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Abstract 

 

Histones are basic nuclear proteins that bind to genomic DNA. There are five subclasses: 

core histones H2A, H2B, H3 and H4, and linker histone H1. Release of extracellular 

histones has been shown in a range of critical illness animal models and human patients 

including sepsis and acute pancreatitis. Extracellular histones act as damage-associated 

molecular pattern molecules (DAMPs) on parenchymal epithelial and endothelial cells, 

cardiomyocytes, immune cells (neutrophils, monocytes, macrophages, dendritic cells 

and lymphocytes) and platelets to activate Toll-like receptors (TLRs; TLR2 and TLR4) 

and/or NLR Family Pyrin Domain Containing 3 (NLPR3) inflammasome as well as 

induce calcium influx, proinflammatory cytokine production, thrombin generation and 

cell death. Anti-histone strategies such as anti-histone antibodies or pharmacological 

neutralisers alleviate histone-induced toxicity.  

 

To progress the translational relevance of histones in circulation, this thesis explores the 

development of xMAP technology based assay for measuring relevant toxic histones 

and also the significance of histone determination in animal models and patients with 

acute pancreatitis.  

 

Truncated histones were generated by recombinant DNA technology and the purity was 

75.6-95.1%, except for histone H2A C-terminal (35.5%). Anti-histone single chain 

variable fragment (ahscFv) was also generated (purity > 95%) and shown to bind to 

histone subclasses by Western blot and IAsys resonant biosensor. Fluorescein 

isothiocyanate (FITC)-full length and FITC-truncated histones (H1.1 C-, H2A N-, H3.1 

N-terminal) bound to the cell membrane and induced calcium influx in EA.hy926 cells, 

while other truncated histones did not. ahscFv significantly prevented histone-induced 

cell death. To measure all toxic histones in one assay, Luminex xMAP multiplex 

technology was developed. Standard curves of both singleplex and multiplex assays 

were developed and used to measure the levels of circulating histones in plasma of 

patients with severe trauma, sepsis and pancreatitis. However, the recovery ratio in 

spiked plasma was low and the assay failed to detect histones in patient plasma which 

were detectable by Western blot. 

 

Release of circulating histones were investigated in mice with acute pancreatitis induced 

by either 4 or 12 injection of caerulein (50 µg/kg/h; CER-AP) or by infusion of 

pancreatic duct with sodium taurocholate (3.5%, 1 ml/kg; NaTC-AP). Four and 12 

injections of caerulein resulted in oedematous and necrotising CER-AP, respectively, 

with marked systemic inflammation and multiple organ injury observed in the 

necrotising CER-AP. NaTC-AP caused more diffuse pancreatic necrosis, systemic 

inflammation and multiple organ injury. Circulating histones, as measured by Western 

blots, were elevated early with further increases in necrotising CER-AP (peak > 100 

µg/ml) and NaTC-AP (peak > 140 µg/ml) as disease progressed but not in oedematous 

CER-AP which were comparable to saline controls. The levels of circulating histones 

were significantly associated with pancreatic necrosis and multiple organ injury 

parameters.  

 

Circulating histones were then measured from healthy volunteers and a consecutive 

cohort of acute pancreatitis patients admitted to Royal Liverpool University Hospital 

(RLUH) within 48 h of disease onset. The predictive values of circulating histones for 

persistent organ failure (POF), major infection and mortality were compared with 
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biochemical markers and clinical scores. A total of 236 patients (mild 156, moderate 57, 

severe 23 as per Revised Atlanta Classification) and 47 heathy volunteers were included. 

The median histone level in severe acute pancreatitis was 18.8 µg/ml (interquartile 

range: 5.9-33.8), significantly higher than mild 1.1 µg/ml (0.6-2.1) or moderate 1.3 

µg/ml (0.5-2.8) category which was comparable with heathy volunteers 1.0 µg/ml (0.5-

1.6). The area under the receiver-operating characteristic (AUC) curve of histones for 

predicting POF and mortality was 0.92 (95% confidence interval [CI]: 0.85-0.99) and 

0.96 (0.92-1.00) respectively, which was as or more accurate than tested biomarkers or 

clinical scores. For infected pancreatic necrosis and/or sepsis, the AUC of histones was 

0.78 (0.62-0.94). Histones did not predict or correlate with local pancreatic 

complications and transient organ failure, but negatively correlated with leucocyte cell 

viability (r = -0.511, P < 0.01). 

 

A study of consecutive acute pancreatitis patients with primary admission to RLUH (n 

= 260, blood sampling < 24 h) or referred (n = 52) from other hospitals and healthy 

controls (n = 47) were recruited. Referred patients had POF > 48 h (blood sampling < 

24 h of admission to ICU of the RLUH then daily for one week) within 3 weeks of 

disease onset. Histones, cytokines and routine biochemical markers were measured. 

Multivariable analyses determined associations between circulating histone levels and 

variables. There were 235 patients in Group 1 (no POF), 25 in Group 2 (POF < 24 h) 

and 52 in Group 3 (POF > 48 h). Circulating histones were significantly correlated with 

tested proinflammatory cytokines, clinical severity scores and individual organ injury 

parameters. Circulating histones were significantly more elevated in Group 3 compared 

to Group 2 but both were higher than in Group 1 or healthy volunteers. Multivariable 

analyses revealed that it was POF, but not pancreatic necrosis or other variables that 

most significantly associated with elevated circulating histones (odds ratio: 98.1, 95% 

CI: 14.4-669.0, P < 0.001). 
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ACD accidental cell death 
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ALT alanine transaminase 

ANOVA analysis of variance 
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CI confidence intervals 

CRP C-reactive protein 
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DAMPs damage-associated molecular patterns 
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ELISA enzyme-linked immunosorbent assay 
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FI fluorescence intensities 

FITC fluorescein isothiocyanate 

GCLP Good Clinical Laboratory Practice 
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HMGB1 high mobility group box protein 1 

IAP intra-abdominal pressure 

ICU Intensive Care Unit 

IL interleukin 
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IQR interquartile range 

ISTH International Society on Thrombosis and Haemostasis 

JAAM Japanese Association for Acute Medicine 

JMHW Japanese Ministry of Health and Welfare 

LB Luria-Bertani 

MCP-1 monocyte chemoattractant protein-1 
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MCTSI worst modified CT severity index 

MFI mean FI 

MODS multiple organ dysfunction syndrome 

MPT-RN mitochondrial permeability transition-medicated regulated necrosis 

NADPH nicotinamide adenine dinucleotide phosphate 

NaTC sodium taurocholate  

NaTC-AP sodium taurocholate-induced acute pancreatitis 

NCCD Nomenclature Committee on Cell Death 

NETs neutrophil extracellular traps 

Ni-NTA Nikeli-Nitrilotriacetic acid 

NLPR3 NLR Family Pyrin Domain Containing 3 

NLR negative likelihood ratio 

NPV negative predictive value 

OR odds ratio 

PAMPs pathogen-associated molecular patterns 

PaO2/FiO2 partial pressure arterial oxygen and fraction of inspired oxygen 

PCD programmed cell death 

PCR polymerase chain reaction 

PE phycoerythrin 

PEEP positive end expiratory pressure 

PI propidium iodide 

PLR positive likelihood ratio 

PMA phorbol myristate acetate 

PMT photomultiplier tubes 

POF persistent organ failure 

PPACK d-phenylalanyl-l-prolyl-l-arginyl chloromethylketone 

PPV positive predictive value 

PRRs pathogen recognition receptors 

PT prothrombin time 

PVDF polyvinylidene difluoride 

RAC Revised Atlanta Classification 

RCD regulated cell death 

RLUH Royal Liverpool University Hospital 

ROC receiver operating characteristics 

ROS reactive oxygen species 

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SEM standard errors of means 

SIRS systemic inflammatory response syndrome 

SOFA Sequential Organ Failure Assessment 

SOPs standard operating procedures 

TLRs Toll-like receptors 

TNF tumour necrosis factor 

VDAC voltage dependent anion-selective 

WBC white blood cells 

WSACS World Society of the Abdominal Compartment Syndrome 
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Chapter 1– General introduction 

1.1 General introduction of critical illness 

1.1.1 Burdens of critical illness 

Critical illness is a condition describing patients with acute organ failure (e.g. sepsis, 

septic shock, severe acute pancreatitis, drug-induced liver failure, etc.), undergoing 

major surgical procedures, severe traumatic injuries, and end-stage life support who 

need admission to Intensive Care Unit (ICU)1. Critical illness is the predominant factor 

of deaths in adults and affects > 20 million world population annually, causing dramatic 

economic and social burdens1. Moreover, patients who survived from critical illness 

usually have significantly impaired quality of life as compared with general population2, 

3, and post-hospitalisation complications further increase expenses. In the USA, the 

direct critical care costs are approximately $3500 per each day (up to $263 billion 

annually) which accounts for 13-39% of total hospital costs4, 5. This figure represents up 

to 11.2% of total USA healthcare expenditure5. In the UK, the NHS report reveals that 

a Level 2 High Dependency bed costs £857 and a Level 3 Intensive Care bed costs 

£1932 per day6, and the average ICU stay is 5.7 days with a mortality rate of 32.4%7.  

 

The management of critically ill patients usually include treatment for aetiology factors, 

fluid resuscitation8, 9, anaesthesia10, pain relief11, nutritional support12, antibiotics10, and 

appropriate organ support and monitoring1. Despite the improvement of organ support 

modalities, the overall mortality of critically ill patients remains about 25% due to 

multiple organ dysfunction syndrome (MODS)13 and the mortality rate reaches 40%-

100% when ≥ 3 affected organs fail14. Therefore, understanding the pathogenesis and 

effective targeting MODS/organ failure are fundamental for breakthroughs in critical 

illness.  
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1.1.2 Organ or system dysfunction/failure 

The most leading cause for critical illness and ICU admission is sepsis15, a condition 

defined as life-threatening organ dysfunction/failure caused by a dysregulated host 

response to infection16. However, there are substantial amounts of patients also admitted 

to ICU due to acute organ failure induced by sterile inflammation from diseases such as 

severe acute pancreatitis17-19 and drug-induced liver failure20, 21. Regardless of aetiology 

and risk factors, these initial sterile local inflammations can cause systemic 

inflammation and sequential failure of distant organs without pre-existing advanced 

comorbidities. The affected organs/systems include pulmonary, cardiovascular, renal, 

haematological, central nervous as well as liver and gut.    

1.1.2.1 Acute respiratory distress syndrome (ARDS) 

ARDS is one of the most common reasons for ICU admission22. In 1967, Ashbaugh et 

al.23 first introduced this syndrome manifesting as cyanosis refractory to oxygen 

therapy, reduced lung compliance, diffuse infiltration changes on the chest X-ray. Since 

then, over the last 50 years the definition alterations were suggested in 198824, 199425, 

200526 and 201227 (also reviewed in ref22). The newly proposed Berlin definition27 

categories ARDS into 3 classes according to partial pressure arterial oxygen and fraction 

of inspired oxygen (PaO2/FiO2, mmHg) on a basis of positive end expiratory pressure 

(PEEP, minimum 5 cmH2O): mild, PaO2/FiO2 200-300; moderate, PaO2/FiO2, 100-199; 

severe, PaO2/FiO2 < 100. In a study28 of 127 ARDS secondary to acute pancreatitis, the 

mortality rates of mild, moderate and severe ARDS were 0%, 9.4% and 15.8%, 

respectively. The most recent multicentre study29 demonstrates that the period 

prevalence of ARDS is 10.4% (3022/29144) in the ICU, with mortality of mild, 

moderate and severe is 34.9%, 40.3% and 46.1%, respectively. Current treatment for 

ARDS includes ventilation (non-invasive30, 31 and mechanical22, 29), fluid balance 
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restoration, neuromuscular blockade, prone positioning and referral to extracorporeal 

membrane oxygenation centre depends on individual condition22.  

1.1.2.2 Circulatory shock 

Circulatory shock, or failure, is featured as systematic inadequate cellular oxygen supply 

caused by hypotension and hypoperfusion typically with hyperlactatemia, a sign of 

abnormal cellular oxygen metabolism32. It affects about 1/3 patients in the ICU33 and 

sepsis-induced acute circulatory failure remains more than half of the cases34; 

hypovolaemia and cardiogenic factors are also common and are not mutually 

exclusive32. 

 

Circulatory shock is clinically diagnosed either by lack of fluid response or acidaemia 

on the basis of hypotension (systolic blood pressure < 90 mmHg, mean blood pressure 

< 70 mmHg, or need for vasoactive agents)32. It is distinctly different from acute 

decompensated heart failure which normally has advanced pre-existing comorbidities 

such as atrial fibrillation, coronary artery diseases, myocardial infarction and chronic 

pulmonary diseases35. However, myocardial injury as evidenced by elevated cardiac 

troponin (both I and T isoforms) levels can occur in both circulatory injury36, 37 and heart 

failure35. The initial treatment of circulatory shock is fluid resuscitation32, 38-40. Recently, 

early goal-directed fluid resuscitation has not been shown to be superior to conventional 

protocol in 3 multicentre randomised, controlled trials in septic patients38-40. However, 

the role of early-goal directed fluid resuscitation remains controversial in severe acute 

pancreatitis, better designed trials are warranted to address the type of fluid, the rate of 

administration, and how fluid therapy should be guided41. When fluid resuscitation fails 

to restore hypoperfusion, vasoactive agents are needed32, 42-44.   
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1.1.2.3 Acute renal failure 

Acute renal failure and its less severe form, acute renal injury, are characterised by rapid 

loss of renal function, resulting in an impaired ability to excrete metabolic waste 

(increased nitrogen products and/or decreased urine output) and maintain fluid and 

electrodes balance45, 46. This accounts for substantial amount of ICU admissions as a 

primary reason47-49 or develops as one of the secondary complications. Pre-existing 

chronic kidney diseases are most dominate risk factors for developing of acute renal 

failure50. Acute renal failure is classified as prerenal (e.g. hypovolaemia or hypotension), 

intrinsic renal (typically acute tubular necrosis) and postrenal (obstructive) categories 

according to the causing factors51. It is diagnosed by a combination of disease history, 

clinical presentations, physical examinations, blood nitrogen/creatinine ratio, urinalysis 

(sediment, protein, sodium and osmolality)45, 46, 51. According to different aetiologies 

and risk factors, the treatment of acute renal failure is composed of non-dialysis (volume 

expansion, use of diuretics and dopamine, N-acetylcysteine and calcium-channel 

blockers), supportive (correction of hyperkalaemia, sodium retention, hyperglycaemia, 

acidosis, provision of nutritional support and control of infection) and renal replacement 

therapy51. A continuous strategy is not superior to intermittent haemodialysis52, 53 and 

neither early is better than the delayed approach54.  

1.1.2.4 Acute liver failure 

Acute liver failure is characterised by a sudden onset of altered mental status and 

development of coagulopathy due to severe injury of hepatocytes or extensive 

necrosis55, 56, typically without pre-existing end stage liver diseases57. It is an uncommon 

but not rare cause for ICU admission, resulting in high short-term morbidity and 

mortality58, 59.  
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In the developed countries, the most common aetiology for acute liver failure is drug-

induced, e.g. acetaminophen accounts for > 57% acute liver failure in the UK annually58; 

while in the developing countries virus-induced prevails58, 59. Depending on weeks from 

jaundice to encephalopathy, there are three most noticeable systems to classify acute 

liver failure. The O’Grady system classifies acute liver injury to hyperacute (0-1 week), 

acute (1-4 weeks) and subacute (4-12 weeks) and the survival rate without emergency 

liver transplantation is good, moderate and poor, respectively58. The Bernuau system 

divides acute liver failure into fulminant (0-2 weeks) and subfulminant (2-12 weeks) 

subtypes59. The Japanese system dissects the disease into fulminant (0-8 weeks) and 

late-onset (> 8 week) stages, and the fulminant stage is further separated into acute (0-

10 days) and subacute (10 days-8 weeks) subclasses. The management of acute liver 

failure is challenging which requires multidisciplinary approach to deal with MODS and 

arrange liver transplantations in selected cases59.  

1.1.2.5 Haemostatic dysfunction 

Coagulation abnormalities are frequently observed in critically ill patients60. It is caused 

by the loss of haemostasis between coagulation and the fibrinolytic system and 

manifests as thrombocytopenia (platelet count < 150 ×109/L), prolonged global clotting 

times [prothrombin time (PT), activated partial thromboplastin time (aPPT)], reduced 

levels of coagulation inhibitors (antithrombin III, protein C, and protein S), or increased 

levels of fibrin degradation products (D-dimer and soluble fibrin monomer)61. The most 

common aetiology factor of thrombocytopenia is sepsis which accounts for 52% of 

cases, followed by disseminated intravascular coagulation (DIC), drug-induced, trauma 

and others60. DIC represents the most severe form of coagulopathy and is characterised 

by the widespread activation of coagulation proteases which result in endothelial 

dysfunction, intravascular fibrin formation, thrombotic occlusion, and eventually organ 
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failure61-64. Deranged coagulation status has also been evidenced in acute pancreatitis 

and is related to its severity65-67. DIC secondary to acute pancreatitis is reported in case 

studies68-71 and is associated extremely high mortality.  

 

Apart from risk factors, clinical presentations, physical examinations, the diagnosis of 

DIC involves laboratory analysing a plethora of coagulative and anti-coagulative related 

parameters including the platelet count, PT, aPTT, antithrombin, protein C, D-dimer and 

increasing extracellular DNA and DNA-binding proteins such as histones64, 72. In 1983, 

the Japanese Ministry of Health and Welfare (JMHW) proposed a graded scoring 

criteria for diagnosis of DIC73. The JMHW DIC criteria include SIRS components, 

platelet counts, PT, aPTT, fibrinogen, fibrin/fibrinogen degradation products with five 

points or more for the establishment of DIC. In 2006, these criteria have been revised 

subsequently by the Japanese Association for Acute Medicine (JAAM) by removing 

fibrinogen components from the JMHW criteria after a multicentre study74. Basic on a 

similar concept, the International Society on Thrombosis and Haemostasis (ISTH) 

introduced a novel scoring criteria for DIC75. The ISTH criteria include points for each 

components including platelet counts, increased fibrin marker levels and fibrinogen 

level, a score of ≥ 5 indicates overt DIC while < 5 is suggestive non-overt DIC. 

Compared with the JAAM criteria, the ISTH criteria abandon the Systemic 

Inflammatory Response Syndrome (SIRS) score element which is considered to be non-

specific for DIC and therefore are more stringent to diagnose DIC64. Not surprisingly, 

the mortality rate of DIC is doubled using the ISTH criteria when compared to the 

JAAM criteria (46% versus 22%)76, 77. The ISTH recommends that current management 

of DIC should include removal of aetiological factors, using prothrombin complex 

concentrate and anticoagulants (unfractionated heparin or low-molecular-weight 
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heparin for thrombotic phenotype), and initiating antifibrinolytic treatment when 

appropriate64, 78, 79.    

1.1.2.6 Neurological dysfunction 

Mental disorders, displaying as coma or impaired consciousness, can be caused directly 

by trauma, vascular and infective lesion of the brain, or indirectly by metabolic 

catastrophes such as organ failure(s), hypoglycaemia, diabetic ketosis, and drug 

intoxication80. There was lack of methodology to standardise assessing coma and 

impaired consciousness in traumatic head injury historically until the introduction of 

Glasgow Coma Scale (GCS) by Teasdale and Jennett in 197481. The GCS includes 

detailed measurement of motor responses, verbal responses and eye opening. Since its 

first introduction, it has been widely applied in daily clinical practice and research in the 

neurological or ICU settings over more than last 40 years82. However, recent studies 

show that scoring agreement between observers is only 32%83 or the diagnostic error 

rate of GCS is around 10%84. Some researchers raised concerns that the GCS does not 

incorporate brain reflexes, clinical signs of bad prognosis, or to measure verbal 

component in incubated patients and therefore it needs critical reappraisal again85.   

1.1.2.7 Gut dysfunction and abdominal compartment syndrome (ACS) 

Due to lack of generalised biochemical markers, gut dysfunction has been overlooked 

in the settings of critical care. In critical illness, the most common type of gut 

dysfunction is acute intestinal failure. Over the last 25 years, the definitions of intestinal 

failure have been changing constantly. Recently, The European Society for Clinical 

Nutrition and Metabolism (ESPEN)86 has defined acute intestine failure as type II 

functional classification: “prolonged acute condition, often in metabolically unstable 

patients, requiring complex multidisciplinary care and intravenous supplementation 

over periods of weeks or months”. ACS is diagnosed as intra-abdominal pressure (IAP) 
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> 20 mmHg with or without an abdominal perfusion pressure < 60 mmHg that is 

associated with new organ dysfunction/failure by World Society of the Abdominal 

Compartment Syndrome (WSACS)87. Prevention of excessive fluid resuscitation, 

monitoring IAP, analgesia, correct body positioning, evacuation of intra-luminal 

contents by gastroprokinetics, coloprokinetics, and enemas are critical factors88. If all 

these fail, then surgical decompression will be the last resort to treat ACS88, 89.   

 

1.1.3 Organ failure scores 

MODS, or organ failure(s), was systematically described and the severity of each organ 

failure was graded in 1990s. In 1995, Marshall et al.90 first reported a MODS score that 

is composed by 6 items including: respiratory (PaO2/FiO2 ratio), cardiovascular (heart 

rate and the ratio of central venous pressure to mean arterial pressure), renal (serum 

creatinine level), hepatic (serum bilirubin level), haematological (platelet count) and 

central nervous (GCS). Each system scores 0-4 depends on the respectively cut-off 

values. The same group then used hypotension and acidaemia to replace the original 

definition of cardiovascular dysfunction in the new scoring system (Brussels score). 

Based on similar idea, in 1996, Le Gall et al.91 proposed and validated a Logistic Organ 

Dysfunction System score to assess organ dysfunction status on the day of ICU 

admission. In the same year, Vincent et al.92 proposed a Sepsis-related Organ Failure 

Assessment (SOFA) score aiming to dynamically minor organ failure severity in the 

ICU settings. This score is fundamentally similar to the Marshall and Brussels scores, 

but several changes have been made: hypotension and acidaemia are replaced by use of 

inotropes to define cardiovascular dysfunction; respiratory support is also added to 

indicate respiratory dysfunction; oliguria is further supplemented to determine renal 

dysfunction. As the SOFA score is not specific to only sepsis but can represent whole 
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range of critical illnesses with organ failure, it is thereafter also called Sequential Organ 

Failure Assessment (SOFA) score (Table 1.1). In 1998, the SOFA score was validated 

in a multicentre study, showing that SOFA score was significantly higher in more severe 

organ failure and was strongly associated with mortality93. Since then, the SOFA score 

has been extensively employed by the ICU settings for daily evaluating severity and 

estimating prognosis94-96. 
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Table 1.1 The Sequential Organ Failure Assessment (SOFA) score 

 SOFA score 

Varibles 0 1 2 3 4 

Respiratory (PaO2/FiO2 mmHg) > 400 ≤ 400 ≤ 300 ≤ 200* ≤ 100* 

Cardiovascular (hypotension) No hypotension MAP < 70 mmHg Dop ≤ 5 or dob 

(any dose)†  

Dop > 5, epi ≤ 

0.1, or nore ≤ 0.1† 

Dop > 15, epi > 

0.1, or nore > 0.1† 

Renal (creatine, mmol/l; urine, ml/d) 110 110-170 171-299 300-440 or < 500 > 440 or < 200 

Liver (bilirubin, µmol/l) 20 20-32 33-101 102-204 > 204 

Coagulation (platelets, × 109/l) > 150 ≤ 150 ≤ 100 ≤ 50 ≤ 20 

Central nervous system (GCS) 15 13-14 10-12 6-9 < 6 

PaO2/FiO2, partial pressure arterial oxygen and fraction of inspired oxygen; MAP, mean arterial blood pressure; Dop, dopamine; Dob, dobutamine; 

Epi, epinephrine; Nore, norepinephrine; GCS, Glasgow Coma Scale.  

*Values are with respiratory support. 

†Adrenergic agents administered for at least 1 hour (doses given are in µg/kg per minute).
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1.2 Pathophysiology of organ failure 

1.2.1 Inflammatory cells and mediators 

1.2.1.1 Macrophages, dendritic cells and neutrophils 

Tissue resident macrophage and dendritic cells can phagocytose the cell debris and 

simultaneously secret pro-inflammatory cytokines to recruit circulating neutrophils and 

monocytes/macrophages. Meanwhile, chemicals released by these tissue resident cells 

can increase the vasodilatation and epithelium permeability resulting in phagocytes 

migration, blood proteins leakage to tissue and circulation. The conventional role of 

neutrophils in the pathogenesis of organ failure has been well recognised and 

characterised in diseases such as sepsis97, severe acute pancreatitis98, acute liver failure99 

and acute glomerulonephritis100. The role of neutrophils at least include degranulation 

and phagocytosis101-103. Although neutrophils defend host prominently, it is one of the 

major culprits in causing collateral cell damage by passively releasing damage-

associated molecular patterns (DAMPs) including reactive oxygen species, sodium 

hypochlorite, neutrophil elastase, high mobility group box protein 1 (HMGB1), 

histones, etc. and forming neutrophil extracellular traps (NETs)104, 105.  

1.2.1.2 NETs 

In 2004, a novel mechanism of neutrophils has been discovered by Brinkmann and 

colleagues106. They described a phenomena that includes vacuolisation, relaxation of 

chromatin, rupture of nuclear membrane, mixing up of chromatic and granular 

components and release of the chromatic-granular components to form the nets-like 

extracellular structure, which is called NETs106. As it is distinctly different from those 

of neutrophil apoptosis and necroptosis, a term of NETosis is coined to describe this 

phenomena by Steinberg and Grinstein in 2007107. NETs formation is released by the 

activated neutrophils triggered by the pathogens like bacteria and fungi108, or DAMPs104, 
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109, the cellular breakdown products including components from nucleus, mitochondria, 

cytosol and cell membrane that are immunogenic110. DNA consists the backbone of 

NETs, which is decorated by chromatic and granular proteins and peptides. As histones 

are abundant in the NETs components, the backbone DNA is mostly from nuclei instead 

of mitochondria which contain histone-like proteins rather than histones.  

 

It is believed that the main role of NETosis is to trap, kill and lyse the pathogens in a 

higher concentration of granular antimicrobial components, resulting in the enforcement 

of their microbicidal effects. The conduct of undergo phagocytosis or NETosis might 

depends on the size of pathogens. During counteracting larger size of bacteria or fungi, 

activated neutrophils cannot engulf the pathogens by phagocytosis. Instead, they process 

NETosis, then the lysed pathogens and debris of NETs can be cleared by macrophages. 

However, NETosis also can be triggered in inflammation and worsen the diseases. 

 

Reactive oxygen species (ROS) generation and autophagy are essential for undergo 

NETosis104. NETosis can be triggered by live bacteria, phorbol myristate acetate (PMA) 

or IL-8, but NETs formation is absent in stimulated neutrophils from patients with 

chronic granulomatous disease (CGD)104. CGD patients have the mutations in the 

phagocyte NADPH (nicotinamide adenine dinucleotide phosphate) oxidase, resulting in 

lack of ROS generation which is essential in the antimicrobials111. This scenario highly 

indicated that ROS generation is required for the NETosis. Fuchs and co-workers used 

diphenylene iodonium (an inhibitor of NADPH oxidase) to block NETosis which 

further confirmed the essential role of ROS generation in NETosis112. However, ROS 

alone is not sufficient to induce NETosis. Remijsen and colleagues used PMA to 

stimulate neutrophils which were pre-treated with wortmanin which inhibits autophagy 



22 

 

via inhibition of PI3K113. These pre-treated neutrophils did not show massive 

vacuolisation but remained the superoxide production, implying although ROS oxidase 

remains active when autophagy is pharmacologically inhibited, PMA is unable to induce 

NETosis. Instead, block either ROS oxidase or autophagy can led to activation of 

caspases and apoptosis. Therefore, NETosis requires both ROS generation and 

autophagy and apoptosis might function as a backup program when NETosis is 

inhibited.  

 

Beside the function of microbicide, NETs and its components can initiate inflammatory 

response102, 114, 115, cytokine release102, 114, 115, thrombin generation116-119, platelet 

aggregation119, 120, etc. Except infectious disease, excessive NETs formation has been 

found in patients with non-infectious diseases such as systemic lupus erythematous121, 

122, cystic fibrosis123, 124, depth vein thrombosis119, pancreatitis125-127, etc and impairs 

wound healing in diabetics128. In contrary, aggregated NETs have been shown to limit 

inflammation by degrading cytokines and chemokines in gout129. These paradox 

findings indicate that NETosis is a double-edged sword in immunity. Therefore, it is 

essential to understand the mechanisms of inducing and regulating NETosis, which 

might provide a potential therapeutic target. 

1.2.1.3 Cytokines and chemokines 

Cytokines are the small proteins secreted by cells with the functions of regulation of 

transcription, translation, healing, inflammation, etc130. The term ‘cytokine storm’ 

vividly described the image of an immune system gone awry and the systemic 

inflammatory response flaring out of control and cytokines including tumour necrosis 

factor (TNF) superfamilies131, 132,133, 134, interleukin (IL)-1 families135, IL-6 families136-

138,  and chemokine families139 are well studied. In systemic inflammation such as 
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observed in sepsis140, 141 or severe acute pancreatitis, the cytokine storm is driven by 

TNF, IL-1, IL-2, IL-6, reactive oxygen species and arachidonic metabolites which are 

counteracted by anti-inflammatory mediators IL-10, IL-4 and IL-1 receptor antagonist 

(IL-1Ra)142. Chemokines such as IL-8 and monocyte chemoattractant protein-1 (MCP-

1) are also released to enhance the recruitment of inflammatory cells to the primary 

injury site140-142.  

 

IL-1 family contains 11 members including IL-1α, IL-β, IL-18, IL-33 and IL-1Ra135, 143. 

Both IL-1α and IL-1β are pro-inflammatory cytokines which have functions of 

increasing acute-phase signalling, trafficking immune cells to the local infection site, 

activing epithelial cells and inducing more cytokine release. Caspase-1 inflammasome 

regulates the maturation and secretion of IL-1β, IL-18 and IL-33 in inflammatory 

responses. However, in sterile inflammation IL-1β and IL-18 is processed by neutrophil 

proteinase-3 and neutrophils are a major source of these pro-inflammatory cytokines.  

 

Elevated IL-1β has been reported lethal as blockage of IL-1R decreased mortality in 

experimental models144. IL-1 possess the capability of secondary production of IL-1 and 

TNF-α, but this inflammatory cascade can be regulated by IL-1Ra and IL-6. IL-1Ra is 

upregulated and competitively bind to IL-1R1 to the blockage of transduction of IL-1 

signalling145. Simultaneously, IL-6 secreted majorly from mononuclear phagocytic cells 

can inhibit IL-1 and TNF synthesis and stimulate synthesis of IL-1Ra, resulting in anti-

inflammatory response138. The other role of IL-6 is pro-inflammatory mediator by effect 

on B cell maturation and secretion of immunoglobulins, activation of T cells and 

induction of hepatocyte of acute phase proteins137, 138.  
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Chemokines are another group of cytokines that have a hallmark feature of recruiting 

immune cells into the injured site by induction of chemotaxis139, 146-149. IL-8 (also termed 

CXCL8) is secreted from variable cells triggered by stimulates especially IL-1 and 

TNF150, 151. The essential role of IL-8 is the traits of chemoattractant and degranulation 

of neutrophils148. MCP-1 (also known as CCL2) majorly regulates the migration and 

infiltration of monocytes, as well as T lymphocyte and natural killer cells152, 153. The 

recruited monocyte convert to macrophage to be involved in the battle with infection 

and inflammation154. 

 

Collectively, cytokines and chemokines released by the primary injured parenchymal 

cells and residential immune cells trigger a chain of responses to recruit migration of 

immune cells (neutrophils101, 103, 155, 156, dendritic cells157, 158, 

monocytes/macrophages159-162, mast cells163, 164 and other granulocytes) involved in 

innate immunity to the injured site165. The principle function of innate immune 

responses is to 1) bring phagocytes to the injured area to isolate, destroy and inactivate 

the invaders and/or remove the debris of cell death; 2) prepare subsequent healing. 

 

1.2.2 Cell death, DAMPs and DAMP receptors 

Scientists have been trying to define the classifications of different types of cell death 

since 19th century. The definitions are variable from morphology to immunological 

characteristics. Since 2005, Nomenclature Committee on Cell Death (NCCD)166 has 

been working on unifying criteria for the definition of cell death. Recently, NCCD in 

2015167 classified cell death into two broad categories: accidental cell death and 

regulated cell death (RCD), which contains programmed cell death. In contrary to 

ACD, RCD can be initiated by a genetically encoded molecular machinery, and the 
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course of RCD can be altered by application of specific pharmacologic and/or genetic 

modulations at least to some extent. The types of cell death including apoptosis168-172, 

autophagic cell death173-177, autosis178, necroptosis179-185, mitochondrial permeability 

transition-medicated regulated necrosis186-189, pyroptosis190, parthanatos191 and 

ferroptosis192-194 have been summarised in excellent reviews. 

 

A concept of Danger Model was proposed by Polly Matzinger in 1994195, which 

described that the immune system together with an extended network of other host tissue 

cells is capable of discriminate dangerous signals rather than only distinguishing self 

and non-self.  The dangerous signals can be elicited by pathogens, injured, infected and 

necrotic tissues, or cells under non-physiological death which release dangerous 

molecules with the capability to stimulate pro-inflammation. The Danger Model is the 

fundamental theory of DAMPs and in 2004 the concept of DAMPs was formally 

composed by Seong and Matzinger110. During tissue injury, the intracellular molecules 

or their derivatives are positively (secretion) or negatively released into the extracellular 

space or exposure on the outer leaflet of plasma membrane. The extracellular matrix is 

the source of DAMPs as well. Similar to pathogen-associated molecular patterns 

(PAMPs), DAMPs can elicit and modulate the immune system by effecting on the 

function of antigen-presenting cells (like macrophages and dendritic cells) and other cell 

types (like mast cells and neutrophils).  

 

Up to date, few membrane-bound or cytoplasmic pathogen recognition receptors (PRRs; 

also referred as pattern recognition receptors) have been provide to recognise DAMPs, 

including Toll-like receptors (TLRs), NLR Family Pyrin Domain Containing 3 

(NLPR3), RIG-I-like receptors, receptor for advanced glycation end products and 
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purinergic receptors, which shows that PAMPs and DAMPs share some receptors and 

indicate infection (pathogen-induced) and sterile inflammation have some similarities. 

Sepsis is initiated by the recognition of classical PAMPs via the PRRs196 which may 

induce uncontrolled inflammatory response, immunosuppression and thus successive 

organ failure(s)197. In non-infectious conditions such as during early phase of acute 

pancreatitis, acetaminophen-induced liver injury, myocardial infarction, ischaemia-

reperfusion-induced brain injury and blunt trauma, extensive cell death may occur which 

leads to profound cytokine/chemokines139, 198 and cellular contents release199-201. The 

source of DAMPs is principally from primary and secondary necrotic cell death202, 203, 

a process occurs in apoptotic cells that are not removed by phagocytic cells timely and 

sufficiently. DAMPs can also be recognised by the PRRs and non-PRR receptors 

expressed by the residential immune cells (e.g. macrophages and dendritic cells) to 

initiate pro-inflammatory responses (Figure 1.1 and 1.2)203. Based on the location of 

DAMPs derived from, DAMPs are mainly classified into three groups: extracellular 

matrix, cytosol and organelle, the latter includes mitochondrion, endoplasmic reticulum, 

granule and nucleus. The classification of DAMPs has been summarised in Table 1.2.  

 

1.2.3 Others 

Besides aforementioned themes, coagulation204, microcirculatory205, gut (bacterial 

translation206 or gut-lymph theory207, 208) and two-hit phenomenon209 have been 

proposed to play a role in the pathogenesis of organ failure. In summary, regardless of 

the aetiology, the initial injury has been converted to systemic inflammation, if persists, 

resulting in multiple organ failure. Systemic inflammation and organ failure then further 

promote local injury and immune cells to trigger synchronised RCD, a vicious cycle 

begins (Figure 1.3).    
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Figure 1.1 DAMPs from primary and secondary necrosis that trigger pro-

inflammatory response. Intracellular molecules that are normally hidden in the interior 

of the cells. In stressed conditions, if apoptotic cells are engulfed by phagocytic cells 

timely and efficiently, there will be no discernible immune response from the host; while 

primary necrotic or secondary necrotic cells (uncleared apoptotic cells) release their 

cellular contents which are recognised by DAMP receptors, initiating the pro-

inflammatory response (from Kono et al.203).  
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Figure 1.2 Mechanisms for sterile inflammation triggered by necrotic cells. Primary or secondary necrotic cell death lead to release of cellular 

contents such as DAMPs and intracellular cytokines interleukin (IL)-α and IL-33. DAMPs activate Toll-like receptors (TLRs) and receptor for 

advanced glycation end products (RAGE) to promote inflammation; activation of TLR also primers the generation of IL-1β via NLRP3 (NOD-, LRR- 

and pyrin domain-containing 3); IL-1β, IL-α and IL-33 activate IL-1 receptor (IL-R) to further promote inflammation (from Chen et al.165). 
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Table 1.2 Classification of DAMPs 

DAMPs Cell death modality receptors 

Extracellular matrix 

Fibrinogen - TLR4 

Heparan sulphate 

fragments 

- TLR4 

Hyaluronan - TLR2 and TLR4 

Cytosol 

S100 proteins Necrosis RAGE, TLR4 

Heat shock proteins Apoptosis/secondary 

necrosis and necrosis 

TLR2, TLR4 

IL-1α Necrosis IL-1R 

Galectins Secondary necrosis and 

necrosis 

CD7, CD43, and CD45 

Organelles 

Mitochondrion 

Mitochondrial DNA Necrosis TLR9 

ATP Apoptosis/secondary 

necrosis and necrosis 

P2X7, P2Y2 

N-formyl peptides Necrosis FPR-1 

Cytochrome c Secondary necrosis and 

necrosis 

LPG? 

Cardiolipin Apoptosis ? 

Carbamoyl phosphate 

synthase-1 

? ? 

Endoplasmic reticulum 

Calreticulin Immunogenic apoptotic cell 

death 

CD91 

Granule 

Cathelicidines Necrosis and NETosis TLR7, TLR9 and RAGE 

Myeloperoxidase Necrosis and NETosis ? 

Neutrophil elastase Necrosis and NETosis TLR4? 

Defensins ? TLR4, CCR6 

Nucleus 

High-mobility group box 1 Secondary necrosis and 

necrosis 

RAGE, TLR2, TLR4 and 

TLR9 

DNA Necrosis and NETosis TLR3 

Histone Necrosis and NETosis TLR2, TLR4 and TLR9? 

TLR, Toll-like receptor; RAGE, receptor for advanced glycation endproducts; FPR-1: 

Formyl Peptide receptor 1; LPG: leucine-rich alpha-2-glycoprotein-1; CCR, CC 

chemokine receptors.  
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Figure 1.3 Regulated cell death-induced auto-amplification inflammation loop. 

After the stimulation from primary insults, cells are undergoing accidental (ACD) and 

regulated cell death (RCD). While ACD is currently unmanageable, the initial RCD can 

be blocked or alleviated by specific inhibitor depends on the principle RCD pathway, 

e.g. sanglifehrin A (SfA) and cyclosporin (CsA) are used for targeting mitochondrial 

permeability transition-mediated RCD (MPT-RN); necrostatin-1 (Nec-1), Nec-1s and 

Nec-33 are used for RIPK1-mediated cell death. ACD and uncontrolled RCD results in 

local inflammation, systemic inflammation and multiple organ failure (i.e. shock). 

Systemic inflammation and organ failure in turn acerbate local injury, leading to 

synchronised RCD and subsequent release of more DAMPs (from ref210).  
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1.3 The emerging role of extracellular histones in critical illness  

1.3.1 Extracellular histones are key inflammatory mediators  

Elevated levels of circulating nucleosomes have been observed in acute conditions such 

as organ failure induced by trauma, stroke and sepsis211, and are correlated with disease 

severity212. In 2009, a landmark study by Xu et al.213 identified extracellular histones as 

key inflammatory mediators which caused organ failure and death in animal models of 

sepsis. Thereafter, the mechanisms of how extracellular histones cause tissue injury and 

organ failure begun to be understood.  

 

1.3.2 Histone binding molecules 

In 2010, an elegant study by Pemberton et al. 2010214 has shown that histones 

precipitated a range of proteins include lipoproteins, proteinase inhibitors, competent 

proteins, coagulation factors, immunoglobulins and others in human plasma 

(Supplementary Table 1). Intravenous injection of radiolabelled calf thymus histones 

has been shown to be bound to heparin sulphate in the capillary glycocalyx of the lung 

of rabbit215. Also, absorption of histones have been found on natural polysaccharides, 

especially alginic acid and pectin216. Recently, novel molecules that bind to histones 

have been identified (Supplementary Table 2), these include TLRs (TLR2 and TLR4; 

TLR9 involvement is controversial), C-reactive protein (CRP), recombinant 

thrombomodulin, Mer receptor, αvβ5 integrin, neutralised serum albumin, N-acetyl-

heparin, antithrombin activity depleted heparin, inter-α inhibitor protein, high-

molecular-weight hyaluronan, MBP-p33, pentraxin 3 and C1 esterase inhibitor 

(C1INH). All these data greatly contribute to our understandings of histone 

biodistribution, mechanisms of cytotoxicity and potentially therapeutic targets.  
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1.3.3 Effects of extracellular histones on different cell types 

The effects of extracellular histones in vitro and ex vivo are summarised in 

Supplementary Table 3. The cytotoxicity extracellular histones have been clearly 

shown in parenchymal, immune and red blood cells. Data collectively suggest that 

extracellular histones (normally ≥ 20 µg/ml) were toxic to these cells via TLR2/4 and 

NLRP3 mediated signalling pathway. At higher concentrations, histones directly 

caused “pore” on cell membrane thus induce calcium influx and subsequent rapid cell 

death. Anti-histone treatment generally significantly reduced histone-induced toxicity. 

 

1.3.4 Release of extracellular histones in animal models of critical illness and 

treatment strategies 

The release of extracellular histones in sepsis (Supplementary Table 4), acute lung injury 

(Supplementary Table 5), acute liver injury (and ischaemia-reperfusion injury including 

stoke, myocardial infraction and renal injury; Supplementary Table 6), acute pancreatitis 

(and peritonitis and glomerulonephritis; Supplementary Table 7) are systematically 

summarised. The local and systemic release of circulating histones and NETs have been 

generally observed. Exogenous administration of non-pathological doses of calf thymus 

histones converted acerbate local injuries in acute lung injury, liver injury and 

pancreatitis models. Moreover, the extent of extracellular histone release correlate with 

proinflammatory cytokines/chemokines, systemic inflammation, organ injury and 

mortality in critical illness murine models. In vivo infusion of fluorescein isothiocyanate 

(FITC)-labeled calf thymus histones (45 mg/kg) revealed that the lung had the highest 

accumulation of FITC intensity, followed by spleen, kidney, plasma, liver, heart and 

brain217. The histone-induced haemostatic dysfunction is summarised in Supplementary 

Table 8. Exogenous administration of pathological doses of calf thymus histones 
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induced thrombocytopenia with elevation of cytokines/chemokines, systemic 

inflammation, multiple organ injury and mortality.  

 

In all these critical illness models, direct anti-histone treatments, such as anti-histone 

antibodies, activated protein C (APC), heparin and heparin derivatives, CRP, albumin, 

etc. reduced local and systemic extracellular histones, alleviated severity and mortality. 

Targeting histone receptors (TLR2, TLR4, NLRP3 and NLRP3 components) or binding 

molecules also hold promises for reducing disease severity.  

 

Now we clearly understand histone-induced cytotoxicity at least in large rely on the 

positively charged amino acids, thus neutralising histones would be an excellent 

strategy. However, to develop novel anti-histone strategies there are much cautions to 

be taken. The most studied anti-histone strategy is anti-histone antibody, but using of 

antibody may lead to autoimmune problems. Heparin may be effective in patients at 

high doses but may put patients at risk of bleeding due to the small therapeutic window. 

CRP, an acute phase protein, reduces histone-induced organ injury, but acute phase 

proteins (i.e. CRP and serum amyloid P) have been shown to delay the clearance of 

nucleosomes218 and core histones219. Polycations also neutralise histones, but 

accumulated polycations lead to lung injury. APC fails to show efficacy in critical illness 

patients. Natural herbal medicine may be a good resource for drug discovery in this 

regard. The natural polysaccharides alginic acid and pectin absorb histones but do not 

bind to other plasma proteins216, minimising the chance of affecting anticoagulation 

proteins.  
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1.3.5 Measurement of circulating histones 

As the toxicities of circulating histones described above, it is clear that determination 

and monitoring of the levels of circulating histones in patients or experimental animals 

can guide clinical therapy and help researches. The current available commercial assay 

for circulating histones is based on enzyme-linked immunosorbent assay (ELISA) 

which only measures histone-DNA complexes. Western blot remains to be the only 

method for the measurement of all circulating histones currently. Western blot is a very 

common and wildly used method which detects the target protein in a reduced and 

denatured condition. Proteins are separated by molecular weight using sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis procedure, followed by transferred to a 

membrane, typically nitrocellulose or polyvinylidene difluoride (PVDF), where they are 

stained with the specific antibody to the target protein. Running with a linear range of 

recombinant target protein (called as standards), we can quantify sample concentration 

using the equation formed by standard concentration and density.  

 

It has been reported that the toxicity of each monomer is different. Histone H4 is the 

most toxic one followed by histone H3. If measured by Western blot, it is impossible to 

determine the exact populations of circulating histones unless doing 5 monomers 

individually, which requesting much more samples and working time. Therefore, a more 

comprehensive, robust and convenient method is required.     
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1.4 Hypotheses of the proposed work 

Nowadays, there is an increasing interest to use circulating nucleosomes in diagnosis 

and prognosis in conditions such as sepsis, stroke and autoimmune diseases as well as 

in the diagnosis, staging, prognosis, and monitoring of therapy in cancer211. In acute 

inflammation condition (i.e. acute pancreatitis), extensive cell death may occur and 

lead to release of chromatin components into the extracellular environment. The 

circulating nucleosomes have marked differences to their breakdown products, 

circulating histones and cell-free DNA220. Circulating histones may present as histone-

DNA complexes, free monomers, or degraded forms. The former has been shown to 

be much less immunogenic than the free histone monomers220. However, the issue of 

whether the degraded histone forms have cytotoxicity have not been systematically 

addressed, nor there are available assay to quantify their circulating levels. Recently, 

release of extracellular histones221 and formation of NETs125 have been observed in 

experimental acute pancreatitis125 and anti-histone antibody rescued mice from death222. 

Furthermore, elevated plasma nucleosomes (histone-DNA complexes) have been 

demonstrated in acute pancreatitis patients, and their levels correlated with disease 

severity125, 223.  

We hypothesised that circulating histones would also elevate in experimental acute 

pancreatitis and correlate with severity parameters. In parallel, we also hypothesised 

that on admission circulating histone levels can predict persistent organ failure and 

may further increase with disease progressing. 

 

We also interested to test whether degraded histone forms still carry cytotoxicity effect 

and we endeavoured to develop an assay to measure all types of circulating histones 

with xMAP technology.  
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Chapter 2 – Toxicity of circulating histones 

 

2.1 Introduction 

 

Histones are a family of alkaline proteins which package and order DNA into structural 

units called nucleosomes (Figure 2.1)224. With the feature of positive charge, core 

histones (histone H2A, H2B, H3 and H4) form an octamer which is wrapped by 147 

base pairs negatively charged DNA225. The histones H3 and H4 form a stable H3-H4 

tetramer, whereas H2A and H2B form two H2A-H2B dimers which are less stable226. 

Histone H1/H5, the linker histone, binds the nucleosome at the entry and exit site of 

DNA, which is essential for regulating DNA de-condensation during transcription and 

post-transcriptional modifications227-231.  

 

In the chapter 1, the extracellular histone-induced cell toxicity and its mechanisms have 

been introduced in details. Circulating nucleosomes released from nuclear chromatin 

during extensive tissue injury and cell death are degraded into individual histones in the 

liver232 where these histones are also rapidly cleared218. These findings demonstrate that 

the monomer histones can be further cleaved or degraded into N or C terminal histones 

after release into circulation. It is also well known that enzymes like activated protein C 

can cleave histones into their truncated forms. Therefore, histones entry into circulation 

as different complexes including degraded circulating histones. However, whether these 

circulating histones possess cytotoxicity remains unknown.  

 

In this chapter, we sought to investigate the cytotoxicity of both monomer and truncated 

histones and further to examine whether anti-histone strategy confers protective effects.   
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Figure 2.1 Structure of core histones and nucleosome. Two pairs of histones H3 and 

H4 form a tetramer which is incorporated by 2 dimers composed by histones H2A and 

H2B to form an octamer. This histone octamer is wrapped up by ~147 bp of DNA to 

form nucleosome. (From reference Chen et al. Cell Death and Diseases 2014199)   
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2.2. Martials and Methods 

2.2.1 Generation of N and C terminal recombinant histones 

2.2.1.1 Sequence design 

Histones H1.1 and H1.4 possess most of the identical amino acids sequence in the 11 

identified H1 isoforms233, 234. H2A and H2B are the most frequent isoforms of their 

respectively categories234. H3.1 is the most ubiquitously expressed among 3 H3 

isoforms (H3.1, H3.2 and H3.3)234. There is only one H4 isoform, the canonical H4234. 

DNA sequences of H1.1, H2A, H2B, H3.1 and H4 were employed as templates. H1.1 

DNA sequence was synthesised by Eurofins MWG Operon and the rest of histone 

plasmids (pHCE-histone) were a gift from Dr Hitoshi Kurumizaka (RIKEN Genomic 

Sciences Centre, Yokohama, Japan). All the sequence design related information for 

truncated histones are summarised (Table 2.1). 

2.2.1.2 Generation of pET-16b-N or C terminal histone plasmid 

Key steps for generating pET-16b-N or C terminal histone plasmid (Figure 2.2):  

A. Amplification of pHCE-histone plasmid: pHCE-H2A, pHCE-H2B, pHCE-H3.1 and 

pHCE-H4 plasmids were amplified by using the Subcloning EfficiencyTM DH5αTM 

Chemically Competent Cells Escherichia coli (Invitrogen, USA). The DH5α 100 µL 

was thaw on ice and 1 µL of each plasmid was immediately added after thawing, 

followed by 20 min incubation on ice. Then a heat shock at 42oC for exactly 45 s was 

applied in water bath and the eppendorf was immediately placed back on ice. The 

eppendorf was supplemented with 250 µL Luria-Bertani (LB) medium and stood for 

20 min to allow the bacteria to recover. Bacteria were incubated at 37oC for 45 min with 

shaking at 200 rpm, and pelleted by spinning at 12,000 × g for 30 s. After removing 150 

µL redundant supernatant, the bacteria were resuspended in the remaining medium and 

spread homogenously on the LB agar plate containing 100 µg/mL ampicillin (pHCE 
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vector is ampicillin resistant). An overnight incubation at 37oC was followed. On the 

second day, a single colony from the agar plate was picked up and cultured in 5 mL 

LB/ampicillin medium in a 15 mL Falcon tube at 37oC and 200 rpm for overnight. On 

the third day, bacteria were harvested by spinning at 3,000 × g for 30 min and plasmids 

were extracted using QIAprep Spin Miniprep Kit (Qiagen, Netherlands) following the 

manufacturer’s protocol and kept in -20oC. 

B. Digestion and purification of histone DNA: the purified pHCE-histone plasmids and 

histone H1.1 synthesised DNA were digested by restriction endonucleases Ndel and 

BamHI (both from New England Biolabs, USA). The each digested mixtures was loaded 

into 1% agarose gel to isolate histone DNA from the vector. The lower bands, histones, 

were cut and extracted using QIAquick Gel Extraction Kit (Qiagen, Netherlands) 

following the manufacturer’s protocol. Histone DNA was eluted in 20 µL H2O and kept 

at -20oC. 

C. Generation of N or C terminal histone DNA: the purified histone DNA and designed 

primers N or C terminal of each histones were used to do polymerase chain reaction 

(PCR) following the manufacturer’s protocol (GoTaq® PCR Core Systems, Promega, 

UK). All of the N or C terminal histone DNA were extracted (1.2% DNA agarose gel 

was used), digested (Ndel and BamHI), purified and stored as before. 

D. Ligation and amplification of pET-16b-N or C terminal histone plasmid: both Ndel 

and BamHI digested pET-16b vector and N or C terminal histone DNA were mixed 

(molar ratio: 1:10) for ligation using the Quick LigationTM Kit (New England Biolabs, 

USA). Then pET-16b-N or C terminal histone plasmid was transformed to the DH5α 

bacteria for the amplification.  

E. DNA sequencing: the purified plasmids were sequenced by Beckman Coulter 

Genomics (Takeley, UK) and all the DNA sequences were 100% marched. 
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Table 2.1 Sequence design information for truncated histones 
Name Gene Bank No. Residues 5’-primer 3’-primer 

H1.1 N ter NM_005325 1-110 CTAGTTATACATATGTCTGAAACAGTGCCTCCCGC TTCTAGGATCCCTAGTTGAGCTTGAAGGAACCCGA 

H1.1 C ter NM_005325 111-214 CTAGTTATACATATGAAGAAGGCGTCCTCCGTGGAA TTCTAGGATCCTACTTTTTCTTGGGTGCCGCTTTC 

H2A N ter NM_003513.2 1-62 CTAGTTATACATATGTCTGGTCGCGGCAAAC CTAGGATCCCTACTCGGCGGTCAGGTACTCAAGC 

H2A C ter NM_003513.2 63-130 CTAGTTATACATATGATCCTGGAGCTGGCGGGCAATG CTAGGATCCCTACTTTCCCTTGG 

H2B N ter NM_021058 1-63 CTAGTTATACATATGCCAGAGCCAGCGAAG CTAGGATCCCTAATTCATGATGCCCATG 

H2B C ter NM_021058 84-126 CTAGTTATACATATGGACATTTTCGAGCGCATC 

 

CTAGGATCCTACTTAGCGCTGGTGTACTT 

 

H3.1 N ter NM_003537.3 1-74 CTAGTTATACATATGGCTCGTACTAAACAG CTAGGATCCTATTCTCGCACCAGGCGCTGGAAC 

H3.1 C ter NM_003537.3 75-136 CTAGTTATACATATGATCGCCCAAGACTTCAAGACC CTAGGATCCTACGCTCTTTCTCC 

H4 N ter NM_003545.3* 1-41 CTAGTTATACATATGGAAACCCGTGGCGTGCTGAA 

 

CTAGGATCCTCATTAACCGCCAAAACCATACAGGGT 
 

H4 C ter NM_003545.3* 51-103 CTAGTTATACATATGATTTATGAAGAAACCCGTG CTCTAGGATCCTCATTAACCGCCAAAACC 

*Mutated from NM_003545.3 (See reference Tanaka et al. Methods 2004235) 
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Figure 2.2 Generation of N or C terminal histone plasmid using recombinant DNA 

technology. The experiment steps involved amplification of pHCE-histone plasmid, 

digestion and purification of histone DNA, generation of N or C terminal histone DNA, 

and ligation and amplification of pET-16b-N or C terminal histone plasmid.  
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2.2.1.3 Expression, extraction and purification of N or C terminal histone proteins 

Purified pET-16b-N or C terminal histone plasmid, extracted from DH5α, was 

transformed into the C41 (DE3) Escherichia coli and cultured on agar plate containing 

100 µg/mL ampicillin (pET-16b vector is ampicillin resistant). Six single colonies were 

respectively cultured in 3 mL LB/ampicillin medium in the 15 mL Falcon tubes at 37oC 

and 200 rpm until the optical density was 0.5 at absorbance of 600 nm. Isopropyl β-D-

1-thiogalactopyranoside (IPTG; Melford, UK) of 1 mM was added into 4 tubes while 

the other 2 tubes without IPTG were used as negative controls. Tubes were incubated 

for another 4 h. The bacteria of 20 µL in each tube were taken to run a sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gel to check the expression of 

N or C terminal histone. After confirmation of histone protein expression, 1 L bacteria 

were cultured until the optical density reached 0.5 before adding 1 mM IPTG. After > 4 

h incubation with IPTG, bacteria were harvested by centrifugation at 5,000 × g for 10 

min at room temperature. Bacteria pellets were resuspended in 20 mL Resuspension 

Buffer and kept at -80oC overnight. On the next day, bacteria mixture was disrupted by 

sonication on ice 3 min × 3 at an interval of 3 min. Pellet and supernatant were collected 

by centrifugation at 15,000 × g for 30 min at 4oC. Pellet was resuspended in 20 mL 

Binding Buffer followed by sonication and centrifugation as above again. As the pET-

16b vector contains the Histidine-tag coding sequences, the expressed N or C terminal 

histone was purified by the Histidine-tag/Nikeli-Nitrilotriacetic acid (Ni-NTA) system 

(Qiagen, USA) and assessed by 15% SDS-PAGE gel. First, 1.5 mL Ni-NAT Agarose 

resin (Qiagen, USA) was poured into a 10 mL purification column. Allow the resin to 

settle completely by gravity, followed by a wash step with 50 mL H2O. Equipment Ni-

NAT Agarose with 100 mL Resuspension Buffer, then resin was settled by gravity at 

room temperature. The second supernatant was added into column and passed through 
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by gravity. Then column was washed with 200 mL Wash Buffer. The wash through was 

collected for later check. Expressed protein was eluted in 20 mL Elution Buffer. All the 

steps were performed at 4oC by gravity. Elute was transferred into the dialysis bag with 

a cut-off 3.5 kD (Spectrum Labs, USA) and dialysed against urea in 2 L Dialysis Buffer 

for overnight at 4oC (change buffer twice). The pass through, wash through and elution 

dialysis (10 µL per each collection) was removed for 15% SDS-PAGE gel and 

Coomassie Brilliant Blue staining. The buffer recipes during this process are 

summarised in Table 2.2.   

Table 2.2 Buffer recipes for expression, extraction and purification of histone proteins 

Buffer Chemicals  

Resuspension Buffer 150 mM Tris-HCl (pH 7.4) + 50 mM NaCl, 1 mM PMSF 

(add freshly) 

Binding Buffer Resuspension Buffer + 6 M Urea 

Wash Buffer 20 mM Tris-HCl (pH 7.4)  + 200 mM NaCl + 50 mM 

imidazole + 3 M urea 

Elution Buffer 20 mM Tris-HCl (pH 7.4) + 200 mM NaCl + 250 mM 

imidazole + 3 M urea 

Dialysis Buffer 20 mM Tris-HCl (pH 7.4) + 200 mM NaCl + 5% 

glycerol  

Tris-HCl, Tris(hydroxymethyl)aminomethane hydrochloride; PMSF, phenylmethane 

sulfonyl fluoride. 

 

2.2.2 Generation of pan anti-histone ahscFv and cscFv  

The anti-histone single chain variable fragment (ahscFv) and its control single chain 

variable fragment (cscFv) were generated by using the recombinant DNA technology. 

Their primers were listed (Table 2.3). The details of pan anti-histone ahscFv and cscFv 

establishment was described in Dr Dunhao Su’s PhD thesis entitled “Production, 

Characterisation and Application of Humanised Anti-Histone Antibodies in Critical 

Illness” which is available at University of Liverpool library. In brief, ahscFv was 

designed on the basis of complementarity-determining regions (CDRs) of anti-histone 

antibodies from human with autoimmune disorders. For the development of cscFv, the 

CDRs were changed but the rest of sequence of ahscFv was kept. Gene sequences 
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pCR2.1-ahscFv and pCR2.1-cscFv were synthesised and verified by Eurofins MWG 

Operon. The function and affinity of ahscFv and cscFv were determined by Western 

blot and biosensor, respectively.  

Table 2.3 The primers for ahscFv and cscFv  

Name 5’-primer 3’-primer 

ahscFv ATGGATTCACCATATGGAA

ATTCAGCT 

TGGCAAGCGGATCCCTAAT

TATT 

cscFv ATGGATTCACATATGGAAA

AC 

TGGCAAGCGGATCCTTACT

GGCA 

 

2.2.3. Cytotoxicity of histones towards endothelium cells 

2.2.3.1 Membrane binding  

Human endothelial cell line EA.hy926 were cultured in Dulbecco’s Modified Eagle’s 

Medium (DMEM) supplemented with 20% Fetal Calf Serum (FCS). Both human 

recombinant histone subclasses (New England Biolabs, USA) and house generated 

truncated histones were conjugated with fluorescein isothiocyanate (FITC, Invitrogen, 

USA) following the manufacturer’s protocol. Cells of 5 × 105 were incubated with 10 

µg/mL FITC-histone for 10 min followed by membrane binding observation using 

confocal microscope (Zeiss LSM510 system, Carl Zeiss Jena GmbH, Germany).  

2.2.3.2 Calcium influx 

Each histone and trauncated histone-induced calcium influx was reflected as the 

increase of intracellular calcium concentration ([Ca2+]i). Cells were loaded with 3 μM 

Fura-2AM for 20 min and washed with Calcium Assay Buffer (pH 7.4) containing 20 

mM Hepes, 120 mM NaCl, 4.7 mM KH2PO4, 1.2 mM MgCl, 1.25 mM CaCl2, and 10 

mM glucose. The Fura-2AM was monitored continuously by a F-7000 fluorescence 

spectrometer (Hitachi, Japan) at excitation 340 nm and 380 nm and emission at 510 nm 

as previous decribled236. The [Ca2+]i was calculated using the software provided.  
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2.2.3.3 Cell viability 

Full length, truncated and calf thymus histones as well as serum from acute critical 

illenss patients (ethical approval obtained) were used.  EA.hy926 cells of 1 × 106 were 

seeded and treated with different types of histone (each 20 µg/mL) or serum. After fixed 

in 70% ethanol for 30 min at -20oC, the cell viablity was determined by flow cytometry 

(BD Biosciences, USA) using 10 µg/mL propidium iodide (PI) staining. Viable cells 

have intacted nuclei with a distinct diploid DNA peak (2N), while damaged nuclei cells 

have a broad peak of hypodiploid particles (< 2N).  
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2.3 Results 

2.3.1 Generation of truncated histones 

Eight out of 10 truncated histones were successfully generated by using the recombinant 

DNA technology (Table 2.4), while histone H2B C ter and H4 N ter were synthesised 

peptides (Figure 2.3). The purity of all truncated histones were 75.6-95.1% measured 

by the histogram density, except histone H2A C (35.5%). 

Table 2.4 Expression and purity of truncated histones 
Name Predicted WM (Da) Actual WM (Da) Purity (%) Storage Buffer 

His10-H1.1 N ter 10893 13072 90.6 Tris-HCl 

H1.1 C ter- His10 10835 14551 80.1 Tris-HCl 

His10-H2A N ter 6512 8436 95.1 Tris-HCl 

H2A C ter- His10 7509 8489 35.5 Tris-HCl 

His10-H2B N ter 6958 9004 92.7 Tris-HCl 

H2B C ter peptide 4617 6710 83 H2O:ACN = 5:1 

His10-H3.1 N ter 8266 9733 90.8 Tris-HCl 

H3.1 C ter- His10 7024 7912 75.6 Tris-HCl 

H4 N ter peptide 4264 7155 94.4 H2O 

H4 C ter- His10 6065 7284 79 Tris-HCl 

His6, Hexahistidine; Tris-HCl, Tris(hydroxymethyl)aminomethane hydrochloride; 

ACN, acetonitrile.     

                                                                              

 

Figure 2.3 Expression and purity of truncated histones. Except histone H2B C and 

H4 N, all truncated histones were expressed by E. Coli using the recombinant DNA 

technology. Histone H2B C and H4 N were synthesised peptides. Each histone protein 

(5 µg) was loaded in 18% SDS-PAGE gel and stained by Coomassie Brilliant Blue. N, 

N-terminal; C, C-terminal. 
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2.3.2 Generation of ahscFv and cscFv 

The molecular weight of expressed ahscFv and cscFv were 27 and 29 kDa respectively, 

measured by Coomassie Brilliant Blue and their purity were > 95% (Figure 2.4A). Both 

of them were stored in PBS (+ 5% glycerol). The western blot revealed ahscFv bound 

to histone H1 and H3 while cscFv did not (Figure 2.4B and C). The ahscFv successfully 

recognised all the human recombinant histone subclasses and calf thymus histones, as 

demonstrated by western blot (Figure 2.5A) and biosensor analyses (Figure 2.5B). The 

western blot demonstrated that ahscFv had higher band density with H1, H2B and H4, 

followed by H3 and H2A. The biosensor assay showed similar results, albeit a strongest 

binding of ahscFv to H3 was observed.   

 

Figure 2.4 ahscFv and cscFv expression and their histone binding capacity. ahscFv 

and cscFv (each 5 µg) were loaded in 15% SDS-PAGE gel. (A) Stained by Coomassie 

Brilliant Blue; Probed by (B) Biotin-histone H1, or (C) H3, and streptavidin-HRP after 

membrane transfer shows that only ahscFv bound but cscFv did not. HRP, horseradish 

peroxidase. 
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           A 

             

             B 

           

Figure 2.5 ahscFv recognises all the monomer histones. (A) The binding between 

ahscFv and histones was confirmed by western blot: recombinant histones (5 µg of each) 

and calf thymus histones (ctHistones, 25 µg) were loaded and transferred to PVDF 

membrane, then probed by HRP conjugated ahscFv; (B) The binding of recombinant 

human histone subclasses (each 1 μM concentration) to ahscFv was determined by 

IAsys resonant biosensor, in which the ahscFv was immobilised on aminosilane surfaces 

using BS3.  
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2.3.3 Histones bind to cell membrane and induce calcium influx 

The detailed membrane binding by full length and truncated histones in EA.hy926 cells 

are shown in Table 2.5 and an example is shown in Figure 2.6. All the FITC-full length 

histones and 3 FITC-truncated histones (H1.1 C, H2A N, H3.1 N) bound to the cell 

membrane. All the remaining tested FITC-truncated histones were not shown to bind 

cell membrane. 

Table 2.5 Histone membrane binding in EA.hy926 cells 

 H1 H2A H2B H3.1 H4 

Histone F N C F N C F N C F N C F N C 

Binding + - + + + - + - - + + - + - - 

F, full length; N, N-terminal; C, C-terminal.  

 

  

Figure 2.6. Membrane binding of histone in endothelial cells. (A) Confocal images 

of EA.hy926 cells 10 minutes after incubation with FITC–labelled histones (10 µg/ml) 

alone (arrows indicate FITC-labeled histones). (B) FITC-labelled histones preincubated 

with ahscFv (100 µg/ml). Scale bar: 20 mm. FITC, fluorescein isothiocyanate. 
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The calcium influx induction by full length and truncated histones in EA.hy926 cells are 

shown in Figure 2.7. The full length and truncated histones which bound to cell 

membrane also dramatically induced calcium influx as determined by increased [Ca2+]i. 

The histone H4 induced highest [Ca2+]i (H4 > H2A N > H3.1 > H2A > H2B > H1.1 C 

> H1 > H3.1 N).  

 

Figure 2.7 Histones induce calcium influx. FITC-labelled histones (each 20 µg/ml) 

were used to determine histone membrane binding in EA.hy926 cells; Intracellular 

calcium concentration ([Ca2+]i) was measured by confocal microscopy using fluorescent 

dye Fluo-2AM. *P < 0.01 when compared to the untreated (UT) group, Student’s t test. 

Black, full length histone; Blue, histone N terminal; Red, histone C terminal. 
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2.3.4 Histones induce cytotoxicity  

The histone-induced cell viability changes in EA.hy926 cells are demonstrated in Figure 

2.8. In line with the findings with cell membrane binding and calcium influx profile, all 

full length and 3 truncated histones (H1.1 C, H2A N, H3.1 N) also significantly induced 

cell death (reflected by PI uptake) when each of them (20 µg/mL) were incubated with 

cells for 1 h. The other truncated histones did not have discernible effects on cell 

viability.  

 

Figure 2.8 Histones induce cytotoxicity. Histone-induced cytotoxicity in EA.hy926 

cells were measured by cell uptake of propidium iodide. Each full length and truncated 

histones (20 µg/mL) was incubated with the cells for 1 h before testing cell viability *P 

< 0.05 when compared to the untreated (UT) group, Student’s t test. Black, full length 

histone; Blue, histone N terminal; Red, histone C terminal. 
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2.3.5 ahscFv prevents against histone-induced cytotoxicity  

The cell viability of EA.hy926 cells treated by calf thymus histones or sera from acute 

critical illness and the effects of ahscFv are shown in Figure 2.9. The cell viability was 

nearly halved after incubated with histones (20 µg/mL) for 1 h. The histone-induced 

reduction of cell viability was significantly improved by co-administration of ahscFv 

(200 µg/mL). Sera from acute critical illness (all had histone levels > 50 µg/mL) also 

caused markedly decrease of cell viability which was elevated by adding ahscFv.    

 

 

Figure 2.9 ahscFv prevents against histone-induced cytotoxicity. Histone-induced 

cytotoxicity and the effects of ahscFv and cscFv (each 200 µg/mL) in EA.hy926 cells 

were measured by cell uptake of propidium iodide. *P < 0.05 when compared to the 

untreated group or cscFv group; †P < 0.05 when compared to the respective serum 

treated group or serum + cscFv treated group per each disease category, Student’s t test. 

ctHistones, calf thymus histones.  
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2.4 Discussion  

In order to elaborate with current research frontiers about the toxticity of circulating 

nucelosomes211 and histones199, in this chapter, we endeavoured to generate truncated 

histones that mimicking circulating degradated histones and further systematically 

assessed  the effects of full length and truncated hisotones on cell membrane binding, 

calcium influx and thus the cytoxticity. To our knowledage, this is the first time to 

generate 8 truncated histones (H1.1 N, H1.1 C, H2A N, H2A C, H2B N, H3.1 N, H3.1 

C, H4 C) using recombinant DNA technology. However, we did not succeed in 

generatering H2B C and H4 N, thus the syntheic peptides of them were used for 

subsequent experiments. All 10 tuncated histones were confirmed by the protein dye 

Coomassie Brilliant Blue which showed the respective molecular weight of individual 

histone on the SDS-PAGE gel.  

 

Consistent with existing literature, we found that all the full length histones bound to 

cell membrane, induced calcium influx and reduced cell viability. Histone H4 induced 

highest [Ca2+]i, which was followed by H3, other core histones and the linker histone. 

These data provide quantitative evidence that at least partially explained why H4 and 

H3 are the most toxic monomer histones. This phenomena actually fits into the sequence 

of how individual histones are released during cell injury: H1 releases first, then H2A 

and H2B, followed by H3 and finally H4. The latter two histones form the most stable 

nuceolsome core237. Whether the histone releasing sequence correlates with the toxticity 

of individual histones warrants further investigation. Adding to the above findings, we 

also unravelled that 3 truncated histones (H1.1 C, H2A N, H3.1 N) possessing 

membrane binding capacity and thus was able to induce calcium influx. In line with this, 

the cell viability was greatly reduced by these truncated histones compared to the 
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untreated group or treated by other truncated histones (H1.1 N, H2A C, H2B N, H2B C, 

H3.1 C, H4 N, H4 C). The lesser cell toticity of the other truncated histones may be 

explained by that none of these histone bound to cell membrane nor induced calcium 

influx. These novel findings highlight the importance of circulating histones as 

inflammatory mediators as they are still toxic even when degraded. The translational 

value of these findings are also paramount: (1) developing an assay to determine the 

ciruclating histone levels has great clincial prospective; (2) degradation of circulating 

histones may not completely remove the toxticity (e.g. by activated protein C). This 

translational aspect will be further discussed in the chapter 7, the overview chapter.    

 

In parallel, we also generated pan ahscFv for antagonising the toxticity of cirulating 

histones. The ahscFv and its control were confirmed by protein dye of their respective 

molecular weight. The binding capacity of ahscFv was ascertained by the probed biotin-

histones, while the cscFv did not bind to any histones. Furthermore, the pan ahscFv 

identified calf thymus histones and all the 5 monomer histones with a highest binding 

afinity to H3, followed by H1, H4, H2B and H2A. The ahscFv nearly restored histone-

induced decrease of cell viability by either calf thymus histones or circulating histones 

containing serum from critical illness patients. Further humanisation of ahscFv may 

have clinical applicability for diseases in which circulating histones play an important 

role.    

 

Other attempts of neutralising histone action should be centred around the molecular 

mechanisms of histone toxicity. It is known that polycations are able to form pores in 

lipids238, yet according to other reports polycations may use specific transmembrane 

channels239 or rely on intracellular signalling molecules239, 240. In several cell types the 
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cytotoxicity of histones was sensitive to lanthanoids, okadaic acid and genistein241, 

which points to certain specificity in the mechanism of membrane permeabilisation. If 

indeed histones open some endogenous large-pore channels, leading to loss of cytosolic 

constituents, then the candidate list of such channels is about 8-9 member long242 and 

includes P2X7R, transient Receptor Potential channels (TRPA1 and TRPV1), maxi 

anion, plasma voltage dependent anion-selective (VDAC), connexin hemichannel, 

pannexin hemichannel and maitotoxin-induced pore. Some of these channels (like Pnx1 

and P2X7 or maitotoxin- and P2X7, etc.) can work in synergy. P2X7 opening is often a 

part of anti-microbial response, so that some antimicrobial peptides (such as cathelicidin 

LL37243, 244 and human neutrophil peptide-1245) can activate this receptor (although it 

seems that LL37 and defensins may also form pores themselves242). LL37 is a positively 

charged peptide (charge +6, 30 amino acids), and human neutrophil peptide-1 (known 

also as alpha-defensin) is slightly charged (+3, 30 amino acids). Histone H4 is also a 

major anti-microbial agent246, and fetuin-A (structurally related to cathelicidin LL37) is 

known to complex with H2A247. Histone H2A has strong antimicrobial properties 

itself248. P2X7 opening can be amplified by positively charged antibiotic polymixin B249. 

It was suggested that P2X7 pore may be the same as maitotoxin-activated cationic 

channel250-252. Paradoxically, histones H3 and H2B, inhibit perforin- or toxin-mediated 

cell lysis253, 254. As for pannexins, both histone-induced membrane permeabilisation and 

pannexin1 conductance are inhibited by La3+/Gd3+, while connexins are well known 

to be sensitive to okadaic acid, just like histone-induced cell death241.   

 

Thus, testing whether any “professional” large-conductance channels play a role in 

histone-induced toxicity warrants further investigation.  As many of these channels have 
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specific inhibitors, it may be justified to use such inhibitors in conditions of elevated 

plasma histones alone or in combination with anti-histone strategies.  
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Chapter 3 – Develop a rapid, robust and comprehensive assay to monitor the 

toxic histones in circulation 

 

 

3.1 Introduction 

3.1.1 Toxicity of circulating histones 

Extensive cell death occurs in the acute phase of many human diseases and is a common 

feature observed in many critically ill patients210, 255, 256. However, the contribution of 

this process to the overall progression of the disease has been overlooked until recently. 

During the cell death, nuclear breakdown products, particularly histones which is one 

of the damage-associated molecular pattern molecules (DAMPs)199, are released into 

the circulation and are rarely detectable unless there is extensive cell death, due to rapid 

hepatic clearance218. Recently, extracellular histones have been shown to induce 

endothelial damage, cytokine elevation, platelet aggregation and coagulation activation 

in vitro and mortality in mouse models199. The toxicity of circulating histones is 

described in the chapter 1. In chapter 2, we systematically investigated the toxicity of 

circulating histones in details with a focus on truncated histones (mimicking degraded 

circulating histones). Despite realising the importance of measuring circulating histones, 

there is no rapid, robust and comprehensive assay to detect the levels of toxic histones. 

 

3.1.2 History and principle of xMAP technology 

3.1.2.1 History  

xMAP technology is a microsphere-based immunofluorescence assay. This assay 

composed of flow cytometer and fluorescence. In 1977, Horan and colleagues257 

reported the first use of flow cytometry for analysis of microsphere-based 

immunoassays. Because of the ability to distinguish different particles by size and 

colour, flow cytometer possesses the ability of multiplexed analysis with different 
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microsphere populations. In the last decade, Luminex Corporation developed a more 

comprehensive platform by merging flow cytometer with fluorescence, namely 

FlowMetrixTM which performs multiplexed measurement of up to 64 analytes 

simultaneously258. Later, xMAP technology, with measurement of up to 500 analytes, 

has been updated (xMAP® Technology Technical Note 2010).  

3.1.2.2 The workflow of xMAP technology 

xMAP technology contains of sets of carboxylated microspheres which stained with two 

dyes, red (> 650 nm) and orange (585 nm). The polystyrene microsphere has a diameter 

of 5.6 µm and bears carboxylate functional group on the surface. Therefore, any amine-

containing molecules including antibodies can virtually bind to the microspheres 

respectively via a two-step carbodiimide reaction. Each microsphere has a sufficient 

surface for coupling 1-2 × 106 molecules. Luminex Corp provides 500 distinct sets of 

microspheres which can be classified by the unique orange/red emission profile of each 

set excited by laser. The size of different set of microspheres is uniformed and can be 

identified by the 90-degree light scatter, also called side-scatter gate, to make sure only 

the uniform single particles are classified.  Microsphere aggregations and other particles 

within the samples are eliminated. For identification of different bead sets, the feature 

of the varying amounts of proprietary two dyes emitting fluorochromes allows the 

classification of the individual sets of microspheres. Using the size and orange/red 

colour, the xMAP can count the amount of microspheres in different bead sets. Except 

the orange/red colours, green colour is applied for counting the events captured by the 

molecules bound to the microspheres. A green colour dye conjugated antibodies, 

normally Streptavidin-Phycoerythrin (PE), are used. The emission wavelength from 

microspheres and streptavidin-PE are received and converted into electrical signals by 

photomultiplier tubes (PMT), then are digitalised, converted and displayed as 
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fluorescence intensities (FI). The xMAP quantitates the green, orange and red 

fluorescence of each microsphere using the FL1, FL2 and FL3 detectors, respectively. 

All the data are collected by the software and analysed based on the internal standards. 

The workflow is shown in the Figure 3.1. 

3.1.2.3 The advantages of xMAP technology 

xMAP technology is considered as an alternative to enzyme-linked immunosorbent 

assay (ELISA). The comparison between them in different analytes, samples time and 

costing are summarised in Table 3.1258-260. The principal advantage of xMAP 

technology is the multiplexing capability. ELISA immobilises the capture antibody in 

the surface of microplate well consequently only one analyte can be detected in one kit. 

Conversely, xMAP technology immobilises antibody on the surface of microsphere, 

allowing researchers to pool different sets of microspheres into a well for multiplexing 

analytes testing. Furthermore, a virtue of the suspended microspheres provides a smaller 

surface area compared to a microplate well, which requiring small sample volume and 

reducing non-specific binding. Different from ELISA replying on enzyme-mediated 

amplification of signal, xMAP technology utilises the fluorescence which is more direct, 

stable and sensitive. Therefore, less volume of sample is required. This character of 

xMAP assay is essential when working with limited samples (like paediatric samples, 

cerebrospinal fluid, synovial fluid, mouse serum, etc.). As all the interested analytes are 

measured in one go, xMAP assay avoids sample frozen-thaw cycles as well. 
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Figure 3.1 The workflow of xMAP technology. (The xMAP workflow is summerised based on references Fulton et al. Clinical Chemistry 1997258 

and Vignali Journal of Immunological Methods 2000259) 



61 

 

Table 3.1 Advantages of xMAP technology compared to ELISA 

 xMAP Technology ELISA 

Number of analytes 10 10 

Number of 96-well plates 1 10 

Total sample volume 12.5-25 µL > 250 µL 

Total time required  3 hours > 30 hours 

Assay range 5 to 6 logs dynamic range 3 to 4 logs dynamic range 

Cost < £2,000 > £3,000 

 

 

3.1.2.4 Why choose this method 

After cell death, histones are released into the circulation, decondensed and degraded 

into dimers (H3/H4 and H2A/H2B), monomer (H1, H2A, H2B, H3 and H4) and 

truncated histones (N and C terminal of each histone)232. In the previous chapters and 

our previous studies, the toxicity of extracellular histones has been proved both in vitro 

and in vivo. Therefore, a multiplexing assay is required to monitor the levels of histones 

and provide the guidance to clinicians.  
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3.2 Martials and Methods 

3.2.1 Separation and storage of samples 

Peripheral blood was collected into S-Monovette sodium citrate 10 mL tube (Sarstedt, 

Germany) from patients and healthy donors after consenting and with the ethical 

approval (Liverpool Ethics Committee). Blood was separated by spinning at 2,600 × g 

for 20 mins at 4oC for 20 min with break off. Plasma was removed without disturbing 

the white layer and kept at -80oC till using.  

 

3.2.2 Multiplexing assay 

3.2.2.1 Carbodiimide coupling 

To determine the affinity of anti-histone single chain variable fragments (ahscFv), 

detection antibody and the specificities of the capture antibodies, the immobilised 

individual histones were utilised. Also, the capture antibodies were coupled to the 

microspheres to make the “capture sandwich” assay. The coupling protocol is below. 

 

Five regions (33, 34, 35, 36 and 37) of Luminex MagPlex microspheres were brought 

from Luminex Corporation (USA). Each microsphere of 200 µL were added into 1.5 

mL reaction tube (Protein Lobind, Eppendorf, Germany). Microspheres were fixed by 

placed in the magnetic separator for 30 s and liquid was removed carefully. 

Microspheres were washed twice with 200 µL of Activation Buffer (100 mM Na2HPO4, 

Ph 6.2) and incubated in 80 µL Activation Buffer plus 10 µL Sulfo-NHS (50 mg/mL; 

Pierce, USA) and 10 µL EDC (50 mg/mL; Pierce, USA) for 20 min, 650 rpm, at room 

temperature on a roll mixer in the dark. Then activated microspheres were washed three 

times with 500 µL Coupling Buffer (50 mM MES hydrate, Ph 5.0; Pierce, USA). Buffer 

was removed from last wash. Histone antibodies (each 5 µg) or designed concentrations 
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of histones in 250 µL Coupling Buffer was mixed with microspheres.  The mixture was 

incubated 2 h, 650 rpm at room temperature on a roll mixer in dark. Microspheres were 

washed three times with 500 µL Wash Buffer and resuspended in 100 µL Block Store 

Buffer, then stored at 4oC protecting from the light. Buffer recipes are summarised in 

Table 3.2. Anti-histone antibodies are summarised in Table 3.3. 

 

Table 3.2 Buffer recipes of carbodiimide coupling 

Buffer Chemicals  Company 

Activation Buffer 100 mM Na2HPO4, pH 6.2 Sigma, UK 

Coupling Buffer 50 mM MES hydrate, pH 5.0 Pierce, USA 

Wash Buffer PBS + 0.05% Tween20 Sigma, UK 

Block Store Buffer  PBS + 1% BSA Sigma, UK 

PBS, phosphate buffered saline; BSA, bovine serum albumin. 

 

 

Table 3.3 Anti-histone capture antibody list 

Antibody Antigen Catalogue  Company 

Anti-histone H1.0 Human histone H1.0 N ter SAB401366 Sigma, UK 

Anti-histone H2A Human histone H2A C ter L88A6 Cell Signalling, UK 

Anti-histone H2B Human histone H2B C ter Ab1790 Abcam, UK 

Anti-histone H3.1 Human histone H3.1 N ter H9289 Sigma, UK 

Anti-histone H4 Human histone H4 N ter Ab70701 Abcam, UK 

 

3.2.2.2 Microspheres recovery counting 

After coupling procedure, the microspheres recovery counting is necessary. The stock 

microsphere was vortexed thoroughly for 20 s. Took 2 µL from the stock and mixed 

with 998 µL Wash Buffer in a 1.5 mL Eppendorf tube. The tube was vortexed for 1 min. 

Microspheres solution of 100 µL per well was transferred into a 96-well filter plate 

(Millipore, UK). Plate was placed on a shaker for 10 min, 900 rpm at room temperature 

before applying to the Bio-Rad Mutilplex plate reader (USA). Bio-Rad 200 was used to 

count microspheres. Parameters were set as Sample Size: 50 µL, Time Out: 80 s, Total 

Beads: 10,000. The number of microspheres in the bead stock was calculated as: Beads 

per µL stock = counted beads × dilution factor / 30. 
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3.2.2.3 Biotinylation of antibodies 

The ratio of biotin and detection antibody in molar is essential. Ideally, 20 or 50-fold of 

biotin are used in the biotinylation procedure in many literatures. A 20-fold of biotin 

was used in this protocol and the mass of biotin was calculated based on the molecular 

weight of itself and the antibody, M (Sulfo-NHS-LC-LC-Biotin, Pierce):  670 Da (670 

g/mol), M (anti-histone antibodies): 150 kDa (150,000 g/mol), M (ahscFv): 27 kDa 

(27,000 g/mol). Sulfo-NHS-LC-LC-Biotin was dissolved in PBS and calculated volume 

was incubated with detection antibody in PBS for 2 h on ice. The excessed biotin was 

removed by the desalt column (Pierce, USA). The concentration of biotinylated 

antibody was adjusted to 250 µg/mL by addition of glycerol and stored at -20oC.  

3.2.2.4 ahscFv dose optimisation   

The 5 different sets of histone coupled microspheres were pooled (20,000 beads per 

region). 96-well filter plate was blocked with 100 µL Blocking Store Buffer per well for 

10 min at room temperature. Buffer was removed by vacuum filtration (Bio-Rad, USA). 

Pooled microspheres of 25 µL was added in each well. Microspheres solution was 

removed as before. Biotinylated detection antibody (30 µL) was added as: 0, 0.1, 0.5, 

2.5, 12.5, 25 µg/mL. Plate was incubated for 1 h, 650 rpm at room temperature and 

washed three times with 100 µL Wash Buffer. Streptavidin-PE (2 µg/mL in Block Store 

Buffer; BioLegend, UK) of 30 µL was added per well and incubated for 30 min in the 

same condition. Microspheres were washed as before and resuspended in 100 µL Assay 

Buffer. Before reading, shake plate for 1 min at 900 rpm. Set parameters as before and 

gate between 7,500 – 15,000.  
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3.2.2.5 Check the specificity of capture antibodies 

Five regions of histone coupled microspheres and biotinylated anti-histone antibody (0, 

5, 15, 20 and 25 µg/mL) were used to check the specificity. Please see the protocol in 

3.2.2.4 section.  

3.2.2.6 Create single-plex of each histone and multiplex in pure system 

Five specific antibodies were confirmed in the 3.3.2.5 section and coupled to 5 different 

regions of microspheres respectively. All the regions were counted and the desired 

mount of each region was diluted to 400 beads/µL. ahscFv was biotinylated 

(concentration of stock: 125 µg/mL). After blocking the 96-well filter plate, for the 

singleplex, 25 µL of beads (1000 beads per well) and 25 µL of recombinant individual 

histone (three-fold serial dilution: 30 µg/mL to 0.12 µg/mL in Block Store Buffer and 

blank) were added. Plate was incubated for 2 h, 650 rpm and at room temperature and 

washed with Wash Buffer 100 µL × 3. Then incubated with 30 µL of ahscFv-biotin (25 

µg/mL) for 1 h, 650 rpm and at room temperature. Plate was washed as before and 

incubated with 30 µL of streptavidin-PE (2 µg/mL) for 30 min, 650 rpm at room 

temperature. Plate was washed as before and beads were resuspended in 100 µL of 

Block Store Buffer (plus 0.05% Tween20). Plate was shaken for 1 min at 900 rpm before 

reading. For the multiplex, 5 regions of beads were pooled, 1000 beads per region per 

well. Five recombinant histones were mixed and diluted serially. Concentration 

calculated per histone was as the same as the singleplex. The rest steps were as the same 

as the singleplex. 

3.2.2.7 Standard curve recovery and sample dilution ratio 

The effect of different matrix is essential in immunoassay: the standard curve is 

normally shifted in serum or plasma compared to the buffer pure system. Therefore, we 

used normal human plasma as a matrix to optimise the standard curve. The ratio between 
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plasma and buffer is 1:5. We spiked the plasma/buffer with a serial concentration of 

histones. Because of the proteases in plasma, the cocktail protease inhibitors (Roche, 

Germany), d-phenylalanyl-l-prolyl-l-arginyl chloromethylketone (PPACK; Merck, 

Germany) and ethylenediaminetetraacetic acid (EDTA) were added to protect the 

clotting and protein degradation. The ratio of sample dilution was detected. 
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3.3 Results 

3.3.1 The optimum dose of ahscFv to individual histones 

The ahscFv at all different concentration can bind to the individual histones but it 

appeared that the binding to histone H4 and H3 were higher than H1, H2A and H2B as 

reflected by mean FI (MFI) values. The binding of biotinylated ahscFv to detect the 

immobilised histones was concentration dependent with a dose of 25 µg/mL nearly 

reach plateau for all the histones (Figure 3.2).  

 

 

 

 

Figure 3.2 The optimum dose of ahscFv to individual histones. Different 

concentrations of biotinylated ahscFv were used to detect the immobilised histones. 

ahscFv can bind to all the individual histones but it has higher affinity to histone H4 

and H3, while lower affinity to H1, H2A and H2B. The optimal concentration of 

ahscFv was 25 µg/mL. 
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3.3.2 All the capture antibodies are specific to the target histones 

The specificities of all the capture antibodies were determined by the immobilised 

histones. Individual histones were coupled to different region of microspheres and the 

capture antibodies were conjugated with biotin (biotinylated). Each capture antibody 

was incubated with mixed histone coupled microspheres. Each capture antibody showed 

dose-dependent binding signal to the target histone, while had minimum cross reaction 

with other histones (Figure 3.3). 

 

3.3.3 Measuring individual histones in Singleplex and Multiplex  

Each capture antibody was coupled to different region of microsphere and the beads 

counting are shown in Table 3.4. Each histone was detected both in Singleplex and 

Multiplex (Figure 3.4). The MFI values in both Singleplex and Multiplex of histones 

H2A, H2B and H3 were constant, implying these 3 antibodies did not have cross-

reaction or interference in Multiplex compared to Singleplex. However, MFI values in 

Multiplex of histones H1 and H4 were higher than that in Singleplex. 

Table 3.4 Beads counting of couple histone antibodies  

Antibody Region Beads count_1 Beads count_2 Average Beads/µl 

H1 33 898 719 808.5 6738 

H2A 34 749 712 730.5 6088 

H2B 35 791 770 780.5 6504 

H3 36 768 743 755.5 6296 

H4 37 1044 1059 1051.5 8763 

Beads per µL stock = Average × 500/ 30. Dilution factor was 1:500.  
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Figure 3.3 Effects of detection antibodies to target histones. Each histone (5 µg) was 

immobilised to different region of beads. To determine the specificity of each capture 

antibody, different concentrations of biotinylated antibody (0, 0.1, 0.5 and 2.5 µg/mL) 

were incubated with the mixture of immobilised histones. Graphs A-E indicate the 

specificities of the 5 detection antibodies. 
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Figure 3.4 Individual histones were measured in Singleplex and Multiplex assays. 

Graphs A-E depict measured individual histone concentration.  Except histones H1 and 

H4, the MFI values in Singleplex and Multiplex assays were similar in histones H2A, 

H2B and H3, indicating the specificity of these three capture antibodies. The MFI values 

of Multiplex were higher than those of Singleplex both in H1 and H4, indicating these 

two capture antibodies might have cross reaction between histones.  
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3.3.4 Histone detection is dramatically masked by normal human plasma 

Generally, it is better to dilute patient plasma at least 1:5 to avoid the plasma interference 

to the antibody and the sample clotting. As a result, we tried to optimise the matrix 

effects by using addition of normal human plasma in PBS (+ 1% BSA) Buffer (1:5 v/v) 

after creating the standard curves in the Buffer. The MFI values for all histones 

decreased in the spiked plasma when compared to those in the Buffer (Figure 3.5). 

 

3.3.5 Optimisation of matrix effects according to standard curves 

As the depression of plasma to histone detection, we tried to optimise the measurement 

by adjusting detergent volume, salt concentration, pH value, temperature, incubation 

time, denature reagents and acid precipitation. 

3.3.5.1 Addition of Tween20 maximally increases the detection signal  

There are abundant of proteins in normal plasma214, 261-263, which are prone to hamper 

the binding between capture antibody and histone. Therefore, different concentrations 

of Tween20 were added to dissociate the interference between histones and plasma 

proteins. The addition of Tween20 resulted in increasing histone signals and the 

background comparing to those without Tween20 in plasma/PBS matrix. However, the 

concentration of Tween20 was inversely proportional to background within the 

Tween20 addition groups. Considered the detection signal and background, we decided 

to use 0.2% Tween20 as the optimal concentration (Figure 3.6).  
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Figure 3.5 Normal human plasma depresses the histone detection in Multiplex 

assay. Green line is the MFI value detected in PBS (+ 1% BSA) Buffer and the red line 

is the MFI value of histone spiked normal human plasma/PBS (+ 1% BSA) Buffer (1:5). 

For all histones (A-E), the MFI values significantly decreased in spiked plasma than 

those in the Buffer. 
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Figure 3.6 Addition of Tween20 maximally increases the detection signal in 

Multiplex. Graph A-E describe the effects of different concentrations of Tween20 (0, 

0.05%, 0.1%, 0.2%, 0.5% and 1%) to dissociate histone-plasma protein interaction. The 

addition of Tween20 increased the detection signals while the increased background 

was observed in all the histones detection. However, the higher concentration of 

Tween20, the lower background of histones. Compare the background and detection 

signals, 0.2% Tween20 is the optimal concentration. 
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3.3.5.2 Addition of NaCl increases histone H3 signal 

Addition of Tween20 increased the histone detection signals by dissociating histone-

plasma protein interaction, but the effect did not make 100% recovery. Salt conditions 

can also effect the protein-protein interactions. Therefore, different concentrations of 

NaCl were added in the presence of Tween20. Adding 150 mM of NaCl showed a higher 

signal with the lowest background in the presence of 0.2% Tween20 (Figure 3.7). 

 

Figure 3.7 Salt condition increases histone H3 detection signal. Different 

concentrations of NaCl were added to dissociate histone-plasma proteins interaction in 

the presence of different concentrations of Tween20. 

3.3.5.3 Circulating histones in positive patient plasma can’t be detected  

The positive patient plasma samples with high levels of histones determined by Western 

blot were measured along with the standards in pure buffer and normal human plasma. 

In the condition of 0.2% Tween20 and 150 mM NaCl, the 6 patients’ plasma samples 

were undetectable even compared to the spiked normal plasma (Figure 3.8). 
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Figure 3.8 Histones in patient plasma are undetectable by the Multiplex assay. (A) 

Six patients’ plasma histone levels were determined using Western blot by measuring 

histone H3. Presence of different concentrations of circulating histones in human 

patients. Patient 1 and 2 have the highest level of histone H3 (> 15 µg/mL) while patient 

4 and 6 have the lowest levels (< 5 µg/mL). (B) Even with the salt and detergent 

condition (PBS + 150 mM NaCl + 0.2% Tween20), the Multiplex measurement of 

patient 1 to 5 were less than 10 µg/mL and patient 6 was more than 10 µg/mL. The 

results from Western blot and Multiplex assay were not constant, indicating that 

multiplex assay can’t detect positive patient plasma. 
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3.3.5.4 Tween20 and salt condition can’t improve the detection in patient plasma  

As the signals in spiked normal plasma have been increased in the Tween20 and salt 

condition, we tried to optimise the measurement of patient plasma. Three positive 

patients’ plasma were incubated in 150 mM NaCl/PBS buffer with different 

concentrations of Tween20 (0.02%, 0.05%, 0.1%, 0.2% and 0.5%) to dissociate histone-

plasma proteins interference. The signals did not increase in patients’ samples (Figure 

3.9).  

 

 

 

Figure 3.9 Tween20 and salt conditions can’t optimise the detection of circulating 

histones in patient plasma. Different concentrations of Tween20 were added to 

dissociate histone-plasma proteins interaction in the presence of 150 mM NaCl. There 

was no significant difference among these 5 groups. Despite Tween20 and salt condition 

increased signals in spiked normal plasma, no improvement seem in patient plasma. 
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To confirm this result, we measured 20 more patients and 5 normal healthy donors’ 

plasma in the condition of 0.2% Tween20 and 150 mM NaCl. We found that signals of 

histones measured by Multiplex assay were not constant with those determined by 

Western blot. Signals in normal healthy plasma were even higher than some positive 

patient plasma. Moreover, signals in spiked normal plasma decreased gradually 

paralleled to histone concentrations until 1.11 or 0.37 µg/mL then increased again in the 

following lower concentrations. Based on these results, we conclude that circulating 

histones are strongly bond to plasma proteins and the capture antibodies can bind to 

some plasma proteins as well. 

3.3.5.5 Pre-incubation with acid, urea or Triton-X100 can’t increase the signals 

As the bind of histone-plasma protein is very difficult to break resulted in masking the 

epitope of histones, we tried to pre incubate sample with acid, urea and Triton-X100 for 

20 min at room temperature respectively. However, signals in patient plasma can’t 

increase either (Figure 3.10). 
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Figure 3.10 (continued) 

          

Figure 3.10 Pre-incubation with acid, TritionX100 and urea can’t improve the 

detection of circulating histones in positive patient sample. Individual histone spiked 

normal plasma (each 10 µg/mL) and one positive patient plasma was pre-incubated with 

urea (9 and 6 M), HCl (pH 2.5, 1.5 and 0.7), or TritonX100 (4% and 2%) at room 

temperature for 20 mins before incubation of capture antibodies (A-E). Under the 

condition of pH 2.5 and 4% TritonX100 pre-incubation, all spiked histones had higher 

detection signals without significantly increased background. In pH 1.5 histone H3 and 

in pH 0.7 the rest of histones showed dramatically increased background even higher 

than the spiked signals without improving the detection of the positive patient plasma.  
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3.4 Discussion 

Histones are released into the circulation after massive cells damage during the critical 

illness like trauma, sepsis, severe acute pancreatitis, etc199. The toxicity of circulating 

histones has been proved both in vitro and in vivo. In the Chapter 2, we have shown that 

not only monomer circulating histones but also truncated histones are toxic to 

endothelial cells. As monitoring others DAMPs such as circulating nucleosomes211 have 

an increasing value in acute critical illness, to determine levels of circulating histones 

especially at early stage may have great translational value.  

 

The existing method for testing the levels of circulating histones is Western blot, which 

has the limitation of time consuming (2 days procedure) and only 6 samples can be 

tested in one membrane. To build up a more robust and comprehensive assay, we 

adopted a bead based immunofluorescence technology: Luminex xMAP technology. 

We have created the standard curves for all the five monomers in the pure buffer system. 

However, all the standard curves were dramatically depressed by the addition of human 

plasma, which indicates plasma proteins have the capability to interact with circulating 

histones resulted in the epitope blockage or the cleavage. Then we tried to dissociate 

histone-plasma protein interaction. 

 

High salt condition can dissociate protein-protein interaction in part. In low pH 

condition (less than 2.7), histones are still soluble while many of the other plasma 

proteins might dissociated and precipitated264. Detergent, like Tween20, contributes the 

dissociation somehow. We found that addition of 0.2% Tween20 or 150 mM NaCl 

increased the signals in spiked standard curves. However, neither detergent nor high salt 
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condition could increase the signals in patient plasma. The low pH pre incubation did 

not work either.  

 

More than 30 components in normal plasma have been identified to bind histones by 

mass spectrometry14. Our study also showed C-reactive protein (CRP) elevated after 

presence of circulating histones in trauma patients and can form CRP-histone complex 

to reduce the toxicity of histone265. Moreover, we found complement C4 was pulled 

down by immobilised histones in plasma during the acute inflammation phase265. All of 

these results illuminate plasma has the capability to neutralise circulating histones 

released after cell death, which might be the host protective response. However, when 

massive cells death occurred, the amount of circulating histones exceed the maximal 

buffering capability of plasma, resulted in the aggravation of disease.  

 

The key for this assay is to dissociate histones from plasma proteins or generate a more 

specific antibody.      
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Chapter 4 – Circulating histone levels reflect disease severity in animal models of 

acute pancreatitis 

 

4.1 Introduction 

Acute pancreatitis is an inflammatory disorder of the pancreas which ranges from mild, 

self-limiting form to local complication as well as systemic inflammation and multiple 

dysfunction syndrome (MODS)266. Although the understanding and surgical 

management of acute pancreatitis has improved significantly in the last two decades, 

there is no licensed specific medicine for this disease. To bridge this gap, better 

understanding the pathogenesis of acute pancreatitis and its associated local 

complications and MODS is paramount important267. Due to difficulties of accessing 

human pancreas samples and uncertainty of the admission time of acute pancreatitis 

patients, research on early cellular events are rarely carried out in human pancreatic 

acinar cells, not alone currently there is no acceptable methodology to culture primary 

pancreatic acinar cells.  

 

As a result, animal models of different species have been employed to investigate acute 

pancreatitis, but in recent years there has been a prevailing trend towards using murine 

models, especially mice. These mouse models not only provide an opportunity to 

characterise the role of a specific gene or protein’s in the pathogenesis of acute 

pancreatitis but also enable development of novel therapeutic strategies that target these 

signalling pathways. Experimental acute pancreatitis models can be generally divided 

into non-invasive and invasive models. The non-invasive animal models can be induced 

by simple protocols such as special secretagogue hyperstimulation, diet feeding, amino 

acid injection, or infection with specific viruses. Invasive models of acute pancreatitis 

require surgical intervention that is technically demanding and requires more expertise 
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along with specialised resources. The latter are useful for replicating the obstructive 

aetiologies of pancreatitis, particularly for investigating gallstone-, vascular- or trauma-

induced acute pancreatitis268.  

 

An ideal animal model should include relevant aetiology, pathobiology, clinical course, 

histology and outcome, mirroring acute pancreatitis in humans. The current 

experimental acute pancreatitis models in use have their respective advantages and 

limitations. The most representative and widely used model are induced by repeated 

intraperitoneal injections of caerulein and intra-pancreatic ductal infusion of bile acid, 

respectively. The caerulein-induced acute pancreatitis (CER-AP) model is easy to 

conduct, highly reproducible, parallels a vast number of in vitro studies, making it the 

most favourable model for acute pancreatitis. It is also compatible with other models, 

sharing histopathological changes consistent with early phase of human acute 

pancreatitis269. Sodium taurocholate (NaTC) is the most frequently used bile acid to 

induce biliary acute pancreatitis. The distant organ injury and mortality are in 

accordance with concentrations of bile acid infused, making it very popular to study 

biliary acute pancreatitis270. Recently, a novel NaTC-induced acute pancreatitis (NaTC-

AP) in mice has been developed by Laukkarinen and her colleagues, further facilitates 

its prevalence.  

 

Similar to that in other critical illnesses, such as severe sepsis34 and trauma271, in which 

cellular breakdown products such as high mobility box 1 (HMGB1)272, mitochondrial 

DNA273 and extracellular histones213, collectively called damage-associated molecular 

patterns (DAMPs) may play a significant role in acute pancreatitis274. Histones are well-

conserved proteins that are essential for DNA packaging and gene regulation225. During 
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tissue damage and cell death, nuclear chromatin is cleaved into nucleosomes, which are 

released extracellularly232 and further degraded into individual histones. Recent studies 

demonstrate their direct toxicity to endothelial cells as well as causing activation of 

platelets275 and leukocytes to promote thrombosis276, disturb the microvascular 

circulation and stimulate cytokine release271. In animal models, elevation of circulating 

histones is observed in inflammatory diseases such as sepsis213, acute kidney injury277, 

liver injury278 and peritonitis279. Histone infusion causes animal death through MODS, 

which can be rescued by anti-histone antibodies271. The major mechanism for toxicity 

is due to histones binding phospholipids on cell membranes resulting in calcium influx 

and cellular injury271. In clinical practice, high circulating histone levels have been found 

in patients with severe blunt trauma and sepsis271. These levels are significantly 

associated with injury severity scores and sequential organ failure assessment (SOFA) 

scores as well as the incidence of respiratory and circulatory failure271. It is known that 

extensive cell death occurs in severe, particularly necrotising pancreatitis. However, 

there has been no direct evidence of linking circulating histones with the severity of 

acute pancreatitis.  

 

In this chapter, we set out for the first time to sequentially measure circulating histone 

levels in mouse acute pancreatitis models at various time points to explore whether the 

release of circulating histones correlates with disease severity.  
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4.2 Materials and methods 

4.2.1 Animals and reagents 

C57BL/6 male mice of average weight (~22 g) from the SLAC Experimental Animal 

Centre (Shanghai, China) were housed at 23  2°C under a 12 h light/dark cycle with ad 

libitum access to standard laboratory chow and water at the Research Centre of Gene 

Modified Mice, State Education Ministry Laboratory of Developmental Genes & 

Human Diseases (Southeast University, China). All procedures were performed 

according to state laws and monitored by local inspectors in compliance with 

Institutional ethical review processes of Southeast University.  

 

The selection of acute pancreatitis models and the time points of blood collection and 

euthanization were based on our previous experience and preliminary experiments. All 

the reagents were at the highest grade from Sigma (Gillingham, UK) unless stated 

otherwise.  

 

4.2.2 CER-AP 

Supraphysiological concentration of caerulein, a cholecystokinin analogue, was 

dissolved in normal saline at a concentration of 10 μg/mL. Mice received either 4 or 12 

repeated intraperitoneal injections of caerulein (50 µg/kg) at 1 h apart to induce 

oedematous pancreatitis280 and necrotising pancreatitis281, respectively. Control mice 

received same volume of normal saline injections. Blood was taken from tail veins 

before and various time points after first injection. Mice receiving 4 caerulein injections 

were sacrificed at 22 h (n = 10). Mice receiving 12 caerulein injections were sacrificed 

at 22 and 36 h after first injection (n = 10 for each time point). Control mice (n = 10) 

were sacrificed at 22 h.  
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4.2.3 NaTC-AP 

NaTC-AP was performed by infusion of NaTC into the biliopancreatic duct with a slight 

modification of previous protocol282. Mice were anaesthetized by intraperitoneal 

injection of 10% chloral hydrate (5 mL/kg) before operation. A midline laparotomy was 

performed and the first loop of the duodenum together with a portion of pancreas was 

externalised. After successful cannulation of the biliopancreatic duct, 50 mg/kg NaTC 

(3.5%, w/v; 1 ml/kg bw) were infused.  The success of this infusion is indicated by 

visualising methylene blue (0.2% w/v mixed with taurocholate) in the head of pancreas 

under a dissecting microscope. For control, 10 mice were subjected to the same surgical 

procedure without intraductal perfusion of Na-TC (sham group). Blood was taken 

before and at various time points after disease induction. Mice in Na-TC infusion group 

were euthanized at 22 and 36 h (n = 10 for each time point) and mice in the sham group 

were sacrificed at 22 h (n = 10). 

 

4.2.4 Samples collections  

Blood was collected and immediately centrifuged to separate plasma. Plasma was stored 

at -80oC before use. Pancreas and lungs were extracted and fixed with 4% (w/v) 

paraformaldehyde for 24 h followed by 70% ethanol until embedded in paraffin.  

 

4.2.5 Detection of circulating histones 

The levels of circulating histones were detected using Western blot, as described 

previously271. In brief, plasma was subjected to a sodium dodecyl sulphate 

polyacrylamide (SDS-PAGE) using recombinant histone H3 protein as standard and 

detected by Western blot using anti-histone H3 antibody (Abcam, UK). Total histones 
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were calculated based on the molecular ratios of individual histones within the nucleus, 

as described previously265, 271.  

 

4.2.6 Blood biochemistry 

Amylase, CK-MB, alanine transaminase (ALT) and creatinine were detected using 

AU5800 Clinical Chemistry System (Beckman coulter). 

 

 

4.2.7 Histopathology examination and scoring 

Organs were embedded and sections stained with hematoxylin and eosin (H&E). After 

H&E staining, each slide was graded by two independent observers who were blinded 

to experimental groups, according to a previously established protocol283 but with the 

vacuolisation score was omitted. The severity and extent of pancreatic oedema, 

inflammatory cell infiltration and necrosis were each given a score of 0-4 and the 

overall histopathology score was calculated as the sum of the individual scores. For 

each parameter (e.g. oedema), 10 random fields were chosen and scored and the 

average score used for data analysis.  

 

4.2.8 Statistical analysis 

Results were presented as means  standard errors of means (SEM) obtained from 

three or more independent experiments. Analysis of variance (ANOVA) was used to 

assess differences in parametric primary and secondary outcomes. For non-normally 

distributed, continuous variables the non-parametric Kruskal-Wallis H test was. The 

association of pathological scores with the levels of circulating histones was analysed 

using simple linear regression. P values of < 0.05 were considered to indicate 

significant differences. 
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4.3 Results 

4.3.1 Modelling acute pancreatitis 

In this study, 5 groups of mice were used, caerulein ×4, caerulein ×12 with 12 

injections of saline (saline ×12) as control; NaTC intraductal infusion with a sham 

group as control in which same surgical procedures were performed but without 

intraductal infusion. Amylase was analysed in the blood taken at 22 h. All 3 

pancreatitis groups showed dramatic increases in amylase (Figure 4.1A), which were 

significantly higher than that in the saline ×12 and sham groups (P < 0.01), indicating 

that acute pancreatitis was induced. Within the 3 pancreatitis groups, amylase levels 

were lowest in caerulein ×4 group and highest in NaTC group.  Amylase in the sham 

group was not significantly higher than that in the saline group, which indicates that 

the surgical procedure alone did not cause pancreatitis.  

 

Injury to heart, kidneys and liver were assessed by measuring CK-MB (Figure 4.1B), 

creatinine (Figure 4.1C) and ALT (Figure 4.1D), respectively. The mock surgical 

procedure (sham group) did increase CK-MB and ALT, which was likely due to stress 

responses. Caerulein ×12 caused significant increases in ALT. NaTC increased all the 

3 markers but not when the same dose was administered intravenously (data not 

shown). These changes are therefore mainly due to pancreatitis. 

 

Pathological examination showed that the caerulein × 4 induced obvious pancreatitis 

but hardly any necrotic areas were found in sections of the pancreas from all mice in 

the group. Instead, oedema, neutrophil infiltration and duct enlargement were the 

dominant pathological changes (Figure 4.1Ea), which are consistent with previous 

reports284. In contrast, caerulein ×12 caused obvious acinar cell death, as reported 
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previously285 and substantial areas of necrosis were observed in the pancreas (Figure 

4.1Eb). NaTC generated more severe pancreatitis with large areas of necrosis as well 

as haemorrhage in the pancreas (Figure 4.1Ec) than caerulein ×12. More obvious 

oedema and neutrophil infiltration were also observed in the caerulein ×12 and NaTC 

groups than in the caerulein ×4 group. Pathological changes in the lungs consisted 

mainly of increased thickening of alveolar walls, which were much more obvious in 

the NaTC group (Figure 4.1Ed-f) to indicate acute lung injury occurring in severe 

pancreatitis. No obvious pathological changes in liver, heart and kidneys were 

observed under optical microscopy (data not shown).  

 

4.3.2 Twelve but not four injections of caerulein caused significant increase in 

circulating histones 

Using Western blot, circulating histones were barely detectable in the saline group. 

Caerulein ×4 only caused slight increases in circulating histones at each time point tested 

(Figure 4.2A,B). Levels of circulating histones only reached statistical significance at 

15 h after the first caerulein injection when compared with that before injection (2.5 ± 

1.7 vs. 0.7 ± 0.3 µg/mL, P < 0.05). In contrast, caerulein ×12 induced dramatic elevation 

of both full length histone H3 and degraded H3 at 12, 24 and 36 h, as evidenced by 

strong bands on Western blots (Figure 4.2A,C). Levels of circulating histones reached 

a peak at 24 h and returned to near normal around 48 h after injection (data not shown). 

Peak levels of circulating histones were significantly higher than that in the caerulein ×4 

group and these concentrations have been reported to be toxic in other experimental 

models213.  
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Figure 4.1 Generation of mouse models for oedematous and necrotising 

pancreatitis. (A-D): Blood amylase for pancreas (A), CK-MB for heart (B), creatinine 

for kidneys (C) and ALT for liver (D) were measured from 5 groups of mice: control 

group (UT) with saline i.p. × 12, mock surgical procedures without duct perfusion 

(Sham), caerulein i.p. × 4 (CER×4) and ×12 (CER×12) and duct perfusion of 

taurocholate  (NaTC). Means ± SEM are presented. *ANOVA test P < 0.05 when 

compared to saline group. (E): Pathological examination of pancreas (upper panels) and 

lungs (lower panels) of the 3 mouse acute pancreatitis models. Typical images are 

presented. Black arrows in panels (b) and (c) indicate necrosis of acinar cells. Arrows 

in (f) indicate increased alveolar wall thickening. Bar = 100 µm. 
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Figure 4.2 Circulating histones in acute pancreatitis models induced by i.p. 

injection of caerulein. (A) Circulating histone H3 from Caerulein ×4 (CER×4) and ×12 

(CER×12) mouse models were detected using Western blot with recombinant H3 

protein as standard. (B) Means ± SEM of total histones in CER×4 and (C) CER×12 

models. *ANOVA test showed significant increase compared to pre-injection (P < 

0.05). 
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4.3.3 Pancreatic duct infusion of NaTC caused the most significant elevation of 

circulating histones 

In the NaTC-AP, circulating histones levels increased significantly from 4 h after NaTC 

infusion (23.2 ± 9.2 μg/mL; Figure 4.3A, B). There were steady elevations of circulating 

histone levels that reached a peak around 14 h (149.6 ± 40.6 μg/mL) (Figure 4.3B). 

There were no significant increases of circulating histones in mice in either the sham 

surgery group or the group receiving intravenous injections of NaTC at all matched time 

points (data not shown), indicating that the high circulating histone levels were not due 

to the surgical procedure or systemic toxicity of NaTC but due to NaTC-induced 

necrotising pancreatitis. Comparing the peak values in three acute pancreatitis models, 

we found that circulating histones were significantly higher in the NaTC group than in 

the caerulein ×12  group (149.6 ± 40.6 vs. 103.5 ± 17.3 μg/mL, P = 0.02) with both 

being much higher than the caerulein ×4  group (2.5 ± 1.7 μg/mL,  P <  0.05; Figure 

4.3C).  

 

4.3.4 Circulating histone levels correlated with disease severity 

Typical pancreatic histopathological changes are presented in Figure 4.1Ea-c and scores 

for all experimental groups are shown in Figure 4.4. Intraperitoneal saline injections and 

sham operation did not cause any discernible pancreatic histopathology changes. All 3 

acute pancreatitis models showed obvious pancreatic morphological changes which 

were semi-quantified by histopathological scores, including overall score and its 

breakdown components – oedema, inflammation and necrosis (Figure 4.4).  Caerulein 

×12 and NaTC models were significant higher than caerulein ×4 model in all scores. No 

significant differences in oedema and inflammation scores were seen between caerulein 

×12 and NaTC models but the necrosis scores were significantly higher in NaTC model 
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than in caerulein ×12 model (P = 0.02). By simple linear regression, peak values of 

circulating histones significantly correlated with necrosis scores (r = 0.63, P = 0.001) 

but not with inflammation (r = 0.27, P = 0.074) or oedema (r = 0.21, P = 0.132) scores 

(Table 4.1). These data suggest that damaged pancreatic acinar cells may be a major 

source of circulating histones.  
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Figure 4.3 Circulating histones in NaTC-AP. (A) A typical Western blot of histone 

H3 in blood taken from a NaTC-AP at different time points. Top band is full length H3 

and the lower band is degraded H3 (H3d). (B) Means ± SEM are presented to show the 

time course of the elevation in circulating histones.*ANOVA test P < 0.05 when 

compared with that before duct perfusion. (C) Comparison of the means ± SEM in peak 

values of total histones from 3 AP models and 2 control groups (Saline and Sham). *P 

< 0.05 vs. controls; #P = 0.01 vs. caerulein × 4 (CER×4); ǂP = 0.02 vs. caerulein × 12 

(CER×12).  
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Figure 4.4 Pathological scores of pancreas of mouse acute pancreatitis models. 

Sections of pancreas collected at 22 h after acute pancreatitis induction were scored as 

described in Methods. Means ± SEM of the scores for (A) oedema, (B) inflammation 

and (C) necrosis as well as (D) combined (total = oedema + inflammation + necrosis) 

are presented. ANOVA test, *P < 0.05 when compared to caerulein ×4 (CER×4).  #P < 

0.05 when duct perfusion (NaTC) was compared to caerulein ×12 (CER×12). 

 

 

Table 4.1 Correlation of circulating histones to pancreas pathological scores  

Pathological scores n r P 

Inflammation 30 0.27 0.074 

Oedema 30 0.21 0.132 

Necrosis 30 0.63 0.001 
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4.4 Discussion 

This study is the first to demonstrate that there is a significant increase in circulating 

histones in experimental acute pancreatitis. In our animal models, we show that the 

significant elevation of circulating histones correlate well with pancreatic necrosis and 

is accompanied by increased systemic injury such as to the lung, heart, kidneys and 

liver, which are the most frequently affected distant organs by acute pancreatitis286, 287.  

 

Many types of acute pancreatitis animal models have been reported and the commonly 

used models include caerulein-induced models and biliopancreatic duct infusion 

models288. These models are also routinely used in our laboratories. In this study, we 

have generated acute pancreatitis models with 3 distinguishable levels of severities, with 

which we have established the association of levels in circulating histones with severity 

scores, particularly of necrotic scores of pancreas in pathological examination. In human 

acute pancreatitis, nuclear breakdown products such as HMBG1289, 290 and DNA291, 292 

have already been shown to be released into the circulation and correlated with disease 

severity. Treatment with anti-H3 antibody suppresses serum HMGB1 levels and 

improves survival of L-arginine-induced acute pancreatitis in mice222. High levels of 

circulating histones in critical illnesses have been only reported recently and our study 

supports a similar principle that the levels of nuclear breakdown products in circulation 

reflect the severity of tissue damage and the extent of cell death. Histones as the most 

abundant proteins in nuclei may serve as a much better biomarker for stratification of 

disease severity.  

 

In general, severe damage of any organ will release large amounts of histones into the 

circulation. When this exceeds the clearance capacity of the body, histones become 
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detectable in the circulation. Many diseases, such as severe trauma, burns, organ 

infarctions and sepsis, will incur simultaneous damage of large number of cells and 

lead to high levels of circulating histones271. In the mouse model of necrotising 

pancreatitis, a large number of acinar cells may die in a short time period and release 

large amounts of histones into the circulation where they can be detected. The strong 

correlation between the levels of circulating histones with pancreatic necrosis scores 

in mouse models of acute pancreatitis supports the notion that necrosis of acinar cells 

is a major source of histones. On the other hand, during acute inflammatory responses 

from a variety of aetiologies, inflammatory cells and neutrophils especially will 

accumulate and release their nuclear contents that include histones and DNA in the 

form of extracellular traps or neutrophil extracellular traps (NETs)34. Histones in 

NETs have also been shown to be toxic to the host36, 37. Since NET formation and 

release has not yet been studied in acute pancreatitis, we cannot rule out a significant 

role of NETs in the severity of acute pancreatitis.  

 

The finding that concentrations of circulating nucleosomes and histones are strongly 

associated with the severity of trauma and other modes of cellular injury suggests 

possible usefulness as a new parameter for estimating tissue damage. Circulating 

histones are likely to be more directly linked to the underlying pathophysiological 

changes than other indices that are commonly used in clinical practice. In pancreatitis 

for example, levels of blood amylase are used as a diagnostic parameter although 

circulating histone levels might prove to be a better index of acinar cell death since 

amylase in patients with necrotising pancreatitis can be relatively low due to loss of 

acinar cells293. Increases in serum amylase mainly reflect leakage from acinar cells 

whilst significant increases in circulating histones indicate nuclear and cellular 
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breakdown. Since circulating histones appear to be directly linked to pathological 

damage in necrotizing pancreatitis, there is the potential for using circulating histones 

to stratify the severity of acute pancreatitis, particularly as there are no satisfactory 

clinical scoring systems, radiological modalities or biochemical makers to fulfill this 

purpose so far294, 295.   

 

The pathological roles of high circulating histone levels in severe pancreatitis are still 

not clear. Since the most lethal complication of severe pancreatitis is MODS, histones 

may contribute to acute lung injury, as discovered in animal experiments, and lead to 

respiratory failure which occurs in nearly 50% of patients with severe pancreatitis296. In 

line with previous findings of circulating histones being directly toxic to epithelial 

cells297, endothelial cells213, platelets275 with secondary tissue injury through 

microvascular thrombosis275, 298, these effects might lead to a secondary hit to the 

pancreas and other organs in increasing disease severity and worsening outcomes. Our 

findings suggest that release of histones from pancreatic damage may have devastating 

consequences and neutralising circulating histones may be of therapeutic value. The 

development of anti-histone therapies to suppress this second hit after the onset of acute 

pancreatitis might therefore be a rational therapeutic approach in the future.   

 

In conclusion, histones are released into the circulation following the death of 

pancreatic acinar cells. This promises to be of significant translational potential, both 

in terms of measuring circulating histones as a biomarker of the severity of pancreatitis 

and targeting the toxicity of circulating histones to improve the outcome of patients 

with necrotising pancreatitis. 
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Chapter 5 – Circulating histone levels predict persistent organ failure and 

mortality in patients with acute pancreatitis within 24 hours of admission 

 

5.1 Introduction 

 

Acute pancreatitis is one of the leading gastrointestinal disorders that require urgent 

clinical care with an increasing incidence299. The clinical course of acute pancreatitis is 

variable ranging from mild (80%, uneventful clinical course), through moderate (local 

complication or transient organ failure) to severe disease (persistent organ failure, 

POF)300-302. Infected pancreatic necrosis303, 304 and/or sepsis286 are another major 

complications contributing to mortality at any stage. However the principal early cause 

of early death is the presence of POF286, 305-307. Early recognition of patients at risk of 

POF is critical to guide fluid resuscitation and initiate high dependency or intensive care 

treatment, to reduce morbidity and mortality301, 308. Indeed, early stratification of disease 

severity improves clinical outcomes and significantly reduces length of hospital stay309. 

 

Improvements in imaging, such as computerised tomographic (CT) scans, have not 

proven superior to clinical scoring systems in early prediction of acute pancreatitis 

severity294, 295. A recent multicentre study has shown that existing clinical scores such 

as Systemic Inflammatory Response Syndrome (SIRS), Bedside Index for Severity in 

Acute Pancreatitis (BISAP), Acute physiology and Chronic Health Examination II 

(APACHE II), Sequential Organ Failure Assessment (SOFA) either alone or in 

combination, have reached their maximal efficacy for early prediction of POF in acute 

pancreatitis patients and are of limited clinical use295. This is supported by a latest meta-

analysis concluding that there is no adequate predictor for POF within 48 h of hospital 

admission310. A wide spectrum of clinical biomarkers for acute pancreatitis severity has 

been investigated over the last two decades. These include routine biomarkers295, 311-314, 
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pancreas-specific enzymes313-316, acute phase proteins such as C-reactive protein 

(CRP)313, 314, 317, cytokines313, 314, immunological components314,  transcriptomics318, 

proteomics319 and others314. Most of them are of low to moderate predictive value314 and 

there is a pressing need for the identification and development of more powerful 

predictive markers in for these at risk patients. 

 

Recently, damage associated molecular patterns (DAMPs), such as high-mobility group 

box 1 (HMGB1), cell-free DNA and nucleosomes, have been investigated in human 

acute pancreatitis and most studies showed their blood levels correlate with severity of 

the disease223, 274. Histones are well-conserved nuclear proteins that are essential for 

DNA packaging and gene regulation. During tissue damage and cell death, nuclear 

chromatin is cleaved and released extracellularly where it is degraded into individual 

histones232. Circulating histones, the most abundant nuclear proteins, are rapidly cleared 

by the liver218 and are barely detectable in the blood unless there is extensive cell 

death211, as in severe sepsis213, 320, 321 and trauma271. Recent studies demonstrate 

circulating histones act as DAMPs to induce sterile inflammation and contribute to SIRS 

and organ failure274. Extracellular histones are also toxic to endothelial cells213, 271, 

platelets275, 276 and leukocytes116. Furthermore, they have been reported to activate 

coagulation, disturb microvascular circulation and stimulate cytokine release271, 322, 323. 

In mouse models, histone infusion causes animal death through multiple organ failure, 

which can be rescued by anti-histone antibodies213, 271, 321. Clinically, high levels of 

circulating histones have been found in patients with severe blunt trauma271 and 

sepsis320, with associations to the development of respiratory failure271, new-onset 

cardiac complications320 and thrombocytopenia324. We have previously demonstrated 

that circulating histone levels rise very early in mouse acute pancreatitis models, and are 
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also strongly associated with disease severity and distant organ injury325. Therefore, we 

hypothesised that plasma levels may predict major clinical outcomes in patients early in 

acute pancreatitis.  

 

In this chapter, we investigated the ability of circulating histones to predict severe acute 

pancreatitis within 24 h after onset of abdominal pain in 236 consecutive patients. 
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5.2 Patients and methods 

5.2.1 Study population and ethics 

Consecutive acute pancreatitis patient admissions at The Royal Liverpool University 

Hospital (between June 2010 and March 2014) were enrolled once written informed 

consent was obtained. Inclusion criteria: (1) first episode of acute pancreatitis as 

defined by Revised Atlanta Classification (RAC)300; (2) blood samples obtained, 

processed and stored within 24 h of admission. Exclusion criteria: (1) age < 18 or > 

85 years; (2) advanced pulmonary, cardiac, renal diseases or malignancy; (3) 

pregnancy, chronic pancreatitis, pancreatic neoplasm or trauma as aetiologies; (4) time 

of abdominal pain onset to admission > 24 h.  

 

Peripheral blood samples from acute pancreatitis patients (n = 236) were collected 

within 24 h of admission (median of 24 h [range 5-48] after onset of abdominal pain) 

as well as from healthy volunteers (n = 47).  White blood cells (WBC) were isolated 

and viability assessed by 0.1% trypan blue (Life Technologies, Warrington, UK) using 

a CountessTM automated cell counter (Invitrogen, Glasgow, UK).  Serum and plasma 

were isolated and stored at -80°C in the National Institute for Health Research (NIHR) 

Liverpool Biomedical Research Unit Acute Pancreatitis Biobank, according to 

protocols approved by local research ethics committees (REC reference: 10/H1308/31 

on 11/02/2010).  

 

5.2.2 Study design 

Demographic, laboratory, radiographic, microbiological, surgical and clinical outcome 

data were prospectively recorded and maintained in an e-database following standard 

operating procedures (SOPs) according to Good Clinical Laboratory Practice (GCLP) 
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standards. SIRS, BISAP, APACHE II and SOFA scores were calculated within 24 h of 

admission295, according to published definitions. The first and the worst modified CT 

severity index (MCTSI) were enumerated using contrast-enhanced CT scans.  

 

POF was defined as a truncated SOFA score of ≥ 2 for ≥ 48 h that manifested in failure 

of at least one of the respiratory, cardiovascular or renal systems302. In patients with pre-

existing chronic kidney diseases (stage 1-3), a two-point worsening of kidney function, 

defined by estimated glomerular filtration rate326, was used to define renal failure 

regardless of circulating creatinine levels. Local complications were defined as the 

presence of acute peri-pancreatic fluid collections (or pseudocysts), pancreatic necrosis 

(acute necrotic collections or walled-off necrosis), splenic or portal vein thromboses, 

gastric outlet obstruction, or colonic necrosis as per RAC300. Major infection was 

defined as the appearance of either infected pancreatic necrosis, sepsis, or both, which 

developed at least 3 days after admission. 

 

5.2.3 Clinical biomarker analysis 

Plasma histone levels were determined by quantitative Western blot previously 

established protocols265, 271, 320, 321, 324. Interleukin (IL)-6 and IL-8 (R&D, Abingdon, 

UK) were measured in plasma by enzyme-linked immunosorbent assay (ELISA) as per 

manufacturers’ instructions. All measurements were performed in duplicates or 

triplicates by experienced laboratory staff, blinded to clinical data. Urea, creatinine, CRP 

and other routine clinical biomarkers were reported by the Department of Clinical 

Biochemistry, Royal Liverpool University Hospital, Liverpool, UK. 
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5.2.4 Statistical analysis 

Descriptive data were reported as median with interquartile range (IQR) and number 

(percentage) for continuous variables and categorical parameters, respectively. 

Continuous variables were compared by the Mann-Whitney U test (2 groups) and 

Kruskal-Wallis H test (3 groups). Categorical data were compared using Chi-square or 

Fisher’s exact tests. The correlation of circulating histones with MCTSI and WBC 

viability was assessed by Spearman rank correlation. Statistical significance was defined 

as P < 0.05. Receiver operating characteristics (ROC) curves were constructed for 

circulating histones and other markers in the prediction of POF, major infection and 

mortality. The area under curve (AUC) with 95% confidence intervals (CI) of 

circulating histones for each clinical outcome was compared with clinical scores and 

biomarkers. The optimum cut-offs for sensitivity, specificity, positive predictive value 

(PPV), negative predictive value (NPV), positive likelihood ratio (PLR) and negative 

likelihood ratio (NLR) of the assessed parameters were derived from the ROC curves.   
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5.3 Results 

5.3.1 Patient characteristics  

A total of 236 consecutive patients (mild: 156 (66.1%); moderate: 57 (24.2%); severe: 

23 (9.7%)) fulfilling the inclusion and exclusion criteria were observed in this study. 

The baseline characteristics and clinical outcomes for each patient group are outlined in 

Table 5.1. In this cohort 9.7% (23/236) patients developed POF, 25.4% (60/236) 

developed local complications; with the incidence of acute peri-pancreatic and acute 

necrotic collection 12.7% (30/236) for both. Major infection occurred in 3.8% (9/236) 

of the patients. The overall mortality was 3.8% (9/236) and all the patients that died 

were from the severe acute pancreatitis group. 

 

5.3.2 Circulating histones elevate on admission and indicate disease severity  

To assess whether circulating histones are associated with disease severity in acute 

pancreatitis patients we firstly measured levels among healthy volunteers, mild, 

moderate and severe acute pancreatitis patients. Figure 5.1 shows that circulating 

histones were barely detectable in healthy volunteers and comparable between both 

mild and moderate AP patients (median [quartiles] 1.1 [0.6, 2.1] vs. 1.3 [0.5, 2.8] 

µg/ml, P > 0.05).  Circulating histones were only significantly elevated in patients 

with severe disease (18.8 [5.9, 33.8] µg/ml, P < 0.001), indicating their association 

with disease severity. 

 

We then compared the relevance of measuring circulating histones to current clinical 

scores and biomarkers used to assess severity of acute pancreatitis patients (Table 5.2). 

Like circulating histones, SIRS, BISAP, APACHE II and SOFA scores all increased 

with disease severity within 24 h of hospital admission and were significantly elevated 
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in severe acute pancreatitis patients, compared to mild or moderate groups. General 

biomarkers including circulating urea, creatinine, hematocrit, IL-6 and IL-8 were also 

significantly higher in patients with severe disease. In contrast, CRP levels showed no 

significant association with disease severity within 24 h of admission, which only 

became significantly after 48 h. These data indicate that following acute pancreatitis 

onset, histones appear within the circulation more rapidly than CRP and 

synchronously with severe clinical manifestation, which may hold potential benefit 

for early prediction of disease severity within these patients.  

 

5.3.3 Circulating histones are the earliest indicator of disease severity 

POF during the first week of hospitalisation is a marker of fatal outcome in acute 

pancreatitis patients306. In this cohort, 9.7% (23/236) of patients developed POF and 

along with significantly more clinical complications within the first week of hospital 

admission (Table 5.1). This was also reflected by significant increased clinical scores 

on admission, which included; SIRS, BISAP, APACHE II and SOFA (Table 5.2). The 

AUCs for all the scores were moderate (range 0.68-0.81, Table 5.3) in predicting POF, 

and both the sensitivity (51-66%) and specificity (74-83%) were poor, most likely due 

to the transient nature of organ failure in acute pancreatitis patients. Circulating histone 

levels within 24 h of admission out performed current clinical scores (Table 5.3) and 

showed a far stronger predictive value (AUC: 0.92; 95%CI: 0.85-0.99) when 

compared to both CRP (AUC: 0.54; 95%CI: 0.37-0.71) (Figure 5.2A) and urea (AUC: 

0.75; 95%CI: 0.63-0.86) (Figure 5.2B). Furthermore, CPR (AUC: 0.89; 95%CI: 0.84-

0.94) (Figure 5.2A) and urea (AUC: 0.82; 95%CI: 0.71-0.94) (Figure 2B) only showed 

relatively strong predictive value of POF at 48 h following admission. Using the 

optimal circulating histones cut-off value (5.4 μg/ml) for the prediction of POF, they 
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comparatively surpassed all other parameters measured within this study, with a 

sensitivity, specificity, PPV, NPV, PLR and NLR were 82.6%, 94.4%, 61.3%, 98.1%, 

14.7 and 0.18, respectively (Table 5.4). Furthermore, when combining circulating 

histones levels with either of the above parameters, the predictive values were not 

further increased. These data suggest that measuring circulating histones within 24 h 

after hospital admission accurately and better predicted POF, compared to predictors 

currently used in routine clinical practice.  

 

5.3.4 Circulating histones have moderate predictive values for major infection  

We next assessed the value of measuring circulating histones in predicting major 

infection, compared to current clinical scores and biomarkers. Circulating histones had 

a moderate predictive value (AUC 0.78; 95%CI: 0.62-0.94) for major infection. CRP 

was less effective within 24 h (AUC: 0.72; 95%CI: 0.50-0.94) but became more so at 

48 h (AUC: 0.83; 95%CI: 0.75-0.92) (Figure 5.3A).  Measuring urea at either 24 (AUC: 

0.86; 95%CI: 0.74-0.97) or 48 h (AUC: 0.92; 95%CI: 0.86-0.97) more effectively 

predicted major infection than circulating histones within 24 h of admission (Figure 

5.3B). Similarly, we found that BISAP (AUC: 0.83; 95%CI: 0.72-0.94), APACHE II 

(AUC: 0.87; 95%CI: 0.75-1.00) and SOFA (AUC: 0.82; 95%CI: 0.64-0.99) scores had 

stronger predictive value for major infection than measuring circulating histones 

within 24 h, as did both creatinine (AUC: 0.83; 95%CI: 0.71-0.96) and IL-8 (AUC: 

0.80; 95%CI: 0.67-0.94). However, circulating histones exceeded other parameters 

tested in this study (Table 5.3, Figure 5.3C). At a cut-off of 5.4 μg/ml, the sensitivity, 

specificity, PPV, NPV, PLR and NLR of circulating histones for the prediction of 

major infection were 44.4%, 88.8%, 12.9%, 97.6%, 3.7 and 0.63, respectively (Table 

5.4). 
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5.3.5 Circulating histones have high values in predicting mortality 

Circulating histones had a higher predictive value for mortality (AUC: 0.96; 95%CI: 

0.92-1.00) than any other parameter within 24 hours (Table 5.3), including both CRP 

(Figure 5.4A) and urea (Figure 5.4B) and was comparable to urea (AUC: 0.97; 95%CI: 

0.95-0.99) at 48 h. At an optimal cut-off of 5.4 μg/ml, the sensitivity, specificity, PPV, 

NPV, PLR and NLR for circulating histones were 88.9%, 89.9%, 25.8%, 99.5%, 8.8 

and 0.12, respectively (Table 5.4 and Figure 5.4). Urea at a cut-off of 8 mmol/l had a 

sensitivity, specificity, PPV, NPV, PLR and NLR of 100%, 93.2%, 37.5%, 100%, 14.8 

and 0.00 respectively (Table 5.4 and Figure 5.4B) at 48 h. Both BISAP (≥ 2) within 

24 h and CRP (≥ 250 mg/l) at 48 h had reasonable predictive values, but with PLR 

values (4.6 and 4.4, respectively) much lower than those of both circulating histones 

within 24 h and urea at 48 h (Table 5.4 and Figure 5.4). Combining circulating histones 

(≥ 5.4 μg/ml) with either urea (≥ 8 mmol/l, at 48 h) or CRP (≥ 250 mg/l, at 48 h) did 

not increase specificity compared to the individual parameters alone.  

 

5.3.6 Circulating histones on admission correlate with leucocyte viability but not 

local complications 

We reported that circulating histones significantly correlated with pancreatic necrosis 

scores in animal models. However, the correlation between histone levels on 

admission and the first MCTSI (r = 0.17, n = 99, P = 0.094), or the worst MCTSI (r = 

0.195, n = 99, P = 0.054) were not significant. During disease progression, pancreatic 

necrosis normally occurs 24 h after onset so would therefore not directly affects the 

histone levels within the first 24 h, but may be contributory after this time. Another 

source could be the release histones from immune cells following cellular damage or 

death. We measured the percentage viable WBC in peripheral blood of 62 patients 
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within this cohort, and found a significant negative association between circulating 

histone levels and WBC viability within 24 h of admission (r = -0.515, P < 0.01; Figure 

5.5). These data indicate that inflammation-induced immune cell death may be a major 

source for early elevations in circulating histones. 
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Figure 5.1 Comparison of circulating histone levels in normal and patients with 

acute pancreatitis on admission. Plasma histones levels (g/ml) were quantified in 

health volunteers (normal; n = 47) and in mild (n = 156), moderate (n = 57) and severe 

(n = 23) acute pancreatitis patients within 24 h of admission. Median ± interquartiles 

with peak values are presented. *P < 0.05 when compared with other groups.  
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Table 5.1 Demographic and clinical outcomes of the study population 

 Total  

n = 236 

Mild  

n = 156 

Moderate  

n = 57 

Severe  

n = 23 

P value* 

Gender, female, n (%) 124 (52.5) 91 (58.3) 22 (38.6) 11 (47.8) 0.04† 

Age (year), median (IQR)  55.5 (42.3-69) 56 (42-68) 52 (40-67) 62 (52-76.5) 0.064 

Updated Charlson score, median (IQR) 0 (0-1) 0 (0-1) 0 (0-1) 0 (0-1) 0.158 

Aetiology      

    Biliary, n (%) 120 (50.8) 83 (53.2) 29 (50.9) 8 (34.8) 0.256 

    Alcohol, n (%) 48 (20.3) 30 (19.2) 13 (22.8) 5 (21.7) 0.835 

    Others, n (%) 68 (28.8) 43 (27.6) 15 (26.3) 10 (43.5) 0.259 

Time to admission (h), median (IQR) 8 (4-14) 8 (4-14) 6 (4-12) 11 (6-15) 0.111 

Time from admission to sampling (h), median (IQR)  15 (9-20) 14 (8.3-19.8) 17 (9.8-20) 16 (12-20) 0.588 

Worst modified CT severity index, median (IQR) 4 (2-7.5) 2 (0-2) 6 (4-8) 6 (6-8) <0.001† 

Acute peri-pancreatic fluid collection, n (%) 30 (12.7) 0 (0) 23 (40.4) 7 (30.4) <0.001† 

Pancreatic necrosis, n (%) 30 (12.7) 0 (0) 19 (33.3) 11 (47.8) <0.001† 

Infected pancreatic necrosis and/or sepsis, n (%) 9 (3.8) 0 (0) 1 (1.8) 8 (34.8) <0.001‡ 

Need for antibiotics, n (%) 34 (14.4) 9 (5.8) 9 (15.8) 16 (69.6) <0.001§ 

Nutritional support, n (%) 13 (5.5) 0 (0) 0 (0) 13 (56.5) <0.001‡ 

Necrosectomy and/or percutaneous drainage, n (%) 11 (4.7) 0 (0) 3 (5.2) 8 (34.8) <0.001§ 

Mortality, n (%) 9 (3.8) 0 (0) 0 (0) 9 (39.1) <0.001‡ 

Length of hospital stay (day), median (IQR) 7 (4-14) 5.5 (3-9) 14 (11-21) 29 (13.5-65.5) <0.001§ 

IQR, interquartile range; MCTSI, modified computerised tomography severity index; CT performed: mild (31/156), moderate (49/57), severe (20/23).  
*P value indicates comparison among three groups. †Mild vs. moderate or severe was significant. ‡Severe vs. mild or moderate was significant. §Any 

two groups comparison was significant. 
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Table 5.2 Comparison of clinical scores and biomarkers among different severity groups 

 Mild  

n = 156 

Moderate  

n = 57 

Severe  

n = 23 

 P value* 

 

Clinical scores within 24 h of admission     

    SIRS 1 (0-1) 1 (1-2) 2 (1-2) 0.002† 

    BISAP 1 (0-1) 1 (0-1) 2 (1-2) < 0.001‡ 

    APACHE II 5 (3-7) 7 (5-9) 10 (6-12.5) < 0.001† 

    SOFA 0 (0-1) 1 (0-2) 2 (1-4) < 0.001† 

Biomarkers within 24 h of admission      

    WBC (×109/l) 12.4 (9.9-15.3) 14.2 (11.5-17.4) 14.4 (11.2-19.3) 0.002‡ 

    Neutrophil/lymphocyte ratio 6.9 (4.1-14.8) 8 (4.3-14.7) 7.7 (5.3-23.6) 0.520 

    Haematocrit (%) 40.1 (38-42.9) 43.5 (39.3-45.6) 42.8 (37.6-45.4) 0.003‡ 

    Urea (mmol/l) 5 (3.7-6.1) 4.8 (3.7-6.3) 7.3 (5.2-8.9) 0.001§ 

    Creatinine (μmol/l) 71 (61-88) 83 (65-99) 104 (75-157.5) < 0.001† 

    CRP (mg/l)  7.5 (5-23.3) 10 (5-33.8) 10 (5-136.5) 0.288 

    IL-6 (pg/ml) 13.8 (7-57.8) 30.8 (8.6-96.2) 65.1 (21.7-143.4) 0.022// 

    IL-8 (pg/ml) 9.9 (0.4-19.1) 13.9 (5.4-28.9) 44.5 (18.8-64.2) < 0.001// 

    Circulating histones (μg/ml) 1.1 (0.6-2.1) 1.3 (0.5-2.8) 18.8 (5.9-33.8) < 0.001§ 

Biomarkers at 48 h admission     

    Urea (mmol/l) 3.5 (2.6-4.7) 3.5 (2.7-5.5) 8.7 (5.2-11.7) < 0.001§ 

    Creatinine (μmol/l) 66 (53.5-79) 65 (54.5-86) 71 (57-172) 0.08§ 

    CRP (mg/l) 38 (11-116) 234 (159-316.5) 327.5 (250-368.3) 0.001† 

SIRS, Systemic Inflammatory Response Syndrome; BISAP, Bedside Index for Severity in Acute Pancreatitis; APACHE II, Acute physiology and 

Chronic Health Examination II; SOFA, Sequential Organ Failure Assessment; WBC, white blood cell; CRP, C-reactive protein; IL, interleukin.  
*P value indicates comparison among three groups. †Any two groups comparison was significant. ‡Mild vs. moderate or severe was significant. 
§Severe vs. mild or moderate was significant. //Mild vs. severe was significant.  
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Table 5.3 AUC of ROC for potential predictors 

 POF P value Major infection P value Mortality P value 

Clinical scores within 24 h of admission       

   SIRS 0.68 (0.55-0.81) 0.01 0.67 (0.48-0.87) 0.096 0.72 (0.53-0.91) 0.037 

   BISAP 0.81 (0.71-0.91) < 0.001 0.83 (0.72-0.94) 0.002 0.90 (0.80-0.99) < 0.001 

   APACHE II 0.74 (0.62-0.87) < 0.001 0.87 (0.75-1) < 0.001 0.86 (0.70-1) 0.001 

   SOFA 0.79 (0.68-0.90) < 0.001 0.82 (0.64-0.99) 0.001 0.83 (0.66-0.99) 0.001 

Biomarkers within 24 h of admission       

   WBC (×109/l) 0.62 (0.49-0.74) 0.066 0.67 (0.47-0.86) 0.087 0.67 (0.46-0.87) 0.085 

   Haematocrit (%) 0.58 (0.43-0.73) 0.253 0.60 (0.35-0.86) 0.316 0.52 (0.3-0.74) 0.848 

   Urea (mmol/l) 0.75 (0.63-0.86) < 0.001 0.86 (0.74-0.97) < 0.001 0.83 (0.69-0.98) 0.001 

   Creatinine (μmol/l) 0.74 (0.62-0.86) < 0.001 0.83 (0.71-0.96) 0.001 0.91 (0.81-1) < 0.001 

   IL-6 (pg/ml) 0.67 (0.49-0.74) 0.018 0.73 (0.57-0.87) 0.031 0.73 (0.54-0.91) 0.045 

   IL-8 (pg/ml) 0.76 (0.64-0.89) 0.001 0.80 (0.67-0.94) 0.005 0.89 (0.78-0.99) 0.001 

   Circulating histones (μg/ml) 0.92 (0.85-0.99) < 0.001 0.78 (0.62-0.94) 0.005 0.96 (0.92-1) < 0.001 

Biomarkers at 48 h admission       

   Urea (mmol/l) 0.82 (0.71-0.94) < 0.001 0.92 (0.86-0.97) < 0.001 0.97 (0.95-0.99) < 0.001 

   Creatinine (μmol/l) 0.61 (0.44-0.78) 0.129 0.62 (0.36-0.88) 0.253 0.86 (0.65-1) 0.002 

   CRP (mg/l) 0.89 (0.84-0.94) < 0.001 0.83 (0.75-0.92) 0.001 0.86 (0.79-0.93) 0.003 

POF, persistent organ failure; SIRS, Systemic Inflammatory Response Syndrome; BISAP, Bedside Index for Severity in Acute Pancreatitis; 

APACHE II, Acute physiology and Chronic Health Examination II; SOFA, Sequential Organ Failure Assessment; WBC, white blood cell; CRP, 

C-reactive protein; IL, interleukin.  
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Table 5.4 Comparison of predictive values of the most effective predictors 

 Cut-off values Sensitivity Specificity PPV NPV PLR NLR 

POF        

    BISAP (within 24 h) ≥ 2 68.4 82.8 26.5 96.7 4.0 0.38 

    Circulating histones (within 24 h) ≥ 5.4 μg/ml 82.6 94.4 61.3 98.1 14.7 0.18 

    Urea (at 48 h) ≥ 8 mmol/l 60.9 94.7 56.0 95.6 11.5 0.41 

    CRP (at 48 h) ≥ 250 mg/l 80.0 80.5 29.1 97.6 4.1 0.25 

Major infections          

    BISAP (within 24 h) ≥ 2 75.0 80.5 12.2 98.9 3.8 0.31 

    Circulating histones (within 24 h)  ≥ 5.4 μg/ml 44.4 88.1 12.9 97.6 3.7 0.63 

    Urea (at 48 h) ≥ 8 mmol/l 66.7 91.4 24.0 98.5 7.8 0.37 

    CRP (at 48 h) ≥ 250 mg/l 77.8 77.7 13 98.8 3.5 0.29 

Mortality            

    BISAP (within 24 h) ≥ 2 87.5 80.9 14.3 99.4 4.6 0.15 

    Circulating histones (within 24 h) ≥ 5.4 μg/ml 88.9 89.9 25.8 99.5 8.8 0.12 

    Urea (at 48 h) ≥ 8 mmol/l 100 93.2 37.5 100 14.8 0.00 

    CRP (at 48 h) ≥ 250 mg/l 100 77.1 10.9 100 4.4 0.00 

PPV, positive predictive value; NPV, negative predictive value; PLR, positive likelihood ratio; NLR, negative likelihood ratio; POF, persistent 

organ failure; BISAP, Bedside Index for Severity in Acute Pancreatitis; CRP, C-reactive protein.  
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Figure 5.2 Comparison of ROC curves in predicting POF. ROC analysis comparing circulating histone levels within 24  h with either (A) CRP 

within 24 h and at 48 h or (B) urea within 24 h and at 48 h, in predicting for POF in acute pancreatitis patients (n = 236). Dash line represents ROC 

reference line. 
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Figure 5.3 Comparison of ROC curves in predicting infection. ROC analysis predicting infection in acute pancreatitis patients (n = 236), 

comparing circulating histones within 24 h of admission are to (A) CRP within 24 h and at 48 h after admission, (B) urea within 24 h and at 48 h 

after admission and (C) white blood cell (WBC) counts, neutrophil/lymphocyte ratio, IL-6 and IL-8 within 24 h of admission. Dash line represents 

ROC reference line. 
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Figure 5.4 Comparison of ROC curves in predicting mortality. ROC analysis comparing circulating histone levels within 24 h with either 

(A) CRP within 24 h and at 48 h or (B) urea within 24 h and at 48 h, in predicting for mortality in acute pancreatitis patients (n = 236). Dash line 

represents ROC reference line.
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Figure 5.5 Correlation between histone levels and percentage of leucocyte 

viability on within 24 h of admission. Circulating histone levels (µg/ml) were 

correlated with percentage of leucocyte viability in acute pancreatitis patients (n = 62) 

within 24 h of admission.
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5.4 Discussion 

In this study, we demonstrate for the first time that levels of circulating histones are a 

robust index of disease severity and capable of predicting POF and mortality, better 

than indices currently used in the clinical setting within 24 hours of admission. 

Moreover, we provide supporting evidence that BISAP within 24 hours as well as urea 

and CRP at 48 hours have good predictive values for POF, major infection and 

mortality, encouraging their routine clinical use before new markers are developed. 

The consecutive nature of patient recruitment and short time from onset of pain to 

sampling, stringently applied, adds strength to these conclusions.  

 

BISAP, which contains blood urea nitrogen (BUN), Glasgow Coma Score, SIRS, age 

and presence of pleural effusions, is a recently developed and validated clinical score 

primarily for the prediction of mortality in acute pancreatitis.294, 295, 327 Our study has 

shown that BISAP predicted POF and morality reasonably well, inferior only to 

circulating histones within 24 hours of admission, justifying its clinical use. However, 

it is a composite of five elements, two of which are scoring systems themselves. 

Furthermore, the need for an upright X-ray examination may hamper its timely 

application. On the other hand, we did not observe robust predictive values for SIRS, 

APACHE II and truncated SOFA, consistent with current literature.295 As clinical 

scoring systems generally suffer from their cumbersome nature and are not 

intrinsically superior to routine biomarkers, clinicians still prefer simple laboratory 

assays based on novel biomarkers.  

 

BUN is a key component of BISAP and has been validated for predicting mortality.328  

A recent study shows that a rise in BUN within 24 hours of admission is strongly 



120 

 

associated with higher rates of POF and pancreatic necrosis.312 Findings from our 

study corroborate those from previous studies and show that urea at 48 hours (≥ 8 

mmol/l) had similar predictive values to circulating histones within 24 hours (≥ 5.4 

μg/ml); both were very effective for mortality prediction. Urea at 48 hours identified 

all fatal clinical outcomes with high specificity (93.2%) in our cohort, highlighting its 

importance for mortality prediction. However, urea was inferior to circulating histones 

in predicting POF, but better for major infection.  

 

CRP is one of the most widely accepted and used measure in predicting acute 

pancreatitis severity, but was evaluated primarily based on the 1992 Atlanta 

Classification.314, 317 In this study, CRP at 48 hours (≥ 250 mg/l) had relatively strong 

predictive values for POF (AUC: 0.89; 95%CI: 0.84-0.94), major infection (AUC: 

0.83; 95%CI: 0.75-0.92) and mortality (AUC: 0.86; 95%CI: 0.79-0.93). Circulating 

histones had better predictive values in terms of POF and mortality compared to CRP, 

but was less effective in the prediction of major infection. CRP only became useful 48 

hours after admission and circulating histones outperformed CRP for early prediction. 

However, CRP values also reflect disease progression, successful intervention and 

improvement, something as yet untested for circulating histones and so the continued 

use of CRP should still be strongly recommended. Mechanistically, CRP has recently 

been shown to rise later than circulating histones in a trauma-induced lung injury and 

serves as a detoxifying molecule to block the histone binding to cellular membranes.265  

As the emerging role of DAMPs continues to unravel in experimental and human acute 

pancreatitis, the relationship of CRP to circulating histones, HMGB1, DNA and other 

DAMPs warrants further investigation.   
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The value of hematocrit in predicting severity of acute panceatitis has been 

controversial. We could not confirm predictive values reported by a recent large cohort 

multicenter study.312 This discrepancy may be because previous studies looking at 

hematocrit, urea and BISAP were not as stringent in limiting time from the onset of 

pain to hospital admission, thus limiting their findings. Our study strictly applied pre-

defined inclusion and exclusion criteria and assessed patients early following disease 

onset, making our findings more reliable. We were unable to observe statistically 

significant predictive values for neutrophil/lymphocyte ratio or white blood cell count 

within 24 hours of admission. Other clinical biomarkers such as albumin, total protein, 

hemoglobin, bicarbonate, prothrombin time, adjusted calcium and magnesium had 

little predictive value for POF and mortality in out cohort (data not shown). IL-6 and 

IL-8 had low to moderate predictive value. These findings collectively support the 

utility of circulating histones in the early prediction of acute pancreatitis severity. 

 

The most studied DAMP in the acute pancreatitis setting is HMGB1. Based on 

previous reports 329, 330 significant release of HMGB1 also occurs beyond 24 hours in 

experimental acute pancreatitis thus implying it may not be useful in the early 

prediction of POF. In contrast, we have previously demonstrated that levels of 

circulating histones rise within 2 hours in experimental acute pancreatitis325 and early 

in human acute pancreatitis as demonstrated here. We observed strong correlation 

between peak histone levels and pancreatic necrosis in animal acute pancreatitis 

models, 325 however histone levels within 24 hours of admission in this study did not 

correlate with MCTSI or predict pancreatic necrosis. This discrepancy may be due to 

the time point of blood collection, or indeed represents a fundamental difference in 

disease progression, as pancreatic necrosis occurs several days later in humans than in 
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animal models. Therefore, pancreatic acinar cells are likely to contribute very little to 

levels of circulating histones in early stage disease. Instead, immune cells such as 

neutrophils may contribute to the majority of histones detectable in blood released as 

they may be released during NETosis,125 as well as primary and secondary necrosis. 

Our observation that histone levels were strongly associated with the proportion of 

dead/dying peripheral leukocytes supports this argument. Therefore, histone levels 

may indeed reflect the intensity of systemic inflammation and auto-amplification of 

inflammation, thus determining disease severity.  

 

In conclusion, circulating histones predicting major clinical outcomes, particularly 

POF within 48 hours of disease onset, and are more effective than any available 

clinical marker. Measuring circulating histones is of great clinical importance and 

holds immediate translational potential. As such measuring circulating histones may 

be candidates for integration into current scoring systems to enhance the early, 

accurate and robust stratification of severe acute pancreatitis and to ensure timely, 

appropriate care of high-risk patients. 
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Chapter 6 – Elevated circulating histones are associated with multiple organ 

dysfunction syndrome in patients with acute pancreatitis 

 
 

6.1 Introduction  

 
 

Acute pancreatitis is one of the most common digestive diseases that require emergency 

admission301, 331. The incidence of acute pancreatitis has escalated from 5 to 30 per 10 

million people over the last 50 years in the United Kingdom332. Approximately 15-20% 

of acute pancreatitis patients experience a complicated clinical course with 

manifestations of organ failure, local complications and major infections304, 333. These 

local and systemic determinants formed the basis of the Revised Atlanta Classification 

(RAC)300 which stratifies acute pancreatitis severity into mild, moderate and severe. The 

“severe” category, defined as presence of persistent organ failure (POF), especially 

multiple organ dysfunction syndrome (MODS)286, 305, 306, 334, 335, has been well 

established to be the most critical contributor to mortality, but the underling mechanisms 

remain to be elucidated.  

 

Studies that have attempted to link pancreatic necrosis to MODS are not conclusive yet. 

How a single organ lesion triggers the systemic inflammatory response syndrome 

(SIRS) and the subsequent MODS remains elusive. However, it is generally recognised 

that immunological factors336 play important roles. Inflammatory cytokine storm is 

believed to be the fundamental factor in the pathogenesis of SIRS and MODS in acute 

pancreatitis337. This process is characterised by an initial sterile inflammation that results 

from injured pancreatic acinar cells, the primary victims of acute pancreatitis338, 339. 

Necrotic or apoptotic acinar cells release their intracellular pro-inflammatory contents, 

such as histones, high-mobility group box protein 1 (HMGB1), DNA, mitochondrial 



124 

 

components, adenosine triphosphate and heat shock protein 70 into the extracellular 

space to trigger cytokine release and enhance inflammation274. These cellular 

breakdown products are collectively called damage–associated molecular pattern 

molecules (DAMPs)274. The role of DAMPs has been increasingly identified in critical 

illness and some of them (e.g. HMGB1 and cell-free DNA) have been shown to correlate 

positively with disease severity in both experimental models and patients with acute 

pancreatitis274.   

 

Intra-nuclear histones are the most abundant nuclear proteins that play essential roles in 

DNA packaging and gene regulation. However, released histones following extensive 

cell or organ damage, such as in severe trauma271, liver injury322 and severe sepsis213, 320, 

are toxic to various mammalian cells causing injury to MODS including the heart, lungs, 

kidneys and liver213, 271, 275, 276, 320, 322, 340, 341. Recent reports showed that in the lungs, 

neutrophils extracellular traps (NETs) could release histones locally and damage 

epithelial cells340, 342. Cellular toxicity results from direct membrane binding and 

resultant calcium influx271, 343. In addition, circulating histones are directly pro-

inflammatory by stimulating leucocytes to secrete cytokines that include tumour 

necrosis factor-alpha (TNF-α), interleukin (IL)-1, IL-6 and IL-8322. This process 

involves Toll-like receptor (TLR)-2, TLR-4 and TLR-9. The involvement of TLR-4 and 

IL-6 in the pathogenesis of acute pancreatitis has been extensively described344, 345. 

Recently, histones were reported to activate NLRP3 inflammasomes278, 279, 342 to 

enhance the release of IL-1beta (IL-1β) and IL-18, which are also reported to play roles 

in ACUTE PANCREATITIS346. Histones are also pro-thrombotic through endothelial 

damage, von Willebrand factor-mediated leucocyte recruitment, platelet activation and 

the protein C anticoagulant pathway322, 347, 348 and may enhance MODS by impairing 
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microcirculation. We have reported that extracellular histones can directly trigger 

neutrophils to release myeloperoxidase and form NETs271, the later further releases 

histones. Therefore, a vicious cycle may exist to further damage microcirculation and 

enhance organ injury340.   

 

In chapter 4 we showed that circulating histones are significantly elevated in mouse 

models of necrotising acute pancreatitis and associated with pathological scores of 

pancreatic necrosis and distal organ injury349. In chapter 5, we further demonstrated that 

on admission elevated circulating histones (≥ 5.4 µg/ml) are accurate predictors for POF 

and morality in patients with human acute pancreatitis.   

 

In this chapter, we examined (1) whether circulating histone levels are correlated with 

clinical severity scores, proinflammatory cytokines and individual organ injury markers; 

(2) whether circulating histones are associated with organ failure status; (3) which factor 

(e.g. POF, pancreatic necrosis, and infection) is principally associated elevated 

circulating histones.    
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6.2 Patients and Methods 

6.2.1 Study population and ethics 

Consecutive patients primarily admitted to Royal Liverpool University Hospital 

(RLUH) between 2010 and 2015 were included. A first episode of acute pancreatitis, 

established by clinical symptoms, laboratory tests and/or imaging as defined by 2012 

RAC admitted within 72 h of symptom onset300.  Exclusion criteria were: (1) age < 18 

or > 85 years; (2) trauma, pancreatic neoplasm, pregnancy and chronic pancreatitis as 

aetiologies; (3) advanced pulmonary, cardiac, renal or malignant diseases. Referral 

patients with POF admitted to Intensive Care Unit (ICU) fulfilling the above criteria 

were also included.  

 

For primary admitted patients, peripheral blood samples were obtained within 24 h of 

admission. For referral patients, blood samples were taken at RLUH ICU admission and 

daily for up to a week. Blood samples were also collected from heathy volunteers. Serum 

and plasma were isolated and stored at -80°C in the National Institute for Health 

Research (NIHR) Liverpool Biomedical Research Unit Control and Acute Pancreatitis 

Biobanks, according to protocols approved by local research ethics committees (REC 

references: UoL000933, 11/WNo01/1, 13/NW/0089 and 10/H1308/31). The collection, 

process and storage of samples stringently followed standard operating procedures 

(SOPs) according to Good Clinical Laboratory Practice (GCLP) standards. 

 

6.2.2 Clinical data collection  

Extensive clinical data were prospectively recorded and maintained in an e-database. 

SIRS, Acute Physiology and Chronic Health Evaluation II (APACHE II) and SOFA 

scores (at least one of the respiratory, cardiovascular or renal systems302) were calculated 
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within 24 h of admission for primarily admitted patients or daily for referral patients, 

respectively, according to published definitions295.  

 

POF was defined as at least one organ having a SOFA score of ≥ 2 for ≥ 48 h. Local 

complications (pancreatic necrosis; acute peripancreatic fluid collection, APFC; vein 

thrombosis) were defined as per RAC300 according to enhanced computerised 

tomography (CECT). Pancreatic necrosis was quantified using the modified CT severity 

index294. Infection was defined as positive culture from body fluid, blood and tissue. 

Major infection was defined as presence of infected pancreatic necrosis and/or sepsis. 

To study the association of these variables with circulating histones, local complications 

and infected pancreatic necrosis were calculated by 7 days before or after sampling, 

while transient organ failure, POF and other infections were calculated by 3 days before 

or after sampling. 

 

6.2.3 Blood sample analysis  

Circulating histone levels were determined by Western blotting as described 

previously265, 271, 320, 325, 350, 351. Cytokines/chemokines, including IL-1β, IL-6, IL-8 and 

monocyte chemoattractant protein (MCP)-1 were measured using commercial ELISA 

kits (R&D, Abingdon, UK). Arterial blood gases, serum cardiac troponin T, urea, 

creatinine, bilirubin, alanine aminotransferase and albumin were reported by the 

Department of Clinical Biochemistry of the RLUH.  

 

6.2.4 Statistical analysis  

Continuous variables and categorical data were described as median with interquartile 

range (IQR) and number and percentage, respectively. Mann-Whitney U test and 
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Kruskal-Wallis H test were used to determine statistical differences between two groups 

and three or more groups, respectively. Spearman rank correlations were used to analyse 

the associations between two continuous variables. Univariate analysis was performed 

for the association of each variable with circulating histones by bivariate logistic 

regression. Multivariate analysis was further performed included variables with P < 0.1 

from univariate analysis. These variables were age (≤ 60 or > 60 years), aetiologies 

(biliary, alcohol and other aetiologies), Charlson score (< 2 or ≥ 2), transient organ 

failure (presence or absence), POF (presence or absence), pancreatic necrosis (absence, 

< 30%, 30-50%, ≥ 50%) and major infection (presence or absence). Circulating histones 

were transformed to dichotomous variables according to cut-off values of 5.4 μg/ml 

(Chapter 5) and 20 μg/ml271.   
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6.3 Results  

6.3.1 Patient characteristics and clinical outcomes 

A total of 260 consecutive primarily admitted patients and 52 referral patients were 

included. The patient characteristics and clinical outcomes are shown in Table 6.1. There 

were 235 primarily admitted patients did not develop POF during hospital stay (176 

mild and 59 moderate; Non-POF); 25 developed POF either within 24 h of admission 

or later (POF < 24 h). All referral patients had POF prior to transfer and the POF 

persisted at least > 48 h after RLUH ICU admission (POF > 48 h).  

 

For primary patients, the median age was 55 years with 124 (47.7%) males. A hundred 

thirty-three (51.2%) patients were biliary aetiology, followed by 53 (20.4%) alcohol and 

others. The median Charlson score was 0. There were 21 (8%) patients needed intensive 

care, 32 (12.3%) developed APFC and 37 (14.2%) had pancreatic necrosis. Ten (3.8%) 

patients underwent pancreatic drainage and/or necrosectomy, 14 (5.4%) manifested 

major infection and 9 (3.5%) patients died, all of them were from the severe group. The 

median length of hospital stay was 7 days. The median age in the referrals was 61 years 

with 28 (53.8%) patients were males. Biliary was also the leading cause with 22 (42.3%) 

patients, followed by 13 (25%) alcoholics and other aetiologies. The median 

comorbidity score was also 0. Patients were referred at a median of 7.5 days (4-12.8) 

after primary hospital admission and all patients needed intensive care when transferred. 

Six (11.5%) patients were detected APFC and 44 (84.6%) had pancreatic necrosis. 

Twenty-three (44.2%) patients received surgical intervention, 45 (86.5%) patients 

developed major infection and 11 (21.2%) died. The median hospital stay was more than 

10 weeks.   
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Table 6.1 Patient characteristics and clinical outcomes  

Demographics Primary 

n = 260 
Referral 

n = 52 

Age, years, median (IQR) 55 (42-69) 61 (43-73) 

Gender, males, n (%) 124 (47.7) 28 (53.8) 

Aetiology, n (%)    

    Biliary 133 (51.2) 22 (42.3) 

    Alcohol 53 (20.4) 13 (25.0) 

    ERCP 11 (4.2) 1 (1.9) 

    Drug-induced 5 (1.9) 0 (0) 

    Others 58 (22.3) 16 (30.8) 

Comorbidity: Charlson score, median (IQR) 0 (0-0) 0 (0-0) 

Days to referral, median (IQR) NA 7.5 (4-12.8) 

RAC severity category, n (%)   

    Mild  176 (67.7) 0 (0) 

    Moderate 59 (22.7) 0 (0) 

    Severe 25 (9.6) 52 (100) 

Need for HDU/ICU, n (%)  21 (8.0) 52 (100) 

Peripancreatic fluid collection, n (%) 32 (12.3) 6 (11.5) 

Pancreatic necrosis, n (%) 37 (14.2) 44 (84.6) 

Pancreatic necrosectomy and/or drainage, n (%) 10 (3.8) 23 (44.2) 

Infected pancreatic necrosis and/or sepsis, n (%) 14 (5.4) 45 (86.5) 

Mortality, n (%) 9 (3.5) 11 (21.2) 

Days of hospitalisation, median (IQR) 7 (4-14) 74 (46-128) 

IQR, interquartile range; ERCP, endoscopic retrograde cholangiopancreatography; 

NA, not available; RAC, Revised Atlanta Classification; HDU, high dependence unit; 

ICU, intensive care unit. 
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6.3.2 Circulating histones are significantly correlated with clinical severity scores, 

proinflammatory cytokines and individual organ injury markers 

We first analysed the correlation of circulating histones with clinical severity scores, 

proinflammatory cytokines and individual organ failure markers. Results of Spearman 

correlation analysis are shown in Table 6.2. It appeared that circulating histones had 

strong correlation with serum IL-8 levels (rs = 0.566), followed by SIRS, APACHE II, 

SOFA, IL-1β and IL-6 (rs = 0.321-0.425). Circulating histones also signifcnatly 

correlated with respiratory (PaO2/FiO2, rs = -0.373), cardiac (cardiac troponin T, rs = 

0.321) and renal (urea, rs = 0.22) injury paramers. However, circulating histones were 

not signifcnatly correlated with creatine, bilirubin, alanine aminotransferase (all P > 

0.05). 

 

6.3.3 Circulating histones are highly associated with organ failure status  

As circulating histones were significantly correlated with clinical severity scores, 

proinflammatory cytokines and individual organ failure markers (assessed at the same 

time when blood was drawn for histone measurement), we postulated that circulating 

histones were associated with organ failure status. The circulating histone levels 

according to different groups are shown in Figure 6.1. There were no significant 

differences in circulating histone levels among healthy volunteers (median 0.81 µg/ml 

[IQR: 0.38-1.6]), mild (1.1 µg/ml [0.5-2.1]) and moderate (1.4 µg/ml [0.5-2.8]) patients 

(all P > 0.05). However, the circulating histones were dramatically elevated in the 

primary severe group (22.9 µg/ml [5.9-40]) when compared to these three groups (all P 

< 0.01). Furthermore, the peak circulating histone levels of the referrals (34.1 µg/ml 

[21.5-80.6]) were even higher than that of the primary severe patients (P < 0.05; Figure 

6.1A).  
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Table 6.2 The correlation of circulating histones to various parameters  

Variables rs P value 

Clinical severity scores   

    SIRS 0.349 < 0.001 

    APACHE II 0.425 < 0.001 

    SOFA  0.397 < 0.001 

Proinflammatory cytokines   

    IL-β (pg/ml) 0.376 < 0.001 

    IL-6 (pg/ml) 0.367 < 0.001 

    IL-8 (pg/ml) 0.566 < 0.001 

    MCP-1 (pg/ml) 0.014 0.285 

Individual organ injury markers   

   PaO2/FiO2 (mmHg) -0.373 < 0.001 

   Cardiac troponin T (ng/ml) 0.321 < 0.001 

   Urea (mmol/l) 0.22 < 0.001 

   Creatinine (µmol/l) 0.083 0.113 

   Bilirubin (µmol/l)* -0.094 0.161 

   Alanine aminotransferase (U/l)* -0.008 0.053 

   Platelets (×109/l)  0.04 0.094 

SIRS, Systemic Inflammatory Response Syndrome; APACHE II, Acute physiology 

and Chronic Health Examination II; SOFA, Sequential Organ Failure Assessment; IL, 

interleukin; MCP-1, monocyte chemoattractant protein; PaO2/FiO2, partial pressure 

arterial oxygen and fraction of inspired oxygen. 

*Biliary aetiology excluded.  
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We therefore analysed data according to Non-POF (primary mild and moderate), POF 

< 24 h (primary severe) and POF > 48 h (referrals and severe) categories. The correlation 

of circulating histones and parameters significantly associated with histones to organ 

failure status are shown in Table 6.3. All the parameters were significantly different 

among the three groups in SIRS, APACHE II, SOFA, PaO2/FiO2 and circulating 

histones. There were significant differences for either two groups for all the other 

parameters assessed. Spearman correlation analyses revealed that the circulating histone 

levels were most highly associated organ failure status (rs = 0.693), closely followed by 

SOFA (rs = 0.658), IL-8 (rs = 0.625), APACHE II (rs = 0.619) and PaO2/FiO2 (rs = -

0.565). While other parameters (SIRS, IL-1β, IL-6, cardiac troponin T and urea) still 

had significant correlation with organ failure status but the rs values were less than 0.5. 
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Figure 6.1 Circutlating histones are aossicated with organ failure status. The blood 

sampling time was within 24 h of admission for primary patients or at RLUH ICU 

admission and daily for up to a week for referrals. Comparison of circulating histone 

levels among heathy volunteers (n = 48), primary disease categories (RAC: mild = 176; 

moderate = 59; severe = 25) and referrals (n = 52). *P < 0.05 vs. healthy volunteers; †P 

< 0.05 vs. mild or moderate primary patients; ‡P < 0.05 vs. primary severe patients.  
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Table 6.3 The correlation of circulating histones and other parameters with organ failure status  

Parameters Group 1 (Non-POF) 

n = 235 
Group 2 (POF < 24 h) 

n = 25 
Group 3 (POF > 48 h) 

n = 52 
P value* rs|| 

Clinical scores      

    SIRS 1 (0-2) 2 (1-12) 2 (2-3) < 0.001† 0.475 

    APACHE II 5 (3-8) 9 (6-12) 16 (12-19) < 0.001† 0.619 

    SOFA  1 (0-1) 2 (1-4) 7 (3-9) < 0.001† 0.658 

Inflammatory parameters      

    Circulating histones (µg/ml) 1.2 (0.5-2.3) 22.9 (5.9-39.6) 34.1 (21.5-80.6) < 0.001† 0.693 

    IL-1β (pg/ml) 0.6 (0-2.6) 2.3 (0-5.7) 2.8 (1.5-4.8) < 0.001‡ 0.369 

    IL-6 (pg/ml) 24.8 (7.6-62.2) 60.5 (19.7-154.8) 122.5 (30.8-230.8) < 0.001§ 0.408 

    IL-8 (pg/ml) 11.7 (1.2-25.6) 47.6 (18.4-173.3) 71.1 (41.8-131.5) < 0.001§ 0.625 

Individual organ injury markers      

   PaO2/FiO2 (mmHg) 368 (321-414) 295 (176-358.9) 190.5 (161.6-224.1) < 0.001† -0.565 

   Cardiac troponin T (ng/ml) 5 (3-11) 17.5 (6.8-35.5) 15.7 (4.7-40) 0.001§ 0.397 

   Urea (mmol/l) 4.9 (3.7-6.2) 6.9 (4.8-8.9) 7 (4.1-12.1) 0.003§ 0.272 

POF, persistent organ failure; SIRS, Systemic Inflammatory Response Syndrome; APACHE II, Acute physiology and Chronic Health Examination 

II; SOFA, Sequential Organ Failure Assessment; IL, interleukin. PaO2/FiO2, partial pressure arterial oxygen and fraction of inspired oxygen.                             

*P value indicates comparison among three groups. †Any two groups’ comparison was significant. ‡Group 1 vs. Group 2 was significant. §Group 

1 vs. Group 2 or 3 was significant. ||All P < 0.001 in Spearman correlation analyses.  
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6.3.4 Univariate and multivariate logistic regression analysis 

Results of the univariate analysis are shown in Table 6.4. In the univariate analysis, we 

found that POF, pancreatic necrosis and major infection were significantly associated 

with elevated circulating histones (≥ 5.4 μg/ml). Whereas age, gender, aetiology, 

comorbidity, transient organ failure and other local complications were not significantly 

correlated to elevated circulating histones.  

 

Results of the multivariate analysis are shown in Table 6.5. Fitting the positive 

parameters (at a cut-off of P < 0.1) from univariate analysis into multivariate logistic 

regression model, we found that only POF had significant association with elevated 

circulating histones for all primary patients (OR = 57.1, 95% CI: 14.2 to 229.8, P < 

0.001). Pancreatic necrosis (regardless of necrotic size) and major injection, however, 

were not found to be statically significant (all P > 0.05). When primary and referral 

patients were combined together, both POF (OR = 121.5, 95%CI: 29.1 to 506.9, P < 

0.001) and major infection (OR = 4.6, 95%CI: 1.1 to 19.8, P = 0.041), but not pancreatic 

necrosis, were significantly associated with elevated circulating histones. When the 

circulating histone cut-off value was ≥ 20 μg/ml, a known concentration for direct 

cytotoxicity271, POF was even stronger associated with elevated circulating histones in 

primary patients (OR = 98.1, 95% CI: 14.4 to 669.0, P < 0.001). Similar findings were 

obtained when primary and referral patients were merged (OR = 177.2, 95%CI: 33.4 to 

941.2, P < 0.001). However, major infection was not further shown to be significantly 

correlated to the increase of circulating histones in either primary patients or the 

combined primary and referral patients (both P < 0.05). These findings strongly suggest 

that POF was the dominating factor that associated with raised circulating histones.  
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Table 6.4 Univariate logistic regression of risk factors for elevated circulating histones 

 Primary  Primary and referral  

Variables (at histones cut-off ≥ 5.4 µg/ml) OR (95% CI) P value OR (95% CI) P value 

Age, years 1.06 (0.52-2.17) 0.866 1.32 (0.80-2.20) 0.267 

Gender, males 0.90 (0.44-1.82) 0.765 0.90 (0.55-1.49) 0.686 

Aetiology     

    Biliary 0.73 (0.36-1.49) 0.387 0.70 (0.42-1.16) 0.163 

    Alcohol 0.75 (0.30-1.92) 0.552 1.10 (0.60-2.02) 0.751 

    Others* 1.74 (0.84-3.62) 0.139 1.01 (0.58-1.77) 0.974 

Comorbidity: Charlson score 1.31 (0.59-2.89) 0.511 1.13 (0.63-2.03) 0.676 

Organ failure     

    Transient organ failure 0.70 (0.23-2.10) 0.523 0.51 (0.22-1.20) 0.122 

    Persistent organ failure 73.67 (19.81-273.92) < 0.001 137.10 (52.31-359.33) < 0.001 

Pancreatic necrosis     

    No necrosis† 2.11 (0.83-5.35) 0.116 1.60 (0.77-3.33) 0.207 

    Necrosis < 30% 2.10 (0.72-6.13) 0.176 2.60 (1.21-5.60) 0.014 

    Necrosis 30-50% 4.54 (1.22-16.98) 0.024 7.89 (2.95-21.12) < 0.001 

    Necrosis > 50% 6.53 (0.89-47.91) 0.065 17.47 (6.40-47.69) < 0.001 

Major infection 11.00 (2.93-41.24) < 0.001 31.08 (11.60-83.31) < 0.001 

OR, odds ratio; CI, confidence interval. 

*Include endoscopic retrograde cholangiopancreatography, drug-induced, idiopathic and unknown aetiologies.  

†May include local complications such as acute peripancreatic fluid collection and/or vein thromboses. 
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Table 6.5 Multivariate logistic regression of independent predictors for elevated circulating histones 

 Primary  Primary and referral  

Variables (at histones cut-off ≥ 5.4 µg/ml) OR (95% CI) P value OR (95% CI) P value 

    Persistent organ failure 57.2 (14.2-229.8) < 0.001 121.5 (29.1-506.9) < 0.001 

    Necrosis < 30% NA NA 0.9 (0.2-4.6) 0.923 

    Necrosis 30-50% 1.2 (0.1-10.8) 0.853 1.5 (0.2-11.0) 0.713 

    Necrosis > 50% 1.7 (0.1-40.0) 0.731 0.4 (0.1-2.6) 0.332 

    Major infection 4.3 (0.7-28.4) 0.126 4.6 (1.1-19.8) 0.041 

Variables (at histones cut-off ≥ 20 µg/ml)     

    Persistent organ failure 98.1 (14.4-669.0) < 0.001 177.2 (33.4-941.2 < 0.001 

    Major infection 4.1 (1.2-11.5) 0.092 4.4 (1.4-14.0) 0.14 

OR, odds ratio; CI, confidence interval; NA, not applicable. 
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6.4 Discussion 

This study supports our previous observations in acute pancreatitis mouse models349 (Chapter 4) 

and patients (Chapter 5) that circulating histones were elevated in severe disease. The present 

work found that circulating histones were significantly correlated with clinical severity scores, 

proinflammatory cytokines and individual organ injury markers. Circulating histones not only 

significantly elevated early in patients with severe acute pancreatitis but also even more so during 

disease progressing. We also demonstrate significant associations of distant organ injury and 

severity of the diseases with the levels of circulating histones. Moreover, multivariate logistic 

regression analysis reveals that POF, but not pancreatic necrosis or other factors, was most 

closely associated with elevated circulating histones. These data strongly suggest that histone 

toxicity may play an important role in the development of distant organ injury and even MODS 

in acute pancreatitis as reported in other diseases213, 271, 277, 322.  

 

The role of extracellular histones to be important proinflammatory mediators in sterile 

inflammation has been increasing recognised199. Recently, we325 and others125 have shown that 

circulating histones and NETs (major constitutes are histones) were elevated in experimental and 

human acute pancreatitis respectively. Furthermore, anti-histone antibody rescued mice from 

death in experimental acute pancreatitis222 and neutralising reagents polysialic acid prevented 

trypsin and signalling activation in isolated pancreatic acinar cells125. To elaborate these findings, 

we have demonstrated most of the primary severe patients had circulating histone levels ≥ 5.4 

μg/ml, a concentration that accurately predicted POF and mortality in the Chapter 5. There were 

56% (14/25) primary severe and 78.8% (41/52) referral patients had circulating histone levels ≥ 

20 μg/ml, a known direct cytotoxicity level in in vitro studies271. However, the circulating histone 

levels in mild and moderate patients remained low and were similar to healthy volunteers. In the 

correlation analysis, we found that circulating histones were strongly correlated to acute 
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pancreatitis disease severity and stage where patients with fully established POF had highest 

circulating histone levels. These data demonstrate that elevated circulating histones may be 

important proinflammatory mediators that contributed to POF in acute pancreatitis. 

 

The toxicity of histones to different organs, such as the lung, heart, kidney and the liver has been 

demonstrated in different animal models213, 271, 275, 276, 320, 322, 340, 341, 343, 352. In our previous study, 

we found that in mouse acute pancreatitis models, the organ injury markers are associated with 

histone levels. In this study, we also demonstrate that the biochemical markers of most affected 

organs in acute pancreatitis, the lung, cardiovascular and renal systems, were significantly 

correlated to the levels of circulating histones. The PaO2/FiO2 ratio is an indicator reflecting 

whether the patient has hypoxemia or not when the blood is sampled. In the very early stage of 

acute pancreatitis, hypoxemia is not only affected by respiratory function per se but also by other 

factors such as abdominal pain and fluid therapy. The hypoxemia will be corrected in most of the 

patients once the pain is controlled and they respond to fluid therapy. This is the case for moderate 

patients in our study as there were about 1/3 of them had PaO2/FiO2 < 300 mmHg, a cut-off value 

for acute respiratory distress syndrome (ARDS) as per Berlin Definition27, but most of them 

recovered very soon without any need for intensive care. Circulating histones elevated 

simultaneously or preceded to ARDS in primary severe acute pancreatitis and much higher levels 

were observed in the referrals, all of whom had ARDS with 55.5% (29/52) suffered from 

moderate/severe ARDS. Therefore, elevated circulating histones within 24 h of primary hospital 

admission may be a better indicator than PaO2/FiO2 < 300 mmHg for long lasting hypoxemia 

and impaired respiratory function. Interestingly, in patients with serum cardiac troponin T levels 

tested, there were 16.8% (20/119), 60% (12/20), 42.3% (22/52) had cardiac troponin T ≥ 14 

ng/ml for patients with non-POF, POF < 1 d and POF > 3 d, respectively. These findings are 

indicative that the cardiac injury may be a common phenomenon in acute pancreatitis. In support 



141 

 

of our data, a recently study6 has shown that brain natriuretic peptide353 and cardiac troponin I354 

levels (both are indicators for cardiomyopathy) were significantly elevated in severe acute 

pancreatitis at the first day of admission and positively correlated with SOFA score, serum 

procalcitonin and C-reactive protein levels. Similar to sepsis320, 351, 355, these novel findings 

highlight that in severe acute pancreatitis there was also substantial cell death in myocardium 

(e.g. caused by histones). Therefore, the previous overlooked cardiac troponin T levels may 

deserve to be routinely monitored in severe acute pancreatitis. Urea, but not creatinine, also 

significantly associated with circulating histones, albeit the correlation factor was weaker than 

those obtained for PaO2/FiO2 ratios and cardiac troponin T levels. These observations are 

suggestive that urea outperformed creatinine to reflect renal function, consistent with previously 

findings that blood urea nitrogen is a relative good early predictor for severe acute pancreatitis295 

and mortality328, 356. 

 

Circulating histones have been shown to directly induce liver injury352 and hepatic failure is an 

independent predictor for morality of acute pancreatitis335. However, the levels of bilirubin or 

alanine aminotransferase, markers of liver injury, showed no correlation to circulating histones, 

which was different from the observation in acute pancreatitis animal models349. This 

inconsistence may due to different aetiologies as alcoholics were associated more severe liver 

injury335. This may also due to the overall low incidence of liver injury in our cohorts. Circulating 

histones have been shown to induce coagulation in diseases such as sepsis357 and coagulation 

abnormalities have been linked to severity of acute panreatitis65. However, we did not find a 

significant correlation between platelet counts and circulating histones. In fact, there were only 

9 patients distributed in different severity groups with platelets < 100 × 103/mm3. In another 

study, coagulation failure has not been demonstrated to be an independent predictor for hospital 

mortality of acute pancreatitis patients335. It is worth noting that all the samples were collected 
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either within 24 h of primary hospital admission or less than 3 weeks of admission, representing 

a relative acute stage of this disease. Further time-course studies are needed to investigate 

whether there are correlations of circulating histones to liver injury and coagulation in acute 

pancreatitis, especially in the disease late stage.  

 

The source of circulating histones is not fully clear. The strong correlations to pancreatic necrosis 

scores in both animal models349 and patients indicate that the death of acinar cells could be a 

major contributor. However, in many patients, the extents of pancreatic necrosis were not closely 

associated with circulating histone levels, indicating that other sources co-exist.  Previous studies 

suggest that immune cells, such as during NETosis, may release substantial amounts of 

histones340, which may occur before acinar cell death and trigger local and systemic 

inflammation278, 279, 358 as indicated by the significant increase in proinflammatory 

cytokines/chemokines, such as IL-1β, IL-6, IL-8 and MCP-1359. However, a direct evidence of 

immune cells contributing to the elevation of circulating histone is still lacking. In our study, 

multivariate analysis revealed that POF, but not pancreatic necrosis, was significantly and 

dominantly associated with elevated circulating histones using their relevant cut-offs. These 

findings suggest that MODS may be companied with large number of cell death which in turn 

contributes to histone elevation. In addition, histone-enhanced NETs formation271 may also 

release histones. Recently, extracellular histones have been shown to induce lymphocyte 

apoptosis in an experimental sepsis model360. As lymphocyte apoptosis has also been associated 

with severe acute pancreatitis in both animals and patients, it may well be that the circulating 

histones could be responsible for these results and in turn apoptotic lymphocytes further release 

more circulating histones. Therefore the actual scenario is complicated and could be a vicious 

cycle that drives certain acute pancreatitis into a severe form although the pancreatic injury could 

be severe at the onset. The associations established from this clinical study was in favour of POF-



143 

 

induced cell death was the major source of circulating histones. However, there is a limitation 

that the causal-effect relationship between pancreatic necrosis and POF and the real source of 

circulating histones due to POF cannot be clarified without further investigation.   

 

Circulating histones significantly elevate in patients with severe acute pancreatitis and strongly 

correlate to disease severity and stage, clinical severity scores, proinflammatory 

cytokines/chemokines and parameters of MODS. Cell death resulted from POF may be the major 

sources of circulating histones, which have great potential to serve as prognostic markers and 

therapeutic targets for the management of severe acute pancreatitis in near future.  
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Chapter 7 – Overview 

 

In the Chapter 2, we first and systemically tested the cytotoxicity of full length and truncated 

histone subclasses. In order to synthesise truncated histones (N-terminal or C-terminal), we first 

generated anti-histone single chain variable fragment (ahscFv) and control IgG chain variable 

fragment (cscFv). The expression of ahscFv and cscFv was confirmed by Coomassie Brilliant 

Blue. The binding capacity of ahscFv and cscFv against histone H3 was test by Western blot, 

shown ahscFv (but not cscFv) bound to the histone. The binding capacity of ahscFv to histone 

subclasses was further confirmed by gel overlay and biosensor analyses. Therefore, the ahscFv 

was used in the subsequent studies.  

 

We found that all the fluorescein isothiocyanate-full length and 3 truncated histones (H1.1 C, 

H2A N, H3.1 N) bound to the cell membrane and induced calcium influx in an endothelial cell 

line. Other truncated histones did not bind to cell membrane, nor induced calcium influx. These 

data imply that a portion of histone subclasses still have cytotoxicity effects even when histones 

are degraded (truncated), highlighting the necessity of measuring all forms of circulating histones 

(histone-DNA complexes, free or truncated histone subclasses).  Having this idea in mind, we 

endeavoured to develop an assay to measure all forms of circulating histones using xMAP 

technology in Chapter 3. We successfully generated the stand curves in buffer system, but the 

recovery ratio in spiked plasma was low and failed to detect the histones in patient plasma which 

were detectable by Western blot. Our work adds a layer of evidence for the difficulties of 

developing a rapid, reliable assay to quantify all forms of circulating histones as currently only 

histone-DNA complexes can be commercially measured by enzyme-linked immunosorbent 

assay. 
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In Chapter 4, we tested circulating histones in three experimental acute pancreatitis models in 

mice with graded severity. Four intraperitoneal injections of caerulein induced only oedematous 

acute pancreatitis with little systemic inflammation and minimum rise of circulating histones at 

all time points tested. Early and significant elevation of circulating histones was observed in both 

12 caerulein injection model and sodium taurocholate (NaTC) intraductal infusion model. Both 

of these models developed marked pancreatic necrosis and distant organ injury with the overall 

severity greater induced by NaTC. The circulating histone levels were significantly associated 

with pancreatic necrosis and multiple organ injury parameters. We thus postulated that the 

sources of circulating histones may from both injured pancreas and distant organ injury products.  

 

In Chapter 5 and Chapter 6, we went to testify our hypotheses in human acute pancreatitis 

admitted to Royal Liverpool University Hospital (RLUH). In Chapter 5, we included a 

consecutive cohort contained patients admitted within 48 h of disease onset to hospital admission 

to see whether circulating histones would have a predictive value for major complications of 

acute pancreatitis. Interestingly, circulating histone levels did not differ from heathy volunteers 

(n = 47), mild (n = 156) and moderate (n = 57) acute pancreatitis patients (classified by Revised 

Atlanta Classification300, RAC). Circulating histones only marked elevated in severe acute 

pancreatitis (n = 23), a group of patients who had developed persistent organ failure (POF) during 

the clinical course. At a cut-off value of 5.4 µg/ml, circulating histones accurately predicted POF 

with sensitivity and specificity of 82.6% and 94.4%, respectively, higher than all clinical scores 

and biochemical markers tested simultaneously. Circulating histones also had good predictive 

value for mortality as mortality only occurred in patients with POF which circulating histones 

can accurately predict. However, circulating histones did not predict or correlate with pancreatic 

necrosis or any local pancreatic complications, highlighting other sources may exist. In line with 

this thought, we have observed that circulating histones were strongly associate with leucocyte 
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viability. This observation opens up the possibility that apoptotic neutrophils or neutrophil 

extracellular traps (NETs) could be a significant source for circulating histones.      

 

In Chapter 6, we analysed circulating histones and clinical data obtained from two separate 

cohorts of patients. The first cohort included 260 consecutive patients (mild = 176; moderate = 

59; severe = 25) admitted within 72 h of symptom onset and sampled within 24 h of admission. 

The second cohort included 52 constitutive patients who were referred to the Intensive Care Unit 

(ICU) of RLUH. All these patients were referral for potential management of local complication 

and had ongoing POF prior to transfer. Blood samples were obtained when they arrived RLUH 

ICU and daily for up to 7 days. The peak histone levels from referral patients were used through 

the study. It was found that circulating histones were significantly associated with clinical 

severity scores, proinflammatory cytokines and individual organ injury parameters. As 

circulating histones accurately predicted POF and were associated with disease severity 

parameters, we reasoned that circulating histones could reflect organ failure status. In another 

word, circulating histone levels would rise when disease severity has progressed. In agreement 

with these thoughts, when compared with the primary severe patients sampled on admission, 

referral patients had much higher elevated circulating histones. As circulating histones did not 

significant elevate in primary mild and severe patients, we merged these two groups into Group 

1 (no POF). Primary severe patients would have POF < 24 h when sampled regardless when the 

POF occurred, we therefore allocated these patients as Group 2 (POF < 24 h). Referral patients 

consistently at least had POF > 48 h prior to sampling, these were designated into Group 3 (POF 

> 48 h). Values of all clinical parameters, proinflammatory cytokines and organ injury parameters 

tested as well as circulating histones were significantly different among groups. The circulating 

histones had an even higher correlation than that of Sequential Organ Failure Assessment 

(SOFA) score to organ failure status, highlighting the close link between circulating histones and 
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organ failure. To further address the association between circulating histones and organ failure, 

we carried out univariable and multivariable analyses. The analyses revealed that POF had 

predominant association with circulating histones. The experimental and human studies in acute 

pancreatitis suggest: 

 

Elevated circulating histones occur in POF < 24 h and rise to even higher levels during the 

progression of POF in acute pancreatitis;  

 

POF but not pancreatic necrosis most significantly correlated with elevated histones in acute 

pancreatitis;  

 

The sources of circulating histones in severe acute pancreatitis warrant more studies; 

 

Histones may have a pathogenic role and might be targeted to treat POF in acute pancreatitis. 

The proposed role of circulating histones in acute pancreatitis is shown in Figure 7.1. 
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Figure 7.1 Circutlating histones in acute pancreatitis. Pancreatic toxins cause intial injury to 

the pancreas. Extracellular histones and other inflammatory mediators are relased to stimulate 

resident immune cells and circulating neutrophils. Apoptotic, necrotic neutrophils and neutrophil 

extracellular traps (NETs) release more histones and inflammatory mediators to further stimulate 

more neutrophil infilation and NETs formation. Stimulated neutrophils NETs, histones and other 

inflammatory cytokines cause multiple organ dysfunction syndrome (MODS) which in turn 

induce more release of circulating histones, triggering a vicous cycle: uncontroled MODS, 

coagulation and death.  
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Supplementary Table 1 Histone precipitated human plasma proteins* 

Gene name Protein 

Lipoprotein associated  

APOA1 Apolipoprotein A-I 

APOA4 Apolipoprotein A-IV 

APOB Apolipoprotein B-100 

APOC3 Apolipoprotein C-III 

APOE Apolipoprotein E 

CLU Clusterin (apolipoprotein J) 

GPLD1 Phosphatidylinositol-glycan-specific-

phospholipase D 

PON1 Serum paraoxonase/arylesterase 1 

Proteinase inhibitors  

SERPINA1 α-1-Antitrypsin 

A2M α-2-Macroglobulin 

ITIH1 Inter α-trypsin inhibitor heavy chain H1 

ITIH2 Inter α-trypsin inhibitor heavy chain H2 

ITIH3 Inter α-trypsin inhibitor heavy chain H3 

AMBP Protein AMBP (contains α-1-macroglobulin; 

bikunin) 

Complement associated   

C4BPA C4b-binding protein α chain 

C1R Complement C1r subcomponent 

C1S Complement C1s subcomponent 

C3 Complement C3 

C4A Complement C4-A 

Blood coagulation   

FGA Fibrinogen α-chain 

FGB Fibrinogen β-chain 

FGG Fibrinogen γ-chain 

F2 Prothrombin 

KNG1 Kininogen-1 

Immunoglobulins  

IGHA1 Ig α-1 chain C region       

IGHA2 Ig γ-2 chain C region 

IGKC Ig κ-chain C region 

IGLC1 Ig λ-chain C region 

IGHM Ig µ-chain C region 

Cell adhesion  

FN1 Fibronectin-1 

THBS1 Thrombospondin-1 

VTN Vitronectin 

Transport   

ALB Serum albumin 

CP Ceruloplasmin 

TF Serotransferrin 

TTR Transthyretin 

*Adapted from Pemberton et al. 2010214
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Supplementary Table 2 Novel identified histone binding molecules 

Studies Histone types* Binding assay used Molecules 

Friggeri et al. 2012361 H3 ELISA  Mer receptor, αvβ5 integrin 

Allam et al. 2012277 H4  Microscale thermophoresis TLR2, TLR4/MD2 

Lam et al. 2013362 H4 ELISA 

Microtiter plates 

Human serum albumin, neutralised serum 

albumin 

Abrams et al. 2013265 Histones ELISA 

Gel overlay 

C-reactive protein 

Nakahara et al. 2013323 Histones Quartz crystal microbalance twin sensor Recombinant thrombomodulin 

Wildhagen et al. 

2014363 

H3 Western blot and precipitation 

Surface plasmon resonance 

Antithrombin activity depleted heparin 

Zhang et al. 2014364 H4 ELISA N-acetyl-heparin 

Westman et al. 2014365 H1, H2A, H2B, H3.1, H4 ELISA  

Surface plasmon resonance  

MBP-p33 

Daigo et al. 2014366 Histones, recombinant 

histones, histone peptides 

ELISA 

Surface plasmon resonance 

UV-visible spectrum  

Pentraxin 3 

Chaaban et al. 2015367 Histones or recombinant 

histones 

ELISA  

Surface plasmon resonance  

High-molecular-weight hyaluronan, inter-α 

inhibitor protein, heparin 

Westman et al. 2015368 H4 Surface plasmon resonance TLR4/MD2 on THP-1 cells 

Wygrecka et al. 2016369 H1, H2A, H2B, H3.1, 

H4, citrullinated histones 

ELISA  

Filter binding assay  

Microscale thermophoresis  

C1 esterase inhibitor, recombinant C1 

esterase inhibitor, reactive centre-cleaved C1 

esterase inhibitor 

ELISA, enzyme-linked immunosorbent assay; TLR, Toll-like receptor.                                                                                                                

*All histone subclasses were recombinant.  
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Supplementary Table 3 Effects of extracellular histones on different cell types  
Cell types General in vitro and ex vivo findings  Anti-histone strategies  Relevant receptors 

Epithelial cells     

A549 cells341, 369, BEAS-2B cells364, LA-4 
cells340, MLE-12 cells340, mouse alveolar type 

II cells369 

CTHs or H4 induced calcium influx, cytokine (IL-1β, IL-6, IL-10, TNF-α) production and cell 
death (PI or LDH) in multiple cell types; H1 and H4, but not H3, caused significant cell death 

(LDH) in MLE-12 cells. 

Anti-H4, α-histones, APC, 
heparin, polysialic acid, C1INH 

NA 

Hepatocyte cell line L02370 CTHs dose-dependently induced cell death (Cell Counting Kit-8 and LDH). Heparin, α-histones NA 

Pancreatic acinar cells125, 222 H3 did not cause significant secretion of HMGB1; H2A, H2B, H3 and H4 caused significant 
increase of trypsin, chymotrypsin activities and cell death (trypan blue); H3 and H4 significantly 

increased p-STAT3/t-STAT3; CTHs dose-dependently induced cell death (PI). 

Polysialic acid NA 

HEK293 cells322,371, parietal epithelial 

cells372, podocytes372 

CTHs dose-dependently induced TLR2 and TLR4 gene expression in transfected cells, 

respectively; CTHs induced APC generation in thrombin/TM complex expressing cells. 

NA TLR2, TLR4, TLR2/4 

CHO-K1 and CHO-A745 cells367 CTHs induced cell death (PI). NA NA 

Endothelial cells     

HPMECs271, 369, MLVECs373 CTHs induced cell death (PI or LDH). ahscFv, α-histones, APC, heparin, 

C1INH,  

NA 

HCAECs374 CTHs or subclasses (H1, H2A, H2B, H3, H4) dose- and time-dependently induced tissue factor 
mRNA and protein expression, activation of NF-κB and AP-1. 

NA TLR2, TLR4, TLR2/4 

EA.hy926 cells213, 265, 271, 365, 366, 375 and 

HUVECs178, 213, 265, 271, 366, 374, 376 

CTHs or subclasses (H1, H2A, H2B, H3.1, H4) induced calcium influx, depletion of IκB and 

activation of p38-MAPK, NF-κB and AP-1, elevation of tissue factor and sTM, release of large 

vWF elevation and cell death (PI, FITC-anti-annexin V and/or PI, or LDH); CTHs or H3.3 and 

H4 (but not H1, H2A, H2B) induced up-regulating of tissue factor and down-regulation of TM375. 

Anti-H4, APC, heparin, polysialic 

acid, CRP, MBP-p33, PTX3 

TLR2, TLR4 

Glomerular endothelial cells372  CTHs dose-dependently induced TNF-α mRNA expression and cell death (MTT). α-histones TLR2/4 

Cardiomyocytes    

Murine cardiomyocytes355, mouse HL-1 
cardiomyocytes351 

CTHs caused cytosolic ROS production, calcium elevation, impaired mitochondria; CTHs dose-
dependently caused reduction of contractility and induced calcium influx and cell death (PI); 

CTHs disturbed both functional and electrical responses of heart. 

NA NA 

Immune cells    

Peripheral neutrophils109, 271, HL-60367 CTHs induced IL-6 production and NETs formation; CTHs induced cell death (PI) was acerbated 

by a hyaluronan inhibitor 4-methylumbelliferone.  

ahscFv, IAIP, HMW-HA TLR2, TLR4, TLR9 

Peripheral monocytes368, 377, MM6378, 

U937370, THP-1377 

CTHs dose-dependently induced cytokine production (IL-1β, IL-6, IL-8, IL-10, TNF-α) and cell 

death (PI and LDH); CTHs or H3 and H4 (but not H1, H2A, H2B) dose-dependently increased 
FXa and tissue factor generation as well as PS expression; H4 induced CXCL10 production in 

CD14++CD16+ monocytes.     

Anti-H3, anti-H4, UFH, CRP TLR4/MD2 

Mouse peritoneal macrophages361, 
RAW264.7 cells222, 374, Kupffer cells322, 358, 

J774 macrophages372  

H3 or H4 significantly inhibited phagocytosis of apoptotic neutrophils or thymocytes by 
macrophages. 
H3 dose-dependently caused significant secretion of HMGB1; CTHs significant induced 

elevation of activated caspase-1 expression and TNF-α production; CTHs or subtypes (H1, H2A, 
H2B, H3, H4) dose- and time-dependently induced tissue factor mRNA and protein expression; 

lysine-rich CTHs dose-dependent release of vWF antigen, angiopoietin-2 and P-selection; 

arginine-rich CTHs induced vWF-platelet string formation. 

APC TLR2, TLR4, TLR2/4, TLR9, 
NLRP3 
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Human peripheral DCs279, Human monocyte-

derived DCs379, murine BMDCs372, 380 

CTHs induce TNF-α production; H2A (10 µg/ml) induced significant loss of ΔψM but not cell 

death (7-AAD); H4 stimulated significant expression of NLRP3 proteins. 

Anti-H1, anti-H4, α-histones, 

APC, heparin 

TLR2, TLR4/MD2, TLR2/4, 

NLRP3 

Human peripheral lymphocytes360 CTHs dose- and time-dependently induced early apoptosis that was associated with p38-MAPK 
phosphorylation, ΔψM decreasing, Bcl2 reduction caspase-3 activation. 

NA NA 

Peripheral platelets265, 275, 276, 323, 362, 365, 367 CTHs dose-dependently induced calcium influx, platelet aggregation, thrombin generation, PS 

exposure with elevated expression of P-selection and FV/Va; H3 and H4 significantly induced 
platelet aggregation. 

APC, heparin, CRP, HSA, IAIP, 

HWM-HA  

TLR2, TLR4 

Human erythrocytes365, 381, 382 Biotin conjugated core histones (each 0.4 µM) bound to but did not penetrate human erythrocytes 

or erythrocyte ghosts. 

CTHs and subclasses (H1, H2A, H2B, H3.1, H4) caused significant haemolysis; CTHs dose-
dependently induced PS exposure and increased procoagulant parameters on human erythrocytes. 

APC, UFH, MBP-p33 NA 

CTHs, calf thymus histones; IL, interleukin; TNF-α, tumour necrosis factor-alpha; PI, propidium iodide; LDH, lactate dehydrogenase; APC, activated 

protein C; C1INH, C1 esterase inhibitor; NA, not available; HMGB1, high-mobility group box 1; p-STAT3, phosphorylated signal transducer and 

activator of transcription 3; t-STAT3, total STAT3; TLR, Toll-like receptor; TM, thrombomodulin; HPMECs, human pulmonary microvascular 

endothelial cells; MLVECs, mouse lung vascular endothelial cells; ahscFv, anti-histone single chain variable fragment; HCAECs, human coronary 

artery endothelial cells; NF-κB, nuclear factor-kappaB; AP-1, activated protein 1; HUVECs, human umbilical vein endothelial cells; MAPK, mitogen-

activated protein kinase; sTM, soluble thrombomodulin; vWF, von Willebrand factor; FITC, fluorescein isothiocyanate; CRP, C-reactive protein; 

PTX, pentraxin 3; MTT, (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium; ROS, reactive oxygen species; NETs, 

neutrophil extracellular traps; IAIP, inter-α inhibitor protein; HMW-HA, high-molecular weight hyaluronan; FXa, Factor Xa; PS, phosphatidylserine; 

CXCL, C-X-C motif chemokine; UFH, unfractionated heparin; NLRP3, NLR Family Pyrin Domain Containing 3; DCs, dendritic cells; BMDCs, 

bone marrow derived DCs; ΔψM, mitochondrial membrane potential; 7-AAD, 7-aminoactinomycin D; Bcl-2, B-cell lymphoma 2; HSA, human 

serum albumin. 
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Supplementary Table 4 Release of extracellular histones in murine sepsis models  
Studies  Murine 

experimental 

models* 

Histone-based 

treatment 

Potential histone 

interacting 

receptors or 

binding molecules 

In vivo findings  Treatment effects  

Xu et al. 2009213 LPS (1 or 10 

mg/kg, i.v.), CLP, 

TNF (0.75 mg/kg, 

i.v.), CTHs (50 or 

75 mg/kg, i.v.)  

Anti-H4 or anti-H2B 

(20 mg/kg, i.v.), 

APC (5 mg/kg, i.v.), 

PC (2.5 mg/kg, i.v.)  

NA Significant elevation of circulating histones was observed in 

LPS challenged mice (or baboons); at 50 mg/kg CTHs 

caused lung neutrophil margination, endothelium 

vacuolisation, intra-alveolar haemorrhage and thrombosis in 

mice; at 75 mg/kg CTHs induced rapid death within 1 h.  

CTH-induced death was completely prevented by co-

administration of APC; anti-H4 partially protected death 

induced by LPS, CLP and TNF; anti-PC converted a non-

lethal dose LPS to cause death, an effect partially prevented 

by anti-H4, but not anti-H2B. 

Li et al. 2011383 LPS (10, 20 or 35 

mg/kg, i.p.)  

NA  NA LPS dose-dependently induced significant death of mice 

associated with dramatic elevated circulating histones and 

Cit-H3; serum Cit-H3 levels were most associated with 
severity of LPS-induced sepsis. 

SAHA pre-treatment reduced LPS-induced (20 mg/kg) 

elevation of circulating histones and Cit-H3 and increased 

acetylated H3. 

Allam et al. 2012277 LPS (10 mg/kg, 

i.p.), LPS (1 

mg/kg, i.p.) plus 
CTHs (10 mg/kg, 

left renal i.a.) 12 h 

after LPS, renal 
I/R 

Anti-H4 (20 mg/kg, 

i.p.), CTHs digested 

by APC (500 nM) 

TLR2 or TLR4 

KO 

CTHs significantly induced renal injury associated with 

increased mRNA levels of renal cytokines (IL-6, TNF-α, 

iNOS), TLR2 and TLR4 of mice primed by LPS (1 mg/kg); 
LPS (10 mg/kg) induced significant tubular cell apoptosis; 

I/R induced elevation of renal mRNAs of Kim-1, cytokines 

(IL-6, IL-12, TNF-α), chemokines (CXCL2, CXCL10, 
CCL5), ICAM and neutrophil infiltration. 

APC digested CTHs, anti-H4, or TLR2 or TLR4 KO 

significantly reduced CHT-induced renal injury in LPS 

primed mice; anti-H4 significantly reduced renal injury 
induced by LPS or renal I/R. 

Liu et al. 2013360 CLP, CTHs (60 

mg/kg, i.p.) 

NA NA CLP induced peripheral lymphocyte apoptosis and 

elevation of circulating histones at 6 h of disease induction; 
CTHs induced significant lymphocyte apoptosis at 6 h of 

histone injection. 

NA  

Wildhagen et al. 
2014363 

LPS (20 mg/kg, 
i.p.), CLP, ConA 

(30 mg/kg, i.v.) 

AADH (570 
µg/mouse, i.p.), UFH 

(114 µg/mouse, i.p.) 

NA All models induced systemic injury and were associated 
with significant death of mice within 80 h. 

AADH, but not UFH, significantly reduced the tail bleeding 
time; AADH reduced ConA-induced elevation of circulating 

histones and death; AADH also significantly reduced LPS-

induced increase of TNF, lung injury and death; both AADH 
prophylaxis and treatment significantly decreased CLP-

induced death. 

Iba et al. 2014384 LPS (8 mg/kg, i.v.) 

in rats 

NA AT (125 IU/kg, 

i.v.), rTM (0.25 
mg/kg, i.v.), or 

AT/rTM 

LPS induced significant depletion of WBCs and platelets, 

reduction of plasma fibrinogen and elevation of circulating 
histones. 

The treatments significantly restored WBCs, platelets and 

plasma fibrinogen levels, and decreased circulating histones.   

Daigo et al. 2014366 LPS (16 mg/kg, 
i.p.), CLP, CTHs 

(50 or 60 mg/kg, 

i.v.) 

PTX3 (N-terminal 
wild type; 5 or 12 

mg/kg, i.p.) 

NA LPS induced dramatic increase of circulating histones with 
time; LPS, CLP or CTHs (60 mg/kg) induced significant 

lung injury and death in mice 

PTX3 significantly reduced lung injury and death induced by 
toxins. 

Kusano et al. 2015385 LPS (40 mg/kg, 
i.p.) 

Anti-H1 (4 mg/kg × 
2, i.p.) 

NA LPS induced acute lung injury (with histone release) and 
death with significant elevation of plasma cytokines (IL-1β, 

IL-6, IL-10, TNF-α) and histones. 

Anti-H1 significantly reduced LPS-induced lung injury, 
systemic inflammation and death. 
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Kolaczkowska et al. 

2015386 

MRSA (1-2 × 107 

or 5-10 × 107, 200 
µl, i.v.) 

UFH (400 U/kg × 2, 

s.c.), PAD4 KO 

Anti-vWF (50 

µg/mouse, i.v.) or 
ADAMTS13 (3 

µg/mouse, i.v.) 

MASA induced accumulation of bacteria in the blood and 

tested organs (liver, spleen, kidney, lung) with marked liver 
necrosis, NETs formation (γ-H2AX and NE colocalisation) 

and increased serum ALT. 

Neutrophil depletion (anti-Gr-1 or CD44 KO) abolished liver 

necrosis and plasma ALT increase; UFH, DNase I, vWF 
inhibition, PAD4 KO, NE KO or NE inhibitor (sivelestat) 

significantly reduced γ-H2AX area, liver necrosis and serum 

ALT. 

Kalbitz et al. 2015355 
 

CLP α-histone (65 µg per 
mouse, i.v.) 

NLRP3 or caspase, 
C5aR1 or C5aR2 

KO 

CLP-induced significant elevation of circulating histones 
that were associated with abnormalities in systolic and 

diastolic parameters, reduced left ventricular stroke volume 

and cardiac output. 

Neutrophil depletion, KO of C5aR1, C5aR2, NLRP3, or 
caspase significantly reduced CLP-induced elevation of 

circulating histones; anti-histone treatment revered the 

deranged cardiac dysfunction. 

Wang et al. 2015178 LPS (Salmonella 

typhimurium; 50 

mg/kg, i.v.), CLP, 
CTHs (50 or 75 

mg/kg, i.v.)  

Heparin (3 or 10 

mg/kg, i.v.) 

NA LPS and CLP induced significant lung injury, elevation of 

plasma histone-DNA complexes and death; CTHs also 

induced lung injury and at a higher dose caused death 
within 1 d. 

Heparin significantly alleviated lung injury and death 

induced by LPS, CLP and CTHs. Heparin also reduced LPS- 

and CLP-induced increase of plasma histone-DNA 
complexes. 

Lee et al. 2015387 CLP, LPS (S. 

aureus; 2 × 108 
cells/mouse, i.p.) 

NA PLD2 KO or 

inhibitor (4 mg/kg, 
s.c.) 

Both CLP and LPS induced significant multiple organ 

injury and death; CLP induced lung NETs formation (Cit-
H3 and PAD activity). 

PLD2 inhibition significantly reduced, while CXCR2 

antagonism (SB225002) acerbated multiple organ injury and 
death; PLD2 inhibition significantly increased lung NETs 

formation.  

Alhamdi et al. 
2015320 

LPS (E coli K-12, 
108 colony-

forming 

unit/mouse, i.p.) 

ahscFv (10 mg/kg, 
i.v.)  

NA LPS dramatically increased circulating histones and plasma 
cardiac troponin levels associated with impaired left 

ventricular function. 

ahscFv significantly reduced cardiac troponin I levels  and 
improved left ventricular function.  

Kawai et al. 2016352 LPS (10 mg/kg, 
i.p.), I/R model†, 

CTHs (25-50, 75 

or 100 mg/kg, i.v.) 

Heparin (10 mg/kg, 
i.v.), albumin (1 

g/kg, i.v.) 

NA Both I/R and LPS significantly increased serum histone-
DNA complexes; CTHs dose-dependently increased serum 

cytokines (IL-1β, IL-6, TNF-α, IL-10), sTM and tissue 

injury (lung, liver, kidney); CTHs at 75 mg/kg caused 
significant death within 60 h and at 100 mg/kg caused very 

rapid death within 2 h.  

Heparin, but not albumin, significantly reduced CTH-
induced tissue injury and death; boiled CTHs caused 

significant less death than the natural CTHs.  

Biron et al. 2016388 CLP Cl-Amidine (50 
mg/kg, s.c.) 

NA CLP induced release of circulating histones, NETs 
formation (Cit-H3) in peritoneal cells, peritoneal fluid and 

plasma; CLP induced multiple organ injury (elevation of 

IL-6 in lung, liver, kidney and spleen) and significant death. 

Pretreatment of Cl-Amidine reduced NETs formation, 
systemic injury and death. 

LPS, lipopolysaccharides; i.v., intravenous; CLP, cecal ligation puncture; TNF, tumour necrosis factor; CTHs, calf thymus histones; NA, not 

available; APC, activated protein C; PC, protein C; i.p., intraperitoneal; Cit-H3, citrullinated H3; SAHA, suberoylanilide hydroxamic acid; i.a., intra-

artery; I/R, ischaemia-reperfusion; KO, knock out; TLR, Toll-like receptor; IL, interleukin; iNOS, inducible nitric oxide synthase; CXCL, chemokine 

(C-X-C motif) ligand; CCL, CC chemokine ligands; ICAM, intercellular adhesion molecule; ConA, Concanavalin A; AADH, antithrombin activity 

depleted heparin; UFH, unfractionated heparin; rTM, recombinant thrombomodulin; AT, antithrombin; WBC, white blood cells; PTX3, pentraxin 3; 

MRSA, methicillin-resistant Staphylococcus aureus; s.c., subcutaneous; PAD4, protein arginine deiminase 4; vWF, von Willebrand factor; NETs, 

neutrophil extracellular traps; γ-H2AX, phosphorylated H2AX; NE, neutrophil elastase; ALT, alanine aminotransferase; NLRP3, NLR Family Pyrin 
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Domain Containing 3; PLD, phospholipase d; CXCR, C-X-C chemokine receptor; ahscFv, anti-histone single chain variable fragment; sTM, soluble 

thrombomodulin;  

*Mice were used if not otherwise stated; †About 30% of blood volume was moved via cardiac puncture, and blood (heparinised) was reperfused into 

the vein after 1 h of ischaemia. 
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Supplementary Table 5 Release of extracellular histones in murine acute lung injury models  
Studies  Murine 

experimental 

models* 

Histone-based 

treatment 

Potential histone 

interacting 

receptors or 

binding molecules 

In vivo findings  Treatment effects  

Saffarzadeh et al. 

2012341 

LPS (10 

µg/mouse, i.t.) 

NA NA LPS induced NETs formation in the lung tissue (Cit-H3 and 

MPO colocalisation) and BALF with increased neutrophil 

infiltration and elastase activity in BALF. 

NA 

Caudrillier et al. 

2012389 

LPS priming (0.1 

mg/kg, i.p.) plus 
anti-MHC-I (H2Kd 

; IgG2a, κ; 0.5-4.5 

mg/kg, i.v.) 

Anti-H4 (10 mg/kg, 

i.v.) 

NA LPS plus anti-MHC-I induced acute lung injury was 

associated with lung NETs formation and increased platelet 
infiltration, elevated plasma histone-DNA complexes and 

significant mortality. 

Anti-H4, aspirin, tirofiban (an anti-platelet drug), or DNase I 

significantly reduced lung injury and NETs formation; anti-
H4, tirofiban or DNase I completely blocked LPS/anti-

MHC-1-induced death. 

Abrams et al. 2013271 Trauma induced 
by a heavy object 

falling on each 4 

limbs; CTHs (50, 
60 or 75 mg/kg, 

i.v.) 

ahscFv (10 mg/kg, 
i.v.) 

NA Trauma caused multiple organ injury with significant 
increase of plasma sTM levels and circulating histones; 

CTHs induced lung NETs formation (Cit-H3), multiple 

organ failure and elevation of sTM; CTHs at 75 mg/kg 
caused rapid death. 

ahscFv significantly reduced trauma- and CTH-induced lung 
injury and increase of sTM; ahscFv dose-dependently 

prevented CTH-induced death.    

Bosmann et al. 
2013340 

LPS (E coli 
O111:B4; 40 µl, 

i.t.), IgGIC†, 

CTHs (50 mg/kg, 
i.t. or 100 

µg/mouse, i.t.) 

Anti-H4 (250 
µg/mouse, i.v. + 50 

µg/mouse, i.t.) 

C5a or C5L2 KO LPS, IgGIC and C5a induced acute lung injury were 
associated with significant elevation of circulating histones 

and histone-DNA complexes in BALF; CTHs caused 

significant lung injury associated with severe disturbances 
in alveolar-capillary gas exchange, release of alveolar 

albumin, inflammatory cells, LDH, cytokines (IL-1β, IL-6, 

IL-9, IL-12, TNF-α, GCSF) and chemokines (eotaxin, 
CCL2, CCL3, CCL4, CCL5) in BALF. 

Anti-H4 significantly reduced severity of C5a-induced lung 
injury, evidenced by reduction of alveolar albumin and 

multiple cytokines and chemokines; C5a KO, C5L2 KO, or 

neutrophil depletion (anti-Ly6G) greatly reduced C5a-
induced elevation of circulating histones in BALF. 

Zhang et al. 2014364 HCl (0.01, 0.1, 0.3, 

0.5 M, 2 µl/g, i.t.) 

Anti-H4 (20 mg/kg, 

i.v.), heparin or NAH 
(2.5, 5, 10, 20 mg/kg, 

i.p.) 

NA HCl dose-dependently increased circulating histones and 

histone-DNA complexes; HCl at 0.1 M induced significant 
lung injury evidenced by reduced PaO2 and increased lung 

MPO activity, lung wet/dry ratio and lung histopathology 

score and plasma APTT levels; HCl at 0.3 M caused 
significant morality within 24 h of administration.  

Both heparin and NAH improved lung injury and 

coagulation parameters with NAH had better effects; both 
heparin and NAH dose-dependently reduced HCl-induced 

death with best effect achieved by highest dose of NAH (20 

mg/kg); anti-H4 significantly reduced HCl-induced death;   

Zhang et al. 2015390 HCl (0.1 M, 2 

µl/g, i.t.) with or 

without CTHs (20 
mg/kg, i.t.) or H4 

(5 mg/kg, i.t.) 

Anti-H4 (20 mg/kg, 

i.v.), heparin (250 

IU/kg, s.c.) 

NA HCl induced lung injury associated with elevation of BALF 

and plasma histones, LDH and MPO activity; 

administration of CTHs or H4 alone resulted in mild lung 
injury but significantly acerbated HCl-induced lung injury 

and mortality. 

Anti-H4 and heparin significantly improved HCl-induced 

lung histopathological score associated with reduction in 

BALF cytokines (IL-1β, IL-6, , IL-10, TNF-α). 

Wygrecka et al. 
2016369 

Bleomycin (2.5 
U/kg, i.t.), 

influenza A virus 

(102 PFU, 50µl, 
inhaled), S. 

C1 esterase inhibitor 
(C1INH, or iC1INH; 

600 IU/kg, i.v.), α-

histone (10 mg/kg, 
i.p.) 

NA Significant evaluation of circulating histones were observed 
in all acute lung injury models; bleomycin or CTHs induced 

typical acute lung injury histopathological changes that 

were associated with increased lung neutrophil infiltration, 
wet/dry weight ratio and mRNAs expression of 

C1INH significantly reduced bleomycin-induced lung injury 
and cytokine levels in the BALF; iC1INH significantly 

reduced CTH-induced lung injury and cytokine levels in the 

BALF and rescued mice from death. 
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penumoniae (5 × 

106, CFU, 
transnasally), 

ventilator, CTHs 

(50 mg/kg, i.v.) 

cytokines/chemokines in the lungs and proteins levels of 

cytokines/chemokines (IL-1β, TNF-α, CXCL1, CXCL2) in 
BALF. 

LPS, lipopolysaccharides; i.t., intratracheal; NA, not available; NETs, neutrophil extracellular traps; Cit-H3, citrullinated H3; MPO, myeloperoxidase; 

BALF, bronchoalveolar lavage fluid; i.p., intraperitoneal; MHC-I, major histocompatibility complex-I; i.v., intravenous; DNase I, deoxyribonuclease 

I; CTHs, calf thymus histones; ahscFv, anti-histone single chain variable fragment; sTM, soluble thrombomodulin; IgGIC, IgG immune complex; 

KO, knock out; LDH, lactate dehydrogenase; IL, interleukin; TNF-α, tumour necrosis factor-alpha; GCSF, granulocyte-colony stimulating factor; 

CCL, CC chemokine ligands; HCl, hydrochloric acid; NAH, N-acetyl-heparin; PaO2, partial pressure arterial oxygen; APTT, activated partial 

thromboplastin time; s.c., subcutaneous; C1INH, C1 esterase inhibitor; iC1INH, reactive centre cleaved- C1INH; CXCL, chemokine (C-X-C motif) 

ligand. 

*Mice were used if not otherwise stated; †IgGIC protocol: anti-BSA IgG (125 µg/mouse, i.t.) followed by BSA (1 mg, i.v.), rmC5a (endotoxin level 

< 1.0 EU/µg protein, i.t.). 

 

 

 

 

 

 

 

 

 



158 

 

Supplementary Table 6 Release of extracellular histones in murine acute liver and ischaemia-reperfusion injury models  
Studies  Murine 

experimental 

models* 

Histone-based 

treatment 

Potential histone 

interacting 

receptors or 

binding molecules 

In vivo findings  Treatment effects  

Huang et al. 2011358 Liver I/R, liver I/R 

plus CTHs (25 

mg/kg, i.p.) 

Anti-H3 or anti-H4 

(20 mg/kg, i.v.) 

TLR9 KO or 

inhibitor 

(ODN2088; 100 

µg/mouse, i.p.) or 

MyD88 KO 

Liver I/R induced significant increase of liver H3 and H4 

and circulating histone-DNA complexes over 6 h. 

Anti-H3 or anti-H4 significantly alleviated liver necrosis, 

MAPK proteins, IL-6 and TNF-α as well as serum ALT; 

receptors inhibition prevented liver necrosis and elevation of 

serum ALT induced by liver I/R or liver I/R plus CTHs. 

Xu et al. 2011322 ConA (30 mg/kg, 

i.v.), APAP (500 

mg/kg, i.p.) 

Anti-H3 or anti-H4 

(10 mg/kg, i.v.)  

TLR2 or TLR4 

KO 

ConA and APAP both induced significantly elevation of 

circulating histones, cytokines (IL-6, TNF-α) and mortality 

after 2 or 6 h of disease induction.  

Anti-H3, TLR2 or TLR4 KO greatly reduced mortality and 

associated cytokine elevation; anti-H4 also significantly 

reduced APAP-induced mortality. 

Wen et al. 2013391 GalN (700 mg/kg, 
i.p.) plus LPS (40 

µg/kg, i.p.), GalN 

(300 mg/kg, i.p.) 
plus LPS (15 

µg/kg, i.p.) 

Anti-H4 (20 mg/kg, 
i.v.) 

NA GalN/LPS induced liver apoptosis and necrosis, increased 
MPO activity, plasma ALT and TNF-α in circulating 

histones and histone-DNA complexes; higher doses of 

GalN/LPS induced significant death within 12 h. 

Anti-H4 significantly reduced liver injury, systemic 
inflammation and death induced by GalN/LPS.  

Huang et al. 2014392 Liver I/R NA TLR9 inhibitor 
(ODN2088; 100 

µg/mouse, i.p.), 

hepatocyte 
HMGB1 KO 

Liver I/R induced significant increase of hepatocellular 
acetylated histones and γ-H2AX and increased serum 

histone-DNA complexes. 

KO of hepatocyte HMGB1increased nuclear instability led 
to increased release of histones, liver injury and systemic 

inflammation induced by liver I/R; TLR9 or PARP-1 (DNA 

activated receptor) antagonism prevented these effects.  

Huang et al. 2015109 Liver I/R, liver I/R 

plus CTHs (25 
mg/kg, i.p.) 

PAD4 inhibitor 

(YW3-56 or YW4-
03; 10 mg/kg, i.p.) 

TLR4, TLR9 or 

MyD88 KO 

Liver I/R induced significant increase of mRNA of liver 

inflammatory cytokines (IL-1β, IL-6, TNF-α, CCL2), liver 
NETs formation (Cit-H3 and γH2AX) and necrosis, and 

elevation of serum Cit-H3 and ALT; Liver I/R-induced 

circulating NETs formation was acerbated by CTHs. 

PAD4 inhibitors, DNase I, KO of TLR4, TLR9 or MyD88, 

or adoptive transfer of TLR4 KO or TLR9 KO neutrophils to 
neutrophil depleted wild type mice significantly reduced 

liver injury and systemic inflammation associated with 

reduced liver and circulation NETs formation. 

Wen et al. 2016370 GalN (500 mg/kg, 
i.p.) plus LPS (10 

µg/kg, i.p.), ConA 

(20 mg/kg, i.v.), 
APAP (500 mg/kg, 

i.p.)  

AADH (300 U/kg, 
s.c.)  

NA GalN/LPS, ConA and APAP induced marked liver necrosis 
and mortality over 24 h; the liver injury was associated with 

elevated plasma cytokines (IL-1β, IL-6, IL-8, IL-10, IL-18, 

TNF-α), ALT and circulating histone-DNA complexes.   

AADH significantly prevented liver necrosis, systemic 
inflammation and mortality induced by liver toxins.   

De Meyer et al. 
2012393 

 

Hypoxia, tMCAO 
and reperfusion† 

with or without 

CTHs (10 mg/kg, 
retro-orbital i.v.) 

Anti-H4 (10 mg/kg, 
i.v.) 

NA Hypoxia induced significant increase of plasma histone-
DNA complexes; cerebral I/R caused dramatic increase of 

plasma cell-free DNA and histone-DNA complexes; 

addition of CTHs significantly increased I/R-induced infarct 
volume and worsened neurological function. 

Anti-H4 or DNase I significantly reduced I/R-induced 
infarction volume and alleviated neurology functional scores. 

Savchenko et al. 

2014347 

 

Myocardial I/R PAD4 KO vWF inhibitor 

(ADAMTS13; 

I/R induced myocardial NETs formation (Cit-H3) and left 

ventricular infarct that were associated with reduced 

PAD KO, DNase I, ADAMTS13, or DNase I plus 

ADAMTS13 significantly reduced myocardial NETs 
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3460 U/kg, retro-

orbital i.v.) 

ejection fraction and elevated plasma histone-DNA 

complexes. 

formation, left ventricular infarct, circulating histone-DNA 

complexes thus improved cardiac contractile function. 

I/R, ischaemia-reperfusion; CTHs, calf thymus histones; i.p., intraperitoneal; i.v., intravenous; TLR, Toll-like receptor; KO, knock out; MyD88, 

myeloid differentiation primary response gene 88; MAPK, mitogen-activated protein kinases; IL, interleukin; TNF-α, tumour necrosis factor-alpha; 

ALT, alanine aminotransferase; ConA, Concanavalin A; APAP, acetaminophen; GalN, D-galactosamine; LPS, lipopolysaccharides; NA, not 

available; MPO, myeloperoxidase; HMGB1, high motility group box 1; γ-H2AX, phosphorylated H2AX; PARP-1, poly(ADP-ribose) polymerase-

1; PAD4, protein arginine deiminase 4; CCL, CC chemokine ligands; Cit-H3, citrullinated H3; NETs, neutrophil extracellular traps; DNase I, 

deoxyribonuclease I; s.c., subcutaneous; AADH, antithrombin activity depleted heparin; tMCAO, transient middle cerebral artery occlusion; vWF, 

von Willebrand factor.  

*Mice were used if not otherwise stated; †An ischaemia stroke model.  
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Supplementary Table 7 Release of extracellular histones in murine acute pancreatitis, peritonitis and glomerulonephritis models  
Studies  Murine 

experimental 

models* 

Histone-based 

treatment 

Potential histone 

interacting 

receptors or 

binding molecules 

In vivo findings  Treatment effects  

Kang et al. 2014222 L-arginine (4 g/kg 

× 2, i.p.) 

Anti-H3 (20 mg/kg, 

i.p.)  

Anti-HMGB1 (20 

mg/kg, i.p.), 

pancreatic 

HMGB1 KO 

L-arginine induced elevation of pancreatic γ-H2AX, H3, H4 

and cleaved caspase-3 and was associated with significant 

death. 

Anti-H3 or anti-HMGB1 significantly reduced, but 

pancreatic HMGB1 KO acerbated severity of acute 

pancreatitis and mortality. 

Merza et al. 2014221 Taurocholate (5%, 
i.d.), L-arginine (4 

g/kg, i.p.) 

Thrombin-derived 
host defense peptides 

(GKY20 or GKY25; 

0.5 mg/mouse, i.p.) 

NA Taurocholate induced necrotising pancreatitis associated 
with dramatic release of pancreatic histones, MPO and 

elevation of serum amylase, IL-6, CXCL2 and lung MPO; 

L-arginine induced marked pancreatic oedema, neutrophil 
infiltration and necrosis with increased serum amylase and 

lung MPO. 

Both peptides significantly reduced release of histones, 
pancreatic injury and systemic injury in both models. 

Merza et al. 2015125 Taurocholate (5%, 

i.d.), L-arginine (4 
g/kg, i.p.) 

NA NA Taurocholate induced pancreatic NETs formation (EM), 

release of H3 and H4 and cell-free DNA with elevated 
plasma DNA and HMGB1, all associated with pancreatic 

and systemic injury markers assessed at 24 h; L-arginine 

also induced pancreatic NETs formation and elevation of 
plasma DNA. 

DNase I or anti-Ly6G significantly reduced pancreatic 

injury, pancreatic NETs formation and histone release; 
DNase I also reduced systemic injury evidenced by reduction 

of plasma HMGB1, IL-6, CXCL2, MMP-9 and lung injury. 

Ou et al. 2015325 Caerulein (50 

µg/kg/h × 4 or 12, 
i.p.), taurocholate 

(3.5%, i.d.) 

NA NA Taurocholate or 12 injections of caerulein induced 

necrotising pancreatitis, multiple organ injury and elevation 
of circulating histones when compared with 4 injections of 

caerulein or saline controls; circulating histones were 

significantly associated with pancreatic necrosis score and 
organ injury parameters.    

NA  

Allam et al. 2013279 

 

Acute peritonitis: 

Necrotic EL4 cells 
(30 million, 150 

µl/mouse, i.p.), H4 

(250 µg/mouse, 
i.p.) 

APC (5 mg/kg, i.p.), 

anti-H4 (20 mg/kg, 
i.p.) 

NLRP3 KO Necrotic EL4 cells or H4 induced significant neutrophil 

recruitment into peritoneal cavity. 

Necrotic cell-induced peritoneal neutrophil recruitment was 

nearly abolished by APC, anti-H4, or NLRP3 KO. 

Kumar et al. 2015372 

 

 

Glomerular 

necrosis: Anti-

GBM serum (100 
µl/mouse, i.v.) 

Heparin (50 

IU/mouse, i.p.), APC 

(5 mg/kg, i.p.), anti-
H4 (20 mg/kg, i.p.), 

PAD4 inhibitor (Cl-

amide; 10 mg/kg, 
i.p.) 

NA Anti-GBM serum induced severe glomerular necrosis, loss 

of podocytes and inflammatory cell infiltration, associated 

with increased urine albumin/creatinine ratio. 

Heparin, APC, anti-H4 or PAD4 inhibition had similar 

effects of reducing anti-GBM-induced glomerular necrosis; 

delayed histone blockage also significantly improved 
glomerular necrosis; the combination of anti-histone 

modalities did not enhance therapeutic effects. 

i.p., intraperitoneal; HMGB1, high motility group box 1; KO, knock out; γ-H2AX, phosphorylated H2AX; i.d., intraductal; NA, not available; MPO, 

myeloperoxidase; IL, interleukin; CXCL, chemokine (C-X-C motif) ligand; NETs, neutrophil extracellular traps; EM, electron microscopy; DNase 
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I, deoxyribonuclease I; MMP-9, matrix metallopeptidase 9; APC, activated protein C; NLRP3, NLR Family Pyrin Domain Containing 3; GBM, 

glomerular basement membrane; i.v., intravenous; PAD4, protein arginine deiminase 4. 

*Mice were used if not otherwise stated.  
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Supplementary Table 8 Murine histone-induced coagulopathy models 
Studies  Murine 

experimental 

models* 

Histone-based 

treatment 

Potential histone 

interacting 

receptors or 

binding molecules 

In vivo findings  Treatment effects  

Fuchs et al. 2011275 CTHs (10-50, 60 

or 75 mg/kg, i.v.) 

 

 

UFH (50 mg/kg, i.v.) β3-integrin KO CTHs dose-dependently (10-50 mg/kg) depleted platelets 

from circulation and prolonged tail bleeding time; CTHs at 

higher doses (60 or 75 mg/kg) caused death within 15 mins 

of infusion.  

UFH and platelet depletion (anti-GP1b) completely or β3-

integrin KO partially protected histone-induced death.  

Abrams et al. 2013265 CTHs (75 mg/kg, 
i.v.) 

CRP (1.6, 2.5, or 10 
mg/kg, i.v.) 

NA CTHs caused lung oedema, haemorrhage and thrombosis 
with rapid death in mice. 

CRP significantly reduced lung injury and dose-dependently 
protected mice from CTH-induced death. 

Nakahara et al. 

2013323 

CTHs (20-95 

mg/kg, i.v.) 

Recombinant human 

sTM (40, 80, or 110 

mg/kg, i.v. or 110 
mg/kg × 2, i.v.) 

NA CTHs dose-dependently induced death of mice, deletion of 

platelets and white blood cells, deposition of platelets and 

fibrin(ogen) in the lung, acute right-sided heart failure and 
ventricular arrest, reduction of plasma fibrinogen and 

increase of APTT and PPT. 

sTM pre-treatment significantly prevented CTH-induced 

platelets depletion, reduced organ dysfunction (lung and 

heart) and rescued mice from death. 

Kowalska et al. 
2014371 

CTHs (20, 50, or 
75 mg/kg, i.v.), II 

a (8 U/kg, i.v.) 

plus CTHs (0-20 
mg/kg, i.v.) 

UFH, ODSH (0.5, 5 
or 50 mg/kg, i.v.) 

NA CTHs dose-dependently induced plasma APC elevation, the 
levels of which were significantly higher with low dose II a 

infusion or in platelet factor KO mice; sublethal, but not 

low or lethal, dose CTHs caused significant elevation of 
plasma APC.  

Both UFH and oxygen-desulfated UFH abolished sublethal 
CTH-induced APC rise; only ODSH increased APC 

generation upon lethal CTH challenge; ODSH, but not UFH, 

at low to moderate doses did not significantly induce 
prolonged APTT. 

Westman et al. 

2014365 

CTHs (0.75 or 1.5 

mg/mouse, i.v.) 

MBP-p33 (1.5 

mg/mouse, i.v.) 

NA CTHs (0.75 mg) infusion caused significant haemolysis and 

platelets depletion at higher dose (1.5 mg) caused rapid 

death in mice. 

MBP-p33 (an endothelial surface protein) significantly 

reduced CTH-induced haemolysis, platelets depletion and 

death. 

Chaaban et al. 

2015367 

CTHs (50 mg/kg, 

i.v.) 

IAIP (50 mg/kg, 

retro-orbital i.v.), 

HMW-HA (90 
mg/kg, retro-orbital 

i.v.) 

NA CTH-induced thrombocytopenia associated with prolonged 

bleeding time, elevation of cytokines (IL-1β, IL-6, IL-10, 

TNF-α,), chemokines (CXCL1, CCL2) and lung injury.  

CTH-induced thrombocytopenia and tissue toxicity was 

significantly prevented by pre-treatment of IAIP or HMW-

HA. 

Iba et al. 2015394 H3 (25, 50 or 100 
mg/kg, i.v.) in rats 

UFH (350 or 700 
U/kg, i.v.) or LMWH 

(2 or 4 mg/kg, i.v.) 

NA H3 at all doses cause significant death; H3 also significantly 
reduced WBCs and platelets as well as increased plasma 

fibrin/fibrinogen degradation products, ALT and BUN 

levels. 
 

Both UHF and LMWH significantly reduced rats from 
histone-induced death, and improved coagulation parameters 

and systemic injury inflammation parameters. 

Alhamdi et al. 

2016351 

CTHs (20-75 

mg/kg, i.v.) 

ahscFv (10 mg/kg, 

i.v.) 

NA CTHs induced cardiomyopathy and pulmonary 

microvascular obstruction; CTHs dose-dependently induced 

NETs formation (Cit-H3) and fibrin deposition in the lung 
tissue. 

Anti-histone pretreatment significantly restored cardiac 

function. 

Lam et al. 2016376 CTHs (75 mg/kg, 

i.v.) 

NA NA CTHs induced significant elevation of plasma vWF and 

thrombin-anti-thrombin levels as well as decrease of 
platelets. 

NA 
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Michels et al. 

2016395 

CTHs (10-40 

mg/kg, retro-
orbital i.v.) 

NA NA All CTHs increased vWF and angiopoietin-2 expression 

and depleted platelets. 

NA 

CTHs, calf thymus histones; i.v., intravenous; KO, knock out; UFH, unfractionated heparin; CRP, C-reactive protein; NA, not available; sTM, soluble 

thrombomodulin; APTT, activated partial thromboplastin time; PPT, partial thromboplastin time; ODSH, partially desulfated 2-O, 3-O desulfated 

heparin; APC, activated protein C; IAIP, inter-α inhibitor protein; HMW-HA, high-molecular weight hyaluronan; IL, interleukin; TNF-α, tumour 

necrosis factor-alpha; CXCL, C-X-C motif chemokine; CCL, CC chemokine ligands; LMWH, low-molecular weight heparin; WBCs, white blood 

cells; ALT, alanine aminotransferase; BUN, blood urea nitrogen; ahscFv, anti-histone single chain variable fragment; NETs, neutrophil extracellular 

traps; Cit-H3, citrullinated H3; vWF, von Willebrand factor. 

*Mice were used if not otherwise state
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Statement of originality 

 

The work presented in the thesis was conducted when I was a PhD candidate studying 

in the Institute of Infection and Global Health at the University of Liverpool between 

May 2011 and April 2015. I have done all the work and written up the thesis, except for 

the specific contributions listed as follows: 

 

In Chapter 2, Dr Simon T. Abrams performed experiments on FITC-histone membrane 

binding and histone-induced calcium influx and cell death in endothelial cells. In 

Chapter 3, Dr Dunhao Su assisted me for the generation of anti-histone single chain 

variable fragment. In Chapter 4, all the samples from in vivo experiments were provided 

by Mr Zhengxing Cheng from Southeast University of China. In Chapters 5 and 6, Dr 

Wei Huang and Mr Peter Szatmary assisted me with data collection and analyses.  
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