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Abstract  

The genus Onchocerca includes 34 described species and represents one of the largest 

genera of the filarial nematodes within the family Onchocercidae. Representative members of 

this genus are mainly parasites of ungulates, with some exceptions such as Onchocerca lupi 

and Onchocerca volvulus, infecting carnivores and/or humans. For a long time, the 

evolutionary relationships amongst onchocercids remained poorly studied, as the systematics 

of this genus was impaired by the high morphological variability of species included in the 

taxon. Although some molecular phylogenies were developed, these studies were mainly 

focused on bovine Onchocerca spp. and O. volvulus, including assessments of Wolbachia 

endosymbionts. In the present study, we analysed 13 Onchocerca spp. from a larger host 

spectrum using a panel of seven different genes. Analysis of the coxI marker supports its 

usefulness for the identification of species within the genus. The evolutionary history of the 

genus has been herein revised by multi-gene phylogenies, presenting three strongly supported 

clades of Onchocerca spp. Analyses of co-evolutionary scenarios between Onchocerca and 

their vertebrate hosts underline the effect of domestication on Onchocerca speciation. Our 

study indicates that a host switch event occurred between Bovidae, Canidae and humans. 

Cophylogenetic analyses between Onchocerca and the endosymbiotic bacterium Wolbachia 

indicate the strongest co-evolutionary pattern ever registered within the filarial nematodes. 

Finally, this dataset indicates that the clade composed by O. lupi, Onchocerca gutturosa, 

Onchocerca lienalis, Onchocerca ochengi and O. volvulus derived from recent speciation. 

 

Keywords: Onchocerca, Filariae, Phylogeny, Diagnostic marker, Host-switching, 

Domestication, Wolbachia, Co-evolution 
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1. Introduction 

Onchocerca is one of the largest genera within the family Onchocercidae (Nematoda; 

Spirurida; Filarioidea), as it includes 34 described species which display a worldwide 

distribution (Anderson, 2000; Bain et al., 2013; Uni et al., 2015a). Species of Onchocerca are 

mainly associated with various ungulate hosts: Onchocerca fasciata was described in the 

Camelidae, four species were reported in the Suidae, eight species in Cervidae, 15 species in 

the Bovidae (Cetartiodactyls) and four species in the Equidae (Perissodactyls) (Anderson, 

2000; Uni et al., 2001, 2015a). Two exceptions are notable: Onchocerca lupi in carnivores 

and the well-known Onchocerca volvulus in humans (Bain, 2002; Bain et al., 2013). This is 

the agent of onchocerciasis or river blindness, a debilitating human disease that causes 

cutaneous and ocular clinical manifestations (Anderson, 2000). According to the World 

Health Organization (WHO), more than 110 million people underwent specific treatment for 

onchocerciasis in 24 tropical countries in 2014 (WHO, 2015). In addition, during the last 10 

years increased attention has been paid to zoonotic Onchocerca cases, as the number of such 

reports has shown a strong upward trend. Currently, more than two dozen zoonotic cases have 

been documented (Orihel and Eberhard, 1998; Otranto et al., 2015b; Uni et al., 2015b); most 

of them have been associated with O. lupi (Sreter et al., 2002; Otranto et al., 2011, 2012; 

Eberhard et al., 2012, 2013; Biswas and Yassin, 2013; Ilhan et al., 2013; Mowlavi et al., 

2014) or Onchocerca dewittei japonica (Beaver et al., 1989; Takaoka et al., 1996, 2001, 2004, 

2005; Fukuda et al., 2011; Uni et al., 2010, 2015a), whereas the remaining portion has been 

linked to the occurrence of Onchocerca gutturosa of cattle (Azarova et al., 1965; Siegenthaler 

and Gubler, 1965; Beaver et al., 1974; Ali-Khan, 1977), Onchocerca cervicalis of horses 

(Burr et al., 1998) and Onchocerca jakutensis of cervids (Koehsler et al., 2007). 

For a long time, the systematics of the Onchocerca genus was muddled, mainly due to 

the high variability of morphological features of both male and female specimens, such as the 
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size of spicules or the pattern of caudal papillae (Bain, 1975). In addition, the coexistence of 

different Onchocerca spp. in the same host can impair their identification (Bain, 1975). In 

1981, Bain proposed a phylogenetic framework for the genus Onchocerca based on 

morphological traits, host range and geographical distribution (Bain, 1981). Since then, some 

molecular phylogenies of Onchocerca have been proposed, but most of those included a low 

number of Onchocerca spp. (Xie et al., 1994; Casiraghi et al., 2001; McNulty et al., 2012) or 

had a weak phylogenetic resolution, which did not allow improved definition of the 

relationships between Onchocerca spp. (Sreter-Lancz et al., 2007; Fukuda et al., 2010; Ferri 

et al., 2011; Lefoulon et al., 2012; Otranto et al., 2015a). More recently, some mitochondrial 

markers (i.e., NADH dehydrogenase subunit 5 (ND5), 16S and 12S rDNA) were developed 

for phylogenetic purposes (Krueger et al., 2007; McFrederick et al., 2013). However, the 

study using these markers only involved Onchocerca spp. from the Bovidae and O. volvulus. 

The existence of a close relationship between O. volvulus and Onchocerca spp. of the 

Bovidae, particularly with Onchocerca ochengi, was nevertheless suggested (Krueger et al., 

2007; Eisenbarth et al., 2013; McFrederick et al., 2013). However, the evolutionary 

relationships of Onchocerca spp. from a larger host spectrum still remain poorly known, in 

particular with regard to the diversity of Onchocerca spp. recently described in Japan (Yagi et 

al., 1994; Uni et al., 2001, 2007, 2015a). 

Most Onchocerca spp. are infected by Wolbachia endosymbiotic bacteria (Casiraghi et 

al., 2001, 2004; Ferri et al., 2011; Lefoulon et al., 2016). Indeed, the first description of 

bacteria in the lateral chords and in the female germline of a filarial species was made in O. 

volvulus in 1977 (Kozek and Marroquin, 1977). Within the genus Onchocerca, only 

Onchocerca flexuosa (among species screened to date) is not infected by Wolbachia 

(Casiraghi et al., 2004), although the identification of extensive horizontal gene transfer from 

Wolbachia in the O. flexuosa genome indicates that even this species once harboured the 
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symbiont (McNulty et al., 2010a, b). The nature of the association has been demonstrated to 

be mutualistic for O. ochengi, Onchocerca lienalis, O. gutturosa and O. volvulus (Langworthy 

et al., 2000; Townson et al., 2000; Hoerauf et al., 2001). Regarding phylogenetic analyses, 

Wolbachia from Onchocerca spp. are placed within supergroup C (Bandi et al., 1998). A 

strong pattern of co-evolution between supergroup C and their onchocercid hosts has been 

recently highlighted, whereas a localized pattern of co-evolution and horizontal transmission 

events characterized the other supergroups D, J and F (Lefoulon et al., 2016). 

In the present study, we revise the evolutionary history of the genus Onchocerca using 

species from a large host range and a multi-gene phylogeny that we recently developed 

(Lefoulon et al., 2015), aiming to elucidate the relationships among Onchocerca spp. and their 

host associations. 

 

2. Materials and methods 

2.1. Specimens 

Thirteen different species of Onchocerca were analysed together with 

Loxodontofilaria caprini from serow (Caprinae). Loxodontofilaria caprini was included in the 

study due to previous molecular analyses in which it clustered in the same clade as 

Onchocerca spp. (Bain et al., 2008; Lefoulon et al., 2015). A list of all the studied species and 

their authorities can be found in the Supplementary Data S1. DNA from adult specimens of 

Onchocerca boehmi, Onchocerca cervipedis and O. lupi, and from two pools of microfilariae 

of O. lienalis, were extracted specifically for this study (Table 1). All procedures were 

conducted in compliance with the rules and regulations of the respective competent national 

ethical bodies. Onchocerca lupi from dogs and O. boehmi from horses were provided by Dr. 

Dominico Otranto and no permits were necessary (veterinary procedures). An O. cervipedis 
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specimen from a moose was provided by Dr Guilherme G. Verocai] and was previously 

studied in Verocai et al. (2012). Onchocerca lienalis microfilariae from naturally infected 

cattle in slaughter houses in southern Wales (UK) were provided by Dr. Simon Townson 

Loxodontofilaria caprini, Onchocerca eberhardi and Onchocerca suzukii DNA were obtained 

from previous studies (Lefoulon et al., 2012, 2015). Onchocerca armillata and O. lienalis 

DNA were provided by Dr Benjamin L. Makepeace (Table 1). 

The adult samples were fixed and kept in 70% ethanol or absolute ethanol. DNA from 

the Onchocerca spp. was extracted using the QIAamp kit following the manufacturer’s 

recommendations (Qiagen, France), with a preliminary step of disruption for two cycles of 30 

s at 30 Hz using a TissueLyser II (Qiagen, Germany) followed by overnight incubation at 

56°C with proteinase K. 

 

2.2. Molecular screening 

The PCR screening of the filarial nematodes was based on the partial sequence of 

seven genes according to Lefoulon et al. (2015): two mitochondrial genes, 12S rDNA and 

cytochrome oxidase subunit I (coxI); two ribosomal genes, 18S rDNA and 28S rDNA; and 

three nuclear genes, the myosin heavy chain (MyoHC), RNA polymerase II large subunit 

(rbp1), and 70 kilodalton heat-shock protein (hsp70). The screening of Wolbachia was 

determined by nested PCR screening of the seven genes according to Lefoulon et al. (2016): 

16S rDNA gene, dnaA, coxA, fbpA, gatB, ftsZ and groEL. The PCR products were purified 

using the SV Wizard PCR Purification Kit (Promega, USA) and directly sequenced. One 

hundred and twenty-two sequences were deposited in the GenBank Data Library, Accession 

numbers KX853314 to KX853435 (Supplementary Table S1). 
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2.3. Phylogenetic analyses 

Sequences generated during the current study and previously published sequences 

from draft/complete genomes were aligned using MAFFT (Katoh and Toh, 2008). The 

alignment of coding genes was translated using EMBOSS Transeq (Li et al., 2015) to check 

for the absence of stop codons. JModelTest analysis (Posada, 2008) was performed to 

establish the evolutionary model best adapted to the sequence alignment for each individual 

gene and for the concatenation of all genes, using the corrected version of the Akaike 

Information Criterion (AICc) (Supplementary Table S2). A partitioned model was 

implemented to estimate evolutionary parameters separately for each gene. For the 

Onchocercidae, rooted phylogenetic trees were created both by Bayesian inference and by 

Maximum Likelihood (ML) inference using, respectively, MrBayes (Ronquist and 

Huelsenbeck, 2003) and RaxML (Stamatakis, 2014). For Wolbachia, unrooted phylogenetic 

trees were created by ML inference using RaxML (Stamatakis, 2014). Two runs were 

performed using five million steps with four chains, with tree sampling every 1,000 

generations; the first 1,250 points were discarded as burn-in and Posterior Probabilities were 

calculated from these post-burn-in trees for the Bayesian analyses. Two runs were performed 

with 1,000 slow bootstrap replicates for the ML analyses. Independent analyses were 

performed using the alignments, masking with Gblock version 0.91b (Castresana, 2000) to 

test the effect of ambiguously aligned positions (Supplementary Fig. S1). Different outgroups 

were included according to the context: Icosiella neglecta, Oswaldofilaria chabaudi and 

Setaria labiatopapillosa (Spirurida: Onchocercidae) for analyses focused on the genera 

Onchocerca and Dirofilaria; Filaria latala (Spirurida: Filariidae) and Protospirura muricola 

(Spirurida: Spiruridae) for analyses including all other Onchocercidae (Supplementary Fig. 

S2). 
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2.4. Filarial coxI gene analysis 

A DNA barcoding approach based on the coxI marker was used to discriminate 

between Onchocerca spp. (Ferri et al., 2009; Lefoulon et al., 2012). The coxI sequence 

divergence is estimated by the number of base differences per site between two sequences (p-

distance) using MEGA version 6. Pairwise comparisons between 59 coxI sequences were 

processed and classified into two levels: intraspecific (differences between individuals of the 

same species) and interspecific (differences between individuals of different species).  

 

2.5. Immunohistochemical staining of nematode sections 

The presence of Wolbachia was determined in an O. lupi specimen by 

immunohistochemical staining according to Kramer et al. (2003). A rabbit polyclonal 

antiserum raised against the Wolbachia surface protein (WSP) of Wolbachia from Brugia 

pahangi (Wol-Bp-WSP, dilution 1:2000, designed by Bazzocchi et al. (2000) and provided by 

Dr. Maurizio Casiraghi, Università degli Studi di Milano Bicocca, Italy) was used to stain 5 

µm paraffin sections of filarial species placed on Superfrost Plus slides (Thermo Scientific, 

United-States) as previously described (Ferri et al., 2011). Sections were counterstained with 

H&E. Sections of a laboratory strain of Litomosoides sigmodontis were used as a positive 

control. 

 

2.6. Cophylogenetic analysis 

Two cophylogenetic analyses were performed: the first one to evaluate co-

evolutionary scenarios between Onchocerca parasites and their vertebrate hosts (Table 1, 
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Supplementary Table S3) and the second one to evaluate the global fit between Onchocerca 

spp. and their Wolbachia symbionts. 

Jane 4.0 (Conow et al., 2010) was used to associate overall costs of co-evolutionary 

scenarios between Onchocerca spp. and their vertebrate hosts. This event-based method was 

used with the default settings for cost regimes as follows: a “co-speciation” event (two 

partners speciate simultaneously) is associated with null cost; a “duplication” event (the 

symbionts speciate in the same host), “loss” event (the symbiont does not speciate while the 

host does) and a “failure to diverge” (when a host speciates while the parasite does not but 

remains on both new host species) event are associated with a cost equal to one; and a 

“duplication then host-switching” event (the symbiont speciates and one switches to another 

host) is associated with a cost equal to two (Charleston, 1998). All analyses were performed 

with a number of generations of 5,000 and a population of 500. The Jane program manages 

topologies and not distance branches, so the hypothetical topology of vertebrate hosts was 

built on previous analyses (Scientists, 2009; Song et al., 2012; Bibi, 2013). Two different 

datasets were analysed: the first including associations with sampled vertebrate hosts for this 

study, and the second including associations with the totality of the known vertebrate host 

spectrum. 

The global-fit method was used to study cophylogenetic patterns between filariae and 

their Wolbachia symbionts. The global fit of filarial phylogeny with their bacterial phylogeny 

was estimated using the PACo application (Balbuena et al., 2013) in the R environment (R 

Core Team, 2013. R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria.). The differences between matrices of principal 

coordinates (PCo) (based on matrices’ pairwise patristic distance) of the onchocercid 

nematodes species and their Wolbachia symbionts were minimized by Procrustes analysis 

using least-squares superimposition. An ordination plot was produced, representing the global 
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fit. The global fit was evaluated by the residual sum of squares value (m
2

XY) of the 

Procrustean fit calculation, which is inversely proportional to the topological congruence, and 

its significance was tested by random permutations (100,000,000 permutations). Each host-

symbiont association was evaluated by a jack-knife procedure to estimate the square residual 

of each single association and its 95% confidence interval. A bar chart plot of these jack-

knifed squared residuals was produced. Low residuals are interpreted as a low contribution of 

m2
XY and thus as a strong congruence between the filariae and the bacteria. Two different 

datasets were analysed: the whole onchocercid nematodes and their symbionts, or a cluster of 

species belonging to Dirofilaria, Onchocerca and Loxondotofilaria and their symbionts. 

 

3. Results 

3.1. Accuracy of coxI for identification of Onchocerca spp.  

The coxI mean nucleotide distance within Onchocerca spp. is 0.53% (S.E. = 0.29%; 

range = 0-7.06%) and between Onchocerca spp. is 9.47% (S.E. = 1.84%; range = 0.78-

13.73%). There is an overlap between the distributions of intraspecific and interspecific 

distances between 2% and 4.5% (Fig. 1). However, some pair comparisons are inconsistent 

with this threshold. Firstly, pair comparisons of three species exhibit nucleotide distances 

lower than 2% (Table 2): O. ochengi and O. volvulus; O. ochengi and Onchocerca sp. “Siisa”; 

and O. volvulus and Onchocerca sp. “Siisa”. Secondly, two specimens of O. lienalis are 

characterized by a nucleotide distance higher than 4.5% (Table 2). 

Regarding O. lupi, two populations were observed with a coxI mean nucleotide 

distance of 1.59% (S.E. = 0.78%; range = 1.57%-1.96%) (Fig. 2). The first population 

includes adult specimens from the USA (88YTD to 88YTF) and presents coxI sequences 

identical to those of O. lupi previously collected in the USA (Labelle et al., 2011, 2013; 
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Hassan et al., 2015; Otranto et al., 2015a), in Romania (Tudor et al., 2016), in Greece (Sreter-

Lancz et al., 2007; Mutafchiev et al., 2013) and in Turkey (Otranto et al., 2011). These 

specimens are also closely related to specimens collected in Hungary (Egyed et al., 2002) 

with a coxI nucleotide distance of 0.37%. The second population includes specimens collected 

in Portugal (88YTA and 88YTB) and presents coxI sequences identical to those of O. lupi 

previously collected in Portugal (Sreter-Lancz et al., 2007, Mutafchiev et al., 2013). 

 

3.2. Molecular phylogeny of the genus Onchocerca  

The phylogenetic trees confirm that the 13 Onchocerca spp. including L. caprini form 

a monophyletic group (Fig. 3, Supplementary Figs. S1, S2). The phylogenetic analyses reveal 

three clades among the Onchocerca spp. (Fig. 3, Supplementary Fig. S1). The first clade 

includes six species: O. cervipedis, O. suzukii, L. caprini, O. boehmi, O. armillata and O. 

dewittei japonica (Fig. 3). Within this clade, O. suzukii is closely related to O. armillata, and 

L. caprini to O. dewittei japonica. However, the relationships between the different species of 

this clade are weakly supported if we take into account all of the available onchocercid 

sequences (Supplementary Fig. S2). The second clade is composed of O. skrjabini, O. 

eberhardi and O. flexuosa, in which O. skrjabini is a sister group of the two others (Fig. 3). 

Finally, the third clade is composed of O. lupi of carnivores, O. gutturosa, O. linealis and O. 

ochengi of domestic bovids, and O. volvulus of humans (Fig. 3). The phylogenetic analyses 

indicate that O. ochengi and O. volvulus spp. are derived species in this clade. The 

relationship between the three clades remains unresolved due to the weak phylogenetic 

resolution (Fig. 3, Supplementary Figs. S1, S2). 

 

3.3. Onchocerca-host associations 
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We compared two datasets: first, the parasites with the vertebrate hosts in which they 

were recovered, and second, the parasites with their known vertebrate host spectrum (Fig. 4). 

The event-based method estimated 12 co-evolutionary scenarios associated with the lowest 

cost for the first dataset, grouped into three isomorphic solutions, versus 78 co-evolutionary 

scenarios, grouped into 15 isomorphic solutions, for the more extensive dataset. For each 

dataset, the different isomorphic solutions exhibit the same pattern of co-speciation with the 

exception of the equid parasite O. boehmi, likely derived from a host-switch from a different 

lineage (either the Caprinae or the Bovinae). Our results underline two main groups of 

Onchocerca spp.: on one hand, Onchocerca spp. adapted to cervid hosts - and antilocaprid 

hosts for the larger dataset - (with Onchocerca skjrabini, O. flexuosa, O. eberhardi and O. 

cervipedis); and on the other hand, Onchocerca spp. adapted to domestic bovines, humans 

and carnivore hosts (with O. lupi, O. gutturosa, O. lienalis, O. ochengi and O. volvulus) (Fig. 

4). The two sets of analyses display some disparities. Most of the co-evolutionary scenarios 

suggest that the common ancestor of Onchocerca spp. would be adapted to parasitism in the 

common ancestor of the Bovidae, the Cervidae and the Antilocapridae (Fig. 4A). However, 

the analysis based on the larger dataset shows alternative scenarios with the same cost for an 

older adaptation to the common ancestor of the Bovidae, the Cervidae, the Antilocapridae, the 

Felidae and the Canidae (Fig. 4B). In addition, the first dataset (Fig. 4A), but not the larger 

dataset (Fig. 4B), indicates that O. lupi could have emerged from a host switch from the 

ancestor of Onchocerca spp., those infecting the Bovinae. Interestingly, the two types of 

analyses present the following similarities (Fig. 4): i) host association of O. armillata would 

be derived from an independent acquisition, different from the other domestic bovine 

parasites, probably by host switching from cervids; ii) host association of O. dewittei japonica 

and O. suzukii would derive from a more recent host switch with the ancestor of L. caprini or 
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O. armillata; iii) the infection by O. volvulus would derive from a more recent host switch 

with the lineage of domestic bovine parasites into humans. 

 

3.4. Co-evolution between Onchocerca spp. and their endosymbiont, Wolbachia 

Sequences of Wolbachia symbionts were produced for our specimens of O. armillata, 

O. suzukii, O. eberhardi, L. caprini, O. lupi and O. cervipedis in which infection was already 

documented (Townson et al., 2000; Egyed et al., 2002; Neary et al., 2010; Ferri et al., 2011; 

McFrederick et al., 2013) and for the newly examined O. boehmi specimens. The presence of 

Wolbachia in hypodermal lateral chords and intra-uterine embryos was observed on 

immunostained sections of O. lupi (Supplementary Fig. S3). The phylogenies place 

Wolbachia from Onchocerca and Loxondotofilaria spp. as a monophyletic group belonging to 

the supergroup C Wolbachia (Supplementary Fig. S4). Comparing bacterial phylogenies with 

filarial phylogenies using a global-fit analysis reveals a global co-evolution between the two 

partners (PACo: m2
XY = 0.239, P <0.001). The cophylogenetic global-fit between the three 

genera Dirofilaria, Onchocerca and Loxodontofilaria and their Wolbachia symbionts 

(supergroup C) is even stronger than for the other associations (PACo: m
2

XY = 0.005, P 

<0.001; ParaFit: ParaFitGlobal=0.00129, P = 0.0007) (Figs. 5A, 6A). The associations 

between Dipetalonema spp. and their Wolbachia symbionts (supergroup J) are the only ones 

to show a similar co-evolutionary pattern. The global-fit analysis performed on the cluster 

Dirofilaria, Onchocerca and Loxodontofilaria shows three different subgroups: one with the 

associations between Dirofilaria spp. and their symbionts; one with O. dewittei japonica, O. 

boehmi, O. cervipedis, O. suzukii, O. armillata, O. skrjabini, O. eberhardi and L. caprini and 

their symbionts, and one with O. gutturosa, O. lupi, O. lienalis, O. ochengi and O. volvulus 
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(Fig. 5B) and their symbionts; these associations in this last subgroup are characterized by the 

lowest squared residual values, which reflect strong co-evolution (Fig. 6B). 

 

4. Discussion 

Identification of Onchocerca spp. using coxI as a molecular marker is accurate as 

previously indicated for other filarial species (Ferri et al., 2009). More specifically, 

intraspecific distances between most of the studied species are lower than 2% and 

interspecific distances are higher than 4.5%. In the case of O. lupi, specimens from different 

isolates exhibited the strongest genetic intraspecific variability (1.57% to 1.96%), revealing 

two subpopulations as previously suggested (Labelle et al., 2013); one does not seem to 

follow a geographical pattern, while the other consists only of specimens from Portugal 

(Sreter-Lancz et al., 2007; Mutafchiev et al., 2013; Otranto et al., 2015a). However, two 

clusters of Onchocerca spp. are not clearly identified by the coxI analysis. Firstly, the one 

composed of O. ochengi, O. volvulus and Onchocerca sp. “Siisa”: the characterization of 

Onchocerca sp. “Siisa” specimens was exclusively based on molecular analyses (i.e. coxI, 

12S rDNA, 16S rDNA or ND5) and although these specimens constitute a clade (Krueger et 

al., 2007; Ferri et al., 2009; Eisenbarth et al., 2013), the data do not support the existence of a 

proper species. In addition, detection of mixed infections of Onchocerca sp. “Siisa” and O. 

ochengi in the same Simulium flies, as well as the presence of the two “species” in the same 

nodule (Eisenbarth et al., 2013), in conjunction with their genetic similarity, suggest that they 

are likely to be a single species. Therefore, a revision of the taxonomic position of 

Onchocerca sp. “Siisa” with morphological data combined with molecular data is essential in 

the future. Regarding O. volvulus and O. ochengi specimens, the morphology of microfilariae 

or infective larvae of both species is indistinguishable and adults stages share very similar 
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morphology (Bain, 1975; Denke and Bain, 1978; Bain and Chabaud, 1986). However, 

morphology of the female cuticle (Bain, 1975; Bain et al., 1976a), host specificity (Ferri et al., 

2009) and L3 size distributions (McCall et al., 1992) allow the separation of O. volvulus and 

O. ochengi. Whether this morphological difference of the cuticle is due to adaptations to the 

host species needs to be addressed.  

Second, there is the cluster with the different specimens of O. lienalis. The two 

specimens identified as O. lienalis do not form a monophyletic group (Figs. 1, 3), and none of 

the sequences is closely similar to another Onchocerca sp. (Fig. 1). Additional sequences for 

O. lienalis in public databases are only available for 12S rDNA and support a high genetic 

variability between the specimens identified as O. lienalis (mean 4.36%; range: 0.74% to 

10.37%) (Supplementary Table S4). More specifically, the specimen 98YT appears more 

closely related to other specimens of O. lienalis than the specimen 413YU. It is interesting to 

note that the microfilarial specimens of Onchocerca sp. previously isolated from deer in the 

USA (McFrederick et al., 2013) are more closely related to several O. lienalis specimens 

(such as 98YT specimens) than O. lienalis specimens are between themselves (Supplementary 

Table S4). Surprisingly, this divergence was not previously discussed, and as molecular 

analyses were mainly based on microfilarial identification, a misidentification may have 

occurred. Taken together, if we consider coxI as an accurate identification marker, these two 

exceptions may be due to either a misidentification of samples, a mismatch in entries in the 

databases, or an incorrect delimitation of species including cryptic species (in cases where 

morphological analyses have been sufficiently thorough). 

Our multi-locus phylogeny shows three strongly supported clades of Onchocerca spp., 

and this is the first known time that the phylogenetic resolution is sufficient to identify two of 

them (Fig. 3). Indeed, previous analyses were either based on a single gene and had low 

phylogenetic resolution (Sreter-Lancz et al., 2007; Fukuda et al., 2010; Ferri et al., 2011; 



  

16 

 

Lefoulon et al., 2012; McFrederick et al., 2013; Otranto et al., 2015a), or the Onchocerca 

species sampling was too narrow (mainly focused on bovine and human parasites) (Krueger et 

al., 2007). The first clade pulls together six species: O. cervipedis, O. boehmi, O. dewittei 

japonica, O. armillata, O. suzukii and L. caprini, confirming that L. caprini should be 

included within the Onchocerca genus as previously suggested (Bain et al., 2008; Lefoulon et 

al., 2015). Loxodontofilaria caprini is morphologically close to O. suzukii (Uni et al., 2006), 

although it presents some morphological traits characteristic of the genus Loxodontofilaria 

(e.g., a complex vagina, well-developed oesophagus and caudal lappets) (Bain et al., 1982). 

However, the taxonomic status of this species would need to be revised, especially as no 

males of Loxodontofilaria spp. (apart from L. caprini) have been described (Bain et al., 1982; 

Uni et al., 2006), depriving this genus of essential morphological criteria for systematics. The 

second clade groups together O. eberhardi, O. flexuosa and O. skjrabini. This close 

relationship was neither suggested by molecular nor morphological analysis previously (Uni 

et al., 2007).  

The third clade collates five species: O. lupi, O. gutturosa, O. lienalis, O. ochengi and 

O. volvulus. Unlike the two other clades, some evolutionary relationships were previously 

identified such as O. gutturosa being sister to O. volvulus, O. ochengi and O. lienalis 

(Morales-Hojas et al., 2006; Krueger et al., 2007), or O. volvulus being closely related to 

parasites of African Bovidae, in particular O. ochengi (Bain, 1981). Our results now underline 

that O. lupi is also sister to the set O. volvulus, O. ochengi, O. lienalis and O. gutturosa. 

Although we clearly identified three Onchocerca clades, our phylogenetic analyses do 

not allow us to determine which clade diverged early. A common misinterpretation of the 

phylogenetic trees is to associate an isolated taxon, which is positioned as a sister group of the 

other taxa, as so-called “independent basal lineages” (Krell and Cranston, 2004, Crisp and 

Cook, 2005). Indeed, there are at least two sister groups for every node of the phylogenetic 
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tree, and the group including the lowest number of species is often misinterpreted as being 

basal (Crisp and Cook, 2005). For example, O. flexuosa and O. armillata were previously 

identified as a sister-group of other Onchocerca spp. and they were described as “independent 

basal lineages” of the genus (Krueger et al., 2007). However, our current analysis with a 

larger sampling of Onchocerca spp. shows that these species belong to two different clades 

and none can be interpreted as ‘early diverging’. 

To decipher the evolutionary relationships between these clades, we compared the 

Onchocerca phylogeny with the evolutionary hypotheses made on morphological traits which 

were selected for their phyletic value in the Onchocerca genus (Bain et al., 1976b; Bain, 

1981) (Fig. 7, Supplementary Table S5). Such a comparison is challenging due to the 

disparities in morphological descriptions (such as O. cervipedis (Wehr and Dikmans, 1935; 

Caballero, 1945; Yagi et al., 1994)), lack of information on certain taxa, and the bias in the 

interpretation of these hypotheses depending on the authors. Nevertheless, taking into account 

only the morphology, a cluster composed by O. volvulus, O. ochengi, O. lienalis and O. 

gutturosa presents mainly morphological traits considered derived (e.g., rectangular 

disposition of head papillae, undivided or weakly divided oesophagus, posterior position of 

vulva, complex female cuticle and reduced number of caudal papillae (Bain, 1981)) (Fig. 7). 

Conversely, most of the morphological traits described as an ancestral character state are 

associated with species belonging to the two other clades e.g. O. armillata, O. suzukii and O. 

flexuosa (Fig. 7) (Bain and Schulz-Key, 1974; Bain, 1975; Yagi et al., 1994). Interestingly, 

although our phylogenetic analysis shows that O. skrjabini is closely related to O. flexuosa 

and O. eberhardi, this species presents many morphological traits described as derived 

character states. However, morphological descriptions of O. skrjabini show variability (Bain 

and Schulz-Key, 1974; Yagi et al., 1994) (Fig.7). Thus, the combination of molecular and 

morphological data show that the speciation within the clade composed of O. volvulus, O. 
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ochengi, O. lienalis, O. gutturosa and O. lupi would be more recent than speciation which led 

to the two other clades. 

To further elucidate the evolutionary relationships between Onchocerca groups, we 

performed cophylogenetic analyses between Onchocerca spp. and their vertebrate hosts. Co-

speciation between Onchocerca spp. and their vertebrate hosts was not supported, although 

multiples events of host switching were identified as previously suggested (Krueger et al., 

2007) (Fig. 4). Cophylogenetic analyses clearly supported an independent speciation in 

cervid/antilocaprid hosts on one hand, and in domestic bovine, canid and felid hosts on the 

other hand. Indeed, parasites of domestic bovines, canids, felids and humans seem to be 

derived from the same lineage (with the exception of O. armillata), suggesting an effect of 

domestication in the host switch. More specifically, a host switching event between domestic 

bovine and canid/felid hosts and another event between domestic bovines and humans appears 

to have occurred. This supports the hypothesis that the human parasite O. volvulus would 

have been derived from an ancestral bovine parasite, most likely in Africa (Bain, 1981; 

Krueger et al., 2007). As domestication of Bos taurus may have occurred in the Near-East 

10,100–37,600 years ago (Troy et al., 2001), acquisition of O. volvulus would have to be very 

recent. In addition, it has been suggested that the domestication of cattle in Africa (especially 

sub-Saharan Africa) occurred later (4,000-1,500 years ago) (Marshall and Hildebrand, 2002). 

Intolerance of human patients to O. volvulus microfilariae is commonly reported and it could 

be associated with a suboptimal, rather recent adaptation to their human hosts (Bain, 1981). 

The co-speciation analyses also present a host switching event between carnivores and 

domestic bovines, but do not clearly determine whether this event followed the route from 

cattle to carnivores or vice-versa. However, the first scenario appears more biologically 

parsimonious, as all the other Onchocerca spp. infect ungulates. Regarding O. lupi, it infects 

not only domestic animals, as it was originally described from a wolf, Canis lupus cubanensis 
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(Rodonaja, 1967). Gravid females were identified in cases from wolves (Rodonaja, 1967), 

dogs (Mutafchiev et al., 2013) and cats (Labelle et al., 2011), suggesting that they all 

represent the definitive host of O. lupi. The infection in dogs and cats might be more recent; 

thus the adaptation of O. lupi with their different carnivore hosts could be related to 

domestication (respectively, estimated around 15,000-12,500 years ago for the dog (Frantz et 

al., 2016) and 11,000–4,000 years ago for the cat (Driscoll et al., 2007, 2009)). Moreover, it is 

interesting to note that O. armillata, a parasite of domestic bovines, O. boehmi, a parasite of 

domestic equids, and O. dewittei japonica, a parasite of wild boar, could be derived from an 

independent acquisition from wild fauna. In particular, the host association of O. armillata 

appears to have derived from a host switching event between the Cervidae and the Bovinae, 

while for O. dewittei japonica, the putative host switch was from the Caprinae to the Suidae.  

The emergence of the Onchocerca genus in Africa has been dated back to the 

Pleistocene period based on morphological characters (Bain, 1981). This hypothesis was 

sugested because a significant number of Onchocerca spp. were described in the continent 

and O. raillieti, a parasite of the domestic donkey, harbours what are considered to be the 

most ancestral morphological traits (Bain et al., 1976b; Bain, 1981). More precisely, it has 

been hypothesised that two independent Onchocerca lineages may have evolved in Africa: 

one emerging from an ancestral speciation in forested regions, and one derived from savanna 

regions which switched to the human host, leading to O. volvulus speciation (Chabaud and 

Bain, 1994). Data presented herein do not support such a geographical pattern for the 

evolution of Onchocerca spp. (Supplementary Fig. S5). However, our sampling only includes 

a few Onchocerca spp. mainly restricted to Africa (other than O. volvulus and O. ochengi), 

and multiple lineages may have evolved in Africa as previously suggested (Chabaud and 

Bain, 1994). In addition, the ancestral speciation of Onchocerca was hypothesized to be 

related to the ancestral speciation of horses and donkeys (Bain, 1981), which may have 
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occurred in the Pliocene (4 - 4.5 million years ago) (Orlando et al., 2013). However, O. 

boehmi is not ancestrally derived. The cophylogenetic analyses do not allow determination of 

some strongly supported parsimonious host switching events which could have led to O. 

boehmi speciation. However, it seems that independent host switching events occurred in 

equids. Our results suggest a primary association with the Bovidae and the Cervidae, and 

would support a Eurasian origin where diversification for both groups has occurred (Petronio 

et al., 2007; Bibi, 2013).  

In agreement with previous studies (Plenge-Bonig et al., 1995; Determann et al., 1997; 

Bandi et al., 1998; Henkle-Duhrsen et al., 1998; Neary et al., 2010; Ferri et al., 2011; 

Lefoulon et al., 2016), 15 out of the 16 Onchocerca spp. analysed in our study harboured 

Wolbachia from supergroup C, O. flexuosa being ancestrally infected but now aposymbiotic. 

The global-fit analyses clearly indicate that the associations between Onchocerca spp. and 

their Wolbachia symbionts have the strongest co-evolutionary pattern of all the filariae-

Wolbachia associations, as previously suggested (Lefoulon et al., 2016); and within 

Onchocerca spp., the clade composed of O. lupi, O. gutturosa, O. lienalis, O. volvulus and O. 

ochengi shows the strongest co-evolutionary pattern with their Wolbachia symbionts. 

Furthermore, Wolbachia-like gene transcripts and peptides were detected in adult O. flexuosa 

worms, suggesting that perhaps the ancestral function of the symbiont is maintained in this 

species (McNulty et al., 2013). Recently, it has been underlined that genomes of the 

endosymbiotic Wolbachia from Diroflaria immitis and from O. ochengi, both within 

supergroup C, present similarly reduced genomes (with a low number of insertion sequence 

elements or genomic rearrangements), which are characteristic of an ancient relationship with 

their filarial hosts (Comandatore et al., 2015). This further supports the strong co-evolutionary 

pattern between these species and their Wolbachia symbionts. 
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To conclude, we have identified three clades of Onchocerca spp., and identify L. 

caprini as an Onchocerca sp. Thus, this species should be transferred to Onchocerca with the 

following new combination: Onchocerca caprini (Uni & Bain, 2006) n. comb. The genus 

Loxodontofilaria also needs to be revised. The clade with O. cervipedis, O. boehmi, O. 

dewittei japonica, L. caprini, O. suzukii and O. armillata is the most diverse regarding their 

host range (the Antilocapridae, the Cervidae, the Bovidae, the Equidae and the Suidae). Host 

switching events clearly occurred into new host groups. The clade composed of O. eberhardi, 

O. flexuosa and O. skrjabini includes the only known Wolbachia-free species. Finally, the 

clade with O. volvulus, O. ochengi, O. lienalis, O. gutturosa and O. lupi is mainly composed 

of parasites of domestic animals or humans. The process of domestication in bovines, dogs 

and cats is likely to have contributed to host switching events that led to speciation within this 

clade. Interestingly, the acquisition of O. volvulus in humans from domestic bovines could be 

very recent and related to this process of domestication. Multi-locus phylogeny, combined 

with morphological data and co-evolutionary analyses of either filariae and their vertebrate 

hosts, or filariae and their Wolbachia symbionts, indicate that this clade was probably derived 

from a more recent speciation than the other two clades. 
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Legends to Figures 

Fig. 1. Comparison of nucleotide sequence divergences in the cytochrome oxidase subunit I 

(coxI) gene among 19 Onchocerca spp. Pairwise comparisons between 59 coxI sequences are 

separated into two categories: differences between individuals of the same species and 

differences between individuals of different species. The divergence between sequences is 

estimated by the number of base differences per site between two sequences (p-distance) 

using MEGA version 6. 

 

Fig. 2. Bayesian phylogram based on cytochrome oxidase subunit I (coxI) gene sequences 

from 80 onchocercid specimens including 19 Onchocerca spp. The total length of datasets is 

632 bp. Loxodontofilaria caprini, Dirofilaria immitis and Dirofilaria repens were included in 

addition to Onchocerca spp. The topology was inferred using Bayesian inference. Nodes are 

associated with Bayesian posterior probabilities based on one run of five million generations. 

Bayesian posterior probabilities inferior to 0.70 are not shown. Countries of collection are 

indicated by a flag for Onchocerca lupi specimens. The scale bar indicates the number of 

nucleotide substitutions. Newly sequenced specimens are in bold. 

 

Fig. 3. Phylogeny of Onchocerca genus based on partitioned concatenated datasets of seven 

markers. Analysis is based on 12S rDNA, cytochrome oxidase subunit I (coxI), RNA 

polymerase II large subunit (rbp1), heat shock protein (hsp70), myosin heavy chain (myoHC), 

18S rDNA and 28S rDNA sequences. The total length of the datasets is approximately 4,600 

bp. Twenty-four onchocercid specimens (representing 20 species) were analysed. 

Oswaldofilaria chabaudi, Icosiella neglecta and Setaria labiatopapillosa were used as 

outgroups. The topology was inferred using Bayesian inference. Nodes are associated with 



  

32 

 

Bayesian posterior probabilities based on one run of five million generations (in black). An 

independent run is processed using Maximum Likelihood inference. Nodes are associated 

with Bootstrap values based on 1,000 replicates (in grey). The scale bar indicates the number 

of nucleotide substitutions. The host vertebrate family (or subfamily) for each filarial species 

is indicated using the specified symbols. Newly sequenced specimens are in bold. 

 

Fig. 4. Parsimonious co-evolutionary reconstructions between Onchocerca spp. and their 

vertebrate hosts using an event-based method. (A) Co-evolutionary reconstructions by an 

event-based method with the vertebrate hosts from which the filarial specimens were 

recovered. Three different isomorphic solutions (representing 12 scenarios) associated with 

the lowest cost (= 17) were established. (B) Co-evolutionary reconstructions by an event-

based method with the whole known vertebrate host spectrum. Eight different isomorphic 

solutions (representing 83 scenarios) associated with the lowest cost (= 34) were established. 

The presented co-evolutionary scenario represents the majority of all the less costly scenarios. 

Loxodontofilaria caprini, Dirofilaria immitis and Dirofilaria repens were included in addition 

to Onchocerca spp. The event-based method was performed with the default settings for cost 

regimes (“co-speciation” event = 0 cost; a “duplication” event = 1; “loss” event = 1; 

“duplication then host switching” event = 2) using Jane 4.0 (Conow et al., 2010). All analyses 

were performed with a number of generations of 5,000 and a population of 500. 

 

Fig. 5. Procrustean superimposition plot of Wolbachia and their filarial host phylogenies. 

Representative plot of a Procrustes superimposition analysis which minimizes differences 

between the two partners' principal correspondence coordinates of patristic distances. For 

each vector, the starting point represents the configuration of Wolbachia and the arrowhead 
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the configuration of filarial hosts. The vector length represents the global fit (residual sum of 

squares) which is inversely proportional to the topological congruence. (A) Analysis of co-

evolution between 67 filariae specimens and their Wolbachia symbionts (only 44 filariae 

harbouring Wolbachia). (B) Analysis of co-evolution between Onchocerca, Dirofilaria and 

Loxondotofilaria caprini spp. and their Wolbachia symbionts. 

 

Fig. 6. Contribution of each Wolbachia-filaria association to a general pattern of co-evolution. 

Each bar represents a Jack-knifed squared residual and error bars represent upper 95% 

confidence intervals from applying PACo to patristic distances. wb, Wolbachia. (A) Analysis 

of co-evolution between 67 filariae of which 44 specimens were infected, and their Wolbachia 

symbionts. (B) Analysis of co-evolution between Onchocerca, Dirofilaria and 

Loxondotofilaria caprini spp. and their Wolbachia symbionts. 

 

Fig. 7. Graphical representation of morphological traits and comparison with molecular 

cladogram. The cladogram of evolutionary history of Onchocerca spp. (with Loxodontofilaria 

caprini sp.) is shown. The species Onchocerca raillieti is included because it is thought to 

present a mostly ancestral state of morphological characters (Bain et al., 1976b), but its 

phylogenetic position remains hypothetical (represented by a dashed grey line). Hypothetical 

cladograms based on morphological traits are presented. Six different morphological traits are 

compared with the molecular phylogeny: i) the head papillae: a squared pattern of labial or 

cephalic papillae represents an ancestral state, whereas a laterally or dorsoventrally elongated 

rectangle is interpreted as a derived state (Chabaud, 1955); ii) the oesophageal morphology: 

clearly divided with well-distinct muscular and glandular portions represents an ancestral 

state, whereas undivided (without distinct portions) is defined as a derived state (Anderson, 
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1957); and a poorly divided oesophagus characterized by ill-defined muscular and glandular 

portions was classified as an intermediate state; iii) the position of the vulva: an anterior 

position (ratio of the distance from anterior end to the vulva/length of oesophagus < 0.5) 

represents an ancestral state, while a position near to the oesophagus-intestine junction (ratio 

close to 1) is defined as a derived state (Anderson, 1957); and a vulva situated at the mid-

length of the oesophagus was classified as an intermediate state; iv) the female somatic-

musculature at mid-body: a well-developed musculature was considered an ancestral state 

while weakly-developed musculature is defined as a derived state (Bain, 1981); v) the 

presence of external ridges of the female cuticle: a striation without ridges represents an 

ancestral state, whereas the presence of prominent ridges is defined as a derived state (Bain et 

al., 1976b; Bain, 1981), and undulations or fine ridges on the female cuticle were classified as 

intermediate; vi) the caudal papillae of males: none or weak reduction of caudal papillae 

number (10 to nine) was associated with the ancestral state, while a strong reduction of caudal 

papillae number (seven pairs) is defined as a derived state (Chabaud and Petter, 1961). 

Species with eight caudal papillae were classified as intermediate. 
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Supplementary data Legends 

 

Supplementary Fig. S1. Phylogeny of the Onchocerca genus based on partitioned 

concatenated datasets of 12S rDNA, cytochrome oxidase subunit I (coxI), RNA polymerase II 

large subunit (rbp1), heat shock protein (hsp70), myosin heavy chain (myoHC), 18S rDNA 

and 28S rDNA sequences masking with Gblock. The alignments of genes 12S rDNA, 18S 

rDNA, 28S rDNA and hsp70 sequences were masked using Gblock version 0.91b 

(Castresana, 2000) to remove the effect of ambiguously aligned positions. The total length of 

the datasets is approximately 4,140 bp. Twenty-four onchocercid specimens (representing 20 

species) were analysed. Oswaldofilaria chabaudi, Icosiella neglecta and Setaria 

labiatopapillosa were used as outgroups. The topology was inferred using Bayesian inference. 

Nodes are associated with Bayesian posterior probabilities based on one run of five million 

generations (in black). An independent run was processed using Maximum Likelihood 

inference. Nodes are associated with Bootstrap values based on 1,000 replicates (in grey). The 

scale bar indicates the number of nucleotide substitutions. Newly sequenced specimens are in 

bold.  

Reference 

Castresana, J., 2000. Selection of conserved blocks from multiple alignments for their use in 

phylogenetic analysis. Mol Biol Evol 17, 540-552 

 

Supplementary Fig. S2. Phylogeny of the Onchocercidae based on partitioned concatenated 

datasets of 12S rDNA, cytochrome oxidase subunit I (coxI), RNA polymerase II large subunit 

(rbp1), heat shock protein (hsp70), myosin heavy chain (myoHC), 18S rDNA and 28S rDNA 



  

36 

 

sequences. The total length of the datasets is approximately 4,870 bp. Sixty-seven 

onchocercid specimens (representing 54 species) were analysed. Filaria latala and 

Protospirura muricola were used as outgroups. The topology was inferred using Bayesian 

inference. Nodes are associated with Bayesian posterior probabilities based on one run of five 

million generations. The scale bar indicates the number of nucleotide substitutions. The 

onchocercid clades are indicated as ONC1 to ONC5 according to Lefoulon et al., (2015). 

Newly sequenced specimens are in bold. 

Reference 

Lefoulon, E., Bain, O., Bourret, J., Junker, K., Guerrero, R., Canizales, I., Kuzmin, Y., Satoto, 

T.B., Cardenas-Callirgos, J.M., de Souza Lima, S., Raccurt, C., Mutafchiev, Y., Gavotte, L., 

Martin, C., 2015. Shaking the Tree: Multi-locus Sequence Typing Usurps Current 

Onchocercid (Filarial Nematode) Phylogeny. PLoS Negl Trop Dis 9, e0004233. 

 

Supplementary Fig. S3. Wolbachia immunostaining of a Onchocerca lupi female. Sections 

of O. lupi female specimens were stained with a rabbit polyclonal antiserum against 

Wolbachia Surface Protein (WSP) of Brugia pahangi Wolbachia (Wol-Bp-WSP, dilution 

1:2,000). A) Section of the entire female. B) Focus on uterus and hypodermal lateral chords. 

Presence of Wolbachia (small red dots) is indicated by an arrow. U, uterus; c, cuticle; h, 

hypodermal lateral chords; m, muscles. Hypodermal lateral chord delimited by stars; *, lateral 

plane. Scale bars: A 100 µm and B 40 µm.   

 

Supplementary Fig. S4. Phylogenetic trees of Wolbachia based on seven markers by 

Maximum Likelihood (ML). (A) Phylogenetic tree of Wolbachia restricted to supergroup C. 
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Twenty Wolbachia strains were analysed, including strains from 12 different Onchocerca spp. 

Wolbachia from Dirofilaria spp. were used as outgroups. (B) Phylogenetic tree of Wolbachia 

from filariae including 44 Wolbachia strains with strains from 12 different Onchocerca spp. 

Analyses based on concatenation of 16S rDNA, dnaA, groEL, ftsZ, coxA, fbpA and gatB. The 

total length of the datasets is approximately 4,170 bp. The topology was inferred using ML 

inference using RaxML. Nodes are associated with Bootstrap values based on 1,000 

replicates. Bootstrap values below 70 were not shown. The scale bar indicates the number of 

nucleotide substitutions. Newly sequenced specimens are in bold. wb, Wolbachia; . 

 

Supplementary Fig. S5. Phylogeny of the Onchocerca genus based on partitioned 

concatenated datasets of 12S rDNA, cytochrome oxidase subunit I (coxI), RNA polymerase II 

large subunit (rbp1), heat shock protein (hsp70), myosin heavy chain (myoHC), 18S rDNA 

and 28S rDNA sequences with an indication of geographical distribution. The total length of 

datasets is approximately 4,600 bp. Twenty-four onchocercid specimens (representing 20 

species) were analysed. Oswaldofilaria chabaudi, Icosiella neglecta and Setaria 

labiatopapillosa were used as outgroups. The topology was inferred using Bayesian inference. 

Nodes are associated with Bayesian posterior probabilities based on one run of five million 

generations (in black). An independent run was processed using Maximum Likelihood (ML) 

inference. Nodes are associated with Bootstrap values based on 1,000 replicates (in grey). The 

scale bar indicates the number of nucleotide substitutions. Newly sequenced specimens are in 

bold. The known geographical distribution for each filarial species is indicated using the 

specified coloured symbols: green for Neartic; red for Palearctic; dark purple for Neotropic; 

orange for Afrotropic; yellow for Australasia and brown for Indomalaya. 
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Table 1. Filarial nematode specimens for which new molecular and/or histological analyses 

were performed. 

     
Species name, author and date Host MNHN N°  

Collection 
place 

Source 

Loxodontofilaria caprini Uni & Bain, 
2006 

Capricornis 
crispus 

YG2-58 Japan DNA 

Onchocerca armillata Railliet & 
Henry, 1909 

Bos taurus 413YU2 Cameroon DNA 

Onchocerca boehmi (Supperer, 1953) Equus caballus 88YT Italy adult  

Onchocerca cervipedis Wehr & 
Dickmans, 1935 

Alces 
americanus  

97YT Canada adult  

Onchocerca eberhardi Uni & Bain, 
2007 

Cervus nippon S63-5 Japan DNA 

Onchocerca lienalis (Stiles, 1892) Bos taurus 413YU4  Wales DNA 

    98YT  Wales 
microfilari
ae 

Onchocerca lupi Rodonaja, 1967 
Canis lupus 
familiaris 

88YTA (n=1) Portugal adult  

    88YTB (n=2) Portugal 
microfilari
ae 

    
88YTD/E/F 
(n=3) 

United States adults 

Onchocerca suzukii Yagi, Bain & 
Shoho, 1994 

Capricornis 
crispus 

S63-8 Japan DNA 

MNHN, Muséum National d'Histoire 

Naturelle 

 

 

  



  

Table 2. List of cytochrome oxidase subunit I (coxI) inconsistent pairwise comparisons 

between Onchocerca specimens. The distance of the pairwise comparison estimated with the 

number of base differences per site between two sequences (p-distance); S.E. associated with 

the estimated distance using MEGA version 6. These comparisons are inconsistent with the 

estimated overlap between the distributions of both intraspecific and interspecific distances 

between Onchocerca spp. (between 2% and 4.5%). The listed interspecific pairwise 

comparisons (Onchocerca sp. 'Siisa', Onchocerca volvulus and Onchocerca ochengi) are 
associated with a lower distance than the estimated overlap. The listed intraspecific 

comparisons (O. lienalis) are associated with a higher distance than the estimated overlap.  

Comparisons between 
sequences 

 

Onchocerc

a volvulus 
AF015193 

O. volvulus 
KT599912 

Onchocerc

a sp. 'Siisa' 
KC167352 

Onchocerc

a sp. 'Siisa' 
KC167353 

 

Onchocer

ca lienalis 
98YT 

Onchocerca ochengi 
KC167350 

0.78 ± 
0.55% 

0.78 ± 
0.55% 

   
O. ochengi AJ271618 

1.18 ± 0.68 
% 

1.18 ± 0.68 
% 

O. ochengi KP760202  
1.18 ± 0.68 
% 

1.18 ± 0.68 
% 

O. ochengi KC167350   
1.57  ± 
0.78% 

1.57  ± 
0.78% 

Onchocerca sp. 'Siisa' 
KC167352  

1.57  ± 
0.78% 

1.57  ± 
0.78% 

   Onchocerca sp. 'Siisa' 
KC167353  

1.57  ± 
0.78% 

1.57  ± 
0.78% 

O. lienalis 413YU          
7.06 ± 
1.60% 

 



  

*Graphical Abstract (for review)

http://ees.elsevier.com/ijpara/download.aspx?id=306795&guid=1a614379-3054-4d8c-8d3c-e4949800f864&scheme=1
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Highlights 

- coxI is a suitable marker for the identification of Onchocerca spp. 

- Multi-gene phylogeny reveals three strongly supported clades of Onchocerca. 

- Recent host switch events between Bovidae, Canidae and humans are observed. 

- Potential role for the domestication of cattle in Onchocerca speciation. 

- Cophylogenetic analyses of Onchocerca/Wolbachia show the strongest coevolution. 

 


