four dec-

ades; however, ageing of the population and the recent obesity epidemic partly counteract

this decline. Despite the overall decline, relative socioeconomic inequalities persist and

may have even increased.

1.1.1 De�nitions

CVD includes a spectrum of diseases related to the heart, vascular diseases of the brain,

and diseases of blood vessels. Many of these seemingly unrelated diseases share a common

pathophysiologic mechanism known as atherothrombosis. Atherothrombosis is the out-

come of the deposition of fatty material on the inner wall of the arteries, which leads

to their thickening and sti�ening (atherosclerosis). The disruption of the atheroscler-

otic lesions promotes blood clotting and the formation of thrombus (atherothrombosis).

Thus, CVD can be classi�ed into two broad categories: CVD related to atherosclerosis

and all other CVD.[1] The �rst category includes coronary heart disease (CHD), stroke

(cerebrovascular disease), and diseases of the aorta and arteries, including hypertension

and peripheral arterial disease. This category poses a greater interest to public health and

clinicians for two reasons; 1. it is preventable and 2. its burden on the population world-

wide is enormously high.

1.1.2 Worldwide mortality and trends

CVD is the leading cause of death worldwide. Of the 54.9 million deaths that have been

estimated that occurred in 2013, 17.3 million have been attributed to CVD; a 41 % increase

since 1990. Of those 17.3 million CVD deaths, 8.1 million were attributable to CHD and 6.4

million to stroke. The main reason for the observed increase in CVD deaths was population

ageing. Over the same period the age-standardised CVD mortality rate declined from 375.5

to 293.2 per 100 000, a 22 % drop.[2, 3]

1.1.3 Burden in England and the United Kingdom

Throughout this thesis I have consistently tried to use data speci�cally for England. When

data were not available, I have used aggregated data for the UK or Great Britain (GB). Since

the population of England is considerably larger than the population in all other countries

in the UK, aggregated UK data are mostly representative for England.

1.1.3.1 Mortality

For decades, CVD used to be the leading cause of death in the UK. Since 2012, deaths

from cancer have surpassed those from CVD, leaving CVD as the second leading cause
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of mortality. In 2014, CVD was responsible for 154 639 deaths, approximately 27 % of all

deaths recorded in the UK that year. Within the CVD spectrum, CHD was responsible for

69 163 deaths and stroke for 39 282 deaths over the same year. From the four countries

in the UK, England has the lowest age-standardised mortality and Scotland the highest.

Speci�cally for England in 2014, 126 682 deaths were recorded due to CVD, from which

56 364 were attributed to CHD and 31 787 were attributed to stroke in the same year. In

general, CVD mortality is higher among men and increases almost exponentially with

age.[4, 5]

1.1.3.2 Incidence

The true number of new CVD cases is largely unknown. However, the annual records

of inpatient episodes from NHS hospitals were used by the Cardiovascular Disease Stat-

istics 2015 report to crudely approximate the true incidence.[5] According to the report,

there were 793 952 inpatient episodes of CVD among men in England in 2013/14. Of those,

264 934 were due to CHD and 97 593 were due to stroke. The inpatient episodes of CVD

among women in the same period were 607 280 of which 136 073 due to CHD and 99 763

due to stroke. The two main limitations of these numbers are that patients having recur-

rent admissions with the same diagnosis were counted multiple times; while the poten-

tially large number of patients that died before reaching medical care were not recorded

at all.

To overcome the second limitation Smolina et al. combined data from the records of

inpatient episodes with reported mortality from the O�ce for National Statistics (ONS).[6,

7] Smolina et al. estimated that the incidence of acute myocardial infarction (AMI)
1

for

England in 2010 was 82 252 cases; 63 864 from hospital admissions records and 18 388 from

sudden AMI deaths. They also estimated the incidence rate for all ages over 29 years old

to be 154 cases per 100 000 for men and 66 cases per 100 000 for women. Figure 1.1 on the

facing page depicts the age-standardised incidence rates by age group and sex as reported

by Smolina et al.[6]

The lack of an accurate, unbiased estimate is similar for stroke incidence. It is worth

noting that unlike CHD, stroke incidence appears similar for both sexes and is possibly

slightly higher among women. The most detailed and likely less biased source of informa-

tion, regarding stroke incidence, appears to be the ‘Oxford vascular study’.[8, 9] However,

this is largely becoming outdated because it was conducted more than 10 years ago. It

may also not be nationally representative, as the researchers collected data only from the

relatively a�uent area of Oxfordshire. Therefore, uncertainty regarding CVD incidence

remains. I will describe later in the methods chapter how I addressed this challenge.

1.1.3.3 Prevalence

As with CVD incidence, accurate estimation of CVD prevalence in the population is very

di�cult. The Cardiovascular Disease Statistics 2015 report used the Quality and Outcomes

1 Acute myocardial infarction is one of the two clinical presentation of CHD. Angina pectoris is the second one.
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Figure 1.1: Incidence rate of acute myocardial infarction by age group and sex in England, 2010. Incident cases

include all mortalities and hospital admissions for acute myocardial infarction (International Classi�cation

of Diseases, version 10 I21-22) with no previous hospital admission for the same condition in the previous

30 days. Incident cases potentially include misdiagnoses and further investigation of earlier acute myocardial

infarctions. Directly age-standardised to the European Standard Population.[10] Data source: Smolina et al.[6]

Framework
2

to estimate CVD prevalence.[5] According to the report, there are approx-

imately 1.86 million patients in the CHD registry and 0.97 million patients in the stroke

registry in England; some 3.3 % and 1.7 % of the population, respectively.

Another source of information regarding CVD prevalence is the Health Survey for Eng-

land (HSE). HSE is a nationally representative health survey of the community dwelling

population in England (please refer to section 2.3.1 on page 46 for a more detailed descrip-

tion). In HSE2011, among adults aged 16 and over, 13.9 %of men and 13.4 % of women

self-reported that they had been diagnosed with CVD. Self-reported prevalence increased

with age: from 3 % of men and 5 % of women aged 16 to 24, to 54 % of men and 31 % of

women aged 85 and over.[11, chapter 2]

1.1.4 Trends in England and the United Kingdom

CVD burden in the UK has evolved over time producing from epidemiological perspective,

very interesting patterns.

2 The Quality and Outcomes Framework became part of general practice contracts in 2004. General practices

are �nancially rewarded for keeping records of the number of registered patients who have been diagnosed

with certain conditions.
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Figure 1.2: Age-standardised cardiovascular disease mortality rate trends in England, 1969 – 2013 (all ages and

under 75). Directly age-standardised to the European Standard Population 2013.[10] Data source: Cardiovas-

cular Disease Statistics 2015 report.[5]

1.1.4.1 Mortality trends

In contrast to the upward trend in absolute number of CVD deaths worldwide (section 1.1.3.1

on page 7), mortality in the UK has been declining both in absolute numbers and in age-

standardised mortality rates in recent years.[5] This is similar to the mortality trends in

other high-income countries.[3] Age-standardised CVD mortality rates have fallen by 74 %

in England since 1969. The sharp decrease counteracted the e�ect of population ageing

over the same period and it was more pronounced in older ages and among men (�gure 1.2).

Declining CVD mortality trend is the combining outcome of declining CVD incidence

(primary prevention) and better survival for those already diseased (secondary and tertiary

prevention). Speci�cally, for CHD the original IMPACT model suggested that about 80 %

of the observed mortality decline between 1980 and 2000 could be attributed to primary

prevention and only about 20 % to better treatments.[12] Smolina et al. later estimated that

for the more recent period 2002 to 2010, the contribution of treatments almost counterbal-

anced the contribution of primary prevention.[6]

1.1.4.2 Incidence trends

Despite the di�culties in measuring the absolute number of new cases every year (sec-

tion 1.1.3.2 on page 8), incidence trends are more easily monitored when the same method
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is applied consistently every year. Hence, following the Cardiovascular Disease Statist-

ics 2015 report method, which used the annual records of inpatient episodes from NHS

hospitals, overall CVD incidence has been increasing since 2005 for both sexes.[5] In con-

trast, CHD cases have been mildly decreasing for both sexes despite population ageing.

Finally, stroke inpatient episodes increased between 2006 and 2009 and have remained

steady since.

Smolina et al. combined data from the records of inpatient episodes with reported mor-

tality from ONS and they estimated incidence rates for AMI.[6] According to their �ndings,

the AMI annual age-standardised incidence rate for men fell from approximately 230 to

154 per 100 000 population between 2002 and 2010. Similarly, the annual age-standardised

incidence rate for women fell from about 95.4 to 66 per 100 000 over the same period. AMI

incidence rate reductions were observed across all ages, although these were smaller for

ages under 55 and over 85.

Speci�cally for stroke, Lee et al. analysed data from the General Practice Research Data-

base
3
, a database from about 500 practices in the UK that covers a population of more than

three million. They reported a 30 % reduction in �rst stroke incidence between 1999 and

2008. The reduction appeared to be larger in older age groups.[13]

1.1.4.3 Prevalence trends

Two sources of information are available to estimate recent trends in CVD prevalence in

England: the Quality and Outcomes Framework (please refer to footnote in section 1.1.3.3

on page 8 for a short description), and the nationally representative General Lifestyle Sur-

vey
4
. Based on the former, CHD prevalence in England has been slowly declining since

2004/05, while the prevalence of stroke has been marginally increasing over the same

period.[5] Stroke prevalence trends agree with Lee et al. �ndings, who reported a 12.5 %

increase between 1999 and 2008, albeit they used the more selected population of General

Practice Research Database.[13]

According to the self-reported prevalence from the General Lifestyle Survey, CVD pre-

valence increased between 1988 and 2002, then plateaued until 2005 and has been declining

since. From the same survey, AMI prevalence has been slowly declining since 1988, while

stroke prevalence has remained more or less steady.[5] The two methods to monitor pre-

valence are fundamentally di�erent and any direct comparisons would be problematic.

3 Recently renamed to Clinical Practice Research Datalink.

4 General Lifestyle Survey was named as ‘General Household Survey’ before 2006.
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1.2 an overview of cancer epidemiology

Cancer is a heterogeneous group of diseases that can a�ect any part of the body and is

characterised by the creation and growth of invasive mutant cells.[14] Cancer is the second

leading cause of death worldwide, responsible for more than 8.2 million deaths in 2013, an

increase of 45.6 % since 1990.[2] As with CVD, the ageing of the global population is the

main reason behind the increase in cancer related deaths. The age-standardised mortality

declined by 14.7 % over the same period. A decrease smaller by 7.3 % compared to the

observed decrease in age-standardised CVD mortality (section 1.1.3.1 on page 7).

In England and Wales, cancer is the leading cause of death among both men and women.

Cancer accounted for 32 % of all male deaths and 27 % of all female deaths in 2014. The

recent age-standardised cancer mortality rate trends have been decreasing for all ages,

except for the over 80 age group.[15, 16]

Unlike cancer mortality rate trends, the age-standardised incidence rate trends have

been increasing for all age groups since 1979 in GB (�gure 1.4 on the next page).[16] The

opposite directions of incidence and mortality rate trends directly re�ect improvements in

the survival of cancer patients over the recent decades. It is worth noting here that unlike

CVD incidence, cancer incidence in England (and the rest of the UK) is accurately recorded

through cancer registries. The quality of English cancer registration is excellent and there

are processes in place to ensure its validity.[17]

In my thesis, I will focus on two speci�c cancers: 1. lung cancer and 2. gastric cancer.

The decision to include only two cancers was pragmatic, based on my limited time and

resources. My ambition was for these cancers to be a proof of concept that multiple NCDs

with di�erent epidemiologies can coexist in the model. However, the choice of these two

speci�c cancers was far from haphazard; it was based on their signi�cant burden, the

fact that they share common determinants with CVD, and their interesting epidemiology.

As I will describe in the following paragraphs, lung cancer poses a huge burden on the

population and its incidence trend has been increasing for years. On the other hand, gastric

cancer incidence is declining almost as fast as CVD.

1.2.1 Overview of lung cancer epidemiology

Lung cancer causes more deaths globally than any other cancer.[2, 18] Four major histo-

logic types of lung cancer have been identi�ed so far and this di�erentiation is important

from a clinical perspective. Nevertheless, from an epidemiological perspective all subtypes

share common determinants and have a similar prognosis with only nuanced di�erences.

Hence, for the purpose of this thesis I will consider lung cancer as a homogeneous disease.

1.2.1.1 Mortality and trends

Lung cancer is the most common cause of cancer deaths in England for both sexes. It

was also estimated as the �fth cause of disability-adjusted life years (DALYs) in 2013. In

2014, 15 856 men and 12 993 women died of lung cancer in England. Almost 9 in 10 of
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Figure 1.4: All cancers (excluding non-melanoma skin cancer) incidence rates by age group in Great Britain,

1979 - 2012. Directly age-standardised against the European standard population.[10] Data source: Cancer

Research United Kingdom.[16]

these deaths occurred in ages older than 60 years. On the contrary, lung cancer deaths are

rare in ages under 45. The European age-standardised mortality rate for men was 72.9 per

100 000 population and 48.4 per 100 000 population for women. Similarly to CVD mortality,

England has the lowest age-standardised mortality rate among the four UK countries.[19,

20]

Lung cancer mortality time trends in the UK have di�erent patterns by sex, primarily

re�ecting di�erences in smoking histories (please refer to section 1.2.1.2). Speci�cally, the

age-standardised mortality rate for men has been declining sharply since the early 1970s.

On the contrary, the age-standardised mortality rate for women has been increasing over

the same period. The increase was faster between early 1970s and late 1980s and has

slowed down since.[19]

1.2.1.2 Incidence and trends

Lung cancer incidence patterns are similar to its mortality patterns, with the majority of

cases diagnosed in ages over 60 years. Lung cancer is the second most common cancer

both for men and women, and the third when both sexes are considered together. In 2013,

19 830 men and 16 823 women were diagnosed with lung cancer, in England; corresponding

to 92.5 and 64.4 age-standardised incidence rate per 100 000 population, respectively.[19]

The age-standardised lung cancer incidence rate for both sexes combined decreased by

more than 17 % between 1979 and 2003, but a slow upward trend has been observed since.

This time trend is the net e�ect of two opposite direction time trends; the age-standardised

incidence rate for men has been decreasing since 1979, while it has been constantly increas-
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ing for women over the same period. These di�erences in time trends re�ect the di�erent

smoking histories of men and women in the UK (please refer to section 1.3.1 on page 18).

In particular, smoking prevalence has been steadily dropping at least since 1948 for men,

while it had been increasing until 1970 for women before declining since. The period

of smoking expansion before 1970 for women is responsible for the observed increasing

trends in lung cancer incidence more than four decades later.[19]

1.2.1.3 Survival and trends

Unfortunately, lung cancer has a grave prognosis. The similarity in incidence and mortality

patterns is actually the result of poor survival. In 2010, 5-year survival from lung cancer

was no more than 10 %. Survival tends to be slightly better among women, and for younger

patients.[19]

Survival from lung cancer has shown little improvement over the last four decades. 5-

year survival has only improved by about 4 % (absolute) for men and 7 % (absolute) for

women since 1970. One year survival improvement was about three times higher over the

same period. Hence, treatment advancements over the recent decades may have extended

survival, but did not substantially improve the cure rate.[19, 21]

1.2.1.4 Prevalence and trends

Information regarding lung cancer prevalence is scarce and occasionally contradictory, as

with many other cancers, mainly because there is no clear ‘case de�nition’. For example,

Maddams et al. used cancer registry data and estimated that 63 522 people were living

with lung cancer in the UK, in 2008.[22] On the other hand, the British Lung Foundation

used data from the Health Improvement Network database
5

records and estimated that

approximately 81 800 people diagnosed with lung cancer were living in the UK in 2008.

The same institution estimated that the lung cancer prevalence is rising over time.[23]

1.2.2 Overview of gastric cancer epidemiology

Gastric cancer is the �fth most common cancer and the third most common cancer cause

of death worldwide.[18] Its age-standardised mortality rate dropped by more than 36 %

(relative) between 1990 and 2013.[2] As with lung cancer, gastric cancer has several tax-

onomies that are important in clinical practice. One speci�c taxonomy is also important

from an epidemiological perspective. Tumours that are located closer to the oesophagus

are known as gastric cardia cancer and appear to have important di�erences from the

non-cardia gastric cancer. The former type appears to be more common in high-income

countries (including the UK) and its age-standardised incidence rate is increasing world-

wide. In contrast, non-cardia gastric cancer is the most common subtype worldwide and

its age-standardised incidence rate is declining.[24]

5 The database contains more than 12 million patient records from 591 General Practitioner surgeries.
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Figure 1.5: Gastric cancer mortality rate trends in the United Kingdom, 1971 - 2010. Directly age-standardised

against the European standard population.[10] Data source: Cancer Research United Kingdom.[25]

1.2.2.1 Mortality and trends

In 2014, gastric cancer was the eighth most common cause of cancer death for men and the

13th for women in the UK. In England, 2330 men and 1298 women died of gastric cancer

over the same year. These deaths correspond to a standardised mortality rate of 10.9 per

100 000 for men and 4.7 per 100 000 for women. Once again, this is the lowest among the

four UK countries. Finally, gastric cancer mortality increases exponentially with age.[25]

The age-standardised mortality rate has been decreasing since 1970 in the UK and the

overall reduction was around 77 % (relative) faster than the global trends. The decrease

has been observed in all age groups and it was faster for those aged 60 to 69 and slower

for those aged over 80 (�gure 1.5).[25]

1.2.2.2 Incidence and trends

As with lung cancer, incidence of gastric cancer shows similar patterns to mortality. In

2013, 3674 men and 1967 women were diagnosed with gastric cancer in England, corres-

ponding to 17.3 per 100 000 and 7.3 per 100 000 age-standardised incidence ratio, respect-

ively. The majority of these tumours occurred in cardia and were diagnosed in people aged

over 75.[25]

The age-standardised incidence rate of gastric cancer has been declining since the late

1970s by about 62 % (relative) in GB. The decline was similar for both sexes and explains

at large the observed decline in mortality. The fastest decline has been observed in the 50

to 69 age group and the slowest in the 25 to 49 age group.[25] Unlike the global trends, the

incidence decline has been observed for both cardia and non-cardia gastric cancer.[26]
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1.2.2.3 Survival and trends

Gastric cancer prognosis is marginally better than that for lung cancer. Age-standardised

5-year survival from gastric cancer is less than 20 %. Overall, survival is better for younger

ages and for women.[25]

Survival has been improved substantially since 1970. Age-standardised 5-year survival

was around 5 % in the early 1970s and was almost four times higher in 2011. Similar relative

improvement has been observed in one year survival.[21, 25]

1.2.2.4 Prevalence

The di�culties in accurate estimation of gastric cancer are similar to lung cancer. The

now outdated EUROPREVAL study suggested that approximately 45 per 100 000 men and

26 per 100 000 women were living with a diagnosis of gastric cancer in 1992 in England.[27]

More recent estimates, from the National Cancer Intelligence Network, calculated that in

2006 7048 men and 3745 women were living in England with a diagnosis of gastric cancer

within ten years of diagnosis. These correspond to a crude estimate of 28.3 for men and

14.5 per 100 000 for women and an age-standardised estimate of 23.0 and 9.6 per 100 000,

respectively.[28]

1.3 an overview of non-communicable disease-related modifiable risk

factors epidemiology

It is apparent from the previous paragraphs that the incidence of the most important NCDs

has changed substantially over time, driving mortality trends. Undoubtedly, the ageing of

the population has been a powerful driver of crude incidence trends. However, substantive

changes have been observed to the age-standardised incidence rates, as well. The shaping

force behind the evolving age-standardised NCDs incidence patterns is trends in the asso-

ciated risk factors. It is well accepted now that most NCDs share four common behavioural

risk factors: tobacco, unhealthy diet, physical inactivity, and alcohol excess.[20, 29–33] In

England, these factors accounted for about 25 % of the total DALYs in 2013; their contri-

bution was even higher in CVD DALYs (55 %) and cancer DALYs (34 %). Unhealthy diet,

and tobacco speci�cally were the leading contributors to DALYs overall.[20] Therefore,

patterns and trends in population exposure to these risk factors will powerfully in�uence

NCDs incidence and mortality.

In the following paragraphs, I will describe the patterns and trends in modi�able risk

factors in England. Moreover, I will brie�y summarise the available evidence, regarding

their associations with each of the diseases that have been presented in this thesis. I will

present only modi�able risk factors, because by de�nition non-modi�able ones are irrelev-

ant to prevention, and I will only brie�y mention for completeness modi�able risk factors

that were not examined in this thesis. Whenever relevant reports, systematic reviews, or

meta-analyses exist to summarise the evidence, I will refer to them instead of the primary

studies.
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1.3.1 Tobacco and smoking

Evidence that tobacco and primarily tobacco smoking are associated with unfavourable

health outcomes has been apparent since the 1930s.[34–36] In fact, many modern epidemi-

ological concepts and methods were initially developed to establish the causal relation

between tobacco and diseases. Numerous high quality epidemiological and laboratory

studies have con�rmed the causal link between smoking, CVD, lung, and gastric cancer.

The link has also been con�rmed for environmental tobacco smoking, CVD, and lung can-

cer. A small proportion of the excess risk of smoking for CVD is mediated through an

adverse e�ect on blood pressure.[37] The evidence has been summarised in reports from

the World Health Organisation (WHO), the United States (US) Surgeon General, and the

International Agency for Research on Cancer.[38–40] A recent study has expanded the list

of diseases linked to smoking even further.[41]

1.3.1.1 Risk reversibility

Risk reversibility is important for primary prevention policies. It refers to whether and

how fast the excess risk declines or reverts back to zero after the exposure ceases. Several

studies have shown that the risk gradually decreases for ex-smokers, although the rate of

decline varies by disease and study. For lung cancer, the risk drops fast the �rst years after

smoking cessation and then the rate of decrease slows down before it levels o� about 30

years since cessation. A small residual risk remains even after 35 years post cessation. For

CVD, the pattern is similar but shorter; the excess risk disappears about 15 years post ces-

sation with no residue.[38] Interestingly, for stroke speci�cally the risk completely eclipses

�ve years post cessation in the Framingham study.[42]

1.3.1.2 Patterns and trends

In 2014, about 19 % of the population aged over 16 were active smokers in GB. A similar

percentage of secondary school pupils reported that they had tried smoking at least once.

Smoking was moderately more prevalent among men than women, 20 % versus 17 %. It

was also more prevalent in younger ages. Smoking peaked at the age group of 25 to 34 and

gradually declined in older age groups; smoking prevalence was around 11 % for those

aged 60 and over. In 2013, about 31 % of men and 26 % of women reported exposure to

environmental tobacco smoking. For secondary school pupils, the prevalence of environ-

mental tobacco smoking rose to 64 %. Smoking prevalence has dropped by about 60 % since

the 1970s. Nevertheless, smoking patterns showed little change over the last decade.[43]

It is worth noting that estimates for England from a di�erent source, the HSE, are almost

identical.[44]

1.3.2 Unhealthy diet

Unhealthy diet is a generic, multidimensional term, that amalgamates evidence and con-

troversies on a spectrum of diet related issues. Nutrition science has developed rapidly
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in the past few decades; however controversies remain. In a provocative study, Schoen-

feld et al. randomly selected 50 common ingredients from a cookbook and reported that

40 were apparently associated with increased cancer risk in peer-reviewed studies. Unsur-

prisingly, most of these associations disappeared in subsequent meta-analyses.[45] Despite

the controversies, there is now convincing evidence to suggest that a healthy diet is rich in

fruits and non-starchy vegetables, nuts, legumes, dietary �bre, and minimally processed

foods and does not contain processed meat, trans fats, excess salt, and excess sugars.[31,

46, 47] In this thesis, I will focus on two aspects of unhealthy diet: low fruit and vegetable

consumption;
6

and excess salt consumption.

1.3.3 Low fruit and vegetable consumption

The evidence regarding the causal links of inadequate fruit and vegetable consumption

with cardiovascular disease and cancers is summarised in the reports from the World Can-

cer Research Fund and the WHO.[31, 48] However, uncertainty still exists regarding which

speci�c fruit or vegetable may have the most protective e�ect and whether there is a ceil-

ing e�ect after which no further bene�ts occur. Generally, most national dietary guidelines

recommend at least 400 g of mixed fruit and vegetables daily and mention no maximum

limit. For CVD a recent meta-analysis from Wang et al. showed that a ceiling e�ect may

exist after 400 g of daily intake.[49] However, this meta-analysis did not include a large

and well designed study in England that suggested signi�cant bene�ts even for higher

consumptions.[50, 51] For lung cancer, two similar meta-analyses concluded that a ceiling

e�ect may exist after 400 g of daily intake.[52, 53] Finally, for gastric cancer a recent meta-

analysis for the Continuous Update Project found limited but suggestive evidence that up

to 150 g of fruit intake has a protective e�ect, which levels o� for higher consumption.[24]

1.3.3.1 Risk reversibility

The evidence is limited regarding risk reversibility. For CVD, one randomised control trial

for CHD secondary prevention showed that risk can decrease within a year of an increase

in fruit and vegetable consumption and reduced fat consumption. Natural experiments in

East Germany, Hungary, Romania, and Poland during the socioeconomic transformation

in the 1990s provide some evidence that risk decline can be observed within two to four

years. With regard to lung cancer, evidence is even more limited. Two observational

studies are suggestive of a longer latent period of four to eight years before a decrease in

incidence can be observed, after an increase in fruit and vegetable intake.[48]

1.3.3.2 Patterns and trends

Findings from the nationally representative National Diet and Nutrition Survey (NDNS)

revealed that in the period 2008 to 2012, only about 30 % of the adult population in the

UK was consuming more than 400 g of fruit and vegetables daily.
7

The mean daily con-

6 For convenience, from now on I will use the term ‘vegetable’ to refer to non-starchy vegetable.

7 400 g of fruit and vegetables is currently the national target, also known as the ‘5 a day’.
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sumption for adults was about 350 g and consumption increased by age. However, NDNS

participants under-reported overall calorie intake indicating possible social desirability

bias.[54] For England, the HSE2013 produced lower estimates. Speci�cally, the mean fruit

and vegetable consumption was found to be around 290 g and only about 28 % of women

and 25 % of men had an intake of more than 400 g. HSE is contacted on an annual basis

with similar methodology and trends can be safely extracted. It appears that fruit and ve-

getable consumption has been more or less stable since 2001 with the possible exception

of a small peak in 2006.[55]

1.3.4 Excess salt consumption

Excess dietary salt consumption has been linked to an increased risk for CVD and gastric

cancer.[24, 56, 57] For CVD, the excess risk appears to be mainly mediated through the dele-

terious e�ect of excess salt consumption on blood pressure.[58, 59] The pathophysiological

mechanisms that link excess salt consumption with the increased risk for gastric cancer are

less clear. Some experimental studies showed increased in�ammation of gastric mucosa,

caused by high intragastric sodium concentrations, that leads to increased cell mutations.

Other researchers suggest that a high salt diet facilitates gastric colonisation by Helicobac-

ter pylori, a widely accepted risk factor for gastric cancer, through changes in the viscosity

of the gastric mucous barrier.[57]

There is some controversy regarding the optimal level of salt consumption.[60] The

WHO and the UK national guidelines recommend a daily salt intake of less than 5 g and

6 g, respectively.[61, 62] Some researchers claim that salt consumption lower than 7.5 g

can actually increase the risk of CVD and overall mortality.[63, 64] However, it appears

that this argument is based on biased measurement methodology.[65] A recent discussion

on the subject can be found in Moza�arian et al. who concluded that the optimal level of

salt consumption below which no health gains have been observed is somewhere in the

range of 1.5 g/d to 5.9 g/d.[59]

1.3.4.1 Risk reversibility

Evidence that directly links salt risk reversibility to CVD mortality or morbidity outcomes

is lacking. A meta-analysis of several randomised control trials that tested low salt diets

was underpowered and therefore inconclusive.[66] In comparison, a plethora exists on the

e�ect of low salt diet on systolic blood pressure (SBP), which appears to happen within

weeks.[58, 59, 67] Finally, to my knowledge there is no convincing evidence regarding risk

reversibility for gastric cancer.

1.3.4.2 Patterns and trends

In the UK, about 70 % of dietary salt consumption comes from processed food.[62] In 2011,

the NDNS showed that the mean daily salt consumption among adults aged 19 to 64 years

was 8.1 g/d. A signi�cant sex di�erence was observed with men having a mean estimated

intake of 9.3 g/d compared to 6.8 g/d for women. Furthermore, salt consumption appeared
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to decrease with age. Overall, less than 30 % of the population achieved the national target

of less than 6 g/d. Between 2001 and 2011 the mean salt consumption dropped from 9.5 g/d

to 8.1 g/d. The reduction was observed for both sexes and all age groups.[68]

1.3.5 Physical inactivity

Despite the practical di�culties to accurately measure the level of activity of an individual,

a substantial body of evidence suggests the association of physical inactivity with an in-

creased risk of CVD, and all cancer morbidity and mortality. [31, 69, 70] However, there is

limited and inconclusive evidence to suggest an association of physical inactivity with an

increased risk speci�cally for gastric cancer; and limited but suggestive for lung cancer.[24,

31, 69] Several plausible biological mechanisms exist to explain how physical activity re-

duces cardiovascular risk
8

through bene�cial e�ects on blood pressure, glucose, and lipid

pro�le among others.[69]

1.3.5.1 Risk reversibility

Some evidence exists from randomised control trials to suggest that risk reversibility oc-

curs within a couple of years from an increase in physical activity, at least for CHD. Evid-

ence about risk reversibility for stroke is very limited.[69]

1.3.5.2 Patterns and trends in England

UK guidelines recommend at least 150 minutes of moderate intensity activity in bouts of

10 minutes or more, weekly for adults.[71] Findings from HSE2012 suggest that about 67 %

of men and 55 % of women have reported that they meet the national targets. Younger

participants with normal weight were more likely to report that they were more active.

Although physical activity national guidelines and the physical activity questionnaire of

the HSE have been updated several times since 2001, it seems that the mean activity level

in England has been moderately increased.[72]

1.3.6 High body mass index

Body mass index (BMI) is a measure of body adiposity that is calculated by the body weight

(in kg) divided by the squared body height (in m
2
). Strong evidence exists that BMI higher

than 20 kg/m
2

is an independent and dose dependent risk for CVD at the population level.
9

A large part of the excess risk from high BMI is mediated through adverse e�ects on blood

pressure, lipid pro�le, and glycaemic control.[73, 74] High BMI has been also associated

with an increased risk for certain cancers; however, until recently lung and gastric cancers

were not among them.[31] In 2016, the Continuous Update Project of the World Cancer

Research Fund International ruled that enough evidence exists to suggest that BMI is a

8 Although, some uncertainty exist for haemorrhagic stroke.

9 For completeness, BMI lower than about17.5 kg/m
2

is also associated with increased overall mortality.
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risk factor for gastric cardia cancer speci�cally.[24] Surprisingly, some recent evidence

suggests that high BMI may decrease the risk for lung cancer.[75, 76]

1.3.6.1 Risk reversibility

Enough evidence exists to suggest that risk reversibility for CVD after reductions in BMI

is happening well within �ve years. In fact, favourable changes in blood pressure, lipid

pro�le, and glycaemic control have been observed within days or weeks.[73] Evidence

on risk reversibility for gastric cancer is non-existent; however, some evidence from post-

menopausal breast cancer trials suggests that premenopausal weight reduction may a�ect

risk of post-menopausal breast cancer. Therefore, the lag time for gastric cardia cancer

may well be longer than the lag time for CVD.[24, 73]

1.3.6.2 Patterns and trends in England

Findings from the HSE suggest that in 2014 the mean BMI was 27.2 kg/m
2

for adult men and

women in England. BMI peaks in the 55 to 64 age group for both sexes and then gradually

declines for older age groups. Since 1993, mean BMI has increased from 25.8 kg/m
2
. The

increase has been observed for all age groups, however it has substantially slowed down

since 2006.[77]

1.3.7 High blood pressure

SBP higher than 115 mmHg or diastolic blood pressure higher than 75 mmHg has been

linked with an increased risk for CVD. Plausible biological mechanisms have been identi-

�ed that can explain the adverse e�ects of high blood pressure through the sti�ening of

the arteries. No causal relation with any type of cancer has been observed so far.[78, 79]

1.3.7.1 Risk reversibility

Extensive evidence exists from randomised clinical trials that have been conducted with

blood pressure related interventions. For CHD about two thirds of the risk are reversible

within three to �ve years. It appears that some residual risk remains even after �ve years.

In contrast, for stroke the risk is fully reversible within three to �ve years from blood

pressure reduction.[79]

1.3.7.2 Patterns and trends in England

As I have already brie�y stated in previous paragraphs, smoking, salt, high BMI, physical

inactivity, and possibly fruit and vegetable consumption mediate their risk through blood

pressure. Hence, trends of these behavioural risk factors a�ect blood pressure trends. HSE

provides useful information about the exposure of the population to hypertension
10

. Ac-

cording to HSE �ndings, in 2014 the prevalence of hypertension was 32.4 % for adult men

10 HSE de�nes hypertension as having blood pressure higher than 140/90 mmHg or being on antihypertensive

medication.



1.4 socioeconomic health ineqalities 23

and 26.9 % for adult women and sharply increased with age for both sexes. Hypertension

prevalence among adult participants has dropped by 1 % (absolute) since 2003, and by 2.1 %

(absolute) between 1998 and 2003.[44, 80]

1.3.8 Total serum cholesterol

Total serum cholesterol is an independent risk factor for CVD, although the association

with haemorrhagic stroke is uncertain. A large number of cohort studies showed that

participants with serum cholesterol higher than 3.8 mmol/l have a higher risk for CVD.

Elevated serum cholesterol is a well established and substantial risk factor for atheroscler-

osis.[81, 82]

1.3.8.1 Risk reversibility

As with SBP, several randomised control trials have been conducted with serum cholesterol

interventions. From their results, it appears that risk reduction for CHD is observable

within two years from cholesterol reduction, and essentially all the excess risk is reversed

within �ve years. Evidence for stroke is less clear.[82]

1.3.8.2 Patterns and trends in England

In 2011, mean total cholesterol was 5.1 mmol/l among adult men and 5.2 mmol/l among

adult women in England. Mean cholesterol peaks in the age group 45 to 54 for men and

55 to 64 for women and declines again in older ages. Over the last two decades, mean

cholesterol remained stable between 1998 and 2003, and then declined by about 0.5 mmol/l

between 2003 and 2011.[83]However, evidence suggests that mean total cholesterol in the

population had been declining for at least two decades before that.[84]

In summary, three key concepts have emerged so far: 1. the observed incidence trends of

CVD, lung, and gastric cancer emanate from the interplay of the trends in the aforemen-

tioned modi�able risk factors; 2. past exposures in�uence current disease incidence and

current exposures will in�uence future disease incidence, because of the lag times between

exposure and disease; 3. the lag time for CVD appears to be shorter than �ve years, while

the lag time for cancers appears to be longer, albeit evidence is limited.

1.4 socioeconomic health ineqalities and the social determinants

of health

Kawachi et al. de�ned health inequality as “. . . the generic term used to designate di�er-

ences, variations, and disparities in the health achievements of individuals and groups”.[85]

In England, health inequalities remain and are projected to increase in the future. A large

proportion of health inequalities can be explained by socioeconomic inequalities and it is

evident that poor health disproportionately burdens the more disadvantaged in our soci-

ety.[20, 86] The term ‘health inequities’ is a politically charged term that emphasises the
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unnecessary and unjust nature of some of the observed health inequalities. Some believe

that all socioeconomic inequalities in health are unjust and preventable;[87] although this

is not universally accepted and the debate is summarised in Kawachi et al.[85] In this thesis,

I will use the terms ‘inequity’ when I refer to resources, and ‘inequality’ when I refer to

the outcomes.

Socioeconomic inequalities in health can be explained, at least partly, by socioeconomic

gradients in the prevalence of modi�able risk factors that have been observed in England.

Speci�cally, smoking, unhealthy diet, BMI, physical inactivity, and hypertension increase

their prevalence by deprivation.[11, 43, 88–91] Interestingly, no socioeconomic gradient

has been observed recently for serum total cholesterol.[83] Consequently, the socioeco-

nomic gradients in risk factor exposures are translated to gradients in the burdens of CVD,

lung, and gastric cancer. Although CVD incidence is largely unknown, premature CVD

mortality shows a substantial socioeconomic gradient with those in a routine occupation

to have about three times higher CVD mortality rate than those in a managerial or profes-

sional occupation (�gure 1.6 on the next page).[92] Among cancers, lung cancer is the one

with the most unequal burden both for incidence and mortality.

In the period 2006 - 2010, 11 700 cases and 9900 deaths from lung cancer could have

been prevented every year, if all socioeconomic quintiles could experience the same lung

cancer incidence and mortality rates as the least deprived �fth in England. Gastric cancer

showed similar patterns and had the third highest excess cases and deaths over the same

period; 1400 and 1000, respectively.[93] Despite the recent improvements in the incidence

and mortality of these diseases, the socioeconomic gradients persist and may have even

increased, with the notable exception of gastric cancer in men.[92, 93]

1.4.1 Social determinants of health

The socioeconomic gradients in CVD and certain cancers may be somewhat explained by

the socioeconomic gradients in risk factor exposures. Yet the question remains about what

causes the latter; what Marmot terms “the causes of the causes”. The social determinants

of health approach o�ers an explanation regarding the unequal distribution of risk expos-

ures and disease burden in di�erent socioeconomic groups. According to this approach,

socioeconomic inequalities in health are generated by socioeconomic inequalities in the

population. The social determinants of health approach has been adopted by the WHO

and the recent Marmot review of health inequalities in the UK.[87, 97, 98]

The social determinants of health are exceptionally summarised in a rainbow graph by

Dahlgren et al., which illustrates all major determinants of health in a hierarchical manner

(�gure 1.7 on page 26). The main notion of the graph is that every layer in�uences its

inner layers and gets in�uenced by its outer layers. Hence, in the centre circle there is the

individuals with their individual biological traits. Many of the traits are non-modi�able,

like age or genetic make up. Nevertheless, some can be in�uenced by the outer layers,

like SBP or total cholesterol. The next layer consists of the behaviours that the individuals

choose to adopt. For instance, smoking or unhealthy diet. These behaviours in�uence the

centre circle and are in�uenced by the outer layers. Individual choices are made within a
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Figure 1.7: The social determinants of health rainbow. Adapted from Dahlgren et al.[99]

context of an interplay between socioeconomic, cultural, and environmental conditions at

macro, meso, and micro level
11

throughout the life course.[87, 99]

1.4.2 The social production of disease model

The social determinants of health approach provides a useful conceptual framework span-

ning much of the force of morbidity and mortality in society. However, the question

remains regarding through which speci�c pathways and mechanisms socioeconomic in-

equalities generate health inequalities. Many theories have been proposed on the subject

over the years. The Diderichsen theoretical model of the social production of disease has

captured key elements of these theories (�gure 1.8 on the next page).[100] It o�ers four con-

current pathways that link the broader socioeconomic context to individual level health:

1. through social strati�cation itself; 2. di�erential exposure to risk factors due to social

strati�cation; 3. di�erential vulnerability at the same level of exposure, and; 4. di�erential

consequences of ill health. Crucially, it also contains a positive feedback loop that allows

health inequalities to feed back to socioeconomic inequalities.

pathway 1: social stratification This is the cornerstone pathway in the model

and links it to the social determinants of health approach. The unequal social structures

lead to unequal social position of individuals. However, it is perhaps unrealistic to expect

that this might improve in the foreseeable future.

11 Notably income, power, housing and education.
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pathway 2: differential exposure Individuals in di�erent social positions ex-

perience di�erent exposure to risk factors. Risks factors may be behavioural like smoking,

or environmental like air pollution or occupational hazards. From a public health per-

spective this is the most important pathway, because it also a�ects the magnitude of the

remaining two pathways. In one study, Lynch et al. studied a cohort of 2272 Finnish men

and found that the di�erential exposure to behavioural and biological risk factors could

explain a substantial proportion of the observed socioeconomic gradient in CVD mortal-

ity.[101]

pathway 3: differential vulnerability This is perhaps the most subtle of the

four pathways. It hypothesises that for the same level of exposure to a risk factor, indi-

viduals in di�erent socioeconomic positions experience di�erent health e�ects. This may

occur through e�ect modi�cation of exposures. This is a phenomenon in which the e�ect

of an exposure is ampli�ed or attenuated due to the di�erential exposure level of another

risk factor. For example, the risk of CVD due to hypertension may be ampli�ed if the indi-

vidual is also a smoker; because smoking is more prevalent in lower socioeconomic groups

that increases the vulnerability of these groups to hypertension. E�ect modi�cation has

been shown to apply to major CVD risk factors and their e�ects appears to be multiplic-

ative.[102, 103] Hence, the clustering of multiple risk factors in the lower socioeconomic

groups multiply their e�ects.

pathway 4: differential conseqences Unlike the previous two pathways that

are related to primary prevention, this pathway applies after the development of the dis-

ease. Disease consequences are also in�uenced by socioeconomic position. Di�erential

consequences have been clearly demonstrated in CVD survival,[104–106] and cancer out-

comes and survival.[107–110] Furthermore, this pathway is essential for the feedback loop.

Individuals and families in lower socioeconomic positions have fewer resources to coun-

teract the consequences of ill health, which may lead to unemployment, reduced income,

and less years in education; therefore, ill health may worsen their socioeconomic position

even further.

One of the strengths of the Diderichsen model is that it acknowledges that policy plays

an important role in the social production of disease. First, it recognises that policy and

social context interact. Second, it o�ers a practical framework to policy makers and plan-

ners for policy design. Policies that aim to negate or weaken any of the four pathways

can potentially tackle socioeconomic inequalities in health. The more upstream the target

pathway is, i. e. social strati�cation or di�erential exposure pathways, the more equitable a

policy can be. In contrast, policies that strengthen these pathways generate further health

inequalities. The Diderichsen model is now widely accepted and has been used by the

WHO Commission for Social Determinants of Health.[97] Its conceptual clarity makes it

also ideal to guide data analysis and simulation modelling. I will describe later in the

methods chapter how I used this framework to structure my model.
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1.4.3 Preventive interventions and socioeconomic health inequalities

Diderichsen’s model highlights the strong ties of policy with socioeconomic health inequal-

ities. Yet, empirical evidence regarding the impact of preventive policies on inequalities is

sparse. A recent systematic review on interventions to promote healthy eating identi�ed

199 relevant studies; however, only 36 of them reported their results strati�ed by socioeco-

nomic position.[111, 112] Consequently, public health policy makers and planners often

have to rely on fragmented or sparse information for their decisions.

1.4.4 Measures of socioeconomic health inequalities

Measuring socioeconomic inequalities in health has been a �eld of research since the 1990s.

As an evolving �eld, there have been numerous debates regarding which is the most ap-

propriate and less biased way of measuring them. One of the �rst debates was on identify-

ing the most suitable measures of socioeconomic position; occupation, income, education,

some combination of these or other measures. It became more complicated when area

level deprivation measures became available in some countries, including England. The

second controversy was whether a measure of social position is necessary to measure

health inequality. Some statistical measures examine the inequality in the distribution of

a health measure across the whole population. These measures do not examine whether

inequality is preventable, or which groups in the population are burdened disproportion-

ally. These types of measures are particularly popular among health economists. On the

contrary, epidemiologists prefer to measure the di�erences in a health measure across dif-

ferent socioeconomic groups. These debates have been greatly summarised by Regidor

and the di�erent measures of socioeconomic inequalities in health have been summarised

by Mackenbach et al.[113–115]

Finally, the most recent debate is on whether an absolute or relative measure of inequal-

ity is most appropriate to be used. This is very similar to the debate about whether absolute

or relative risk reduction should be reported in randomised control trials. Harper et al.
proposed that relative measures should be used when inequalities are the only concern

and absolute measures should be used when health inequalities are one of the concerns

but other metrics, like population overall health, are also important.[116] Soon after this,

Asada used hypothetical examples to show that Harper’s et al. ‘rule of thumb’ was over-

simpli�ed and could not be applied in many real world examples.[117] It appears that a

consensus exists to present both relative and absolute measures of inequality as they high-

light di�erent aspects of the same phenomenon.[118]

In conclusion, it is unlikely that everyone would agree in one simple measure for health

inequality. However, leaving academic debate aside, practical issues of data availability, the

need for comparability and compatibility with other information sources, and the need to

communicate results to policy makers that are usually not experts in health inequalities,

guide the choice of health inequality measures.
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1.4.5 Tackling health inequities in the United Kingdom

The UK has a long history of policies targeting health inequalities. Edwin Chadwick in the

middle of the nineteenth century undertook an independent inquiry on sanitation after an

invitation by the government. The result was ‘The sanitary conditions of the labouring

population of Great Britain’ report and a few years later (and a new government) the

1848 Public Health Act. The Act addressed some of Chadwick’s concerns about the living

conditions of the labour class in GB. 100 years later the NHS was established to provide

universal health care free at the point of service and it was thought that it would tackle

health inequalities.[119] The ‘Black report’ in 1980 came as a wake up call that despite

the NHS, socioeconomic inequalities in health persisted and may even have been widened.

The report had limited political and policy impact, however it made an impact among

researchers and academics.[119, 120] It took another eight years and a new government

until the ‘Acheson Report’ was published that put socioeconomic health inequalities in the

political agenda of every government since then.[121]

Today, health inequalities are the focus of many governmental strategies. The Depart-

ment of Health has set speci�c objectives and an action plan to reduce health inequalities

by 2016.[122] The national strategy for cancer contains speci�c targets to reduce socioeco-

nomic cancer inequalities.[123] Similarly, the cardiovascular disease outcome strategy also

aims to reduce inequalities in CVD.[124] Moreover, the National Institute for Health and

Care Excellence (NICE) guidance for Local Authorities and public health practitioners in-

cludes recommendations about reducing health inequalities.[125, 126] Furthermore, Mar-

mot et al. have stressed that reducing inequities produces both economic and ethical bene-

�ts.[127]

Hence, leaving aside academic and practical discussions regarding the unfair or prevent-

able nature of some of the observed health inequalities, it seems the necessity to tackle so-

cioeconomic inequalities in health is now widely accepted and is embodied in state policy

documents. Despite the often sparse empirical evidence regarding which speci�c policies

may achieve these targets, public health policies that target smoking, unhealthy diet, and

physical inactivity can potentially tackle socioeconomic health inequalities. In the follow-

ing section I will map the policy options to reduce the burden of NCDs and their likely

e�ect on socioeconomic inequalities.

1.5 primary prevention typologies

Several attempts have been made so far to categorise primary prevention policies based

on some of their characteristics. In general, the bene�t of a categorisation framework is

that some attributes of a policy can be assumed by analogy even when empirical evidence

is lacking. Therefore, for the purpose of this thesis I will describe three di�erent classi-

�cation frameworks for primary prevention policies based on their potential e�ectiveness

and equity.
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1.5.1 Population-wide versus high-risk prevention

In the early 1980s Geo�rey Rose revolutionised thinking around primary prevention. His

innovative argument was that a moderate decrease in a risk factor exposure across the

whole population can be more e�ective than a larger decrease among those individuals

most exposed to the risk (high-risk individuals). For instance, a preventive policy that

reduces SBP by 0.3 mmHg across the whole population may prevent more CVD cases

than a policy that reduces SBP by 3 mmHg only for high-risk individuals with SBP higher

than 160 mmHg.[128–130] Rose’s taxonomy was initially described as dichotomous. In

real world applications though, it usually represents a continuum. For example a price

increase in tobacco products can be considered as the ‘population-wide’ limit of the con-

tinuum and smoking cessation clinics the ‘high-risk’ limit. Then, mass media campaigns

against smoking, work place smoking bans, and school based interventions can be ranked

in-between the two extremes. The e�ectiveness and cost-e�ectiveness of population-wide

prevention have been con�rmed from multiple real world examples and modelling studies

in multiple populations.[131–136]

Rose’s approach to population-wide prevention was a paradigm shift among policy

makers and researchers. However, some critics maintain that what he proposed more

than three decades ago, may not apply today. They suggest that favourable downward

trends in many risk factors (please refer to section 1.3 on page 17) have led the exposure

of the population to the risk factors that Rose had considered to be much lower nowadays.

Therefore, assuming an exposure limit below which no excess risk can be observed, the

e�ectiveness of population-wide interventions is lower today than 30 years ago. Further-

more, high-risk prevention approaches have evolved over the years to use multivariate

risk scores with lower threshold for treatments. Therefore currently, high-risk individuals

are identi�ed more accurately and the eligible for treatment population increases because

of the lower risk threshold. Finally, the di�usion of the risk in the population is vital in

Rose’s approach. If the risk is densely clustered in speci�c population segments, high-risk

strategies may be more e�ective.[137, 138]

Another area of critique for population-wide policies was their equity. Although Rose

did not explicitly consider equity when proposed his taxonomy, Frohlich et al. suggested

that population-wide prevention may increase inequalities. Their main argument is that

some forms of population-wide interventions may not be equally e�ective across the pop-

ulation. For instance, health information campaigns against smoking have shown to be

more e�ective among the more educated. Hence, they might increase smoking cessation

rate among the more a�uent and better educated and increase socioeconomic health in-

equalities. They called this the ‘inequality paradox’.[139]

1.5.2 The structural – agentic continuum

In order to address the inequality paradox, McLaren et al. have further improved Rose’s

typology by making explicit some originally implicit assumptions about what constitutes

population-wide prevention. Furthermore, they complemented Rose’s typology by amal-
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gamating advancements from the evolving �eld of health inequalities. The most import-

ant improvement was the introduction of another dimension to the classi�cation of pre-

ventive interventions; the structural – agentic continuum.[140] The ‘structure’ and ‘agent’

notions originally stem from the �eld of social science.[141] In the public health policy

context structural policies are those that “. . . promote health by altering the structural con-

text within which health is produced and reproduced”.[142] On the other hand, agentic

policies are those that “. . . require mobilisation of an individual’s resources, whether ma-

terial or psychological”.[143] Policies can fall anywhere in this continuum between these

extremes. An increasing body of evidence suggests that structural preventive policies can

potentially reduce socioeconomic health inequalities, while agentic policies are likely to

increase them.[111, 112, 143–146]

For instance, let us consider three di�erent policies to reduce excess salt consumption in

the population. A population-wide structural policy could be mandatory reformulation of

processed food to reduce their salt content. This would require no individual mobilisation

to respond to the policy. On the other hand, a population-wide agentic policy could be a

mass media campaign about the deleterious e�ect of excess salt consumption. This would

require individuals to get exposed to the campaign, comprehend it, and act to change

their behaviour/diet; socioeconomic gradient is likely in each of these stages. Finally, a

high-risk agentic policy could use a nutritional questionnaire to identify those with excess

salt consumption and then o�er them dietary advice. This would require even higher

individual mobilisation.

Apart from equity concerns, preventive policies with many agentic elements tend to

be less e�ective due to attrition. Using the last example of the previous paragraph, some

individuals may not respond to the questionnaire, may not attend the meeting to receive

advice, may not comprehend the advice, and �nally may not act upon the advice to modify

their diet. The attrition is multiplicative and reduces dramatically the �nal e�ectiveness

of the agentic policy.[146, 147]

1.5.3 An alternative equity focused typology

Benach et al. were inspired by Rose’s and Graham’s[148] typologies for prevention and

they described a theoretical framework to classify public health preventive policies into

four types, depending on their impact on di�erent socioeconomic groups and their overall

e�ectiveness on risk reduction. The �rst type includes policies that target only the most

deprived. The second type includes universal policies across the whole population, with

additional provisions for increased e�ectiveness among the most deprived. The third type

includes policies that increase their e�ectiveness with the level of deprivation, but have no

impact among the most a�uent. Finally, the fourth type includes universal policies that

increase their e�ectiveness with the level of deprivation, like the third type, but have an

e�ect among the most a�uent also.[149] Interestingly, Benach et al. used the term ‘pro-

portionate universalism’ from Marmot to describe this fourth type. In the latest Marmot

report about health inequalities in England, proportionate universalism policies were re-

commended to reduce the observed socioeconomic gradient in health.[98] In comparison,
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policies targeting only the most deprived may be less e�ective on improving health overall,

less e�ective on tackling inequalities, and less cost-e�ective.[98, 150]

1.5.4 Intervention-generated inequalities

From the previous descriptions of preventive typologies, it is evident that some prevent-

ive policies can in fact increase socioeconomic inequalities in health. This phenomenon is

known as intervention-generated inequality and has been de�ned by White et al. as “unin-

tended and unwanted variations in outcomes for individuals or population sub-groups that

result from any element of any [health] intervention”.[144] Unfortunately, many of the pre-

vious and current preventive e�orts including health information campaigns and screen-

ing may be responsible for some of the currently observed health inequalities through

intervention-generated inequality.[111, 112, 144, 151–154]

The Diderichsen model (section 1.4.2 on page 26) is a useful framework to conceptual-

ise how some preventive interventions can generate inequalities. Some groups may have

di�erent exposure to the intervention. For example, a health advert in the Financial Times

may be read mostly by managers and to a lesser extent by manual workers. Even if ex-

posure is similar across the population, vulnerability to the intervention may be di�erent.

A television health advert may have di�erent impact on viewers from di�erent socioeco-

nomic backgrounds. Finally, the di�erential consequences of the intervention arise from

the di�erential resources an individual can mobilise to alter his/her behaviour.

The main advantage of any of these typology systems is that the e�ectiveness and equity

of a preventive policy can be extrapolated from known aspects of the policy, even when

direct empirical evidence is lacking. Nevertheless, the quanti�cation of the e�ectiveness

and equity of a policy requires knowledge of the distribution of risk in the population,

the socioeconomic distribution of the population, the distribution of the policy impact,

and their covariance. In addition, the element of time needs to be taken into account.

Time trends in risk factor exposures and inequalities, lag times between exposure to risk

factors and disease, and the di�usion time of a policy in the population are some examples

highlighting the importance of time. In the next section I will describe how modelling can

address some of these issues.

1.6 the need for modern decision support tools

So far, I have brie�y described how the interplay between patterns and trends in smoking,

unhealthy diet, physical inactivity, and socioeconomic inequalities shape the patterns and

trends in CVD, lung, and gastric cancer burdens and how preventive policies may in�uence

this system. Public health policy makers need to make decisions in this complex dynamic

system of exposures and outcomes based on often patchy evidence. In fact, public health

policy makers have to lead system improvements in order to maximise health bene�ts for

the population. They have to design, deliver, and evaluate evidence based public health
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interventions that strike a balance between e�ectiveness, equity, and resource allocation,

ideally while avoiding past mistakes.

Modelling can assist policy makers in the di�cult task of making decisions about a

volatile system. Weinstein et al. de�ned a model as “. . . a logical mathematical framework

that permits the integration of facts and values and that links these data to outcomes that

are of interest to health care decision makers”.[155] In essence, models are abstractions

of the perceived reality. The truth is that whenever a policy maker ventures a projection

or simply thinks of a dynamic phenomenon (like NCDs trends or inequalities in health),

he/she uses a model. An implicit, mental model that is based on the subjective perception

that the policy maker has about the phenomenon. The assumptions of this implicit mental

model are hidden; hence, they remain untested.

The huge advantage of modelling methodology is that it makes the implicit assumptions

of mental models, explicit. Therefore, the explicit assumptions can now be critically ap-

praised, calibrated to the data, and if possible validated. As knowledge progresses, some of

the assumptions can be updated or replaced by newly acquired knowledge. In fact, explicit

model assumptions can guide research e�orts in order to �ll knowledge gaps. The role of

modelling in decision-making is to explain a phenomenon, illuminate its core dynamics,

and highlight sources of uncertainty. As a result, more accurate predictions may arise. Yet,

prediction is not the ultimate or most important goal of modelling. During the process of

building and using a model, new questions worth asking may be discovered, new analogies

with other phenomena may be revealed, and current knowledge may be challenged.[156]

Speci�cally in public health, since NCDs share common determinants (section 1.3 on

page 17) preventive policies that target smoking, unhealthy diet, and physical inactivity

will impact on more than one NCD. The joint prevention of NCDs had been observed in the

past;[135, 157] however, it is only rarely explicitly considered in policy planning. Because

of the di�erent risk reversibility times, the policy impact time frame will be di�erent for

each disease. For example, an intervention that targets smoking will have an impact on

CVD incidence within a couple of years, while the impact on lung cancer will be observed

10 to 20 years later.[135, 157] Additionally, because death is inevitable, decreasing the risk

of a disease axiomatically increases the risk of any other disease over the life course. It

is not feasible for traditional policy evaluation methods to capture the multiple, possibly

competing, outcomes of a policy over long period of times.

Furthermore, traditional epidemiological research methods like cohort studies, random-

ised control trials, or systematic reviews, even when of outstanding quality, only rarely

provide direct answers to public health policy makers. The ‘evidence based medicine’ doc-

trine and its ‘evidence hierarchy’ have served clinicians well for some well researched

diseases. However, this doctrine cannot be directly applied in public health policy and

practice, where questions are usually more complex and evidence more patchy. Petticrew

et al. argued that in public health the full body of evidence may need to be used to inform

di�erent aspects of decision-making; di�erent research designs answer di�erent research

questions. Therefore, the classic evidence based medicine evidence hierarchy may not

apply in public health decision-making.[158] More recently, Mebius used a more philo-

sophical approach to refute the notion of ‘evidence hierarchy’ and argued that “. . .when it
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comes to evaluating the e�ectiveness of medical interventions, it is the evidence obtained

from the methodology rather than the methodology that should establish the strength of

the evidence”.[159] Finally, Howick et al. maintained that mechanistic reasoning may be

appropriate to guide decision-making when of high quality, and should not be vili�ed as

happened in the past by evidence based medicine advocates.[160]

Modelling can address all the aforementioned concerns. Models synthesise information

from multiple sources and use the full body of evidence. When good quality evidence is

unavailable, explicit assumptions are based usually on mechanistic reasoning or experts’

opinion. Then, model outputs are designed to give direct answers to policy makers, includ-

ing an estimate of their uncertainty. The important role of NCD modelling in public health

has been amalgamated by UK based NCD modellers in the ‘Brighton declaration’.[161]

Moreover, Smith et al. highlighted the importance of simulation modelling as a tool to

design equitable policies and reduce health inequalities.[162] Yet, modelling approaches

that attempt to dynamically simulate the complex system of how disease is generated in

the system remain underutilised in epidemiology.[163, 164]

1.6.1 Previously published NCD models

Fone et al. conducted a systematic review on the use of modelling in population health

and health care between 1980 and 1999. They identi�ed 182 papers of which 120 had

been published in the 1990s. The majority of models were about hospital organisation

and scheduling, followed by models for cancer screening, and economic evaluation. In-

terestingly, they did not use a separate category for NCD models.[165] Three years later,

Unal et al. focused their systematic review in policy models for CHD and identi�ed 75

papers describing 42 models. Only six models had been published more than once.[166]

More recently, Capewell et al. updated the systematic review by Unal et al. and expanded

it to include the full CVD spectrum. They identi�ed 70 CVD models and they concluded

that transparency, comprehensiveness, and extended validation were lacking.[167] Finally,

Speybroeck et al. included in their systematic review only models about socioeconomic in-

equalities in health. They identi�ed 61 studies describing models using diverse designs and

approaches.[168] All the reviews recognised the increasing use of modelling to explore a

wide spectrum of research questions. However, they also identi�ed the lack of objective

methods to assess model quality and in many occasions the lack of transparency. Finally

it was evident that the vast majority of models have only been published once and then

they disappear from the literature.

During the �rst four months of this project, I endeavoured to a scoping review of existing

public health policy models for NCDs. Due to lack of speci�c and widely used de�nitions

of what consists ‘public health policy’ and what is a ‘model’ in this context, my search

strategy was not sensitive and speci�c enough.
12

This issue had been identi�ed and re-

ported in the past by Fone et al., who concluded that “. . . systematic reviews in the �eld

of modelling should include reference list follow-up and contact with researchers in the

12 I tested the sensitivity and speci�city of my search strategy by its ability to identify some prespeci�ed ‘key’

modelling studies without producing an unmanageable number of hits, de�ned as more than 100 000.
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�eld.”.[165] Given that 1. recent, albeit less comprehensive, systematic reviews existed in

the �eld and had been reported in the previous paragraph; and 2. a more comprehensive

high quality systematic review would require substantial resources; jointly with my super-

visors, we decided to focus my e�orts on modelling. Therefore, I identi�ed the models I

describe below during my scoping review, after discussions with my supervisors and other

modelling experts or by looking through the reference lists of other modelling papers. I

only included models that I consider landmarks in NCD modelling for public health, and

that were a personal inspiration to me not only because of their strengths but also because

of their limitations. All the models (or modelling approaches in the case of comparative

risk assessments) that I describe below, have been extensively used to inform policy in

recent years, with the possible exception of Dynamo-HIA which is relatively new.

comparative risk assessments: One of the most widely used modelling method-

ologies in public health is comparative risk assessments. Comparative risk assessments

use the notion of risk factor attributable disease burden, and they can estimate the hypo-

thetical disease burden (usually assessed by mortality or incidence) under a counterfactual

risk factor exposure distribution.

Many highly in�uential comparative risk assessments studies in the past, de�ned the

counterfactual exposure distributions assuming a complete or near complete elimination

of the respective risk factors
13

.[20, 30, 32, 33, 170, 171] Although this approach is useful

to quantify the overall disease burden attributable to the modelled risk factors and allow

policy makers to prioritise their e�orts targeting the risk factors with higher attribution to

disease burden, the counterfactual exposure distributions are not directly linked to speci�c

policy options. In other words, the impact of speci�c policies on the observed exposure

distribution is not explicitly modelled. Therefore, this approach does not provide policy

makers with all the necessary information about the e�ectiveness, equity, and e�ciency

of speci�c policy options.

Another limitation of comparative risk assessments is that they tend to be static by ig-

noring the time trends in exposures, disease burden, and demographics in the population.

Finally, when mortality is used to assess disease burden, comparative risk assessments

cannot account for competing mortality risks; the fact that since death is inevitable, de-

creasing mortality rate from a disease, increases the mortality rate from all other diseases,

over the life course.

In the core of any comparative risk assessments there is an epidemiological formula,

known as population attributable fraction (PAF). I will present and discuss the formula in

the next chapter (section 2.4.1 on page 57 and section 2.9 on page 66). Many other epidemi-

ological models use the same formula, some of which are described below, or in chapter

8 (section 8.2.1 on page 164). As I will describe in the next chapter, the model I propose

also uses this formula. Although in a broad sense all these models can be considered as

‘comparative risk assessment’ models, they all o�er ways to overcome some of the limit-

13 Murray and Lopez taxonomy of counterfactual exposure distributions includes four categories that correspond

to the: theoretical minimum exposure; plausible minimum exposure, feasible minimum exposure; and cost-

e�ective minimum exposure.[169]
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ations of typical comparative risk assessments. For example, many models including the

SimSmoke, DIETRON, and PRIME models, explicitly model the impact of speci�c policies

to the counterfactual exposure distribution.[172–174]. Others, model two di�erent time

points and assume a linear time trend for exposures and disease burden.[175, 176]

simsmoke: This is one of the most used models for public health policy. SimSmoke

only includes smoking as a risk factor and models the mortality reductions from a set of

tobacco control policies. As of 01/08/2016 Pubmed contained 36 papers that had used SimS-

moke in multiple populations and have modelled several tobacco control policies, since

2000.[177] In terms of usefulness SimSmoke appears to be a successful model. However

it is very speci�c in modelling tobacco control policies only. It does not model any so-

cioeconomic health inequalities, and the output consists only of aggregated smoking re-

lated deaths (i. e. the policy e�ect cannot be strati�ed by speci�c smoking related disease

mortality, nor morbidity).

coronary heart disease policy model: This is probably the �rst model that

was used to inform public health policy. Originally it was built speci�cally for the US set-

ting but it has expanded to other countries recently. The Coronary Heart Disease Policy

Model includes all major biological CHD risk factors and smoking and models CHD incid-

ence, prevalence, and mortality. It models the impact of preventive policies on risk factors

and through them on CHD burden. Additionally, to primary prevention the Coronary

Heart Disease Policy Model also models CHD treatment options. As of 01/08/2016 Pubmed

contained 27 published papers that were based on the model.[178] The main limitations of

the model are that it is restricted to one disease only, it ignores important risk factors like

unhealthy diet and physical inactivity, and it does not consider the wider determinants of

health and socioeconomic health inequalities.

dynamo-hia: This is a relatively new model that only appeared in the literature in

2012. However, since then only eight papers have been published based on it. DYNAMO-

HIA has been primarily used to model the e�ect of primary prevention policies on health

in a health impact assessment context for European populations. The authors o�er the

model as an application
14

, as a generic modelling framework; however, the user interface

leaves a lot to be desired. The expandable concept of DYNAMO-HIA allows the model

to be useful for a wide range of preventive policies across Europe. Nevertheless, in the

current implementation DYNAMO-HIA does not model the equity of these policies.[179]

impact: The IMPACT family of models has been the most published and widely used

for almost the last 15 years. More than 60 papers were based on IMPACT models, modelling

populations from more than 20 di�erent countries. The core ability of these models is that

they attribute to known interventions, the observed di�erence in CHD mortality between

two time points. The original incarnation was used to quantify the contribution of primary

and secondary prevention to the observed CHD mortality decline, in a number of di�erent

14 Available from http://www.dynamo-hia.eu/ free of charge.

http://www.dynamo-hia.eu/
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countries and populations. Later incarnations were used to model the e�ectiveness of

several primary prevention policies and more recently their equity.[175, 176, 180] The

main limitations of the IMPACT models are that: 1. they are restricted to CHD only and

do not include other diseases; 2. they only model CHD mortality (i. e. no incidence or

prevalence); 3. they are static and ignore any changes between the two time points that are

modelled; 4. they do not model the heterogeneity of the population and consequently, the

heterogeneity is not propagated in the reported uncertainty intervals; and 5. they model

population cohorts rather than individuals, which limits the type of policies that can be

simulated (i. e. preventive policies targeting high-risk individuals (section 1.5.1 on page 31).

I am describing later in the Methods chapter (chapter 2 on page 41) how my approach

overcame all these limitations.

archimedes: Unlike any other model that has been and will be described here,

Archimedes comes from industry rather than academia and is a commercial product. About

15 papers have been published so far using the model, although given its commercial

nature it is probably used by organisations for decision-making and planning without ne-

cessarily producing academic outputs. The impressive characteristic of the model is that it

models human physiology and pathophysiology and how these evolve to manifest diabetes

or CVD.[181] Its proprietary nature did not allow me to personally assess the model, and

not many details are publicly available regarding the model internals. My impression is

that Archimedes is mostly focused in pharmacological trials, and health care rather than

public health settings. Therefore, modelling population-wide e�ectiveness or equity of

primary prevention policies does not seem to be a priority.

pohem: This is a very versatile model that was developed in 1994 and has been used

since in at least 23 academic papers. It models a spectrum of NCDs including CVD and

cancers. It can also model a wide spectrum of interventions both in public health and

health care settings.[182, 183] Given that the model was originally developed in the 1990s

it represents a huge achievement both in technical terms and in terms of usefulness and

�exibility. Yet, the model can only be used for the Canadian population and the authors ad-

mitted that expanding POHEM to other populations would be almost impossible given the

extensive data requirements. Moreover, although socioeconomic parameters like income,

ethnicity, and education being included in the model, the equity of the modelled policies

have not been explicitly estimated so far.

cisnet: Given the burden of cancer in the population, it is apparent that cancer mod-

elling is underrepresented in the presented list of models. The National Cancer Institute

in the US funds a consortium of researchers to develop cancer models, known as CIS-

NET
15

.[184] CISNET also maintains a very useful model registry that records available

cancer models and their characteristics.[185] It is apparent from the registry that the ma-

jority of models focus on screening and treatment rather than primary prevention. It is

15 Stands for Cancer Intervention and Surveillance Modeling Network.
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also evident that with the exception of SimSmoke each model models a speci�c cancer site,

despite the common determinants of many cancers with other NCDs.

1.6.2 Gaps in the modelling landscape

lack of reusability: The models I presented in the previous paragraphs have been

extensively used in the academic and policy debate. Unfortunately, they are the exceptions.

In the current public health modelling landscape, most models are built to explore a very

speci�c question in a very speci�c setting. For instance, hundreds of models appear in the

literature only once and then they disappear completely. Therefore, the lack of reusability

is evident and prohibits models to improve, evolve, and be assessed over time. In addi-

tion, the substantial resources that are needed to build a model are wasted and each new

modelling attempt usually has to start from zero.

lack of transparency: The Brighton declaration identi�ed that one of the chal-

lenges of NCD modelling is to successfully communicate the technical details and under-

lying assumptions of the model to technical and lay audiences.[161] I have to add that none

of the models I described provide access to their source code. This means that the building

elements of the model remain hidden from public scrutiny and any unintended errors in

the code are less likely to be found. Proprietary code also forbids other researchers from

improving and expanding an existing model forcing them to build a new one from scratch

instead. Finally, the lack of transparency prohibits the dissemination of good modelling

practices as they remain hidden and available only to authors.

In combination with the lack of reusability, lack of transparency increases dramatically

the resources that are needed to apply modelling methodologies. This may discourage

researchers and policy makers to opt for modelling support in the decision-making process.

Even if a decision for modelling support is made, time and other resources are wasted to

solve problems that have been already solved by other modellers. This may lead to lack of

timeliness and relevancy of the model to the policy or academic debate.

lack of comprehensiveness: While socioeconomic inequalities, risk factors, and

NCD patterns and trends are interrelated it seems that almost none of the described models

consider all of them simultaneously. Notable exceptions are the POHEM model which

is limited to the Canadian population and some recent implementations of the IMPACT

model which is limited to CHD mortality output only. Therefore, complex multicomponent

policies are di�cult to be modelled and fully assessed in the current modelling landscape.

All the issues above powerfully suggest the need for modern simulation based decision

support tools in public health policy that are reusable, transparent, and take into account

the complex dynamics of exposures and outcomes in the population.
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1.7 aims and objectives

The primary aim of this project was to construct and validate a simulation model for public

health policy that would be able to model any NCD (reusable), be open-source and avoid

any proprietary code if possible (transparent), and consider the wider determinants of

health and their interplay with risk factors and disease burden (comprehensive).

The equally important secondary aim was to use this model to integrate the available

evidence and quantify the impact of existing and hypothetical counterfactual primary pre-

vention policies on disease burden and health inequalities. Hence, to explore whether the

estimated e�ectiveness and equity of these policies agree with the theoretical expectations

according to their typology.

The objectives of this project were:

1. To build a model that has population dynamics, socioeconomic determinants, and

risk factor trends as inputs; and CVD, lung cancer, and gastric cancer incidence,

prevalence and mortality as outputs (chapter 2 on the facing page).

2. To extensively validate the model using external independent sources that ideally

have not been used to inform model building (chapter 3 on page 77).

3. To use the model to quantify the contribution of statins in the observed decline of

serum total cholesterol in England, between 1991 and 2011. (chapter 4 on page 103).

4. To use the model to quantify the e�ectiveness and equity of current primary preven-

tion strategy for CVD in England (chapter 5 on page 121).

5. To use the model to quantify the e�ectiveness and equity of a spectrum of policies

that have been applied in England since 2003 to reduce excess salt consumption in

the population (chapter 6 on page 135)

6. To use the model to quantify the e�ectiveness and equity of hypothetical ‘endgame’

policies for smoking (chapter 7 on page 147)



2
M E T H O D S

2.1 introduction

In the previous chapter I argued the necessity of reusable, transparent, and comprehens-

ive modelling approaches to inform public health policy. In this chapter I will describe my

approach to build a simulation model that ful�ls those criteria. The modelling methodo-

logies spectrum is complex, evolving, and diverse; thus, hard to be classi�ed into speci�c

subgroups. Several typologies have been proposed so far, but none is without limitations

nor widely accepted outside the scope it was proposed for. One of the most useful model-

ling taxonomies in public health decision-making appears to be the one proposed by the

International Society for Pharmacoeconomics and Outcomes Research jointly convened

with the Society for Medical Decision Making.[186] They have identi�ed three large fam-

ilies of model structures: state transition models, discrete event simulation, and dynamic

transition models. In the following paragraphs, I will brie�y present the three families and

I will justify my decision to build a state transition model.

state transition models: State transition models are preferred when the decision

problem can be described by well de�ned health ‘states’. Population cohorts or individuals

are then modelled to populate these states and are allowed to move in di�erent states based

on pre-speci�ed ‘transition probabilities’. The modelled health states need to be de�ned in

a way that are mutually exclusive and collectively exhaustive and cohorts or individuals

are allowed to be in only one state at a given time. Depending on whether the model

simulates cohorts or individuals, it is called macro- or microsimulation respectively
16

.[187]

discrete event simulation: Discrete event simulation is preferred when model-

ling of a complex system is necessary or when time management
17

is important. The

core structural units in discrete event simulation are the ‘entities’. Entities are objects that

usually represent individuals and have a set of ‘attributes’; for instance, age, sex, medical

history etc. Attributes can be manipulated dynamically during the simulation and determ-

ine how an entity reacts to an ‘event’. An event is simply anything can happen to the

entity or the environment during the simulation. Depending on the nature of the research

question, the simulation can be constrained by the introduction of scarce ‘resources’ to

the simulated system. The entities then compete to utilise the resources and form ‘queues’

waiting for the resource to be available.[188]

16 Macrosimulations are also known as ‘Markov models’.

17 For example, to model waiting times of patients awaiting a planned medical procedure.

41
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dynamic transmission modelling: Dynamic transmission modelling is mostly

relevant in the �eld of communicable diseases. Its core idea is that the probability of new in-

fection is directly related to the proportion of those already infected in the population.[189]

2.1.1 Conceptualising the problem

The conceptualisation of the problem at hand is one of the �rst and most important steps in

the modelling process.[190] My aim was to model the equity and e�ectiveness of primary

prevention policies for multiple NCDs (section 1.7 on page 40). Decisions about time man-

agement or resources allocation were not relevant in this case. Therefore, I chose a state

transition approach as the most appropriate for my aims. Modelling equity, multiple risk

factors, and multiple diseases in a competing risk framework requires a level of complex-

ity not easily manageable in a macrosimulation framework because of the large number

of states. Furthermore, modelling policies that target high-risk individuals (section 1.5.1

on page 31) in the population require these individuals to be modelled in the simulation.

In fact, from the model I described in the previous chapter (section 1.6.1 on page 35), the

only model that appears to have similar capabilities is POHEM (section 1.6.1 on page 38),

which is a microsimulation. Hence, I opted for a microsimulation approach for my model.

2.1.2 De�nition, history, and typology of microsimulations

The International Microsimulation Association de�nes microsimulation as “. . . a model-

ling technique that operates at the level of individual units such as persons, households,

vehicles or �rms. Within the model each unit is represented by a record containing a

unique identi�er and a set of associated attributes – e. g. a list of persons with known

age, sex, marital and employment status. [. . . ] A set of rules (transition probabilities) are

then applied to these units leading to simulated changes in state and behaviour. These

rules may be deterministic (probability = 1), such as changes in tax liability resulting from

changes in tax regulations, or stochastic (probability ≤ 1), such as chance of dying, mar-

rying, giving birth or moving within a given time period. In either case the result is an

estimate of the outcomes of applying these rules, possibly over many time steps, including

both total overall aggregate change and, crucially, the distributional nature of any change.

Given the emphasis on changes in distribution, microsimulation models are often used

to investigate the impacts on social equity of �scal and demographic changes (and their

interactions)”.[191]

Microsimulation was �rst proposed by Guy Orcutt in a 1957 seminal paper, as a new

modelling methodology for econometrics to analyse and forecast the individual impacts

of economic and social policies.[192] In practice, microsimulations use real world inform-

ation to create a synthetic world, where virtual experiments can be performed.[193] The

method only gained popularity four decades after its original inception due to its large data

and computational requirements. Nowadays, microsimulation is a well accepted method

to support decision-making in health care policy, although its use in public health policy

appears limited.[194–196]
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Zucchelli et al. summarised a typology for microsimulations based on previous propos-

als. Its advantage is that it is practical and applicable in the context of health policies

evaluation. The typology is based on two dichotomies: arithmetical versus behavioural

models, and static versus dynamic models.[196]

arithmetical versus behavioural models: Arithmetical microsimulations ig-

nore individual behavioural response to the modelled policy change. For example, a man-

datory reformulation of processed foods that would lead to a fast decline in their salt con-

tent, may drive consumers to change their behaviour as a response, and add discretionary

salt before consumption. An arithmetical microsimulation would not simulate the beha-

vioural response to policy change; on the contrary, a behavioural microsimulation would

do that. From a practical perspective, the choice between the two is more on the user side

and what assumptions the user feels necessary to include in the simulated scenario, rather

than a fundamental model design choice.

static versus dynamic models: Unlike the previous categorisation, the di�erenti-

ation between static and dynamic microsimulations is a fundamental one. Static microsim-

ulations do not include the element of time. Their analysis is restricted to a single point

in time or a set of points in time, ignoring all the intermediate time points. For example,

consider a microsimulation that explores the e�ect of a newly introduced lipid lowering

medication to the population. A static microsimulation would only examine the two pu-

tative states for each individual; before and after the introduction of the new medication.

By contrast, dynamic microsimulations simulate individual life courses over time. The

attributes of the synthetic individuals are updated in each time interval. Therefore, ageing,

population trends, and policy e�ects can be simulated dynamically. Dynamic microsimu-

lations may consider time as a discrete or continuous variable. Discrete and continuous

time microsimulations have vital di�erences in their conception, implementation, and core

assumptions that are beyond the scope of this thesis.

2.2 high level description of impactncd

IMPACTNCD is a discrete time, dynamic, stochastic microsimulation. Within IMPACTNCD

each unit is a synthetic individual and is represented by a record containing a unique

identi�er and a set of associated attributes. Age, sex, quintile groups of Index of Multiple

Deprivation (QIMD)
18

, salt consumption, BMI, SBP, total serum cholesterol, diabetes mel-

18 QIMD is a measure of relative area deprivation based on the Index of Multiple Deprivation.[197] According

to this system, all Lower Super Output Areas in England (average population of 1500) are ranked in order

of increasing deprivation, based on seven domains of deprivation: income; employment; health deprivation

and disability; education, skills and training; barriers to housing and services; crime and disorder, and living

environment. For the ranking, individual level information about the habitats of these areas is used from

multiple sources. Then, the QIMD is formed from the quintiles of the above index, one through �ve, where

quintile one is considered the ‘least deprived’ and quintile �ve the ‘most deprived’.
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litus
19

(binary variable), smoking status (current / ex- / never-smoker), smoking history

(duration measured in years, and intensity measured in cigarettes per day), environmental

tobacco exposure (binary variable), fruit and vegetable consumption and physical activity

as the set of associated attributes. A set of stochastic rules are then applied to these indi-

viduals, such as the probability of developing CHD or dying, as the simulation advances in

discrete annual steps. The output is an estimate of the burden of CHD, stroke, lung cancer,

and gastric cancer in the synthetic population including both total aggregate change and,

more importantly, the distributional nature of the change. This allows for an investigation

of the impact of di�erent modelled policies on social equity.

IMPACTNCD is a complex model that simulates the life course of synthetic individuals

under counterfactual scenarios and currently consists of two modules: the ‘population’

module and the ‘disease’ module. Figure 2.1 on the facing page highlights the steps of the

algorithm that generate the life course of each synthetic individual. Step 1 only runs at the

beginning of each simulation. Following steps 2-7 are calculated annually (in simulation

time) for each synthetic individual until the simulation horizon is reached, or death occurs.

I will fully describe IMPACTNCD by describing the processes in each of these steps. The

description is from an epidemiological perspective and focuses on the processes rather

than the technical details. Table 2.2 on page 70 summarises the data sources that have

been used to inform the parameters of IMPACTNCD, and table 2.1 on page 69 presents its

main assumptions and limitations.

To ensure transparency, the source code and all parameter input �les are available in ht

tps://github.com/ChristK/IMPACTncd/tree/Thesis_model_version under the GNU GPLv3

licence. The GNU GPLv3 licence is a free, copyleft license for software and other kinds

of works ( https://www.gnu.org/licenses/gpl-3.0.en.html). The licence grants the right for

everyone to use the model as it is or modify it, although if someone releases a modi�ed

version of the model to the public, the licence requires the modi�ed source code to be

publicly released under the GNU GPLv3 licence as well; therefore, to remain open-source.

19 I de�ned as diabetics those with self-reported medically diagnosed diabetes or glycated haemoglobin ≥ 6.5 %,

excluding pregnancy only diabetes.

https://github.com/ChristK/IMPACTncd/tree/Thesis_model_version
https://github.com/ChristK/IMPACTncd/tree/Thesis_model_version
https://www.gnu.org/licenses/gpl-3.0.en.html
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Entry

Age, sex, QIMD

Behavioural
risk factors

Biological
risk factors

Give birth

CHD (first
episode)

Stroke (first
episode)

Lung cancer Gastric cancer

Death from
CHD (within

30 days)

Death from
stroke (within

30 days)
Remission Remission

Death from
CHD (post

30 days)

Death from
stroke (post

30 days)

Death from
lung cancer

Death from
gastric cancer

Death from all
other causes

Step 2

Step 1

Step 3

Step 4

Step 5

Step 6

Step 7

Repeat until death or end of simulation

Figure 2.1: Simpli�ed IMPACTNCD algorithm for individuals. For each step, the algorithm uses information

from all appropriate previous steps.



46 methods

2.3 population module

The ‘population’ module consists of steps 1 to 4 in �gure 2.1 on page 45. Synthetic indi-

viduals enter into the simulation in the initial year. The number of synthetic individuals

that enter into the simulation is user-de�ned and depends on the rarity of the simulated

diseases in the population. The characteristics of the synthetic individuals were informed

from the HSE, and the algorithm ensures that the age, sex, and QIMD distribution of the

sample is similar to the age, sex, and QIMD distribution of the English population in the

initial year.

2.3.1 Health Survey for England pro�le

HSE consists of a series of cross-sectional health surveys that have been conducted annu-

ally since 1991 and are representative of the community dwelling population in England.

While the focus each year was in a di�erent aspect of population health, the core questions

have remained relatively stable over the years. Hence, secular trends of risk factor expos-

ures can be extracted from the survey. HSE has a complex sample design and selection

bias weighting has been applied since 2003 to adjust for non-responders. The response

rate has dropped from around 70 % in the 1990s to around 60 % in more recent years. The

participants are �rst interviewed and then if they consent, a nurse visits them to conduct

further measurements and collect biological samples. More information about the series

can be found elsewhere.[198]

2.3.2 Estimating exposure to risk factors

In steps 2 and 3 (�gure 2.1 on page 45), IMPACTNCD estimates the exposure of each syn-

thetic individual to the modelled risk factors. It is essential that the risk pro�le of the

synthetic individuals should be similar to the risk pro�les that have been observed in the

actual English population. For this, I �rst built a static ‘close to reality’ synthetic popula-

tion of England, from which I sample the synthetic individuals for every new run of the

simulation. Then, I simulate individual exposure trajectories for all synthetic individuals to

generate individual life courses. In the following paragraphs I will describe the processes

to achieve this.

2.3.2.1 Generating the ‘close to reality’ synthetic population for IMPACTNCD

Synthetic populations are a vital component of microsimulation models. Research and

innovation in synthetic populations methodology appears to be more active in the �eld of

transportation science.[199] The use of synthetic populations in epidemiology is limited

and mostly in the �eld of infectious diseases epidemiology.[200] In my implementation, the

‘close to reality’ synthetic population ensures that the sample of synthetic individuals for

the simulation is drawn from a synthetic population similar to the real one in terms of the

correlation structure for age, sex, socioeconomic circumstance, and risk factor exposures.
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For this, I have adapted the statistical framework originally developed by Alfons et al. in

order to better re�ect epidemiological principles.[201]

Brie�y, Alfons et al. method uses a nationally representative survey of the population

to generate a ‘close to reality’ synthetic population. Therefore, the method expands the

often small sample of the survey into a signi�cantly larger synthetic population, while it

preserves the statistical properties and respects the correlation structure of the original

survey. This is possible by �tting multinomial regression models to the survey data and

then sample the synthetic individuals from the respective conditional distributions. Prac-

tical applications and examples of the original method can be found elsewhere.[202, 203]

Traditional methods for population synthesis use iterative proportional �tting or com-

binatorial optimisation to derive the synthetic population from a given survey.[199] The

main advantages of the Alfons et al. approach over these alternatives are that: 1. it takes

into account the hierarchical structure of the sample design of the original survey (i. e. in-

dividuals within households, within larger geographical areas); and 2. it can generate trait

combinations which were not present in the original survey but are likely to occur in the

real population. The latter is particularly important, because it avoids bias from excess-

ive repetition of a limited set of trait combinations present in the original survey sample.

For example, the original survey may only have two 80 year old male participants, both ex-

smokers. Unlike other methodologies, the approach proposed by Alfons et al. can generate

80 year old male synthetic individuals, who are never or current smokers despite the fact

that these combinations of traits were not present in the survey. It also prohibits extreme

outliers present in the original survey to be overrepresented in the synthetic population.

My approach in synthetic population generation consists of four stages from which the

�rst is common with the original method proposed by Alfons et al. The following stages

have been adapted in order to re�ect ideas and principles from the ‘wider determinants of

health’ framework (section 1.4.1 on page 24) and the ‘social production of disease’ model

(section 1.4.2 on page 26). The main notion is that upstream factors such as the socioeco-

nomic conditions, in�uence individual behavioural risk factors (e. g. diet, smoking, and

physical activity), which in turn in�uence individual downstream risk factors such as BMI,

SBP, and total cholesterol. The four stages are:

1. Set up of the household structure.

2. Generate the socioeconomic variables of the synthetic individuals.

3. Generate the behavioural variables of the synthetic individuals.

4. Generate the biological variables of the synthetic individuals.

Each stage is informed by relevant information from all previous stages. This is performed

in the spirit of the original method by �tting a series of multinomial regression models to

the survey data that use predictors from previous stages, and then use the models to predict

the traits of the synthetic individuals. The output is a static synthetic population that is a

‘snapshot’ of the real population at a speci�c moment in time.

For the purpose of this thesis I produced two synthetic populations representing two

snapshots of the English population, in years 2006 and 2011. All the variables of the 2011
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synthetic population were informed by the HSE2011 except physical activity which was

informed by HSE2012.[204, 205] For the snapshot of the population in 2006, I used three

consecutive surveys from years 2005, 2006, and 2007;[206–208] a decision that balances

the bene�ts of the decreased sampling error against the introduced bias from the secular

trends of risk factors. The R language for statistical computing and the R packages ‘sim-

Population’ and ‘simPop’ were used to implement the method
20

.[209–211] A more detailed

description of the four stages follows, based on the 2006 synthetic population.
21

stage 1: household structure The household size, the age, and sex of the indi-

viduals in each household that have been recorded in HSE were used to inform the syn-

thetic population, strati�ed by Strategic Health Authority
22

. Strategic Health Authority

was the only variable with spatial information in HSE and it was used as a proxy, to in-

clude some spatial information to the synthetic population.

stage 2: socioeconomic variables Once the basic age, sex, household, and spa-

tial information of the synthetic population was generated, other socioeconomic informa-

tion was built up. The area deprivation of each household was generated dependent on the

age and sex of the head of the household, strati�ed by Strategic Health Authority. QIMD

was used as a measure of relative area deprivation. Then, the equivalised income quintile

groups[212] of each household was generated, dependent on the age and sex, strati�ed

by QIMD. Finally, the employment status of the head of the household was generated us-

ing the National Statistics Socio-Economic Classi�cation[213], dependent on age and sex,

strati�ed by QIMD.

stage 3: behavioural variables In this stage, the behavioural variables of each

synthetic individual were predicted using information that was generated in the previous

stages. Portions of fruit and vegetable consumed per day, days achieving more than 30 min

of moderate or vigorous physical activity per week, smoking status and smoking histor-

ies were generated, dependent on age, sex and strati�ed by QIMD. For smoking histories,

smoking duration and intensity for active smokers, and smoking duration, intensity, and

years since cessation for ex-smokers were also generated in this step. To propagate the

correlation structure between smoking duration and intensity to the synthetic population,

I �rst estimated smoking intensity dependent on age, sex and strati�ed by QIMD. Then I

used smoking duration as a dependent variable together with age and sex and strati�ed

by QIMD to predict intensity and years since cessation, where applicable. This correla-

tion is important when both duration and intensity are used to calculate the cumulative

risk of smoking for lung cancer. The exposure to environmental tobacco smoking was

also predicted in this stage dependent on age, sex, smoking status and strati�ed by QIMD.

20 The R scripts are available at https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/SynthPo

p/Synthetic%20Population%20UOM%20050607.R and https://github.com/ChristK/IMPACTncd/blob/Thesis_m

odel_version/SynthPop/Synthetic%20Population%20UOM%202011.R.

21 A similar process was followed for the 2011 synthetic population

22 Strategic Health Authorities were ten large geographic areas, part of the structure of the NHS in England

before 2013.

https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/SynthPop/Synthetic%20Population%20UOM%20050607.R
https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/SynthPop/Synthetic%20Population%20UOM%20050607.R
https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/SynthPop/Synthetic%20Population%20UOM%202011.R
https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/SynthPop/Synthetic%20Population%20UOM%202011.R
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Once again the correlation between smoking status and exposure to environmental to-

bacco smoking is important because the risk of environmental tobacco smoking for active

smokers is considered negligible. Moreover, the use of statins and the use of antihypertens-

ive medication (two separate binary variables) were also predicted dependent on age, sex

and strati�ed by QIMD. Finally, a preliminary salt consumption estimation was performed

during this stage. HSE collected spot urine sodium measurements, which are less reliable

to 24 h urine sodium measurements.[214, 215] To overcome this limitation IMPACTNCD

adds another processing layer for the �nal estimation of salt consumption to integrate

information from other data sources that used 24 h urine collection. This is described sep-

arately in section 2.3.2.4 on page 51.

stage 4: biological variables The �nal stage is the prediction of the biological

variables of the synthetic individual. Widely accepted causal pathways that have been ob-

served in cohort studies have been used to identify associations between biological and be-

havioural variables and how the risk of some risk factors is partly mediated through other

risk factors. The WHO ‘Comparative quanti�cation of health risks’ report was primar-

ily used as a guide to identify causal pathways and has been described in section 1.3 on

page 17.[30] The aim was to capture the correlation structure of these related risk factors

in the HSE and propagate it to the synthetic population.

BMI mediates part of its risk for CVD through SBP, total serum cholesterol, and diabetes

mellitus.[216–221] Thus, BMI was the �rst to be predicted in the synthetic population de-

pendent on age, sex, and fruit and vegetable consumption, strati�ed by QIMD. Fruit and

vegetable consumption was used as a proxy to healthy diet and this improved the predict-

ive power of the model.[222] On the contrary, while physical activity is related to BMI in

my case the inclusion of physical activity as a predictor weakened the predictive power

of the model[222–224]; hence, I excluded physical activity from the predictors. The cross-

sectional nature of the data and the associated reverse causality bias may have played a role

in this. The numerical instability of the model from the inclusion of another categorical

variable that led to further segmentation of the relatively small sample could be another

plausible explanation.

After BMI, diagnosed diabetes mellitus status was predicted for the synthetic individuals

dependent on age, sex, QIMD, and strati�ed by BMI deciles. Then undiagnosed diabetes

mellitus was predicted using the same predictors. I de�ned undiagnosed diabetes similarly

to the HSE de�nition, as having glycated haemoglobin greater than 6.5 % and not reporting

diagnosed diabetes mellitus in the survey questionnaire. Pregnancy related diabetes mel-

litus was excluded from both models. Afterwards, total serum cholesterol was predicted

dependent on age, sex, BMI, statin use, and fruit and vegetable consumption, strati�ed

by QIMD. Finally, SBP was predicted dependent on age, sex, BMI, smoking status, and

salt consumption, strati�ed by QIMD. The association of smoking with hypertension has

been observed in longitudinal studies.[37, 225, 226] It is worth noting here that the use

of QIMD for strati�cation in behavioural and biological risk factors prediction, allows for

possible interaction between socioeconomic and behavioural variables in the prediction of

biological risk factors.
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smoothing for categorical variables Despite the use of three consecutive

years of HSE to prime the synthetic population, there were still a small number of elderly

participants, when strati�ed by sex and QIMD. This created large troughs and peaks in the

prevalence of smoking and diabetes mellitus for certain age groups that could have been

propagated to and biased the synthetic population. To avoid the issue I applied smoothing

to HSE smoking and diabetes data. This was performed �rst by constructing the contin-

gency table of smoking status by age and sex. Then I used local regression to smooth

the numbers of participants by age, strati�ed by sex and smoking status.[227] Finally, I

used the smoothed contingency table to recalibrate the survey weights using the raking

method.[228, 229] I followed the same approach for diabetes mellitus.

The �nal output of the process overall was to create a snapshot of the 2006 English

population as it was captured by the HSE. The synthetic population has similar statist-

ical properties to the HSE sample that has been used to prime it. More importantly, the

synthetic population models both the ‘di�erential exposure’ and the ‘di�erential vulnerab-

ility’ of the ‘social production of disease’ theoretical model (section 1.4.2 on page 26). The

approximately 55 million synthetic individuals with a combination of traits similar to the

community dwelling population that have been generated, de�ne the initial state of the

population during the microsimulation.

Next, I will describe how the exposures of the synthetic individuals can be updated

dynamically as the microsimulation advances through time. The synthetic population has

been validated against the original HSE sample in the validation chapter (chapter 3 on

page 77).

2.3.2.2 IMPACTNCD implementation for life histories simulation

IMPACTNCD only applies the previous process for the initial year of the simulation. As the

simulation evolves, all variables are recalculated to take into account age and period ef-

fects. This feature justi�es the classi�cation of IMPACTNCD as a dynamic microsimulation.

The exact method depends on the nature of each variable and the available information.

Generally, I �tted appropriate statistical models to the HSE data for years 2001 to 2012

to capture the secular trends of risk factors by age, sex, and QIMD. I used the R package

‘survey’ to handle all HSE data and �t the models to account for their complex sampling

design.[230, 231] During the simulation IMPACTNCD projects the models into the future

and use them to make predictions about the synthetic individuals.[204–208, 232–238]

2.3.2.3 Age, sex and socioeconomic variables

As the simulation advances in annual circles the age of the synthetic individuals in the

model increases by one year. The sex and socioeconomic variables remain unaltered

throughout the simulation. Therefore, social mobility is not simulated in the current ver-

sion of IMPACTNCD.
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2.3.2.4 Salt

As I have already mentioned in section 2.3.2.1 on page 48, HSE measured sodium excre-

tion from spot urine. The obvious next step would be to use the INTERSALT equation

to approximate daily sodium consumption from spot urine.[219, 239] However, while the

INTERSALT equation is an acceptable method to estimate the mean sodium consump-

tion of the population, it tends to overestimate low measurements and underestimate high

measurements, compared to the gold standard of sodium estimation from 24 h urine col-

lection. Therefore, it distorts the distribution of salt consumption in the population and

would introduce unnecessary bias.[214, 215]

HSE was not the only source of information regarding the exposure of population to

salt. Between 2001 and 2011 four nationally representative surveys of the population were

contacted speci�cally to investigate population exposure to salt.[68, 240–242] These sur-

veys used 24 h urine collections to estimate sodium excretion; hence, salt consumption.
23

Unfortunately, the reported results from the aforementioned sodium surveys were aggreg-

ated, strati�ed by age group and sex. Individual level primary data were not available to

researchers. Hence, the sodium surveys results could not directly inform the synthetic

population using the method described in section 2.3.2.1 on page 46. Hence, I developed

a stochastic process that integrates the individual level information from the HSE with

the less �exible but more accurate information from the sodium surveys (please refer to

appendix A.1 on page 183 for a detailed description). The main advantage of this approach

is that it uses all the available information from the 24 h urine sodium surveys, while aug-

menting it with information regarding socioeconomic gradients and correlation with other

risk factors and especially SBP, from spot urine measurements. The stochastic nature of

the process allows its uncertainty to be estimated with Monte Carlo methods and is in-

cluded in the reported uncertainty interval (UI).

2.3.2.5 Fruit and vegetable consumption and physical activity

Both fruit and vegetable consumption (portions per day) and physical activity (days with

more than 30 min of moderate or vigorous activity per week) were modelled as ordinal

variables. A proportional odds logistic regression model was �tted in HSE individual level

data with fruit and vegetable portions as the dependent variable and year, second-degree

polynomial of age, sex, QIMD and their interactions as the independent variables. Simil-

arly, for physical activity a similar model was �tted in the HSE2006, HSE2008 and HSE2012

data. These models are used for individual level predictions about the synthetic individuals

as the simulation evolves.
24

23 I assume that all consumed salt is excreted through urine and all the sodium that is excreted in urine comes

from the consumed salt. This is a common assumption in epidemiological literature

24 The R objects for the models are available at https://github.com/ChristK/IMPACTncd/blob/Thesis_model_ver

sion/Lagtimes/fv.svylr.rda and https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lagtime

s/pa.svylr.rda.

https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lagtimes/fv.svylr.rda
https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lagtimes/fv.svylr.rda
https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lagtimes/pa.svylr.rda
https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lagtimes/pa.svylr.rda
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2.3.2.6 Smoking

The ‘close to reality’ synthetic population is an accurate snapshot of active, ex-, and never-

smokers in 2006, as it was captured in HSE. IMPACTNCD can use one of two di�erent meth-

ods to simulate smoking histories, depending on scenario speci�cation. The �rst method

uses transitional probabilities for smoking initiation, cessation, and relapse to generate

and record smoking histories for the synthetic individuals. For smoking initiation and ces-

sation probabilities, logistic regression models were �tted in HSE data with age, sex, and

QIMD as the independent variables. A similar approach was followed for relapse probabil-

ities with years since cessation, sex, and QIMD as the independent variables. This method

allows policies to be simulated using their impact on smoking initiation, cessation, and

relapse probabilities.
25

The second method uses two binomial regression models, one to estimate the prevalence

of ever-smokers in the population, and one to estimate the prevalence of active smokers

among ever-smokers; both by age, sex, and QIMD. As before, the binomial models were

�tted in the HSE data and then are used for projections. The advantage of this method is

that simulation scenarios can be speci�ed using smoking prevalence instead of transitional

probabilities for smoking initiation, cessation, and relapse. The disadvantage is that some

ever-smokers may need to become never-smokers during the simulation to comply with

the predicted prevalence. To minimise the bias, IMPACTNCD selects the ex-smokers with

the longest abstinence periods to be reclassi�ed as never-smokers. This method allows

policies to be simulated using their impact on smoking prevalence.
26

Independent of the method used to estimate the smoking status of each synthetic indi-

vidual, IMPACTNCD tracks smoking duration for ever-smokers, and years since smoking

cessation for ex-smokers. It also estimates smoking intensity (in cigarettes per day) for

every active smoker in each simulated year. For this, I �tted a quasi Poisson regres-

sion model in HSE data with year, age, sex, and QIMD as the independent variables.
27

IMPACTNCD tracks mean smoking intensity over the last 10 years for each active smoker

and uses this and smoking duration for further estimation of the cumulative risk of smoking

for cancers.

2.3.2.7 Environmental tobacco smoking

For environmental tobacco smoking exposure I assumed a linear relation with smoking

prevalence, strati�ed by QIMD. I assumed no intercept; therefore, when smoking preval-

ence reaches zero, environmental tobacco smoking prevalence will be zero too. With this

25 The R objects for the models are available at https://github.com/ChristK/IMPACTncd/blob/Evaluation_of_

UK_salt_strategy/Lagtimes/smok.start.svylr.rda, https://github.com/ChristK/IMPACTncd/blob/Evaluation_o

f_UK_salt_strategy/Lagtimes/smok.cess.svylr.rda, and https://github.com/ChristK/IMPACTncd/blob/Thesis

_model_version/Lagtimes/smok.cess.success.parabola.rda.

26 The R objects for the models are available at https://github.com/ChristK/IMPACTncd/blob/Thesis_model_ver

sion/Lagtimes/smok.start.svylr.rda and https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version

/Lagtimes/smok.cess.svylr.rda.

27 The R objects for the model is available at https://github.com/ChristK/IMPACTncd/blob/Thesis_model_versi

on/Lagtimes/cigdyal.svylr.rda.

https://github.com/ChristK/IMPACTncd/blob/Evaluation_of_UK_salt_strategy/Lagtimes/smok.start.svylr.rda
https://github.com/ChristK/IMPACTncd/blob/Evaluation_of_UK_salt_strategy/Lagtimes/smok.start.svylr.rda
https://github.com/ChristK/IMPACTncd/blob/Evaluation_of_UK_salt_strategy/Lagtimes/smok.cess.svylr.rda
https://github.com/ChristK/IMPACTncd/blob/Evaluation_of_UK_salt_strategy/Lagtimes/smok.cess.svylr.rda
https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lagtimes/smok.cess.success.parabola.rda
https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lagtimes/smok.cess.success.parabola.rda
https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lagtimes/smok.start.svylr.rda
https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lagtimes/smok.start.svylr.rda
https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lagtimes/smok.cess.svylr.rda
https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lagtimes/smok.cess.svylr.rda
https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lagtimes/cigdyal.svylr.rda
https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lagtimes/cigdyal.svylr.rda
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approach, IMPACTNCD draws a number of synthetic individuals and assigns them as ex-

posed to environmental tobacco smoking in order to comply with the predicted prevalence

of environmental tobacco smoking for each QIMD and simulated year.

2.3.2.8 Continuous biological risk factors

In IMPACTNCD, the value of each continuous biological risk factor (BMI, SBP, total choles-

terol) is calculated in a two stage process for each synthetic individual and simulated year.

The �rst stage simulates ageing e�ects, while the second stage simulates period e�ects. I

followed this approach mainly for two reasons. First, to simulate physiological mechan-

isms of ageing; for example the change of lipid pro�le in post-menopausal women, or the

increase of SBP due to age related sti�ening of the arteries. Second, because the variance

of continuous biological risk factor distributions increases with age, I had to model this

increase of variance with age to minimise bias. In the following paragraphs I describe the

two stages:

stage 1: IMPACTNCD tracks the percentile ranks of the biological risk factors of the

synthetic individuals by 5-year age group, sex, and QIMD. These percentile ranks remain

�xed for each synthetic individual throughout the simulation. The percentile ranks are

translated back to risk factor values by matching them with the percentile ranks from a

sample of the initial synthetic population of same age group, sex, and QIMD. For example,

consider a 20-year old male synthetic individual living in a QIMD 3 area, and having SBP

of 130 mmHg in 2006. Let us assume that his SBP corresponds to a percentile rank of 0.70

for his age group, sex, and QIMD. To estimate his SBP �fty years later, in 2056, when

the same synthetic individual will be 70-year old, IMPACTNCD assumes that his percentile

rank remained stable. Then, IMPACTNCD �nds a 70-year old synthetic individual living in

a QIMD 3 area in 2006 having the same percentile rank for SBP (0.70), and assigns his SBP

(let us assume 146 mmHg) to the �rst synthetic individual. Figure 2.2 on the following page

illustrates the previous example. Despite individuals retaining their percentile ranks for

the respective risk factors throughout the simulation this stage remains stochastic. Every

time a percentile rank is translated to a risk value a di�erent sample from the initial syn-

thetic population is drawn. Therefore, the same percentile rank is translated to a slightly

di�erent value of risk factor.

stage 2: Risk factor values estimated from the previous stage ignore any period e�ects

of risk factors. Period e�ects are implemented in this stage. Similarly to the approach fol-

lowed for other variables, I �tted regression models to the HSE data. For the BMI model,

year, age, sex, QIMD, and physical activity were the independent variables. For the SBP

model, year, age, sex, QIMD, smoking status, BMI, and physical activity were the independ-

ent variables. Finally, for the total cholesterol model, year, age, sex, QIMD, BMI, and fruit

and vegetable consumption were the independent variables. The independent variables
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Figure 2.2: Plot of the systolic blood pressure against its percentile rank for male synthetic individuals in age

groups 20 to 24 and 70 to 74, living in quintile groups of Index of Multiple Deprivation 3 area. The red dotted

lines highlight how the same percentile rank corresponds to di�erent blood pressure value for di�erent ages.

for each risk factor were selected based on known associations from longitudinal studies

as in section 2.3.2.1 on page 49.
28

IMPACTNCD estimates the �nal values of the respective risk factor that will be used

for risk estimation by, �rst, calculating the distance from the mean for each risk factor

value strati�ed by 5-year age group, sex, and QIMD. For instance, if a synthetic individual

has SBP of 140 mmHg and the mean SBP in the respective group of same age group, sex,

and QIMD is 130 mmHg, the distance from the mean is 140 − 130 = 10mmHg. Then,

IMPACTNCD uses the models to predict the new mean of the respective risk factor by year,

age group, sex, and QIMD and add it to the calculated distances. Hence, the estimated

values for the continuous biological risk factors take into account both ageing and period

e�ects.

2.3.2.9 Diabetes mellitus

The last risk factor to be simulated for life histories is diabetes mellitus. As with smoking,

the ‘close to reality’ synthetic population is an accurate snapshot of diagnosed and non-

diagnosed diabetics in 2006. IMPACTNCD uses the validated for the English population

Qdiabetes
29

algorithm to calculate annual transitional probabilities of non-diabetic syn-

thetic individuals of developing diabetes mellitus.[243, 244] I assumed diabetes mellitus

28 The R objects for the models are available from https://github.com/ChristK/IMPACTncd/blob/Thesis_model

_version/Lagtimes/bmi.svylm.rda, https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lag

times/sbp.svylm.rda, and https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lagtimes/chol

.svylm.rda.

29 Previously known as QDscore.

https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lagtimes/bmi.svylm.rda
https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lagtimes/bmi.svylm.rda
https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lagtimes/sbp.svylm.rda
https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lagtimes/sbp.svylm.rda
https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lagtimes/chol.svylm.rda
https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lagtimes/chol.svylm.rda
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is an incurable chronic condition; therefore, synthetic individuals who develop diabetes

mellitus remain diabetics through their life course. In reality, the number of patients with

diabetes who truly become and remain normoglycaemic is very small.

2.3.3 Exposure and disease lag times

In section 1.3 on page 17 I described that risk factors have di�erent reversibility lag times

for di�erent diseases. This means that past level of exposures de�nes current disease risk.

IMPACTNCD is capable of simulating lag times between exposure and disease. All the

statistical models that have been described in the previous paragraphs that are used to

simulate individual histories for risk factor exposures include year and age as predictors.

Therefore, for any synthetic individual past exposures to risk factors are available during

the simulation and are used for the calculation of synthetic individuals’ disease risk (please

refer to section 2.4 on the next page).

Although this approach allows for di�erent lag times to be modelled for any exposure

and disease combination, given the lack of evidence for some of them, I followed a simpler

approach. I assumed a mean lag time of �ve years between any CVD related exposure and

CVD. I also assumed a mean lag time of eight years between any cancer related exposure

and cancers except for smoking. The e�ects of smoking on lung and gastric cancer appear

to be cumulative and the risk gradually declines after cessation (section 1.3.1 on page 18).

I modelled this gradual decline and I considered a 5-year mean lag time; hence the risk

starts its decline �ve years after successful smoking cessation. Given the uncertainty of

these assumptions I allow them to vary stochastically following a binomial distribution

(please refer to section 2.6 on page 62 and table A.1 on page 187).

The 5- and 8-year mean lag times were also selected for consistency with mean obser-

vation times of cohorts and randomised control trials that were used to extract the risk of

each exposure. Cohort studies and randomised control trials only seldom report relative

risks as a function of time. Therefore, the reported relative risks correspond to the mean ob-

servation time of each study. For instance, consider a risk factor A with 5-year lag time for

full reversibility. The excess risk will gradually decline in the 5-year period after exposure

to A stops. Now consider a randomised control trial that trialled an intervention against

risk factor A and lasted �ve years. The trial participants would be under observation usu-

ally for a di�erent duration because of di�erent recruitment dates. Therefore, not all of

them will experience the full risk reduction and the reported results from the trial will be

accurate only for the mean period of observation of its participants. Hence, it is important

for the lag times in IMPACTNCD to be similar to the mean observation times of the studies

from which the relative risks were extracted. Although lag times have been considered

for some comparative risk assessment[170, 171], to my knowledge IMPACTNCD is the only

simulation model that models di�erent lag times for CVD and cancers, in accordance with

existing evidence (section 1.3 on page 17).
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2.3.4 Birth engine

The birth engine represents step 4 in �gure 2.1 on page 45. The ONS principal assumption

fertility projections for England are used to estimate the number of new synthetic individu-

als entering the model through birth, in every simulated year.[245] The newborn synthetic

individuals have no behavioural risk factors and inherit the percentile ranks for the bio-

logical risk factors from a random member of the household, in which the newborns are

born. The birth engine only becomes important for simulations with a simulation horizon

longer than 30 years.

2.4 disease module

The disease module contains the last three steps of the model (�gure 2.1 on page 45). For

each synthetic individual aged 30 - 84, the risk (probability) to develop each of the modelled

diseases is estimated in step 5 conditional on the exposure to relevant risk factors. The step

ends by selecting synthetic individuals to develop the modelled diseases. Finally in steps 6

and 7, the risk of dying from one of the modelled diseases or any other cause is estimated

and applied. Steps 2 to 7 are then repeated for the surviving individuals until the simulation

horizon is reached.

2.4.1 Estimating the annual individualised disease risk

Step 5 in �gure 2.1 on page 45 is the step where annual disease incidence is estimated.

First, the exposure levels of all the modelled risk factors are transformed to relative risks

for the modelled diseases using information from published studies (table 2.2 on page 70).

This is performed for all synthetic individuals with ages between 30 and 84, and the lag

times de�ne the simulation year from which the exposure levels are extracted. Then,

IMPACTNCD estimates what would be the probability of the synthetic individuals devel-

oping the disease conditional on their age and sex, if their exposures were at optimal

levels. Finally, it uses this probability to calculate the individualised annual probability

of a synthetic individual developing a speci�c disease conditional on his/her relevant past

risk exposures. This is a three stage process.

1. The proportion of disease incidence attributable to the modelled risk factors is es-

timated by age and sex, assuming a lag time.

2. Then, the estimated proportion from the previous step is subtracted from the total

disease incidence, assuming multiplicative risks.

3. The probability of developing the disease is estimated for each synthetic individual.

Then, it is used in an independent Bernoulli trial to identify those synthetic individu-

als, who will develop the disease in the speci�c simulated year.

In the following paragraphs I will describe in more detail these three stages, which are

performed separately for each of the modelled diseases.
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stage 1: This stage is based on the PAF, an epidemiological method that measures the

proportion of the disease burden that can be attributed to a speci�c risk factor exposure in

a population.[246] In other words what proportion of the disease burden could have been

eliminated from the population if nobody was exposed to the risk factor. Its formula is:

PAF =

pe(RR − 1)

pe(RR − 1) + 1

(2.1)

Where:

pe the prevalence of the risk factor in the population

RR the associated relative risk of the risk factor for the disease that the PAF is

calculated for

In a microsimulation setting for a disease with k associated risk factors and assuming

multiplicative risk factors formula (2.1) can be written as:

PAF = 1 −

n

n

∑

i=1

(RR1 ∗ RR2 ∗ ⋯ ∗ RRk)

(2.2)

Where:

i the synthetic individuals

n the number of synthetic individuals

RR1 ∗ RR2 ∗ ⋯ ∗ RRk the relative risks of the risk factors associated with the disease

IMPACTNCD uses formula (2.2) to estimate the proportion of the disease incidence attrib-

utable to the modelled risk factors, by age and sex. I de�ned the optimal levels for each

exposure below which no excess risk exists, from the same studies that I extracted the

relative risks.

stage 2: In this stage IMPACTNCD estimates the disease incidence not attributable to

the modelled risk factors using the formula:

Itℎeoreticalminimum = Iobserved ∗ (1 − PAF ) (2.3)

Where:

Iobserved the disease incidence

PAF the PAF estimated from formula (2.2) in stage 1

Itℎeoreticalminimum the disease incidence if all the modelled risk factors were at optimal

levels

The theoretical minimum incidence is calculated by age and sex only in the initial year

of the simulation and it is assumed constant thereafter. Therefore, I assume that the only

drivers of time trends in age-standardised disease incidence are the modelled risk factors.
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stage 3: Assuming that Itℎeoreticalminimum is the baseline annual probability of a syn-

thetic individual to develop the disease for his/her age and sex due to non-modelled risk

factors (i. e. genetics), the individualised annual probability developing the disease,

Pr(disease ∣ age, sex, exposures), conditional on his/her exposure to risk factors is:

Pr(disease ∣ age, sex, exposures) = Itℎeoreticalminimum ∗ RR1 ∗ RR2 ∗ ⋯ ∗ RRk (2.4)

Formula (2.4) is applied every simulated year, for every non-diseased synthetic individual

aged 30 to 84 and for every disease. Then independent Bernoulli trials select the synthetic

individuals that will develop the disease in every simulated year.

For the initial year of the simulation, some synthetic individuals need to be allocated

as prevalent cases for each of the modelled diseases. IMPACTNCD uses disease prevalence

as input and randomly allocates synthetic individuals as prevalent cases in the synthetic

population. I assumed that the concentration of risk factors is higher among the prevalent

cases compared to the general population. Therefore, prevalent cases are sampled inde-

pendently from the synthetic individuals in the population with weights proportional to

their relevant exposures.

2.4.1.1 Disease incidence and prevalence

The previous algorithm requires disease incidence and prevalence for the initial simulation

year as inputs. As I have explained in section 1.1 on page 7 and section 1.2 on page 13, with

the exception of cancer incidence, these are poorly quanti�ed for England. However, a few

sources exist although their risk of bias is high because they are either self-reported, or

are indirect estimates from health care data. Therefore, I opted for a modelling solution

to synthesise all the available information from the available sources and model incidence

and prevalence using the mathematical relation between disease incidence, mortality, and

prevalence.

I used the WHO model named DisMod II for this. DisMod II is a multistate life table

model that is able to estimate the incidence, prevalence, mortality, fatality, and remission

of a disease, when information about at least three of these indicators is available.[247] A

similar approach has been followed by the Global Burden of Disease team and others.[248–

255]

For CHD, I used as inputs for DisMod II: 1. the ONS reported CHD mortality rates (In-

ternational Classi�cation of Diseases, version 10 (ICD10): I20-25) for England in 2006 by

age group and sex;[256] 2. the self-reported prevalence rates of CHD from HSE2006 by age

group and sex;[207] 3. the sum of angina incidence rate estimates from primary care data

and AMI incidence rate estimates from mortality and hospital statistics by age group and

sex.[7, 92] I assumed CHD as an incurable chronic disease, therefore I set the remission

rate to zero. Hence, the DisMod II output incidence rates were actually the incidence rates

for the �rst ever manifestation of angina or AMI excluding any recurrent episodes. Dis-

Mod II allows past trends to be included as model inputs for more accurate estimations. I

assumed that incidence and case fatality had been declining by 3 % (relative), over the last
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20 years, based on �ndings by Smolina et al.[7] The derived CHD incidence, prevalence

and case fatality were used as inputs for IMPACTNCD. The approach for stroke was very

similar to CHD. The Lee et al. study was used to extract incidence rates and trends.[13]

For lung and gastric cancers the incidence and survival for the �rst and �fth years from

the cancer registries are reported by the ONS on an annual basis. However, prevalence,

remission, and case fatality are not recorded in the cancer registries. Hence, I used DisMod

II to estimate them. I only will describe here the process for lung cancer since that for

gastric cancer was similar. Speci�cally, I used: 1. the ONS reported lung cancer mortality

rates (ICD10: C34) for England in 2006 by age group and sex;[256] 2. the ONS reported

lung cancer incidence rates (ICD10: C34) for England in 2006 by age group and sex;[257]

3. from the ONS reported �rst and �fth year survival rates,[258] I extrapolated the tenth

year survival rates by age group and sex, assuming survival follows a Weibull distribution.

Then I assumed the tenth year survival rate equals remission rates. With these as inputs

DisMod II estimated lung (and gastric) cancer prevalence and case fatality rates that are

used by IMPACTNCD.

2.4.2 Simulating disease histories

In the previous step, IMPACTNCD estimates disease incidence. In the current one (step 6 in

�gure 2.1 on page 45), IMPACTNCD simulates important aspects of the modelled diseases.

Since in the current phase of development IMPACTNCD is used to model primary preven-

tion policies, a detailed disease history module is not necessary. Therefore, only the �rst

ever episodes of CHD and stroke are modelled explicitly and not recurrent episodes.
30

For

the moment, in this step IMPACTNCD models the observable spike of short term (30 days)

mortality after the �rst event of AMI or stroke. The ‘Coronary heart disease statistics 2012

edition’ report was used to extract data regarding short term mortality.[92] Furthermore,

for cancers, remission is modelled using DisMod II output remission rates by age and sex

(section 2.4.1.1 on page 58).

2.4.3 Simulating mortality

So far, I have described how the synthetic population is developed and evolved over time

(steps 1 to 4 in �gure 2.1 on page 45), then how the risk of developing disease is estimated

and disease progress (steps 5 to 6 �gure 2.1 on page 45). Finally, the model simulates the

resulting mortality in the last step of the algorithm (step 7 in �gure 2.1 on page 45). All

synthetic individuals are exposed to the risk of dying from any of their acquired modelled

diseases or any other non-modelled cause in a competing risk framework. The algorithm

behaves di�erently depending on the age and life course trajectory of the synthetic indi-

vidual.

30 This step may be expanded in the future to explicitly model health care interventions.
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For synthetic individuals with ages 0 to 29 or 85 to 99,
31

IMPACTNCD uses all-cause

mortality rates by age, sex, and QIMD to inform independent Bernoulli trials and select

synthetic individuals that die in every simulated year. For years 2006 to 2013 in the simula-

tion, I used the observed mortality rates as they were reported by the ONS.[256] For years

after 2013 observed mortality was not available. Therefore, I �tted functional demographic

models
32

to the ONS reported annual mortality rates from years 2002 to 2013, strati�ed by

sex and QIMD. I used these models to forecast mortality rates up to the simulation horizon

using the R package ‘demography’.[260]

2.4.3.1 Disease-speci�c mortality

For synthetic individuals with ages between 30 and 84 all-cause mortality was decomposed

into modelled diseases speci�c mortality and any other-cause mortality. The former ap-

plies only to the prevalent cases of each modelled disease in the synthetic population. For

this, disease-speci�c case fatality rates by age and sex that were estimated by DisMod II

(section 2.4.1.1 on page 58) are used for further calculations. Speci�cally, I assumed that

CHD, stroke, lung and gastric cancers case fatalities are improving by 4 %, 4.5 %, 3 %, and

2.5 % (relative) respectively, every year. Furthermore, I assumed that there is a constant

socioeconomic gradient in case fatalities by QIMD level of approximately 5 %, 3 %, 3 %, 4 %

for CHD, stroke, lung and gastric cancers respectively, that is halved for ages over 70. The

socioeconomic gradient forces the more deprived to experience worse disease outcomes.

These assumptions are based on extensive empirical evidence.[21, 92, 107–110, 261] After

these calculations, the modi�ed case fatality rates are used in independent Bernoulli trials

to select prevalent cases that die from the modelled disease in every simulation year.

2.4.3.2 Other-cause mortality

For mortality from any other cause, a process similar to the one described for ages 0 to 29

and 85 to 99 is followed (section 2.4.3 on page 59). However, this time modelled disease-

speci�c mortality (i. e. CHD, stroke, lung, and gastric cancers mortality) is removed from

the observed mortality before forecasting to avoid double counting.

2.4.3.3 E�ect of smoking and diabetes mellitus on other-cause mortality

The DECODE study suggested that diabetes mellitus increases the risk of non-CVD mor-

tality.[262] Similarly, the ‘male British doctors’ study suggested that smoking increases

the risk of non-CVD and non-lung cancer mortality.[263] IMPACTNCD models these �nd-

ings by in�ating the mortality rate for smokers and diabetics based on �ndings from these

two studies. This is performed again using a PAF approach and formulas equation (2.2) on

page 57 and equation (2.3) on page 57.

31 IMPACTNCD has a maximum age limit of 100 years.

32 Functional demographic models are generalisations of the Lee Carter demographic model, in�uenced by ideas

from functional data analysis and non-parametric smoothing.[259]
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2.4.3.4 Randomising the order mortality is calculated

The sequence that mortality from each of the modelled diseases or any other cause is cal-

culated is important and may introduce bias. For example, consider a synthetic individual

that is a prevalent case of CHD and lung cancer simultaneously. If in each simulated year,

CHD mortality was always calculated before lung cancer mortality, this would decrease

the probability of the individual to die of lung cancer. This is a well known limitation

of discrete time microsimulations.[196] IMPACTNCD randomises the order that mortality

from each cause is calculated to reduce this bias.

2.4.4 Algorithm repeat

Finally, synthetic individuals who remain alive after this step progress to the next year

and start again from step 1 (�gure 2.1 on page 45), unless the simulation horizon has been

reached. IMPACTNCD records incidence, prevalence, and mortality for the modelled dis-

eases for every simulated year.

2.5 scenario specification

The method I described so far, is used to model the baseline scenario. Primary prevention

policies can then be modelled as counterfactual scenarios, by altering the baseline scenario.

I will discuss the justi�cation of speci�c scenarios and the parameters that de�ne them in

the relevant result chapters. I will present here an overview of the available options within

IMPACTNCD framework. In general, primary prevention policies can be modelled through

their e�ects on the relevant risk factor exposures, in three di�erent ways:

option 1: Population-wide interventions can be modelled by altering the intercept or

the coe�cients of the regression equations that are used to estimate life histories (sec-

tion 2.3.2.2 on page 50). For example, when continuous risk factors are considered, adding

or subtracting from the intercept increases or decreases the related risk factor for each syn-

thetic individual; therefore, the mean of the risk factor for the whole population. Altering

the year coe�cient accelerates, decelerates or reverses the trend for the whole population.

Likewise, altering the QIMD coe�cients or/and the coe�cient of the interaction between

year and QIMD can simulate di�erential e�ects and trends by QIMD. A similar approach

sometimes is possible also for the non-continuous risk factors. The bene�t is that by just al-

tering a few parameters the changes are translated down to individual level characteristics

in a computationally e�cient way.

option 2: Targeted interventions can be modelled by selecting synthetic individuals

with a speci�c trait or combination of traits, and apply an intervention to them. For ex-

ample, to simulate the e�ect of statins a simple approach would be to randomly select 30 %

of the synthetic individuals with total cholesterol higher than 4 mmol/l not currently on
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statins; and apply a 25 % reduction of their total cholesterol between steps 4 and 5 (�g-

ure 2.1 on page 45).

option 3: Some hybrid combination of the previous methods or some more complex

approaches have the time slow down, stop in a speci�c year, or running backwards to

simulate ‘disaster’ scenarios.

2.6 handling uncertainty in the model

There are four sources of uncertainty in decision modelling[264–266]:

stochastic uncertainty: This is the random variability in outcomes for identical

synthetic individuals. For example, consider two identical synthetic individuals both hav-

ing a probability of 5 % to develop CHD at a certain year in the simulation. Two independ-

ent Bernoulli trials are performed to decide which of them will develop CHD, or not. The

outcome of the Bernoulli trials is random. This type of uncertainty is also known as Monte

Carlo error, or �rst order uncertainty.

parameter uncertainty: This is the uncertainty of the parameters that are used as

modelled inputs. For example, consider smoking relative risk for CHD. The true relative

risk is unknown and depends on a plethora of known and unknown factors. Epidemi-

ological studies can only approximate the true relative risk. Furthermore, epidemiological

studies quantify only the sampling error of their estimates, leaving other sources of bias in

the qualitative realm. Parameter uncertainty is sometime called second order uncertainty.

heterogeneity: This is the variability that can be explained by individual charac-

teristics. For example, smoking relative risk for CHD may di�er by age of the smoker,

duration, and intensity of smoking. Heterogeneity is embedded in microsimulations, but

requires substantial e�ort to be modelled in a macrosimulation setting.

structural uncertainty: This uncertainty arises from model structure and mod-

elling decisions and assumptions. For example, in discrete time microsimulations the se-

quence of the events is usually preprogrammed in each cycle. This simpli�es model build-

ing, however, in the real world the sequence of events is seldom �xed.

2.6.1 An illustrative example

The following example illustrates the di�erent types of uncertainty. Consider a simple mi-

crosimulation with only one input, a 5 % annual risk for CHD. If this risk is applied to all

synthetic individuals and randomly draws from a Bernoulli distribution with P = 5% to

select those who will manifest the disease, only stochastic uncertainty is considered. If the

annual risk for CHD is further parametrised to be conditional on individual characteristics

(i. e. age, sex, exposure to risk factors), then individual heterogeneity is considered. Going
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one step further, if the uncertainty of the annual CHD risk is incorporated in the microsim-

ulation because for example it is informed by a cohort study with a known sampling error,

then parameter uncertainty is considered. Finally, structural uncertainty may stem from

the fact that the risk factors that were modelled may not be truly associated with CHD.

From the four types of uncertainty, only parameter uncertainty and possibly structural

uncertainty may be reduced from better future research.

2.6.2 Quantifying uncertainty

Quantifying overall model uncertainty from all four types of uncertainty is not an easy

task and only rarely do models incorporate a full uncertainty analysis in their estimates.

Some argue that full uncertainty analysis is sometimes pointless especially when the policy

maker has no power to reduce the uncertainty by providing for example more accurate

inputs.[266] Nevertheless, acknowledging information gaps is a huge advantage of mod-

elling because it can guide future research and help policy makers to make informed de-

cisions given the level of certainty in the model.[156, 266]

IMPACTNCD implements a second order Monte Carlo approach to quantify uncertainty

in the model for each scenario. This approach allows stochastic uncertainty, heterogeneity,

and parameter uncertainty to be propagated in the model outputs. Second order Monte

Carlo is a method to study uncertainty by repeating each scenario simulation multiple

times; for each iteration a di�erent set of input parameters is used. Essentially, every

microsimulation is a �rst order microsimulation because the outcome is assessed for each

synthetic individual separately and each synthetic individual has a di�erent set of traits.

Therefore, it combines stochastic uncertainty and heterogeneity. In a second order Monte

Carlo a set of input parameters is sampled from their respective uncertainty distributions

and is then used in a �rst order Monte Carlo.[264, 265]

IMPACTNCD repeats each modelled scenario 1000 times. A di�erent set of input para-

meters is sampled from uncertainty distributions in each iteration. I assumed log-normal

distributions for relative risks and hazard ratios, normal distributions for parameters in-

formed by coe�cients of linear regression equations, and PERT distributions
33

for inputs

based on user assumptions. The choice of these distributions is common practice in mod-

elling.[268] For relative risks and hazard ratios, the distributions were bounded above one

when their mean was above one and vice versa. For example, I did not allow high blood

pressure to reduce the risk for CVD under no circumstances. All parameter input distri-

butions that are used in IMPACTNCD are summarised in table A.1 on page 187. Because

of this approach, IMPACTNCD returns a distribution for each model output instead of a

unique value. I summarise the output distributions by reporting medians for point es-

timates and interquartile ranges (IQRs) (in the form of �rst and third quartiles) for the

estimated uncertainty. The structural uncertainty is not quanti�ed in the model outputs.

However, IMPACTNCD is grounded on fundamental epidemiological ideas and well estab-

33 The PERT distribution is a version of the Beta distribution. It is very useful in modelling experts’ estimates

because it can be parametrised with a minimum, a maximum, and a ‘most likely’ (mode) value. A forth

parameter can used to re�ect experts’ ‘level of belief’ to their estimates.[267]



64 methods

lished causal pathways; therefore, I consider this type of uncertainty relatively small in

this particular case.

Two modelling decisions are particularly important for understanding uncertainty in

IMPACTNCD. The �rst is that for parameter uncertainty, only the sampling error from the

epidemiological studies was considered. This decision was made because epidemiological

studies only quantify uncertainty from sampling error and an attempt to quantify i. e. bias

would be highly subjective. The second decision is more subtle. Many scenarios share the

vast majority of input parameters and di�er only in a few of them. For example consider

two tobacco control policies, one reducing smoking prevalence by 5 % and the other by 10 %.

Modelling these two policies would require all other model inputs to be the same, except for

smoking prevalence. However, all shared input parameters have an estimated uncertainty

which may be of importance. If the interest is in a relative comparison between the two

policies, then the uncertainty from the share parameters is not important because it mostly

cancels out. However, if the interest is in estimating absolute values of prevented cases

of CVD for example, then the uncertainty from the shared parameters becomes important.

IMPACTNCD uses the same input parameter values for the shared input parameters and the

same initial population in each iteration. This allows for ‘paired’ comparisons between

scenarios that result in substantially less estimated uncertainty than the uncertainty of

isolated scenarios. It is worth noting that despite the initial population being the same

for each scenario in each iteration, life courses are not. The same synthetic individual

may have a di�erent life course under each modelled scenario, not only as a result of the

modelled policy but also because of chance.

2.7 model outputs

2.7.1 Policy e�ectiveness metrics

IMPACTNCD tracks incidence, prevalence, and mortality of the modelled diseases by year,

and it can stratify them by any of the modelled individual traits. When comparing e�ect-

iveness of policies though, the derived metrics of cases prevented or postponed and deaths

prevented or postponed appear more useful because they summarise the estimated e�ect-

iveness of the policy in two numbers. Cases prevented or postponed from a policy are

measured by subtracting the number of incident cases observed under the policy scenario,

from the number of incident cases observed under the baseline scenario, over a period of

time. The calculation is similar for the deaths prevented or postponed.

2.7.2 Policy equity metrics

Please refer to section 1.4.4 on page 29 for a gentle introduction on measuring socioeco-

nomic inequalities in health. In the next paragraphs I will reverse the perspective from

population inequalities to policy equity and I will describe the policy equity metrics that

IMPACTNCD estimates.
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2.7.2.1 Absolute and relative equity slope indices

Cases and deaths prevented or postponed can be strati�ed by QIMD. However, because

QIMD has �ve levels, comparison of the equity of a policy is not straightforward. Mack-

enbach et al. developed two more sophisticated measures of socioeconomic inequalities in

health, the slope index of inequality (SII) to measure absolute inequality and the relative in-

dex of inequality (RII) to measure relative inequalities. Both are regression based measures

that take into account the size and relative socioeconomic position of groups.[115]

In the spirit of slope and relative index of inequality I developed the absolute equity

slope index and the relative equity slope index; two regression based metrics, to measure

the impact of the modelled interventions on absolute and relative socioeconomic health

inequalities. However, instead of directly measuring inequalities in a population in the way

that SII and RII do, they measure the impact of an intervention on existing inequalities.

The basic principles of the metrics are illustrated in this simpli�ed example. Consider

the simple example of a population that consists of only two mutually exclusive and same

sized socioeconomic groups, the ‘deprived’ and the ‘a�uent’. The two groups experience

di�erent incidence of a disease; supposedly, 50 and 10 incident cases among the deprived

and the a�uent, respectively, every year. Hence, the absolute socioeconomic inequality

for disease incidence is 50 − 10 = 40 cases and the relative socioeconomic inequality is

50/10 = 5. If a hypothetical intervention ‘A’ prevents the same number of cases in both

groups, absolute inequality will remain stable. If intervention ‘A’ prevents more cases in

the a�uent group, absolute inequality will increase and vice versa. For relative inequality

to remain stable, the decrease in cases need to be proportional to the observed number

of cases. For example, a hypothetical intervention ‘B’ that reduces 10 % of cases in each

group will have no e�ect on relative inequality. If the proportional reduction is higher

in the a�uent group compared to the deprived, then relative inequality will increase and

vice versa. The same principles apply when the population is split into �ve unequally

populated socioeconomic groups as with QIMD. However, in this case, the absolute and

relative inequalities cannot be de�ned by a simple subtraction or deviation and the SII and

RII have to be used. If an intervention prevents an equal number of cases for every QIMD,

SII will remain unchanged. If the proportional reductions of cases for every QIMD are

equal, RII will remain unchanged.
34

Inspired by the SII and RII the absolute equity slope index is the slope of the regression

line �tted in the number of cases prevented or postponed by an intervention, by QIMD

(dependent variable). To account for the di�erent population sizes in each QIMD each

group is given a score, called ridit score, which re�ects the average cumulative frequency

of the group (independent variable).[269] A positive slope means that the intervention

prevents more cases in the more deprived QIMD and reduces absolute inequality in the

population and vice versa. The magnitude of the slope is proportional to the reduction in

absolute inequality. The relative equity slope index is constructed and interpreted similarly,

except that the proportion of cases prevented or postponed over the total cases in each

34 Assuming that the deaths prevented by the intervention do not change the relative size of the socioeconomic

groups.
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socioeconomic group is the independent variable, and it measures the e�ect on relative

socioeconomic health inequality.

2.7.2.2 Equity summary chart

The equity summary chart presents, in a simple two dimensional chart, the impact of the

interventions on disease incidence, and absolute and relative socioeconomic inequality.

The horizontal axis represents the number of cases prevented or postponed and the ver-

tical axis represents the decrease (or increase) in absolute inequality. An ‘equity’ curve

divides the graph in two parts. Interventions above the equity curve decrease relative in-

equality and interventions below it increase relative inequality (please refer to �gure 5.2

on page 130 for a plotted example). The equity summary chart and the equity curve have

an underlying assumption. For a given overall reduction of disease burden in the whole

population attributable to an intervention, there is one and only one way to distribute this

reduction among the socioeconomic groups, that can reduce absolute socioeconomic in-

equality and have no impact on relative socioeconomic inequality. The advantage of the

equity summary chart is that presents on a two axes chart the impact of the intervention on

disease incidence, absolute, and relative inequalities in agreement with recommendations

by health inequalities experts (section 1.4.4 on page 29).

2.8 technical specification

IMPACTNCD has been developed in R and is currently deployed in an 80 core server run-

ning Scienti�c Linux v6.2.[209] IMPACTNCD is built around the R package ‘data.table’,

which imports a new heavily optimised data structure in R.[270] Most functions that op-

erate in a data table have been coded in C to improve performance. Each iteration for

each scenario is running independently in one of the cores and the R package ‘foreach’ is

responsible for the distribution of the jobs and collection of the results.[271] To ensure stat-

istical independence of the pseudorandom number generators running in parallel, the R

package ‘doRNG’ was used to produce independent random steams of numbers, generated

by L’Ecuyer’s combined multiple recursive generator.[272, 273]

2.9 discussion

In this chapter, I have presented the IMPACTNCD framework in an accessible way for

non-technical readers, while I provide access to the source code of the model for those

familiar with R programming language. The Brighton declaration recognised communic-

ating model aspects and model uncertainty to policy makers as a major challenge in the

�eld.[161] I believe that my approach of presenting IMPACTNCD is addressing this chal-

lenge to a certain extent.

In section 1.7 on page 40 I stated that one of the aims of my thesis was to build a sim-

ulation model that would be reusable, transparent, and comprehensive. IMPACTNCD is

reusable because it simulates a virtual world that is informed by the current knowledge
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about the real world. Any primary prevention policies, additional NCDs or even health

care can be modelled as extensions to the current model which speeds up development

time. IMPACTNCD is transparent because it is open-source. Anyone can see the source

code, use it, or improve it without prior permission. It is also transparent because all

of its algorithms are presented as a narrative, which does not require advance technical

knowledge to be understood. Finally, IMPACTNCD is a comprehensive model because it

is grounded on well accepted principles of traditional and social epidemiology to model

the interplay of the wider determinants of health with risk factor exposures and disease

burden.

Unlike other microsimulations, data requirements for IMPACTNCD are limited to a health

survey of the population and population vital statistics. All other input sources are pub-

lished epidemiological studies. The studies that inform IMPACTNCD were selected because

of their high quality. When available, individual level meta-analyses were preferred over

dose response meta-analyses of summary statistics, and dose response meta-analyses were

preferred over meta-analyses of summary statistics and primary epidemiological studies.

All IMPACTNCD sources have been summarised in table 2.2 on page 70. In some cases, more

than one suitable meta-analyses were identi�ed to inform IMPACTNCD sources (i. e. to in-

form the relative risk of environmental tobacco smoking for lung cancer, or the relative

risk of fruit and vegetable consumption for lung cancer). I report this in the column named

‘Comments’ in the aforementioned table. In all such cases, the di�erences in the parameter

estimates where very small, especially compared to the overall uncertainty of the model.

It was not possible to identify any suitable meta-analyses to inform the relative risk of

non-CVD mortality for diabetics and non-CVD non-lung cancer mortality for smokers.

In those cases I identi�ed two cohort studies that reported these relative risks.[262, 263]

Finally, I rejected meta-analyses that did not report their results by age group, sex, and spe-

ci�c disease (i. e. separately for CHD and stroke instead of overall CVD) when alternative

meta-analyses existed that reported their results strati�ed by age group, sex, and speci�c

diseases.

The core of the disease module in IMPACTNCD is based on the PAF. PAF is a very useful

epidemiological idea and is used in every comparative risk assessment and many simula-

tion models, like SimSmoke, IMPACT and the DYNAMO-HIA (section 1.6.1 on page 35).

However, the equation (2.1) is valid only when there is no confounding in the exposure/dis-

ease association,[274] an assumption that rarely holds for NCDs. Many alternatives have

been proposed to relax this assumption, however none of them have been widely used

due to their complexity and data requirements.[274–276] Seminal comparative risk assess-

ments have used slightly modi�ed versions of equation (2.1) assuming multiplicative risks

and using relative risks adjusted for confounding.[30, 32, 171] Rückinger et al. compared

the performance of the original PAF formula with some of the proposed alternatives and

showed that indeed the original formula performs badly. Unfortunately, they did not in-

clude in the comparison a version of the original formula with the multiplicative risk as-

sumption.[277] If they had, it would have performed as well as the most accurate and

advanced method in the estimation of the total burden of disease attributable to all the
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risk factors that have been included in the study.
35

In IMPACTNCD I also assumed multi-

plicative risk factors and I used adjusted relative risks to estimate the theoretical minimum

disease incidence if all exposures were at optimal level (section 2.4.1 on page 57). The re-

calculation of Rückinger et al. results provide some evidence that my approach does not

introduce substantial bias.

The main IMPACTNCD assumptions and limitations have been summarised in table 2.1

on the facing page and they are further discussed in section 8.5 on page 173. Other assump-

tions had to be made to address smaller gaps in knowledge and have been mentioned in

their relevant paragraphs in this chapter. They are further discussed in the relevant result

chapters. In the next chapter I will examine IMPACTNCD validity and I will explore the

impact of these assumptions on model outputs.

35 From table 3 in Rückinger et al. [277] the best performing methods have a sum of 90.3 (columns 4-6). The

original formula has a sum of 259.8 (column 1) and the original formula with adjusted odd ratios a sum of

194 (column 2). A recalculation of the sum of the second column assuming multiplicative risks gives sum =

1 − (1 − 0.588) ∗ (1 − 0.228) ∗ (1 − 0.336) ∗ (1 − 0.23) ∗ (1 − 0.173) ∗ (1 − 0.263) ∗ (1 − 0.122) = 91.3, similar to the

best performing methods.
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Table 2.1: IMPACTNCD key assumptions and limitations.

Population module Migration �ows are not considered

Social mobility is not considered

QIMD is a marker of relative area deprivation with several versions since 2003. I consider all versions of QIMD approximately unchanged

I assume all salt that is consumed is excreted from urine and all urine sodium origins from salt consumption

I assume that the surveys used, are truly representative of the population

Disease module I assume multiplicative risk e�ects

I assume log-linear exposure – response relationship for the continuous risk factors

For CVD, I used modelled incidence rates derived from mortality and prevalence data

I de�ne CVD as the sum of CHD and stroke cases

I assume that the e�ects of the risk factors on incidence and mortality are equal and risk factors are not modifying survival

I assume 5-year mean lag time for CVD and 8-year for lung and gastric cancers (except for the cumulative e�ect of smoking on lung and gastric

cancers in which case lag time is assumed �ve years)

I assume 100 % risk reversibility

I assume that trends in disease incidence are attributable only to trends of the relevant modelled risk factors

Only well accepted associations between behavioural and biological risk factors that have been observed in longitudinal studies are considered.

However, the magnitudes of the associations were extracted from a series of nationally representative cross-sectional surveys (HSE)

For lung and gastric cancers, I assume that survival 10 years after diagnosis equals remission

Abbreviations: cardiovascular disease (CVD); coronary heart disease (CHD); Health Survey for England (HSE); quintile groups of Index of Multiple Deprivation (QIMD).
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Table 2.2: IMPACTNCD main data sources.

Parameter Source Comments

Initial population structure O�ce for National Statistics. Published ad hoc data:

health, requests during December 2014. 2014.[256]

Mid-year population estimates for England. Strati�ed

by age, sex, QIMD for years 2002-2013

Fertility rates O�ce for National Statistics. National population pro-

jections, 2012. 2013.[245]

Principal assumption fertility projections for England.

Strati�ed by age for ages 15 to 46

Mortality rates O�ce for National Statistics. Published ad hoc data:

health, requests during December 2014. 2014.[256]

Recorded mortality in England for years 2002-2013.

Strati�ed by age, sex, QIMD, and cause of death

Synthetic individuals’ exposure to risk factors

through their life course

HSE2001-2012 datasets[204–208, 232–238] Anonymised, individual level datasets from an annu-

ally repeated cross-sectional health survey in England.

Years 2001-2012

Salt consumption relative risk for gastric cancer

incidence

Food, nutrition, physical activity, and the prevention of

cancer: a global perspective. Washington, DC: World

Cancer Research Fund and American Institute for Can-

cer Research, 2007 . Figure 4.6.1

Meta-analysis of 2 cohort studies. Both studies adjus-

ted for age, sex, and smoking. One was also adjusted

for non-green/yellow vegetable intake and the other

for education, gastric disorders, and history of gastric

cancer in the family. None was adjusted for Helicobac-

ter pylori

E�ect of salt consumption on SBP Moza�arian D et al. Global sodium consumption and

death from cardiovascular causes. N Engl J Med

2014;371:624–634. Text S1 in the appendix

Meta-analysis and meta-regression of 103 trials with

duration longer than seven days

Ideal salt consumption below which no risk was

considered

Moza�arian D et al. Global sodium consumption and

death from cardiovascular causes. N Engl J Med

2014;371:624–634. Text S4 and Table S3 both in the ap-

pendix

Evidence from ecological studies, randomised trials

and meta-analyses of prospective cohort studies. In-

take levels associated with lowest risk ranged from

1.5 g/d to 6.0 g/d

continued . . .
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. . . continued

Parameter Source Comments

Active smoking relative risk for CHD and stroke Ezzati M et al. Role of smoking in global and regional

cardiovascular mortality. Circulation 2005;112:489–

497. Table 1 Model B

Reanalysis of the CPSII prospective cohort study, with

6-year of follow-up. Strati�ed by age and sex. Adjus-

ted for age, race, education, marital status, ‘blue collar’

employment in most recent or current job, weekly con-

sumption of vegetables and citrus fruit, vitamin (A, C,

and E) use, alcohol use, aspirin use, body mass index,

exercise, dietary fat consumption, hypertension, and

diabetes at baseline

Active smoking relative risk for lung cancer Tammemägi MC et al. Selection criteria for lung-

cancer screening. N Engl J Med 2013;368:728–736.

Table 2

PLCO Cancer Screening Trial. The statistical model es-

timates the probability of a diagnosis of lung cancer

within a 6-year period taking into account smoking in-

tensity and duration

Active smoking relative risk for gastric cancer González CA et al. Smoking and the risk of gastric can-

cer in the European Prospective Investigation Into Can-

cer and Nutrition (EPIC). Int J Cancer 2003;107:629–

634. Table III

EPIC prospective cohort study with 5-year follow-up.

Strati�ed by country. Adjusted for sex, consumption of

vegetables, fresh fruits, processed meat, alcohol, body

mass index, and educational level

Active smoking relative risk for other-cause mortality Doll R et al. Mortality in relation to smoking: 50

years’ observations on male British doctors. BMJ

2004;328:1519. Table 1

Male British doctors prospective cohort study with 50

years follow-up. Age-standardised. IMPACTNCD ex-

cludes the excess mortality risk from CHD, stroke, or

lung cancer if any of these diseases are explicitly mod-

elled in the simulation

Ex-smoking relative risk for for CHD Huxley RR et al. Cigarette smoking as a risk factor for

coronary heart disease in women compared with men:

a systematic review and meta-analysis of prospective

cohort studies. Lancet 2011;378:1297–1305. Web�gure

8

Meta-analysis of pooled estimates from 19 prospective

studies. Multiply adjusted

continued . . .
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. . . continued

Parameter Source Comments

Ex-smoking relative risk for stroke Wolf PA et al. Cigarette smoking as a risk factor for

stroke: the Framingham study. JAMA 1988;259:1025–

1029.

The Framingham study. Prospective cohort study.

Stroke risk decreased signi�cantly by two years and

was at the level of never-smokers by �ve years after

cessation of cigarette smoking

Ex-smoking relative risk for lung cancer Tammemägi MC et al. Selection criteria for lung-

cancer screening. N Engl J Med 2013;368:728–736.

Table 2

PLCO Cancer Screening Trial. The statistical model es-

timates the probability of a diagnosis of lung cancer

within a 6-year period taking into account smoking

intensity and duration, and years since smoking

cessations

Ex-smoking relative risk for gastric cancer González CA et al. Smoking and the risk of gastric can-

cer in the European Prospective Investigation Into Can-

cer and Nutrition (EPIC). Int J Cancer 2003;107:629–

634. Table IV

EPIC prospective cohort study with 5-year follow-up.

Strati�ed by country. Adjusted for sex, consumption of

vegetables, fresh fruits, processed meat, alcohol, body

mass index, and educational level

Environmental tobacco smoking relative risk for CHD He J et al. Passive smoking and the risk of coronary

heart disease — A meta-analysis of epidemiologic stud-

ies. N Engl J Med 1999;340:920–926. Table 3, adjusted

model

Meta-analysis of 10 cohort and case-control studies.

Adjusted for important CHD risk factors

Environmental tobacco smoking relative risk for

stroke

Oono IP et al. Meta-analysis of the association between

secondhand smoke exposure and stroke. J Public

Health 2011;33:496–502. Figure 1

Meta-analysis of 20 prospective, case-control, and

cross-sectional studies, 13 studies adjusted for import-

ant CHD risk factors. The overall e�ect from all 20

studies was used

Environmental tobacco smoking relative risk for lung

cancer

Kim CH et al. Exposure to secondhand tobacco smoke

and lung cancer by histological type: a pooled analysis

of the International Lung Cancer Consortium (ILCCO).

Int J Cancer 2014;135:1918–1930. Table 3

Meta-analysis of individual data from 18 case-control

studies. Adjusted for age, sex, race/ethnicity, and study.

Study reports odds ratio. I assumed that relative risk is

approximately the same. Results are similar to previ-

ous meta-analyses by Taylor et al. [283]

continued . . .
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. . . continued

Parameter Source Comments

SBP relative risk for CHD and stroke Prospective Studies Collaboration. Age-speci�c relev-

ance of usual blood pressure to vascular mortality: a

meta-analysis of individual data for one million adults

in 61 prospective studies. Lancet 2002;360:1903–1913.

Figures 3 and 5

Meta-analysis of individual data from 61 prospective

studies. Strati�ed by age and sex. Adjusted for regres-

sion dilution and total blood cholesterol and, where

available, lipid fractions, diabetes, weight, alcohol con-

sumption, and smoking at baseline

Total cholesterol relative risk for CHD and stroke Prospective Studies Collaboration. Blood cholesterol

and vascular mortality by age, sex, and blood pres-

sure: a meta-analysis of individual data from 61 pro-

spective studies with 55 000 vascular deaths. Lancet

2007;370:1829–1839. Webtable 6 fully adjusted and Fig-

ure 3

Meta-analysis of individual data from 61 prospective

studies. Strati�ed by age and sex. Adjusted for regres-

sion dilution, age, sex, study, SBP, and smoking

BMI relative risk for CHD and stroke The Emerging Risk Factors Collaboration. Separate

and combined associations of body-mass index and

abdominal adiposity with cardiovascular disease: col-

laborative analysis of 58 prospective studies. Lancet

2011;377:1085–1095. Table 1 and Figure 2

Meta-analysis of 58 prospective studies. Strati�ed by

age. Adjusted for age, sex, smoking status, SBP, history

of diabetes, and total cholesterol

BMI relative risk for gastric cancer Continuous Update Project report: diet, nutrition,

physical activity and stomach cancer. Research rep.

World Cancer Research Fund International/American

Institute for Cancer Research, 2016 . Table 8, p37

Non-linear dose response meta-analysis for risk of car-

dia gastric cancer. Adjusted for age, sex, and smoking

Diabetes mellitus relative risk for CHD and stroke The Emerging Risk Factors Collaboration. Diabetes

mellitus, fasting blood glucose concentration, and risk

of vascular disease: a collaborative meta-analysis of

102 prospective studies. Lancet 2010;375:2215–2222.

Figure 2

Meta-analysis of 102 prospective studies. Strati�ed by

age. Adjusted for age, smoking status, BMI, and SBP

continued . . .
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. . . continued

Parameter Source Comments

Diabetes mellitus relative risk for other-cause

mortality

The DECODE Study Group. Is the current de�nition

for diabetes relevant to mortality risk from all causes

and cardiovascular and noncardiovascular diseases?

Diabetes Care 2003;26:688–696.

DECODE, a collaborative prospective study of 22 co-

horts in Europe. Adjusted for BMI, SBP, smoking, and

total cholesterol

Physical activity relative risk for CHD and stroke [69, Tables 10.19 and 10.20] Meta-analysis of 18 cohort studies for CHD and eight

cohort studies for ischaemic stroke. Strati�ed by age

and sex. Adjusted for measurement error, age, sex,

smoking, SBP, and total cholesterol

Fruit and vegetable consumption relative risk for

CHD

Dauchet L et al. Fruit and vegetable consumption and

risk of coronary heart disease: a meta-analysis of co-

hort studies. J Nutr 2006;136:2588–2593.

Dose response meta-analysis of nine cohort studies.

Multiply adjusted. Dauchet et al. reported possible

publication bias. However, their results are almost

identical to meta-analysis from Wang et al. (their res-

ults were not a a�ected by publication bias), and to a

large cohort study from Oyebode et al. [49, 50]

Fruit and vegetable consumption relative risk for

stroke

Dauchet L et al. Fruit and vegetable consumption and

risk of stroke: a meta-analysis of cohort studies. Neur-

ology 2005;65:1193–1197.

Dose response meta-analysis of seven cohort studies.

Multiply-adjusted

Fruit and vegetable consumption relative risk for lung

cancer

Vieira AR et al. Fruits, vegetables and lung cancer risk:

a systematic review and meta-analysis. Ann Oncol

2016;27:81–96. Figure 2A

Dose response meta-analysis of 14 cohort studies.

No extra bene�t for consumption higher than 400 g.

Evidence of heterogeneity bias and publication or

small study bias. Very similar to Wang et al. meta-

analysis.[53]

continued . . .



2
.9

d
i
s
c

u
s
s
i
o

n
7
5

. . . continued

Parameter Source Comments

Fruit and vegetable consumption relative risk for

gastric cancer

Lock K et al. Comparative quanti�cation of health

risks. Chapter 9: low fruit and vegetable consumption.

Geneva: World Health Organisation, 2004 . Table 9.28

Reanalysis of the Netherlands Cohort study. Strati�ed

by age group. Adjusted for age, sex, smoking, educa-

tion, gastric disorders, and family history of gastric

cancer. I considered a risk only for less than two por-

tions per day.[24]

Abbreviations: body mass index (BMI); coronary heart disease (CHD); Health Survey for England (HSE); quintile groups of Index of Multiple Deprivation (QIMD); O�ce

for National Statistics (ONS); systolic blood pressure (SBP).
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VA L I D AT I O N

3.1 introduction

In the previous chapter, I described the inputs, logic, and outputs of IMPACTNCD.

IMPACTNCD is a complex model that, like any other simulation model, is based on in-

complete data, numerous assumptions, and approximations. In this chapter I will present

the validation of the model components to explore the impact of the assumptions and

approximations on the outputs of the model.

The International Society for Pharmacoeconomics and Outcomes Research jointly con-

vened with the Society for Medical Decision Making Modelling Good Research Practices

Task Force has de�ned validation as “. . . a set of methods for judging a model’s accuracy

in making relevant predictions”.[287] The Task Force identi�ed �ve types of validation:

1. Face validity; this consists of experts’ evaluation of the model inputs, processes, and

outputs.

2. Internal validity; to what extent mathematical equations and coding are correct and

consistent.

3. Cross validity; this is a between models comparison of the outputs to assess and

explain similarities and di�erences.

4. External validity; the comparison of model outputs to real world events.

5. Predictive validity; this is similar to external validity except that it requires model

outputs to precede the real world event.

Despite the numerous validation types, the Task Force accepted that “it is not possible

to specify criteria a model must meet to be declared ‘valid’ . . . ”. However, the Task Force

recommended that external and predictive validity are the most desirable and solid valid-

ation types. While a model cannot be declared valid, speci�c model applications can.

In response to the Task Force recommendations Vemer et al. insightfully argued that

the state of the art validation de�nition used by the Task Force was inspired by more tech-

nical disciplines and lacks �exibility and practicality when applied to health care models.

Vemer et al. o�ered an alternative de�nition; “. . . the act of evaluating whether a model is

a proper and su�cient representation of the system it is intended to represent in view of

an application”. They further clari�ed the terms ‘proper’ as “. . . in accordance with what

is known about the system” and ‘su�cient’ as “. . . that the results can serve as a solid basis

for decision making”. Finally, Vemer et al. argued that while a model cannot be declared

as ‘valid’ in general, a practical approach could be to declare a model “valid enough to

reliably support a decision to be based on its outcomes”.[288]

77



78 validation

The aim of this chapter was to assess the validity of all IMPACTNCD components. I

used the International Society for Pharmacoeconomics and Outcomes Research jointly

convened with the Society for Medical Decision Making Modelling Good Research Prac-

tices Task Force recommendations as a guide, but in the spirit of Vemer et al. response.

3.2 methods

For the purpose of validation, IMPACTNCD can be reduced to three distinctive elements:

1. the initial static synthetic population (section 2.3.2.1 on page 46); 2. a process to evolve

the synthetic population, and generate life histories (section 2.3.2.2 on page 50); and �-

nally 3. a process to transform changes of risk factor exposures into changes in diseases

incidence and mortality (section 2.4 on page 56). In this section I will describe the valida-

tion process of all three IMPACTNCD elements. Face validity is discussed separately in the

‘Discussion’ section of this chapter (section 3.4 on page 97), as it is more subjective.

The initial static synthetic population was validated by plotting graphs to visually com-

pare risk factor exposure distributions of a random sample of 200 000 synthetic individuals

with the corresponding distributions of the survey that was used as the primer. I used mo-

saic plots for categorical variables and empirical cumulative distribution plots for ordinal

and continuous variables. Mosaic plots are graphical representations of a contingency

table of two or more categorical variables, using tiles with areas proportional to the fre-

quencies in each cell of the table.[289] I also calculated the linear correlation structure of

the survey population and compared it with the linear correlation structure of the syn-

thetic population. Many variables were nominal or ordinal and the continuous variables

were not normally distributed. I used Spearman correlations for the continuous variables,

polychoric correlations for the categorical variables, and polyserial correlations for com-

parisons between ordinal and continuous variables.[290, 291] I used the R package ‘wCorr’

to calculate the linear correlations.[292]

To validate the regression models that were used to evolve the synthetic population

over time and simulate life histories of the synthetic individuals, I again used a graphical

approach. For continuous risk factors, I plotted the mean exposure of the synthetic pop-

ulation against the mean exposure in the corresponding survey for years 2001 to 2012.
36

Similarly, for nominal and ordinal risk factors I plotted their prevalence in the synthetic

population and the corresponding survey.

Next, I assessed how the changes in risk factor exposures over time re�ect on disease

incidence and mortality trends. Speci�cally, I �rst plotted the IMPACTNCD estimated lung

and gastric cancers incidence rates against those reported from the cancer registries for

years 2006 to 2013. Then, I plotted the IMPACTNCD predicted CHD, stroke, lung and gastric

cancers mortality rates against those reported from the mortality registry for years 2006

to 2013. Finally, I �tted a Bayesian age-period-cohort model to the data from the mortality

registry and I used it to forecast mortality rates up to 2035.[293, 294] Throughout the

36 After I removed the boost samples from HSE.
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validation process I strati�ed my analysis by age group, sex, and QIMD whenever relevant

and the available data allowed for.

3.3 results

3.3.1 Initial synthetic population

I plotted graphs to compare the exposures of a random sample from the synthetic popula-

tion to the HSE2006 sample. The graphs serve as internal validation and are presented in

appendix B.1 on page 197 to allow unobstructed text �ow. It is evident especially in the

cumulative distribution graphs and the mosaic plot for diabetes mellitus validation (�g-

ure B.12 on page 209) that the method I used to generate the initial synthetic population

creates synthetic individuals with a combination of traits not present in the primer survey.

Furthermore, the method was able to produce a synthetic population with linear correla-

tion structure similar to the one in the primer survey (�gure B.15 on page 212). In general,

the graphs suggest that the initial synthetic population is indeed close to reality.

3.3.2 Risk factor trends (life histories)

Similarly, for the validation of risk factor trends I compared trends of risk factor exposures

in a sample of the synthetic population, to the observed exposure trends in HSE and the

Sodium Survey series. I strati�ed by age group, sex, and when data allowed by QIMD. I

present the graphs in appendix B.2 on page 213. Overall, the graphs provide evidence that

the regression models that were used for the simulation of individual life histories (sec-

tion 2.3.2.2 on page 50) have captured trends by age, sex, and QIMD adequately. Therefore,

IMPACTNCD captures and simulates the observed dynamics in population exposures.

3.3.3 Disease incidence trends

The following graphs validate IMPACTNCD against observed cancer incidence trends. Only

the incidence rates for 2006 were used as model input. Therefore, unlike the validation of

the population module, this is external validation. IMPACTNCD appears to simulate gastric

cancer incidence rate trends accurately. On the contrary, it moderately underestimates the

magnitude of the upward trend of lung cancer in women incidence. This may be because

IMPACTNCD uses a sex agnostic equation developed by Tammemägi et al. to estimate the

cumulative risk of smoking.[295] However, smoking may be more harmful in women than

men, although the evidence is still inconclusive.[296] The issue and a practical solution

is further discussed in section 7.2.3 on page 150. As it was discussed in section 1.1.3.2 on

page 8, the true incidence of CVD is largely unknown, so this part of the model cannot be

easily validated.
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3.3.4 Mortality trends

Finally, the following graphs conclude the external and cross validation of the disease

module. CHD mortality rate trends validation appears to be reasonably good both against

the observed mortality trends and the forecasted estimates from the Bayesian age-period-

cohort model.

Stroke mortality validation appears to be less accurate than the one for CHD mortality,

especially for older ages and comparing to the Bayesian age-period-cohort model fore-

casts (�gure 3.9 on page 89 and �gure 3.10 on page 90). This is most likely an artefact.

In 2011, ONS updated the software used for cause of death coding, from ICD10 v2001.2

to v2010. One of the consequent changes was that since 2011, vascular dementia deaths

have not been coded under cerebrovascular deaths, which led to a reduction in the recor-

ded cerebrovascular deaths in older ages.[297] I was able to adjust for that in the estim-

ates strati�ed by sex (�gure 3.8 on page 88); however, this was not possible for the data

strati�ed by QIMD that were also used to �t the Bayesian age-period-cohort model. The

sudden decrease of cerebrovascular deaths from 2011 onwards, in�uenced the Bayesian

age-period-cohort to underestimate the mortality rates forecast for older age groups.

IMPACTNCD appears to overestimate lung cancer deaths. This is more pronounced for

older ages and more deprived groups. Given that the lung cancer incidence estimates from

IMPACTNCD were rather an underestimation, the overestimation of mortality is probably

the result of the case fatality assumptions (section 2.4.3.1 on page 60). On the contrary,

gastric cancer mortality trends are reproduced well by IMPACTNCD.
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3.4 discussion

The previous graphs suggest that the synthetic world of IMPACTNCD replicates the real

world reasonably well. They also present in a transparent and non-technical manner pos-

sible biases in the model that may be helpful when assessing model outputs. For example,

the impact of smoke free places legislation led to a sharp decrease in the prevalence of en-

vironmental tobacco smoking between 2005 and 2008. I chose to model environmental to-

bacco smoking as a linear function of smoking prevalence for simplicity and computational

e�ciency. The impact of this assumption is explicitly depicted in the graph (�gure B.22

on page 220), although the overall impact on disease incidence and mortality is rather

small because environmental tobacco smoking has a small excess risk overall (table A.1

on page 187). The explicit nature of most modelling assumptions is an enormous advant-

age of modelling compared to all the traditional research methods.[156] In the following

paragraphs I will discuss all the validation types for IMPACTNCD.

3.4.1 Face validity

The development of IMPACTNCD was supervised by two NCD modelling experts, (Dr Mar-

tin O’Flaherty and Prof Simon Capewell), and a computational statistics and health inform-

atics expert (Prof Iain Buchan). It was also scrutinised by co-authors and peer reviewers

and published in a high impact medical journal with further manuscripts already submitted

or pending submission.[298] In addition, the methods of the model have been presented

and discussed with experts in Farr institute local meetings. The outputs of the model have

been presented in several epidemiological conferences and local and national stakeholder

meetings.[299–301] Finally, IMPACTNCD is scheduled to be used to model populations of

countries other than England, as well as local populations within England in the near fu-

ture.

3.4.2 Internal validity

The graphs in the results section (section 3.3 on page 79) are the obvious internal valida-

tion of IMPACTNCD. The initial synthetic population is similar to the primer survey; the

simulated life histories are replicating acceptably the recent observed population trends

of risk factor exposures; and disease incidence and mortality for 2006 that were used as

inputs are replicated in the outputs. However, the open-source paradigm of IMPACTNCD

is a less obvious component of its internal validation. Apart from the IMPACTNCD source

code itself that is open and can be reviewed and improved by the online community, all

the R packages that IMPACTNCD uses are also open-source and are under scrutiny by ex-

perts from industry and academia. Moreover, R is an open-source programming language

by statisticians and for statisticians.[209, 302] This ensures that all operations in R are

naturally grounded in statistical methodology, unlike any other programming language.
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3.4.3 Cross validity

I assessed the cross validity of IMPACTNCD by comparing its mortality rate estimates with

a Bayesian age-period-cohort model.[293] The two model outputs are in agreement gen-

erally. Interestingly, during the validation process IMPACTNCD revealed that the sharp

decrease of stroke deaths after 2010 was an artefact. On the contrary, the Bayesian age-

period-cohort model was trapped in the data and projected the artefactual drop in the

future. This vividly highlight the bene�ts of building models around core epidemiological

principles. I further compare speci�c scenario outputs of IMPACTNCD with other model

outputs in the following chapters, where I model speci�c policies.

3.4.4 External and predictive validity

IMPACTNCD incidence and mortality estimates for the modelled diseases have been ex-

ternally validated against the ONS reported estimates. Given the aims and objectives of

my thesis (section 1.7 on page 40) validation of the disease module was important and

suggests that IMPACTNCD estimates are not far from reality. Furthermore, it shows that

the model can successfully translate risk factor changes into incidence and then mortality

changes. It is also able to replicate the socioeconomic gradients in risk factor exposures

(di�erential exposure, �gure 1.8 on page 27), the clustering of risk factor exposures in the

most deprived groups (di�erential vulnerability, �gure 1.8 on page 27), and the socioeco-

nomic gradients in case fatalities (di�erential consequences, �gure 1.8 on page 27). This is

particularly important, because it essentially validates the underlying mechanism that is

used in all modelled scenarios, later in the thesis. IMPACTNCD only exists for less than two

years. Therefore, predictive validation would be impossible. It would be very interesting

however, to compare the reported model outputs in this thesis with observed CVD and

cancer incidence and mortality in the years to come.

3.5 conclusions

Despite the numerous assumptions and limitations, this extensive validation exercise

provides evidence that IMPACTNCD is ‘valid enough’ to support decision-making about

primary prevention policies spanning populations and life courses. It is worth noting that

all model inputs are informed by available data and epidemiological reasoning, and are not

a product of an optimisation process or extensive calibration. Unfortunately, it is very rare

for existing models to report an extensive validation process. In fact, the majority of pub-

lished models report some fragments of validation, and many do not report any validation

process. This may be one of the reasons modelling is sometimes treated with suspicion by

public health policy makers and researchers. Yet, modelling provides the option for extens-

ive validation and calibration of the modelling assumptions in comparison to traditional

research methods that may use implicit, and therefore untested, assumptions.
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This chapter concludes the �rst part of the thesis. In the next part I will use IMPACTNCD

to model speci�c primary prevention policies and I will discuss the overarching themes

that will emerge from these simulation exercises.





Part II

A P P L I C AT I O N S O F I M PA C T N C D





4
T H E R O L E O F S TAT I N S I N T H E O B S E R V E D C H O L E S T E R O L

D E C L I N E

4.1 introduction

In chapter 1 I described that high serum total cholesterol is a risk factor for CVD and

that the population exposure to this risk factor has been declining for some decades (sec-

tion 1.3.8 on page 23). Consequently, serum total cholesterol remains one of the main

targets for primary and secondary prevention of CVD and there is an ongoing discussion

regarding what drives the observed decline. It is likely that initial decline was the result

of dietary changes alone, in particular, the substitution of animal fats with vegetable oils

in the English diet.[303] Nevertheless, over the last two decades the use of lipid lower-

ing medication has increased dramatically in England. The raise can be attributed to a

class of lipid lowering medicines known collectively as ‘statins’ that revolutionised the

treatment options for hypercholesterolaemia.[304] Hence, more recent changes of mean

cholesterol in the population are probably re�ecting the interplay between improving diet

and increasing statin use.

Despite a plethora of information on the e�ectiveness of statins at the individual level,

especially for secondary prevention, their contribution to the total cholesterol fall in the

wider population remains unclear. Farzadfar et al. and Cohen et al. suggest that statins are

important in lowering population mean total cholesterol in high income countries includ-

ing the US.[305, 306] However, it seems that this is neither completely true, nor universal

because: 1. large falls in total cholesterol occurred before statins were widely used; [134,

303, 307, 308] and 2. the large recent total cholesterol falls observed in Iceland, Sweden,

the Czech Republic, and Finland are principally attributed to improved diets.[309–312]

Unlike many other NCD risk factors, total cholesterol shows no socioeconomic gradi-

ent in young adults and an inverse socioeconomic gradient may exist for older adults,

thus more a�uent groups appear to have higher total cholesterol levels, especially since

1998.[83, 313] Given the known socioeconomic gradient in unhealthy diet in England,[88]

it is not clear why no such gradient is observed in total cholesterol and what is the role of

statins in this. Theoretically, statin prescription is a healthcare based intervention requir-

ing individual action, which might potentially increase inequalities.[143, 314] Essentially,

promoting statins for primary prevention of CVD is a typical high-risk, agentic interven-

tion (please refer to section 1.5 on page 30 for an overview of policy typologies); yet, there

is no obvious socioeconomic gradient in mean total cholesterol levels.

The debate about statins for primary prevention of CVD became heated a few years ago.

In 2013, the American College of Cardiology and the American Heart Association updated

their recommendations for the treatment of total cholesterol, substantially widening the

criteria for statin prescription in otherwise healthy individuals.[315] A year later, NICE

103
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made similar recommendations for England. Speci�cally, NICE now recommends statins

prescription for healthy individuals that have more than a 10 % 10-year risk of developing

CVD, down from 20 %.[316] This has almost doubled the number of eligible adults, from 7

to 12 million and has proved very controversial.[317, 318]

The primary objective of this chapter is to quantify the contribution of statins to the ob-

served fall in population mean cholesterol levels in England over the past two decades. A

secondary objective was to look for any di�erences in this contribution between socioeco-

nomic groups.

4.2 methods

I used an early version of IMPACTNCD for this chapter. Therefore, many features of the

fully developed model that have been described in the Methods (section 2.2 on page 43)

were not yet mature enough at that time. Namely, the close to reality synthetic population

and the dynamic traits of the synthetic individuals. Hence, in a static microsimulation

framework (section 2.1.2 on page 43), I analysed changes in observed mean total choles-

terol levels in England’s adult population between 1991-92 (baseline) and 2011-12. I then

compared the observed changes with a counterfactual ‘no statins’ scenario, where the im-

pact of statins on population total cholesterol was estimated and removed. Any gap would

then be attributed to all other possible drivers of population cholesterol levels, principally

diet. I strati�ed my analysis by age group, sex, and where possible and relevant, by the

2010 version of QIMD.[319]

4.2.1 Survey data

In detail, I used individual level data from the HSE for the two respective periods.[204,

205, 320] For the 2011-12 period I aggregated the data of HSE2011 and HSE2012, while for

1991-92 this was independently performed by HSE analysts. These cross-sectional surveys

provide a representative sample of the community dwelling population in England for the

respective years (please refer to section 2.3.1 on page 46 for a more detailed description).

The data �les contained anonymised information for all the participants. I excluded parti-

cipants younger than 18 years old. For HSE2011-12 both the weighting and the sampling

design were considered in the estimation of all the point estimates and their standard er-

rors. In particular, the weighting adjusts both for selection and non-response bias. The

sample for HSE1991-92 was unweighted, therefore, only the sampling design was taken

into account.

4.2.2 Socioeconomic strati�cation

Unfortunately, there were no common socioeconomic indicators between the two samples;

QIMD was therefore used for the 2011-12 sample and social class based on occupation (I –

V) was used for the 1991-92 sample. The HSE team provided the QIMD of each participant
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for HSE2011-12 based on their postcode of residence. I opted to use the QIMD instead

of other available socioeconomic classi�cation systems mainly for two reasons. First, the

QIMD was the only socioeconomic indicator that had no missing cases in my data; and

second, for my results to be comparable with other studies that used QIMD. The HSE1991-

92 social class classi�cation was based on the 1990 version of the Standard Occupational

Classi�cation and the self-reported occupation of the participants.[94] Social class was

provided as a variable in the data, by the HSE team. I aggregated full time students, armed

forces personnel, those who never worked, and those whose occupation was not fully

described in one category (‘Other’). In my analysis, I avoided any direct comparisons

between the two socioeconomic classi�cation systems.

4.2.3 Total cholesterol measurement

In 2011-12 a smaller sample within the total HSE sample was eligible and consented to

provide non-fasting blood samples for the measurement of total cholesterol in serum. For

HSE1991-92, participants aged 18 and over were asked to provide a blood sample for the

same purpose. Since April 2010 the equipment that was used for the measurement of total

cholesterol for HSE was replaced. The e�ect of this change was that measured concen-

trations of total cholesterol from this date onwards were on average 0.1 mmol/l higher. I

adjusted for this di�erence in my analysis by subtracting 0.1 mmol/l from the respective

total cholesterol measurements.

4.2.4 Estimating statin utilisation

In England, individuals may have access to statins using two available routes. Statins

can either be prescribed to them by a doctor (or an authorised non-medical prescriber),

or they can be bought over the counter from a pharmacy with or without prior expert

advice. HSE assessed both routes. In 2011-12, during a nurse interview, the participants

were asked to report the medication that had been prescribed to them by a doctor or by a

non-medical prescriber. Speci�cally for statins, they were also asked whether these were

bought over the counter. Finally, those that had been prescribed a statin or bought it over

the counter were asked if they had used it during the past seven days. I only considered

the participants that answered positively in the last question as statin users. For HSE1991-

92 the participants were asked similar questions during the nurse interview. However,

statins were included in the wider category of lipid lowering medication and not recorded

separately as in 2011-12. In any case, statin prescription was not prevalent before 2000

and it was primarily limited for secondary prevention.[308, 321] Since the uptake of the

lipid lowering medication category as a whole was very low, I assumed that statins had a

negligible e�ect on total cholesterol at population level; thus, I ignored it completely. For

further justi�cation of this assumption please refer to appendix C.1 on page 245.
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4.2.5 Statistical analysis

The analysis was performed in R statistical software and the R package ‘survey’.[209, 230]

An approximate 95 % con�dence interval (CI) for proportions (e. g. statin uptake) was cal-

culated from the survey data using the incomplete beta function method, with an e�ective

sample size based on the estimated variance of the proportion.[322] Missing cases were

excluded from the analysis.

To test the statistical signi�cance of socioeconomic trends in total cholesterol, against

the null hypothesis of ‘no trend’, I �tted a generalised linear model, with inverse probability

weighting and design based standard error (SE). Speci�cally, I treated total cholesterol

measurements as the dependent variable and the QIMD (or social class) as the independent

one. I considered QIMD and social class as numeric variables for this (e. g. QIMD 1 through

5 represented the 5 quintiles and social class 1 through 7 represented the social classes I, II,

IIIN, IIIM, IV, V and ‘Other’, respectively). Therefore, the � coe�cient (slope) of the QIMD

(or social class) and its SE was a measure of the socioeconomic gradient. When � was not

statistically signi�cant I assumed no socioeconomic gradient. When � was statistically

signi�cant, its sign revealed the direction of the gradient (e. g. a negative sign means that

mean total cholesterol is lower among the more deprived groups) and its absolute value

measured the magnitude of the gradient. A similar approach was followed to explore

socioeconomic trends in statin utilisation. Since this time the dependent variable was a

binary one, I used a binomial model.

4.2.5.1 Estimating the e�ect of statins

The average e�ect of each speci�c statin and strength on an individual’s total cholesterol

is known from the literature.[323–326] However, the exact type of statin and strength

had not been recorded for the participants in HSE2011-12. To overcome this limitation I

used the exact amount of statins (by proprietary name and strength) that were prescribed

and dispensed in England for 2011 and 2012,[327, 328] to estimate a weighted mean of the

proportional decrease of total cholesterol attributable to statins overall using the equation:

Ew =

∑

i

∑

j

(MijEij)

∑

i

∑

j

(Mij)

, (4.1)

Where

Ew the proportional decrease in mean total cholesterol attributable to statins, among

statin users

Eij the proportional decrease in mean total cholesterol attributable to a speci�c statin i

of a speci�c strength j (e. g. Simvastatin 20 mg)

Mij the number of units of a speci�c statin i and strength j that have been prescribed

and dispensed
37

37 A unit was considered equivalent of a tablet, or 5 ml for liquid forms.
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For the estimation of Eij data from four meta-analyses were used as follows: I obtained

the mean and SE (calculated directly from the 95 % CI assuming approximate normality) of

the proportional reduction in serum low density lipoprotein (LDL) from the meta-analysis

of Law et al. The proportional reduction was derived from the absolute reduction, stand-

ardised to usual serum LDL of 4.8 mmol/l before treatment and it was independent of the

pre-treatment LDL.[329] This allowed me to use a weighted mean approach on propor-

tions.

I then converted the LDL reduction into total cholesterol reduction using data from other

studies,[324–326] assuming an approximately linear relation between total cholesterol and

LDL reduction. For strengths not included in the above meta-analyses (e. g. Atorvastatin

30 mg), I used a log-linear regression model to estimate their e�ect, based on the e�ect of

known strengths. I weighted the model against the inverse variance of the cholesterol re-

duction. I considered the e�ectiveness of solid and liquid forms being approximately equal.

Similarly, the e�ectiveness of the combined forms of simvastatin with ezetimibe was con-

sidered equal to the e�ectiveness of same strength simvastatin (table C.1 on page 245). The

SE of Ew was estimated using Cochran’s de�nition for the SE of the weighted mean.[330,

331]

For the no statins scenario, I calculated the predicted total cholesterol for each statin

user, with the statin e�ect removed using the equation:

TCpred =

TCobs

1 − Ew

, (4.2)

Where

TCpred the predicted total cholesterol of the statin user with the statin e�ect removed

TCobs the observed total cholesterol of the statin user

Ew the proportional decrease in mean total cholesterol attributable to statins,

derived from equation (4.1) on page 106.

I used Monte Carlo simulation to propagate the uncertainty from the sampling distribu-

tion of Ew . For each statin user I drew 1000 values from a normal distribution with mean

Ew and standard deviation (SD) as per the estimated SE (described above). I then aver-

aged over the TCpred predictions and considered this mean value as the predicted total

cholesterol of each statin user, with the statin e�ect removed.

4.2.5.2 Quantifying the contribution of statins on the population’s mean total cholesterol
reduction

To quantify and compare the contribution of statins against the contribution of all other

total cholesterol lowering interventions in the population, I �rst plotted the mean total cho-

lesterol for 1991-92, 2011-12 and the no statins scenario by age for each sex. I considered

the area enclosed by the respective curves for 1991-92 and 2011-12 as representing the

full observed cholesterol reduction (area A). Therefore, the area enclosed by the 2011-12

and the ‘no statin’ scenario represents the reduction of cholesterol attributable to statins

(area B). Thus, the fraction (area B) / (area A) expresses the contribution of statins to the
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observed decline of mean total cholesterol. For the estimation of areas A and B, I used

natural spline interpolation as implemented in the R package ‘MESS’.[332]

To estimate the UI around the estimated contribution of statins, I modi�ed the previous

method to allow for a Monte Carlo simulation approach. Speci�cally, for each age in the

population, I drew 10 000 values from the conditional sampling distribution, which I ap-

proximated by a normal distribution with age-speci�c estimate mean and SE. These were

then averaged across the age range to yield a point estimate, and 2.5 % and 97.5 % percent-

iles were used to de�ne the 95 % UI. Due to the small representation of ages above 89 in

the sample, I aggregated participants older than 89 years with those aged 89.

Finally, I repeated the analysis separately for each QIMD under the assumption that

total cholesterol had no socioeconomic gradient in 1991-92. I further limited the analysis

in participants younger than 76 years because of the small number of older participants in

the sample, when strati�ed by QIMD. To test the statistical signi�cance of any observed

socioeconomic trend I used the two tailed Cochran-Armitage trend test.[333]

4.2.6 Sensitivity analysis

For the estimation of Ew several assumptions were involved that do not necessarily re�ect

on its estimated SE. I repeated my analysis after I multiplied the standard error of Ew by

a factor of 10 in order to test the robustness of my results with a higher than measured

uncertainty scenario.

4.3 results

The baseline characteristics of the 1991-92 and 2011-12 samples are summarised in table 4.1

on the facing page, while mean total cholesterol values by age group and sex are presented

in table 4.2 on page 110 (1991-92) and table 4.3 on page 111 (2011-12). Overall, the preval-

ence of statin use in England, including over the counter statin users was about 13.2 %

(95 % CI: 12.5 % to 14.0 %) in 2011-12. Another about 0.8 % (95 % CI: 0.6 % to 1.0 %) of the

population were prescribed or bought over the counter statins; however, they did not use

them for at least a week before the nurse interview.

For 1991-92, statin use was not speci�cally recorded in the survey; however, the preval-

ence of all lipid lowering medications, including statins, was approximately 0.5 % (95 % CI:

0.3 % to 1.0 %). Table 4.4 on page 112 summarises the prevalence of statin use in England

for 2011-12 by age group, sex, and QIMD. There was a statistically signi�cant socioeco-

nomic gradient in ages over 35 years for both sexes, in which the use of statins increased

with deprivation.

In 2011-12, some 13.1 % (95 % CI: 12.4 % to 14.0 %) of study population used statins pre-

scribed to them (not including over the counter users), over the seven days before the sur-

vey interview. I estimated the expected number of units (e. g. tablets or 5 ml doses of liquid

statins) that were consumed in England for the same period, assuming that they stayed on

statins for the whole year and that the institutionalised population shares the same con-

sumption attitudes, to be approximately 4 billion. This showed reassuringly close agree-
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Figure 4.1: Observed mean total cholesterol (mmol/l) decline in England between 1991-92 and 2011-12 in men

and women by age group. The error bars depict 95 % CI of the means. The vertical axis starts at 4 mmol/l to

improve readability. The dotted lines are visual aids and do not re�ect linear �ts.

ment with the observed unit consumption of almost 4.07 billion, being just 1.5 % lower.[327,

328])

The mean total cholesterol of the adult community dwelling population in England de-

creased from 5.86 mmol/l (95 % CI: 5.82 mmol/l to 5.90 mmol/l) in 1991-92 to 5.17 mmol/l

(95 % CI: 5.14 mmol/l to 5.20 mmol/l) in 2011-12. The decrease was observed in all age

groups and it was steeper for ages over 55 for women and 35 for men (�gure 4.1). The

inverse socioeconomic gradient observed since 1998 persisted overall and in the subgroup

of those aged over 55 years. No gradient was observed for other age groups (table 4.3

on page 111). On the contrary, I did not observe any socioeconomic gradient in 1991-92

with social class as a socioeconomic indicator when adjusted for age and sex (table 4.2 on

page 110). The trend remained non-signi�cant even when I placed the ‘Other’ social class

group before all other groups.

4.3.1 No statins scenario

I estimated the total e�ect of statins on total cholesterol reduction using the equation (4.1)

on page 106 as Ew = 25.7 % (95 % CI: 23.3 % to 28.0 %). The mean predicted total choles-

terol TCpred of the population was calculated to be 5.36 mmol/l (95 % CI: 5.33 mmol/l to

5.40 mmol/l).

Figure 4.2 on page 115 depicts the predicted mean total cholesterol of the population

without the e�ect of statins, against the observed mean total cholesterol in 1991-92 and

2011-12, by age and sex. When the e�ect of statins was removed, the inverse socioeco-

nomic gradient of cholesterol in the overall population disappeared (slope -0.01, 95 % CI:
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Figure 4.2: Mean total cholesterol by age, in men and women, in England (observed and predicted values).

Points depict mean total cholesterol and error bars depict 95 % CI. The curves were derived from weighted

local regressions. Due to small sample sizes I aggregated participants aged 89 with those older than 89 years.

To improve readability the axes are not numbered from 0.

-0.03 to 0.01, p = 0.45). Subgroup analysis revealed that for men over 55 the slope was

reduced to -0.05 (95 % CI: -0.10 to -0.01, p = 0.03) and for women over 55 the gradient was

essentially zero (slope -0.04, 95 % CI: -0.08 to 0.01, p = 0.09). In addition, a socioeconomic

trend appeared for women between 35 and 54 years with a slope of 0.05 (95 % CI: 0.01 to

0.10, p = 0.01). There was no other statistically signi�cant gradient, for the remaining age

groups.

Finally, statins were estimated as responsible for approximately 33.7 % (95 % UI: 28.9 %

to 38.8 %) of the total cholesterol reduction since 1991-92. When strati�ed by sex statins

contribution was 40.1 % (95 % UI: 33.6 % to 47.7 %) in men and 28.6 % (95 % UI: 22.3 % to

35.0 %) in women. Table 4.5 on page 114 summarises the contribution of statins for each

socioeconomic group, by age group and sex. The negative values in the UI, implying that

statins could have increased cholesterol to some, are an artefact of the Monte Carlo simula-

tion due to wide mean cholesterol CI overlapping in some ages. The contribution of statins

was consistently higher among men, consistent with the observed higher utilisation.
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4.3.2 Sensitivity analysis

The mean predicted total cholesterol (TCpred ) of the population, using the in�ated SE of

Ew , was calculated to be 5.39 mmol/l (95 % CI: 5.35 mmol/l to 5.42 mmol/l). This is less

than a 0.03 mmol/l di�erence from the main analysis. For the subgroup of deprived men

older than 55, with the highest statin utilisation, the TCpred from the sensitivity analysis

was 0.09 mmol/l higher than the one from the main analysis. Similarly, the contribution of

statins to the observed cholesterol decline for the whole population was estimated to be

33.9 % (95 % UI: 28.8 % to 38.7 %), a 0.2 % di�erence from the main analysis result. A similar

pattern of minimal changes was observed for the remaining results.

4.4 discussion

This is the �rst study to quantify the contribution of statins to the observed decrease of

total cholesterol in England’s population by socioeconomic group. My results strongly

suggest that the statins were not the main driver of total cholesterol reduction since 1991-

92. In fact, only around one third of the overall reduction might be attributed to statins, and

that was mainly in patients aged over 55 years and more so in men than women. Statins

were more widely used in deprived than a�uent areas. They appeared to help reduce

socioeconomic inequalities in total cholesterol among women, but not among men.

4.4.1 Utilisation of statins

In this study, the utilisation of statins was higher in more deprived areas for men and

women aged over 35 years. This socioeconomic pattern may partly re�ect the higher pre-

valence of CVD in more deprived areas[334] and the incentivised use of the QRISK score

for cardiovascular risk strati�cation in clinics, which includes area deprivation as a risk

factor for CVD.[335, 336] My �ndings are consistent with earlier studies that used di�er-

ent methodologies. Ashworth et al. and Wu et al. also report that statin prescription was

higher in more deprived areas in the UK.[337, 338] This success in tackling inequalities

might be attributed to the NHS, since evidence from Australia, Sweden, Denmark and the

US suggest that statin prescription in these countries has a socioeconomic gradient, with

a less than expected utilisation among the more disadvantaged, and potentially increases

health inequalities.[339–342]

4.4.2 Contribution of statins to total cholesterol decline

The second interesting �nding is the contribution of statins to the observed decline of total

cholesterol since 1991-92. I found that statins are not the main driver of the cholesterol

decline in England, echoing studies from Iceland, Sweden, Finland and the Czech Repub-

lic.[309–312] I estimated that only about a third of the observed total cholesterol decline

could be attributed to statins. This contribution was slightly higher than the aforemen-
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tioned studies, perhaps re�ecting a more recent time period with correspondingly higher

statin use in England 2011-12, and possible nuanced di�erences in methodologies. While

the cholesterol decrease was observed in all age groups since 1991, statins mostly contrib-

uted to the fall in people older than 55 years. Yet, some evidence exists which indicates

that cholesterol changes in the fourth and �fth decade of life are important and in�uence

CVD risk even 50 years later.[343]

On the contrary, using similar methodology to mine Bandosz et al. estimated that the

contribution of statins to the observed decline of total cholesterol in Poland since 2002 was

about 85 %.[344] The socioeconomic transformation of Poland in the 1990s led to signi�c-

ant improvements in diet and to a sharp decline in CVD mortality.[345] However, there

have been no comprehensive population-wide policies targeting unhealthy diet in Poland

since then. This is likely to be the explanation for the di�erent results between England

and Poland. Hence, this is a missed opportunity for Poland, rather than a case of a high-risk

interventions being more e�ective than a population-wide one.

The observed inverse socioeconomic gradient in total cholesterol levels might be partly

attributed to statins. In the no statins scenario the gradient disappeared completely when

all ages were considered. However, the statin contribution varied across di�erent genders

and socioeconomic groups. Statin utilisation was higher in the most deprived groups, but

inequitable by gender, reaching barely one third in women (34 %) but almost half (47 %) of

deprived men in the 55+ age group. This di�erence can, at least partly, be explained by

the higher CVD prevalence among men. By contrast, the statin contribution to cholesterol

lowering was rather stable across socioeconomic groups in men (some 33 %), but rose from

16 % to 33 % in women. This suggests that the component of all other cholesterol reduc-

tion drivers had a higher impact among the most deprived men, while their e�ect among

women of all socioeconomic backgrounds was more or less equal. This demands further

research.

4.4.3 Public health implications

Overall, my research supports the principle of statins being the second best option for

primary prevention. Non-statin interventions account for two thirds of the total choles-

terol reduction observed since 1991-92, which can be attributed to dietary changes because

physical activity levels have not increased substantially over this period.[308, 346] Indeed,

United Nations Food and Agriculture Organisation data indicate that the animal fat supply

per capita in the UK has fallen by almost 25 % since 1991.[347] This echoes Rose’s original

assertion that the greatest public health impact will be achieved through population-wide

reductions in CVD risk than through interventions targeting high-risk individuals (sec-

tion 1.5 on page 30).

Furthermore, the recent proposed widening of criteria for statin prescription in primary

prevention by the American College of Cardiology and the American Heart Association[315]

and NICE[348] has been questioned on grounds of e�ectiveness, cost-e�ectiveness, accept-

ability and safety.[318] These measures may prove to be less e�ective than anticipated be-

cause of cumulative attrition factors. Approximately half of the UK patients that are com-
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menced on lipid lowering medication for primary prevention are ineligible according to

the respective guidelines, while many eligible patients remain untreated.[338] Moreover,

over half the patients commenced on statins for primary prevention have discontinued

them within two years.[349–352] In addition to medicalising otherwise healthy individu-

als, some patients may also be tempted to adopt more unhealthy diets because of the false

reassurance that statins will compensate for the unhealthy behaviours.[353] Along with

the increased resource requirements, an additional opportunity cost comes from under-

mining the primary driver of cholesterol decline – nutritional improvements at individual

and national policy levels.[354]

Regarding inequalities in healthcare, my research suggests that English statin prescrib-

ing might be equitable. These results are intriguing, because healthcare based interven-

tions generally are expected to increase the inequality gap (section 1.5 on page 30). This

highlights why policy-making cannot be based only on theoretical evidence about the

equity of a proposed policy, and why modelling is vital in equity assessment. In this par-

ticular case, there are at least three factors that are likely to have improved the equity of

statin utilisation. First, this represents a success for the socialised medicine provided by

NHS England. Second, clinicians in England use the QRISK risk assessment algorithm to

estimate the risk of individuals of developing CVD in the next decade. QRISK includes

deprivation as one of the risk factors for CVD; therefore, it incentivises statin prescription

for the most deprived. Finally, CVD prevalence increases with deprivation; hence, the pro-

portion of statin utilisation that re�ects secondary prevention increases with deprivation.

4.4.4 Strengths and limitations

This study was grounded on the best available evidence to explore the research question.

I integrated all the available data from HSE, a high quality cross-sectional survey, the

Prescription Cost Analysis report, an accurate and precise report about prescriptions in

England, and published meta-analyses on the e�ect of statins. The modelling approach

allowed for the best use of all the available information. In fact, despite the assumptions

regarding the e�ects of statins my results were robust to the sensitivity analysis. Any

biases and errors were diluted because they only applied to about 13 % of the sample who

were statin users.

However, this study has several limitations. First, it is based on self-reported statin

prescription and adherence; nevertheless, consistent data from prescription cost analysis

reports for 2011-12 suggest that the estimated prevalence of statin utilisation is fairly accur-

ate. Second, unlike HSE2011-12,HSE1991-92 was not weighted to adjust for non-response

bias. Furthermore, no other HSE has recorded statin use separately from other lipid lower-

ing medication; this renders an interim point analysis between 1991 and 2011 practically

impossible. Third, there were no common or directly compatible socioeconomic indicat-

ors between the two surveys to allow for more accurate comparisons. My assumption that

there was no socioeconomic gradient of mean total cholesterol in 1991-92 is suggested

by my �nding of no such gradient by social class in HSE1991-92. This is consistent with

Scholes et al. who also found no socioeconomic gradient in 1994 using QIMD as socioeco-
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nomic indicator.[313] The Whitehall II cohort also showed no socioeconomic gradient for

total cholesterol in 1985-88.[355] Neither did my analysis consider other inequalities, for

instance, ethnic minorities or people with mental health or illiteracy problems.[337, 356,

357] Fourth, the estimate of the statin e�ect Ew was derived mostly from short term trials

lasting less than one year. Edward et al. have shown that the statins e�ect remains fairly

stable in trials lasting more than one year.[325, Additional �le 5] In addition, the estima-

tion of Ew assumes that the di�erences between each trial population and my study sub

sample of statin users were the same for each statin. Finally, I de�ned statin users as those

who had taken a statin at least once during the week before the nurse interview. Since

adherence is much higher in trials, my statins e�ect is probably an overestimation.[358]

4.5 conclusions

This chapter suggests that statins contributed about one third of the observed total choles-

terol decline in England since 1991-92. Their impact on reducing socioeconomic inequalit-

ies in total cholesterol was generally positive, even though it being an agentic intervention.

In England, statin prescription for primary CVD prevention is mainly promoted through

universal screening of the population; a programme known as NHS Health Checks. In the

next chapter I will explore the e�ectiveness and equity of NHS Health Checks.
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C A R D I O VA S C U L A R S C R E E N I N G F O R P R I M A R Y P R E V E N T I O N

5.1 introduction

The unquestionable e�cacy of pharmacological treatments for secondary prevention of

CVD primed the notion that similar medication would also be e�ective for primary pre-

vention. If treatment can substantially reduce the risk of a new CVD event after one

has already occurred, why not use the same treatment options on healthy individuals

to prevent the �rst CVD event from ever occurring? This, perhaps oversimpli�ed, argu-

ment seems a reasonable and particularly attractive option; especially among clinicians

and policy makers. The updated guidance to widen the criteria for statin prescription in

primary prevention is a recent example (chapter 4 on page 103). Yet, this approach may

pose risks and ine�ciencies when real life implementation is considered.

In England, the current governmental action plan to tackle CVD burden includes a pro-

gramme known as NHS Health Checks. Introduced in 2009, this programme promotes the

screening of all healthy individuals aged 40 to 74 for CVD risk strati�cation and treatment

of those at high-risk,[124, 359] an approach similar to the simpli�ed argument of the pre-

vious paragraph. However, the debate regarding the scienti�c foundation, e�ectiveness

and cost-e�ectiveness of this approach has been recently heated.[360–364] Despite this

controversy, the programme remains policy.

Beyond the obvious importance of the debate to national public health, its relevance ex-

tends internationally. Public health policy choices in the UK in�uence policy world wide;

the UK tobacco control and salt reduction strategies are two recent examples.[365, 366]

In essence, the debate about NHS Health Checks originates from the archetypal debate of

targeted ‘high-risk’ versus ‘population-wide’ preventive interventions that was �rst artic-

ulated by Geo�rey Rose (section 1.5 on page 30). In Rose terminology, NHS Health Checks

is the typical ‘high-risk’ intervention, since it targets high-risk individuals, rather than

lowering risk in the whole population.

The e�ectiveness of high-risk interventions for CVD prevention has been challenged be-

fore.[143] More recently, a Cochrane systematic review and the Inter99 trial have found no

bene�ts of health checks on CVD morbidity or mortality.[367, 368] There were, however,

major limitations to these studies: Inter99 trialled a counselling intervention not suppor-

ted by additional pharmacological treatment; and in the Cochrane review 9 out of 14 trials

were conducted before 1980, when the treatment options for high-risk individuals were

very limited. In addition, high-risk interventions may be more e�ective in populations

with high clustering of risk factors, resulting in high concentration of the risk to certain

groups in the population.[369] In fact, the English population has such characteristics, with

the concentration of CVD risk being higher among the most socioeconomically deprived

groups (section 1.4 on page 23).[313]

121
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High-risk interventions may generate health inequalities because they require active

participation of individuals in both screening and treatment of those at high-risk, favour-

ing those with more resources (please refer to primary prevention typologies, section 1.5

on page 30). The particular e�ect of NHS Health Checks on socioeconomic health in-

equalities however, remains unclear. Two national studies reported no di�erence in the

coverage of the intervention by deprivation and a slightly higher attendance among those

living in the most deprived areas;[370, 371] however, the actual uptake
38

was not studied.

In contrast, several smaller but more detailed studies showed signi�cantly lower uptake

in deprived areas.[372–374]

The aim of this chapter is to estimate the potential impact of universal screening for

primary prevention of CVD on disease burden and socioeconomic health inequalities in

England. Available data on the e�ectiveness of the NHS Health Check programme have

been used to model this scenario. I further compared universal CVD screening with: 1. an

alternative approach targeting only deprived areas; 2. with a feasible population-wide in-

tervention; and 3. with a combination of 1 and 2.

5.2 methods

This is the �rst results chapter that uses the dynamic features of the IMPACTNCD model

as have been described in chapter 2 on page 41.
39

The projection horizon was set at 2030

for this simulation, and the following scenarios were simulated.

5.2.1 Scenarios

baseline (current trends): In the baseline scenario, I assumed that the recent

observed trends in CVD risk factor trajectories by age, sex, and socioeconomic status will

continue in the near future. This is a similar scenario to the one that was described in the

Methods chapter (chapter 2 on page 41) and it was used for the validation of the model

(chapter 3 on page 77).

universal screening: This scenario modelled the potential health e�ects of uni-

versal screening to identify and treat people at high-risk for CVD. Input variables were

informed from current implementation of the NHS Health Check programme. Eligible

people were de�ned as adults aged between 40 and 74, excluding those with a known his-

tory of CVD, atrial �brillation, diabetes mellitus, rheumatoid arthritis, or renal disease;

closely resembling real life eligibility criteria. Based on existing evidence, I assumed an

38 Uptake is calculated by dividing those who attended by those who have been invited. It di�ers from coverage,

which has all eligible population in the denominator. This is important because if some practices invited �rst

those living in deprived areas, coverage does not re�ect the true equity of the intervention.

39 More accurately, this chapter represents work that I did during the �rst and second year of my PhD. Smoothing

of the model inputs had not been developed at that time, HSE2011 was used to prime the synthetic population

and the lag time was deterministic. The technical speci�cation of the model version that was used for this

chapter has been published and is available at http://www.bmj.com/highwire/filestream/924761/field_highw

ire_adjunct_�les/0/kypc031638.ww1_default.pdf.

http://www.bmj.com/highwire/filestream/924761/field_highwire_adjunct_files/0/kypc031638.ww1_default.pdf
http://www.bmj.com/highwire/filestream/924761/field_highwire_adjunct_files/0/kypc031638.ww1_default.pdf
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uptake of 50 % for screening,[375] and to mirror the UK population, I calibrated the distribu-

tion of the estimated 10 year risk of developing CVD among those participating: 70 % with

a less than 10 % risk, 25 % with between 10 % and 20 %, and 5 % with more than 20 %.[370] In

addition, I calibrated the age distribution so that around 30 % of those screened were older

than 60.[370] Participants with a higher than 10 % estimated 10 year risk of developing

CVD were considered at high-risk and eligible for treatment. I used the QRISK2 score to

estimate the perceived from healthcare 10 year risk of developing CVD.[336]

Based on published evidence, I assumed that about 24 % with an estimated risk of 20 % or

more and total cholesterol of 5 mmol/l or more will be prescribed Atorvastatin 20 mg and

about 27 % with an estimated risk of 20 % or more and a SBP of 135 mmHg or more will be

prescribed antihypertensive medication. For those with a risk between 10 % and 20 % I as-

sumed that about 17 % and 20 % will be prescribed treatment, respectively.[376] I assumed

an 80 % overall persistence to continue prescribing the medication and a mean adherence of

approximately 70 %, roughly based on evidence from Denmark.[352] Moreover, I modelled

high-risk participants with a body mass index of more than 50 kg/m
2

to undergo bariatric

surgery and reduce their BMI to 30 kg/m
2
. I assumed that with lifestyle counselling half

of the high-risk participants consuming fewer than �ve fruit and vegetable portions daily

will increase their consumption by a portion daily. Half of those being active for less than

�ve days a week will increase their physical activity by an active day each week, and all

high-risk participants will decrease their BMI by around 1 %.[376, 377] Finally, I modelled

10 % of high-risk smokers to achieve cessation for a year and have a probability of relapse

equal to that of the general population by sex, QIMD, and years since cessation.[378, 379]

concentrated screening: In the concentrated screening scenario, I simulated a

hypothetical strategy where screening had only been implemented in the two most de-

prived �fths (QIMD 4 and 5), the groups with the greatest concentration of CVD risk. I

assumed that the uptake of the intervention was 50 % and the risk and age distribution in

the participants was similar to that in the eligible population. Otherwise, the strategy is

similar to the previous universal screening scenario. Given the recent criticism about the

cost and cost-e�ectiveness of the intervention,[363] o�ering the intervention where the

risk is more concentrated may reduce costs.

population-wide intervention: This scenario modelled the e�ects of a feasible

population-wide structural intervention targeting unhealthy diet and smoking. Several

studies have found that a tax on sugar sweetened beverages may reduce the prevalence

of obesity.[380–382] For this scenario I assumed that such a tax may reduce the mean

increase in BMI by about 5 % annually. Moreover, the UK has had one of the world’s most

successful salt reduction strategies, including public awareness campaigns, food labelling,

and voluntary reformulation of processed foods.[383] Modelling studies suggested that the

addition of mandatory reformulation of processed foods may further reduce mean SBP by

0.8 mmHg,[176] I modelled this decrease. A large randomised trial in the US showed that

subsidies on fruits and vegetables may increase consumption by about half a portion daily

and a modelling study in the UK found that subsidising fruits and vegetables combined
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with taxation of unhealthy foods may increase fruit and vegetable annual consumption by

about 10 %.[384, 385] I modelled an increase of a portion of fruit and vegetable each day in

50 % of the population. Finally, a SimSmoke modelling study estimated that full compliance

with the framework convention on tobacco control might reduce smoking prevalence by

13 % (relative) in �ve years;[173] I modelled this decrease.

the combination of population-wide intervention and concentrated

screening: This scenario is the combination of the population-wide intervention and

concentrated screening strategies. I modelled the implementation of a population-wide

strategy identical to the previous scenario, complemented by concentrated screening for

people at high-risk of CVD in the most deprived �fths (QIMD 4 and 5).

5.2.1.1 Common scenario assumptions

All interventions began in 2011 and were linearly di�used into the population over a 5-

year period. Trends in population risk factors were assumed to be the same as those of

the baseline scenario for all but the population-wide intervention. All of the scenarios

assumed that CVD case fatality will keep improving by 3 % (relative) annually. In addi-

tion, I assumed a socioeconomic gradient in CVD case fatality, forcing the more deprived

people to experience worse outcomes. Both case fatality assumptions were based on recent

trends and are suggested by the British Heart Foundation’s statistics on coronary heart dis-

ease.[92] Finally, a 5-year lag time was assumed between exposure to cardiovascular risk

factors and disease. A more detailed scenario speci�cation can be found in the appendix

(appendix C.3 on page 246).

5.2.1.2 Model outputs

I report the cumulative estimates of cases and deaths prevented or postponed as meas-

ures of overall e�ectiveness of the modelled interventions. To measure the impact of the

modelled interventions on absolute and relative socioeconomic health inequalities, I used

two regression based metrics inspired by the slope index of inequality: the absolute equity

slope index; and the relative equity slope index (both described in section 2.7.2 on page 64).

The absolute equity slope index measures the impact of an intervention on absolute in-

equality; for example, a value of 100 means 100 more cases were prevented or postponed

in most deprived areas compared with least deprived areas, resulting in a decrease in ab-

solute inequality. The relative equity slope index takes into account the pre-existing so-

cioeconomic gradient of disease burden and measures the impact of an intervention on

relative inequality. Positive values mean the intervention tackles relative inequalities and

negative values that the intervention generates relative inequality. Finally, I summarised

the overall impact of each scenario on CVD burden and equity in the equity summary

chart.



5.3 results 125

5.2.1.3 Uncertainty and sensitivity analysis

As I have described in the Methods chapter (section 2.6 on page 62), IMPACTNCD imple-

ments a second order Monte Carlo design that allows uncertainty to be quanti�ed from

the outputs. The probabilistic sensitivity analysis has been incorporated in my reported

estimates. I summarise output distributions by reporting medians and interquartile ranges

in the form of �rst and third fourths. Table A.1 on page 187 provides a detailed description

of the relevant distributions that have been used as inputs, and their sources.

I ran three further scenarios o�ering slight variations on the two primary ones of uni-

versal screening and population-wide intervention: a universal screening variation, where

I assumed a treatment threshold recommendation of 20 % risk instead of 10 %; another vari-

ation on universal screening, where I assumed a socioeconomic di�erential in screening

uptake, with the most deprived of the population to be 10 % less likely to participate; and

a variation on the population-wide intervention, where I only modelled dietary interven-

tions, excluding smoking interventions.

5.2.1.4 Validation

For the validation of this version of the model I followed the same approach that I described

in chapter 3 on page 77.

5.3 results

IMPACTNCD outputs for burden and inequality are summarised for ages 30 to 84. Because

of the assumed 5-year lag time, the interventions a�ect the population from 2016 up to the

projection horizon of 2030.

5.3.1 Overall e�ectiveness

Under the baseline scenario, IMPACTNCD estimated about 1.4 million (IQR: 1.3 to 1.5) cases

of CVD and 540 000 CVD deaths (IQR: 520 000 to 550 000) between 2016 and 2030. The

most e�ective intervention was the combination of the population-wide intervention and

concentrated screening. The population-wide intervention alone had the second highest

e�ectiveness, whereas the universal and the concentrated screening scenarios were con-

siderably less e�ective (table 5.1 on the following page). Despite the improvement of most

related risk factors, the proportion of high-risk people in the eligible population is slowly

increasing over time, because of population ageing (�gure 5.1 on the next page).

5.3.2 Socioeconomic inequalities

When socioeconomic inequalities were considered, the patterns for reductions in absolute

and relative inequalities were similar. The combination of the population-wide interven-

tion and concentrated screening seemed the most powerful among the simulated interven-
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Table 5.1: Estimated CVD cases and deaths prevented or postponed under each scenario, by 2030.

Number (interquartile range) prevented or postponed

Scenarios Cases Deaths

Universal screening 19 000 (11 000 to 28 000) 3000 (−1000 to 6000)

Concentrated screening 17 000 ( 9000 to 26 000) 2000 ( −100 to 5000)

Population-wide intervention 67 000 (57 000 to 77 000) 8000 ( 4000 to 11 000)

Population-wide intervention and concentrated

screening

82 000 (73 000 to 93 000) 9000 ( 6000 to 13 000)

Results rounded to nearest 1000.

40-49 50-59 60-74 All ages (40-74)

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

M
en

W
om

en
20

12

20
18

20
24

20
30

20
12

20
18

20
24

20
30

20
12

20
18

20
24

20
30

20
12

20
18

20
24

20
30

Year

P
ro

po
rt

io
n

of
hi

gh
-r

is
k

in
di

vi
du

al
s

10% risk threshold 20% risk threshold

Figure 5.1: Proportion of high-risk people eligible for universal screening. Population projections, by age

group and sex. 10 year risk of CVD was estimated from QRISK2 score.



5.3 results 127

tions (table 5.2 on the following page and table 5.3 on page 129). Concentrated screening

alone was the second most powerful intervention in tackling inequalities, followed by the

population-wide intervention. Finally, universal screening of CVD is likely to have a small

or negligible e�ect on socioeconomic inequalities.

5.3.3 Equity summary chart

I summarised the estimates for the e�ectiveness and equity of the modelled interventions

in the equity summary chart (�gure 5.2 on page 130). The horizontal axis of the chart

represents the cases of CVD prevented or postponed and the vertical axis the reduction

in absolute inequality. Scenarios above the equity curve (represented by the dashed curve

in the �gure) decrease relative socioeconomic inequality, and scenarios below the curve

increase it. The vertical distance from the curve approximates the impact of the scenario

on relative inequality (please refer to section 2.7.2.2 on page 66). The combination of the

population-wide intervention and concentrated screening is by far the most e�ective and

equitable intervention. Concentrated screening is also equitable but with fewer morbidity

gains.

5.3.4 Sensitivity analysis

Adding assumptions to extend the scenarios did not displace my main �ndings. The three

most notable results of the sensitivity analysis were: 1. raising the treatment threshold

from 10 % to 20 % further reduced the e�ectiveness of universal screening by about 60 %

in preventing CVD cases. However, in preventing deaths from CVD the e�ectiveness de-

creased by only 15 % as raising the treatment threshold excludes younger participants at

intermediate risk from treatment. 2. Assuming a di�erential uptake of universal screening

by deprivation �fth essentially eliminated the estimated small potential bene�t of univer-

sal screening in tackling health inequalities. 3. A population-wide intervention targeting

only diet would still be about twice as e�ective as universal screening and more than twice

as e�ective as population-wide intervention targeting smoking alone – so the relative rank-

ing of scenario e�ectiveness would remain unaltered. Appendix C.4 on page 248 provides

detailed model outputs for the extra scenarios.

5.3.5 Validation

The full validation of this version of IMPACTNCD has been published and is available at

http://www.bmj.com/highwire/filestream/924761/field_highwire_adjunct_�les/0/kypc031

638.ww1_default.pdf. The validation is very similar to the validation of the latest version

of the model that has been presented in chapter 3 on page 77. Figure 5.3 on page 131

summarises the validation process.

http://www.bmj.com/highwire/filestream/924761/field_highwire_adjunct_files/0/kypc031638.ww1_default.pdf
http://www.bmj.com/highwire/filestream/924761/field_highwire_adjunct_files/0/kypc031638.ww1_default.pdf
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Figure 5.3: Number of deaths from cardiovascular disease (CVD) in England, by year for ages 30 to 84. O�ce

for National Statistics reported deaths (observed) versus IMPACTNCD estimated. Observed deaths after 2010

were adjusted to account for changes in ICD10 version used by the O�ce for National Statistics from 2011

onwards. Error bars represent interquartile ranges.

5.4 discussion

My results strongly suggest that universal screening and treatment of people at high-risk

is not the most e�ective option for primary prevention of CVD overall, nor for reducing so-

cioeconomic inequalities. In contrast, prevention strategies that include population-wide

structural interventions seem to be the consistently better options for reducing overall

CVD burden and inequalities. This echoes and quanti�es �ndings from other, mostly the-

oretical, studies suggesting that structural population-wide interventions are powerful,

while reducing socioeconomic health inequalities.[112, 129, 140, 143] Indeed, the impact

of the population-wide intervention scenario on reduction in estimated mortality and in-

equalities seems compatible with previous estimates, considering the di�erent methodo-

logies.[175] Furthermore, the e�ectiveness and equity of population-wide structural inter-

ventions can be further improved by the addition of targeted interventions in the most

deprived groups, as highlighted in the combined scenario of the population-wide inter-

vention and concentrated screening.

Compared with other modelling approaches, my IMPACTNCD model estimated that NHS

Health Checks might prevent approximately 1000 non-fatal and 200 fatal cases of CVD

annually. This is comparable with the Department of Health estimates of 1600 non-fatal

CVD cases and 650 deaths prevented annually.[124] The di�erence in two estimates may

be explained by the Department of Health modelling approach to assumed an intervention

uptake of 75 %, higher than the current observed levels, and to use a static baseline from

2006 for CVD cases ignoring the downward trends.[386] Using the Archimedes model,
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Schuetz et al. estimated that health checks in the UK could prevent some 12 CVD cases per

1000 population screened after 30 years follow-up (7500 CVD cases prevented each year

extrapolating to the eligible English population).[387] That higher estimate re�ects the

researchers’ apparently unrealistic assumption of 100 % screening uptake and 50 % overall

uptake of treatment.

5.4.1 The scenarios

I modelled the universal screening scenario to closely resemble the current implementa-

tion of the NHS Health Check programme, based on published evidence. When the evid-

ence were inconclusive, I assumed optimal implementation of the policy.
40

Therefore, I

maintain that my estimates on the e�ectiveness of this scenario are not far, and perhaps

overestimate, the real world e�ectiveness of NHS Health Checks. In addition to model-

ling assumptions, the estimates in my thesis re�ect conventional assumptions of statin

e�ect sizes; these bene�ts may have been overestimated according to some authors.[388]

Moreover, my output suggesting that universal screening might reduce socioeconomic in-

equalities seems to contradict existing empirical and modelling evidence.[143, 144, 389,

390] This is because I generously assumed identical screening uptake and treatment ad-

herence for all socioeconomic groups. In fact, any potential reduction in socioeconomic

health inequalities was essentially eliminated when I considered a small socioeconomic

di�erential in uptake in the sensitivity analysis. Furthermore, additional health inequal-

ities may arise from di�erential persistence and adherence to treatment by deprivation

status.[352]

The population-wide intervention scenario on the other hand, is based mostly on struc-

tural policies targeting price and availability. This scenario’s potential e�ectiveness was

mostly based on natural experiments,[345, 391] and on previous modelling studies from

the UK and elsewhere. The size of the changes in the population risk factors that I mod-

elled were modest, and actually smaller than the reductions observed in countries such as

France, Finland, and the US during recent decades.[305, 392, 393] This scenario estimated

the reduction in mortality conservatively, because it ignored the bene�cial e�ect of the

policies on survival from CVD. Similarly, it underestimated the reduction of the gap in

inequalities, because it did not fully consider the current disproportionate burden of poor

diet among the most deprived of the population, and hence the potential for improvement

through population-wide policies.[88, 89]

Finally, the concentrated screening strategy was the weakest in terms of overall e�ect-

iveness, yet more powerful in tackling inequalities. Its increased impact on socioeconomic

health inequalities is a direct consequence of the concentrated prevention only to the more

deprived quantiles of the population. However, the scenario assumptions may not fully

40 This occurred in two occasions. The �rst was the assumption that universal screening has no di�erential

uptake by deprivation. I tested this assumption in the sensitivity analysis. The second occasion was the

assumptions regarding lifestyle improvements for screening participants. I did not include this assumption

in the sensitivity analysis because universal screening scenario was less e�ective than alternative scenarios,

despite the likely overestimation of their e�ectiveness.
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hold in real world implementation. Hence, concentrated screening represents a challenge

for public health practitioners and policy makers to exploit the opportunity of a smal-

ler and more homogeneous eligible population and to implement better recruitment and

tactics for treatment adherence. Yet, cost-e�ectiveness might also fall because of loss of

economies of scale.

5.4.2 Public health implications

This IMPACTNCD modelling may help stakeholders to understand better the interplay

between preventive policies, risk factors, disease, and inequalities; thus, potentially inform

health policy and strategy. Hence, when compared with the alternative feasible interven-

tions, universal screening seemed inferior both in primary prevention and in reducing

socioeconomic health inequalities. Additionally, I estimated that the proportion of young

people at high-risk aged less than 60 in the eligible population will decrease in future

(�gure 5.1 on page 126). This will render universal screening less e�ective and less cost-

e�ective for this age group, because a larger number will need to be screened to identify

each high-risk individual.

This study suggests that despite the high clustering of risk factors in the most deprived

parts of the population, structural population-wide approaches remain more e�ective than

high-risk ones for the prevention of CVD. Population-wide approaches also seem to be

more e�ective in reducing absolute and relative socioeconomic health inequalities, gen-

erally cost much less than a universal screening programme, and may even be cost sav-

ing.[131, 394] In this study, I did not model the full potential of these policies, as I focused

only on diet and smoking interventions; I did not, for example, incorporate alcohol con-

sumption or physical activity. In addition, I did not simulate the likely wider bene�ts of

improved diet and smoking cessation on the plethora of relevant NCDs. Despite this re-

stricted scope, for CVD prevention I estimated that structural policies targeting diet could

be twice as e�ective as those targeting smoking. Yet, structural interventions for a health-

ier diet are currently underutilised compared with tobacco control. Several countries have

now introduced taxes on sugary drinks or sugar, including Finland, France, Latvia, and

Mexico. The UK has recently followed their example. Hungary is the only European

country currently taxing unhealthy ‘junk’ food.[395] However, �scal interventions may

face opposition from commercial vested interests.[396] Interestingly, an increasing body of

evidence from empirical studies and modelling analyses suggest that the maximum health

impact with a neutral e�ect on poverty may occur when food or drinks taxes are combined

with subsidies for healthy foods.[385, 397, 398]

Moreover, the combination of a population-wide intervention with an intervention tar-

geting the most deprived members, may further improve e�ectiveness and equity. This

approach is in the spirit of proportionate universalism that was identi�ed in the Marmot

review as the best approach to tackle socioeconomic inequalities in health (please refer to

section 1.5.3 on page 32).[98] This study provides evidence that in CVD prevention pro-

portionate universalism may be the best option not only for tackling inequalities but also
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for overall e�ectiveness. Moreover, it shows that targeted interventions can be e�ective

despite the expressed opposite arguments.[98, 150]

5.4.3 Strengths and limitations of this study

IMPACTNCD is the �rst microsimulation model to synthesise core principles of social and

CVD epidemiology, vital demographics, published literature, and recent health surveys

for England to create a synthetic population of England, including socioeconomic struc-

ture, at the individual level. The microsimulation approach allows for the simulation of

detailed scenarios and explores the distributional nature of their impact on the population,

in a competing risks framework. Microsimulation allows for greater �exibility and more

detailed simulation, demanding more statistical and computational resources than older

approaches. Many assumptions must be made with such models. Yet, despite the poten-

tial frailty of such assumptions, this model validated well against observed CVD mortality,

even when multiply strati�ed.

Models are simpli�cations of reality and thus possess inherent limitations. At least four

items were not included in the current model. Firstly, the multiplicative risk assumption is

considered the status quo in comparative risk assessments;[30] however, this may oversim-

plify the complex nature of interactions between multiple risk factors and disease outcome

over the life course. Secondly, IMPACTNCD currently ignores the e�ect of risk factors on

CVD case fatality, although in this study I considered only primary prevention scenarios.

Thirdly, complex population dynamics such as migration, social mobility, and the socioeco-

nomic consequences of disease were not modelled. I consider this bias would be relatively

small for projections with a short horizon. Fourthly, the model ignores the impact of uni-

versal screening in recognising previously undiagnosed cases of atrial �brillation and other

opportunistic diagnoses. Reassuringly, most of these biases apply across all scenarios; their

e�ects would thus be reduced in comparisons between scenarios.

5.5 conclusions

When comparing primary prevention strategies for reducing CVD burden and inequal-

ities, universal screening seems less e�ective than alternative strategies that incorpor-

ate population-wide approaches. Further research is needed to identify the best mix of

population-wide and risk targeted CVD strategies to maximise cost-e�ectiveness and min-

imise inequalities.

In this chapter I mentioned that England has one of the most comprehensive strategies

to reduce salt consumption, worldwide. I also modelled an increment of this step in the

context of the population-wide intervention. In the next chapter I will speci�cally focus on

existing and proposed population-wide policies to reduce salt consumption. Apart from

the obvious importance from a public health perspective, the next chapter is important

from a technical point of view because I will use modelling to simulate CVD and gastric

cancer simultaneously.
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S A L T R E D U C T I O N P O L I C I E S

6.1 introduction

In the previous chapter I modelled existing high-risk preventive policies and compared

them with structural population-wide alternatives. In this chapter I will model an exist-

ing population-wide prevention policy that targets excess salt consumption in the popu-

lation. There are two interesting elements in this policy. First, in the agentic – structural

continuum (section 1.5 on page 30) this policy ‘sits’ somewhere in-between the two ex-

tremes; therefore, the equity of the policy cannot be easily assessed even in qualitative

terms. Second, excess salt is a risk factor both for CVD and gastric cancer; therefore,

this policy is a great example of NCD joint prevention, and it highlights the ability of

IMPACTNCD to model separate lag times for each disease.

Excess salt consumption is associated with higher risk of CVD and gastric cancer.[56,

57] Globally, more than 1.5 million CVD related deaths every year can be attributed to ex-

cess salt intake.[59] Further salt related deaths come from gastric cancer. Health policies

worldwide therefore aim to reduce dietary salt intake.[399] Furthermore, the WHO recom-

mends reducing population exposure to salt as one of the ‘best buy’ strategies to prevent

NCDs, highlighting its cost-e�ectiveness and feasibility.[29]

Since 2003, the UK has had one of the world’s most successful salt reduction strategies,

including public awareness campaigns, food labelling, and ‘voluntary’ reformulation of

processed foods.[383] This package of measures is regularly evaluated and has been mon-

itored through nationally representative surveys using 24 h urine collection

measurements.[400] Between 2001 and 2011 the mean salt consumption in the UK dropped

from 9.5 g/d to 8.1 g/d.[68] This is success, however still far from the national target of

6.0 g/d.[62]

In the UK, salt consumption is higher in more deprived groups.[90, 91] Therefore, inter-

ventions which aim to reduce salt consumption should ideally aim to also reduce socioeco-

nomic inequalities in health. Unfortunately, the current UK strategy might potentially

increase socioeconomic inequality because awareness campaigns, food labelling, and vol-

untary reformulation can be more e�ective among the more health conscious, a�uent

individuals.[111, 112, 140, 146] Indeed, evidence suggests the socioeconomic gradient in

salt consumption might have worsened during the programme.[90, 146] In contrast, mod-

elling studies consistently suggest that more structural interventions can be more e�ective,

cost-e�ective and equitable than the current UK policy.[176, 401]

Structural salt reduction policies are usually based on legislative initiatives like mandat-

ory reformulation of processed foods or taxation of high salt foods. Such policies have

already been adopted successfully in Argentina, South Africa, Portugal, Hungary and else-

where, emphasising their feasibility. In fact, the actual number of countries currently im-

135
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plementing legislative measures has substantially increased since 2010, indicating a global

move towards stricter salt reduction policies.[399]

The aim of this study was to estimate the impact and equity of current UK salt reduction

policy on CVD and gastric cancer burden since 2003. I further compared current policy

with other feasible policies to estimate possible additional incidence and mortality reduc-

tions.

6.2 methods

I used the latest IMPACTNCD version as it was described in section 2.2 on page 43 to sim-

ulate the e�ect of current policy and compare it to counterfactual scenarios. I split my

analysis into two periods. The �rst corresponds to years 2003 to 2015, for which I com-

pared the potential bene�ts of current policy against a null intervention scenario. For the

second period, 2016 to 2030, I explored the potential bene�ts of additional structural salt

reduction policies, assuming they might lead to steeper decline in salt intake.

6.2.1 Period 2003 to 2015 scenarios

Two scenarios were simulated. The ‘no intervention’ scenario assumes that no salt related

interventions were implemented since 2003. Therefore, the salt exposure remained stable

at the estimated level of 2003 for the period up to 2015. The ‘current policy’ scenario

simulated the decline in salt consumption that was observed between 2003 and 2011, and

projected it up to 2015 assuming a logarithmic decline.

6.2.2 Period 2016 to 2030 scenarios

Here I modelled the potential e�ect of structural, legislative policies on salt intake, aimed

to achieve feasible and ideal targets. First, I modelled a ‘current policy’ (baseline) scenario

where the logarithmic decline observed from 2003 to 2011 was projected up to 2030.

In a ‘feasible’ target scenario: I assumed that in 2016, policies like mandatory reformu-

lation and/or taxation of high salt foods were implemented and as a result, the mean salt

consumption will gradually decline to the national target of 6.0 g/d by 2020 for ages 19

to 64. Due to lack of empirical evidence regarding the magnitude of the impact of such

policies on salt, I allowed their target to vary from 5.8 g/d to 7.0 g/d following the PERT

distribution (please refer to the footnote in section 2.6.2 on page 63 for a sort description

of PERT distribution). The intervention was modelled to be more e�ective for individuals

with higher salt consumption.

In an ‘ideal’ target scenario: I assumed mean salt intake to reach the ideal salt intake

3.8 g/d by 2025 for ages 19 to 64. The ideal salt consumption was modelled to vary from

1.5 g/d to 6.0 g/d following a PERT distribution. Similarly to the previous scenario, the in-

tervention was modelled to be more e�ective for individuals with higher salt consumption.

The selection of the ideal salt exposure level and its uncertainty was based on published ob-
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servational and experimental studies summarised in the appendix Text S4 in Moza�arian

et al.[59]

6.2.3 Salt exposure modelling

The exposure of the synthetic population to salt and its trend was informed by four nation-

ally representative surveys employing 24 h urine collections between 2001 and 2011.[68,

240–242] I used a stochastic process to enhance the information from these surveys with in-

formation from spot urine measurements, as it was described in section 2.3.2.4 on page 51.

Then, I used quantile regression to project daily salt consumption to 2030. Changes in salt

consumption were transformed to SBP changes using the meta-regression equation from

a meta-analysis of 103 trials.[59] The ideal level of salt consumption is not clear (see ap-

pendix Text S4 in Moza�arian et al.).[59] I allowed the level of ideal salt consumption under

which no risk exists to vary between 1.5 g/d and 6.0 g/d with a mode of 3.8 g/d, following

a PERT distribution (table A.1 on page 187).

6.2.4 Relevant model assumptions

I assumed a mediated e�ect through SBP on CVD incidence with 5-year mean lag time and

a direct e�ect to gastric cancer incidence with a mean lag time of 8 years. Furthermore, I

assumed that CVD and gastric cancer case fatality is improving by 5 % and 2 % annually,

respectively, but the rate of improvement diminishes by 1 % (relative) every year. Finally, I

assumed that there is a constant fatality rate socioeconomic gradient of approximately 5 %

by QIMD level (halved for ages over 70) forcing the more deprived to experience worse

disease outcomes. These assumptions are based on empirical evidence.[21, 92, 93, 109, 261]

Speci�cally for this study, the no intervention scenario was modelled by stopping the

time in 2003 for the quantile regression equation that predicts salt consumption. The im-

pact on SBP salt reduction was estimated by rerunning the same equation for the appro-

priate year and calculating the di�erence for each synthetic individual using the formula

from Moza�arian et al.[59] The feasible and ideal scenarios were modelled by allowing the

current policy scenario to progress up to Step 4 (�gure 2.1 on page 45). Then, the mean salt

consumption in the population aged 20 to 64 was calculated. From the year the interven-

tion was applied (2015) if the mean was higher than the target, salt consumption of every

synthetic individual was multiplied by the target divided by the mean of the synthetic

population. Therefore, I applied a proportional reduction to all synthetic individuals and

those with higher salt consumption had the higher reduction, in order for the synthetic

population mean for ages 20 to 64 to reach the target. The impact of salt reduction on SBP

was calculated as in the no intervention scenario. Figure 6.1 on the next page shows the

density plots of salt consumption for the scenarios of this study, in one iteration of the

simulation.
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Figure 6.1: Density plot of salt consumption distribution for each scenario of this study in a simulated year.

The distributions are truncated on the left because the algorithm does not allow salt consumption <1.0 g/d.

6.2.5 Model outputs

IMPACTNCD estimated the cumulative cases prevented or postponed and deaths prevented

or postponed from CVD and gastric cancer for the relevant period and for ages 30 to 84.

The results were strati�ed by QIMD. Because of the assumed lag times, any changes in salt

exposure in the 2003 to 2015 period are re�ected on CVD incidence and mortality in years

2008 to 2020 and gastric cancer incidence and mortality, in years 2011 to 2023. Similarly,

for the period 2016 to 2030 these changes are re�ected in CVD burden in 2021 to 2035 and

in gastric cancer burden in 2024 to 2038.

I summarised the output distributions by reporting medians and IQR in the form of

�rst and third quartiles. I also report the probability (Ps) that a policy scenario aspect is

superior to the counterfactual one. For example, ‘100 cases prevented or postponed (Ps =

80 %) in scenario ‘A’ is interpreted as ‘in 80 % of Monte Carlo iterations at least one case

has been prevented or postponed in scenario ‘A’ comparing to the counterfactual scenario’.

Consequently, in the remaining 20 % of iterations, cases in scenario ‘A’ were more than in

the counterfactual scenario. This does not mean that scenario ‘A’ was harmful, but that

its e�ect in those particular settings was not large enough to exceed the ‘noise level’ from

other sources of uncertainty in the model. To assess the equity of the modelled policies, I

used two regression based metrics inspired by the slope index of inequality: the absolute

equity slope index; and the relative equity slope index (both described in section 2.7.2 on

page 64).
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6.3 results

I have presented my results separately for the two distinct periods.

6.3.1 Evaluation of current policy (2003 to 2015)

Under the current policy scenario, median salt consumption was reduced from 8.9 g/d (IQR:

8.7 g/d to 9.2 g/d) in 2003 to 7.1 g/d (IQR: 6.9 g/d to 7.2 g/d) in 2015.
41

Socioeconomic in-

equalities in salt consumption remained and might even have increased as a result of the

current policy.

Under the no intervention scenario IMPACTNCD estimated approximately 1.3 (IQR: 1.2

to 1.4) million new cases of CVD and 700 000 (IQR: 680 000 to 720 000) deaths from CVD.

Likewise, the model estimated approximately 68 000 (IQR: 61 000 to 74 000) new gastric

cancer cases and 41 000 (IQR: 37 000 to 44 000) deaths.

Compared with the no intervention scenario, the salt reduction strategy resulted in

about 52 000 (IQR: 34 000 to 76 000; Ps = 99 %) fewer new CVD cases, and 10 000 (IQR:

3000 to 17 000; Ps = 86 %) fewer CVD deaths. In addition, the current policy prevented

around 5000 (IQR: 2000 to 7000; Ps = 92 %) new cases of gastric cancer resulting in 2000

(IQR: 0 to 4000; Ps = 78 %) fewer gastric cancer deaths.

When equity was considered, I estimated that the current policy has a rather neutral

e�ect on tackling socioeconomic inequalities in CVD. The e�ect on gastric cancer equity

was more complex. Current policy apparently prevented or postponed fewer gastric cancer

cases in more deprived areas. However, gastric cancer incidence increases with age and

more a�uent individuals tend to live longer. After directly standardising age and sex, the

e�ect essentially disappeared for absolute inequality but remained for relative inequality

(table 6.1 on the next page).

6.3.2 Future options (2016 to 2030)

Under the current policy scenario, IMPACTNCD projected that median salt consumption

would reduce further from 7.0 g/d (IQR: 6.8 g/d to 7.7 g/d) in 2016 to 6.2 g/d (IQR: 5.9 g/d

to 6.2 g/d) in 2030. The addition of structural policies might reach the national target of

6 g/d by 2020. The less feasible ideal policy scenario was estimated to reach 3.6 g/d (IQR:

3.0 g/d to 4.1 g/d) by 2030. Inequality in salt consumption persisted under the current policy

projections and decreased moderately with the addition of structural policies.

Under the current policy scenario, I calculated approximately 1.4 million new cases of

CVD (IQR: 1.3 to 1.4 million) and 530 000 deaths (IQR: 510 000 to 560 000). Similarly, for

gastric cancer I estimated some 80 000 new cases (IQR: 65 000 to 93 000) and 42 000 deaths

(IQR: 35 000 to 49 000). Approximately 20 000 more cases of CVD and gastric cancer can be

41 The more observant readers may have noticed that these estimates are lower than the estimates from the

sodium surveys that I reported in the introduction of this chapter. This is because the survey estimates are

for ages 20 to 64, while IMPACTNCD estimates are for ages 30 to 84, and salt consumption decreases with age.
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Table 6.2: Additional cases and deaths that can be potentially prevented or postponed from the addition of

structural policies to current policy, and under the ideal scenario compared to the current policy projections

for 2015 to 2030. Brackets contain the respective interquartile ranges and the probability of superiority (Ps).

Cardiovascular disease Gastric cancer

Scenario Cases prevented or

postponed in thou-

sands

Deaths prevented

or postponed in

thousands

Cases prevented or

postponed in thou-

sands

Deaths prevented

or postponed in

thousands

Feasible 18.7 (8.0 to 29.5;

Ps = 90 %)

3.6 (-0.4 to 8.1;

Ps = 72 %)

1.2 (-0.2 to 3.0;

Ps = 72 %)

0.7 (-0.9 to 2.3;

Ps = 63 %)

Ideal 73.2 (53.9 to 94.3;

Ps = 100 %)

11.0 (6.5 to 16.1;

Ps = 95 %)

6.3 (3.4 to 9.6;

Ps = 94 %)

3.1 (1.1 to 5.1;

Ps = 86 %)

Results are rounded to the nearest tenth.

prevented or postponed from the implementation of structural policies. Table 6.2 presents

IMPACTNCD estimates for the two counterfactual scenarios in this period.

The addition of structural policies was more e�ective among the most deprived groups

especially for CVD and might potentially decrease absolute socioeconomic inequality

(table 6.3 on the next page). As anticipated, the ideal scenario had the largest impact on

burden and inequality (table 6.4 on page 143).
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6.4 discussion

This is the �rst study to quantify the impact of UK salt reduction policies on CVD and

gastric cancer by socioeconomic group. I estimated that the current UK salt strategy has

potentially prevented or postponed some 57 000 new cases and 12 000 deaths from CVD

and gastric cancer in England between the years of 2003 and 2015. The addition of struc-

tural policies and achievement of the national target by 2020 could potentially prevent or

postpone a further approximately 20 000 new cases and 4000 deaths, while the ideal com-

bination of salt reduction policies might potentially prevent or postpone some 80 000 new

cases and 14 000 deaths from CVD and gastric cancer.

When equity is considered, the impact of the implemented strategy is more complex. My

results agree with previous studies that the socioeconomic gradient in salt consumption

would not be reduced by these strategies.[90, 402] IMPACTNCD estimated that current

policies might have a rather neutral impact of CVD socioeconomic inequalities (absolute

and relative) and worsen gastric cancer inequalities re�ecting an older age distribution in

more a�uent groups. However, the addition of structural policies may reduce absolute

socioeconomic inequality in CVD incidence and neutralise the negative impact of current

policies on gastric cancer inequalities.

Simpler modelling studies have previously examined the impact of a theoretical decrease

in UK salt consumption. A 3 g/d reduction in salt consumption might prevent about 32 000

CVD cases and 4500 CVD deaths in England and Wales in a 10 year period according to

Barton et al., or 200 000 CVD fewer events and 90 000 CVD fewer deaths according to Dod-

hia et al. or almost 100 000 less CVD deaths in 20 years according to Hendriksen et al.[131,

403, 404] My results appear to echo the more conservative estimates by Barton et al. In

addition, the Gillespie et al. model informed by experts’ opinion estimated that mandat-

ory salt reformulation might reduce socioeconomic inequalities in CHD.[176] I reached

reassuringly similar conclusions using a very di�erent methodology.

Going further than previous studies, I modelled structural interventions targeting pro-

cessed food as being more e�ective for those individuals with the highest salt intakes. In

the UK, about 70 % of dietary salt comes from processed food and is reasonable to assume

that those with higher salt consumption have also higher exposure to processed food.[62]

Therefore, structural policies targeting processed foods would be more e�ective for those

with higher salt intake.

6.4.1 Public health implications

This study con�rms and quanti�es the positive impact of the currently implemented UK

salt reduction policies on CVD and gastric cancer disease burdens. However, I also high-

light two culprits of current policy. First, the national target of 6 g/d is unlikely to be

reached in the next 15 years assuming the decline continues to be logarithmic. Second, the

current policy will probably not reduce socioeconomic inequalities in CVD incidence and

might even modestly increase inequalities in gastric cancer. However, structural policies,

like mandatory reformulation of processed foods, could potentially accelerate the decline
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in salt consumption and also reduce absolute inequality in CVD. The existing salt reduc-

tion recommendations for the food industry could achieve the national target.[400] In fact,

if the reduction is gradual and consistent, it is unlikely to be noticeable by consumers.[365]

In order to realise this however, the food industry must comply with them, which is not

happening at present.[405] Failing to do so, will most a�ect the poorest in society. In ad-

dition, the overall impact of this failure is likely to be greater, for example through kidney

disease, which I have not considered in this study.

Compared to the results from the previous chapter (chapter 5 on page 121), it is likely

that the applied salt reduction policies over the last decade have prevented substantially

more CVD cases and deaths than the Health Checks programme will do in the next two dec-

ades. This provides further evidence that population-wide interventions can be far more

e�ective than high-risk approaches, even if they do not have strong structural elements.

Moreover, my results support the theoretical expectation that the increase of structural ele-

ments of a policy may increase both its e�ectiveness and its equity (section 1.5 on page 30).

However, as highlighted in this chapter, in practice the increase in e�ectiveness and equity

depends also on speci�c characteristics of the population; i. e. the age distributions in the

socioeconomic groups. In this particular case because of the di�erent lag times for CVD

and gastric cancer prevention and di�erent disease epidemiology, the prevention of CVD

deaths in younger ages lead to a small increase in the number of individuals who are ex-

posed to the risk of dying from gastric cancer in older ages. Unlike traditional research

methods, IMPACTNCD implements a competing risks framework to explicitly model this

phenomenon.

6.4.2 The salt controversy

Dietary sodium is necessary to human physiology; therefore, a sodium free diet is infeas-

ible. The exact range of dietary sodium consumption, hence salt consumption, that poses

no risk due to inadequacy or excessiveness is not clear. Nevertheless, major institutions

like WHO and UK authorities have converged, based on existing evidence, that the re-

commended salt consumption of 6 g/d is safe. Lately, some researchers argued that salt

consumption less than 7.5 g/d may actually increase mortality and a strong polarisation of

scienti�c opinions have been observed.[60, 406] The truth is that these researchers base

their argument mainly on studies that used spot and not 24 h urine measurement and then

used a mathematical formula to extrapolate daily sodium consumption.[63, 64] This is im-

portant because it has been shown that this approach underestimates high sodium intake

and overestimates low sodium intake.[215] Therefore, the apparent U shape association

between sodium intake and CVD mortality in studies that used spot urine measurements

can be explained by measurement bias.[65] However, the U shape association has been

also observed in a study that used 24 h urine measurements.[407]
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6.4.3 Strengths and limitations

This study uses a technically advanced microsimulation model that synthesises informa-

tion from the best available sources of information on population exposures to salt, and

other NCD related risk factors, to generate a ‘close to reality’ synthetic population. Many

assumptions must be made with such models. Yet, in spite of the potential frailty of such

assumptions this model validated well against observed CVD and gastric cancer incidence

and mortality in real populations, even when multiply strati�ed. This validation is particu-

larly important because for the years after 2006 the incidence and mortality in the synthetic

population were �rstly recreated from epidemiological principles and not through an op-

timisation process. Moreover, to ensure transparency, I have made IMPACTNCD source

code open under GNU GPLv3 license.

This study has many limitations, two of which are noteworthy. First, for the evaluation

of current policy, I assumed that the decline in salt consumption observed since 2003 was

fully attributable to the implemented policy. This was perhaps slightly simplistic, and my

estimates may therefore be high. However, this overestimation of the baseline would there-

fore reduce the apparent gains from additional structural policies, making my conclusions

relatively conservative. Second, I could not �nd a su�ciently large dataset with individual

level 24 h urine sodium measurements and other NCD related risk factor information. The

stochastic process I developed to overcome this and synthesise information from multiple

sources increased overall uncertainty of the model. Nevertheless, this uncertainty has been

quanti�ed and transparently reported using uncertainty intervals.

6.5 conclusions

Current salt reduction policies are generally e�ective in reducing the cardiovascular and

gastric cancer disease burden but fail to do so equitably. Additional structural policies

could achieve further, more equitable health bene�ts.

In the next chapter, I will explore tobacco control policies that, like salt policies, can

prevent multiple NCDs. Moreover, I will enrich the spectrum of prevention typologies

that IMPACTNCD can model by simulating fully structural, tobacco endgame policies.
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T O B A C C O : T H E E N D G A M E ?

7.1 introduction

In the previous chapters, I focused on existing primary prevention policies and their incre-

mental improvements. In this chapter, I will explore a more ambitious option: a tobacco

sales ban. Although the e�ectiveness of a potential tobacco sales ban is unquestionable,

its feasibility in the current political context is contested. I will discuss some aspects of

feasibility of a tobacco sales ban; however, my intention is to concentrate more on the dy-

namics of the phenomenon and how a sharp decline in smoking prevalence could re�ect

on the future burden of CVD and lung cancer over time.

Globally, approximately 5.8 million deaths could be attributed to smoking in 2013, an

increase of 1.2 million since 1990. Environmental tobacco smoking accounted for addition-

ally more than 330 000 deaths in 2013. Tobacco is the leading cause of DALYs
42

in most

high-income countries and among the leading risks overall.[33]

In England, tobacco is the leading cause of DALYs among women and the second leading

cause, surpassed only by unhealthy diet, among men. Almost 11 % of DALYs were lost due

to smoking in 2013.[20] During the same year, smoking caused an estimated 80 000 deaths

in England among adults aged 35 and over. This amounts to 17 % of all deaths for these ages,

and has been unchanged since 2005. Over 450 000 hospital admissions were attributable to

smoking, representing 4 % of all adult admissions.[408] These numbers may underestimate

the true burden of smoking, as a recent study has expanded the list of diseases linked to

smoking.[41]

Despite the undeniable risk of smoking to health, smoking remains common in England,

with 19 % of adults aged 16 and over reported as smokers in 2013.[409] This prevalence

fell slightly from 21 % in 2007.[43] Furthermore, large di�erences in smoking prevalence

persist across socioeconomic groups; over 30 % of people with routine and manual jobs

smoke, compared to less than 15 % of those in managerial and professional occupations.[43,

410, 411] Smoking explains more than one quarter of the socioeconomic gradient in total

mortality in Great Britain.[20, 412]

The UK has strong tobacco control policies compared to many European peers, achiev-

ing the highest score on the Tobacco Control Scale (74 out of 100) among 34 European

countries.[413] The Tobacco Control Scale is an expert developed instrument for assess-

ing the strength of tobacco control policies with data compiled via a survey of national

representatives to the European Network for Smoking and Tobacco Prevention, supple-

mented with data from other data sources (described in more detail in [413]). WHO uses

a di�erent ranking system (MPOWER), where the UK rank is reassuringly similar.[414]

42 The disability adjusted life year is a combined metric of mortality and morbidity. It measures overall disease

burden, expressed as the number of years lost due to ill health, disability or early death.

147
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A modelling study using the IMPACT policy model estimated that if the UK implements

tobacco control policies to maximise the Tobacco Control Scale, this could reduce smoking

prevalence by about 3 % absolute (15 % relative), prevent more than 3000 premature CHD

deaths, and reduce socioeconomic inequalities in health by 2025.[415] Levy et al. used the

SimSmoke model to model the UK’s full compliance with the MPOWER framework, to pro-

duce comparable results.[173] Both studies provide evidence that increments of existing

tobacco control policies cannot eliminate smoking in the near future.

Many experts have also realised that the policy debate needs to move from ‘tobacco con-

trol’ to ‘tobacco free populations’, especially for countries with well implemented tobacco

control policies. A paradigm shift that, in the jargon of the tobacco control community,

is known as the ‘endgame’. The endgame may require novel and radical approaches to

tackle the tobacco epidemic.[416] Indeed, a full supplement issue of the Tobacco Control

journal (May 2013, Volume 22, suppl 1) was dedicated to these innovative proposals that

may achieve a drastic reduction in smoking prevalence. More recently, McDaniel et al.
published a synthesis of the proposed endgame policies so far.[417] They categorise the

policies into �ve large groups:

1. those aimed to the product itself (i. e. regulate nicotine levels to make cigarettes non-

addictive or less addictive, redesign the cigarette to make it unappealing, electronic

cigarettes);

2. those aimed to the user (i. e. smoker’s license, prescription to purchase tobacco, re-

strict sales by year born);

3. those aimed to the market/supply side (i. e. licensing, outlet restrictions, display bans

and price controls, ban combustibles, advantage cleaner nicotine products over com-

bustibles, ‘sinking lid’, price caps);

4. institutional structure focused (i. e. tobacco control agency, regulated market model,

state takeover of tobacco companies, performance based regulation);

5. integrated endgame strategies (i. e. combination of existing and increment tobacco

control policies with one or more of the endgame strategies).

From the policies mentioned above, the most feasible and mature appear to be the ‘to-

bacco free generation’ by restricting sales by year born (group 2 in previous list),[418, 419]

and the total ban of combustibles (group 3 in the previous list).[420, 421] The former is

under discussion in the local government of Tasmania[422] and is backed by the British

Medical Association in the UK[423], while the latter has already been implemented in

Bhutan and soon to be in Turkmenistan.[424, 425]

The aim of this chapter is to explore the dynamics of two endgame policies on the burden

and socioeconomic inequalities of CVD and lung cancer. The endgame policies that were

simulated, were the ‘total ban of combustibles’ and the ‘tobacco free generation’.
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7.2 methods

I used the �nal version of IMPACTNCD as it was described in the methods section (sec-

tion 2.2 on page 43). The synthetic population was representative of the 2006 community

dwelling English population and the simulation horizon was set to 40 years, up to 2045.

7.2.1 Scenarios

Four scenarios were simulated: the ‘current policy’ scenario; the ‘total ban’ scenario; the

‘tobacco free generation’ scenario; and the ‘ideal minimum’.

current policy scenario: Similarly to the previous result chapters, this scenario

assumes that the recent observed risk factor trends, likely driven by current tobacco policy

e�orts, will continue in the future.

total ban scenario: This scenario simulates a total ban of combustibles by 2016.

In other words, the sale of tobacco combustible products (like cigarettes and cigars) is pro-

hibited by law, and the state has the means to enforce the law adequately. I assumed a 50 %

reduction in smoking initiation rate, a 50 % reduction in active to ex-smoking ratio, and a

50 % reduction in cigarette consumption compared to the ‘current policy’ scenario. These

estimates were roughly based on data from Bhutan, the only country where a tobacco ban

has been implemented so far. In Bhutan, four years after the ban about 10 % of men and

7 % of women were active smokers mostly re�ecting an expected rise in tobacco products

smuggling.[426]

tobacco free generation scenario: This scenario models a ban on the sale of

tobacco products to anyone born in or after 2000. Similarly to the previous scenario, I

assumed a 50 % reduction in smoking initiation rate, and a 50 % reduction in active to ex-

smoking ratio for the synthetic individuals born in or after 2000. I assumed no reduction

in cigarette consumption to re�ect a higher availability of tobacco products compared to

the previous scenario. Hence, I assumed those who may have illegal access to tobacco

products will not reduce their consumption.

ideal minimum scenario: This is a theoretical scenario that assumes the popula-

tion had never been exposed to smoking. It can be used as a marker of the total burden of

CVD and lung cancer attributable to smoking.

7.2.1.1 Common scenario assumptions

I assumed that the CVD case fatality rate is improving by about 4.5 % and the lung cancer

case fatality rate is improving by 3 % annually. I also assumed that the case fatality rate

of improvement gradually declines to avoid a very low case fatality rate in later years of

the simulation. Moreover, I assumed that there is a constant fatality rate socioeconomic
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gradient of approximately 8 % by QIMD level (halved for ages over 70) forcing the more de-

prived to experience worse disease outcomes. These assumptions were based on empirical

evidence.[21, 92, 93, 107, 108]

7.2.2 Model outputs

IMPACTNCD estimated the cases prevented or postponed and deaths prevented or post-

poned from CVD and lung cancer between years 2016 and 2045 and for ages 30 to 84. The

results were strati�ed by QIMD. I summarised the output distributions by reporting me-

dians and IQRs in the form of �rst and third quartiles. I also reported the probability (Ps)

that a policy scenario aspect is superior to the current practice one. To assess the equity

of the modelled policies, I used two regression based metrics inspired by the slope index

of inequality: the absolute equity slope index; and the relative equity slope index (both

described in section 2.7.2 on page 64).

7.2.3 Model alignment

During the validation process of IMPACTNCD (chapter 3 on page 77), it was revealed that

IMPACTNCD underestimated the observed upward trend in lung cancer incidence in wo-

man (�gure 3.1 on page 80). A closer inspection revealed that the underestimation occurred

speci�cally in women aged 70 to 74. I aligned
43

the model by in�ating the number of ci-

garettes smoked in this particular age group by 10 %. Moreover, the model overestimated

lung cancer mortality for older ages in the more deprived groups (�gure 3.12 on page 92

and �gure 3.13 on page 93). I chose not to align this for simplicity. This choice added

negligible bias to the results, because IMPACTNCD is primarily an incidence model, and

the e�ectiveness and equity of interventions are estimated from cases and not deaths.

7.3 results

I �rst present the cumulative cases and deaths prevented or postponed for the total sim-

ulation period between 2016 and 2045. Then, I present the results by year to capture and

analyse the impact of the policies, dynamically.

7.3.1 Smoking prevalence

The active smoking prevalence between 2016 and 2045 was predicted to reach 14.8 % (14.4 %

to 15.1 %) for men and 8.8 % (8.6 % to 9.1 %) for women under the current policy. Under

the total ban scenario the active smoking prevalence was predicted to fall to 7.2 % (7.0 %

to 7.4 %) for men and 4.3 % (4.1 % to 4.5 %) for women. Finally, under the tobacco free

generation scenario prevalence was estimated to 12.4 % (12.1 % to 12.6 %) for men and 7.9 %

(7.7 % to 8.1 %) for women.

43 Alignment is the term that is widely used to refer to the calibration process of microsimulations.
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7.3.2 Disease burden

IMPACTNCD estimated approximately 2.6 (2.3 to 2.7) million CVD cases and some 750 000

(740 000 to 760 000) lung cancer cases between 2016 and 2045 under the current policy

scenario. These would result in approximately 1.0 (0.9 to 1.1) million CVD deaths and

some 610 000 (600 000 to 620 000) lung cancer deaths over the same period.

Under the total ban scenario about 90 000 (70 000 to 120 000, Ps = 99.9 %) CVD cases

and 79 000 (55 000 to 100 000, Ps = 99.5 %) lung cancer cases were prevented or postponed.

This resulted in 14 000 (3000 to 25 000, Ps = 80.5 %) fewer CVD deaths and 54 000 (38 000 to

73 000, Ps = 99.0 %) fewer lung cancer deaths.

Under the tobacco free generation scenario about 3500 (−4200 to 11 000, Ps = 62.8 %)

CVD cases were prevented or postponed, resulting in about 190 (−2900 to 3400, Ps = 51.8 %)

fewer deaths. Furthermore, IMPACTNCD estimated approximately 230 (−3100 to 3600, Ps

= 51.8 %) less lung cancer cases and 220 (−2700 to 3200, Ps = 52.4 %) deaths compared to

the baseline scenario.

Finally, under the ideal minimum scenario approximately 350 000 (310 000 to 390 000,

Ps = 100 %) CVD cases were prevented or postponed, resulting in about 58 000 (45 000

to 71 000, Ps = 100 %) fewer deaths. Additionally, IMPACTNCD estimated approximately

660 000 (650 000 to 680 000, Ps = 100 %) less lung cancer cases and 520 000 (510 000 to

540 000, Ps = 100 %) deaths compared to the baseline scenario.

7.3.3 Policies equity

All scenarios were estimated to be substantially equitable and can potentially have a major

impact on reducing absolute and relative socioeconomic inequalities in CVD and lung

cancer (table 7.1 on the next page and table 7.2 on page 153). The ideal minimum scenario

speci�cally, is a marker of the smoking attributable socioeconomic inequalities in health;

the inequitable tobacco control policies that have been implemented in recent years have

also contributed to these inequalities (please refer to section 1.5.4 on page 33).

7.3.4 Policy dynamics

When the e�ect of each scenario is analysed by year (�gure 7.1 on page 155), it is apparent

that the health impact of the tobacco free generation policy would be small. This can

be easily explained by the age distribution of the tobacco free generation that would be

maximum 45 years in 2045; hence, the potential of prevention in these age groups is limited

because the burden of CVD and lung cancer is small anyway. That said, I expect the

potential bene�ts of this strategy to materialise within the next four decades since the

simulation horizon.

On the other hand, the total sales ban may yield more timely results especially for

CVD. CVD cases prevented or postponed will gradually decrease after the initial increase

from the policy implementation re�ecting the favourable trends of other CVD related

risk factors. On the contrary, lung cancer cases prevented or postponed are predicted
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to increase gradually during the simulated period re�ecting the accumulation of risk from

smoking and the longer lag times. The cases prevented or postponed from the ideal min-

imum scenario were also plotted on the same graph to mark the total cases attributable to

smoking.

Figure 7.2 on page 156 and �gure 7.3 on page 157 depict the equity impact of the scen-

arios over time. In general, the e�ectiveness of the interventions increased with depriva-

tion. Speci�cally, the total sales ban of tobacco products has a great potential to reduce

both absolute and relative socioeconomic inequalities in CVD and lung cancer.
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7.4 discussion

IMPACTNCD estimated that the total ban might prevent approximately 170 000 cases of

CVD and lung cancer in 30 years, resulting in some 70 000 fewer deaths. The probability

of this policy to be more e�ective than current policy was almost 100 %. The health gains

from the policy would �rst come from CVD prevented cases and about 10 years later the

impact on lung cancer would follow, gradually increasing over time. On the other hand,

the impact of the tobacco free generation policy was estimated to be substantially smaller;

only about 3500 CVD cases and a few hundred deaths could be prevented or postponed

from the policy within 30 years and the impact on lung cancer would be negligible. This

is because only young individuals, for whom disease burden is small anyway, would be

a�ected by this policy within the simulation horizon. Subsequently, the probability of

superiority for this policy was very low. Finally, IMPACTNCD estimated that both policies

are equitable, but given the much higher overall e�ectiveness of a total ban, adoption of a

total ban could dramatically reduce socioeconomic inequalities in health.

In March 2016, Cancer Research UK and the UK Health Forum published a report about

the potential health and economic bene�ts of a tobacco free UK society. In their report,

they de�ned a tobacco free society as having smoking prevalence of less than 5 % across the

socioeconomic spectrum and they used a dynamic microsimulation to estimate the poten-

tial prevented disease cases and costs from achieving this. They estimated that achieving

a tobacco free UK may lead to 97 500 fewer disease cases including 36 000 cancer cases, by

2035. These estimates include not only CVD and lung cancer cases, but also cases from

other smoking related cancers and chronic obstructive pulmonary disease.[427]

At �rst glance, these results appear less optimistic than mine, considering that they are

for the entire UK and include more diseases than my estimates. Nevertheless, the di�er-

ence can be explained by the di�erent scenario assumptions in the two models. First, the

simulation horizon for IMPACTNCD was 30 years compared to 20 years for the Cancer Re-

search UK and the UK Health Forum report. Second, IMPACTNCD uses HSE data to project

future smoking prevalence for the baseline scenario, while the model for the report uses

data from the General Lifestyle Survey. This resulted in lower forecasted smoking preval-

ence for the baseline scenario in the latter; therefore, more conservative counterfactual

scenario estimates. Third, I modelled the total ban to rapidly decrease smoking prevalence

within �ve years from implementation. The tobacco free society scenario, in the report,

assumed a gradual decrease over the 20 years of the simulation horizon. Finally, structural

di�erences in the two models (i. e. the model of the report ignores lag times and does not

model smoking intensity) and the modelled scenarios may have also contributed to the

di�erence of their estimates.

7.4.1 The scenarios

From the available options for the tobacco endgame that have been reported in the lit-

erature, I chose the two options that have already been implemented or are discussed

for implementation. Both policies, the total ban of combustible tobacco products and the
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tobacco free generation, would require major legislative, institutional, and bureaucratic

changes in order to succeed.[428] Yet, the implementation of a total ban on tobacco sales

in Bhutan is a proof of concept that the policy can perhaps be implemented in the UK. It is

true that the implementation in Bhutan has been poorly evaluated, led to increasing in to-

bacco products smuggling, and increased the prosecution of smokers.[424, 426] However,

there are lessons to be learned from Bhutan and future implementation may be less prob-

lematic, especially in high-income countries with better administrative and governance

systems in place. In fact, the recent decision of the UK to leave the European Union may

give more �exibility to the UK government to apply such policies and better secure the

borders to prevent tobacco smuggling. Proposing a complete and detailed tobacco ban

policy is far beyond the scope of this thesis. However, the results of this chapter suggest

that the cost in human lives of not including endgame policies in the policy dialogue is

substantial. In the future, when the implementation of such policies in England will be

better de�ned and operationalised by experts, modelling exercises may explicitly consider

the unintended consequences of endgame policies like the criminalisation of smokers or

the promotion of tobacco products smuggling. Finally, I avoided modelling the existence

of a lower limit of achievable smoking prevalence, since recent evidence contradict the

‘hardening hypothesis’.
44

[429, 430]

Critics may argue that bans reduce autonomy, and have proven ine�ective in the past.

The reduced autonomy argument is present in many public health interventions, and the

debate has recently been summarised by Capewell and Lilford.[431] The UK already bans

other substances like heroin or ‘ecstasy’, many of which are less harmful than tobacco

and despite the subsequent criminalisation of the users.[432] Therefore, a potential ban

of combustible tobacco products is consistent with current policies on other harmful and

addictive substances. Going a step further, Proctor proposes that the sales ban of harmful,

addictive substances does not restrict but rather enables choice, because it liberates the

user from the addiction.[420]

Finally, regarding e�ectiveness, bans have failed in the past when they were not suppor-

ted by the majority of the population; with the alcohol ‘prohibition era’ in the US being

the most notable example. In Europe, about 40 % of non-smokers and 20 % of smokers

support a total tobacco sales ban.[433, 434] In England, public support is higher by about

5 %.[435] These numbers may seem low at �rst, but considering there was no public debate

or any public awareness campaigns about a tobacco sales ban, they could also represent a

promising start.[436]

7.4.2 Public health implications

Realistically, public health practitioners and policy makers seek answers in two very prag-

matic and interrelated questions. When is the right time to publicly set a target for smoke

free societies, and what options exist to reach this target? The �rst question has been

under discussion among public health experts over the last few years. Of course the ques-

44 The hardening hypothesis posits that as smoking prevalence declines, the remaining smokers are harder to

quit because they are deeply addicted to nicotine.
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tion is relevant for countries that have already achieved low smoking prevalence through

e�ective tobacco control policies and in some of these countries (i. e. New Zealand and

Finland) a target has been set for a smoke free society. Scotland has also set a target to

achieve smoking prevalence of less than 5 % by 2034. In England and the other UK coun-

tries public health advocates are trying to involve policy makers in the debate.[427, 436,

437]

My study provides useful evidence that it is highly unlikely that smoking prevalence

will be less than 5 % within the next three decades without additional tobacco control ef-

forts. Other modelling studies have shown that even by maximising the e�ectiveness of

existing tobacco control policies it would be unlikely to achieve a 5 % prevalence.[173, 415,

438] Therefore, any discussion about achieving a smoke free society within the next three

decades must involve radical tobacco control policies. Furthermore, my study highlights

that when considering endgame policies, targeting smoking initiation alone would be inad-

equate to reduce the burden of smoking in the foreseeable future. Therefore, any realistic

endgame plan must involve tobacco control policies targeting current smokers in addition

to never-smokers.

In my analysis I included the ideal minimum scenario to quantify and explore the attrib-

utable to smoking burden of CVD and lung cancer. The main message from this scenario

is that even after a successful dramatic reduction in smoking prevalence the consequences

from the cumulative e�ect of smoking on health would last for decades after. Yet, any

delay to substantially reduce smoking prevalence translates into thousands of smoking

attributable deaths that mostly burden the more socioeconomically deprived.

Finally, it is worth noting that all the proposed endgame policies are strongly structural

or inversely agentic. By inversely agentic I mean that they require smokers to actively

engage and mobilise their resources in order to get access to tobacco products. Hence,

interestingly the expected attrition of these policies is the actual intervention.

7.4.3 Strengths and limitations

Any public health expert would expect that a tobacco sales ban would have a tremendous

e�ect on disease burden and socioeconomic inequalities, while the tobacco free genera-

tion policy would need a prolonged period before it yields substantial health bene�ts to

the population. An epidemiologist would also expect the policy e�ect on CVD burden

to be observable earlier than the e�ect on lung cancer because of the di�erent lag times.

However, policy makers are rarely public health experts or epidemiologists. Hence, in this

case IMPACTNCD integrates current epidemiological knowledge about tobacco, CVD, and

lung cancer and makes explicit assumptions to allow non-experts to understand better the

e�ectiveness, equity, and dynamics of the proposed policies. In addition, this study may be

helpful also for experts, because it quanti�es the likely e�ect and equity of the modelled

policies.

The generic limitations and assumptions of the model are discussed in other chapters

(section 8.5 on page 173 and table 2.1 on page 69). The main limitation of this speci�c

chapter is that it modelled only two of the diseases smoking is associated with, underes-
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timating the health impact of the modelled policies. However, CVD and lung cancer are

the two smoking related diseases with the highest societal burden, and other diseases can

be modelled using the IMPACTNCD framework in the future. The second limitation of this

study is that it modelled only cigarette smoking. The prevalence of exclusive non-cigarette

smoking (pipes or cigars) is small in the UK, therefore the impact of the modelled policies is

slightly underestimated. The exclusion of electronic cigarettes from the simulation though,

is perhaps more important and its impact on my estimates is largely unknown. The elec-

tronic cigarette is a relatively new product and there is not enough information to allow

reasonable prediction of its utilisation over the next 30 years. Nevertheless, the academic

debate about the potential role of electronic cigarettes in smoking cessation and smoking

or vaping initiation is heated and IMPACTNCD may contribute to the debate in the near

future.

7.5 conclusions

IMPACTNCD estimated that despite the gentle decrease in smoking prevalence, the con-

sequences of smoking on health and health equity will last for decades. Additional e�orts

and new radical approaches may be required to achieve a dramatic reduction in smoking

prevalence that will target simultaneously smoking initiation and smoking cessation. Dis-

cussions about when it is the right moment to set a target for a smoke free England needs

to be done in parallel with discussions about how the target may be achieved and what

additional tobacco control policies might be required for this.

This chapter concludes the results of my thesis. In the next chapter I will discuss and

re�ect on the overarching themes that have emerged in my thesis, and the potential role

of modelling in informing public health policy.
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G E N E R A L D I S C U S S I O N

8.1 introduction

In this chapter I will �rst summarise my �ndings in relation to the aims and objectives

of my thesis. Then, I will discuss the role of simulation modelling in public health policy

and decision-making, and I will highlight some of the key challenges. I will discuss the

key assumptions and limitations in IMPACTNCD, and I will summarise my future plans.

Finally, I will re�ect on my research experiences over the last three years.

8.2 key findings with reference to my aims

The primary aim of my thesis was to construct and validate a simulation model for public

health policy that is reusable, transparent, and comprehensive. Then, to use this model

to quantify the impact of existing and hypothetical counterfactual primary prevention

policies on disease burden and health inequalities (section 1.7 on page 40).

I created and validated IMPACTNCD and then I used it in my four results chapters to

explore a wide range of scenarios. I applied the same IMPACTNCD framework to analyse

the contribution of statins in the observed cholesterol decline and their equity (chapter

4); the e�ectiveness and equity of universal and concentrated screening for CVD (chapter

5); the e�ectiveness and equity of several population-wide approaches (chapters 5, 6, and

7); and the dynamics of two tobacco control policies over time (chapter 7). The policy

scenarios I modelled in my thesis cover the full spectrum of primary prevention typolo-

gies (please refer to section 1.5 on page 30); from agentic interventions like NHS Health

Checks, to population-wide interventions with weak structural components like the cur-

rent salt reduction strategy, to strong structural policies like mandatory salt reformula-

tion and a tobacco sales ban, to proportionate universalism through combinations of these

policies. In addition, I simulated the potential impact of these policies on multiple NCDs

simultaneously and with di�erent lag times in a competing risk framework. These argu-

ments support that IMPACTNCD framework is truly reusable and can be used in the future

to model more policy scenarios, involving more diseases and di�erent socioeconomic clas-

si�cations (please refer to section 8.6 on page 176).

IMPACTNCD is also transparent. All data sources are presented and properly referenced.

The structure and all the algorithms of the model are described in a non-technical manner

and are linked to fundamental epidemiological principles. All the assumptions are expli-

citly described and when the assumptions are based on empirical evidence such evidence

is referenced. Moreover, the modelled scenarios are described in a clear, accessible way,

and the justi�cation for the modelling decisions is also provided. Most importantly, the

source code of IMPACTNCD is open meaning that anyone can have access to it, use it as

163
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it is, or improve it. The model can be scrutinised not only during the peer review process

for publication purposes, but continuously and by anyone that has the relevant technical

skills. Additionally, IMPACTNCD code base can be reused from other modellers in part

or in full, without any extra permissions as long as the code remains open. This may

improve the quality, and reduce necessary resources of other models in this �eld. To con-

clude, my approach o�ers ultimate transparency for technical and non-technical readers;

unfortunately, this is rare in public health modelling, despite the well-recognised need for

transparency.[161, 186, 287]

Finally, IMPACTNCD is more comprehensive relative to other models. The interplay of

socioeconomic inequalities, exposure to risk factors, and disease patterns and trends are in

the core of IMPACTNCD by design. Ideas from the social determinants of health framework

(section 1.4.1 on page 24) have been infused in the synthetic population of IMPACTNCD.

The socioeconomic position of synthetic individuals in�uences their behavioural expos-

ures, and the latter in�uence their biological exposures. This allowed for the ‘social pro-

duction of disease’ framework (section 1.4.2 on page 26) to be incorporated in IMPACTNCD,

and the processes that generate health inequalities from socioeconomic inequalities to be

modelled. Additionally, population trends, risk factor exposure trends, and case fatality

trends are also modelled by �fths of deprivation. Hence, IMPACTNCD allows for a more

comprehensive and dynamic exploration of the e�ectiveness and equity of the modelled

policies. Despite the limitations of the current implementation of IMPACTNCD that may

limit the comprehensiveness of the model (please refer to section 8.5 on page 173), its ex-

pandable modelling framework may relax some of these limitations in the future (please

refer to section 8.6 on page 176).

An interesting side e�ect of the increased comprehensiveness of the model, is that the

ratio of cases to deaths prevented or postponed varies extensively. For example, it �uctu-

ates from around 9:1 for the combination of population-wide policies with targeted CVD

screening in chapter 5 (table 5.1 on page 126), to around 5:1 for the feasible legislative salt

reduction policies in chapter 6 (table 6.2 on page 141). This is because di�erent policies

prevent disease from individuals with di�erent characteristics. The case fatality rate in the

model depends on the type of CVD disease (CHD or stroke), age, sex, socioeconomic status,

and calendar year. Consequently, the ratio of cases to deaths prevented or postponed is

in�uenced by the same factors.

8.2.1 Could I have achieved the aims using di�erent modelling methodology?

Since I created the list of models in chapter 1 that have been used in multiple studies

and have likely informed policy (section 1.6.1 on page 35), at least two more models have

emerged to �t these criteria. The �rst is the PRIME model (an evolution of the DIETRON

model).[172, 439, 440] PRIME is a comparative risk assessment model that allows the user

to input counterfactual risk exposure distributions that could have occurred by the mod-

elled intervention and quantify the impact of the intervention on disease-speci�c mortal-

ity. It includes multiple risk factors and multiple diseases and it appears it could be easily

expanded to model di�erent socioeconomic groups. Therefore, it is reasonably reusable.
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However, it is not open source; therefore, other researchers cannot use parts of this model

in their modelling approaches and they cannot improve the existing model without prior

permission from the authors. The inputs, logic, key assumptions, and limitations of the

model are also well presented, and my understanding is that the authors share their model

upon request. Hence, it is transparent. On the other hand, PRIME is a static model. The

element of time is absent from the model, both in terms of lag times between exposures and

diseases, and regarding risk factor exposure and mortality trends. Moreover, PRIME only

models the impact of an intervention on disease mortality and is agnostic about disease

incidence and prevalence, which makes its outputs less informative. Therefore, I argue

that IMPACTNCD is more comprehensive than PRIME.

The second model is a proportional multi-state life table model that has been developed

for the Australian and New Zealand populations.[253, 441] This is essentially a macrosimu-

lation, but unlike a Markov macrosimulation, it allows for proportions of the population to

be at multiple states simultaneously.
45

This model simulates multiple risk factors and the

incidence, prevalence, and mortality of multiple diseases. It allows the exploration of the

equity of the modelled interventions and it incorporates trends in disease incidence and

mortality. Therefore, it seems reasonably reusable, but again it is not open source. The

authors provide a technical appendix that describes the inputs, logic, key assumptions,

and limitations of the model but they do not o�er the actual model (in this case an Excel

spreadsheet). Hence, it is reasonably transparent. On the other hand, this model does not

model lag times between exposure and disease. It also models a closed cohort population

which makes the model outputs not immediately interpretable to the real population.

So, does the adoption of a dynamic stochastic microsimulation approach for IMPACTNCD

provides any bene�ts compared to a proportional multi-state life table model or it just

increases complexity unnecessarily? Three main advantages stem naturally from a mi-

crosimulation that would have been hard to incorporate with any other approach. The

�rst is that this approach allows for the heterogeneity of the population to be included in

the uncertainty analysis (please refer to section 2.6 on page 62). The second is that it allows

modelling explicitly the distributional nature of each risk factor exposure and the correl-

ations between the exposure distributions. Therefore, high-risk individuals with multiple

risk factors are naturally included in the simulation, and the ‘di�erential vulnerability’

pathway of the Diderichsen social production of disease model (section 1.4.2 on page 26)

is modelled consequently. Finally, simulating individuals rather than cohorts dramatically

increases the spectrum of the policies and interventions and the depth of their de�nition

that can be simulated. All high-risk, targeted preventive interventions require an eligible,

based on some prede�ned characteristics, population to be screened and then high-risk

individuals (based again on prede�ned criteria) to be treated(section 1.5.1 on page 31).

In a microsimulation setting de�ning eligibility and treatment criteria and alter them in

a sensitivity analysis is easy, and once more, naturally stems from the structure of the

model. Even, when modelling population-wide interventions that have agentic elements,

45 I. e. a traditional Markov macrosimulation would require a di�erent state for each combination of diseases

to allow for proportions of the population to have more than one diseases simultaneously. A proportional

multi-state life table model eases this limitation and reduces the structural complexity of the model.
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microsimulation o�ers the �exibility to explicitly model the di�erential penetration and ef-

fectiveness of the intervention based on individual characteristics (i. e. education, literacy,

health attitudes, etc.). ‘Hybrid’ modelling approaches have been applied in the past. For

example, the modelled intervention, disease incidence and case fatality may be modelled

using microsimulation and disease prevalence and mortality may be modelled using pro-

portional multi-state life table.[442]. These hybrid approaches provide further evidence

that microsimulation has inherent bene�ts that are hard to be reproduced with a di�erent

modelling methodology. The microsimulation approach of IMPACTNCD was dictated from

the wide spectrum of policies that had to be modelled to meet the aims and the objectives

of these project (please refer to section 1.7 on page 40). The increased complexity, data

and computational requirements of IMPACTNCD may be further rationalised in the future

if IMPACTNCD get reused in other projects.

8.2.2 Overarching themes

In the following paragraphs I will focus on three recurrent themes in my results. The

�rst theme is that structural, population-wide approaches were consistently more power-

ful than agentic, high-risk ones for primary prevention. In chapter 4, statins could only

explain about a third of the observed cholesterol decline. In chapter 5, universal screening

was three times less e�ective than a combination of population-wide structural policies.

In chapters 6 and 7, the addition of more structural elements to existing policies for excess

salt, and tobacco control greatly improved their e�ectiveness. This is in concordance with

other modelling and empirical studies.[131–136]

This �nding is particularly important because it strongly suggests that despite the ob-

served concentration of risk in speci�c sub-populations, population-wide prevention re-

mains more e�ective than high-risk approaches. The original concept by Geo�rey Rose

remains topical now and for the foreseeable future, as recent risk factors trends continue

(please refer to section 1.5.1 on page 31). In fact, as the prevalence of high-risk individuals

in the future is predicted to decrease (�gure 5.1 on page 126), identifying them through

screening programmes will be increasingly ine�cient, making population level policies a

more attractive option.

The second overarching theme of my results is that generally, the equity of an inter-

vention increases as its structural components increase. For instance, in chapters 6 and 7

the addition of more structural elements to existing policies for excess salt, and tobacco

control improved their equity. This is consistent with existing theoretical and empirical

evidence (please refer to section 1.5.2 on page 31).[112, 143–147]

However, the agentic policies that I modelled did not generate substantial inequalities,

despite the theoretical arguments to the contrary (please refer to section 1.5.2 on page 31

and section 1.5.4 on page 33).[112, 143–147] In chapter 4, statins utilisation increased with

deprivation for both sexes; subsequently, statins contribution to declining cholesterol also

increased with deprivation for women. Similarly, in chapter 5 universal screening for

CVD may not generate dramatic inequalities. The estimated equity of the current UK salt

strategy in chapter 6 was more complex. Current salt policy, which has strong agentic
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elements (media campaigns, food labelling, enhanced voluntary reformulation) had prob-

ably no e�ect on CVD inequalities; although, it is likely to generate inequalities for gastric

cancer.

One explanation for the inconsistency between the theoretical expectations and the

modelled equity estimates of agentic policies may be that planners and practitioners anti-

cipated for these inequities and designed the intervention accordingly. Speci�cally, agentic

policies require individuals to get exposed to the policy, react to the policy through beha-

vioural change, and sustain the new behaviour.[146] Socioeconomic gradients may appear

in any of these stages, which would generate inequalities. It is likely that with proper

design and implementation of agentic interventions these socioeconomic gradients can be

prevented. Using NHS Health Checks as an example, some areas may have allocated more

resources in recruiting participants with a lower socioeconomic background. Then, parti-

cipants with lower socioeconomic status are more likely to be o�ered preventive medica-

tion compared to similar individuals with a higher socioeconomic status, because depriva-

tion is recognised as a contributing factor for CVD. And �nally, the cost of medication is

covered in full for the most socioeconomically deprived. Implementing, the same policy

without these provisions could have deleterious e�ects in socioeconomic health inequalit-

ies.

Another plausible explanation for the gap between theoretical and simulated results

could be that agentic policies generate health inequalities, which are not accounted for by

the use of the Index of Multiple Deprivation; consequently, they are not re�ected in the

model. For example, agentic policies may discriminate against individuals with mental

health issues, or inadequate health literacy;[356, 357] however, the published quantitative

data do not allow for a modelling exploration of these dimensions of health inequalities.

In any case, it seems that for agentic policies implementation details matter. While the

risk of intervention-generated inequalities exists, provisions during the design of agentic

interventions may counteract the anticipated inequity, at least partly.

Finally, the third theme that emerged from my results is the notion of joint prevention.

Beyond the obvious and expected yet, still rarely explored joint prevention of NCDs,[135,

157] my results indicate that it may be feasible to jointly prevent NCDs and socioeconomic

inequalities in health. Population-wide structural interventions targeting unhealthy diet,

and/or smoking can potentially prevent multiple NCDs and tackle socioeconomic inequal-

ities. This was highlighted in chapter 5 with the population-wide intervention scenario,

and in chapters 6 and 7 with the structural salt and tobacco control scenarios. In fact,

combining structural policies with carefully designed high-risk interventions targeting

the most deprived groups may have even greater impact on inequalities and achieve the

optimal e�ectiveness and equity (i. e. the combined scenario in chapter 5). However, the

cost-e�ectiveness of these combined approaches remains unclear.

In conclusion, my results suggest that structural population-wide preventive policies are

the cornerstone for e�ective and equitable joint primary prevention of NCDs and health

inequalities. Interestingly, high-risk interventions targeting the most deprived may be use-

ful in supporting the equity of structural policies. Nevertheless, this ‘proportionate uni-
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versalism’ requires careful planning and implementation to avoid intervention-generated

inequalities.

8.3 why model? the role of modelling in public health

In the previous paragraphs I summarised the key �ndings of my thesis for England.
46

I used

modelling to quantify the impact of existing policies (i. e. statin prescription for primary

prevention, universal screening for CVD, and the salt reduction strategy). Experimental

methods for the evaluation of these national policies would require signi�cant resources

and complex stepped-wedge designs that are impractical to implement when there is sub-

stantial lag time between exposure and disease. Therefore, in these cases modelling may

be the only realistic solution.

While alternatives exist for the evaluation of applied policies, modelling is the only

methodology that can provide planners and policy makers with estimates regarding the

impact of a policy on the population, before the actual implementation of the policy. Hence,

multiple policies and variations of the policies can be simulated and the probability of

success can be estimated against prespeci�ed decision rules, allowing for evidence based

decisions. In addition, any potential pitfalls can be identi�ed during the simulation and the

design of the policies can be further improved before they applied to the real population.

After the implementation traditional evaluation methods can focus on the dimensions of

the policy that were the most problematic or uncertain during the simulation. Modelling

is considered a mature method for policy evaluation in other �elds, but less so in public

health.[443–447]

Beyond the evaluation of policies, modelling may be the only method
47

to study inter-

ventions that jointly prevent NCDs, even with no resource constraints. The di�erence in

risk reversibility lag times renders the implementation of experimental studies impossible

on ethical ground. For example, let us consider a randomised control trial to study the

e�ect on gastric cancer of an intervention that reduces salt consumption. Participants in

the intervention arm of the study would have reduced mortality because of the favourable

e�ect of reduced salt consumption on CVD. Because of the likely shorter lag time for CVD,

this would have manifested earlier than any e�ect on gastric cancer that has likely longer

lag time and would might well have resulted in early termination of the trial.[448]

Apart from the obvious uses for modelling that have been stated in the previous para-

graphs, the bene�ts of modelling are much wider than merely its outputs. The full mod-

elling process from the conception, to implementation, scenario building, calibration, and

sensitivity analysis has multiple bene�ts. In an editorial in the Journal of Arti�cial Societ-

ies and Social Simulation, Epstein posited “sixteen reasons other than prediction to build

models”.[156] In the following paragraphs I show how the work of this thesis illuminates

key aspects of these sixteen bene�ts.

46 These �ndings could have been fundamentally di�erent if I had simulated a di�erent population. For example,

the estimated e�ectiveness and equity of cardiovascular screening may have been very di�erent if they had

been implemented in a sub Saharan African country.

47 The alternative is relevant natural experiments.
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explain: O�ering plausible explanation or illustration of a phenomenon is perhaps

the greatest advantage of modelling. For instance, IMPACTNCD can help to illustrate how

the interplay of exposure to risk factors with socioeconomic circumstances creates the

socioeconomic patterns in CVD, lung, and gastric cancers morbidity and mortality. As

Epstein argues, explain is much di�erent from predict.[156] We can explain with great

detail how blood clots are forming in the atherosclerotic coronary arteries and cause AMIs;

however, we cannot predict accurately when this will happen. Explaining a phenomenon

may be more important for public health policy because public health policy makers are

only rarely experts in public health or epidemiology. Therefore, models can be the means

of e�ective communication between experts and policy makers.

guide data collection: Many believe that models are built to account for the data.

This is often the case; however, the most useful models are those which precede the data

and guide data collection. For instance, the existence of Higgs boson was indicated in

the 1960s from the Standard Model of physics. Since then, physicists have been searching

for it for more than 50 years and they only managed to con�rm its existence in 2013.[449]

Unfortunately, similar high pro�le examples are still rare in public health modelling. Fortu-

nately, IMPACTNCD might have provided an illustrative example. In section 1.3 on page 17

it was obvious that empirical evidence regarding salt risk reversibility for gastric cancer

was lacking. However, IMPACTNCD validation assuming the existence of salt risk reversib-

ility with a mean lag time of 8 years performed well both for gastric cancer incidence and

mortality. Hence, my results may suggest that the risk of gastric cancer from exposure to

excess salt is fully reversible within about eight years from a successful reduction of salt

consumption.
48

illuminate core dynamics: In chapter 1, I described how the population dynamics,

trends in risk factor exposures, and lag times between exposure and disease drive the

trends in morbidity and mortality. In IMPACTNCD I meticulously tried to capture these

dynamics because they are particularly important in explaining morbidity and mortality in

the population. Traditional epidemiological methods usually fail to describe and quantify

these dynamics in a form useful for decision-making. For example, traditional methods in

modelling may quantify population ageing, the increasing trend in obesity prevalence and

the decreasing trends in SBP and cholesterol. However, in isolation those �ndings cannot

pinpoint whether CVD incidence will increase or decrease in the population. Modelling

can integrate this information and produce the desired output. In chapter 7, I also used

this feature of modelling to describe the dynamics of two tobacco endgame policies.

suggest dynamical analogies: Models are abstracted idealisations of reality;

hence, analogies between phenomena are more easily identi�ed when these phenomena

are modelled. For instance, the spread of the obesity epidemic over the past few decades

48 Although because IMPACTNCD does not account for a declining trend in the prevalence of Helicobacter pylori

infection, a known gastric cancer risk factor that is also associated with high salt diet, other plausible explan-

ations also exist.[450, 451]
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has similarities with the spread of communicable diseases and both can be described by

similar mathematical equations.[452] The recognition of these analogies provides better

insight and may open new avenues for exploration. In IMPACTNCD I showed that the

incidence of multiple NCDs and their trends can be modelled using the same modelling

framework, suggesting that despite their diversity they share some common elements. I

did the same for the di�erent policies.

discover new qestions: As models integrate all the relevant information to sim-

ulate a phenomenon or a system and answer old questions, new questions are discovered.

In my thesis these new questions may be: what is the most e�ective and equitable combin-

ation of structural and targeted policies to prevent CVD? or why did the modelled agentic

policies not generate substantial inequalities?

promote a scientific habit of mind: This is perhaps the most important of

all because it can potentially bene�t public health practitioners and policy makers. The

process of model building is a journey of scienti�c enquiry. Information from diverse

sources needs to be collected, challenged, and then combined in the model. In this journey

practitioners, planners, and policy makers may guide or lead the modelling team because

usually they have a better insight into the complex system to be modelled. Therefore,

they know what components of the system are less important, and what assumptions are

reasonable. Through the modelling process though, practitioners, planners, and policy

makers may explicitly formulate their insights and share them with others; hence, these

now explicit insights and beliefs can be scienti�cally challenged and scrutinised before

they inform the model. During the design and application of IMPACTNCD I followed these

principles.

bound outcomes to plausible ranges: I �nd plausible ranges more interesting

and useful than point estimates, which are extremely unlikely to be accurate. The ideal

scenario in chapter 6 and ideal minimum scenario in chapter 7 do exactly that. They set

the upper boundary of cases that can be prevented or postponed from policies targeting

salt and tobacco respectively. Comparative risk assessments provide the same information

and their results are already used to inform policy-making. The advantage of more com-

plex approaches is that they can provide the boundaries for more complex scenarios and

estimate the dynamics of the boundaries over time.

illuminate core uncertainties: Traditional epidemiological methods that are

based on frequentist methods can only quantify the uncertainty arising from sampling. On

the contrary, a more comprehensive approach to uncertainty is allowed with modelling (I

provide a brief summary on modelling uncertainty in section 2.6 on page 62). In particular,

uncertainty can be studied and quanti�ed in models, but most importantly can be dissected

to highlight core uncertainties that if improved can lead to more certain model outputs

and better decisions. Hence, policy makers can decide to delay their decision, and allocate
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resources to speci�c areas of research in order to reduce model uncertainty before they

proceed to decision-making.

offer crisis options in near real time: When models are designed to be re-

usable, they can provide timely estimates when time is important. Such emergencies are

unlikely for NCDs but are quite common in the �eld of infectious diseases and environ-

mental health. Synthetic populations may be useful in these time critical situations because

they can be used by a wide range of models for NCD, communicable disease, or environ-

mental health modelling. The synthetic population of IMPACTNCD can also be used to a

communicable disease model.

demonstrate trade-offs / suggest efficiencies: This is another useful be-

ne�t of modelling in public health, especially in times of austerity and resource constraints.

Modelling can be used to estimate the best mixture of policies to maximise health in the

population while minimising inequalities and costs. Although IMPACTNCD cannot be used

to estimate cost-e�ectiveness yet, the equity summary chart was designed to illustrate e�-

ciencies and trade-o�s in e�ectiveness and equity of the modelled policies (section 2.7.2.2

on page 66). Another example from my results is that in the future, screening strategies

will be less e�ective because of the reduction of the high-risk prevalence pool as suggested

in chapter 5 (�gure 5.1 on page 126).

challenge the robustness of prevailing theory: I have to also add here

prevailing theory-based practice. The superior e�ectiveness of population-wide interven-

tions has been demonstrated multiple times.[131–136] Yet, high-risk, agentic approaches

are still in the core of national prevention strategies. Statins for primary prevention and

the NHS Health Checks programme are two examples. Models like IMPACTNCD can chal-

lenge current policies and provide leverage for their improvement or replacement. Inter-

estingly, another model may explain why policy makers opt for more agentic approaches

and “why cure crowds out prevention”, as the higher revenue of the curative sector is used

to in�uence policy.[453]

expose prevailing wisdom as incompatible with available data: A great

example of this is in chapter 4. Many epidemiologists and clinicians maintain that statins

were the main driver of cholesterol reduction observed in many countries over the past

two decades, including England. In chapter 4, I provided evidence that this is not suppor-

ted by the data, as the observed reduction was much steeper than would be expected given

statins utilisation and their e�ect size. A phenomenon that it has been observed in other

countries also.[309–312]

train practitioners: Practitioners may be trained not only through participation

in model building but also through simple interaction with the model. For instance, by

inputting scenario parameters and observing the numerical and graphical model outputs,

practitioners may develop a more comprehensive understanding of how and to what ex-
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tent speci�c policy elements can in�uence population health. IMPACTNCD �ndings have

already been published in peer-reviewed journals, and have been presented in national

conferences and local meetings, where public health trainees were also attending.[298–301,

454] Nevertheless, my aspiration is to expand the current user interface of IMPACTNCD and

allow users to directly interact with the model for a better learning experience.

discipline the policy dialogue: Actually, policy dialogue can be evolved, facil-

itated, and progressed around a modelling exercise. All the aforementioned bene�ts of

modelling can then provide insight, enrich, and discipline the discussion. As I have pre-

viously mentioned, many of my �ndings have already been published, and presented in

conferences and meetings. Therefore, they are already part of the policy dialogue. Addi-

tionally, I had the honour to present and discuss my �ndings directly to national policy-

making committees. Finally, I already work with Liverpool Local Authorities to create a

local model and I hope that this will facilitate and progress the policy dialogue locally.

reveal the apparently simple (complex) to be complex (simple): Lastly,

the promotion of scienti�c enquiry and explicit assumptions that modelling o�ers can

sometimes reveal that ‘simplicity’ and ‘complexity’ are not absolute terms but relative and

depend on the context. I will use two examples from my personal experience to further

clarify this. Before this research project I had mistakenly believed that identifying prevent-

ive policies that are both e�ective and equitable would be a complex task. After building

and experimenting with IMPACTNCD, the same task seems much simpler now. On the

other hand, during my literature review I got the impression that high-risk policies were

synonymous with intervention-generated inequalities. Now I understand that this is a far

more complex issue.

educate the general public: I have to add here also ‘involve the general pub-

lic’. My results suggest that structural policies are key in the primary prevention of NCDs.

However, implementation of such policies usually requires strong public support and in-

volvement. Model outputs can be used to inform powerful media campaigns in order to

explain structural changes and gain public support and involvement for radical policies.

8.4 implications for planners policy makers and clinicians

My thesis was mainly written to inform policy makers and planners. Isolated implications

of my �ndings have been described separately, in each result chapter. Here, I will reiterate

two fundamental arguments stemming from my thesis. First, primary prevention policies

need to have strong structural components in order to maximise e�ectiveness and have

an impact on health inequalities. Current preventive strategies can be further optimised

by the addition of more structural policies. Furthermore, new radical approaches may be

needed to substantially reduce the burden of NCDs and tackle socioeconomic health in-

equalities. Second, public health modelling is mature enough to support decision-making
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in public health and guide policy. Therefore, new partnerships and collaborations are ne-

cessary between the modelling, policy and decision-making communities.

My �ndings, support the principle that primary prevention needs to be moved away

from health care interventions and towards more structural approaches for increased ef-

fectiveness and equity. Of course, this does not diminish the importance of opportunistic

screening and medical consultation in health care settings for individuals. Nor does it

downgrade clinical judgement. However, on the population level these interventions are

just a drop in the ocean, despite their importance on the individual level.

8.5 limitations

In chapter 2, I summarised the main limitations and assumptions of IMPACTNCD (table 2.1

on page 69). Here I will discuss them in depth, along with their possible direction and

magnitude of the introduced bias. I will also discuss the less technical but perhaps more

important scenario assumptions and limitations that were not included in this table.

In line with the IMPACTNCD description I will start with the assumptions and limita-

tions of the population module. First, the demographic engine ignores migration �ows.

This a�ects the synthetic population growth over time, as well as the distribution of the

risk factors in the population. Long term forecasting of migration �ows is di�cult; how-

ever, assuming that the net migration
49

will continue its increasing positive trend,[455]

IMPACTNCD underestimates the synthetic population projections by about 0.4 % every year.

As a result, the estimated numbers of cases and deaths prevented or postponed are likely

to be underestimated also. Unfortunately, forecasting the absolute number of immigrants

and emigrants is the simpler part of the problem. In the context of microsimulation it is

necessary to know migrants’ individual characteristics; from their age and sex to their

behavioural and biological risk factors. This level of information is lacking on an indi-

vidual level and is patchy on an aggregated level because of the diversity of immigrant

populations. What can be safely assumed though, is that immigrants face more barriers

in accessing the health care system than natives.[456] Hence, the exclusion of immigrant

�ows from IMPACTNCD is likely to overestimate the e�ect and equity of high-risk, agentic

policies and the opposite is likely for the structural ones.

The second limitation of the population module is the rather simplistic approach to mod-

elling the dynamics of deprivation. The �rst issue with this, is that the Index of Multiple

Deprivation is a marker of relative deprivation that is updated every few years to take

into account new sources of information. I assumed that all versions of the Index of Mul-

tiple Deprivation are the same, ignoring the likely overall absolute improvements of the

socioeconomic conditions in England between 2001 and 2012. The bias from this is un-

clear because the level and speed of the assumed improvement in each quintile is poorly

quanti�ed. The second issue is that I used the QIMD as the only marker of socioeconomic

deprivation in the dynamic model. While the initial synthetic population contains also the

household income and the employment status of the head of the household (section 2.3.2.1

49 De�ned as immigration − emigration.
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on page 46), this information is not considered in the equations that de�ne the behavioural

and biological risk factors of the synthetic individuals. I chose this approach for simplicity;

however, I plan in the future to experiment with nested hierarchical models that include

individual and household markers of deprivation, nested within the area level deprivation

marker. The third issue with the deprivation dynamics in the model is that social mobil-

ity is not considered. Synthetic individuals are permanently allocated into one of the �ve

socioeconomic groups for the full course of the simulation. This prohibits IMPACTNCD to

model the positive feedback loop in the Diderichsen model (please refer to section 1.4.2 on

page 26). Technically, it would be easy to simulate social mobility in IMPACTNCD if the

impact of social mobility on the behavioural risk factors was known. Unfortunately, it is

not clear to what extent individuals that improve or worsen their socioeconomic position

during their life course adopt healthier or less healthy behaviours, respectively. Because

these assumptions and simpli�cations apply to all scenarios, it is unlikely that they may

have seriously biased the equity ranking of the policies.

The third limitation of the population module is that the exposures in the synthetic pop-

ulation are informed by one source (HSE). Hence, any biases in the HSE are projected to the

synthetic population. This may introduce bias mainly in two possible ways. First, through

selection bias. HSE adjusts for selection bias arising from its sampling since 2003, however

the main assumption of this adjustment is that non-responders have similar characterist-

ics to the responders. Given the socioeconomic patterns of most risk factor exposures,

it is likely that the socioeconomic gradients of exposures in the synthetic population are

underestimated. The second possible source of bias is that physical activity and fruit and

vegetable consumption were self-reported. The questionnaires that have been used over

the years for the measurement of physical activity were not identical, and responses to

the same questions may have changed culturally over time, for both physical activity and

fruit and vegetable consumption. Therefore, the extraction of temporal trends for these

two variables may be problematic. Most importantly, the self-reported physical activity

was poorly correlated with accelerometer measurements, raising questions regarding the

validity of this exposure measurement and indicating social desirability bias.[457] This is

the main reason I have avoided modelling policies involving physical activity. The fruit

and vegetable consumption was recorded using 24 hour recall in HSE. The point estimates

from the HSE were lower than those of NDNS that used 4 day diary records, by slightly

less than a portion. However, the validation of NDNS suggested under-reporting of overall

calories intake and possibly social desirability bias (please also refer to section 1.3.3.2 on

page 19).[54] Hence, I decided to use HSE estimates. Additionally, the one-o� measurement

of fruit and vegetable consumption may overestimate the variance of the ‘usual exposure’

distribution of the population, because of the within person variation.[32] IMPACTNCD

adjusts for that by allocating di�erent synthetic individuals to the extremes of the con-

sumption distribution for every simulated year, essentially diluting the bias to the whole

synthetic population at the expense of increased uncertainty.

The disease module has a di�erent set of assumptions and limitations. The multiplicative

risks assumption that IMPACTNCD uses is the norm for comparative risk assessments and

modelling.[30, 32, 172, 458] Speci�cally for CVD this assumption is supported by empir-
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ical studies.[103, 459] However, evidence is lacking regarding cancers. The case is similar

for the 100 % risk reversibility assumption. The only case where evidence disputes this

assumption is for SBP and CHD, for which risk reversibility is about 75 % (please refer

to section 1.3.7.1 on page 22). Therefore, IMPACTNCD is likely to overestimate the e�ect

of interventions targeting SBP. Another assumption in IMPACTNCD is that the exposure

to risk factors has the same e�ect on disease incidence and mortality. This assumption

was inherited from some of the meta-analyses used in IMPACTNCD that included indistin-

guishably both CVD incidence and CVD mortality primary studies to extract the e�ect

size of BMI and diabetes mellitus.[74] Similarly, I used e�ect sizes from mortality studies

to model incidence.[78, 81] Consequently, I assumed that exposure to risk factors has no

e�ect on case fatality. For instance, the long term survival after an AMI in the model is

the same irrespective of whether the patient quits smoking after the event or not. In fact,

the risk may almost halve.[460] Since I have only modelled primary prevention policies,

these assumptions have no e�ect on the estimated cases prevented or postponed and may

underestimate the deaths prevented or postponed.

Finally, with the exception of salt and SBP, I have extracted the magnitude
50

of the

associations between behavioural and biological risk factors from the HSE, to allow for

greater granularity. Because of the cross-sectional design of HSE, reverse causality may

have biased these estimates, attenuating the associations. Hence, this may have underes-

timated the e�ect of population-wide interventions.

Overall, the direction of bias from these technical assumptions and limitations is towards

underestimation of the cases prevented or postponed that were estimated by IMPACTNCD.

The underestimation is likely to be greater for the structural interventions, hence it further

supports the argument that structural policies are more e�ective than high-risk, agentic

ones. The validation of the model suggests that the introduced bias of all the assumptions

in the model is small.

In summary, the IMPACTNCD framework is likely to be balanced in translating changes

in risk factor exposures into changes in NCDs incidence and mortality, with overestimates

balanced by underestimates. This also allows for the scenario assumptions to be re�ected

in model outputs. Depending on the desired use of the model, this property of IMPACTNCD

can be seen as a limitation or a strength. If the purpose of modelling is forecasting, then

this is probably a limitation because model outputs are sensitive to the input assumptions.

However, if the purpose of modelling is to support policy makers in their decision pro-

cess, then the sensitivity of the model is a great strength. Due to the comprehensiveness

of IMPACTNCD, it requires detailed policy speci�cation for the modelled scenarios. Con-

sequently, it encourages the user to describe in detail the policy, and when information is

lacking, to make explicit assumptions about who will get exposed to the policy, who will

engage and respond, and in what way.
51

The way a policy is speci�ed will have a great

impact on its estimated e�ectiveness and equity. The explicit assumptions though, can be

50 As a reminder, the existence and the direction of the associations were informed from published longitudinal

studies.

51 It is worth noting here that simpler modelling approaches may require less speci�c scenarios. The price is

implicit assumptions that cannot be contested, and reduced transparency.
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contested, further explored in sensitivity analysis, or their uncertainty propagated to the

outputs. Essentially, this allows IMPACTNCD to realise the advantages of modelling that

have been described in section 8.3 on page 168.

8.6 future plans and challenges

In this section I will �rst discuss the immediate plans for developing IMPACTNCD further.

Then, I will summarise my vision for public health modelling in the next decade and some

of the challenges that the discipline may face.

In my thesis I have described the IMPACTNCD framework, which is a generic framework

for NCD modelling, and I have showcased an implementation of the framework as a proof

of concept. The immediate next step is to extend the current implementation in �ve axes.

The �rst is to include more risk factors in the simulation; alcohol and other markers of poor

diet such as �bre, sugars, and fats consumption are the most obvious ones. The second axis

is to expand the modelled diseases; more cancers, chronic obstructive pulmonary disease,

and dementia are candidates for this.

The third axis is more ambitious. I would like to create a separate policy layer framework

to systematically model preventive policies and interventions. User assumptions about the

policies will perhaps be vital for this, and a user interface will be necessary to help the user

interact directly with the model and test these assumption in real time. The creation of

a registry of preventive policies that will contain empirical data regarding policy aspects,

and reasonable assumptions about these policies may follow, to be used as template policies

for IMPACTNCD.

The fourth axis is to expand the available modules and therefore, the usability and re-

usability of the model. The obvious step is to include a health care intervention module

after the population and disease modules. This will allow scenarios involving secondary

prevention. Then, perhaps a health economics module to estimate cost-e�ectiveness along

with e�ectiveness and equity of the policies. Another module could back-project the sim-

ulation in order to explain past exposure and disease trends. The addition of an ‘early

exposures’ module is a longer term plan to allow scenarios of childhood prevention and

facilitate ‘life course’ analyses.

The �nal expansion axis is to include more populations in the model. Scotland and the

US can be among the �rst new countries to be modelled, as both have a series of health

surveys that are freely available to researchers. A less obvious opportunity is to extend the

model to local populations in smaller geographical areas; i. e. model populations within cit-

ies. This is a �eld largely unexplored and the interventions that can be implemented at city

level are much di�erent from the national policy options. In England, many public health

responsibilities have been moved from the central government, down to local authorities,

making a local implementation of IMPACTNCD very topical.
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8.6.1 Public health modelling in 2030

The bene�ts of modelling for public health that I listed in section 8.3 on page 168 could be

realised immediately, at least in part, with the modelling framework reported in this thesis.

However, new opportunities and barriers lie ahead. The �rst part of the 21st century will

be probably known to the future generations as the beginning of a new era, the ‘age of Big

Data’.[461] A huge amount of information is collected everyday and can be potentially

linked to create new knowledge. Data science, predictive analytics, machine learning, and

arti�cial intelligence are rapidly evolving scienti�c �elds that are driven by the eruption

of Big Data. The use of big analytics in Big Data in health, despite the ‘teething’ problems,

might potentially revolutionise health care.[462] In this new data rich era, the accuracy of

existing clinical prediction models may substantially increase. Furthermore, the necessary

resources to calibrate them for new populations and expand them to new diseases may be

dramatically decreased.[463]

What might be the impact of Big Data in future public health policy and public health

modelling? Imagine a national registry of the English population that links health care

records, with information about consumption, and information about behavioural charac-

teristics collected from social media. Buchan et al. argued that the aggregation of health

data from multiple, diverse sources about an individual will lead to the creation of a ‘health

avatar’, “. . . the electronic representation of an individual’s health as directly measured or

inferred by statistical models or clinicians”.[464] A public health model could have access

to the health avatars of a population and identify high-risk individuals in the population

for certain diseases. Then, the model could wait for the right moment to invite them for a

consultation with a health care professional in order to maximise response; i. e. a few days

after their favourite artist had an AMI or after setting up a personalised awareness cam-

paign in their newsfeed. The model could monitor whether the avatars indicating that the

individuals had altered their behaviour towards healthier options and perhaps intervene if

not. Another model could raise public awareness and support for a structural intervention

using social marketing approaches, and notify policy makers when there would be enough

support in the population to implement the change by monitoring social media. In a less

futuristic scenario, this wealth of information may be used to better de�ne the e�ective-

ness and equity of the applied preventive policies. Simulation modelling can be used to

generate independent estimates for comparison with the collected data. Any convergences

or divergences could be explored and used for better calibration of the simulation model,

or �ag potential issues in the collected data. Big Data may allow the development of ‘pre-

cision public health’ (an analogy to precision medicine), in which public health modelling

is a vital component.[465]

A synthetic population (of avatars) at some point may become more credible than a

population averaged model; but may not necessarily be more useful for supporting public

health policy decisions. Leaving aside ethical considerations, Big Data does not necessarily

equate population representative data. Training predictive models in partial data reduces

their predictive power and may lead to biased predictions. Therefore, using entirely data

driven prediction models trained with Big Data, to predict about the population and inform
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policy-making, is potentially dangerous. A vivid example of this was how the Bayesian

age period cohort model I used in the validation (section 3.4.3 on page 98) got ‘trapped’

in an artefact of the data. In contrast, public health simulation models that aim to explain

rather than predict, and integrate information from multiple sources including traditional

research methods and experts’ opinion without over relaying on Big Data, may be proved

more useful to policy makers. These models may also be used to augment Big Data by

adding information to sparse areas of the data in an attempt to improve the robustness of

predictive models.[466]

8.7 personal reflections

As a consequence of my interest in public health, I decided to embark on this PhD journey

with no previous experience in modelling, but with a strong desire to learn and further

develop. Coming from a clinical background and with strong foundations in statistics and

computer programming, public health modelling seemed like the discipline that would

combine my skills and interests. I was not mistaken. During these three years of my

research, modelling became the vehicle for me to widen my understanding in public health,

policy, and epidemiology. Most importantly though, it enabled me to communicate my

ideas, and discuss them with a wide range of people; from data scientists and statisticians,

to public health practitioners, policy makers, and the general public. This enabled me to

improve my communication skills outside the clinical setting, and to realise that good ideas

need even better support and communication to �ourish. After all, Voltaire was probably

right that ‘common sense is not that common’.[467] Finally, I am proud because unlike

many other PhD projects that stop after three years, I will continue to develop and expand

IMPACTNCD for the foreseeable future and I hope that other members of the open-source

community will eventually get involved with it.



9
C O N C L U S I O N S

This initial journey through the �elds of epidemiology, public health policy, and compu-

tational statistics has almost �nished. I have described the great and unequal burden of

NCDs in England and the preventive policy typologies that can be used to guide policy-

making. I have also described how simulation modelling can support policy makers in

their decision-making process, by integrating all the available information and providing

insights that take into account the complex dynamics of exposures and diseases in the

population.

I will end by summarising the three key messages that emerged from my research. First,

although existing primary prevention policies for NCDs appeared to be e�ective overall,

the addition of structural elements to these policies may further optimise their e�ective-

ness and equity. Second, high-risk interventions that target the most deprived groups com-

bined with structural policies, may achieve the best impact on reducing disease burden and

health inequalities. Finally, modelling o�ers a potentially powerful approach to assess the

impact of existing policies when more traditional methods are impractical. More import-

antly, simulation modelling is essential for the design of new �t-for-purpose policies that

will take into account the complex nature and dynamics of the speci�c population that

they are designed for.
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A P P E N D I C E S





A
M E T H O D S A P P E N D I X

a.1 salt stochastic process

stage 1 The sodium surveys report several percentiles of the 24 h urine sodium dis-

tribution by age group and sex. I used least squares estimation to �t known continuous

univariate distributions
52

to the reported percentiles. The distribution with the best �t was

selected and used for further calculations. To avoid bias from possible outliers to the ex-

tremes of the reported percentiles, I used the formula weigℎts = 1/(|0.5 − percentile| + 1)

to give higher weights to percentiles around the median. The R package ‘rriskDistribu-

tions’ was used in this stage.[468] The end result of this stage was that for each age group,

sex, and year of sodium survey I estimated a continuous distribution of sodium excretion.

For instance, a triangular distribution was selected for men, aged 19 – 24 in 2001 with

parameters min ≈ 5.18, mode ≈ 7.3, and max ≈ 21.07 (�gure A.1 on the following page).

stage 2 The four sodium surveys were performed in years 2001, 2006, 2008, and 2011. I

used the nearest year HSE that individual level data from spot urine sodium was available

and I converted the spot urine sodium to 24 h sodium, using the INTERSALT equation

for Northern Europe.[219, 239] For each HSE participant di�erent coe�cients of the IN-

TERSALT equation were sampled from the normal distributions with mean equal to the

reported coe�cient and SD equal to the reported SE of the respective coe�cient. Finally,

24 h sodium (in mEq/day) was converted to salt (g/day) using the formula 1mEq of sodium

= 58.5 ∗ 10
−3
g of salt.

stage 3 In this stage, the percentile rank
53

of the estimated salt consumption for each

HSE participant was calculated by 5-year age group, sex, and year. Then, the estimated

salt consumption values from stage 2 are substituted by equal number of values that were

drawn from the respective (by age group, sex, and year) salt distribution that was estimated

in stage 1, based on the equality of percentile ranks. For example, consider a participant

whose salt consumption was estimated in stage 2, at 10 g/d. Let us suppose that the per-

centile rank for his/her respective age group, sex and year corresponds to 0.6. Then in this

step, a set of numbers will be drawn from the respective distribution estimated in stage 1

and the value with percentile rank of 0.6 will replace the 10 g/day salt consumption. There-

fore, by the end of this stage, the individual level data from HSE years 2003, 2006, 2009, and

52 Normal, beta, Cauchy, logistic, t, chi square, non-central chi square, exponential, F, gamma, log-normal,

Weibull, triangular, PERT, truncated normal and Gompertz.

53 For the percentile rank the formula R
textpercentile

= (R − 1)/(n − 1) was used, where R
percentile

is the percentile

rank and R = (R1,… , Rn) is the rank vector constructed from a random observation vector (X1,… , Xn).
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Figure A.1: Plot of the cumulative distribution function of the best �t distribution (curve) against known

quantiles (points) for men, aged 19 – 24. Data from sodium survey 2001.[242]

2012 regarding salt consumption, have very similar statistical properties as those reported

in sodium surveys.

stage 4 Quantile regression models were �tted to the series of HSE data with salt con-

sumption from the previous step as the dependent variable, and ln( year of the survey

−1997), third-degree orthogonal polynomial of age, sex, QIMD and their �rst order inter-

action as the independent variables. The models were �tted for the 0.01, 0.05, 0.10, 0.15,

. . . , 0.90, 0.95, 0.99 percentiles.

stage 5 Stages 2 to 4 were repeated 1000 times and 1000 quantile regression models

were built.
54

stage 6 During the simulation, the percentile rank of salt consumption for each syn-

thetic individual in IMPACTNCD is calculated from the previous year salt consumption

strati�ed by age, sex, and QIMD. A quantile regression model is drawn from the models

estimated in stage 5 and is used to predict the respective percentiles of the salt distribution

by age, sex, QIMD and year. Then, for each synthetic individual a minimum and a max-

imum value for salt consumption is de�ned based on their percentile rank. For example,

if the percentile rank of a synthetic individual is 0.23 the minimum and maximum values

will be predicted from the 0.20 and 0.25 percentile regression models respectively. Finally,

a new salt consumption for current simulation year will be drawn from the uniform distri-

54 The model is available at https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lagtimes/salt

.rq.rda and the coe�cients of all 1000 models at https://github.com/ChristK/IMPACTncd/blob/Thesis_model

_version/Lagtimes/salt.rq.coef.rda.

https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lagtimes/salt.rq.rda
https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lagtimes/salt.rq.rda
https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lagtimes/salt.rq.coef.rda
https://github.com/ChristK/IMPACTncd/blob/Thesis_model_version/Lagtimes/salt.rq.coef.rda
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bution with minimum and maximum values those that were predicted from the 0.20 and

0.25 percentile regression models respectively.

a.2 eqity summary chart

Consider again the simple example of a population that consists of only two mutually

exclusive socioeconomic groups, the ‘deprived’ and the ‘a�uent’, with di�erent disease

incidence in each group. Then the disease incident cases of the whole population I =

Ideprived + Iaf f luent , where Ideprived is the cases in the ‘deprived’ group and Iaf f luent is the

cases in the ‘a�uent’ group. Also by de�nition, absolute inequality Eabs = Ideprived −

Iaf f luent , and relative inequality Erel = Ideprived /Iaf f luent .

For a given overall reduction in disease incident cases across groups (ΔI ), the distribu-

tion of the reduction among the two groups can be described as Ideprived − a and Iaf f luent −

b, where a + b = ΔI . The post-intervention absolute and relative inequality is E
′

abs
=

Ideprived − Iaf f luent − a + b and E
′

rel
= (Ideprived − a)/(Iaf f luent − b), respectively. Assuming

that the intervention has approximately no e�ect on the size of the two subgroups, for

Erel = Erel
′

it can be shown that a = Erel ∗ b and Eabs − E
′

abs
= ΔI ∗ (Erel − 1)/(Erel + 1),

which on the equity summary chart is a line that represents the ‘equity line’ for this pop-

ulation (Figure 12). Interventions above the equity line decrease relative socioeconomic

inequalities and interventions below the line increase it. Moreover, the vertical distance

from the equity line is proportional to the impact of the intervention on relative socioeco-

nomic inequalities.

For the generalisation of the previous example to populations with more than two levels

of socioeconomic deprivation and unequal sizes of the socioeconomic groups SII and RII

have to be used. Hence, using the notation of the previous example SI I = Ideprived − Iaf f luent

and RI I = Ideprived /Iaf f luent , where this time Ideprived and Iaf f luent are extrapolated from the

linear regression that was used for SII. Therefore, incident cases I for the whole population

are not equal to Ideprived + Iaf f luent . From these formulas it can be shown that Iaf f luent =

SI I /(RI I − 1) and Ideprived = RI I ∗ SI I /(RI I − 1). For the incident cases I of the whole

population holds that I = r ∗ Ideprived + (1 − r) ∗ Iaf f luent , where 0 ≤ r ≤ 1 and r depends

on the distribution of inequality in the population. From the previous formulas it can be

shown that r = I /SI I − 1/(RI I − 1).

After the intervention, the new incidence I
′
= r

′
∗ I

′

deprived
+ (1 − r

′
) ∗ I

′

af f luent
and will

result in a new SI I
′

and RI I
′
. Because r

′
is dependent on the impact of intervention on the

di�erent socioeconomic groups, the equity line cannot be de�ned as in the previous sim-

pli�ed example. However for a given intervention, r
′

can be estimated and assuming there

is an SI I
′′

for RI I = RI I
′
. It can be shown that SI I

′′
= I

′
∗ (RI I − 1)/(r

′
∗ (RI I − 1) + 1) and

SI I
′′

increases monotonically as RI I increases. Therefore, SI I − SI I
′′

decreases monoton-

ically as RI I increases. Because the horizontal axis of the equity summary chart represents

ΔI = I − I
′

(cases prevented or postponed) and the vertical axis ΔSI I = SI I − SI I
′
, (impact

on absolute socioeconomic health inequalities) of the modelled policies, the latter can be

directly plotted on the chart. The point (ΔI , SI I − SI I
′′
) which represents the hypothet-

ical policy impact on absolute socioeconomic health inequalities that would have caused
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Figure A.2: Simpli�ed equity summary chart assuming only two mutually exclusive socioeconomic groups

and assuming that interventions do not alter population size of the groups.

a neutral e�ect on relative socioeconomic health inequalities for the same policy e�ective-

ness can also be plotted. For multiple policies, a constrained � spline can be �tted to these

points that would represent the ‘equity curve’ with properties approximately similar to

the equity line. Modelled policies above the equity curve decrease relative socioeconomic

health inequality and scenarios below the equity curve increase it. The vertical distance

from the equity curve, approximates the impact of the scenario on relative inequality. Con-

sequently, the health equity impact chart presents on a two axes chart, the impact of the

intervention on disease incidence, absolute and relative inequality, in agreement with re-

commendations by health inequalities experts (section 1.4.4 on page 29).
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Table A.1: IMPACTNCD distributions that were used as inputs for the simulations. Numbers are rounded.

Variable[source] Sex Age group Distribution

Relative risks of relevant risk factors for CHD

Active smoking[37] Men 30 - 44 log-normal (mean = ln(5.51), SD =

ln(12.3 / 5.51) / 1.96)

45 - 59 log-normal (mean = ln(3.04), SD =

ln(3.48 / 3.04) / 1.96)

60 - 69 log-normal (mean = ln(1.88), SD =

ln(2.08 / 1.88) / 1.96)

70 - 79 log-normal (mean = ln(1.44), SD =

ln(1.63 / 1.44) / 1.96)

Women 30 - 44 log-normal (mean = ln(2.26), SD =

ln(6.14 / 2.26) / 1.96)

45 - 59 log-normal (mean = ln(3.78), SD =

ln(4.62 / 3.78) / 1.96)

60 - 69 log-normal (mean = ln(2.53), SD =

ln(2.87 / 2.53) / 1.96)

70 - 79 log-normal (mean = ln(1.68), SD =

ln(1.93 / 1.68) / 1.96)

80 - 84 log-normal (mean = ln(1.38), SD =

ln(1.77 / 1.38) / 1.96)

Ex-smoking[279] Men 30 - 84 log-normal (mean = ln(1.25), SD =

ln(1.32 / 1.25) / 1.96)

continued . . .
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. . . continued

Variable[source] Sex Age group Distribution

Women 30 - 84 log-normal (mean = ln(1.2), SD =

ln(1.34 / 1.2) / 1.96)

Environmental tobacco smoking[280] Both 30 - 84 log-normal (mean = ln(1.26), SD =

ln(1.38 / 1.26) / 1.96)

SBP[78] Men 30 - 49 log-normal (mean = ln(0.5), SD =

ln(0.54 / 0.5) / 1.96)

50 - 59 log-normal (mean = ln(0.5), SD =

ln(0.52 / 0.5) / 1.96)

60 - 69 log-normal (mean = ln(0.55), SD =

ln(0.57 / 0.55) / 1.96)

70 - 74 log-normal (mean = ln(0.62), SD =

ln(0.64 / 0.62) / 1.96)

80 - 84 log-normal (mean = ln(0.69), SD =

ln(0.73 / 0.69) / 1.96)

Women 30 - 49 log-normal (mean = ln(0.4), SD =

ln(0.49 / 0.4) / 1.96)

50 - 59 log-normal (mean = ln(0.49), SD =

ln(0.54 / 0.49) / 1.96)

60 - 69 log-normal (mean = ln(0.5), SD =

ln(0.61 / 0.5) / 1.96)

70 - 74 log-normal (mean = ln(0.55), SD =

ln(0.58 / 0.55) / 1.96)

continued . . .
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. . . continued

Variable[source] Sex Age group Distribution

80 - 84 log-normal (mean = ln(0.64), SD =

ln(0.68 / 0.64) / 1.96)

Total cholesterol[81] Both 30 - 49 log-normal (mean = ln(0.49), SD =

ln(0.52 / 0.49) / 1.96)

50 - 59 log-normal (mean = ln(0.62), SD =

ln(0.65 / 0.62) / 1.96)

60 - 69 log-normal (mean = ln(0.74), SD =

ln(0.76 / 0.74) / 1.96)

70 - 74 log-normal (mean = ln(0.84), SD =

ln(0.86 / 0.84) / 1.96)

80 - 84 log-normal (mean = ln(0.87), SD =

ln(0.9 / 0.87) / 1.96)

BMI[74] Both 30 - 59 log-normal (mean = ln(1.21), SD =

ln(1.28 / 1.21) / 1.96)

60 - 69 log-normal (mean = ln(1.06), SD =

ln(1.12 / 1.06) / 1.96)

Diabetes Mellitus[284] Both 40 - 59 log-normal (mean = ln(2.51), SD =

ln(2.8/ 2.51) / 1.96)

60 - 69 log-normal (mean = ln(2.01), SD =

ln(2.26/ 2.01) / 1.96)

70 - 84 log-normal (mean = ln(1.78), SD =

ln(2.05/ 1.78) / 1.96)

continued . . .
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Variable[source] Sex Age group Distribution

Physical activity[69] Both 30 - 69 No active days: log-normal (mean =

ln(1.71), SD = ln(1.85/ 1.71) / 1.96)

1 – 4 active days: log-normal (mean =

ln(1.44), SD = ln(1.62/ 1.44) / 1.96)

70 - 79 No active days: log-normal (mean =

ln(1.5), SD = ln(1.61/ 1.5) / 1.96)

1 – 4 active days: log-normal (mean =

ln(1.31), SD = ln(1.48/ 1.31) / 1.96)

80 - 84 No active days: log-normal (mean =

ln(1.4), SD = ln(1.41/ 1.4) / 1.96)

1 – 4 active days: log-normal (mean =

ln(1.2), SD = ln(1.35/ 1.2) / 1.96)

Fruit and vegetables[285] Both 30 - 84 log-normal (mean = ln(0.96), SD =

ln(1.0.99/ 0.96) / 1.96)

Relative risks of relevant risk factors for stroke

Active smoking[37] Men 30 - 59 log-normal (mean = ln(3.12), SD =

ln(4.64 / 3.12) / 1.96)

60 - 69 log-normal (mean = ln(1.87), SD =

ln(2.44 / 1.87) / 1.96)

70 - 79 log-normal (mean = ln(1.39), SD =

ln(1.77 / 1.39) / 1.96)

Women 30 - 59 log-normal (mean = ln(4.61), SD =

ln(6.37 / 4.61) / 1.96)

continued . . .
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. . . continued

Variable[source] Sex Age group Distribution

60 - 69 log-normal (mean = ln(2.81), SD =

ln(3.58 / 2.81) / 1.96)

70 - 79 log-normal (mean = ln(1.95), SD =

ln(2.45 / 1.95) / 1.96)

Environmental tobacco smoking[281] Both 30 - 84 log-normal (mean = ln(1.25), SD =

ln(1.38 / 1.25) / 1.96)

SBP[78] Men 30 - 49 log-normal (mean = ln(0.33), SD =

ln(0.38 / 0.33) / 1.96)

50 - 59 log-normal (mean = ln(0.34), SD =

ln(0.37 / 0.34) / 1.96)

60 - 69 log-normal (mean = ln(0.41), SD =

ln(0.44 / 0.41) / 1.96)

70 - 74 log-normal (mean = ln(0.48), SD =

ln(0.51 / 0.48) / 1.96)

80 - 84 log-normal (mean = ln(0.68), SD =

ln(0.75 / 0.68) / 1.96)

Women 30 - 49 log-normal (mean = ln(0.41), SD =

ln(0.49 / 0.41) / 1.96)

50 - 59 log-normal (mean = ln(0.45), SD =

ln(0.5 / 0.45) / 1.96)

60 - 69 log-normal (mean = ln(0.47), SD =

ln(0.51 / 0.47) / 1.96)

continued . . .
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Variable[source] Sex Age group Distribution

70 - 74 log-normal (mean = ln(0.53), SD =

ln(0.56 / 0.53) / 1.96)

80 - 84 log-normal (mean = ln(0.65), SD =

ln(0.71 / 0.65) / 1.96)

Total cholestero[81] Both 40 - 49 log-normal (mean = ln(0.87), SD = ln(1 /

0.87) / 1.96)

50 - 59 log-normal (mean = ln(0.91), SD =

ln(0.97 / 0.91) / 1.96)

60 - 69 log-normal (mean = ln(0.93), SD =

ln(0.97 / 0.93) / 1.96)

BMI[74] Both 30 - 59 log-normal (mean = ln(1.18), SD =

ln(1.26 / 1.18) / 1.96)

60 - 69 log-normal (mean = ln(1.08), SD =

ln(1.15 / 1.08) / 1.96)

Diabetes mellitus[284] Both 40 - 59 log-normal (mean = ln(3.74), SD =

ln(4.58/ 3.74) / 1.96)

60 - 69 log-normal (mean = ln(2.06), SD =

ln(2.58/ 2.06) / 1.96)

70 - 84 log-normal (mean = ln(1.8), SD =

ln(2.27/ 1.8) / 1.96)

Physical activity[69] Both 30 - 69 No active days: log-normal (mean =

ln(1.53), SD = ln(1.79/ 1.53 / 1.96)

continued . . .
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. . . continued

Variable[source] Sex Age group Distribution

70 - 79 No active days: log-normal (mean =

ln(1.38), SD = ln(1.6/ 1.38) / 1.96)

80 - 84 No active days: log-normal (mean =

ln(1.24), SD = ln(1.45/ 1.24) / 1.96)

Fruit and vegetables[286] Both 30 - 84 log-normal (mean = ln(0.95), SD =

ln(0.97/ 0.95) / 1.96)

Relative risks of relevant risk factors for lung cancer

Environmental tobacco smoking[282] Both 30 - 84 log-normal (mean = ln(1.33), SD =

ln(1.54/ 1.33) / 1.96)

Fruit and vegetables[52] Both 30 - 84 log-normal (mean = ln(0.96^0.8), SD

=ln(0.98^0.8/0.96^0.8) / 1.96)

Relative risks of relevant risk factors for gstric cancer

Active smoking (duration in years)[278] Both 30 - 84 Normal (mean = 0.03, SD = 0.002)

Ex-smoking (years since cessation)[278] Both 30 - 84 log-normal (mean = ln(0.96), SD = ln(1/

0.96) / 1.96)

BMI[24] Both 30 - 84 Normal (mean and SD is a function of

BMI)

Fruit and vegetables[48] Both 30 - 69 log-normal (mean = ln(0.94), SD = ln(1/

0.94) / 1.96)

Both 70 - 79 log-normal (mean = ln(0.96), SD = ln(1/

0.96) / 1.96)

Both 80 - 84 log-normal (mean = ln(0.97), SD = ln(1/

0.97) / 1.96)

continued . . .



1
9
4

m
e

t
h

o
d

s
a

p
p

e
n

d
i
x

. . . continued

Variable[source] Sex Age group Distribution

Salt[31] Both 30 - 84 log-normal (mean = ln(1.08), SD =

ln(1.08/ 1) / 1.96)

Universal screening scenario and variations (chapter 5 on page 121)

Proportion of participants with a

QRISK2 score between 10% and

20%[370]

Both 40 - 74 PERT (min = 0.2, mode = 0.25, max =

0.3, shape = 4)

Proportion of participants with a

QRISK2 score higher than 20%[370]

Both 40 - 74 PERT (min = 0.04, mode = 0.05, max =

0.1, shape = 4)

Atorvastatin 20mg relative reduction on

total cholesterol[323, 325]

Both 40 - 74 Normal (mean = 0.32, sd = 0.14)

Atorvastatin prescription uptake[469]

(QRISK2: 10% - 20%)

Both 40 - 74 PERT (min = 0.07, mode = 0.17, max =

0.24, shape = 4)

Atorvastatin prescription uptake[469]

(QRISK2: >20%)

Both 40 - 74 PERT (min = 0.2, mode = 0.24, max =

0.3, shape = 4)

Antihypertensive medication prescrip-

tion uptake[469] (QRISK2: 10% - 20%)

Both 40 - 74 PERT (min = 0.05, mode = 0.13, max =

0.2, shape = 4)

Antihypertensive medication prescrip-

tion uptake[469] (QRISK2: >20%)

Both 40 - 74 PERT (min = 0.15, mode = 0.23, max =

0.3, shape = 4)

Persistence with medication[352] Both 40 - 74 PERT (min = 0.5, mode = 0.8, max = 1,

shape = 4)

Adherence to medication[352] Both 40 - 74 PERT (min = 0.3, mode = 0.7, max = 1,

shape = 4)

First year smoking cessation success

rate[378, 379]

Both 40 - 74 Bernoulli (probability = 0.1)

continued . . .
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Variable[source] Sex Age group Distribution

Relative BMI reduction Both 40 - 74 1 - PERT (min = 0.97, mode = 0.99, max

= 1, shape = 4)

Proportion of high-risk participants to

increase F&V consumption by a portion

per day

Both 40 - 74 Bernoulli (probability = 0.5)

Proportion of high-risk participants to

increase PA by a day per week

Both 40 - 74 Bernoulli (probability = 0.5)

Universal screening scenario (20% treatment threshold) (chapter 5 on page 121)

Atorvastatin prescription uptake[469]

(QRISK2: 10% - 20%)

Both 40 - 74 PERT (min = 0.01, mode = 0.07, max =

0.10, shape = 4)

Population-wide intervention (chapter 5 on page 121)

Smoking prevalence relative reduc-

tion[173]

Both 30 - 84 PERT (min = 0.05, mode = 0.13, max =

0.14, shape = 4)

BMI rate of increase relative reduc-

tion[380–382]

Both 30 - 84 1 - PERT (min = 0.98, mode = 0.99, max

= 1, shape = 4)

SBP absolute decrease (mmHg)[176,

470]

Both 30 - 84 PERT (min = 0.18, mode = 0.81, max =

1.10, shape = 4)

Proportion of the population to increase

their F&V consumption by one por-

tion[384, 385]

Both 30 - 84 PERT (min = 0.2, mode = 0.5, max = 0.8,

shape = 4)

Other inputs

CVD lag time Both 30 - 84 1 + Binomial(n = 9, p = (5-1)/9)

Cancer lag time Both 30 - 84 1 + Binomial(n = 9, p = (8-1)/9)

continued . . .
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Variable[source] Sex Age group Distribution

Optimal salt consumption[59] Both 30 - 84 PERT(min = 1.5, mode = 3.8, max = 6,

shape = 4)

Stricter salt policy target Both 30 - 84 PERT(min = 5.8, mode = 6, max = 7,

shape = 4)

Abbreviations: body mass index (BMI), cardiovascular disease (CVD), coronary heart disease (CHD), fruit and vegetable (F&V), physical activity (PA), standard deviation

(SD), systolic blood pressure (SBP).
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(b) IMPACTNCD correlation structure.

.00

.03

.01

-.01

-.00

-.07

-.00

-.01

-.15

-.01

.04

-.01

.01

-.00

.01

.04

.01

.06

.01

-.00

-.01

.01

-.00

.02

.00

.02

.01

-.02

.04

-.04

.00

-.01

-.03

.01

.11

-.02

.00

-.03

.01

-.05

-.14

-.01

.01

.03

.01

.13

.11

.05

-.04

-.03

.08

-.01

-.08

-.02 -.16SBP

Cholesterol

BMI

Diabetes

PA

F&V

ETS

Smoking

QIMD

Sex

Age Sex QIMD Smoking ETS F&V PA Diabetes BMICholesterol

(c) Di�erence in the correlation structures (IMPACTNCD- Health Survey for England).

Figure B.15: Comparison of correlations structures in Health Survey for England and a random sample from

the synthetic population. Abbreviations: body mass index (BMI); environmental tobacco smoking (ETS); fruit

and vegetable (F&V); quintile groups of Index of Multiple Deprivation (QIMD); systolic blood pressure (SBP).
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b.2 risk factor trends

HSE2005 appears to be an outlier in some graphs that risk factor exposures depend on

blood tests. This is because in that survey year, bloods were only checked for those 65

and older and therefore are not representative of the population. In addition, it appears

that IMPACTNCD underestimates the prevalence of smoking and diabetes mellitus. This

is mostly an artefact. For computational e�ciency IMPACTNCD only calculates risk factor

exposures for the given lag times. For example, for a 50 year old synthetic individual in

2011 and with 5-year lag time IMPACTNCD estimates the smoking status for 2006 (2011 - 5)

and for age of 45 (50 - 5). Therefore, IMPACTNCD smoking prevalence for 2006 is represent-

ative only for the part of the population that remained alive for �ve years, until 2011. This

leads in survival bias because those less exposed to risk factors have a higher probability

of remaining alive for the next �ve years; hence the reported IMPACTNCD risk exposures

are underestimated. Because smokers and diabetics are modelled to have higher overall

mortality (section 2.4.3 on page 59) the bias is more obvious in these two risk factor graphs.

I would like to emphasise that the bias does not a�ect the outputs of IMPACTNCD and is

only present in the validation graphs. Figure B.45 on page 243 was plotted assuming no lag

time for smoking and it is apparent that survival bias was eliminated. As a side note, the

e�ect of smoke free legislation is apparent in the environmental tobacco smoking graphs.

I decided to model environmental tobacco smoking linearly and ignore this e�ect for sim-

plicity. The introduced bias is small because of the small relative risk of environmental

tobacco smoking that is usually around 1.2.
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C
R E S U L T S A P P E N D I X

c.1 supporting the assumption of no statin effect in 1991-92, pertain-

ing chapter 4

In 1991-92 statins were not widely used, and only reserved for individuals with very high

cholesterol. This suggested from the HSE1991-92 data; utilisation of any lipid lowering

medications including statins was 0.5% (95% CI: 0.3% to 1.0%) and the mean total cholesterol

of participants on this medication was 6.46 mmol/l (95% CI: 6.04 mmol/l to 6.87 mmol/l).

Moreover, statins available at that time were less e�ective and generally were prescribed

in smaller strengths than today. Therefore, their estimated e�ectiveness (Ew ) for 1991-92

would be much lower than the Ew for 2011-12. Even if all the lipid lowering medication

users in 1991-92 were on statins and statins e�ectiveness (Ew ) was as high as I estimated for

2011-12, the mean total cholesterol of the population for 1991-92 with the e�ect of statin

removed, would be 5.87 mmol/l (95% CI: 5.83 mmol/l to 5.91 mmol/l). Not much di�erent

from the observed one of 5.86 mmol/l (95% CI: 5.82 mmol/l to 5.90 mmol/l). Therefore, I

consider the bias from my decision to ignore any possible statin e�ect in 1991-92 negligible.

c.2 effect of statins on reduction of total cholesterol, pertaining

chapter 4

Table C.1: Final percentage reductions of each speci�c statin and strength that were used for the estimation

of the weighted average Ew .

Chemical name Strength in mg Total cholesterol reduc-

tion (95% con�dence in-

tervals)

Weights (for the

weighted mean Ew )

Atorvastatin 10 27.3% (24.9% - 30.2%) 0.1046

Atorvastatin 20 32.7% (30.1% - 35.7%) 0.0361

Atorvastatin 30 35.8% (34.8% - 36.7%)* 0.0005

Atorvastatin 40 38.4% (34.6% - 42.3%) 0.0350

Atorvastatin 60 41.0% (39.7% - 42.3%)* 0.0005

Atorvastatin 80 42.8% (37.4% - 48.0%) 0.0118

Fluvastatin Sodium 20 16.4% (14.6% - 18.4%) 0.0006

Fluvastatin Sodium 40 20.7% (19.0% - 22.5%) 0.0173

continued . . .
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. . . continued

Chemical name Strength in mg Total cholesterol reduc-

tion (95% con�dence in-

tervals)

Weights (for the

weighted mean Ew )

Fluvastatin Sodium 80 23.3% (20.6% - 25.9%) 0.0163

Pravastatin Sodium 5 10.4% (0.7% - 20.2%) 0.0001

Pravastatin Sodium 10 14.5% (12.5% - 16.2%) 0.0038

Pravastatin Sodium 20 17.7% (16.9% - 18.9%) 0.0111

Pravastatin Sodium 40 22.0% (20.7% - 23.0%) 0.0106

Rosuvastatin Calcium 5 25.9% (24.7% - 27.6%) 0.0114

Rosuvastatin Calcium 10 29.0% (27.8% - 30.6%) 0.0214

Rosuvastatin Calcium 20 32.1% (30.9% - 33.6%) 0.0042

Rosuvastatin Calcium 40 35.2% (34.0% - 36.6%) 0.0012

Simvastatin 10 20.1% (18.9% - 21.7%) 0.0477

Simvastatin 20 23.5% (22.4% - 25.0%) 0.4261

Simvastatin 25 24.6% (24.3% - 25.0%)* 0.0001

Simvastatin 40 27.0% (25.2% - 28.9%) 0.2339

Simvastatin 80 30.4% (29.6% - 31.3%) 0.0045

Simvastatin & Ezetimibe 20 23.5% (22.4% - 25.0%) 0.0003

Simvastatin & Ezetimibe 40 27.0% (25.2% - 28.9%) 0.0008

Simvastatin & Ezetimibe 80 30.4% (29.6% - 31.3%) 0.0001

* Values derived from log-linear regression with total cholesterol reduction as the dependent variable and the

natural logarithm of strength as the independent one. The model was weighted against the inverse variance

of the cholesterol reduction (not presented in this table).

c.3 extra scenario specifications, pertaining chapter 5

In the following paragraphs, I highlight some details of the scenarios that I used in the

main paper. They are meant to be read in conjunction with the scenario description in the

main text (section 5.2.1 on page 122), and the methods section (section 2.5 on page 61).

universal screening: This was a typical targeted intervention, so this scenario

was built with the second approach in section 2.5 on page 61. The high-risk synthetic in-

dividuals eligible for treatment were selected based on the QRISK2 score.[336] The score

requires extra information about the synthetic individual that was not originally modelled

and at the current stage is used exclusively for the calculation of the QRISK2 score. This

includes information about ethnicity, speci�c type of diabetes mellitus (I or II), family his-

tory of CVD, chronic kidney disease (stage 4 or 5), atrial �brillation, rheumatoid arthritis,
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and the total cholesterol to high density lipoprotein ratio. To model these extra attributes

for the synthetic individuals I �tted appropriate multinomial, logistic, or generalised linear

regression models to HSE data, and then I used the models to predict synthetic individuals’

status. Exceptions, to this approach were type I diabetes mellitus and rheumatoid arthritis

prevalence. I assumed a prevalence of 0.5 % for diabetes mellitus type I and I extracted age

and sex speci�c rheumatoid arthritis prevalence from published data.[471]

To simulate ethnicity of synthetic individuals, a multinomial model was �tted to HSE

data with 5-year age group, sex and QIMD as the independent variables. To simulate family

history of CVD, a logistic regression model was �tted in HSE2006 data that contained

this information, with age and QIMD as the independent variables. For the prevalence of

atrial �brillation, a logistic regression model was �tted in HSE2011 data that contained this

information, with age, QIMD, and smoking status as the independent variables. To model

the prevalence of chronic kidney disease a logistic regression model with age, sex, and

QIMD as independent variables was �tted to HSE2010 data. Finally, for the total cholesterol

to high density lipoprotein ratio a regression was �tted to HSE data, with total cholesterol,

age, sex, QIMD, BMI, physical activity, and smoking status as the independent variables.
55

To estimate the individualised e�ectiveness of Atorvastatin, I used the formula:

I ndividualised ef f ectiveness =

= Ef f ectiveness ∗ Prescription ∗ Persistence ∗ Adℎerence (C.1)

Where Ef f ectiveness for Atorvastatin 20 mg was extracted from table C.1 on page 245,

as I estimated in section 4.2.5.1 on page 106, Prescription is a binary variable (whether

Atorvastatin was prescribed (1), or not (0)), Persistence is a binary variable (whether the

synthetic individual continue with the medication (1), or not (0)), andAdℎerence is a value

between 0 and 1, modelling the proportion of daily dose taken. For these variables, values

where drawn from distributions (table A.1 on page 187).

I followed a similar approach for antihypertensive medication. Given the numerous

antihypertensive treatment combinations, I assumed that medication could fully control

hypertension for all synthetic individuals down to a target of 115 mmHg of SBP if prescrip-

tion, persistence, and adherence were optimal. I applied the same approach as above to

adjust treatment e�ectiveness to prescription, persistence, and adherence.

Information regarding medication prescription after a Health Check was extracted from

Forster et al.[376] This study was conducted while the recommendation for primary pre-

vention statin prescription was based on 20 % risk for a CVD event in 10 years. Yet, statin

prescription was low in this group and statins were prescribed to individuals with lower

than 20 % risk. I chose to in�ate the reported from Forster et al. prescription rate for parti-

cipants with a risk between 10 % and 20 %. This was made to re�ect the recent change

in recommendation about statin prescription for primary prevention, which lower the

55 The R objects for the models are available at https://github.com/ChristK/IMPACTncd/blob/CVD-policy-opt

ions/Lagtimes/origin.multinom.rda, https://github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagti

mes/famcvd.svylr.rda, https://github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagtimes/af.svylr

.rda, https://github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagtimes/kiddiag.svylr.rda, https://

github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagtimes/tctohdl.svylm.rda.

https://github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagtimes/origin.multinom.rda
https://github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagtimes/origin.multinom.rda
https://github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagtimes/famcvd.svylr.rda
https://github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagtimes/famcvd.svylr.rda
https://github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagtimes/af.svylr.rda
https://github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagtimes/af.svylr.rda
https://github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagtimes/kiddiag.svylr.rda
https://github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagtimes/tctohdl.svylm.rda
https://github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagtimes/tctohdl.svylm.rda
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threshold from 20 % to 10 % risk for a CVD event in 10 years. I avoided making it equal to

the prescription rate of those with a risk higher than 20 %, based on �nding from Usher-

Smith et al. that reported reluctant statin uptake to the newly eligible population.[472]

In one of the simulated scenarios for sensitivity analysis, I assumed a treatment threshold

of 20 % risk for a CVD event in 10 years. For this scenario, I used prescription rates as re-

ported from Forster et al. for the participants with a risk higher than 20 %.[376] Yet, I also

allowed synthetic participants to be prescribed medication with a risk higher than 10 %

as was reported in the study. The justi�cation was that despite the recommended 20 %

threshold to o�er treatment to high-risk individuals, when the study from Forster et al.
was contacted, participants with lower risk were still prescribed medication.

population-wide intervention: Many of the interventions in this scenario were

modelled by altering the coe�cients of the models that were used to estimate the attrib-

utes of the synthetic individuals. Speci�cally, this approach was followed for BMI and

SBP. Smoking and fruit and vegetable consumption interventions were modelled by alter-

ing the attributes of synthetic individuals after they were estimated in step 2 in �gure 2.1

on page 45. Given the existing limitations to measure the direct e�ect of a structural

population-wide intervention, I in�ated the uncertainty around the inputs I used for this

scenario (table A.1 on page 187).

c.4 sensitivity analysis results, pertaining chapter 5

Here I present the full output of the three scenarios that were produced as variations of the

main scenarios with modi�ed assumptions; namely the ‘20% treatment threshold universal

screening’, the ‘socioeconomic di�erential uptake universal screening’, and the ‘diet only

population-wide intervention’. Table C.2, table C.3 on the next page, and table C.4 on the

facing page summarise the results.

Table C.2: Estimated cases and deaths prevented or postponed under each scenario, by 2030. Brackets contain

the respective interquartile ranges (IQRs).

Scenarios Cases prevented or postponed by

2030 (IQR)

Deaths prevented or postponed

by 2030 (IQR)

20% treatment threshold universal

screening

7000 (−2000 to 15 000) 2300 (−1200 to 5600)

Socioeconomic di�erential uptake

universal screening

19 000 (10 000 to 27 000) 700 (−2400 to 4000)

Diet only population-wide inter-

vention

47 000 (37 000 to 56 000) 5600 (2700 to 8700)
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Table C.3: Cases prevented or postponed per quintile groups of the Index of Multiple Deprivation, by 2030. The

absolute equity slope index for each scenario is also presented. Brackets contain the respective interquartile

ranges (IQRs).

Quintile groups of Index

of Multiple Deprivation

20% treatment threshold

universal screening

Socioeconomic di�er-

ential uptake universal

screening

Diet only

population-wide

intervention

1 (least deprived) 1400 (−3600 to 6200) 3200 (−1800 to 7800) 8600 (4100 to 13 400)

2 700 (−4800 to 5500) 3900 (−900 to 9000) 9100 (4000 to 13 900)

3 1100 (−4100 to 6700) 4400 (−1500 to 9400) 9400 (4700 to 14 600)

4 1100 (−3500 to 6400) 3400 (−1300 to 8900) 9100 (4200 to 13 700)

5 (most deprived) 2900 (−2800 to 8400) 4300 (−1300 to 9600) 10 400 (5500 to 15 800)

Absolute equity slope in-

dex

2000 (−6700 to 10 600) 300 (−6900 to 9000) 2200 (−5300 to 9900)

Table C.4: Relative percentage reduction in cardiovascular disease cases per quintile groups of the Index of

Multiple Deprivation, by 2030. The relative equity slope index for each scenario is also presented. Brackets

contain the respective interquartile ranges (IQRs).

Quintile groups of Index

of Multiple Deprivation

20% treatment threshold

universal screening

Socioeconomic di�er-

ential uptake universal

screening

Diet only

population-wide

intervention

1 (least deprived) 0.6 % (−1.4 % to 2.4 %) 1.2 % (−0.7 % to 3.0 %) 3.3 % (1.6 % to 5.1 %)

2 0.2 % (−1.6 % to 1.9 %) 1.4 % (−0.4 % to 3.1 %) 3.1 % (1.4 % to 4.8 %)

3 0.4 % (−1.4 % to 2.3 %) 1.5 % (−0.5 % to 3.2 %) 3.3 % (1.6 % to 5.0 %)

4 0.4 % (−1.3 % to 2.3 %) 1.2 % (−0.5 % to 3.2 %) 3.3 % (1.5 % to 5.0 %)

5 (most deprived) 1.0 % (−0.9 % to 2.7 %) 1.4 % (−0.4 % to 3.1 %) 3.4 % (1.8 % to 5.3 %)

Absolute equity slope in-

dex

0.6 (−2.4 to 3.8) 0.0 (−2.6 to 3.0) 0.4 (−2.2 to 3.0)
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c.5 published peer-reviewed papers that directly stemmed from my thesis
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Abstract

Background

Serum total cholesterol is one of the major targets for cardiovascular disease prevention.

Statins are effective for cholesterol control in individual patients. At the population level,

however, their contribution to total cholesterol decline remains unclear. The aim of this

study was to quantify the contribution of statins to the observed fall in population mean cho-

lesterol levels in England over the past two decades, and explore any differences between

socioeconomic groups.

Methods and Findings

This is a modelling study based on data from the Health Survey for England. We analysed

changes in observed mean total cholesterol levels in the adult England population between

1991-92 (baseline) and 2011-12. We then compared the observed changes with a counter-

factual ‘no statins’ scenario, where the impact of statins on population total cholesterol was

estimated and removed. We estimated uncertainty intervals (UI) using Monte Carlo simula-

tion, where confidence intervals (CI) were impractical. In 2011-12, 13.2% (95% CI: 12.5-

14.0%) of the English adult population used statins at least once per week, compared with

1991-92 when the proportion was just 0.5% (95% CI: 0.3-1.0%). Between 1991-92 and

2011-12, mean total cholesterol declined from 5.86 mmol/L (95% CI: 5.82-5.90) to 5.17

mmol/L (95% CI: 5.14-5.20). For 2011-12, mean total cholesterol was lower in more de-

prived groups. In our ‘no statins’ scenario we predicted a mean total cholesterol of 5.36

mmol/L (95% CI: 5.33-5.40) for 2011-12. Statins were responsible for approximately 33.7%

(95% UI: 28.9-38.8%) of the total cholesterol reduction since 1991-92. The statin
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contribution to cholesterol reduction was greater among the more deprived groups of

women, while showing little socio-economic gradient among men.

Conclusions

Our model suggests that statins explained around a third of the substantial falls in total cho-

lesterol observed in England since 1991. Approximately two thirds of the cholesterol de-

crease can reasonably be attributed non-pharmacological determinants.

Introduction
Cardiovascular disease (CVD) remains the primary cause of death in the UK and globally [1].
However, UK cardiovascular mortality has been falling consistently since the early 1970s [2].
The two main drivers of this fall have been: reductions in cardiovascular risk factor levels; and
improved treatments, both preventive and therapeutic [3].

Serum total cholesterol is one of the main targets for primary and secondary prevention of
CVD. In England, the mean total cholesterol of the population has dropped substantially over
the past three decades [4]. This fall occurred initially as the result of dietary changes alone [5],
but more recently it reflects the interplay between improving diet and increasing statin use [6].
Unlike other cardiovascular risk factors, total cholesterol shows no socioeconomic gradient in
young adults and an inverse gradient at older ages, thus more affluent groups appear to have
higher total cholesterol levels, especially since 1998 [7].

Despite a plethora of information on the effectiveness of statins at the individual level, espe-
cially for secondary prevention, their contribution to the total cholesterol fall in the wider pop-
ulation remains unclear. Farzadfar et al. and Cohen et al. suggest that statins are important in
lowering population mean total cholesterol in high income countries including the United
States (US) [8,9]. However, it seems that this is neither completely true, nor universal because:
1) large falls in total cholesterol occurred before statins were widely used [10,11]; and 2) the
large recent total cholesterol falls observed in Iceland, Sweden, Czech and Finland are princi-
pally attributed to improved diets [12–15]. In addition, there are policy concerns over statins
and health inequalities. This is because statin prescription is a healthcare based intervention,
requiring individual action, which might potentially increase inequalities [16,17].

The debate about statins for primary prevention of CVD has become heated. Last year, the
American College of Cardiology (ACC) and the American Heart Association (AHA) updated
their recommendations for the treatment of total cholesterol, substantially widening the criteria
for statin prescription in otherwise healthy individuals [18]. Now, the UK National Institute
for Health and Care Excellence (NICE) has made similar recommendations to drop the ten-
year annual risk threshold from 20% to 10%, and almost double the number of eligible adults,
from 7 million to 12 million [19]. This has proved very controversial [20,21].

The primary objective of this study was to quantify the contribution of statins to the observed
fall in population mean cholesterol levels in England over the past two decades. A secondary ob-
jective was to look for any differences in this contribution between socioeconomic groups.

Methods
We analysed changes in observed mean total cholesterol levels in the adult England population
between 1991–92 (baseline) and 2011–12. We then compared the observed changes with a hy-
pothetical counterfactual ‘no statins’ scenario, where the impact of statins on population total
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cholesterol was estimated and removed. Therefore, the ‘no statins’ scenario estimates the hypo-
thetical mean cholesterol of the population, if statins were not available and the population had
no benefit from them. Any gap between the observed and the estimated mean total cholesterol
would then be attributed to all other possible drivers of population cholesterol levels, principal-
ly diet. We stratified our analysis by age-group, sex and, where possible and relevant, by quin-
tiles of the 2010 Index of Multiple Deprivation (QIMD) [22].

Survey data
Specifically, we used anonymised, non-identifiable, participant-level data from the Health Sur-
vey for England (HSE) for the two respective periods [23–25]. For the 2011–12 period we ag-
gregated the data of HSE 2011 and HSE 2012, while for 1991–92 this was independently
performed by HSE analysts. These cross-sectional surveys provide a representative sample of
the non-institutionalised population in England for the respective years. The data files con-
tained anonymised, individualised information for all the participants. We excluded partici-
pants younger than 18 years old. For HSE 2011–12 both the weighting and the sampling design
were considered in the estimation of all the point estimates and their standard errors. In partic-
ular, the weighting adjusts both for selection and non-response bias. The sample for HSE
1991–92 was un-weighted, therefore, only the sampling design was taken into account. Further
details about HSE can be found elsewhere [26–28].

Socioeconomic stratification
There were no common socioeconomic indicators between the two samples; QIMD was there-
fore used for the 2011–12 sample and social class based on occupation (I—V) was used for the
1991–92 sample.

QIMD is a measure of relative area deprivation based on the 2010 version of the Index of
Multiple Deprivation [22]. According to this system, all Lower Super Output Areas in England
(LSOA) (average population of 1,500) are ranked in order of increasing deprivation, based on
seven domains of deprivation: income; employment; health deprivation and disability; educa-
tion, skills and training; barriers to housing and services; crime and disorder, and living environ-
ment. For the ranking, individual level information about the habitats of these areas is used from
multiple sources. Then, the QIMD is formed from the quintiles of the above index, one through
five, where quintile one is considered the ‘most affluent’ and quintile five the ‘most deprived’.
The HSE team provided the QIMD of each participant for HSE 2011–12 based on their postcode
of residence, which is a sub-division of LSOAs. We opted to use the QIMD instead of other
available socioeconomic classification systems mainly for three reasons. First, the QIMD was the
only socioeconomic indicator that had no missing cases in our data, second, for our results to be
comparable with other studies that used QIMD and third, because QIMD is extensively used by
local public health departments, Office of National Statistics and researchers in England.

The HSE 1991–92 social class classification was based on the 1990 version of the Standard
Occupational Classification (SOC90) [29] and the self-reported occupation of the participants.
Social class was provided as a variable in the data, by the HSE team. We aggregated full time
students, armed forces personnel, those who never worked, and those whose occupation was
not fully described in one category (‘Other’). In our analysis, we avoided any direct compari-
sons between the two socioeconomic classification systems.

Total cholesterol measurement
Total cholesterol is reported in millimoles per litre (mmol/L). To convert it to milligrams per
decilitre (mg/dL) please multiply the reported cholesterol values by 38.6. In 2011–12 a sub-
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sample of the total HSE sample was eligible and consented to provide non-fasting blood sam-
ples for the measurement of total cholesterol in serum. For HSE 1991–92, participants aged 18
and over were asked to provide a blood sample for the same purpose. Since April 2010 the
equipment that was used for the measurement of total cholesterol for HSE was replaced. The
effect of this change was that measured concentrations of total cholesterol from this date on-
wards were on average 0.1mmol/L higher. We adjusted for this difference in our analyses by
subtracting 0.1mmol/L from the respective total cholesterol measurements. A more detailed
description of the total cholesterol measurement process can be found elsewhere (pages 32–36
in [26], and pages 31–35 in [27]).

Estimating statin utilisation
In England, individuals may have access to statins using two available routes. Statins can either
be prescribed to them by a doctor (or a non-medical prescriber), or they can be bought over
the counter (OTC) from a pharmacy with or without prior expert advice. HSE assessed both
routes. In 2011–12, during a nurse interview, the participants were asked to report the medica-
tion that had been prescribed to them by a doctor or by a non-medical prescriber. Specifically
for statins, they were also asked whether they bought OTC. Finally, those that had been pre-
scribed a statin or bought it OTC were asked if they had used it during the past seven days. We
only considered the participants that answered positively in the last question as statin users.
For HSE 1991–92 the participants were asked similar questions during the nurse interview.
However, statins were included in the wider category of lipid-lowering medication and were
not prescribed for primary prevention [30,31]. Since the uptake of this category as a whole was
very low, we assumed that statins had a negligible effect on total cholesterol at population level;
thus, we ignored it completely (please see S1 Text for further justification of this assumption).

Statistical analysis
The analysis was performed in R statistical software (v3.1.0) [32] including the R package “sur-
vey” [33]. An approximate 95% confidence interval (CI) for proportions (e.g. statin uptake)
was calculated from the survey data using the incomplete beta function method, with an effec-
tive sample size based on the estimated variance of the proportion [34]. Missing cases were ex-
cluded from our analysis (please refer to Table 1).

To test the statistical significance of socioeconomic trends in total cholesterol, against the
null hypothesis of ‘no trend’, we fitted a generalised linear model, with inverse-probability
weighting and design-based standard errors. Specifically, we treated total cholesterol measure-
ments as the dependent variable and the QIMD (or social class) as the independent one. We
considered QIMD and social class as numeric variables for this (e.g. QIMD 1 through 5 repre-
sented the 5 quintiles and social class 1 through 7 represented the social classes I, II, IIIN, IIIM,
IV, V and ‘Other’ respectively). Therefore, the β coefficient (slope) of the QIMD (or social
class) and its standard error was a measure of the socioeconomic gradient. When β was not sta-
tistically significant we assumed no socioeconomic gradient. When β was statistically signifi-
cant, its sign revealed the direction of the gradient (e.g. a negative sign means that mean total
cholesterol is lower among the more deprived groups) and its absolute value measured the
magnitude of the gradient.

A similar approach was followed to explore socioeconomic trends in statin utilisation. Since
this time the dependent variable was a binary one, we used a binomial model.

Estimating the effect of statins. The average effect of each specific statin and strength on
an individual’s total cholesterol is known from the literature [35–38]. However, the exact type
of statin, and strength, had not been recorded for the participants in HSE 2011–12. To
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overcome this limitation we used the exact amount of statins (by proprietary name and
strength) that were both prescribed and dispensed in England for 2011 and 2012, available
from the Health and Social Care Information Centre [39,40]. We then estimated a weighted
mean of the proportional decrease of total cholesterol attributable to statins overall (Eq 1).

Ew ¼
X

i

X
j
ðMij � EijÞX

i

X
j
ðMijÞ

ð1Þ

Eq 1. Formula for the estimation of the proportional decrease in mean total cholesterol at-
tributable to overall statins use.

Where:
Ew is the proportional decrease in mean total cholesterol attributable to statins, among

statin users
Eij is the proportional decrease in mean total cholesterol attributable to a specific statin i of a

specific strength j (e.g. Simvastatin 20mg)
Mij is the number of units of a specific statin i and strength j that have been prescribed and

dispensed. For liquid forms 5ml were considered as one unit, otherwise one tablet was consid-
ered as a unit

For the estimation of Eij data from several meta-analysis were used as follows: We obtained
the mean and standard error (calculated directly from the 95% CI assuming approximate

Table 1. Samples baseline characteristics. Values are numbers (percentages).

Number of participants
interviewed by a nurse

Number of participants with a valid
total cholesterol result

1991–92 (n = 7043) 2011–12 (n = 10965) 1991–92 (n = 4995) 2011–12 (n = 7772)

Characteristics Men Women Men Women Men Women Men Women

Age (years)

18–34 999 (14.2) 1165 (16.5) 877 (8.0) 1350 (12.3) 733 (14.7) 730 (14.6) 604 (7.8) 797 (10.3)

35–54 1148 (16.3) 1240 (17.6) 1632 (14.9) 2194 (20.0) 886 (17.7) 921 (18.4) 1216 (15.6) 1633 (21.0)

55+ 1101 (15.6) 1390 (19.7) 2254 (19.7) 2658 (24.2) 806 (16.1) 919 (18.4) 1611 (20.7) 1911 (24.6)

QIMD

1 (most affluent) - - 1058 (9.6) 1389 (12.7) - - 785 (10.1) 995 (12.8)

2 - - 1057 (9.6) 1364 (12.4) - - 791 (10.2) 997 (12.8)

3 - - 1017 (9.3) 1278 (11.7) - - 732 (9.4) 892 (11.5)

4 - - 865 (7.9) 1133 (10.3) - - 606 (7.8) 781 (10.0)

5 (most deprived) - - 766 (7.0) 1038 (9.5) - - 517 (6.7) 676 (8.7)

Social class

I Professional 235 (3.3) 53 (0.8) - - 174 (3.5) 41 (0.8) - -

II Managerial technical 908 (12.9) 856 (12.2) - - 688 (13.8) 610 (12.2) - -

IIIN Skilled non-manual 320 (4.5) 1304 (18.5) - - 238 (4.8) 909 (18.2) - -

IIIM Skilled manual 1085 (15.4) 388 (5.5) - - 816 (16.3) 251 (5.0) - -

IV Semi-skilled manual 460 (6.5) 693 (9.8) - - 343 (6.9) 464 (9.3) - -

V Unskilled manual 157 (2.2) 363 (5.2) - - 112 (2.2) 225 (4.5) - -

Other 83 (1.2) 138 (2.0) - - 54 (1.1) 70 (1.4) - -

The difference between the number of participants that had a nurse interview and those who had a valid total cholesterol result indicates the missing

cases. QIMD denotes quintiles of index of multiple deprivation (1 = most affluent, 5 = most deprived).

doi:10.1371/journal.pone.0123112.t001
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normality) of the proportional reduction in serum low-density lipoprotein (LDL) from the
meta-analysis of Law et al. [35]. The proportional reduction was derived from the absolute re-
duction, standardised to usual serum LDL of 4.8 mmol/L before treatment, and it was indepen-
dent of the pre-treatment LDL. This allowed us to use a weighted mean approach on
proportions. We then converted the LDL reduction into total cholesterol reduction using data
from other studies, [36–38] assuming a linear relation between total cholesterol and LDL re-
duction. For strengths not included in the above meta-analysis (e.g. Atorvastatin 30mg), we
used a linear regression model to estimate their effect, based on the effect of known strengths.
Specifically, we treated the total cholesterol reduction as the dependent variable and the natural
logarithm of strength as the independent one. We weighted the model against the inverse vari-
ance of the cholesterol reduction. The effectiveness of solid and liquid forms was considered
equal. Similarly, the effectiveness of the combined forms of simvastatin with ezetimibe was
considered equal to the effectiveness of same strength simvastatin (S1 Table). The standard
error of Ew was estimated using the Cochran’s definition for the standard error of the weighted
mean [41,42].

For the ‘no statins’ scenario, we calculated the predicted total cholesterol for each statin
user, with the effect of statin removed using the formula below (Eq 2).

TCpred ¼
TCobs

1� Ew

ð2Þ

Eq 2. Formula for the calculation of predicted total cholesterol with the effect of
statins removed.

Where:
TCpred is the predicted total cholesterol of the statin user with the statin effect removed
TCobs is the observed total cholesterol of the statin user
Ew is the proportional decrease in mean total cholesterol attributable to statins, derived

from Eq 1.
We used Monte Carlo simulation to incorporate the uncertainty from the sampling distri-

bution of Ew. For each statin user we drew 1000 values from a normal distribution with mean
Ew and standard deviation as per the estimated standard error (described above). We then av-
eraged over the TCpred predictions and considered this mean value as the predicted total choles-
terol of each statin user, with the statin effect removed.

Quantifying the contribution of statins on population’s mean total cholesterol reduc-
tion. To quantify and compare the contribution of statins against the contribution of all other
total cholesterol lowering interventions in the population, we first plotted the mean total cho-
lesterol for 1991–92, 2011–12 and the ‘no statins scenario’ by age for each sex. We considered
the area enclosed by the respective curves for 1991–92 and 2011–12 as representing the full ob-
served cholesterol reduction (area A). Therefore, the area enclosed by the 2011–12 and the ‘no
statin’ scenario represents the reduction of cholesterol attributable to statins (area B). Thus, the
fraction (area B) / (area A) expresses the contribution of statins to the observed decline of
mean total cholesterol. For the estimation of areas A and B we used natural spline interpolation
as implemented in the R package “MESS” [43].

To estimate the uncertainty intervals (UI) around the estimated contribution of statins, we
modified the previous method to allow for a Monte Carlo simulation approach. Specifically,
for each age in the population, we drew 10000 values from the conditional sampling distribu-
tion, which we approximated by a normal distribution with age-specific estimate mean and
standard error. These are then averaged across the age range to yield a point estimate, and 2.5%
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and 97.5% percentiles were used to define the 95% UI. Due to small representation of ages
above 89 in our sample, we aggregated participants older than 89 years with those aged 89.

Finally, we repeated the analysis separately for each QIMD under the assumption that total
cholesterol had no socioeconomic gradient in 1991–92. We further limited the analysis in par-
ticipants younger than 76 years because of the small number of older participants in our sam-
ple, when stratified by QIMD. To test the statistical significance of any observed
socioeconomic trend we used the two-tailed Cochran-Armitage trend test.

Sensitivity analysis. For the estimation of Ew several assumptions were involved that do
not necessarily reflect on its estimated standard error. We repeated our analysis after we multi-
plied the standard error of Ew by a factor of 10 in order to test the robustness of our results
with a higher than measured uncertainty scenario.

Ethical approval
Ethical approval for the 2011 and 2012 surveys was obtained from the Oxford A Research Eth-
ics Committee (reference numbers 10/H0604/56) by the Health Survey for England team. For
1991 and 1992 surveys ethical approval had been granted by the Local Research Ethics Coun-
cils in England. Anonymised, non-identifiable data of HSE are available to academics and pub-
lic sector staff through the UK Data Archive (www.data-archive.ac.uk) for secondary analysis,
without requiring further approval.

Results
The baseline characteristics of the 1991–92 and 2011–12 samples are summarised in Table 1,
while mean total cholesterol values by age group and sex are presented in Table 2 (1991–92)
and Table 3 (2011–12). Overall, the prevalence of statin use in England, including OTC statin

Table 2. Observedmean total cholesterol (mmol/L) overall, and by age group, sex and social class in England, 1991–92.

18–34 (years) 35–54 55+

Social class Men Women Men Women Men Women Overall

I Professional 5.52 (5.20 to
5.83)

5.10 (4.70 to
5.50)

5.95 (5.71 to
6.19)

5.64 (5.26 to
6.03)

5.99 (5.66 to
6.31)

6.62 (6.12 to
7.12)

5.64 (5.48 to
5.81)

II Managerial
technical

5.25 (5.06 to
5.44)

5.05 (4.93 to
5.17)

6.01 (5.89 to
6.13)

5.57 (5.46 to
5.69)

6.24 (6.10 to
6.39)

6.79 (6.62 to
6.97)

5.69 (5.58 to
5.82)

IIIN Skilled non-
manual

5.24 (5.06 to
5.43)

5.02 (4.92 to
5.12)

6.15 (5.88 to
6.41)

5.71 (5.58 to
5.83)

6.08 (5.81 to
6.36)

6.80 (6.66 to
6.94)

5.64 (5.49 to
5.79)

IIIM Skilled manual 5.16 (5.04 to
5.27)

5.05 (4.81 to
5.29)

5.93 (5.78 to
6.07)

5.97 (5.70 to
6.24)

6.06 (5.95 to
6.18)

6.83 (6.61 to
7.05)

5.72 (5.61 to
5.84)

IV Semi-skilled
manual

5.16 (4.95 to
5.37)

5.12 (4.96 to
5.27)

5.89 (5.68 to
6.11)

5.70 (5.53 to
5.87)

6.00 (5.82 to
6.19)

6.95 (6.76 to
7.14)

5.70 (5.55 to
5.85)

V Unskilled manual 5.25 (4.82 to
5.68)

5.15 (4.84 to
5.45)

6.07 (5.67 to
6.47)

6.00 (5.77 to
6.22)

6.04 (5.63 to
6.45)

6.97 (6.54 to
7.41)

6.00 (5.79 to
6.21)

Other 4.70 (4.39 to
5.01)

5.14 (4.82 to
5.46)

5.82 (5.03 to
6.61)

5.03 (4.48 to
5.57)

6.37 (5.62 to
7.13)

6.70 (6.14 to
7.26)

5.27 (5.06 to
5.49)

All 5.20 (5.12 to
5.27)

5.06 (5.00 to
5.13)

5.97 (5.90 to
6.05)

5.70 (5.64 to
5.77)

6.10 (6.03 to
6.18)

6.84 (6.76 to
6.93)

Slope of the trend -0.07 (-0.13 to
-0.01)

0.02 (-0.02 to
0.07)

-0.02 (-0.07 to
0.03)

0.05 (0.00 to
0.10)

-0.04 (-0.10 to
0.02)

0.04 (-0.04 to
0.11)

0.00 (-0.02 to
0.02)

P for trend 0.01 0.27 0.47 0.03 0.19 0.32 0.96

Socioeconomic trends are also presented. Brackets contain 95% confidence intervals. The ‘Overall’ column is adjusted for age and sex.

doi:10.1371/journal.pone.0123112.t002
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users was 13.2% (95% CI: 12.5% to 14.0%) in 2011–12. Another 0.8% (95% CI: 0.6% to 1.0%)
of the population were prescribed or bought OTC statins; however, they did not use them for
at least a week before the nurse interview.

For 1991–92, statin use was not specifically recorded in the survey; however, the prevalence
of all lipid lowering medications, including statins, was 0.5% (95% CI: 0.3% to 1.0%). Table 4
summarises the prevalence of statin use in England for 2011–12 by age group, sex and QIMD.
There was a statistically significant socioeconomic gradient in ages above 35 years for both
sexes, where the use of statins increased with deprivation.

In 2011–12, some 13.1% (95% CI: 12.4 to 14.0%) of study population used statins prescribed
to them (not including OTC users), over the seven days before the survey interview. We esti-
mated the expected number of units (e.g. tablets or 5ml doses of liquid statins) that were con-
sumed in England for the same period, assuming that they stayed on statins for the whole year
and that institutionalised population shares the same consumption attitudes, to be

Table 3. Observedmean total cholesterol (mmol/L) overall, and by age group, sex and quintiles of index of multiple deprivation (QIMD) (1 = most
affluent, 5 = most deprived) in England, 2011–12.

18–34 (years) 35–54 55+

QIMD Men Women Men Women Men Women Overall

1 (most affluent) 4.80 (4.60 to
5.00)

4.76 (4.60–4.92) 5.53 (5.42 to
5.64)

5.24 (5.13 to
5.36)

5.12 (5.01 to
5.23)

5.77 (5.67 to
5.87)

5.19 (5.09 to
5.29)

2 4.71 (4.56 to
4.86)

4.46 (4.31 to
4.61)

5.47 (5.33 to
5.61)

5.19 (5.08 to
5.31)

5.07 (4.95 to
5.19)

5.72 (5.61 to
5.82)

5.09 (4.99 to
5.20)

3 4.63 (4.41 to
4.86)

4.70 (4.53 to
4.87)

5.64 (5.50 to
5.79)

5.26 (5.15 to
5.38)

5.05 (4.91 to
5.18)

5.67 (5.54 to
5.80)

5.10 (4.99 to
5.22)

4 4.84 (4.65 to
5.02)

4.61 (4.46 to
4.77)

5.46 (5.30 to
5.62)

5.35 (5.20 to
5.49)

4.95 (4.80 to
5.11)

5.55 (5.40 to
5.70)

5.05 (4.94 to
5.17)

5 (most
deprived)

4.79 (4.57 to
5.01)

4.59 (4.44 to
4.74)

5.40 (5.24 to
5.57)

5.31 (5.17 to
5.45)

4.74 (4.55 to
4.92)

5.34 (5.15 to
5.54)

4.93 (4.82 to
5.05)

All 4.75 (4.66 to
4.84)

4.62 (4.55 to
4.69)

5.50 (5.44 to
5.57)

5.26 (5.21 to
5.32)

5.02 (4.96 to
5.08)

5.64 (5.58 to
5.70)

Slope of the
trend

0.02 (-0.05 to
0.08)

-0.01 (-0.06 to
0.04)

-0.03 (-0.07 to
0.02)

0.03 (-0.01 to
0.07)

-0.08 (-0.12 to
-0.03)

-0.10 (-0.14 to
-0.05)

-0.03 (-0.05 to
-0.01)

P for trend 0.60 0.67 0.26 0.16 <0.001 <0.001 0.002

Socioeconomic trends are also presented. The ‘Overall’ column is adjusted for age and sex. Brackets contain 95% confidence intervals.

doi:10.1371/journal.pone.0123112.t003

Table 4. Prevalence of statin use in England 2011–12 by age, sex and quintiles of index of multiple deprivation (QIMD) (1 = most affluent, 5 = most
deprived).

18–34 (years) 35–54 55+

QIMD Men Women Men Women Men Women Overall

1 (most affluent) 0% (0–2%) - 5% (3–8%) 2% (1–3%) 36% (32–41%) 20% (16–23%) 19% (16–23%)

2 - - 7% (4–11%) 3% (2–5%) 38% (34–43%) 24% (20–27%) 22% (18–26%)

3 0% (0–2%) 0% (0–2%) 7% (5–11%) 2% (1–4%) 32% (28–37%) 29% (25–33%) 20% (16–24%)

4 1% (0–5%) - 8% (5–12%) 4% (2–6%) 39% (34–44%) 29% (25–34%) 20% (17–24%)

5 (most deprived) - 1% (0–3%) 9% (6–13%) 8% (5–11%) 47% (40–54%) 34% (29–40%) 21% (17–25%)

All 0% (0–1%) 0% (0–1%) 7% (6–9%) 4% (3–4%) 38% (36–40%) 26% (25–28%)

P for trend - - 0.03 < 0.001 0.04 <0.001 <0.001

The ‘Overall’ column is adjusted for age and sex. Brackets contain 95% confidence intervals.

doi:10.1371/journal.pone.0123112.t004
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approximately 4.00 billion. This showed reassuringly close agreement with the observed unit
consumption of almost 4.07 billion [39,40], being just 1.5% lower.

The mean total cholesterol of adult non-institutionalised population in England decreased
from 5.86 mmol/L (95% CI: 5.82 to 5.90) in 1991–92 to 5.17 mmol/L (95% CI: 5.14 to 5.20) in
2011–12. The decrease was observed in all age groups and it was steeper for ages over 55 for
women and 35 for men (Fig 1). The inverse socioeconomic gradient observed since 1998 [7]
persisted overall and in the subgroup of those aged over 55 years. No gradient was observed for
other age groups (Table 3). On the contrary, we did not observe any socioeconomic gradient in
1991–92 with social class as a socioeconomic indicator when adjusted for age and sex
(Table 2). The trend remained non-significant even when we placed the ‘Other’ social class
group before all other groups.

‘No statins’ scenario
We estimated the total effect of statins on total cholesterol reduction using Eq 1 as Ew = 25.7%
(95% CI: 23.3% to 28.0%). The mean predicted total cholesterol TCpred of the population was
calculated to be 5.36 mmol/L (95% CI: 5.33 to 5.40).

Fig 2 depicts the predicted mean total cholesterol of the population without the effect of
statins, against the observed mean total cholesterol in 1991–92 and 2011–12, by age and sex.
When the effect of statins was removed, the inverse socioeconomic gradient of cholesterol in
the overall population disappeared (slope -0.01, 95% CI: -0.03 to 0.01, P = 0.45). Subgroup
analysis revealed that for men over 55 the slope was reduced to -0.05 (95% CI: -0.10 to -0.01,
P = 0.03) and for women over 55 the gradient was essentially zero (slope -0.04, 95% CI: -0.08 to
0.01, P = 0.09). In addition, a socioeconomic trend appeared for women between 35 and 54
years with a slope of 0.05 (95% CI: 0.01 to 0.10, P = 0.01). We saw no other statistically signifi-
cant gradient, for the remaining age groups (S2 Table).

Finally, statins were estimated as responsible for approximately 33.7% (95% UI: 28.9% to
38.8%) of the total cholesterol reduction since 1991–92. When stratified by sex statins contri-
bution was 40.1% (95% UI: 33.6% to 47.7%) in men and 28.6% (95% UI: 22.3% to 35.0%) in
women. Table 5 summarises the contribution of statins for each socioeconomic group, by age
group and sex. The negative values in the UI, implying that statins could have increased choles-
terol to some, are an artefact of the Monte Carlo simulation due to wide mean cholesterol CI
overlapping in some ages. Statins’ contribution was consistently higher among men, consistent
with the observed higher utilisation.

Sensitivity analysis
The mean predicted total cholesterol (TCpred) of the population, using the inflated standard
error of Ew, was calculated to be 5.39 mmol/L (95% CI: 5.35 to 5.42). This is less than a 0.03
mmol/L difference from the main analysis. For the subgroup of deprived men older than 55,
with the highest statin utilisation, the TCpred from the sensitivity analysis was 0.09 mmol/L
higher than the one from the main analysis. Similarly, the contribution of statins to the ob-
served cholesterol decline for the whole population was estimated to be 33.9% (95% UI: 28.8 to
38.7%), a 0.2% difference from the main analysis result. A similar pattern of minimal changes
was observed for the remaining results.

Discussion
This is the first study we know of to quantify the contribution of statins to the observed de-
crease of total cholesterol in England’s population by socioeconomic group. Our results strong-
ly suggest that the statins were not the main driver of total cholesterol reduction since 1991–92.
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In fact, only around one third of the overall reduction might be attributed to statins, and that
was mainly in patients aged over 55 years. Statins were more widely used in deprived than af-
fluent areas. They appeared to help reduce socioeconomic inequalities in total cholesterol
among women, but not among men.

Fig 1. Mean serum total cholesterol (mmol/L) observed decline in England from 1991–92 to 2011–12 in men and women by age group. The error
bars depict 95% confidence interval of the means. The vertical axis starts at 3 mmol/L to improve readability. The dotted lines are visual aids and do not
reflect linear fits.

doi:10.1371/journal.pone.0123112.g001
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Statins utilisation
In our study, statins’ utilisation was higher in more deprived areas for men and women aged
over 35 years. This socio-economic pattern may partly reflect the higher prevalence of CVD in
more deprived areas [44] and the incentivised use of the QRISK score for cardiovascular risk

Fig 2. Mean serum total cholesterol by age, in men and women, in England (observed and predicted values). The points depict the mean total
cholesterol and the vertical lines 95% confidence intervals (CI). The curves were derived from weighted local regressions and are used to enhance
readability. Due to small sample sizes we aggregated participants aged 89 with those older than 89 years. To improve readability the axes are not numbered
from 0.

doi:10.1371/journal.pone.0123112.g002
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stratification in clinics, which includes area deprivation as a risk factor [45,46]. Our findings
are consistent with earlier studies that used different methodologies. Ashworth et al. and Wu
et al. also found that statin prescription was higher in more deprived areas in the UK [47,48].
This success in tackling inequalities might be attributed to the National Health Service (NHS),
since evidence from Australia, Sweden, Denmark and the US [49–52] suggest that statin pre-
scription in these countries has a socioeconomic gradient, with a less than expected utilisation
among the more disadvantaged, and potentially increases health inequalities.

Statins contribution to cholesterol decline
The second interesting finding is the contribution of statins to the observed decline of total cho-
lesterol since 1991–92. We found that statins are not the main driver of the cholesterol decline
in England, echoing studies from Iceland, Sweden, Finland and the Czech Republic [12–15]. We
estimated that only about a third of the observed total cholesterol decline could be attributed to
statins. This contribution was slightly higher than the aforementioned studies, perhaps reflect-
ing a more recent time period with correspondingly higher statin use in England 2011–12, and
possible nuanced differences in methodologies. While the cholesterol decrease was observed in
all age groups since 1991, statins mostly contributed to the fall in people older than 55 years.

The observed inverse socioeconomic gradient in total cholesterol levels might be partly at-
tributed to statins. In the ‘no statins’ scenario the gradient disappeared completely when all
ages were considered. However, the statin contribution varied across different genders and so-
cioeconomic groups. Statin utilisation was higher in the most deprived groups, but inequitable
by gender, reaching barely one third in women (34%) but almost half (47%) of deprived men
in the 55+ age group. This difference can only partly be explained by the higher CVD preva-
lence among men. By contrast, the statin contribution to cholesterol lowering was rather stable
across socio-economic groups in men (some 33%), but rose from 16% to 33% in women. This
suggests that the component of all other cholesterol reduction drivers had a higher impact
among the most deprived men, while their effect among women of all socioeconomic back-
ground was more or less equal. This demands further research.

Table 5. Estimated proportional contribution of statins to total cholesterol reduction since 1991–92 for each quintile of index of multiple depriva-
tion (QIMD), by age group and sex.

35–54 (years) 55–75 18–75

QIMD Men Women Men Women Men Women

1 (most affluent) 14.0% (-19.2 to
41.9%)

4.2% (-24.4 to
28.3%)

50.6% (36.2 to
64.6%)

24.4% (11.4 to
36.6%)

33.5% (15.6 to
49.9%)

15.9% (1.9 to
28.9%)

2 13.0% (-28.2 to
45.9%)

5.9% (-23.9 to
30.7%)

59.7% (43.5 to
75.7%)

23.9% (10.2 to
36.8%)

36.0% (19.5 to
51.2%)

14.3% (2.0 to
25.5%)

3 17.9% (-49.7 to
78.2%)

3.6% (-33.9 to
33.3%)

37.8% (21.3 to
52.7%)

36.0% (21.2 to
50.1%)

26.9% (7.3 to
44.6%)

23.5% (7.5 to
37.5%)

4 29.0% (-7.2 to
58.9%)

19.3% (-37.9 to
64.4)

45.0% (27.7 to
60.6%)

36.3% (21.3 to
50.5%)

34.4% (19.0 to
48.9%)

24.8% (9.2 to
38.9%)

5 (most
deprived)

31.1% (-9.1 to
63.8%)

37.1% (-19.0 to
79.9%)

43.2% (28.6 to
57.1%)

32.6% (16.0 to
47.9%)

33.8% (19.7 to
46.1%)

33.4% (18.3 to
47.5%)

All 22.2% (4.8 to
39.8%)

11.9% (-4 to 26.1%) 48.0% (40.1 to
56.1%)

40.0% (23.3 to
54.9%)

33.2% (25.8 to
40.6%)

21.3% (14.8 to
28.0%

P for trend 0.24 0.03 0.41 0.17 0.99 0.02

Age group 18–34 was omitted as statins’ contribution was practically zero. Analysis was restricted to ages younger than 76 due to low number of older

participants. Brackets contain 95% uncertainty intervals estimated by Monte Carlo.

doi:10.1371/journal.pone.0123112.t005
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Public health implications
Overall, our research supports the principle of statins being the second best option for primary
prevention. Non-statin interventions account for two thirds of the total cholesterol reduction
observed since 1991–92, which can be mostly attributed to dietary changes because physical ac-
tivity levels have not increased substantially over this period [30,53] and the contribution of
other factors affecting lipids is small and remained more or less stable. Indeed, United Nations
Food and Agriculture Organization data indicate that the animal fat supply per capita in the
UK has fallen by almost 25% since 1991 [54]. This echoes Rose’s original assertion that the
greatest public health impact will be achieved through population-wide reductions in CVD
risk than through interventions targeting high-risk individuals [55].

Furthermore, the recent proposed widening of criteria for statin prescription in primary pre-
vention by the ACC/AHA [18] and NICE [19] has been questioned on grounds of effectiveness,
cost-effectiveness, acceptability and safety [21]. These measures may prove to be less effective
than anticipated because of cumulative attrition factors. Approximately half of the UK patients
that are commenced on lipid lowering medication for primary prevention are ineligible accord-
ing to the respective guidelines, while many eligible patients remain untreated [48]. Moreover,
over half the patients commenced on statins for primary prevention have discontinued them
within 1–2 years [56–59]. In addition to medicalising otherwise healthy individuals, some pa-
tients may also be tempted to adopt more unhealthy diets because of the false ‘reassurance’ that
statins will compensate for the unhealthy behaviours [60]. Along with the increased resource re-
quirements, an additional opportunity cost comes from undermining the primary driver of cho-
lesterol decline—nutritional improvements at individual and national policy levels [61].

Regarding inequalities in health and inequities in care: our research suggests that English
statin prescribing might be equitable. This represents a success for the socialised medicine pro-
vided by the NHS England. In contrast, statin-based cholesterol reduction was not equitable
among men, being similar in the more affluent and more deprived groups. These results are in-
triguing, because healthcare-based interventions generally increase the inequality gap [16,17].

Strengths and limitations
This study was grounded on the best available evidence to explore the research question. We
integrated all the available data from HSE, a cross-sectional survey of very high quality, the Pre-
scription Cost Analysis report, an accurate and precise report about prescriptions in England,
and published meta-analyses on the effect of statins. The modelling approach allowed for the
best use of all the available information. In fact, despite the assumptions regarding the effects
of statins our results were robust to the sensitivity analysis. Any biases and errors were diluted
because they only applied to the about 13% of the sample who were statin users.

However, our study has several limitations. First, it is based on self-reported statin prescrip-
tion and adherence, and does not account for statin indications; however, consistent data from
prescription cost analysis reports for 2011–12 [39,40] suggest that our estimated prevalence of
statin-use is fairly accurate. Second, unlike HSE 2011–12, HSE 1991–92 was not weighted to
adjust for non-response bias. Furthermore, no other HSE has recorded statin use separately
from other lipid-lowering medication; this renders an interim point analysis between 1991 and
2011 practically impossible.

Third, there were no common or directly compatible socioeconomic indicators between the
two surveys to allow for more accurate comparisons. Our assumption that there was no socio-
economic gradient of mean total cholesterol in 1991–92 is supported by our finding of no such
gradient by social class in HSE 1991–92. This is consistent with Scholes et al. who also showed
no socioeconomic gradient in 1994 using QIMD as socioeconomic indicator [7]. The Whitehall
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II cohort also showed no socioeconomic gradient for total cholesterol in 1985–88 [62]. Neither
did our analysis consider other inequalities, for instance, ethnic minorities or people with men-
tal health or illiteracy problems [47,63,64].

Fourth, the estimate of the statin effect Ew was derived mostly from short-term trials lasting
less than one year. However, Edward et al. have shown that the statins effect remains fairly sta-
ble in trials lasting more than one year (Additional file 5 in [37]). In addition, the estimation of
Ew assumes that the differences between each trial population and our study sub-population of
statin users were the same for each statin.

Fifth, this analysis cannot fully control for other factors that interfere with lipid profiles and
their prevalence in the population changed substantially over the last two decades. BMI and di-
abetes mellitus are possibly the most important of them.

Finally, we used the statins effects reported in clinical trials, acknowledging that this might
overestimate the real world efficacy of these drugs (mostly because of selection bias in the trials
and reduced compliance in the population). However, this result in an overestimation of the
contribution of statins, and thus its real contribution might have been even less than one third.

Conclusions
Our research suggests that statins contributed about one third of the observed total cholesterol
decline in England since 1991–92, and that their impact on reducing socioeconomic inequali-
ties in total cholesterol was generally positive. However, the proposed wider indications for
statins in primary prevention remains contested.

Further research is now needed to quantify the potential contribution of primary prevention
statins to the ‘hard’ outcomes of cardiovascular morbidity and mortality in the UK. There is
sufficient current evidence, however, to justify reconsidering the priorities of different interven-
tions for the primary prevention of CVD.
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ABSTRACT

ObjeCtives
To estimate the potential impact of universal screening 
for primary prevention of cardiovascular disease 
(National Health Service Health Checks) on disease 
burden and socioeconomic inequalities in health in 
England, and to compare universal screening with 
alternative feasible strategies.
Design
Microsimulation study of a close-to-reality synthetic 
population. Five scenarios were considered: baseline 
scenario, assuming that current trends in risk factors 
will continue in the future; universal screening; 
screening concentrated only in the most deprived 
areas; structural population-wide intervention; and 
combination of population-wide intervention and 
concentrated screening.
setting
Synthetic population with similar characteristics to the 
community dwelling population of England.
PartiCiPants
 Synthetic people with traits informed by the health 
survey for England.
Main OutCOMe Measure
Cardiovascular disease cases and deaths prevented or 
postponed by 2030, stratified by fifths of socioeconomic 
status using the index of multiple deprivation.
results
Compared with the baseline scenario, universal 
screening may prevent or postpone approximately 

19 000 cases (interquartile range 11 000-28 000) and 
3000 deaths (−1000-6000); concentrated screening 
17 000 cases (9000-26 000) and 2000 deaths 
(−1000-5000); population-wide intervention 67 000 
cases (57 000-77 000) and 8000 deaths (4000-11 000); 
and the combination of the population-wide 
intervention and concentrated screening 82 000 cases 
(73 000-93 000) and 9000 deaths (6000-13 000). The 
most equitable strategy would be the combination of 
the population-wide intervention and concentrated 
screening, followed by concentrated screening alone 
and the population-wide intervention. Universal 
screening had the least apparent impact on 
socioeconomic inequalities in health.
COnClusiOns
When primary prevention strategies for reducing 
cardiovascular disease burden and inequalities are 
compared, universal screening seems less effective 
than alternative strategies, which incorporate 
population-wide approaches. Further research is 
needed to identify the best mix of population-wide and 
risk targeted CVD strategies to maximise cost 
effectiveness and minimise inequalities.

Introduction
Cardiovascular disease (CVD) is the leading cause of 
death worldwide.1  Furthermore, substantial socioeco-
nomic inequalities have been observed in CVD mortal-
ity in England and elsewhere.2 3 These inequalities 
powerfully reflect much greater premature mortality, 
and hence shorter life expectancy, among the most 
deprived groups. In England, the current governmental 
action plan to tackle the burden of CVD includes a pro-
gramme known as NHS (National Health Service) 
Health Checks. Introduced in 2009, this programme 
promotes the screening of all healthy adults aged 40 to 
74 for CVD risk stratification, and treatment of those at 
high risk.4 5 Recently, the debate about the programme’s 
scientific foundation, effectiveness, and cost effective-
ness, however, has been heated.6-10 Despite the contro-
versy, the programme remains policy.

Beyond the obvious importance of the debate to 
national public health, the programme’s relevance 
extends internationally. Choices about public health 
policy in the United Kingdom influence policy world-
wide; the UK policies on tobacco control and salt reduc-
tion are two recent examples.11 12 In essence, the debate 
about NHS Health Checks originates from the arche-
typal debate of targeted “high risk” versus “popula-
tion-wide” preventive interventions that was first 
articulated by Geoffrey Rose.13 Rose argued that 

WhAT IS AlReAdy knoWn on ThIS TopIC
Two main strategies for the primary prevention of cardiovascular disease (CVD) is to 
screen the population, find those individuals at high risk, and treat them or to 
reduce the CVD risk of the whole population irrespective of individuals’ baseline risk
Evidence suggests that the second approach is more effective and likely more 
equitable, yet this depends on the distribution of CVD risk throughout the population
In England, the Department of Health adopted the first approach, although this 
decision has recently attracted some criticism

WhAT ThIS STudy AddS
In England, despite the observed higher concentration of CVD risk in more deprived 
areas, structural population-wide interventions targeting unhealthy diet and 
tobacco might be three times more effective than the existing screening policy
Structural population-wide interventions are also likely to be more equitable than 
screening
A comprehensive strategy, combining structural population-wide interventions with 
screening in the most deprived areas (where CVD risk is concentrated) is most likely 
to maximise both effectiveness and equity of primary CVD prevention
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 population-wide interventions are more effective than 
ones aimed at high risk groups because the majority of 
incident cases occur in the multitudinous group of peo-
ple at low and intermediate risk. In Rose terminology, 
NHS Health Checks is a typical “high risk intervention,” 
as it targets people at high risk rather than lowering risk 
in the whole population.

The effectiveness of high risk interventions for CVD 
prevention has been previously challenged.14  More 
recently, a Cochrane systematic review and the Inter99 
trial found no benefits of health checks on CVD morbid-
ity or mortality.15 16  There were, however, major limita-
tions to these studies: Inter99 trialled a counselling 
intervention not supported by additional drug treat-
ment, and in the Cochrane review nine out of 14 trials 
were conducted before 1980, when the treatment 
options for high risk people were limited. In addition, 
high risk interventions may be more effective in 
 populations with high clustering of risk factors, result-
ing in a high concentration of the risk to certain groups 
in the population.17  In fact, the English population has 
such characteristics, with the risk of CVD being higher 
among those in the most socioeconomically deprived 
groups.18

High risk interventions may generate health inequal-
ities because they require active participation of people 
in both screening and treatment of those at high risk, 
favouring those with more resources.14 19-21  The particu-
lar effect of NHS Health Checks on socioeconomic 
health inequalities remains unclear however. A 
national study reported no difference in the coverage of 
the intervention by deprivation,22  whereas several 
smaller, but more detailed, studies showed substan-
tially lower uptake in deprived areas.23-25

We estimated the potential impact of universal 
screening for primary prevention of CVD on disease 
burden and socioeconomic health inequalities in 
England. Available data on the effectiveness of the NHS 
Health Check programme have been used to model this 
scenario. We further compared universal CVD screening 
with an alternative approach targeting only deprived 
areas, a feasible population-wide intervention, and a 
combination of both.

Methods
Building on experience from the original, validated 
IMPACT model26 and the more recent IMPACTSEC

27  and 
IMPACT2 models,28 we created IMPACTNCD, a discrete 
time dynamic stochastic microsimulation model. 
IMPACTNCD simulates the life course of synthetic indi-
viduals under different counterfactual scenarios, up to 
2030 (the projection horizon). During the simulation, 
CVD incidence and CVD and non-CVD mortality are 
recorded. The results are stratified by year, five year age 
group, sex, and fifths of index of multiple deprivation. 
The last is a relative measure of area deprivation that is 
widely used by public health authorities in England, 
and it has been used as the measure of socioeconomic 
classification for this study.29

A more detailed description of the model is provided 
in the supplementary material and the source code is 

available at https://github.com/ChristK/IMPACTncd/
tree/CVD-policy-options.

scenarios
We considered five scenarios.

Baseline (current trends)
In the baseline scenario, we assumed that the recent 
observed trends in CVD risk factor trajectories by age, 
sex, and socioeconomic status will continue in the near 
future. We extracted the trends from the health survey 
for England 2001-12, a nationally representative series 
of health surveys conducted in England annually.30-42

Universal screening
This scenario modelled the potential health effects of 
universal screening to identify and treat people at high 
risk for CVD. Input variables were informed from cur-
rent implementation of the NHS Health Check pro-
gramme. Eligible people were defined as adults aged 
between 40 and 74, excluding those with a known his-
tory of CVD, atrial fibrillation, diabetes mellitus, rheu-
matoid arthritis, or renal disease; closely resembling 
real life eligibility criteria. Based on existing evidence 
we assumed an uptake of 50% for screening,43  and we 
calibrated the distribution of the estimated 10 year 
risk of developing CVD among those participating: 
70% with a less than 10% risk, 25% with between 10% 
and 20%, and 5% with more than 20%.22  In addition, 
we calibrated the age distribution so that around 30% 
of those screened were older than 60.22  Participants 
with a higher than 10% estimated 10 year risk of devel-
oping CVD were considered at high risk and eligible 
for treatment. We used the QRISK2 score to estimate 
the 10 year risk of developing CVD, as perceived from 
healthcare.44

Based on published evidence, we assumed that about 
24% with an estimated risk of 20% or more and total 
cholesterol of 5 mmol/L or more will be prescribed ator-
vastatin 20 mg and about 27% with an estimated risk of 
20% or more and a systolic blood pressure of 135 mm Hg 
or more will be prescribed antihypertensive drugs. For 
those with a risk between 10% and 20% we assumed 
that about 17% and 20% will be prescribed treatment, 
respectively.45  We assumed an 80% persistence with 
treatment and a mean adherence of approximately 70%, 
roughly based on evidence from Denmark.46 Moreover, 
we modelled high risk participants with a body mass 
index of more than 50 kg/m2 to undergo bariatric surgery 
and reduce their body mass index to 30 kg/m2. We 
assumed that with lifestyle counselling half of the high 
risk participants consuming fewer than five fruit and 
vegetable portions daily will increase their consumption 
by a portion daily. Half of those being active for less than 
five days a week will increase their physical activity by 
an active day each week, and all high risk participants 
will decrease their body mass index by around 1%.45 47  
Finally, we modelled 10% of high risk smokers to achieve 
cessation for a year and have a probability of relapse 
equal to that of the general population by sex, fifth of 
multiple deprivation, and years since cessation.48 49
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Concentrated screening
In the concentrated screening scenario, we simulated a 
hypothetical strategy where screening had only been 
implemented in the most deprived fifths (groups 4 and 
5), the groups with the greatest concentration of CVD 
risk. We assumed that the uptake of the intervention 
was 50% and the risk and age distribution in the partic-
ipants was similar to that in the eligible population. 
Otherwise, the strategy is similar to the previous univer-
sal screening scenario. Given the recent criticism about 
the cost and cost effectiveness of the intervention,9 
offering the intervention where the risk is more concen-
trated may reduce costs.

Population-wide intervention
This scenario modelled the effects of a feasible popula-
tion-wide structural intervention targeting unhealthy 
diet and smoking. Several studies have found that a tax 
on sugar sweetened beverages may reduce the preva-
lence of obesity.50-52 For this scenario we assumed that 
such a tax may reduce the mean increase in body mass 
index by about 5% annually. Moreover, the United 
Kingdom has had one of the world’s most successful 
salt reduction strategies, including public awareness 
campaigns, food labelling, and voluntary reformula-
tion of processed foods.53  Modelling studies suggested 
that the addition of mandatory reformulation of pro-
cessed foods may further reduce mean systolic blood 
pressure by 0.8 mm Hg;54 we modelled this decrease. 
A large randomised trial in the United States showed 
that subsidies on fruits and vegetables may increase 
consumption by about half a portion daily, and a mod-
elling study in the UK found that subsidising fruits and 
vegetables combined with taxation of unhealthy foods 
may increase fruit and vegetable annual consumption 
by about 10%.55 56  We modelled an increase of a por-
tion of fruit and vegetable each day in 50% of the 
 population. Finally, a SimSmoke modelling study 
 estimated that full compliance with the framework 
 convention on tobacco control may reduce smoking 
prevalence by 13% (relative) in five years;57 we mod-
elled this decrease.

Population-wide intervention and concentrated 
screening
This scenario is the combination of the population-wide 
intervention and concentrated screening strategies. 
We modelled the implementation of a population-wide 
strategy identical to the previous scenario, comple-
mented by concentrated screening for people at high 
risk of CVD in the most deprived fifths (groups 4 and 5).

Common scenario assumptions
All interventions begun in 2011 and were linearly dif-
fused into the population over a five year period. Trends 
in population risk factors were assumed to be the same 
as those of the baseline scenario for all but the popula-
tion-wide intervention. All of the scenarios assumed 
that CVD case fatality will keep improving by 3% (rela-
tive) annually. In addition, we assumed a socioeco-
nomic gradient in CVD case fatality, forcing the more 

deprived people to experience worse outcomes. Both 
case fatality assumptions were based on recent trends 
and are supported by the British Heart Foundation’s 
statistics on coronary heart disease.2 Finally, a five year 
lag time was assumed between exposure to cardiovas-
cular risk factors and disease.

Model description
Inputs and logic
IMPACTNCD synthesises information from the Office for 
National Statistics and the health surveys for England 
on the English population’s demographics and its expo-
sure to CVD associated risk factors, to generate a 
close-to-reality synthetic population.58 Well established 
causal pathways between CVD and the associated 
risk factors are used to translate exposure into 
CVD   incidence and mortality, in a competing risk 
framework. We obtained effect sizes for exposures 
from published meta-analyses and longitudinal studies 
(see supplementary table S1).

The risk factors we considered for this study were 
age, sex, fifth of deprivation, body mass index, systolic 
blood pressure, total cholesterol level, diabetes melli-
tus (diagnosis or increased glycated haemoglobin 
level/no diabetes), smoking status (current, former, or 
never smoker), environmental tobacco exposure 
(binary variable), fruit and vegetable consumption 
(portions daily), and physical activity (days with at 
least 30 minutes of moderate or vigorous physical 
activity each week). CVD was defined as the sum of 
coronary heart disease and stroke (any type) cases. As 
this study focuses on primary prevention, we consid-
ered only the first ever episode of coronary heart dis-
ease or stroke. The competing risk framework allowed 
people to develop coronary heart disease and/or 
stroke separately, and to die from these two diseases 
or any other cause.

Model outputs
We report the cumulative estimates of cases and deaths 
prevented or postponed as measures of overall effec-
tiveness of the modelled interventions. To measure the 
impact of the modelled interventions on absolute and 
relative socioeconomic health inequalities, we devel-
oped and used two regression based metrics inspired 
by the slope index of inequality;59 the absolute equity 
slope index and the relative equity slope index. The 
absolute equity slope index measures the impact of an 
intervention on absolute inequality; for example, a 
value of 100 means 100 more cases were prevented or 
postponed in most deprived areas compared with least 
deprived areas, resulting in a decrease in absolute 
inequality. The relative equity slope index takes into 
account the pre-existing socioeconomic gradient of 
disease burden and measures the impact of an inter-
vention on relative inequality. Positive values mean the 
intervention tackles relative inequalities and negative 
values that the intervention generates relative inequal-
ity. Finally, we summarised the overall impact of each 
scenario on CVD burden and equity in the equity 
 summary chart.
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uncertainty and sensitivity analysis
IMPACTNCD implements a second order Monte Carlo 
design that allows uncertainty to be quantified from the 
outputs. We used distributions to model the uncertainty 
around all scenario specific inputs and the sampling 
error of the risk associated with the CVD related risk fac-
tors. The probabilistic sensitivity analysis has been 
incorporated in our estimates. We summarise the distri-
butions by reporting medians and interquartile ranges 
in the form of first and third fourths. The supplemen-
tary file provides a more detailed description of the 
sources of uncertainty and the relevant distributions.

We ran three further scenarios offering slight varia-
tions on the two primary ones of universal screening 
and population-wide intervention: a universal screen-
ing variation, where we assumed a treatment threshold 
recommendation of 20% risk instead of 10%; another 
variation on universal screening, where we assumed a 
socioeconomic differential in screening uptake, with 
the most deprived of the population to be 10% less 
likely to participate; and a variation on the popula-
tion-wide intervention, where we only modelled dietary 
interventions, excluding smoking interventions. The 
supplementary file provides detailed information on 
the extra scenarios.

validation
We assessed the predictive validity of the IMPACTNCD 
model by comparing the estimated number of deaths 
from CVD with the observed number of deaths from the 
same causes for 2006 to 2013 in England.60 We further 
compared the IMPACTNCD output with CVD mortality 
forecasts from a bayesian age-period-cohort model.61

Patient involvement
No patients were involved in setting the research ques-
tion or the outcome measures, nor were they involved in 
developing plans for design or implementation of the 
study. No patients were asked to advise on interpreta-
tion or writing up of results. There are no plans to dis-
seminate the results of the research to study participants 
or the relevant patient community.

Results
IMPACTNCD outputs for CVD burden and inequality are 
summarised for ages 30 to 84. Because of the assumed 
five year time lag, the interventions affect the popula-
tion from 2016 up to the projection horizon of 2030. The 
impact of the five scenarios on risk factor trajectories 
are further illustrated in additional graphs in the sup-
plementary file.

Overall effectiveness
Under the baseline scenario, IMPACTNCD estimated 
about 1.4 million (interquartile range 1.3-1.5) cases of 
CVD and 540 000 deaths (interquartile range 520 000 to 
550 000) between 2016 and 2030. The most effective 
intervention was the combination of the popula-
tion-wide intervention and concentrated screening. The 
population-wide intervention alone had the second 
highest effectiveness, whereas the universal and the 
concentrated screening scenarios were considerably 
less effective (table 1 ). Despite the improvement of most 
CVD related risk factors, the proportion of high risk peo-
ple in the eligible population is slowly increasing over 
time, because of population aging (fig 1).

socioeconomic inequalities
When socioeconomic inequalities were considered, the 
patterns for reductions in absolute and relative inequal-
ities were similar. The combination of the popula-
tion-wide intervention and concentrated screening 
seemed the most powerful among the simulated inter-
ventions (tables 2 and 3). Concentrated screening alone 
was the second most powerful intervention in tackling 
inequalities, followed by the population-wide interven-
tion. Finally, universal screening of CVD is likely to have 
a small, if any, effect on socioeconomic inequalities.

equity summary chart
We summarised our estimates for the effectiveness and 
equity of the modelled interventions in the equity sum-
mary chart (fig 2). The horizontal axis of the chart rep-
resents the cases of CVD prevented or postponed and 
the vertical axis the reduction in absolute inequality. 
Scenarios above the equity curve (dashed curve in the 
figure) decrease relative socioeconomic inequality, and 
scenarios below the curve increase it. The vertical dis-
tance from the curve approximates the impact of the 
scenario on relative inequality. (See the supplementary 
file for more details about this chart.) The combination 
of the population-wide intervention and concentrated 
screening is by far the most effective and equitable 
intervention. Concentrated screening is also equitable 
but with few mortality gains.

sensitivity analysis
Adding assumptions to extend the scenarios did not 
displace our main findings. The three most notable 
results of the sensitivity analysis were:

Raising the treatment threshold from 10% to 20% fur-
ther reduced the effectiveness of universal screening by 
about 60% in preventing CVD cases. However, in pre-
venting deaths from CVD the effectiveness decreased by 
only 15% as raising the treatment  threshold excludes 
younger participants at intermediate risk from treat-
ment.

Assuming a differential uptake of universal screening 
by deprivation fifth essentially eliminated the estimated 
small potential benefit of universal screening in tack-
ling health inequalities.

A population-wide intervention targeting only diet 
would still be about twice as effective as universal 

table 1 | estimated cases and deaths prevented or postponed under each scenario, by 2030

scenarios
no (interquartile range) prevented or postponed
Cases Deaths

Universal screening 19 000 (11 000-28 000) 3000 (−1000-6000)
Concentrated screening 17 000 (9000-26 000) 2000 (−1000-5000)
Population-wide intervention 67 000 (57 000-77 000) 8000 (4000-11 000)
Population-wide intervention and 
concentrated screening

82 000 (73 000-93 000) 9000 (6000-13 000)

Results rounded to nearest 1000.
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screening and more than twice as effective as popula-
tion-wide intervention targeting smoking alone—so the 
relative ranking of scenario effectiveness would remain 
unaltered. For detailed results see supplementary 
tables S11-S13.

validation
We assessed the predictive validity of the IMPACTNCD 
model by comparing the estimated number of deaths 
from CVD with the observed number of deaths from the 

same cause for 2006 to 2013 in England (fig 3). See the 
supplementary file for detailed graphs by age group, 
sex, deprivation fifth, and disease.

discussion
Our results strongly suggest that universal screening 
and treatment of people at high risk is not the most 
effective option for primary prevention of cardiovas-
cular disease (CVD) overall, nor for reducing socio-
economic inequalities. In contrast, prevention 
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strategies that include population-wide structural 
interventions seem to be the consistently better 
options for reducing overall CVD burden and inequal-
ities. This echoes and quantifies findings from other, 
mostly theoretical, studies supporting that structural 
population-wide interventions are powerful, while 
reducing socioeconomic health inequalities.13 14 62 63  
Indeed, the impact of the population-wide interven-
tion scenario on reduction in estimated mortality and 
inequalities seems compatible with previous esti-
mates, considering the different methodologies.64 
Furthermore, the effectiveness and equity of popula-
tion-wide structural interventions can be further 
improved by the addition of targeted interventions in 
the most deprived groups, as highlighted in the com-
bined scenario of the population-wide intervention 
and concentrated screening.

Compared with other modelling approaches, our 
IMPACTNCD model estimated that NHS Health Checks 
might prevent approximately 1000 non-fatal and 200 
fatal cases of CVD annually. This is comparable with 
the Department of Health estimates of 1600 non-fatal 
CVD cases and 650 deaths prevented annually.4  Fur-
thermore, the Department of Health modelling 
approach assumed an intervention uptake of 75%; 
higher than the current observed levels. Using the 
Archimedes model, Schuetz et al estimated that health 
checks in the UK could prevent some 12 CVD cases per 
1000 population screened after 30 years’ follow-up65 
(7500 CVD cases prevented each year extrapolating to 
the eligible English population). That higher estimate 
reflects the researchers’ apparently unrealistic assump-
tion of 100% screening uptake and 50% overall uptake 
of treatment.

the scenarios
We modelled the universal screening scenario to 
closely resemble the current implementation of the 
NHS Health Check programme, based on published 
evidence. Therefore, we maintain that our estimates on 
the effectiveness of this scenario are not far from the 
real world effectiveness of NHS Health Checks. How-
ever, our output suggesting that universal screening 
might reduce socioeconomic inequalities seems to con-
tradict existing empirical and modelling evidence.14 19-21 
This is because we generously assumed identical 
screening uptake and treatment adherence for all 
socioeconomic groups. In fact, any potential reduction 
in socioeconomic health inequalities was essentially 
eliminated when we considered a small socioeconomic 
differential in uptake in the sensitivity analysis. Fur-
thermore, additional health inequalities may arise 
from differential persistence and adherence to treat-
ment by deprivation status.46

The population-wide intervention scenario on the 
other hand, is based mostly on structural policies tar-
geting price and availability. This scenario potential 
effectiveness was mostly based on natural experi-
ments,66 67  and on previous modelling studies from the 
UK and elsewhere. The size of the changes in the popu-
lation risk factors that we modelled were modest, and 
actually smaller than the reductions observed in coun-
tries such as France, Finland, and the USA during 
recent decades.68-70 This scenario estimated the reduc-
tion in mortality conservatively, because it ignored the 
beneficial effect of the policies on survival from CVD. 
Similarly, it underestimated the reduction of the gap in 
inequalities, because it did not fully consider the cur-
rent disproportionate burden of poor diet among the 

table 3 | relative percentage reduction in cases of cardiovascular disease according to fifth of deprivation by 2030, 
along with relative equity slope index for each scenario

Deprivation fifth*

relative % reduction (interquartile range)

universal screening
Concentrated 
screening

Population-wide 
intervention

Population-wide intervention+ 
concentrated screening

First (least deprived) 1.3 (−0.5-3.1) 0 4.1 (2.2-5.9) 4.0 (2.4-6.0)
Second 1.1 (−0.5-2.9) 0 4.2 (2.2-5.9) 4.0 (2.3-5.9)
Third 1.4 (−0.3-3.2) 0 4.6 (2.8-6.3) 4.4 (2.6-6.2)
Fourth 1.3 (−0.6-3.1) 2.4 (0.6-4.3) 4.6 (2.7-6.6) 6.9 (5.1-8.9)
Fifth (most deprived) 1.6 (−0.2-3.3) 3.6 (1.8-5.3) 6.2 (4.4-8.0) 9.4 (7.6-11.2)
Relative equity slope index 0.4 (−2.4-3.2) 4.9 (1.8-7.9) 2.3 (−0.7-5.3) 6.7 (3.8-9.5)
Results rounded to one decimal place.
*According to index of multiple deprivation.

table 2 | Cases prevented or postponed according to fifth of deprivation by 2030, along with absolute equity slope index 
for each scenario

Deprivation fifth*

no (interquartile range) of cases prevented or postponed

universal screening
Concentrated 
screening

Population-wide 
intervention

Population-wide intervention+ 
concentrated screening

First (least deprived) 3400 (−1400-8300) 0 10 800 (5900-15 500) 10 800 (6200-15 700)
Second 2900 (−1500-8400) 0 12 200 (6200-17 200) 11 500 (6600-17 000)
Third 4000 (−900-9300) 0 13 100 (8100-18 300) 12 600 (7400-17 700)
Fourth 3700 (−1600-8600) 6400 (1500-11 800) 12 500 (7100-18 400) 18 700 (13 900-24 200)
Fifth (most deprived) 4900 (−600-10 400) 10 700 (5300-16 300) 18 700 (13 000-24 000) 28 600 (22 800-33 200)
Absolute equity slope index 1700 (−6200-9300) 14 100 (5700-23 000) 8400 (−400-16 900) 21 100 (12 800-29 300)
Results rounded to nearest 1000.
*According to index of multiple deprivation.
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most deprived of the population,71 and hence the poten-
tial for improvement through population-wide policies.

Finally, the concentrated screening strategy was the 
weakest in terms of overall effectiveness, yet more pow-
erful in tackling inequalities. Its increased impact on 
socioeconomic health inequalities is a direct conse-
quence of the concentrated prevention only to the more 

deprived quantiles of the population. However, the sce-
nario assumptions may not fully hold in real world 
implementation. Hence, concentrated screening rep-
resents a challenge for public health practitioners and 
policymakers to exploit the opportunity of a smaller 
and more homogeneous eligible population and to 
implement better recruitment and tactics for treatment 
adherence. Yet, cost effectiveness might also fall 
because of loss of economies of scale.

Public health implications
This IMPACTNCD modelling may help stakeholders to 
understand better the interplay between preventive pol-
icies, risk factors, disease, and inequalities, and thus 
potentially inform health policy and strategy. Hence, 
when compared with the alternative feasible interven-
tions, universal screening seemed inferior both in pri-
mary prevention and in reducing socioeconomic health 
inequalities. Additionally, we estimated that the pro-
portion of young people at high risk aged less than 60 in 
the eligible population will decrease in future (fig 1). 
This will render universal screening less effective and 
less cost effective for this age group, because a larger 
number will need to be screened to identify each high 
risk individual.

Our study suggests that despite the high clustering of 
risk factors in the most deprived parts of the population, 
structural population-wide approaches remain more 
effective than high risk ones for the prevention of CVD. 
Population-wide approaches also seem to be more effec-
tive in reducing absolute and relative socioeconomic 
health inequalities, generally cost much less than a uni-
versal screening programme, and may even be cost sav-
ing.72 73  In this study, we did not model the full potential 
of these policies, as we focused only on diet and smok-
ing interventions; we did not, for example, incorporate 
alcohol consumption or physical activity. In addition, 
we did not simulate the likely wider benefits of improved 
diet and smoking cessation on the plethora of relevant 
non-communicable diseases. Despite this restricted 
scope, for CVD prevention we estimated that structural 
policies targeting diet could be twice as effective as 
those targeting smoking. Yet, structural interventions 
for a healthier diet are currently underutilised compared 
with tobacco control. Several countries have now intro-
duced taxes on sugary drinks or sugar, including Fin-
land, France, Latvia, and Mexico. The UK has recently 
followed their example. Hungary is the only European 
country currently taxing unhealthy “junk” food.74  How-
ever, fiscal interventions may face opposition from com-
mercial vested interests.75  Interestingly, an increasing 
body of evidence from empirical studies and modelling 
analyses suggest that the maximum health impact with 
a neutral effect on poverty may occur when food or 
drinks taxes are combined with subsidies for healthy 
foods.56 76 77

Moreover, the combination of a population-wide 
intervention with an intervention targeting the most 
deprived members, may further improve effectiveness 
and equity. This approach is in the spirit of proportion-
ate universalism that was identified in the Marmot 
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Fig 3 | number of deaths from cardiovascular disease (CvD) 
in england, by year for ages 30 to 84. Office for national 
statistics reported deaths (observed) versus iMPaCtnCD 
estimated. Observed deaths after 2010 were adjusted to 
account for changes in iCD-10 version used by the Office for 
national statistics from 2011 onwards. error bars represent 
interquartile ranges
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review as the best approach to tackle socioeconomic 
inequalities in health.78 Our study provides evidence 
that in CVD prevention proportionate universalism may 
be the best option not only for tackling inequalities but 
also for overall effectiveness.

strengths and limitations of this study
IMPACTNCD is the first microsimulation model to synthe-
sise core principles of social and CVD epidemiology, 
vital demographics, published literature, and recent 
health surveys for England to create a synthetic 
 population of England, including socioeconomic struc-
ture, at the individual level. The microsimulation 
approach allows for the simulation of detailed scenar-
ios and explores the distributional nature of their 
impact on the population, in a competing risks frame-
work. Microsimulation allows for greater flexibility and 
more detailed simulation, demanding more statistical 
and computational resources than older approaches; 
we utilised the Farr Institute’s statistical high perfor-
mance computing facilities.79 Many assumptions must 
be made with such models. Yet, despite the potential 
frailty of such assumptions, this model validated well 
against observed CVD mortality, even when multiply 
stratified. Finally, to ensure transparency, we have 
made the IMPACTNCD source code open under GNU 
GPLv3 license.

Models are simplifications of reality and thus possess 
inherent limitations. At least four items were not 
included in the current model. Firstly, the multiplica-
tive risk assumption is considered the status quo in 
comparative risk assessments;80 however, this may 
oversimplify the complex nature of interactions 
between multiple risk factors and disease outcome over 
the life course. Secondly, IMPACTNCD currently ignores 
the effect of risk factors on CVD case fatality, although 
in this study we considered only primary prevention 
scenarios. Thirdly, complex population dynamics such 
as migration, social mobility, and the socioeconomic 
consequences of disease were not modelled. We con-
sider this bias would be relatively small for projections 
with a short horizon. Fourthly, the model ignores the 
impact of universal screening in recognising previously 
undiagnosed cases of atrial fibrillation and other 
opportunistic diagnoses. Reassuringly, most of these 
biases apply across all scenarios; their effects would 
thus be reduced in comparisons between scenarios.

Conclusions
When comparing primary prevention strategies for 
reducing CVD burden and inequalities, universal 
screening seems less effective than alternative strate-
gies that incorporate population-wide approaches. Fur-
ther research is needed to identify the best mix of 
population-wide and risk targeted CVD strategies to 
maximise cost effectiveness and minimise inequalities.
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