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Abstract

Chikungunya is a viral disease transmitted to humans primarily via the bites of infected

Aedes mosquitoes. The virus caused a major epidemic in the Indian Ocean in 2004, affect-

ing millions of inhabitants, while cases have also been observed in Europe since 2007. We

developed a stochastic spatiotemporal model of Aedes albopictus-borne chikungunya trans-

mission based on our recently developed environmentally-driven vector population dynam-

ics model. We designed an integrated modelling framework incorporating large-scale

gridded climate datasets to investigate disease outbreaks on Reunion Island and in Italy.

We performed Bayesian parameter inference on the surveillance data, and investigated the

validity and applicability of the underlying biological assumptions. The model successfully

represents the outbreak and measures of containment in Italy, suggesting wider applicability

in Europe. In its current configuration, the model implies two different viral strains, thus two

different outbreaks, for the two-stage Reunion Island epidemic. Characterisation of the pos-

terior distributions indicates a possible relationship between the second larger outbreak on

Reunion Island and the Italian outbreak. The model suggests that vector control measures,

with different modes of operation, are most effective when applied in combination: adult vec-

tor intervention has a high impact but is short-lived, larval intervention has a low impact but

is long-lasting, and quarantining infected territories, if applied strictly, is effective in prevent-

ing large epidemics. We present a novel approach in analysing chikungunya outbreaks glob-

ally using a single environmentally-driven mathematical model. Our study represents a

significant step towards developing a globally applicable Ae. albopictus-borne chikungunya

transmission model, and introduces a guideline for extending such models to other vector-

borne diseases.
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Introduction

Chikungunya is an incapacitating disease caused by the recently re-emerging Chikungunya

virus (CHIKV) [1], which is transmitted to humans via mosquitoes of the Aedes genus. Since

its first identification in Tanzania in 1952, CHIKV has been detected in both low- and high-

income countries, causing social and economic burdens. As the disease appears not to be

directly associated with poverty or wealth, the recent rapid spread is thought to be the result of

increased global travel, trading across international borders, and climate change, allowing

known vectors to be transported quickly to new habitats [2]. Over the last 10 years, the geo-

graphic range of CHIKV has expanded [3] and in early 2005, outbreaks occurred in Mayotte,

Mauritius, and the Comoro islands. By late April, Reunion Island had also been affected and a

year later, approximately 244,000 cases and 203 reported deaths had occurred [4]. Epidemics

regularly occur in India, with an estimated one million cases reported during the 2006 epi-

demic, while repeated smaller-scale epidemics have occurred since 2005 in many other Asian

and African countries [5].

The first reported outbreak of CHIKV in continental Europe was in Italy in 2007 [6] in the

adjacent villages of Castiglione di Cervia and Castiglione di Ravenna in North East Italy. It is

believed that the virus was introduced by a man travelling from India to visit family members

[7]. The outbreak was well-contained overall, with 205 confirmed cases and only one reported

death [7–9]. CHIKV was identified in South East France in September 2010 [10], and

imported cases have also been detected in British Guyana, French Guiana and other countries

of the West Indies, Germany, Norway, China, and the Philippines [11]. The recent establish-

ment of Ae. albopictus in Spain poses a great threat for CHIKV emergence in Spain [12].

The first local transmission of CHIKV in United States was detected in Caribbean territo-

ries in 2013 [13] although Aedes aegypti was identified as the main vector in these outbreaks

[14]. Since 2014, local transmission have also been detected in Florida, Puerto Rico, and the U.

S. Virgin Islands [13]. Ae. aegypti is also responsible for the recent explosive outbreaks of the

Zika virus in Latin America [15] and its introduction to U.S. in 2016 [16].

Once a CHIKV-infected vector bites a human host and transmits the virus, an asymptom-

atic incubation period begins, ranging from one to twelve days with an average of two to four

days [1, 11]. Following this incubation period, 15% of infections remain asymptomatic [1, 3],

while others experience symptoms corresponding to the acute stage of infection, often includ-

ing fever (temperatures above 39˚C), arthralgia in small and large joints, and body rash, while

vomiting and nausea are also common [3, 11, 17]. Acute symptoms generally last seven to ten

days, but associated aches and pains can be long-lasting in 30% of patients marking the chronic

stage of the infection [17]. Continuing long-term inflammation of the joints and connective

tissue during the chronic stage may have disabling consequences similar to rheumatoid arthri-

tis [3, 11]. Chikungunya is rarely fatal, but deaths can occur in the young, elderly, or those

immunosuppressed or immunocompromised [3, 11, 17].

The 2005-2006 and 2007 chikungunya outbreaks in the Indian Ocean and Italy, respec-

tively, are thought to have been associated with a recent mutation of alanine-226 in the

CHIKV envelope protein to valine, which increased the infectiousness of CHIKV in Ae. albo-
pictus compared to Ae. aegypti due to more efficient attachment and migration from the mid-

gut to the salivary glands [3, 18].

Ae. albopictus can successfully inhabit both tropical and temperate climates [19–21], with

its wide geographic distribution arising from its ability to inhabit both rural and urban settings

and display both anthropophilic and zoophilic behaviour [22]. It is known as a container

breeder due to the variety of natural and artificial environments used as breeding sites [23, 24].

Adults are generally active during the day, but can also feed at night; in addition, although they
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prefer to feed outdoors, they do bite indoors, making prevention more problematic. Trading

of car tires and timber from Asia was the probable route of introduction into countries where

its presence would otherwise have been unlikely [3]; eggs are resistant to desiccation and are

thus likely to survive the travelling time. In addition, the temperate strain of Ae. albopictus, in

contrast to the tropical strain, can lay diapausing eggs with elevated cold-resistance contribut-

ing further to the reproductive success in colder climate zones [25–27].

The global distribution and population dynamics of Ae. albopictus are highly influenced by

environmental variables [28]; temperature significantly affects the mosquito developmental

and metabolic rates, while it is thought to also influence egg production and the frequency of

blood meals, with extreme temperatures (>40˚C) having damaging effects. Rainfall is tightly

associated to breeding sites of aquatic immature mosquito stages, with heavy rainfall

compromising breeding sites or sweep away the immature stages. Reviews of how climatic var-

iables affect Ae. albopictus biology have been previously published [22, 29, 30] and the roles of

climate (and climate change) on vector-borne diseases have been reviewed [31].

Mathematical models of infectious diseases enable predictions of and insights into epidemic

dynamics to help guide public health planning and response [32–34]; however, relatively few

validated CHIKV transmission models have been developed to date and even fewer based on

validated Ae. albopictus population dynamics models [22, 35], making reliable predictions

about transmission and the potential impacts of different intervention programs at local and

global scales challenging. We have previously developed an environmentally-driven model of

Ae. albopictus population dynamics and used a Bayesian approach to assess model fit to vector

surveillance data from Emilia-Romagna, Italy [30]. Our model has demonstrated encouraging

predictive capacity over the region and beyond. In the current study, we aimed to use this

model as the basis for developing a stochastic spatiotemporal model of Ae. albopictus-driven

CHIKV transmission using large-scale gridded environmental datasets. Next, we sought to use

this integrated model to investigate the CHIKV outbreaks in Italy [7–9] and on Reunion Island

[4, 36], as well as to infer more general and valuable insights into CHIKV transmission dynam-

ics and the impact of vector and outbreak management strategies.

Methods

We developed a discrete-time stochastic susceptible / exposed / infected / recovered / chronic-

stage (SEIRC) model for Ae. albopictus-borne chikungunya transmission. A schematic repre-

sentation of the model and an abbreviated list of parameters are given in Fig 1. An expanded

parameter list is given in Table 1 together with domain boundaries (and references, where

applicable) for parameter inference.

We implemented the model in ANSI C and developed a Python interface to run and facili-

tate integration with various environmental data sets. The code and related material are avail-

able in the albopictusPython package (v.0.8), which is available from the Python package

index [37].

Environmental data sets

We adopted a large-scale modelling approach by focusing on the cells of gridded environmen-

tal datasets. We used the gridded climate dataset (E-OBS) of the EU-FP6 project ENSEMBLES

with 0.25˚ resolution [51] (about 25 km along the equator) and the UN-adjusted Gridded Pop-

ulation of the World Version 3 (GPWv3) with matching resolution for 2005 [52] as the source

of temperature, precipitation and human population density for simulations over Europe.

Throughout the text, we refer to this environmental dataset as ClimEurope.

Albopictus-borne CHIKV transmission model
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Fig 1. Flow diagram of the stochastic Ae. albopictus-borne CHIKV transmission model. Rectangles indicate states with durations, such as incubation

periods, while diamonds indicate states with daily survival but without development/incubation periods. Solid arrows indicate state transformation, while

dashed arrows indicate modulation/influence.

https://doi.org/10.1371/journal.pone.0174293.g001

Table 1. Model parameters with reference intervals obtained from literature.

Parameter Definition Prior interval References

ων Average latent period in vectors 0-10 days [38–40]

σων
Standard deviation of ων 0-5 days

ω Average latent period in humans 0-10 days [36, 38, 40–42]

σω Standard deviation of ω 0-5 days

γ Average infectious period in humans 0-10 days [38, 40, 41, 43]

σγ Standard deviation of γ 0-5 days

αscpH Human susceptibility to infections 0-1 [38, 40]

αscpV Vector susceptibility to infections 0-1 [40, 44]

pR Probability of recovery following the initial infectious period 0-1 [45]

pC Probability of a persistent infection following the initial infectious period (1-pR) 0-1 [45]

pCR Daily probability of recovery from a chronic infection 0-1

pCI Daily probability of relapse during a chronic infection (pCR+pCI� 1) 0-1

αη Fraction of symptomatic infections which are also reported 0-1 [40, 46–49]

αovt Average number of ovitraps per km2 0-103 [50]

khum Average number of bites per human 0-100

kvec Average number of bites per vector and daily fecundity 0-1

qi Probability of a person to reside in patch i for a day 0-1

c Degree of separation among patches 0-5

tintro Time of introduction of an infectious person (with regards to the beginning of simulation) 1-365 days

h The patch where an infectious person is introduced indices of available patches

https://doi.org/10.1371/journal.pone.0174293.t001
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In addition, we employed the ECHAM5/MESSy2 Atmospheric Chemistry (EMAC) general

circulation model [20, 53, 54] to establish global datasets available over Reunion Island. Cli-

matic boundary conditions using AMIP-II [55] sea-surface temperature (sst) and sea-ice cov-

erage (sic) assimilation data was imposed to this model, which has a resolution of 0.5˚ latitude

and longitude (about 50 km grid spacing along the equator). The model was evaluated against

meteorological re-analysis data and was also used for future climate projections [20]. We refer

to this dataset as ClimGlobe throughout the text.

Vector dynamics model

We represented vector dynamics with the recently developed environmentally-driven popula-

tion dynamics model of Ae. albopictus, as described in Erguler et al. 2016 [30]. Throughout the

text we refer to this as the albopictus model.

As an improvement to the original model, we implemented a more realistic age-dependent

survival process for adult stages. We described adult survival time with a gamma distribution

[56], and calculated daily survival, p4, of a d-day old vector with

p4 ¼ 1 �
Fðd þ 1; m; sÞ � Fðd; m;sÞ

1 � Fðd; m;sÞ
; ð1Þ

where F(�) is the cumulative distribution function of the gamma distribution with shape and

scale parameters adjusted to set the mean and standard deviation of the distribution μ and σ
days, respectively (see S1 Text for a detailed derivation).

We followed the assumption of temperature-dependent adult survival in the original model

and performed parameter inference over the Emilia-Romagna surveillance dataset [50]. We

present the emerging optimum posterior mode [30] in S2 Text. The parameters sampled from

this posterior mode, Θ4, are labelled as “Q4” in the albopictusPython package (v.0.8)

[37].

Overall, we observed that the model with Θ4 suggests elevated cold resistance for diapaus-

ing eggs and the involvement of both temperature and photoperiod in the process of diapause

(see S2 Text for a detailed account of the results). The threshold for cold resistance in adult

vectors is around -2˚C, while diapausing eggs can be expected to have 50% daily survival prob-

ability at -10˚C or lower. While the data are not restrictive on the lower bound of cold resis-

tance, they necessitate that diapausing eggs should resist very low temperatures. We note,

however, that these temperatures are daily averages and they represent an entire grid cell of the

environmental datasets. According to Θ4, diapause entry is triggered by a drop in temperature

(below 11.59 ± 0.003˚C), while exit from diapause is mainly initiated by the duration of day-

light exceeding 11.78 ± 0.001 hours. We found that, with regards to its biological implications,

Θ4 closely resembles the posterior mode Θ1 in Erguler et al. 2016 [30].

Local transmission model

Chikungunya virus is transmitted from one person to another via the bites of infectious vectors

[11]. Here, we modelled the initiation of disease transmission with a susceptible vector becom-

ing infected upon receiving a blood meal from an infectious human. When infected, we

assumed that the vector passes to the exposed stage, AE, where it spends an incubation period

of approximately ων days. Following the incubation period, the vector becomes infectious, AI,

and spends the rest of its life in this stage [38–40].

We assumed that an infected human passes to the exposed stage, E, and, after approxi-

mately ω days, becomes infectious, I [36, 38, 40–42]. We followed previous modelling

approaches [40, 46–49] by assuming that an infection is captured by a surveillance system with

Albopictus-borne CHIKV transmission model
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a certain probability, αη, whereby a person becomes infectious and thus symptomatic. The

infectious stage lasts approximately γ days, and is either followed by recovery, R [38, 40, 41,

43], or progression to the chronic stage, C [57–59]. We defined fixed daily probabilities, pR
and pC, respectively, for each of these routes.

Upon recovery or entrance to the chronic stage, we assumed that a patient is no longer

infectious; however, in the chronic stage, which could last for several years, spontaneous

remission of the infectious stage might occur [45, 60]. We modelled such sporadic relapses by

allowing transformations to an alternative infectious stage, IC. Unlike the initial infectious

stage, this alternative stage transforms back to the chronic stage, and the chronic stage trans-

forms to the recovered stage with a small but fixed daily probability, pCR. Due to the lack of

detailed accounts of environmental dependence of relapses from the chronic stage, we adopted

a fixed daily probability of relapse, pCI.
In order to model latent and infectious periods, we used an age-structured development

model as in Erguler et al. 2016 [30]; however, instead of assuming a fixed duration, which

would be suitable for modelling average development time in a deterministic context, we

describe the lengths of latent and infectious periods by a gamma distribution [56]. Similarly to

Eq (1), latent and infectious stages progress every day with a probability of completion given

by

pd ¼ 1 �
Fðd þ 1; m;sÞ � Fðd; m;sÞ

1 � Fðd; m;sÞ
;

where F(�) is the cumulative distribution function of a d-day old infection with mean μ and

standard deviation σ. According to this, the duration of each stage is described by the mean

and the standard deviation of the gamma distribution. In this context, development follows

survival, that is, survival is independent of development and the development process only

applies to vectors surviving up to day d.

We assumed that chikungunya infection does not significantly elevate human mortality

rate [4, 9], and also, human population size is unchanging during the time-frame of an out-

break. In contrast, we modelled the survival of exposed and infectious vectors with an age- and

temperature-dependent gamma distribution within the stochastic context. That is, we esti-

mated daily survival probabilities of adult females with Eq (1) and obtained the daily number

of surviving vectors from a binomial distribution with p4 as the probability of success.

The rate of viral transmission between human and vector populations depends on the num-

ber of interactions between the two species. The assumption of rapid mixing, where human

and vector populations freely and randomly interact with each other, is implicit in canonical

deterministic outbreak models and their stochastic derivatives [38, 40, 49, 61–63]. Although

active mobility of Ae. albopictus is limited to a short range [64], humans can quickly move over

large distances and give rise to rapid mixing [65]. By relying mainly on human mobility, we

explicitly assumed rapid mixing and regarded human-vector interactions as a Poisson process

where, on average, λ interactions—successful blood meals—take place between the two species

every day. The average number of interactions is independent of their respective disease states

and transmission occurs only whenever either vector or human are infectious.

Although Ae. albopictus has a strong affinity for humans, it demonstrates a wide range of

host preference [66, 67]. In the absence of humans, it will obtain blood meals from other mam-

mals and non-mammal species including birds and reptiles [68]. In the albopictus model, we

assumed that the number of eggs laid by female Ae. albopictus (fecundity) is independent of

human population density [30]. In accordance with this, here, we assumed that fecundity and

Albopictus-borne CHIKV transmission model
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the number of human-vector interactions are independent quantities; Ae. albopictus will

always find the blood meal it needs even if there are no humans around.

A large number of disease transmission models [38, 40, 49, 69–71] have made use of the

underlying assumption that the rate of human-vector iteractions can be described by the biting

rate of a vector (b: the number of bites per vector per unit time) and the total number of vec-

tors (nvtotal = nvAs + nvAe + nvAi). By analogy, we write the daily average number of bites as

lV ¼ b � nvtotal;

where the time unit of b is one day. This equation implies that a vector successfully obtains, on

average, λV blood meals from humans every day given unlimited supply of the host. The stan-

dard model is valid only when the number of humans is not a limiting factor. When humans

are outnumbered by large vector populations, or when too few humans are present in vector

habitats, mosquitoes are forced to seek alternative sources of blood either due to competition

or difficulty in finding a human host. The result is the plateauing of the number of human-vec-

tor interactions. In order to account for this saturation effect, we defined khum as the number

of bites per human per unit time, where the daily average number of bites a person receives is

lH ¼ khumntotal;

where ntotal is the total number of humans (nS + nE + nI + nIc + nR). This equation implies that

enough mosquitoes are present to deliver the daily average number of bites a person receives;

therefore, it applies mostly to the opposite side of the spectrum when nvtotal is much larger

than ntotal.

We argue that an appropriate model for the number of vector-host interactions would be

neither λV nor λH, but the harmonic mean of the two [72, 73],

l ¼
2lVlH

lV þ lH
:

In the limit ntotal!1, λ! 2λV, and in the limit nvtotal!1, λ! 2λH, which provides the

saturation effect. We note that in the case of the harmonic mean, emerging bite rates are twice

the values defined by b and khum, so parameterisation needs to be fine tuned accordingly. In

Fig 2, we demonstrate the behaviour of λ compared to the standard model for b = khum = 1 and

different human population sizes. Evidently, λ follows the standard model given the availability

of the human host, but a switch in host preference is seen when vectors outnumber humans.

In this context, we employed a fixed human biting rate (khum); however, we assumed that

the vector biting rate (b) is proportional to vector activity, which we linked to the number of

eggs laid per day (F4: fecundity). According to this,

lV ¼ kvec F4 nvtotal;

where F4 is daily fecundity as simulated by the albopictus model, and kvec is a proportionality

constant. Incorporating fecundity in vector biting rate helps to establish a closer link between

mosquito biting and ovipositioning, which are inherently coupled.

As a result, the daily average number of human-vector interactions can be written as

l ¼
2 kvecF4nvtotal � khumntotal

kvecF4nvtotal þ khumntotal
: ð2Þ

Alternative models of human-vector interaction can be used; however, to the best of our

knowledge, sufficient empirical evidence is not currently available to critically assess their rela-

tive validity. If available, vector biting statistics from human settlements of different sizes,

Albopictus-borne CHIKV transmission model
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along with the surveillance of local vector populations, could be used for model calibration

and validity. Due to its similarity to the standard model when ntotal is large, and the saturation

effect it exhibits when ntotal is low, we used Eq (2) to model human-vector interactions.

The fate of each interaction depends on the probability that either one of an interacting pair

is infectious. The probability of a vector-to-human transmission can be written as

pHV ¼
nvAi nS

nvtotal ntotal
ascpH;

where nS is the number of susceptible humans and αscpH is the human susceptibility to chikun-

gunya infections. Similarly, the probability of a human-to-vector transmission can be written

Fig 2. The rate of human-vector interactions. The plot shows the daily average number of human-vector interactions as modelled using the standard

approach (λV, see Methods) or by incorporating humans as a limiting factor (2λV λH/(λV + λH), see Methods) in the presence of 1 and 100 humans.

https://doi.org/10.1371/journal.pone.0174293.g002
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as

pVH ¼
nvAs ðnI þ nIcÞ

nvtotal ntotal
ascpV;

where αscpV is the vector susceptibility.

In order to implement the stochastic transmission process, we considered each interaction

separately. As stated above, we assumed that the number of daily human-vector interactions is

a Poisson-distributed random number with λ as the average number of interactions. The prob-

ability that any of these interactions results in a transmission is pHV + pVH, which changes

every time a successful transmission takes place. The state transitions associated with each

transmission can be written as

As ! Ai with p ¼ pHV
pHVþpVH

;

S ! I with p ¼ pVH
pHVþpVH

:

We note that only a subset of these interactions will likely result in a transmission. Having

determined the number of interactions per day, β, it is possible to discard the non-transmis-

sion interactions by sampling the number of interactions to the next successful transmission

event from a geometric distribution (p = pHV + pVH). When the next succesful transmission

takes place after β interactions, the process stops for the day and continues the next day with

another sample of β.

In order to improve efficiency in numerical simulations, we approximated the daily number

of interactions with a normal distribution with mean and standard deviation λ when λ is large

enough (more than 1000 interactions per day). In this case, the number of interactions to the

next successful transmission can be approximated with an exponential distribution with rate

pHV + pVH.

Spatial spread model

In order to model spread, we implemented a metapopulation model [74, 75] by allocating vec-

tor and human populations in patches (Fig 3). Each patch resides in a distinct location and has

a size comparable to the maximum flight span of a vector population. We assumed that vector

movement between patches due to wind and human activities is negligible; thus, vectors can

move within a patch but not between patches. Since only humans are mobile between patches,

they are responsible from spreading disease spatially.

While we allowed human mobility, we enforced a fixed population size in each patch. In

essence, we allowed humans to interact with the vector populations of neighbouring patches

by moving out and back in on a daily basis. We defined pij as the probability of the humans in

patch i interacting with those in patch j, or, in case of i = j, not interacting with any neighbour-

ing patch. By definition,

X

j

pij ¼ 1:

By focusing on the vector population of patch j, we calculated the expected number of peo-

ple in j as a result of all population movements,

ntotalj
¼
X

i

pijHi:
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Fig 3. The stochastic metapopulation model of disease spread. Spheres represent populations of humans, H, and vectors, V. Due to the movement of

humans, each vector population is allowed to interact with humans of the same or a different patch with a given probability p.

https://doi.org/10.1371/journal.pone.0174293.g003
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Similarly,

nSj
¼
X

i

pijnSi
; nIj

¼
X

i

pijnIi
; and nIcj

¼
X

i

pijnIci
:

Then, for each bite resulting in disease transmission to a human, we selected the region from

where the person originated, i, using the weights pij Hi. In essence, we used ntotalj
to estimate

the total number of bites in Eq (2), and then the relative sizes and interaction probabilities of

each patch to determine the direction of transmission.

Surveillance datasets

We studied two chikungunya outbreaks: the outbreak in Italy in 2007 and the outbreak on

Reunion Island in 2005-2006. In both cases, it was reported that the main vector was the tem-

perate strain of Ae. albopictus [4, 9, 76].

According to the reports [7, 9], the outbreak in Ravenna, Italy, took place in the Castiglione

di Cervia and Castiglione di Ravenna villages, which accommodate about 4000 people in less

than 1 km2 area. An infectious human was introduced on the 15th of June, 2007, which was fol-

lowed with 205 confirmed cases of infection in about three months [7]. Since vector control

measures were applied from the 18th of July [7, 9], we considered only the 110 cases prior to

this date for inference. Here, we refer to this surveillance dataset as δI.
Due to the size of the region, we used a single grid cell with 0.25˚ resolution and a center at

12.250˚E and 44.250˚N from the ClimEurope dataset (see Environmental data sets). We

extracted daily average temperature (t2m), daily precipitation, photoperiod, and human popu-

lation density to simulate the expected adult female abundance, n4, for the grid cell. Using a

proportionality constant, αovt, we estimated the number of susceptible vectors, nvAs, in the

area of the outbreak as at least the nearest integer value of

nvAs ¼ aovt n4:

We note that the albopictus model predicts the mean adult vector count per ovitrap and its

variability. Since the vector model is deterministic, and the error is small compared to the

intrinsic stochasticity of the disease transmission model, we used the mean, n4, and discarded

its variability.

The outbreak on Reunion Island was much larger in comparison, and took place in two epi-

sodes: (i) the first started in March 2005 and affected about 3000 people before it settled on a

low, but persistent, infection rate from June onwards, (ii) the second episode took place

between December 2005 and April 2006 and resulted in about 250,000 infections. In total,

about 34% of the entire population of the island (about 780,000 people) was infected [4, 36].

On this basis, we partitioned the cases into two datasets: δS, which consists of the cases prior to

20 November 2005 [77], and δL, which consists of all cases from both episodes.

The surface area of the island is approximately 2,500 km2, which is close to the size of one

grid cell of the ClimGlobe dataset (see Environmental data sets). Therefore, we simulated the

expected adult female abundance using the environmental variables from the grid cell centered

at 55.625˚E and -21.125˚N.

We partitioned the island into 238 patches of 9 km2 area, each inhabited by at least one per-

son, and assumed that the human population is highly mobile within each patch enabling ran-

dom interaction with any vector within the patch. We further assumed that the vector

population is not uniformly distributed among the patches, but correlates with the human

population size in each patch [30]. In essence, we set the number of susceptible vectors in

Albopictus-borne CHIKV transmission model
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patch i as the nearest integer value of

nvAsi ¼ aovt n4

ntotaliP
intotali

:

We obtained the number of people in each patch from the INSEE gridded population esti-

mate of 2009 [78]. Although the resolution of this dataset is 1 km2, we note that the simulation

time increases exponentially with the number of patches prohibiting efficient inference and

posterior sampling. Therefore, we re-grouped grid cells to yield a computationally feasible

number of patches where rapid mixing of humans can still be expected.

The cases included in each disease surveillance dataset and the centroids of the patches

employed for Reunion Island can be seen in Fig 4. As a first approximation, we assumed that

Fig 4. Outbreaks of Ae. albopictus-borne chikungunya in Italy and on Reunion Island. (a) Number of reported, and laboratory confirmed, infections in

Ravenna, Italy, during the chikungunya outbreak in 2007 [9]. (b) Total number of infections reported by the island-wide surveillance system on Reunion Island

during 2005-2006 [36]. The horizontal lines in (a, b) indicate the time frames and infections that each dataset covers. (c) The centroids of the patches of the

metapopulation model for Reunion Island.

https://doi.org/10.1371/journal.pone.0174293.g004
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the transfer probability of people between two patches, pij, is proportional to the inverse of the

flight distance between the patches (see Spatial spread model),

pij ¼
qi

P
jd

c
ij

dc
ij

if i 6¼ j

1 � qi if i ¼ j

;

8
>><

>>:

where dij is the flight distance between patch i and j, c is the degree of the relationship, and qi is

the probability of a person moving away from the patch he or she inhabits. Parameters qi and c
together determine the overall mixing rate of the human population on the island, and we

included them in the list of parameters to be inferred.

Results and discussion

Predicting vector dynamics during the outbreaks

Predicting vector abundance is an essential part of modelling vector-borne disease spread.

Most of the previous approaches combined vector dynamics and disease spread modelling [40,

49], where model validation was performed for both in a single step. We argue that, in terms of

fitting to outbreak data, this approach gives a greater flexibility to the model and thus might

result in overfitting. Unfortunately, vector abundance data are limited or restricted for most

parts of the world due to the cost and effort required to collect such data. Here, we employed

our environmentally-driven population dynamics model of Ae. albopictus, henceforth referred

to as the albopictus model [30], which has been validated on the Emilia-Romagna region of

Italy [50] and demonstrated reasonably good predictive capacity across Europe.

Although vector abundance data directly from the two regions of the outbreak were not

available, we tested the applicability of the albopictus model over a preliminary surveillance

dataset comprising ovitrap samplings in four towns, Ravenna, Forli, Cesena, and Rimini, dur-

ing the period of the chikungunya outbreak in Italy [79]. We employed the same posterior

parameter set Θ4 (see Vector dynamics model) calibrated on the Emilia-Romagna region. In

Fig 5(a), we plot model prediction against the average number of eggs collected per ovitrap for

each town. The prediction is in agreement with the data with a certain proportionality con-

stant (0.75). Scaling with a proportionality constant was necessary due to the model output

being normalised with respect to the number of ovitraps as placed in the Carrieri et al. 2011

surveillance study [50].

Although it is possible to improve accuracy by employing high-resolution climate datasets,

or meteorological data from local stations, temporally resolved vector surveillance data from

the region is not available to improve model calibration. Furthermore, dependence on such

extensive resources might render the model highly specific for a given study area and cast lim-

ited applicability elsewhere unless such data are available. Therefore, we believe that the level

of match in Fig 5(a) permits proceeding with large-scale epidemiological modelling.

While the introduction of Ae. albopictus to Italy has been traced to Georgia (USA) through

used tyre trade in the early ’90s [80], its establishment on Reunion Island has been known for

centuries [81]. Further study by Paupy et al. [82] demonstrated a stratified Ae. albopictus popu-

lation structure on the island along the east and west coasts. Nevertheless, Kamgang et al. [76]

reported close evolutionary relationships between the European and Reunion Island popula-

tions. Evolutionary clustering of the Reunion Island Ae. albopictus with the temperate strains

[83] suggests the applicability of the albopictus model on both regions. Although it is highly

unlikely that the same parameterisation will accurately represent both populations, in the
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absence of vector surveillance data, we believe that the model will be able to capture the essence

of environmental dependency of Ae. albopictus on the island.

Prompted by this, we used the albopictus model in conjunction with ClimEurope dataset

for Italy and ClimGlobe dataset for Reunion Island (see Environmental data sets) to predict

adult female vector abundance in the two regions. The expected number of adult female vector

per ovitrap (ovitraps as placed in the original surveillance study) and the predicted daily fecun-

dity are given in Fig 5, respectively in Fig 5(b) and 5(c). As shown, seasonality in vector abun-

dance and activity are more evident in Italy where the model predicted no significant presence

during winter. However, abundance and egg-laying activity fluctuate at high levels all year

round on Reunion Island. Uninterrupted annual activity is also supported by the incidence

data from the island during the time between the two outbreaks when around 100 infections

continued to be observed weekly (Fig 4).

Modelling the chikungunya outbreak in Italy

We adopted a Bayesian approach to investigate the degree of support each outbreak surveil-

lance dataset (see Surveillance datasets) offers to the model. Restrictions imposed by the data

on the posterior probability distribution can be used to evaluate model assumptions and com-

pare epidemiological trends in different outbreaks. According to Bayes’ theorem, the posterior

probability of θ, a vector with elements corresponding to each model parameter, is

Fig 5. Prediction of adult vector abundance and activity in Italy and on Reunion Island. (a) The predicted number of eggs per ovitrap per

week in Castiglione di Cervia and Castiglione di Ravenna villages is shown with the surveillance data from four neighbouring towns [79]: Cesena

(circle), Forli (triangle), Ravenna (square), and Rimini (diamond). The beginning and end of the outbreak and the time of application of vector control

measures [7, 9] are marked in the figure. The predicted vector abundance is scaled down to 75% in the plot. (b) Predicted adult female vector

abundance per ovitrap in the two regions for a time frame covering both the Italian and the Reunion Island outbreaks. (c) Predicted daily fecundity

during the same time frame in the two regions. The pale grey shades in (a, b, c) indicate the 95% credible interval of the mean.

https://doi.org/10.1371/journal.pone.0174293.g005
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proportional to the likelihood, Pr(δ|θ), and the prior probability, Pr(θ),

Pr ðyjdÞ / Pr ðdjyÞPr ðyÞ:

The prior probability is defined in reference to the literature and expert knowledge. Given the

degree of uncertainty in chikungunya epidemiology, we imposed only weak restrictions and

defined sufficiently wide intervals for all model parameters (Table 1) within which the prior

probability is uniform. The likelihood is defined as the probability of replicating the data with

the model with a given parameter configuration. When the likelihood cannot be determined,

or is computationally intractable, it is possible to apply approximate Bayesian computation

(ABC) and replace it with a simulation-based comparison of model output and observation

[84–86]. According to this, an arbitrary distance function is defined, d(y, δ), to inform when

model output, y, is sufficiently close to the data. The likelihood is then replaced with an

approximate probability based on this distance and a threshold value, τ. When τ is sufficiently

small, better estimates of posterior probability can be obtained.

It is often computationally unfeasible to have a small enough threshold. This would prohibi-

tively decrease the acceptance rate in Markov chain Monte Carlo (MCMC) or sequential

Monte Carlo (SMC) algorithms. Here, instead of a binary in-or-out comparison, we used a

probability function proportional to the χ2 distance between simulated and observed data,

Pr ðyjdðy; d; tÞÞ ¼ C
Y

i

exp �
1

2

ðdi � yiÞ
2

s2
i

� �

;

where C is the normalisation factor, δi is the case report at the time corresponding to the ith

data point, and yi is the corresponding random sample from the model with parameter θ. We

defined the variance s2
i as a function of τ and δi,

s2
i ¼

(
tdi if di � 1

t otherwise
:

With this definition, we anticipated smaller certainty on high infection counts and greater cer-

tainty on low infection counts.

We note that, here, τ is a variable for increasing or decreasing the acceptance probability. It

is equivalent to the annealing temperature of simulated annealing [87], or the hoppMCMC
algorithm [88], or to the acceptance threshold of approximate Bayesian computation. The

equation generates an energy gradient, with a minimum at y = δ, which could be traversed

with an MCMC algorithm. When compared with traditional ABC, the gradient distance func-

tion yields better posterior samples by assigning more weight to samples from the vicinity of δ
[85].

Although ABC algorithms have improved in efficiency [89, 90], Bayesian methods are

inherently limited in capacity when large systems with many parameters are of concern [91].

In order to circumvent this limitation, we assumed that the posterior distribution can be

approximated as a combination of a finite number of Gaussian distributions with modes cor-

responding to each of its local maxima. Following the previous definition of this concept in

Erguler et al. 2016 [30], we refer to the locality of each of these Gaussians as a posterior mode.

We note that model dynamics will change as parameter values change; however, the locality

of a given parameter configuration is associated with similar behaviour. The extent of this

locality depends on sensitivity at the specific region of the posterior distribution [92–95].

Therefore, sampling from within a posterior mode will likely yield a set of θ associated with

similar model behaviour.
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When posterior modes are sufficiently distant from one another, low-probability regions of

the posterior distribution prevent efficient sampling. Here, instead of sampling from the entire

posterior distribution, we opted to sample from the posterior modes with the highest average

probabilities. Our inference procedure comprised of two distinct steps: (i) identifying a high-

probability region in the posterior distribution with an optimisation step, and (ii) obtaining

posterior samples within this region with a sampling step.

We used the python (v2.7) implementation of the hoppMCMC (v0.5) algorithm, which ben-

efits from a variable acceptance probability to jump between posterior modes and arrive at the

ones with high-probabilities. We provided the probability function Pr(θ|d(y, δ, τ)) to the algo-

rithm using the term τ as the annealing temperature, and explored high-probability posterior

modes within the parameter domains given in Table 1. Once identified, we sampled from the

posterior mode using the adaptive Gibbs sampling algorithm of the hoppMCMC package. We

initiated each sampling step with the optimum parameter configuration identified in each

optimisation step. We ran 50 chains for 2 × 104 iterations, discarded the initial half, and

extracted 20 parameter configurations from each chain with regular intervals. We monitored

the chains and their autocorrelation to ensure convergence (see S1 File for detailed methodol-

ogy). We note that our choice of hoppMCMC is motivated by its performance and efficiency

for systems with large number of parameters. If found wanting, a combination of alternative

optimisation and Bayesian sampling algorithms can be used.

As a result, we identified a single posterior mode, labelled QI, using the dataset δI for Italy.

We sampled 1000 parameter vectors from QI, and simulated an epidemic trajectory with each

of them. The emerging set of epidemic trajectories is

y ¼ fxjx � ZðyÞ and y � QIg:

It is important to note that the variability in y is a result of both parametric variation within

the posterior mode and also intrinsic stochastic variation. In order to facilitate effective sam-

pling and to maintain a non-prohibitive acceptance rate, around 1%, we set τ = 2.

The predicted epidemic trajectory is given in Fig 6 with the 95% range and the median of

reported symptomatic infectious cases. For clarity in plotting, we only consider the simulations

where the index case (15th of June, 2007) resulted in a secondary infection.

The model predicts that the outbreak could have lasted longer if not for the administration

of effective vector control measures [7, 9]. According to the model, the probability for a sec-

ondary infection resulting from the imported (index) case was as high as 0.43. In addition,

between the time of virus introduction and the predicted end of the outbreak, towards the end

of November, the model predicted that the median number of human infections, including

both symptomatic and asymptomatic cases, was 1700 (95% CI: 100—3900). These predictions

correspond to a high outbreak risk for the combination of location and time of virus introduc-

tion. We estimated both the probability and impact of the outbreak to be in agreement with

the data and the previous study of Poletti et al. [40]. We note that our inference procedure

employed no prior information on parameter values, but benefitted only from the observed

epidemic trajectory. The degree of uncertainty can be reduced if previously reported restric-

tions on parameters were imposed; however, we aimed to demonstrate the effectiveness of the

described methodology for developing reliable and predictive models of Ae. albopictus-borne

diseases for which little or no experimental studies are available.

We assessed outbreak severity with two indicators: the outbreak risk and impact. We

defined the outbreak risk as the probability that an infected host gives rise to a secondary infec-

tion in a fully susceptible human population. The outbreak impact is, on the other hand, the

number of human infections observed during the course of an outbreak. We calculated these
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indicators numerically from the model output, y, and compared them with the common indi-

cators R0 and p0. R0 is an estimate for the number of secondary infections arisen by the intro-

duction of a single infected host to a fully susceptible population, while p0 is the probability of

an outbreak as defined for SEI-SEIR models [40, 61, 71, 73]. The equations for R0 and p0 are

RVH ¼ b�
ascpH

mv
;

RHV ¼ b� ascpV � g�
nvtotal

ntotal
�

1

1þ onmv
;

R0 ¼ RVHRHV ; and

p0 ¼ 1 �
RVH þ 1

RVHðRHV þ 1Þ
;

where b is fixed vector biting rate and μv is adult vector mortality. In order to compare the two

approaches, we employed literature-based parameter values—as listed in Poletti et al. 2011

[40]—for R0 and p0: b = 0.25, ων = 2 to 4 days, γ = 2 to 7 days, αscpH = 0.5 to 0.8, αscpV = 0.7 to

1. Where a range is defined instead of a point estimate, we treated the value as a uniform ran-

dom variable within the defined range. We estimated the average adult vector count and mor-

tality for each time point from the albopictus model. We used the average lifespan, μ, inferred

in the Vector dynamics model section to estimate mortality, μv = 1 − 1/μ. Since the albopictus

model predicts vector abundance with regard to the ovitrap density in the original surveillance

study [50], we scaled the abundance to match the levels reported in Poletti et al. 2011 [40]

(nvtotal = 1.4 × 105 n4).

Fig 6. Epidemic trajectory of the Italian CHIKV outbreak as predicted with posterior mode QI. Median, red line, and 95% range, red shade, of epidemic

trajectories are plotted together with adult abundance, blue line, and incidence reports, dark circles [7, 9].

https://doi.org/10.1371/journal.pone.0174293.g006
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Fig 7. Risk assessment of Ae. albopictus-borne chikungunya. In (a), R0 (black line and grey shade, scale on the left) and p0 (red lines, scale on the right)

are plotted together with n4, the expected adult vector count per ovitrap from the albopictus model (blue line, scale on the left). In (b), the outbreak risk (red

lines, scale on the right) and impact ratio (fraction of total infections, black line and grey shade, scale on the right) are plotted together with n4 (blue line, scale

on the left). Thick and thin lines (or shade) indicate the median and the 95% range.

https://doi.org/10.1371/journal.pone.0174293.g007
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In Fig 7, we demonstrate the behaviour of each indicator with respect to the time of intro-

duction of the index case. We found that both R0 and p0 follow vector abundance closely, with

the exception that p0 drops sharply at the beginning and end of the mosquito season—delin-

eated by the initial increase and final decrease in vector abundance (Fig 7(a)). In Fig 7(b), we

found that the outbreak risk is higher at the beginning of the mosquito season, then it drops

gradually. The risk decreases earlier than does p0 as it is associated with both vector count and

activity.

The non-zero outbreak risk is due to the existence of the chronic stage, often overlooked by

traditional modelling approaches; the introduction of an infectious person might trigger a

chronic infection, which might relapse anytime during a high-risk period. According to the

mission report of the European Centre for Disease Prevention and Control (ECDC) [7], the

index case was introduced on 15 June, but the infectious episode resulting in the outbreak was

a relapse on 23 June, which makes the modelling of the chronic stage relevant for the Italian

chikungunya outbreak.

While R0 and p0 pertain to the outbreak risk, the impact of a possible outbreak can be deter-

mined by following transmission dynamics in time. The model suggests that the impact is

larger if an outbreak takes place at the beginning of the mosquito season (Fig 7(b)). In essence,

time-dependent risk assessment of an Ae. albopictus-borne chikungunya outbreak can be cate-

gorised into four consecutive stages: low risk-high impact, high risk-high impact, high risk-

low impact, and low risk-low impact.

Since there is a high outbreak risk in the area and the impact of a possible outbreak can be

very high, the importance of vector control measures in containing large-scale epidemics is

evident. According to the mission report of ECDC/WHO [7] and Rezza et al. 2007 [9], a series

of vector control measures, including egg/breeding site removal and larvicide/adulticide treat-

ment, was applied in the region for 3 consecutive days commencing on the 18th of August. The

estimated impact was more than 90% reduction in adult mosquitoes, about 60% reduction in

eggs and breeding sites, and about 95% reduction in larvae and pupae [40]. We mimicked the

potential effects of this intervention by applying 60% daily reduction in adult survival for 3

days, 25% daily reduction in eggs and breeding sites for 3 days, and 10% daily reduction in lar-

vae and pupae for 30 days, the expected duration of larvicide activity [40].

As seen in Fig 8(a), the intervention drastically reduced the number of adult vectors and

maintained a low transmission rate up to the end of November (470 cases instead of 1700).

The initial decline due to the effective reduction of adult vectors provided a short-term high-

efficiency control, while breeding site removal and control of the immature stages maintained

the long-term effectiveness of the intervention. Despite high parametric and intrinsic variabil-

ity, the model agrees well with the previous study of Poletti et al. [40] in terms of the effects of

vector control. Further to the applied control measures, we investigated the possible impacts of

alternative strategies. For instance, rapid recovery of high transmission rate is evident in

Fig 8(b) where only adulticides were applied (900 cases instead of 1700). The strong suppres-

sion due to complete eradication of breeding sites and the immature stages is apparent in Fig 8

(c); assuming 100% reduction achieved during the time frames of the vector control measures

(310 cases instead of 1700).

We also tested the effect of quarantining humans by asserting a hypothetical scenario where

symptomatic individuals—the ones detected following implementation of the strategy—are

completely isolated from the vector population. Despite high variability, we identified that the

median number of cases decreases substantially if the intervention is implemented promptly

(Fig 8(d)). The model suggests that quarantining maintains its effectiveness if implemented

within 20 days of the index case.
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In addition to quarantining, which focuses only on detectable symptomatic cases, we inves-

tigated the effect of isolating a part of the human population from the vector population.

Potential means of isolation could include using mosquito repellants or imposing travel

restrictions. We assessed the outbreak risk and impact by varying the human population size

for the Italian CHIKV outbreak (Fig 9(a)). We found that increasing population size decreases

the outbreak risk as it is less likely for an infectious person to be bitten in a large population.

The impact of an outbreak is small, but less variable, in small populations. Although almost

everyone will get infected, isolation effectively prevents transmission to a larger population

where the impact would be greater. We observed that the impact does not follow population

size linearly, but tends to decrease as size increases. This is due to the speed of transmission: as

the progression is slower in large populations, it takes multiple mosquito seasons for the infec-

tion to spread through the population. Here, we followed transmission for a year following the

last reported case.

For large populations scattered over large areas, the assumption of rapid mixing might not

be valid. We tested the effect of population stratification by partitioning both the human and

Fig 8. Outbreak management strategies for Italy. Median, red line, and 95% range, red shade, of epidemic trajectories are plotted together with adult

abundance, blue line, and incidence reports, dark circles [7, 9]. The vector control measures reported in the literature [7, 9, 40] were implemented in (a). Only

adulticide treatment was implemented in (b). A stronger control strategy on the immature stages and breeding sites was implemented in (c). The effect of

perfectly isolating the symptomatic cases is shown in (d) with a black line, median, and a grey shade, 95% range. The red dashed horizontal line indicate the

median outbreak impact (1700 human infections) without intervention.

https://doi.org/10.1371/journal.pone.0174293.g008
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the vector populations into 10 identical interconnected patches. We rendered the patches equi-

distant from each other, and tuned human mobility using q, the daily probability of residing in

a patch (Table 1). We found that the outbreak risk is insensitive to q, as the vector to human

ratio is the same in both a single patch or all of them combined (Fig 9(b)). However, the

impact, more specifically the possible range of the impact, decreases substantially when the

human population is confined to reside in patches (when q is close to 1).

Overall, we argue that restricting human mobility is an effective outbreak management

strategy, especially in large populations; however, given the impracticality and the economic

burden of imposing such a restriction, we suggest that the combination of quarantining symp-

tomatic cases and implementing various vector control strategies could help to contain large

outbreaks effectively.

Following the analysis of model predictions, we investigated the information acquired from

the surveillance dataset as a result of the inference process. In Fig 10, we present the marginal

probability distributions of posterior mode QI for a subset of parameters (see S1 Fig for the full

list of parameters). As evident from the figure, vector biting rate, kvec, and human susceptibil-

ity, αscpH, are likely to be low, but vector counts, imposed by αovt, and reporting rate, αη, tend

to be high with regards to their respective search domains. Interdependencies between param-

eters, evident in the posterior mode, indicate that parameter variability allows maintaining a

reservoir of infected vectors and a non-zero biting rate for the duration of the outbreak. Strong

negative correlation (Pearsons’ ρ< −0.25 and ρ> 0.25 with p� 0.001) between kvec and αscpH

and between αovt and αscpV suggests that a surge of biting rate, or equivalently vector count, is

counterbalanced by a reduction of susceptibility in order to match the observed epidemic tra-

jectory. We observed that it is almost twice as likely for a chronic infection to relapse as to tran-

scend to the recovered stage, evident from the joint distribution of pCI and pCR. However, the

variability in pC indicates that the chronic stage has only a minor impact on the course of an

outbreak according to the model and δI. We detected a significant positive correlation between

reporting rate and latent period in humans, ω, which indicates that a reduction in the fraction

of asymptomatic cases would be counterbalanced with a rapid incubation period to match the

observed number of cases.

According to the literature, latent and infectious stages do not typically last for more than a

week [38–41, 43], while human—based on Reunion Island population [38]—and vector [44]

susceptibilities were estimated to be higher than 50%. Although the posterior mode QI covers a

wide range of biologically plausible parameter configurations, the dataset δI does not impose

strong restrictions on most of the parameters.

A notable exception is that human susceptibility is about four times more likely to be below

50% according to the dataset. We found that a higher biting rate could alleviate this restriction

and allow for higher susceptibility; however, the typical ovipositioning interval of four days

[22] does not permit high biting rates. Low human susceptibility might be an inherent charac-

teristic of the human population in the region, or a phenotype of the specific CHIKV strain

that infected the area. In addition, it is likely that factors other than what we have accounted

for in the model could play significant roles. For instance, the frequency of human-vector

Fig 9. Effect of population size and stratification. In (a), outbreak risk (red, left axis) and impact (black, right axis)

are plotted with respect to human population size. In (b), outbreak risk (red, left axis) and impact (black, right axis)

are plotted with respect to the connectivity, q, of 10000 people equally distributed in 10 patches (see text). Solid lines

indicate median and shades indicate 95% range.

https://doi.org/10.1371/journal.pone.0174293.g009
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encounters depends on the time of the day and whether a person is indoors or outdoors, and

this might reduce the estimated number of daily bites through the reduction of αscpH and kvec.

In order to assess the relative impact of parameters to the course of the outbreak, we per-

formed sensitivity analysis by approximating the posterior mode with a multivariate Gaussian

distribution [30, 92], and normalising with the sizes of the search domains, [θ] (see Table 1),

H ¼ diagð½y�ÞT S� 1 diagð½y�Þ;

where diag indicates a diagonal matrix of [θ], T refers to matrix transpose, and S−1 is the

inverse of the covariance matrix. According to this, parameter sensitivity for θ is the corre-

sponding diagonal element of H, i.e. Hy.

Fig 10. Marginal probability distribution of posterior mode QI. Marginal posterior distributions with 1000 samples from QI are shown. Gaussian kernel

density estimates are plotted in the upper triangular, marginal probability distributions are plotted on the diagonal, and the samples are shown in the lower

triangular. Strong (ρ < −0.25 and ρ > 0.25) and statistically significant (p� 0.001) correlations were indicated with red and blue frames for negative and

postitive correlations, respectively.

https://doi.org/10.1371/journal.pone.0174293.g010
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Sensitivity analysis identified kvec as the highest impact parameter, approximately three

times more potent in changing model output than the following, αη. Parameters directly con-

trolling susceptibility and vector abundance, αscpH, αscpV, and αovt, also have high sensitivities,

which suggests that vector activity, biting rate, has a pivotal role in determining the rate and

impact of disease spread (see S2 Fig). Due to their high sensitivities, and as a consequence of

Bayesian inference, these parameters might bear the indirect effects of some of the factors

which we have not accounted for, e.g. variability of vector and human activities during the day.

Modelling the chikungunya outbreak in Reunion Island

Motivated by broad applicability of the albopictus model, demonstrated in Europe, and the

success of the integrated disease transmission model shown above, we studied the Reunion

Island chikungunya outbreak in 2005-2006.

Due to the lack of information on the coverage and effectiveness of the vector control mea-

sures [38, 96] applied during the second, larger, incidence peak in 2006, we considered the sce-

nario with no intervention. Accordingly, we predicted that vector abundance and fecundity,

despite fluctuating significantly, would have maintained their levels throughout the year

(Fig 5).

As a result of the inference employing either of the disease surveillance datasets, δS or δL, we

arrived at three characteristic posterior modes: QC with δS and τ = 50, QS with δS and τ = 50,

and QL with δL and τ = 1000 as shown in Fig 11. Similarly to the case of Italy, τ was chosen to

maintain an acceptance rate of 1% in posterior sampling. As a result, posterior modes QC and

QS described the initial smaller outbreak well, but could not capture the second larger peak.

Posterior mode QL fitted well to the large peak, although with considerable variation, and

missed the initial small peak. The inference process did not yield a posterior mode to explain

both peaks of incidence (see Fig 4).

Paquet et al. [77] argued that the outbreak disseminated as clusters affecting one town after

another during the progression of the initial peak. Although posterior mode QC predicted a

localised spread, which started from the north of the island and progressed towards south

along the east and west coasts, the spread took place during both the small and large peaks (see

S3 Fig). Conversely, posterior modes QS and QL suggest that the virus quickly spread over the

island. In the case of QS, the outbreak affected almost half the population in 2005 (95% CI:

20%-75%) and the rest in 2006 (see Fig 11(b)), while in the case of QL, the outbreak affected

almost the entire human population of the island (95% CI: 95%-100%) during the large peak

(see Fig 11(c)).

All three posterior modes suggest that reporting rate, αη, was lower than 40%, and eventu-

ally, almost everyone on the island was eventually infected. High attack rate necessitates that

the fraction of asymptomatic cases is much larger than previously estimated. Seroprevalence

studies estimated that about 40% of the population developed antibodies against chikungunya

virus [4, 97], which suggests that the majority of infections were symptomatic and captured

effectively by the surveillance system. According to this, the virus spread across the entire

island as early as the first peak, but affected only a small fraction of the population before it

escalated.

We note that some previous modelling approaches, by assuming no environmental depen-

dence in vector populations, fitted only to the first [38] or second peak [49]. The bimodal

nature of the outbreak was captured by two studies: Bacaër, by assuming a hypothetical peri-

odic vector abundance [96], and Dommar et al., although only a qualitative fit was reported,

by assuming rainfall dependence [98].
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Although a posterior mode to explain both peaks and the spread of the virus accurately

could be hidden in the parameter space, according to the identified posterior modes, it is likely

that one or more of the assumptions with the albopictus model or epidemiological model

requires refinement. A possible issue is the assumption of rapid mixing by the human popula-

tion. The impact of intricate local interactions between the human and vector populations on

Reunion Island might be too complex to be represented by a set of 9 km2 patches separated by

Euclidean distances. By incorporating traffic routes and demographic information, such as

large corporate hubs where people from different parts of the island meet regularly, might

improve prediction of the rate and routes of the spread.

While we adopted a large-scale modelling approach and assumed that the distribution of

the vector population is uniform throughout the island, it is highly unlikely that the microcli-

matic conditions are similar throughout. In addition, the bimodal nature of the outbreak sug-

gests that either vector abundance or activity might overlap with the two peaks. The albopictus

model predicted that vector activity agrees with the peaks, but abundance is more erratic

(Fig 5). In addition, the albopictus model has been shown to rely more on temperature and

photoperiod [30], but less on rainfall.

Predictions could improve with a finer resolution of environmental variables, or with data

from local weather stations; however, vector surveillance data comprising adult abundance

from various parts of the island are required to accurately calibrate the model for the island.

With such data, it could be possible to assess the rainfall dependence of the island’s vector pop-

ulation in comparison to Italy. Developing an island-specific outbreak model is beyond the

scope of this research, but we argue that the observed performance forms a strong foundation

for future development of such a model.

As an alternative, a low reporting rate and the lack of a posterior mode fitting both peaks at

the same time might be an indication of the involvement of more than one viral strain, and

thus multiple outbreaks with overlapping time frames in the region. We countenance the

potential scenario where a weak strain of chikungunya virus spreads across the island in accor-

dance with QS, and acquires one or more adaptations to initiate a secondary wave of infection,

which manifests itself as the second larger peak of the outbreak. Experimental evidence

reported by Vazeille et al. supports this scenario with the identification of two CHIKV strains,

at different times, with considerably different transmission capabilities [99].

Fig 12 demonstrates the similarity of posterior modes QI and QL, and QC to a smaller extent,

as opposed to QS (see S4 Fig for the full list of parameters). Overall, OI appears to overlap more

with QL compared to QS and QC, which could be an indication of a possible common origin

between OI and QL. Finally, the posterior distribution for a slow localised spread, QC, is con-

fined to a smaller space compared to the other posterior modes, which demonstrates the strict

conditions necessary to match the observed number of cases with this scenario. An island-spe-

cific model is, thus, necessary to improve the accuracy of predictions, which is the subject of

future research.

Conclusion

We developed a stochastic spatiotemporal disease transmission model for Ae. albopictus-borne

chikungunya, and adopted a large-scale modelling approach whereby globally available

Fig 11. Epidemic trajectory of the Reunion Island chikungunya outbreak as predicted with QC (a), QS

(b), and QL (c). Median, black line, and 95% range, red shade, of the trajectories provided that a secondary

transmission occurred, plotted in logarithmic scale together with incidence reports [4, 36], black circles. Time

spans of the surveillance datasets, δS and δL, are shown on top of each plot.

https://doi.org/10.1371/journal.pone.0174293.g011
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gridded environmental datasets drive the dynamics of vector populations. This permits a uni-

fied framework to examine outbreaks in territories with reasonably comparable environmental

features. The ability to use general circulation models as a source of climate data permits pre-

diction of disease epidemiology in the recent past, present, and future. We developed a generic

modelling strategy where surveillance datasets inform the Ae. albopictus-borne disease tran-

mission model in the absence of costly and laborious experimental studies. Our analyses sug-

gest that the strategy is applicable over the areas where the albopictus model is applicable, and

it can be used to compare and contrast different outbreak scenarios.

Fig 12. Marginal probability distributions of posterior modes QI, QS, QL, and QC for a subset of parameters. Marginal posterior distributions with 1000

samples from each posterior mode are shown for αscpH, αscpV, kvec, and khum. Gaussian kernel density estimates are plotted in the upper triangular, marginal

probability distributions are plotted on the diagonal, and the samples are shown in the lower triangular. QI: black, QS: blue, QL: green, and QC: red.

https://doi.org/10.1371/journal.pone.0174293.g012
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We aimed to improve model structure and relax some of the simplifying assumptions in

traditional modelling approaches, such as deterministic dynamics, unrealistic biting rates, and

the omission of infection relapses. We modified the dynamics of human-vector interactions by

introducing vector activity as an additional influence. We presented numerically-estimated

outbreak risk and impact as preferable means of risk assessment, and demonstrated that the

approach makes better use of the known biology to the extent that it is incorporated into the

model. Instead of imposing previously identified restrictions and estimates on certain parame-

ter values, we sought to have the values informed by surveillance datasets. Although proving

the validity of these improvements is not a trivial task, we believe that the model we have devel-

oped can be a useful tool to help improve understanding of the underlying biology especially

when more detailed vector and disease surveillance data are available.

On account of the evolutionary proximity of the Ae. albopictus populations on Reunion

Island and in Italy, we examined the two outbreaks that took place in these areas during 2005-

2006 and in 2007, respectively. To the best of our knowledge, this is the first study to combine

the two outbreaks in a unified environmentally-driven modelling framework.

As a result, the model successfully replicates the case reports from Italy, and also informs

about the possible effects of various outbreak management strategies. Although the model

demonstrates high variability, which should be expected in such relatively small-scale out-

breaks, it suggests a non-zero outbreak probability for outside the mosquito season by taking

into account possible infection relapses. We identified that the outbreak risk increases gradu-

ally, peaks around July, and decreases rapidly during October when the temperatures are

favourable for adult vector survival, but not for frequent ovipositioning. By assessing both the

potential impact and probability of an outbreak, we suggest that the highest threat to public

health from Ae. albopictus-borne chikungunya in the region is from May to August.

We identified two strategies of vector control, targeting adults and immature stages/breed-

ing sites, as effective vector control measures only when applied in combination. We found

that targeting adult vectors has a short-term impact, but is also highly effective in reducing the

transmission rate. Without effective control of the immature stages and removal of breeding

sites, this suppression tends to quickly lose effectiveness and restore the initially fast transmis-

sion rate in the long run. We reassert the importance of rapid implementation of management

strategies, especially quarantining to improve the overall effectiveness. We suggest that unspe-

cific restrictions on human travel to and from affected areas should be considered as an effec-

tive strategy, especially in large-scale epidemics.

When applied to the two-stage chikungunya outbreak on Reunion Island, the model dem-

onstrates that a single parameter configuration, or a single posterior mode, is not sufficient to

fit to the bimodal nature of the outbreak. While the posterior mode best explaining the first

peak is characterised by low human susceptibility and high vector activity, the posterior mode

for the second peak is characterised by high human susceptibility and low vector activity. An

alternative posterior mode imposing a slow localised spread is also insufficient in describing

the timing and distribution of the infected cases.

Although it has been reported that temperate strains of Ae. albopictus inhabit both Italy and

Reunion Island, our analysis suggests that the environmental dependence captured by our vec-

tor dynamics model, assuming identical environmental dependencies in the two locations,

might not be applicable to the island’s vector population. As an alternative explanation, we

argue that multiple viral strains might have resulted in a two-stage outbreak with considerable

epidemiological differences, such as human susceptibility to the infection.

We argue that the performance of the model in Italy promotes its applicability in Europe;

however, more data are required to validate its applicability on Reunion Island. An island-spe-

cific model requires vector surveillance data from across the island to calibrate the Ae.
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albopictus population dynamics model. In combination with a higher resolution of environ-

mental variables, or direct use of local meteorological data, this will improve vector abundance

predictions and reduce the systematic error propagating to the disease transmission model.

Subsequently, geo-referenced incidence data, marking the times and locations of the cases, are

needed, along with a detailed assessment of the impact of vector control measures, to improve

parameter inference for the disease transmission model.

We argue that the model is useful in identifying gaps in our knowledge on global outbreaks.

Discrepancies between data and predictions point to biologically relevant assumptions, which

could be improved upon closer investigation of the case and accumulation of data. As we

improve the model, we develop a better understanding of the insect biology, its environmental

dependence, and the global dynamics of Ae. albopictus-borne chikungunya outbreaks. The

current study is a step towards a global outbreak model for Ae. albopictus-borne chikungunya,

and a foundation for developing widely applicable disease transmission models for other vec-

tor-borne diseases.
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