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Abstract: Unconstrained hand detection in still images plays an important role in many hand-7

related vision problems, e.g., hand tracking, gesture analysis, human action recognition and8

human-machine interaction, and sign language recognition. Although hand detection has been9

extensively studied for decades, it is still a challenging task with many problems to be tackled.10

The contributing factors for this complexity include heavy occlusion, low resolution, varying11

illumination conditions, different hands gestures and the complex interactions between hands12

and objects or other hands. In this paper, we propose a multi-scale deep learning model for13

unconstrained hand detection in still images. Deep learning models, and deep convolutional14

neural networks (CNNs) in particular, have achieved state-of-the-art performances in many vision15

benchmarks. Developed from the Region-based CNN (R-CNN) model, we propose a hand16

detection scheme based on candidate regions generated by a generic region proposal algorithm,17

followed by multi-scale information fusion from the popular VGG16 model. Two benchmark18

datasets were applied to validate the proposed method, namely, the Oxford Hand Detection Dataset,19

and the VIVA Hand Detection Challenge. We achieved state-of-the-art results on the Oxford Hand20

Detection Dataset and had satisfactory performance in the VIVA Hand Detection Challenge.21

Keywords: Hand detection; Multi-scale detection; Deep Convolutional Neural Networks; Region-22

based CNN23
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1. Introduction24

Robust hand detection in unconstrained environments is one of the most important yet challenging25

problems in computer vision. It is closely associated with various hand-related tasks, e.g.,26

hand gesture recognition, hand action analysis, human-machine interaction and sign language27

recognition. Hand detection is often the first step in the task of action recognition and is also28

one of the most difficult parts because the hand shapes or hand gestures can have great variability.29

For example, a hand may hold objects, hands may appear at different scales with closed or open30

palms, the hand may have different articulations of the fingers and the hand can also hold other31

hands. Moreover, the illumination variance and object occlusion also add extra difficulties to the32

task.33

Hand detection has been intensely studied in the last decade. Encouraged by the success of34

Viola and Jones’s face detection scheme [1] which combines rectangular Haar-like features and the35

AdaBoost classification algorithm to train a detector, similar methodologies have been researched36

for hand detection [2]. Though efficient in face detection, Haar-like features are not sufficient37

to represent complex and highly articulate objects like the human hand. As appropriate gradient38

histogram feature descriptors such as Histograms of Oriented Gradients (HOG) [3] have been39

extensively investigated for object detection, the same effort has also been made towards hand40

detection [4]. Despite achieving improvements, the performance is still far from satisfactory due41

to large variations in the appearance of hands in unconstrained settings.42

Aiming to tackle the bottleneck of feature representation in object detection, a promising43

development, by exploiting a family of channel features, has achieved record performances44

for pedestrian detection [5]. Channel features compute registered maps of the original images45

like gradients and histograms of oriented gradients and then extract features on these extended46

channels. A variant of channel features, called aggregate channel features, has been adopted47

for hand detection in [6] where a two-stage scheme was designed for detecting hands and their48

orientations. Three complementary detectors were applied to propose hand bounding boxes and49

a second stage classifier learnt to compute a final confidence score for the proposals using these50

features. Based on the development of feature representation of images, various detecting schemes51

have been developed. Among them, a part-based model, i.e., Deformable Part Model (DPM)52
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proposed by Felzenszwalb et al. [7] had been in the lead in objects detection before 2014.53

This method specially applied HOG features of images, with latent parts of objects forming a54

deformable graphical model of objects, and achieved promising results. Aiming to tackle the55

problem of hand detection, the authors of [8] also used DPM as the hands shape detector to detect56

hands in unconstrained images.57

However, the aforementioned strategies for object detection in general, and hand detection in58

particular, exploited hand-crafted features which often have limited representational capability.59

Recently, Convolutional Neural Networks (CNN) [9] have been extensively studied in image60

recognition and other relevant tasks, often with state-of-the-art performance [10]. Girshick et al.61

[11] proposed the Region-Based Convolutional Networks (R-CNN) framework, in which the high-62

capacity convolutional networks were applied to bottom-up region proposals in order to localize63

and segment objects. More comprehensive evaluations of the R-CNN families have recently been64

published with different benchmarks [12], [13], [14]. An appropriately designed CNN model65

can learn multiple stages of invariant features of an image and a CNN based object detection66

is generally an end-to-end system that is jointly optimized for both feature representation and67

classification.68

However, R-CNN also has drawbacks such as expensive multi-stage training and slow object69

detection as described in [15]. Recently, much research has tried to improve the R-CNN70

framework. Spatial pyramid pooling networks (SPPnets) [16] were proposed to speed up R-CNN71

by sharing computation but without improving the multi-stage training pipeline implemented in72

R-CNN. As a result, Girshick [15] proposed Fast R-CNN with multi-task learning and single-stage73

training.74

How to faithfully describe an object at multiple scales is the core of a successful object detection75

system, which is particularly true when the objects are subjective to scale variations without76

restrictions. This is the precise situation of hand detection. R-CNNs are often applied to general77

purpose object detection, where the fixed filter receptive fields from the last layer of CNN could78

not match with the variable sizes of objects like hands. Some of the recent research has tried to find79

solutions for this. In [17], a multi-scale CNN was proposed, which comprises of two sub-networks80

to create complementary multiple detectors.81
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Fig. 1. An example of the our hand detection scheme. Despite large occlusion, various scales of
hands interacting with objects or other hands, the hands can be detected correctly.
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Rather than designing complex structures, as in [17], to fit the scale variations of objects, we82

propose a multi-scale detection system for hand objects by exploring the scale rich representations83

provided by a single CNN. As pointed out by Zeiler et al. [18], the information gathered in the84

different layers of a CNN model have different abstraction of features and scales. The last layer85

which is often applied in many recognition schemes [9], [15] is not sufficient to represent multi-86

scale objects such as hands in our system.87

While the benefit of gleaning information from multiple layers of CNN has been discovered88

for image classification [19], our contributions lie in the integration of different features from89

intermediate layers to account for multi-scale hands, which has not been previously investigated.90

To be more specific, our main contributions can be summarized as follows:91

(1) To achieve multi-scale representation of hand objects, we propose a strategy to integrate the92

features from multiple layers of a CNN model.93

(2) We verified the effectiveness of the proposed scheme through extensive experiments, with94

significantly boosted detection performance.95

(3) We achieved state-of-the-art results on the Oxford Hand Detection Dataset [8] and96

competitive results on the VIVA Hand Detection Challenge [6].97

Fig.1 shows one detection example of our methods in unconstrained environments.98

The rest of this paper is organized as follows. In section 2, we briefly introduced previous99

research in hand detection, followed by our proposed approach explained in section 3. Section100

4 details our experimental procedure and presents results from the two datasets used for hand101

detection. Conclusions are presented in section 5.102

2. Related Works103

2.1. Hand Detection104

Inspired by the progress of object detection in the field of computer vision, many methods have105

been proposed for hand detection in the last decade. The simplest method [2] is based on the106

detection of skin color, which not only mixes up hands, faces and arms, but also has problems107

because of the sensitivity to illumination changes.108

5



As Haar-like features and the AdaBoost classifier [20], [21], [22] have been extensively109

applied in many different object detection applications with outstanding successes, Mao et al.110

[21] proposed hand detection by improving Haar-like features with the restriction of asymmetric111

hand patterns. However, their experimental results demonstrated that the improvements might112

be marginal for complex backgrounds. Chouvavtut et al. [22] applied the use of the SAMME113

algorithm [23] instead of the decision tree as an estimator for the degree of orientation angles of the114

hands, mainly from the perspective of avoiding the over-fitting problem. Despite the achievements115

made, it is generally accepted that Haar-like features are not powerful enough to represent complex116

objects like hand due to the large variations in their appearance.117

In [3], HOG was applied for human detection by Dalal and Triggs. HOG and a number of118

subsequent variants, have been extensively applied as an efficient feature representation in various119

vision problems. Felzenszwalb et al. [7] proposed the Deformable Part Model (DPM), which120

applied HOG features for image representation and made use of latent parts for object detection.121

The DPM won the championships in the VOC object detection challenge from 2007 to 2009.122

Recently, Mittal et al. [8] proposed to hand detection based on three types of detectors, namely123

DPM-based shape detector, color-based skin detector and detectors with contextual cues (context124

detector). Although the precision performance was satisfactory, the detection was extremely slow125

which prevent it from becoming a feasible real-time approach.126

2.2. Region-based CNN127

All of the methods mentioned above applied hand-crafted features before the classification. In128

recent years, there has been much progresses in CNN targeted at feature learning for object129

detection and other vision tasks. A typical CNN model can be illustrated by Fig.2, which consists130

of two convolutional layers, two sub-sampling layers and two fully connected layers. The model131

was proposed by LeCun et al. [24] to recognize handwritten digits, and has only recently gained132

popularity from the interest in deep learning [25]. The most remarkable success of CNNs is in large133

scale object recognition [9] in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC).134

Szegedy et al. [26] applied separate CNNs for object detection, i.e., bounding boxes regression,135

and classification for the verification of whether the predicted boxes contain objects. Girshick et136
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al. [27] proposed R-CNN, where the regions are generated by some over-segmentation algorithms137

such as the selective search [28] and the CNN is fine-tuned with these region proposals. With image138

features extracted by the trained CNN model, the system is further trained targeting at recognition139

with Support Vector Machines (SVM). R-CNN, the first generation of region-based CNN, has140

become a milestone for object detection, which also inspired a number of other superior methods141

[29], [15], [30], [31]. Amongst them, Fast R-CNN [15] features a joint training framework in142

which the feature extractor, classifier and regressor are trained together in a unified framework.143

Due to these advantages, Fast R-CNN is exploited as the main building block in our approach.144

In many real world applications, some subtly different objects to be discriminated involve fine-145

grained details. As the differences between subcategories are small, ideal feature representations146

should take multi-scale image patches into account from different CNN layers. However, neither147

R-CNN nor Fast R-CNN considers the issue of information granularity with regard to fine-148

grained recognition. This is also one of the main limitations to many other CNN models which149

only target coarse-grained recognition problems. How to incorporate multi-scale features in150

fully convolutional neural networks to achieve improved performance has become an interesting151

research issue in computer vision research.152

Bell et al. [32] proposed to account for the multi-scale information with an Inside-Outside153

Network (ION), which combines features at multiple scales and levels of abstraction with the aid154

of skip pooling and spatial recurrent neural networks. Recently, Zagoruyko et al. [33] further155

developed the idea of skip connections to extract features at multiple network layers and presented156

the MultiPath network to further improve the standard Fast R-CNN object detector.157

Our work follows a similar strategy of gathering features from multiple layers by skip pooling158

for hand detection.159

3. Our Methods160

The proposed hand detection network is illustrated by Fig.3. Although our improvements upon161

the CNN architecture are not constrained by the type of models, our design is based upon the162

VGG16 model [34], a widely applied deep CNN model. The VGG16 network model consists163

of five convolutional blocks: Conv1 to Conv5. The Conv1 and Conv2 blocks each contain two164
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Fig. 2. A common CNN architecture

Fig. 3. The model structure of the proposed networks.
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convolutional layers while there are three convolutional layers in Conv3, Conv4 and Conv5.165

Instead of pooling the Region of Interest (RoI) features only at the last convolutional layer, we166

add RoI pooling layers after Conv3, Conv4 and Conv5.167

The Fast R-CNN [15] takes the whole image and sets of bounding boxes as inputs, and produces168

a feature map by convolutional and max pooling layers. Each bounding box will be initially169

projected to the feature map, followed by a pooling operation in a pooling layer, where RoI170

pooling, a special case of the spatial pyramid pooling layer in SPPnet [16], is adopted. As the most171

important component of Fast R-CNN, the RoI pooling layer enables the acceptance of different172

image sizes of the region proposal thus improving the R-CNN method. RoI max pooling first173

divides each RoI feature map into a fixed number of sub-windows and then applies max pooling174

in each window. As a result, different sizes of input can be pooled into fixed-lengths of feature175

representations.176

As the different layers in Convolutional Neural Networks represent different abstraction for177

features, we implemented feature pooling from multiple layers [32],[33]. As previously explained,178

the paradigm has been generally acknowledged as an important improvement to earlier CNN179

models where only the last layer of the CNN is exploited for feature representation [15]. The180

information from the last single layer is only suitable when the task is to generate class labels to181

images or regions because the last layer is the most sensitive to semantic information [35]. When182

a task involves fine-grained information, which is the case of our work on hand detection, outputs183

from the last layer alone are not sufficient to represent the image features. The same statement184

can be applied to many other tasks such as image segmentation, pose estimation or fine-grained185

object recognition. As an efficient solution, features from shallow layers and deeper layers should186

be fused together to capture multi-scale information about a hand image.187

Also, tiny hand objects will be difficult to identify based only on the last convolutional layers.188

Take the VGG16 model as an example where the last convolutional layer has an overall stride of 16.189

If a hand image is 16×16 pixels, the corresponding feature map in this layer would be only 1 pixel,190

which means the corresponding receptive field is too large to capture the essential information of191

the hand object. However, if features from multiple layers are aggregated, image representations192

from shallow layers will be retained which contain much more detailed information on tiny hand193
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objects and accordingly facilitate multi-scale detection.194

As previously explained, RoI pooling generates fixed length features. One potential problem195

for the pooled features is the wide range of attribute values as they vary widely in magnitude across196

different layers. The deeper layers often have much smaller values compared with shallower layers197

because of the convolution operation. This lack of feature normalization will cause convergence198

problems when training the CNN model. Also poor performance would be expected as the model199

will be biased by the larger features values. As a simple solution, we utilized L2 normalization200

after RoI pooling as suggested in [32] to normalize the features.201

The L2 normalization is implemented after RoI pooling. The L2 normalization is conducted on202

all the pixels of the feature maps, and all the feature maps are treated independently, i.e.,203

X̂ =
X

‖ X ‖2
(1)

‖ X ‖2 =

(
d∑

i=1

|xi|

) 1
2

(2)

where X̂ represents the normalized features and X represents original features. In Equation 1,204

features are L2 normalized. In Equation 2, d represents the dimension of each entry of features.205

The feature normalization step proposed in [32] also includes a re-scaling operation which is206

an important concept stemming from [36]. The scale factor can be a fixed value. We empirically207

set up the scale factor from experiments. Specifically, the mean scale of features pooled from the208

last convolutional layer (Conv5) on the training set was measured and set as the target scale. Then209

the mean scale of features from each convolutional layers are computed and the scaling factor can210

be consequently obtained by simple division.211

To match the original shape of the RoI pooled features (512×7×7), we reduced the212

concatenated feature dimension using 1×1 convolution. Hence, the outputs from our network213

architecture would be the same as the original VGG16 model. Subsequently, two fully connected214

layers are applied before the multi-task strategies, namely, feature classification and bounding box215

regression.216
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4. Experiments217

In this section, we presented the results from our methods on two benchmark datasets: the Oxford218

Hand Detection Dataset [8] and the VIVA Hand Detection Challenge [6]. All the experiments were219

conducted using the Ubuntu 14.04 operating system. The CNN models were trained on the Caffe220

platform [37], a C++ deep learning library. The max iteration of training and learning rate were set221

as 40000 and 0.001, respectively. For the Oxford Hand Detection Dataset, we applied the PASCAL222

VOC evaluation toolkit for evaluation; for the VIVA Hand Detection Challenge, we submitted our223

results to the official evaluation server. All the data of the other participator’s methods was obtained224

from the organizing committee.225

4.1. Oxford Hand Detection Dataset226

Mittal et al. [8] collected this dataset for hand and its orientation detection. This is a comprehensive227

dataset collected from a number of different public image resources. As illustrated in [8], no228

restriction was imposed on the pose or visibility of people, and there was no constraint placed on229

the environment.230

The dataset is split into training (1844 images), validation (406 images) and testing sets (436231

images). The details of the dataset can be found in [8]. However, the original annotations of the232

training dataset are not axes aligned, but placed according to the orientation of the hand’s wrist. In233

our experiment, we re-allocate the bounding box annotations of the training set by making it align234

with the horizontal axis to facilitate the training of the deep learning model. These annotations are235

new in our research, which are consistent with locations and scales of the original bounding boxes.236

The testing set was applied in their original form, so as to compare with other methods.237

For all the images and hand instances in the validation and testing dataset, we conducted238

comparison experiments with both the baseline approach and the proposed model. To compare239

with previously published methods, we also performed experiments using the original evaluation240

protocol of [8] so as to evaluate the detection performance of the big hand instances as in [8].241

Fig.4 presents some image examples from the dataset and the corresponding annotations. As242

can be seen from the figure, there are large variations in the illumination conditions, scales,243

viewpoints and hands poses. Also, the dataset contains a number of small hands objects which244
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Fig. 4. Oxford hand detection Dataset

Table 1 The Average Precision (AP) on the Oxford Validation and Testing Set. All hand instances were used for
evaluation.

Methods Validation Set Test Set
VGG16(baseline) 45.9% 47.7%

Our Model 51.2% 49.6%

Table 2 The Average Precision (AP) on the Oxford Hand detection Dataset and comparison with previous methods.
Only large hand instances (larger than a fixed area of bounding box) are considered in the evaluation.

Methods AP
Multiple Proposals [8] 48.2%

VGG16(baseline) 56.8 %
Our Model 58.4%

adds extra difficulties to the detection task.245

The experimental procedure can be further explained as follows:246

As a first step, a set of region candidates was generated by Edgeboxes [38] on the training247

set. We set the maximum number of candidates to 3,000. The Edgeboxes algorithm would248

generate bounding boxes according to the confidence values. The top 3,000 candidates have higher249

probabilities of containing objects. We then trained the proposed CNN model using ground truth250
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(a)

(b)

Fig. 5. Recall of Edgeboxes algorithm on the Oxford dataset: (a) validation set. (b) test set

annotations and the generated candidate regions. During training, positive samples were collected251

with a fixed overlapping ratio. If a candidate region overlaps more than 0.5 with the annotated252

13



(a)

(b)

Fig. 6. Precision-Recall curve on the Oxford dataset: (a) validation set. (b) test set.

bounding box, it was considered as positive. Otherwise, the region was treated as a background.253

The percentages of positive samples and negative samples to all of the candidate regions are 25%254
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Fig. 7. Precision-Recall curve on the Oxford test dataset with only large hand instances
considered.

and 75% respectively.255

Following the common practice of applying CNN, the model was first pre-trained with256

ImageNet and then fine-tuned with the sampled candidate regions previously explained. The257

popular Stochastic Gradient Descent (SGD) algorithm was applied for the CNN training, with each258

SGD mini-batch size chosen as 128. As pointed out by Girshick [15], it is not necessary to fine-259

tune all the layers. In our experiments, we kept the Conv1 and Conv2 parameters unchanged, and260

fine-tuned the other layers with a maximum iteration of 40,000. During training, we encountered261

the under-fitting problem with the model training. In order to compensate for this, we removed all262

the drop-out layers of the model [32], and observed improved results.263

After training, the methods were tested on the validation and testing sets separately. We firstly264

plotted the recall versus intersection over union (IoU) curve on both of the Oxford Validation set265

and Test set, as illustrated in Fig.5. The recall versus IoU curve was applied as the main evaluation266

metric for the region proposal algorithm in [39]. This figure indicates, that for certain overlap267

ratios (IoU) between detected boxes and ground-truth regions how many true positive samples can268

be fetched. Hence, in this paper, we also plotted this curve to evaluate the performance of the269
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Fig. 8. Detected examples from the Oxford Hand Detection Dataset: The red boxes are the
annotated hand positions. The blue boxes are the detected boxes with the corresponding label
tags in yellow.

Edgeboxes algorithm. The Edgeboxes algorithm achieved 81.25% and 77.30% recall rates when270

the IoU ratio is 0.5 on the validation set and test set, respectively. The recall rate is not very high271

due to the unconstrained settings of the dataset and the large variances of shape, pose, and the scale272

of the hands.273

We then ran the CNN models using the generated candidate regions. To prove the capability of274
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Fig. 9. Incorrect detected examples from the Oxford hand detection dataset

the proposed model, we set the original VGG16 [34] model as the baseline. To keep the number275

of detected boxes limited, we applied Non-Maximum Suppression (NMS) with a threshold of276

0.3 in the experiment to eliminate redundant bounding boxes. Following the popular Average277

Precision evaluation protocol, we applied the PASCAL VOC [40] evaluation tookit to calculate the278

Average Precision (AP). As pointed out by Provost et al. [41], simply using accuracy results can279

be misleading. A Precision-Recall (PR) curve is normally used as the evaluation metric for object280

detection [15]. Fig.6 shows the PR curve for the baseline method and our methods. The area below281

the PR curve is the AP value. We can see clear improvements on the AP results from the figure.282

Table 1 shows the AP values on the Validation and Test sets. On both of the validation and test283

set, our methods outperformed the baseline approach, with AP values of 51.2% and 49.6% on the284

validation and test set, respectively.285

To compare with the previously published methods, experiments were also conducted with the286

same evaluation protocol of [8]. In [8], hand instances larger than a fixed area of the bounding box287

(1500 sq. pixels) are used in evaluation. [8] also applied the PASCAL VOC evaluation protocol for288

the evaluation. Hence, our experiments are consistent with the procedure in [8]. Fig.7 shows the289

PR curve of the proposed model and the baseline approach. From the figure, it is obvious that our290

method (red curve) has a higher AP value than the baseline method (blue curve). Table 2 shows291

the AP results of our method and comparisons with other published results. Our method achieved292

a state-of-the-art AP result of 58.4%.293

Fig.8 illustrates some of the detected examples on this dataset. Despite the severe occlusion294

and small sizes of the hands in some images, the hands can still be correctly detected. Table 2295

summaries the results of our approach and some of the previously published methods, confirming296
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(a) (b) (c) (d)

Fig. 10. Examples of the VIVA hand detection dataset: (a) different view point. (b) skin-like
non-hand objects appear in the image. (c) occlusion example. (d) illumination variation.

Table 3 Average Precision (AP) on VIVA L1 and L2 Dataset and comparison with previous methods.

Method L1 Set L2 Set
CNNRegionSampling [42] 66.8% 57.8%

ACF Depth4 [6] 70.1% 60.1%
YOLO [43] 76.4% 69.5%

FRCNN [44] 90.7% 86.5%
Our Model (Multi-scale Fast R-CNN) 92.8% 84.7%

the improved performance from our proposed method.297

To investigate the situations where the proposed method was not successful, Fig.9 shows some298

examples of incorrectly detected images. In most of these instances, the mistake is misclassifying299

some other objects as hands. For example, feet, corsage or logos on T-shirts appearing in the300

image would be misjudged as a hand, as illustrated in the figure. This problem is not trivial and the301

solution may not be straightforward based on the current method. A possible approach to tackle302

the issue is to explore the contextual information in the discrimination of some hand-like objects303

and real hands.304

4.2. VIVA Hand Detection Dataset305

The University of California, San Diego [6] assembled an annotated dataset for hand detection306

under realistic driving conditions, with the objective of serving as a component in the Vision for307

Intelligent Vehicles and Applications (VIVA) challenge 1.308

There are a number of challenges for the detection of a driver’s hands in real driving conditions.309

1http://cvrr.ucsd.edu/vivachallenge/index.php/hands/hand-detection/
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(a)

(b)

Fig. 11. Recall of Edgeboxes algorithm on the VIVA hand detection dataset: (a) L1. (b) L2.

To address these challenges, the dataset was designed to reflect variations in illumination, non-310

hand objects with similar color, occlusion and camera view-points. Fig. 10 (a) shows examples311
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(a)

(b)

Fig. 12. Precison-Recall curve on the VIVA hand detection dataset: (a) L1. (b) L2.

of different view points, Fig. 10 (b) illustrates circumstances where skin-like non-hand objects312

appear in the image, Fig. 10 (c) demonstrates an occlusion example and Fig. 10 (d) is an example313
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(a)

(b)

Fig. 13. ROC curve on VIVA the hand detection dataset: (a) L1. (b) L2.

of illumination variation. The VIVA dataset is the first public dataset which can effectively evaluate314

the performance of a hand detection system inside a vehicle environment.315
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Table 4 Average Recall (AR) on VIVA L1 and L2 Dataset and comparison with previous methods.

Method L1 Set L2 Set
CNNRegionSampling [42] 48.1% 36.6%

ACF Depth4 [6] 53.8% 40.4%
YOLO [43] 46.0% 39.1%

FRCNN [44] 55.9% 53.3%
Our Model (Multi-scale Fast R-CNN) 82.8% 66.5%

The dataset includes two parts: the training set and the testing set, each with 5500 images.316

Whilst the annotations of training sets were released, we manually labelled the testing set for the317

subsequent experiments. The testing set can be further divided into two parts: Level-1 (L1) and318

Level-2 (L2). According to the dataset specification, L1 only includes the back view imagery and319

larger instances (above 70 pixels in height) while L2 comprises of imagery from all view points as320

well as instances larger than 25 pixels, which serves as a more difficult challenge. We will present321

results based on both of the subsets.322

Similar to the experimental procedure in Section 4.1, after training of candidate regions323

generated by the Edgeboxes, during evaluation, we first generated a set of region proposals using324

the Edgeboxes algorithm and evaluated the performance by plotting the recall versus IoU curve,325

with the results shown in Fig.11. On the L2 dataset, the recall value is 90.0% with IoU 0.5, which326

is much smaller than the recall value of 97.7% on L1. This is consistent with the fact that L2 is327

more difficult than L1.328

We then performed testing with our model. NMS with a threshold of 0.3 was also conducted329

to eliminate redundant bounding boxes. Fig.12 illustrates the PR curve for both of the L1 and330

L2 datasets. This PR curve indicates that our method (the black curve) ranks very highly in331

terms of the AP value (area under the PR curve). With AP values as the performance indicator,332

more comprehensive comparisons with results from applying other recently published methods333

are provided in Table 3. All the figures and values are from the official evaluation server. Among334

the compared methods, our approach (Multi-scale Fast R-CNN) showed satisfactory performance.335

Specifically, we achieved a state-of-the-art AP result on the L1 dataset, with a 92.8% AP value,336

and ranked second on the L2 dataset, with an 84.7% AP value.337

As suggested by the challenge, we also utilized the Average Recall (AR) evaluation protocol [6],338
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Fig. 14. Correctly detected examples on the VIVA hand detection challenge: The red boxes are the
annotated hand positions and the blue boxes are the detected boxes with corresponding label tags
colored in yellow.

AR was calculated from the ROC curve over 9 evenly sampled points in log space between 10−2
339

and 100 false positives per image and suitable for summarizing the detection performance at lower340

false positive rates [6]. Fig.13 shows the ROC curve of our methods on the L1 and L2 datasets.341

From the figure, it is clear that the area under the curve of our method (black curve) ranks higher342

than other published results. Table 4 shows the AR results of our method and other participators’343
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Fig. 15. Incorrect examples on the VIVA dataset

methods. Our method achieved 82.8% and 66.5% AR value on the L1 and L2 dataset, respectively,344

which are higher than all the other published results.345

Fig.14 shows some of the correctly detected examples. Even with different types of variations346

including occlusions and re-scale, our proposed approach can correctly detect hands in most of the347

situations. Some unsuccessful examples are shown in Fig.15. Occasionally, certain kinds of cloth348

or part of the body such as an arm or face might be mistaken as hands. As we discussed at the349

end of section 4.1, this difficult task will be our next step in working towards developing a highly350

reliable hand detection system that is applicable in the real world.351

5. Conclusion352

This paper presented a multi-scale Fast R-CNN approach to accurately detect human hands in353

unconstrained images. By fusing multi-level convolutional features, our CNN model is able to354

achieve better results than the conventional VGG16 model. This method is especially efficient for355

small hand objects which are often hard to detect with conventional CNN models. Our methods356

have been validated on two benchmark datasets: the Oxford Hand Detection Dataset and the VIVA357

Hand Detection Challenge. On the Oxford dataset, we achieved state-of-the-art results with an358

improvement in performance by a significant margin; For the VIVA Hand Detection Challenge,359

our results have good performance as listed in the official website. Future work includes the fusion360

of contextual information to realize reliable hand detection, particularly for the environment inside361

a vehicle.362
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[35] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Hypercolumns for object segmentation462

and fine-grained localization,” in Proceedings of the IEEE Conference on Computer Vision463

and Pattern Recognition, pp. 447–456, 2015.464

28



[36] W. Liu, A. Rabinovich, and A. C. Berg, “Parsenet: Looking wider to see better,” CoRR,465

vol. abs/1506.04579, 2015.466

[37] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and467

T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in Proceedings of468

the ACM International Conference on Multimedia, pp. 675–678, ACM, 2014.469

[38] C. L. Zitnick and P. Dollár, “Edge boxes: Locating object proposals from edges,” in ECCV,470

2014.471

[39] J. Hosang, R. Benenson, P. Dollar, and B. Schiele, “What makes for effective detection472

proposals?,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. PP,473

no. 99, pp. 1–1, 2015.474

[40] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The pascal475

visual object classes (voc) challenge,” International Journal of Computer Vision, vol. 88,476

pp. 303–338, June 2010.477

[41] F. J. Provost, T. Fawcett, and R. Kohavi, “The case against accuracy estimation for comparing478

induction algorithms.,” in ICML, vol. 98, pp. 445–453, 1998.479

[42] S. Bambach, S. Lee, D. J. Crandall, and C. Yu, “Lending a hand: Detecting hands and480

recognizing activities in complex egocentric interactions,” in Proceedings of the IEEE481

International Conference on Computer Vision, pp. 1949–1957, 2015.482

[43] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once: Unified,483

real-time object detection,” CoRR, vol. abs/1506.02640, 2015.484

[44] T. Zhou, P. J. Pillai, and V. G. Yalla, “Hierarchical context-aware hand detection algorithm485

for naturalistic driving,” in 2016 IEEE 19th International Conference on Intelligent486

Transportation Systems (ITSC), pp. 1291–1297, Nov 2016.487

29


	Introduction
	Related Works
	Hand Detection
	Region-based CNN

	Our Methods
	Experiments
	Oxford Hand Detection Dataset
	VIVA Hand Detection Dataset

	Conclusion
	Statement

