
Foundations of Information Integration
under Bag Semantics

André Hernich
University of Liverpool

Phokion G. Kolaitis
UC Santa Cruz and IBM Research - Almaden

Abstract—During the past several decades, the data-
base theory community has successfully investigated
several different facets of the principles of database
systems, including the development of various data
models, the systematic exploration of the expressive
power of database query languages, and, more recently,
the study of the foundations of information integration
via schema mappings. For the most part, all these in-
vestigations have been carried out under set semantics,
that is, both the database relations and the answers
to database queries are sets. In contrast, SQL deploys
bag (multiset) semantics and, as a result, theory and
practice diverge at this crucial point.
Our main goal in this paper is to embark on the de-

velopment of the foundations of information integration
under bag semantics, thus taking the first step towards
bridging the gap between theory and practice in this
area. Our first contribution is conceptual, namely, we
give rigorous bag semantics to GLAV mappings and
to the certain answers of conjunctive queries in the
context of data exchange and data integration. In
fact, we introduce and explore two different versions
of bag semantics that, intuitively, correspond to the
maximum-based union of bags and to the sum-based
union of bags. After this, we establish a number of
technical results, including results about the computa-
tional complexity of the certain answers of conjunctive
queries under bag semantics and about the existence
and computation of universal solutions under these
two versions of bag semantics. Our results reveal that
the adoption of more realistic semantics comes at a
price, namely, algorithmic problems in data exchange
and data integration that were tractable under set
semantics become intractable under bag semantics.

I. Introduction and Summary of Results
Since the introduction of the relational data model by

Codd [8] in 1970, the database theory community has
successfully investigated several different facets of the
principles of database systems. These investigations include
the development of various data models, the exploration
of the expressive power of database query languages, the
examination of computational aspects of query processing
and optimization, and, more recently, the study of the
foundations of information integration.

For the most part, the aforementioned theoretical inves-
tigations have been carried out under set semantics, that
is, both the database relations and the results returned
by database queries are sets. In practice, however, SQL

uses bag (multisets) semantics as the default, which means
that duplicates are not eliminated from the answers to
queries, unless explicitly specified. The adoption of bag
semantics in SQL is due to reasons of both efficiency and
convenience. First, duplicate elimination on large databases
is regarded as a costly operation; moreover, even though
aggregate operations, such as average and sum, can be
computed without using bag semantics [17], it is easier to
express aggregate queries correctly when bag semantics is
used. This discrepancy between theory and practice was
already pointed out by Chaudhuri and Vardi [7] in 1993,
who initiated the study of the query containment problem
under bag semantics by focusing on conjunctive queries.
Recall that a conjunctive query q(x̄) is defined by a first-
order formula of the form ∃ȳθ(x̄, ȳ), where θ(x̄, ȳ) is a
conjunction of atoms with variables among those in x̄ and
ȳ. Under set semantics, the conjunctive query containment
problem is NP-complete [6]. In contrast, the status of
the conjunctive query containment problem under bag
semantics is not well understood and the main question
raised by Chaudhuri and Vardi remains open to date: is
the conjunctive query containment problem under bag
semantics decidable? At present, only special cases of this
problem are known to be decidable (see, e.g., [2], [22]). A
striking difference between set semantics and bag semantics
has been established for extensions of conjunctive queries
with unions and inequalities (6=). Specifically, under set
semantics, the containment problem for each of these two
classes of queries is decidable [26], [18], [30], while, under
bag semantics, it is undecidable [15], [16].
Beyond the query containment problem, some other

topics in data management have been investigated under
bag semantics. These investigations include early work
on giving precise bag semantics to relational algebra
operators [3], [13], techniques for query processing under
bag semantics [25], the expressive power and complexity
of database query languages under bag semantics [14], and
the query equivalence problem under bag semantics [9].

During the past decade, an extensive investigation of the
foundations of information integration has taken place. A
notable outcome of this investigation is the formalization
and study of critical data inter-operability tasks, such as
data exchange and data integration (see the surveys [20],
[21], [23] and the books [4], [10]). So far, the study of the
foundations of information integration has been carried out978-1-5090-3018-7/17/$31.00 c©2017 IEEE

entirely under set semantics. In this paper, we develop the
foundations of information integration under bag semantics,
thus taking the first step towards bridging the gap between
theory and practice in this area of research. Towards this
goal, we make a number of both conceptual and technical
contributions that we now summarize.

The formalization and study of data exchange and data
integration (under set semantics) has been based on the
systematic use of schema mappings, which are high-level
specifications describing the relationship between two data-
base schemas. Undoubtedly, GLAV mappings constitute the
most widely used and extensively studied class of schema
mappings. A GLAV mapping is specified by a finite set of
source-to-target tuple generating dependencies (in short,
s-t tgds), i.e., by first-order formulas of the form

∀x̄(q1(x̄)→ q2(x̄)),

where q1(x̄) is a conjunctive query over the source schema,
q2(x̄) is a conjunctive query over the target schema, and x̄
are the free variables of both q1 and q2.

Our first conceptual contribution is to give rigorous bag
semantics to s-t tgds and to GLAV mappings. We view
the above s-t tgd as asserting the containment of a source
conjunctive query in a target conjunctive query and give
it the following bag semantics: a pair (I, J) consisting
of a source bag database I and a target bag database
J satisfies the s-t tgd ∀x̄(q1(x̄) → q2(x̄)) if the result of
evaluating q1 over I under bag semantics is contained in
the result of evaluating q2 over J under bag semantics. We
present several examples demonstrating that this is the
“right” bag semantics for s-t tgds. We then turn attention
to the bag semantics of GLAV mappings. We give two
equally natural, but, in general, different, bag semantics
to GLAV mappings, which we call incognizant semantics
and cognizant semantics. Intuitively, these two semantics
arise from the two different semantics of the union of bags,
the maximum-based union and the sum-based union. The
maximum-based union of two bags is the bag in which the
multiplicity of a tuple is the maximum of the multiplicities
of the tuple in the two bags, while the sum-based union is
the bag in which the multiplicity of a tuple is the sum of the
multiplicities of the tuple in the two bags. The motivation
and definitions of these notions are given in Section III.
Our second conceptual contribution is to define the

notion of the certain answers of target conjunctive queries
under bag semantics. Under set semantics, the certain
answers certainM(q, I) of a target conjunctive q w.r.t. a
schema mapping M on a set source instance I is the
intersection

⋂
q(J), as J ranges over the solutions for I

w.r.t.M, i.e., set target instances J such that the pair (I, J)
satisfiesM. Here, we have to deal with two complications.
First, depending on the bag semantics of GLAV mappings
considered, there are two types of solutions, incognizant
solutions (i-solutions) and cognizant solutions (c-solutions),
which give rise to the i-certain answers i-certainM(q, I)
and to the c-certain answers c-certainM(q, I), respectively.

Second, here
⋂
q(J) is the bag intersection of the q(J)’s,

which means that a tuple ā appears in i-certainM(q, I) with
multiplicity m if m is the minimum of the multiplicities
of ā over all q(J)’s, as J ranges over the i-solutions for I
(and analogously for c-certainM(q, I)).

As regards technical contributions, we explore the data
complexity of the certain answers of target conjunctive
queries. Under set semantics, every fixed schema mapping
M and every fixed target query q, give rise to the following
decision problem: given a source instance I and a tuple
ā, is ā in certainM(q, I)? For GLAV mappings and for
conjunctive queries, this problem is solvable in polynomial
time [11]. Under bag semantics, multiplicities enter the
picture and have to be taken into account in formulating
algorithmic problems about the certain answers. For every
fixed schema mapping M and every target conjunctive
query q, the decision problem i-QA(M, q) asks: given a
(bag) source instance I, a tuple ā, and a positive integer
m, is the multiplicity of ā in i-certainM(q, I) at least m?
The decision problem c-QA(M, q) is defined analogously.

We show that ifM is a GLAV mapping and q is a target
conjunctive query, then both decision problems i-QA(M, q)
and c-QA(M, q) are in coNP. Furthermore, ifM is a GAV
mapping (i.e., for each s-t tgd ∀x̄(q1(x̄)→ q2(x̄)) ofM, the
conjunctive query q2 consists of a single non-existentially
quantified atom), then for every target conjunctive query
q, both i-QA(M, q) and c-QA(M, q) are solvable in
polynomial time. Once syntactically minimal extensions
of GAV mappings are considered, however, the picture
changes. Specifically, both i-QA(M, q) and c-QA(M, q)
can become coNP-complete for full mappings, i.e., GLAV
schema mappingsM such that in each s-t tgd ofM, the
conjunctive query q2 is a conjunction of non-existentially
quantified atoms. We also consider elementary mappings,
which form the other syntactically minimal extension of
GAV mappings. These are the GLAV mappingsM such
that in each s-t tgd ofM, the conjunctive query q2 consists
of a single atom that may be existentially quantified. We
show that for each elementary mappingM and each target
conjunctive query q, the decision problem c-QA(M, q) is
solvable in polynomial time, whereas the decision problem
i-QA(M, q) may become coNP-complete.

Finally, we consider the existence and the computation
of universal solutions in the context of data exchange under
bag semantics. Universal solutions play an important role
in data exchange under set semantics [11]. Their main
feature is that they are the “most general” solutions in
data exchange; furthermore, they are CQ-adequate, which
means that ifM is a GLAV mapping and q is a target con-
junctive query, then for every source instance I and every
universal solution J for I w.r.t. M, the certain answers
certainM(q, I) can be obtained by simply evaluating q on J
and removing from the result all tuples that contain at least
one null value. The aforementioned coNP-completeness
results for full mappings rule out the possibility of having
a polynomial-time procedure for computing CQ-adequate

i-solutions or c-solutions; moreover, the same holds true
for elementary mappings and for CQ-adequate i-solutions.
We amplify these negative results by showing that for
such schema mappings every CQ-adequate basis may be of
exponential size. On the positive side, we prove that for
every elementary mappingM, there is a polynomial-time
procedure that computes universal c-solutions.

II. Preliminaries

Bags A bag (or multiset) is a collection of elements, where
each element occurs one or more times; the multiplicity of
an element x in a bag B, denoted by |x|B , is the number
of occurrences of x in B. An element x belongs to a bag
B, denoted by x ∈ B, if |x|B ≥ 1. We will often denote a
bag B as a set of pairs x : m, where x is an element and
m is its multiplicity in B (instead of x : 1 we will often
write just x). For example, B = {a, b : 3, c : 2} denotes the
bag with |a|B = 1, |b|B = 3, |c|B = 2, and |x|B = 0 for
all other elements x. A bag B is contained in a bag B′,
denoted B ⊆ B′, if |x|B ≤ |x|B′ , for every element x ∈ B.

Bag Databases A k-ary relation is a bag whose elements
are k-tuples. A schema is a finite non-empty set of relation
symbols, where each relation symbol R has an associated
positive integer ar(R) as its arity. An instance K of a
schema R is a collection of relations such that K contains
a relation RK of arity ar(R), for each relation symbol R in
R. A set-instance is an instance whose relations are sets,
i.e., each tuple occurs in a relation of K with multiplicity
at most 1. The active domain of an instance K, denoted
by adom(K), is the set of all elements that occur in a
tuple of some relation in K. We assume that adom(K) is a
subset of a fixed set Dom, which is the union of two disjoint
infinite sets—the set Const of all constants, and the set
Null of all (labeled) nulls. Constants will be denoted by
lower-case letters, and nulls by upper-case letters. Every
instance K can be viewed as a bag of facts of the form
R(ā), where the multiplicity of R(ā) in K is |ā|RK . An
instance K is a subinstance of an instance L if K ⊆ L,
that is, if |R(ā)|K ≤ |R(ā)|L for all atoms R(ā) ∈ K.

Query Answering under Bag Semantics A conjunc-
tive query (CQ) over a schema R is a first-order formula
q(x̄) = ∃ȳ

(
R1(z̄1) ∧ . . . ∧Rn(z̄n)

)
, where each Ri belongs

to R, each variable occurs in x̄ or ȳ, and each variable in
x̄ occurs in some z̄i; the notation q(x̄) indicates that the
tuple x̄ consists of all the free variables of the formula. A
match of q in K is a function µ from the variables of q
to adom(K) such that for each i ∈ {1, . . . , n}, the tuple
µ(z̄i) occurs in RKi ; here, µ(z̄i) is the result of applying µ
component-wise to z̄i. The answer to q on K is the |x̄|-ary
relation q(K) such that for all |x̄|-tuples ā:

|ā|q(K) :=
∑

µ : match of q in K
such that µ(x̄)=ā

n∏
i=1
|µ(z̄i)|RK

i
. (1)

Note that, if K is a set-instance, then (1) is the number
of matches µ of q in K such that µ(x̄) = ā. Note also
that q(K) is the answer obtained when evaluating the SQL
query expressing q on a standard DBMS.

If the query q is Boolean (i.e., q has no free variables), we
will often identify q(K) with the number {()}q(K), where ()
stands for the empty tuple; it will always be clear whether
q(K) denotes the relation as defined above, or the number
{()}q(K). In particular, q(K) = 0 means that the relation
q(K) is empty (which may be interpreted as “false”), and
q(K) = m > 0 means that the relation q(K) is non-empty
(which may be interpreted as “true”) and the empty tuple
() occurs in q(K) exactly m times.

III. Schema Mappings and Certain Answers
Under Bag Semantics

Schema mappings are high-level specifications that de-
scribe the relationship between two schemas, a source
schema and a target schema. These high-level specifications
are typically expressed using database dependencies, the
most widely used of which are tuple-generating dependen-
cies [5]. Here, we give bag semantics to tuple-generating
dependencies and to schema mappings specified by such
dependencies. We also define the notion of the certain
answers of target queries under bag semantics.

A. Bag Semantics of Database Dependencies
A tuple-generating dependency (in short, tgd) over a

schema R is an expression of the form

∀x̄
(
q1(x̄)→ q2(x̄)

)
, (2)

where q1(x̄) and q2(x̄) are conjunctive queries over R. We
call q1(x̄) the body of the tgd, and q2(x̄) its head. Note
that the conjunctive queries q1 and q2 have the same free
variables, namely, x̄, since, as stated earlier, the notation
q(x̄) for a conjunctive query q indicates that the tuple x̄
consists of all the free variables of q. It is often the case
that the universal quantifiers at the beginning of tgds are
omitted; thus, we may write q1(x̄)→ q2(x̄), instead of (2).
Under set semantics, an instance K satisfies a tgd of

the form (2) if each tuple in the answer to q1 on K also
occurs in the answer to q2 on K. In other words, the tgd
asserts that the answer to q1 is contained in the answer
to q2, where containment refers to the usual notion of
containment of one set in another set. This is consistent
with Lenzerini’s framework for data integration [23], which
considers the formula (2) as a logical representation of the
assertion that q1 q2 with the squiggly arrow indicating
containment of the answers to q1 in the answers to q2.

Under bag semantics, the answer to a conjunctive query
is a bag of tuples rather than a set. To account for this
change, we modify the interpretation of the arrow in a tgd
from set containment to bag containment.

Definition 1. Let K be an instance of a schema R, and let
d be a tgd over R of the form (2). We say that K satisfies

d if q1(K) ⊆ q2(K), i.e., the bag q1(K) is contained in the
bag q2(K).

In data exchange, there is a source schema S and a target
schema T that is disjoint from S. A source-to-target tuple-
generating dependency (in short, s-t tgd) is an expression

∀x̄
(
q1(x̄)→ q2(x̄)

)
, (3)

where q1(x̄) is a conjunctive query over S and q2(x̄) is a
conjunctive query over T. An instanceK over the combined
schema S ∪T can be identified with a pair (I, J), where I
is an S-instance and J is a T-instance. Thus, such a pair
(I, J) satisfies the s-t tgd in (3) if q1(I) ⊆ q2(J). From
now on, S-instances will be referred to as source instances,
and T-instances as target instances. In data exchange, the
relationship between the source schema and the target
schema is typically specified by a finite set of s-t tgds. For
this reason, we will focus on s-t tgds in what follows.
Before proceeding further, we wish to reconcile the

definition of an s-t tgd presented here with that in the
literature about data exchange under set semantics (e.g.,
in [11]). Specifically, an s-t tgd is typically defined as an
expression of the form

∀x̄∀ȳ(ϕ(x̄, ȳ)→ ∃z̄ψ(x̄, z̄)),

where ϕ(x̄, ȳ) is a conjunction of atoms over the source
schema such that the variables occurring in these atoms
are the variables in x̄ and ȳ, and ψ(x̄, z̄) is a conjunction
of atoms over the target schema such that the variables
occurring in these atoms are the variables in x̄ and z̄. Such
an expression does not express that a conjunctive query
over the source is contained in a conjunctive query over the
target under set semantics, because the free variables of the
body and the head do not match. For this reason, we do
not give bag semantics to such expressions. However, the
universally quantified variables ȳ occurring in ϕ and not in
ψ can be turned into existentially quantified variables in
the antecedent of the above expression and, thus, such an
expression is logically equivalent under set semantics to an
s-t tgd as defined here. For example,under set semantics,
the expression ∀x∀y(S(x, y)→ T (x)) is logically equivalent
to the expression ∀x(∃yS(x, y) → T (x)). We give bag
semantics to the latter expression, but not to the former.

We now present several examples that illustrate the bag
semantics for s-t tgds. In all these examples, universal
quantifiers in front of s-t tgds have been omitted.

Example 1. Let d be the s-t tgd P (x) → R(x). A pair
(I, J) satisfies d if each element that occurs m times in
P I occurs at least m times in RJ . Thus, d asserts that
P I is contained (as a bag) in RJ . Concrete pairs that
satisfy d are (I1 = {P (a) : 2}, J1 = {R(a) : 2}) and (I2 =
{P (a) : 2}, J2 = {R(a) : 3}). A pair that does not satisfy
d is (I3 = {P (a) : 2}, J3 = {R(a) : 1}).

Example 2. Let d be the s-t tgd ∃y S(x, y)→ R(x). The
body of d is q1(x) = ∃y S(x, y), and its head is q2(x) =

R(x). A pair (I, J) satisfies d if each element that occurs
m times in q1(I) occurs at least m times in the answer to
q2(J). Let I be an S-instance containing S(a, b) : 1 and
S(a, c) : 2. Then, q1(I) contains a : 3, so if J is a T-instance
such that the pair (I, J) satisfies d, then RJ must contain
at least 3 occurrences of a.

Example 3. Let d be the s-t tgd S(x, y)→ P (x) ∧Q(y),
and let I be an S-instance that contains two occurrences
of S(a, b). If J is a T-instance such that the pair (I, J)
satisfies d, then J must contain at least two occurrences
of P (a) or at least two occurrences of Q(b).

Example 4. Let d be the s-t tgd

R(x, y)→ ∃z
(
S(x, z) ∧ S(z, y)

)
and let I be an S-instance that contains two occurrences of
R(a, b) with a 6= b. If J is a T-instance such that the pair
(I, J) satisfies d, then J must contain one of the following
T-instances as subinstances, where X and Y are values
(constants or labelled nulls) such that X 6= Y :

J1 := {S(a,X) : 2, S(X, b) : 1},
J2 := {S(a,X) : 1, S(X, b) : 2},
J3 := {S(a,X) : 1, S(X, b) : 1, S(a, Y) : 1, S(Y, b) : 1}.

B. Bag Semantics of Schema Mappings
Schema mappings are high-level descriptions of the

transformation of source instances into target instances.
More precisely, a schema mapping is a tupleM = (S,T,Σ),
where S is a source schema, T is a target schema that is
disjoint from S, and Σ is a finite set of assertions about
S and T. Here, we focus on GLAV mappings [11], that is,
schema mappings (S,T,Σ) in which Σ is a finite set of s-t
tgds. Arguably, GLAV mappings form the most extensively
studied class of schema mappings in data exchange.
In what follows, we will introduce two natural bag

semantics of GLAV mappings, which we call incognizant
semantics and cognizant semantics. These two semantics
coincide on GLAV mappings (S,T,Σ) in which Σ is a
singleton, but, in general, differ if Σ contains more than
one s-t tgds. As we shall see, the difference between these
two semantics has to do with the difference between two
possible semantics for the union of bags. We begin by first
discussing the semantics for the union of bags and then
presenting an example that motivates the incognizant and
the cognizant semantics of GLAV mappings.
Knuth [19] discusses the history of bags (under the

name multisets) and defines several different operations on
bags. As regards the union operation, Knuth considers the
maximum-based union (max-union) of bags, which, given
two bags B1 and B2, returns the bag

B1 ∪B2 := {x : max(|x|B1 , |x|B2) | x in B1 or B2}, (4)

i.e., an element appears in the max-union B1 ∪ B2 with
multiplicity equal to the maximum of its multiplicities in
B1 and B2. In the literature on bag semantics, however,

another natural notion of union of bags has been identified,
called sum-based union (sum-union) [3], [13]. Given two
bags B1 and B2, the sum-union returns the bag

B1]B2 := {x : (|x|B1 + |x|B2) | x in B1 or B2}, (5)

i.e., an element appears in the sum-union B1] B2 with
multiplicity equal to the sum of its multiplicities in B1 and
B2. It should be noted that the sum-union is the semantics
of the UNION ALL operator in SQL.

We now come to the example that motivates the incog-
nizant and the cognizant semantics for schema mappings.
LetMu = ({P,Q}, {R},Σu) be the schema mapping such
that P , Q, R are unary relational symbols and Σ consists
of the two s-t tgds (with the universal quantifiers omitted):

P (x)→ R(x), Q(x)→ R(x).

Let I be a source instance and J a target instance. What
does it mean to say that the pair (I, J) satisfies Σu?
Intuitively, we should have that (I, J) satisfies Σu if and
only if the bag RJ contains the union of the bags P I and
QI . We just saw, however, that there are two different,
yet equally natural, semantics for the union of bags. This
suggests two different bag semantics of GLAV mappings.
The first, which we call incognizant semantics corresponds
to the max-union and the second, which we call cognizant
semantics, corresponds to the sum-union.

Definition 2. Let M = (S,T,Σ) be a GLAV mapping
and let I be a source instance. An incognizant solution
(i-solution) for I w.r.t.M is a target instance J such that
the pair (I, J) satisfies every s-t tgd in Σ.

Consider the schema mappingMu = ({P,Q}, {R},Σu).
By unraveling the bag semantics of individual s-t tgds, it
is easy to see that J is an i-solution for J w.r.t.Mu if and
only if for every element a, the multiplicity of a in RI is
greater than or equal to the maximum of the multiplicities
of a in P I and QI . Thus, in this case, the incognizant
semantics corresponds to the max-union of P and Q. More
generally, ifM = (S,T,Σ) is an arbitrary GLAV mapping
and I is a source instance, we have that a target instance
J is an i-solution for I w.r.t. M if and only if for each
tgd d ∈ Σ, there is a target instance Jd such that (I, Jd)
satisfies d and Jd ⊆ J ; note that the condition Jd ⊆ J , for
each d in Σ, is equivalent to the condition

⋃
d∈Σ Jd ⊆ J ,

where
⋃

denotes the max-union of bags.

Definition 3. LetM = (S,T,Σu) be a GLAV mapping
and let I be a source instance. A cognizant solution (c-
solution)1 for I w.r.t. M is a target instance J such for
each d ∈ Σst, there is a target instance Jd such that (I, Jd)

1The dictionary defines “incognizant" as “oblivious", and “cog-
nizant" as “aware". We chose these terms for the two semantics we
introduced here because a target instance J is an i-solution for I as
long as (I, J) satisfies each s-t tgd of the GLAV mapping at hand
individually - there is no other condition on the combined effect of
the s-t tgds; in contrast, a c-solution must, in addition, be aware of
the combined effect of the s-t tgds.

satisfies d and
⊎
d∈Σst

Jd ⊆ J , where
⊎

denotes the sum-
union of bags.

Consider the schema mappingMu = ({P,Q}, {R},Σu).
By unraveling the bag semantics of individual s-t tgds, it
is easy to see that J is a c-solution for J w.r.t.Mu if and
only if for every element a, the multiplicity of a in RI is
greater than or equal to the sum of the multiplicities of a
in P I and QI . Thus, in this case, the cognizant semantics
corresponds to the max-union of P and Q.
Since the max-union of bags is always contained in the

sum-union of bags, it follows that every c-solution is an
i-solution. It is clear, however, that the converse need
not be true; thus, in general, the incognizant semantics
differs from the cognizant semantics. As mentioned earlier,
the incognizant semantics coincides with the cognizant
semantics on individual s-t tgds. The next simple result,
whose proof follows immediately from the definitions, yields
a useful sufficient condition for the incognizant semantics
to coincide with the cognizant ones.

Proposition 1. LetM = (S,T,Σ) be a GLAV mapping
such that for every two distinct tgds d, d′ ∈ Σ, no relation
symbol that occurs in the head of d also occurs in the head
of d′. Then for each source instance I, the i-solutions for I
w.r.t.M are precisely the c-solutions for I w.r.t.M.

The following special cases of GLAV mappings play an
important role in the context of data integration [23] and
will be of interest to us in the sequel.
• A full mapping is a GLAV mapping (S,T,Σ) in which

every s-t tgd in Σ is full, i.e., its head is quantifier-free.
• A GAV mapping is a GLAV mapping (S,T,Σst) in
which every s-t tgd in Σ is Horn, i.e., its head consists
of a single atom that is not existentially quantified.

• An elementary mapping is a GLAV mapping in which
every s-t tgd in Σ is elementary, i.e., its head consists of
a single atom (which may be existentially quantified).

For example, the s-t tgds in Examples 1 and 2 are Horn
(hence also both full and elementary). The tgd in Example 3
is full, but not elementary, while the tgd P (x)→ ∃y R(x, y)
is elementary, but not full. Finally, the tgd in Example 4
is neither elementary nor full.
Note that under set semantics, every full mapping M

is equivalent to a GAV mappingM′ obtained fromM by
“decomposing” every full s-t tgd ofM to finitely many GAV
s-t tgds ofM′ (one for each atom in the head of the full
s-t tgd under consideration). Here,M being equivalent to
M′ means that for every source set-instance I, the target
set-instances that are solutions for I w.r.t.M coincide with
the target set-instances that are solutions for I w.r.t.M′.
As the following example shows, however, the equivalence
ofM andM′ need not hold under bag semantics, whether
incognizant or cognizant. In fact, this difference between
full mappings and GAV mappings is a harbinger of more
profound differences between full mappings and GAV
mappings mappings that will be unveiled in Section IV.

Example 5. Let M = ({S}, {P,Q},Σ) be the GLAV
mapping, where Σ consists of the s-t tgd in Example 3, i.e.,
Σ = {S(x, y)→ P (x) ∧Q(x)}. Under set semantics, d can
be “decomposed” into the two Horn s-t tgds

d1 : ∃yS(x, y)→ P (x) d2 : ∃xS(x, y)→ Q(y)

so that the set-instances that satisfy d are precisely
those that satisfy d1 and d2. This is not true under
bag semantics. First, notice that, by Proposition 1, the
incognizant semantics coincide with the cognizant ones.
Consider now the source instance I = {S(a, b) : 2}. Then,
the target instance J = {P (a) : 2, Q(b) : 1} is both an
i-solution and a c-solution for I w.r.t. M. However, J
is neither an i-solution nor a c-solution for I w.r.t. the
GAV mappingM′ = ({S}, {P,Q}, {d1, d2}). In fact, while
M only requires the presence of at least two occurrences
of either P (a) or Q(b) (and only one occurrence of the
other atom), the mappingM′ imposes the much stricter
restriction that both P (a) and Q(b) have to occur at least
two times in a solution for I.

C. Bag Semantics of Certain Answers
To answer target queries with respect to a schema

mapping, we adopt the certain answers semantics. However,
since the answer to a query is a bag of tuples, we replace
intersection of sets by intersection of bags. Formally, let
M be a schema mapping, let I be a source instance, and
let q be a conjunctive query over the target schema. The
incognizant certain answers of q with respect to M on I
are defined as

i-certainM(q, I) :=
⋂
{q(J) | J is an i-solution for I},

where the intersection denotes bag intersection. This means
that the multiplicity of a tuple ā in i-certainM(q, I) is the
minimum of the multiplicities of ā in q(J), where J ranges
over the i-solutions for I w.r.t.M, or 0 if there is no solution
for I w.r.t.M. If q is a Boolean conjunctive query, then we
identify i-certainM(q, I) with the multiplicity of the empty
tuple () in certainM(q, I). Similarly, the cognizant certain
answers of q with respect toM on I are defined as

c-certainM(q, I) :=
⋂
{q(J) | J is a c-solution for I}.

Example 6. Let M = ({R}, {S},Σ) be the GLAV
mapping, where Σ consists of the tgd in Example 4, i.e.,
Σ = {R(x, y)→ ∃z(S(x, z)∧S(z, y))}. We aim to compute
the (incognizant and cognizant) certain answers of the
following conjunctive queries with respect to M on the
source instance I = {R(a, b) : 2}:

q1(x) := ∃y S(x, y),
q2(x, y) := ∃z (S(x, z) ∧ S(z, y)),

q3 := ∃x∃y S(x, y).

The i-solutions for I w.r.t. M are precisely the target
instances that contain J1, J2, or J3 from Example 4;

moreover, the same holds true for c-solutions. This im-
plies that J1, J2, and J3 are the minimal i-solutions
and c-solutions for I w.r.t. M, and, in particular, that
i-certainM(qi, I) = c-certainM(qi, I), for each i ∈ {1, 2, 3}.
It is therefore enough to compute only the incognizant
certain answers. For q1, we have i-certainM(q1, I) = {a : 1},
since a occurs once in q1(J2) and at least one time
in the answer to q1 on J1 and J3. For q2, we obtain
i-certainM(q2, I) = {(a, b) : 2}, since (a, b) occurs exactly
two times in the answer to q2 on each of the instances
J1, J2, and J3. Finally, i-certainM(q3, I) = 3,2 because
q3(Ji) ≥ 3, for i ∈ {1, 2, 3}, and q3(J1) = 3.

IV. Complexity of Certain Answers
Answering queries with respect to schema mappings is

a fundamental task in both data integration and data
exchange [23], [20]. The complexity of this problem under
set semantics has been studied in depth. In particular,
for many different types of schema mappings, including
GLAV mappings, it is known that the data complexity
of computing the certain answers of a conjunctive query
(CQ) is tractable [23], [20]. This section explores the
complexity of computing the certain answers of CQs under
bag semantics. We will focus on data complexity (i.e., the
complexity of computing the certain answers for a fixed
schema mapping and query) and on Boolean CQs. Since
CQs may contain constants, all results extend to non-
boolean CQs in a straightforward way.
For every schema mapping M and every Boolean CQ

q over the target schema ofM, we consider the following
decision problems about the certain answers of q w.r.t.M:
• i-QA(M, q): given a source instance I and a positive

integer m, decide whether i-certainM(q, I) ≥ m.
• c-QA(M, q): given a source instance I and a positive

integer m, decide whether c-certainM(q, I) ≥ m.
Note that both i-QA(M, q) and c-QA(M, q) generalize
computing the certain answers under set semantics. In
particular, i-certainM(q, I) ≥ 1 holds if, and only if, the
certain answers to q w.r.t. M on I are non-empty, and
analogously for the cognizant certain answers.

A. Upper Bounds for GLAV Mappings
We will show that, for arbitrary GLAV mappings, the

data complexity of computing the incognizant certain
answers, as well as the cognizant certain answers, is in
coNP. The notion of the canonical solution is a key tool in
obtaining this complexity bound.

Given a GLAV mappingM and a source instance I, the
canonical solution for I w.r.t.M, denoted CanSolM(I),
is obtained by applying all the s-t tgds ofM “in parallel”.
More precisely, we start with an empty target instance J .
Then, for each s-t tgd q1(x̄)→ ∃ȳ ψ(x̄, ȳ) ofM, each tuple
ā ∈ q1(I), and each i ∈ {1, . . . , |ā|q1(I)}, we pick a tuple Ȳi

2Recall that the notation i-certainM(q, I) = m denotes the fact
that i-certainM(q, I) = {() : m}.

of pairwise distinct fresh nulls, and increase the multiplicity
of each atom of ψ(ā, Ȳi) in J by 1. The resulting target
instance is the canonical solution CanSolM(I).
It is easy to see that CanSolM(I) is uniquely defined

up to renaming of nulls, and that it is both an i-solution
and a c-solution for I w.r.t.M.

Example 7. LetM be the GLAV mapping specified by
the following s-t tgds (universal quantifiers are omitted):

d1 : P (x)→ Q(x) ∧R(x, x) ∧Q(x),
d2 : P (x)→ ∃y

(
Q(x) ∧R(x, y) ∧Q(y)

)
.

We want to construct CanSolM(I) for I = {P (a) : 2}. Let
J to be empty target instance. We apply the tgd d1 two
times with a ∈ P I . In the first round, we add the atoms
Q(a) and R(a, a), that is, we increase their multiplicity to
1. In the second round, we increase the multiplicity of Q(a)
and R(a, a) by one once more, so we obtain two occurrences
of Q(a) and R(a, a). Similarly, we apply the tgd d2 two
times with a ∈ P I . In the first round, we pick a fresh null
Y1, and increase the multiplicities of Q(a), R(a, Y1), and
Q(Y1) by 1. In the second round, we pick another fresh
null Y2, and increase the multiplicities of Q(a), R(a, Y2),
and Q(Y2) by 1. Altogether, we obtain

J = {Q(a) : 4, R(a, a) : 2} ∪ {R(a, Yi), Q(Yi) | i ∈ {1, 2}}

as the canonical solution CanSolM(I).

It is worth pointing out that the set-instance J obtained
from CanSolM(I) by eliminating duplicates coincides
with the notion of a canonical universal solution defined
in [24], and also with the result of the naive chase [28].
Under set semantics, the certain answers of a Boolean CQ
q can be obtained by first evaluating q on the canonical
universal solution J and then removing all tuples containing
at least one null. In contrast, it is not true in general that,
under bag semantics, the certain answers of q can be com-
puted by evaluating q on CanSolM(I). To see this, observe
that in Example 6 we have that CanSolM(I) = J3, but
q3(J3) = 4 6= 3 = i-certainM(q3, I) = c-certainM(q3, I).
Our procedure for computing the certain answers to

Boolean CQs makes essential use of the fact that all
minimal solutions can be obtained from the canonical
solution in the way made precise next.
An i-solution J for a source instance I w.r.t. a schema

mappingM is called minimal if there is no i-solution J ′ for
I w.r.t.M with J ′ (J .3 Minimal c-solutions are defined
analogously. Note that the answers to q on all minimal
solutions are enough to compute the certain answers to q.
Given an instance K and a function h : adom(K) →

Dom, we let h(K) be the instance

h(K) := {β :m | β = h(α) for some fact α ∈ K, and
m =

∑
α∈K,h(α)=β |α|K},

3Here, (denotes strict inclusion under bag semantics, i.e., |α|J′ ≤
|α|J for all facts α, and there is at least one fact β with |β|J′ < |β|J .

where for all facts α = R(a1, . . . , ak), we define h(α) :=
R(h(a1), . . . , h(ak)). A function h : adom(K) → Dom is
said to be constant-preserving if for all constants a in
adom(K), we have that h(a) = a.

Lemma 1. LetM be a GLAV mapping, let I be a source
instance, and let J0 := CanSolM(I). For every minimal
i-solution or c-solution J for I w.r.t. M, there exists a
constant-preserving function h : adom(J0) → Dom such
that J ⊆ h(J0).

As an immediate consequence of Lemma 1, we obtain
a complexity-theoretic upper bound for the two decision
problems associated with the computation of the certain
answers under bag semantics.

Theorem 1. Let M be a GLAV mapping and let q be a
target Boolean CQ. Then the decision problems i-QA(M, q)
and c-QA(M, q) are in coNP.

B. Tractable Cases
We now show that the decision problems associated with

the computation of the certain answers become tractable
for natural special cases of GLAV mappings.

Theorem 2. LetM be a schema mapping and let q be a
target Boolean CQ.

1) IfM is a GAV mapping, then the decision problem
i-QA(M, q) is in PTIME.

2) If M is an elementary mapping, then the decision
problem c-QA(M, q) is in PTIME.

For the first part of Theorem 2, we use Lemma 1 to
show that for every GAV mapping M and every source
instance I, there is a unique minimal i-solution J for I w.r.t.
M, which in addition satisfies J ⊆ CanSolM(I). The
unique minimal i-solution for I w.r.t.M can be computed
in polynomial time by starting with J := CanSolM(I)
and exhaustively applying the following rule: if there is a
fact α ∈ J such that the instance J ′ obtained from J by
decreasing the multiplicity of α by 1 is still an i-solution
for I w.r.t.M, then replace J by J ′. This leads to a proof
of the first part of Theorem 2.
The proof of the second part of Theorem 2 is based on

the concept of a universal solution under bag semantics.
We defer the definition of universal solutions and the proof
to Section V.
We note that ‘GAV mapping’ in the first part of

Theorem 2 cannot be replaced by ‘elementary mapping’. In
the next section, we establish coNP-hardness lower bounds
for the cases that are not covered by Theorem 2.

C. Lower Bounds
We just saw that, as regards GAV mappings, computing

the incognizant or cognizant certain answers of CQs is a
tractable problem. We now show that these problems may
become coNP-complete if we consider full mappings, that
is, GLAV mappings in which the heads of the s-t tgds are
quantifier-free but may contain more than one atoms.

Theorem 3. There exists a full mappingM and a target
Boolean CQ q such that i-QA(M, q) and c-QA(M, q) are
coNP-complete. Moreover, M is specified by one s-t tgd
with a two-atom head and one Horn s-t tgd.

Proof. We constructM and q such that the problem Pos-
itive Not-All-Equal 3-Sat (Pnae3Sat) is polynomial-
time reducible to the complement of i-QA(M, q). Moreover,
M satisfies the hypothesis of Proposition 1, hence the
i-certain answers coincide with the c-certain answers. Given
a propositional formula ϕ =

∧m
i=1(xi1 ∨ xi2 ∨ xi3), where

each xij is a variable, Pnae3Sat asks whether there is
a truth assignment α : var(ϕ) → {t, f} such that not all
variables of a clause have the same truth value (i.e., for
each i ∈ {1, . . . ,m}, we have |{j ∈ {1, 2, 3} | α(xij) = t}| ∈
{1, 2}). If this is the case, we call ϕ nae-satisfiable, and
α a nae-assignment for ϕ. It is known that Pnae3Sat is
NP-complete [27].
We first describe how we encode a formula ϕ as an

instance Iϕ. Let ϕ =
∧m
i=1(xi1 ∨xi2 ∨xi3). Then, Iϕ consists

of the following atoms:
• V (x, t, f) with multiplicity 2, for each variable x of ϕ;
• C(xi1, xi2, xi3) with multiplicity 1, for i ∈ {1, . . . ,m}.

Here, we regard the variables of ϕ as constants, and use
distinguished constants t and f to denote ’true’ and ’false’.

We now turn to the construction ofM and q. The source
schema ofM consists of V and C, while its target schema
consists of a binary relation symbol A and a copy C ′ of C.
The s-t tgds ofM are:

V (x, yt, yf)→ A(x, yt) ∧A(x, yf),
C(x1, x2, x3)→ C ′(x1, x2, x3).

The first s-t tgd assigns the truth value t or f to each
variable x of ϕ. This is done by assigning the multiplicity
2 of the atom V (x, t, f) in Iϕ to either A(x, t) or A(x, f),
and a multiplicity of 1 to the other atom, in a minimal
i-solution for Iϕ w.r.t.M. We will interpret the fact that
A(x, t) has multiplicity 2 as x being true, and likewise for
A(x, f). We then consider the query

q := ∃x1∃x2∃x3∃v

C ′(x1, x2, x3) ∧
3∧
j=1

A(xj , v)


that essentially counts the number of clauses in which all
variables have the same truth value.

Let mϕ := 6m+ 1. We show that ϕ is nae-satisfiable if,
and only if, i-certainM(q, Iϕ) < mϕ.

We first show that there is a one-to-one correspondence
between truth assignments for ϕ and minimal i-solutions
for Iϕ w.r.t.M. Let α be a truth assignment for ϕ. Then,

Jα = {A(x, t) : 2, A(x, f) : 1 | x ∈ var(ϕ), α(x) = 1}
∪ {A(x, t) : 1, A(x, f) : 2 | x ∈ var(ϕ), α(x) = 0}
∪ {C ′(xi1, xi2, xi3) : 1 | 1 ≤ i ≤ m}

is a minimal i-solution for Iϕ w.r.t.M. It is not hard to
see that for every minimal i-solution J , there is a truth
assignment α with J = Jα.
Next, we take a closer look at the possible answers to

q on each minimal i-solution for Iϕ w.r.t.M. Let α be a
truth assignment for ϕ. It is easy to verify that

q(Jα) =
m∑
i=1

∑
v∈{t,f}

3∏
j=1
|A(xij , v)|Jα . (6)

Let ki := |{j ∈ {1, 2, 3} | α(xij) = 1}| for 1 ≤ i ≤ m. Then,

∑
v∈{t,f}

3∏
j=1
|A(xij , v)|Jα = 2ki + 23−ki ,

which is 9 if ki ∈ {0, 3}, and 6 if ki ∈ {1, 2}. Thus, letting
sα be the number of i ∈ {1, . . . ,m} with ki ∈ {1, 2}, we
can rewrite (6) as

q(Jα) = 6sα + 9(m− sα) = 9m− 3sα. (7)

We are now ready to prove that ϕ is nae-satisfiable iff
i-certainM(q, Iϕ) < mϕ.

For the “only if” direction, let α be a nae-assignment for
ϕ. Then, sα = m, so that (7) yields i-certainM(q, Iϕ) ≤
q(Jα) = 6m < mϕ.

For the “if” direction, let J be a minimal i-solution for Iϕ
w.r.t.M with q(J) < mϕ, and let α be a truth assignment
for ϕ with J = Jα. By (7), we have that 6m = mϕ − 1 ≥
q(J) = 9m− 3sα. Hence, sα ≥ m, which implies that α is
a nae-assignment for ϕ.

The proof of Theorem 3 actually yields a stronger result,
namely, that the schema mapping M and the query q
constructed in the course of the proof can be used to
solve a maximization version of the Pnae3Sat problem.
Given a Pnae3Sat instance ϕ, let sϕ be the maximum
number of clauses of ϕ that can be simultaneously nae-
satisfied by a single truth assignment for ϕ (i.e., sϕ is the
maximum of sα, where α ranges over all truth assignments
for ϕ, and sα is defined as in the proof of Theorem 3).
Then, certainM(q, Iϕ) = 9m−3sϕ, where m is the number
of clauses of ϕ. It follows that sϕ can be computed
as (9m − certainM(q, Iϕ))/3. This observation raises the
question about connections between the approximability
properties of optimization problems and the computation
of the certain answers of conjunctive queries with respect
to schema mappings under bag semantics. We leave this
question as a direction of future research.
It remains to consider the extension of GAV mappings

by s-t tgds whose heads contain existential quantifiers.

Theorem 4. There exists an elementary mappingM and
a target Boolean CQ q such that i-QA(M, q) is coNP-
complete. Moreover,M is specified by two elementary tgds,
and five Horn tgds.

Proof. (Sketch) As in Theorem 3, we constructM and q in
such a way that Pnae3Sat is polynomial-time reducible to

C

C

ax

btx bfx

cxP :2 dx

R R

St Sf Sf
St

T

ay

bty bfy

cyP :2 dy

R R

St Sf Sf
St

T

az

btz bfz

czP :2 dz

R R

St
Sf Sf St

T

au

btu bfu

cuP :2 du

R R

St
Sf Sf St

T

Fig. 1. The instance Iϕ for ϕ = (x∨y∨z)∧(y∨z∨u). For each variable
w, the R-labeled edge from aw to bv

w represents the atom R(v, aw, bv
w),

the label P : 2 at cw means that cw belongs to P with multiplicity 2,
and the T -labeled loop at dw represents T (dw, dw, dw). The gray areas
containing ax, ay , az and ay , az , au represent the atoms C(ax, ay , az)
and C(ay , az , au), respectively.

the complement of i-QA(M, q). The construction is much
more elaborate than the one in the proof of Theorem 3,
due to the restriction to s-t tgds with single-atom heads.

To encode a Pnae3Sat instance ϕ =
∧m
i=1(xi1 ∨xi2 ∨xi3)

as an instance Iϕ, we represent each variable x of ϕ by
five constants ax, btx, bfx, cx, and dx, and connect these
constants by adding the following atoms to Iϕ:
• R(v, ax, bvx) with multiplicity 1, for each v ∈ {t, f};
• St(btx, cx) and Sf (btx, dx) with multiplicity 1;
• St(bfx, dx) and Sf (bfx, cx) with multiplicity 1;
• T (dx, dx, dx) with multiplicity 1;
• P (cx) with multiplicity 2.

In addition, Iϕ contains the atom C(axi1 , axi2 , axi3) with
multiplicity 1, for each clause xi1∨xi2∨xi3 of ϕ. See Figure 1
for an illustration.
The schema mapping M has S = {P,R, St, Sf , C, T}

as its source schema; its target schema consists of copies
R′, S′t, S

′
f , C

′, T ′ of the relation symbols in S \ {P}. The
s-t tgds ofM are:

P (x)→ ∃y T ′(x, x, y);
P (x)→ ∃z T ′(x, z, x);
U(x̄)→ U ′(x̄), for each U ∈ S \ {P}.

The first two s-t tgds assign a truth value to each variable
x of ϕ, depending on the pattern of T ′-atoms generated
by them. In a minimal i-solution J for Iϕ, the “loop”
T ′(cx, cx, cx) can occur at most two times. If it occurs two
times, then there is no other atom of the form T ′(cx, cx, a),
a 6= cx, which means that the answers to the queries

θt(x) := ∃x′∃x′′ T ′(x, x′, x′′),
θf (x) := ∃x′∃x′′

(
T ′(x, x, x′) ∧ T ′(x, x′′, x′)

)
on J contain cx with multiplicity 2 and 4, respectively.
The other extreme is that J does not contain T ′(cx, cx, cx).

One can show that in this case we only need to focus on
the case that J contains exactly two atoms of the form
T ′(cx, a, cx) and two atoms of the form T ′(cx, cx, b), each
with multiplicity 1. Thus, the multiplicities of cx in the
answers to θt and θf on J are swapped, that is, 4 and
2, respectively. We use θt and θf to assign a truth value
to each variable x, based on whether T ′(cx, cx, cx) occurs
with multiplicity 2 or not.

The desired query q uses the subquery

θ(x, v) := ∃y∃zt∃zf
(
R′(v, x, y) ∧

∧
u∈{t,f}

(S′u(y, zu) ∧ θu(zu))
)

to switch between θt and θf , depending on the value of v.
In fact, it is straightforward to verify that in a minimal
i-solution J for Iϕ, for each variable x of ϕ and each v ∈
{t, f} we have |(ax, v)|θ(J) = |cx|θv(J). We now obtain q
from the query in Theorem 3 by replacing each atom of
the form A(x, v) with θ(x, v):

q := ∃x1∃x2∃x3∃v
(
C ′(x1, x2, x3) ∧

3∧
j=1

θ(xj , v)
)
.

One can show that ϕ is nae-satisfiable if, and only if,
i-certainM(q, Iϕ) < 48m+ 1.

V. Data Exchange
The goal of data exchange is to materialize a “good”

solution J for a given source instance I. Under set seman-
tics, the notion of a “good” solution was made precise
in [11] via the notion of a universal solution for I w.r.t. a
schema mappingM. Intuitively, a universal solution J for
I w.r.t.M is a “most general” solution for I, in the sense
that, for every other solution J ′ for I w.r.t. M, there is
a homomorphism from J to J ′. Moreover, every universal
solution J is CQ-adequate for I w.r.t. M, which means
that the certain answers of any conjunctive query q w.r.t.
M on I can be obtained by first evaluating q on J and
then removing all tuples with nulls from the set of answers.
IfM is a GLAV mapping, then every source instance has a
universal solution. Moreover, it can be shown that, in this
case, the universal solutions for I w.r.t. M are precisely
the target instances that are CQ-adequate for I w.r.t.M.

In this section, we show that the state of affairs changes
dramatically once we turn to bag semantics. We start by
introducing a suitable notion of universal solution.

A. Universal Solutions Under Bag Semantics
Under set semantics, a solution J for a source instance

I w.r.t. a schema mapping M is universal if for every
solution J ′ for I w.r.t.M, there is a homomorphism from
J to J ′, where a homomorphism from J to J ′ is a mapping
h : adom(J) → adom(J ′) such that R(ā) ∈ I implies
R(h(ā)) ∈ J , and h is the identity on constants. Such
a solution is particularly useful for query answering, since
the certain answers to any CQ q(x̄) can be computed as
q(J)↓, where q(J)↓ is obtained from q(J) by removing all
tuples that contain at least one null. The following example

shows that this notion of universal solution is not suitable
for bag semantics.

Example 8. LetM be the GLAV mapping specified by
the s-t tgd R(x, y)→ ∃z(S(x, z)∧S(z, y)) from Example 6.
Then, J = {S(a,X) : 1, S(X, b) : 1, S(a, Y) : 1, S(Y, b) : 1}
is both an i-solution and a c-solution for the source instance
I = {R(a, b) : 2}. It is easy to see that for every i-solution
(resp., c-solution) J ′ for I, there is a homomorphism from
J to J ′, but it is not the case that the i-certain answers or
the c-certain answers to any CQ q(x̄) can be obtained by
computing q(J)↓. For instance, consider the CQ q(x) :=
∃y S(x, y). Then, |a|q(J) = 2, but a : 1 ∈ i-certainM(q, I) =
c-certainM(q, I), since K = {S(a,X) : 1, S(X, b) : 2} is an
i-solution and a c-solution for I.

The reason for this behavior is that homomorphisms do
not preserve CQs under bag semantics. Given instances I, J
and a homomorphism h, we say that h preserves a CQ q(x̄)
if for all tuples ā ∈ q(I), we have |ā|q(I) ≤ |h(ā)|q(J); we say
that h preserves CQs if h preserves every CQ. It follows
from Example 8 that homomorphisms do not preserve
CQs. We can strengthen this observation as follows. A bag
homomorphism [16] from an instance I to an instance J is a
homomorphism h from I to J such that for all facts R(ā),
we have |R(ā)|I ≤ |R(h(ā))|J . Note that there is a bag
homomorphism from the instance J to the instance K in
Example 8, but that this homomorphism does not preserve
q(x) = ∃y S(x, y). It turns out that the following stricter
condition on homomorphisms is sufficient to preserve CQs.

Definition 4. Let I and J be instances. A homomorphism
h from I to J is additive if for all atoms β ∈ J ,∑

α∈I
h(α)=β

|α|I ≤ |β|J .

Lemma 2. If h is an additive homomorphism from an
instance I to an instance J , then h preserves CQs.

Proof. Let q(x̄) = ∃ȳ
∧n
i=1Ri(z̄i) be a CQ, and let ā ∈ q(I).

Let MI be the set of all matches µ of q in I with µ(x̄) = ā.
Then,

|ā|q(I) =
∑
µ∈MI

n∏
i=1
|µ(z̄i)|RI

i
. (8)

Now, let MJ be the set of all matches µ′ of q in J with
µ′(x̄) = h(ā). Observe that for every match µ ∈ MI , the
composition µ′ := h ◦ µ belongs to MJ . Thus, the sets
MI,µ′ := {µ ∈MI | h ◦ µ = µ′}, where µ′ ranges over the
matches in MJ , form a partition of MI (note, however,
that some sets of the partition may be empty). This allows
us to rewrite (8) as:

|ā|q(I) =
∑

µ′∈MJ

∑
µ∈MI,µ′

n∏
i=1
|µ(z̄i)|RI

i
. (9)

Let us focus on a match µ′ ∈MJ . It is easy to see that
the inner summation in (9) can be upper-bounded by:∑

µ∈MI,µ′

n∏
i=1
|µ(z̄i)|RI

i
≤

n∏
i=1

∑
µ∈MI,µ′

|µ(z̄i)|RI
i
. (10)

Furthermore, for each i ∈ {1, . . . , n}, the fact that h is an
additive homomorphism from I to J , and that h ◦ µ = µ′

for each µ ∈MI,µ′ implies:∑
µ∈MI,µ′

|µ(z̄i)|RI
i
≤ |h(µ(z̄i))|RJ

i
= |µ′(z̄i)|RJ

i
. (11)

Altogether, (9)–(11) imply that:

|ā|q(I) ≤
∑

µ′∈MJ

n∏
i=1
|µ′(z̄i)|RJ

i
= |h(ā)|q(J),

as desired.

We now define universal solutions in terms of additive
homomorphisms.

Definition 5. LetM be a GLAV mapping, and let I be
a source instance. A universal i-solution for I w.r.t.M is
an i-solution J for I w.r.t.M such that for all i-solutions
J ′ for I inM, there is an additive homomorphism from J
to J ′. Universal c-solutions are defined analogously.

A target instance J is called CQ-adequate for I w.r.t.M
under the incognizant semantics if for every target CQ q(x̄),
we have i-certainM(q, I) = q(J)↓. It can be shown that
every such target instance is an i-solution for I w.r.t.M,
thus in the following we call such instances CQ-adequate
i-solutions. We define CQ-adequate c-solutions analogously.

Proposition 2. Let M be a GLAV mapping, and let I
be a source instance. Every universal i-solution (resp., c-
solution) for I w.r.t.M is CQ-adequate. Moreover, every
universal i-solution (resp., c-solution) is unique up to
renaming of nulls.

Proof. CQ-adequacy follows from Lemma 2. Uniqueness
follows from the fact that if there is an additive homomor-
phism from I to J and a homomorphism from J to I, then
I and J are isomorphic.

Under set semantics, GLAV mappings have the property
that every source instance has a CQ-adequate instance.
The results of the previous section imply that, for GLAV
mappings under bag semantics, it is not, in general, possible
to compute such an instance in polynomial time, even if one
exists. In fact, for the schema mappingsM constructed in
the proofs of Theorems 3 and 4, there is no polynomial-time
algorithm that takes a source instance I forM as input,
and computes a CQ-adequate i-solution (or c-solution in
the case of the schema mapping in the proof of Theorem 3)
for I w.r.t.M, unless PTIME = coNP. We strengthen this
result by showing that there are simple GLAV mappings
such that essentially none of their source instances admits
a CQ-adequate solution.

Theorem 5. The following statements are true.
1) There exists a full mappingM specified by a single

full s-t tgd such that no source instance I containing
at least one fact with multiplicity at least 2 has a
CQ-adequate i-solution or c-solution w.r.t.M.

2) There exists an elementary mapping M such that
no non-empty source instance has a CQ-adequate
i-solution w.r.t.M.

Note that the schema mappings used in Theorem 5 go
only slightly beyond the class of GAV mappings. The first
part of the theorem shows that full tgds with more than one
atom on the head are capable of destroying the existence
of CQ-adequate i-solutions and c-solutions, whereas the
second part shows that tgds whose head contains only
a single atom, but with existentially quantified variables
are capable of destroying the existence of CQ-adequate
i-solutions. In contrast, if we restrict our attention to
GAV mappings M, then every source instance I has a
CQ-adequate i-solution and c-solution w.r.t. M. Indeed,
as we have argued in Section IV-B, the unique minimal
i-solution (resp., c-solution) contained in CanSolM(I)
is CQ-adequate for I w.r.t. M. We now show that, for
elementary mappings, the canonical solution is a universal
c-solution, hence also a CQ-adequate c-solution.

Theorem 6. For every elementary mappingM and every
source instance I, the canonical solution for I w.r.t.M is
a universal c-solution for I w.r.t.M.

By combining Proposition 2 and Theorem 6, we obtain
a proof of the second part of Theorem 2 in Section IV.

Proof of Theorem 2 (2). Let M be an elementary map-
ping, and let q(x̄) be a CQ. Given a source instance I for
an elementary mappingM, we first compute CanSolM(I)
and then output q(CanSolM(I))↓. By Theorem 6, we
know that CanSolM(I) is a universal c-solution for I,
hence, by Proposition 2, we have that q(CanSolM(I))↓ =
c-certainM(q, I). It is easy to see that this algorithm runs
in time polynomial in the size of I.

B. CQ-Adequate Bases
In the previous section, we saw that CQ-adequate

instances might not exist even for very simple GLAV
mappings under bag semantics. A similar situation also
arises under set semantics, but in contexts in which
more complex schema mappings are used, such as schema
mappings in peer data exchange [12] and in data exchange
with arithmetic comparisons [1], [29]. One approach to deal
with this problem is to relax the notion of a CQ-adequate
instance to that of a CQ-universal basis.

Definition 6. LetM be a schema mapping and I a source
instance. An incognizant CQ-adequate basis for I w.r.t.M
is a set B of target instances such that for every target
conjunctive query q(x̄), we have that

i-certainM(q, I) =
⋂
{q(J)↓ | J ∈ B}.

We define a cognizant CQ-adequate basis for I w.r.t.M anal-
ogously, using c-certainM(q, I) instead of i-certainM(q, I).

It can be shown that all instances in an incognizant CQ-
adequate basis w.r.t. a GLAV mapping are i-solutions, and
similarly for cognizant CQ-adequate bases.
We now examine the notion of an incognizant and

cognizant CQ-adequate basis. Our first result shows that
all GLAV mappings admit an incognizant and a cognizant
CQ-adequate basis, and that such a basis can be computed
by an exponential-time algorithm.

Theorem 7. For every GLAV mapping M, there is an
exponential-time algorithm that takes a source instance I
as input and outputs an incognizant CQ-adequate basis for
I w.r.t. M. An analogous result holds for computing a
cognizant CQ-adequate basis.

Proof. The set Smin of all minimal i-solutions for I w.r.t.
M is an incognizant CQ-adequate basis for I w.r.t.M. We
can compute Smin by first computing J0 := CanSolM(I)
in time polynomial in the size of I, and then generating
the set of all minimal i-solutions J for I w.r.t.M such that
J ⊆ h(J0) for some mapping h : adom(J0) → adom(J0).
This procedure runs in time exponential in the size of I.
To compute a cognizant CQ-adequate basis, we proceed
analogously with the set of all minimal c-solutions.

In general, the exponential running time for constructing
a CQ-adequate basis is unavoidable, even for full mappings.
Our final result shows that there is a full mapping such
that every incognizant or cognizant CQ-adequate basis
has exponential size on infinitely many source instances,
and similarly for elementary mappings and incognizant
CQ-adequate bases.

Theorem 8.
1) There is a full mappingM with the property that for

every positive integer n, there is a source instance I
with |I| = n such that every incognizant or cognizant
CQ-adequate basis for I w.r.t.M has size at least 2n.

2) There is an elementary mappingM with the property
that for every positive integer n, there is a source
instance I with |I| = n such that every incognizant
CQ-adequate basis for I w.r.t.M has size at least 2n.

VI. Concluding Remarks
In this paper, we developed the foundations of infor-

mation integration under bag semantics, thus taking the
first step towards bridging the gap between theory and
practice in this area of data management. The technical
results established here, as summarized in Figure 2, reveal
that the adoption of this more realistic semantics comes at
a price; in particular, algorithmic problems about GLAV
mappings that were tractable under set semantics may
become intractable under bag semantics, even for the
special case of full mappings under either incognizant or
cognizant semantics, and the special case of elementary

Incognizant Semantics Cognizant Semantics
Type of Mapping Query Answering Size of a CQ-Adequate Basis Query Answering Size of a CQ-Adequate Basis
GAV PTIME 1 PTIME 1
Elementary coNP-complete 2nO(1)

PTIME 1
Full coNP-complete 2nO(1)

coNP-complete 2nO(1)

Fig. 2. Summary of Results

mappings under incognizant semantics. While such results
appear to cast a specter of pessimism about information
integration under bag semantics, we believe that they had
to be discovered and articulated, so that the research in
this area can advance further. In particular, it remains an
open problem to investigate approximation algorithms for
computing the certain answers of target queries in data
exchange under bag semantics.
On the positive side, we showed that elementary map-

pings under cognizant semantics have tractable algorithmic
behavior as regards both universal solutions and certain
answers of conjunctive queries. It should be noted that,
their syntactic simplicity notwithstanding, elementary map-
pings can express many, if not most, of the transformations
used in Extract-Transform-Load (ETL) tools, such as the
IBM InfoSphere DataStage4 and the Oracle Warehouse
Builder5. Actually, our original goal was to develop a
rigorous framework for ETL via the systematic use of
schema mappings. It did not take us long to realize, though,
that a rigorous framework for ETL has to be preceded by
a study of schema mappings and data exchange under bag
semantics. And this led us to the work reported here.

Acknowledgments. This work was done in part while
the authors were visiting the Simons Institute for the
Theory of Computing.

References
[1] F. Afrati, C. Li, and V. Pavlaki. Data exchange in the presence

of arithmetic comparisons. In Proc. of the 11th International
Conference on Extending Database Technology, EDBT ’08, 2008.

[2] F. N. Afrati, M. Damigos, and M. Gergatsoulis. Query con-
tainment under bag and bag-set semantics. Inf. Process. Lett.,
110(10):360–369, 2010.

[3] J. Albert. Algebraic properties of bag data types. In Proc. of
the 17th International Conference on Very Large Data Bases
(VLDB 1991), pages 211–219, 1991.

[4] M. Arenas, P. Barceló, L. Libkin, and F. Murlak. Foundations
of Data Exchange. Cambridge University Press, 2014.

[5] C. Beeri and M. Y. Vardi. A proof procedure for data depen-
dencies. J. ACM, 31(4):718–741, 1984.

[6] A. K. Chandra and P. M. Merlin. Optimal implementation of
conjunctive queries in relational data bases. In Proc. of the 9th
ACM Symposium on Theory of Computing, pages 77–90, 1977.

[7] S. Chaudhuri and M. Y. Vardi. Optimization of Real conjunctive
queries. In Proc. of the 12th ACM Symposium on Principles of
Database Systems (PODS 1993), pages 59–70, 1993.

[8] E. F. Codd. A relational model of data for large shared data
banks. Commun. ACM, 13(6):377–387, 1970.

4http://www-03.ibm.com/software/products/en/ibminfodata
5http://www.oracle.com/technetwork/developer-tools/

warehouse/overview/introduction/index.html

[9] S. Cohen. Equivalence of queries that are sensitive to multiplici-
ties. VLDB J., 18(3):765–785, 2009.

[10] A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data
Integration. Morgan Kaufmann, 2012.

[11] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange:
Semantics and query answering. Theoretical Computer Science,
336(1):89–124, 2005.

[12] A. Fuxman, P. G. Kolaitis, R. J. Miller, and W.-C. Tan. Peer
data exchange. ACM Trans. Database Syst., 31(4):1454–1498,
Dec. 2006.

[13] P. W. P. J. Grefen and R. A. de By. A multi-set extended
relational algebra - a formal approach to a practical issue. In
ICDE, pages 80–88. IEEE Computer Society, 1994.

[14] S. Grumbach, L. Libkin, T. Milo, and L. Wong. Query languages
for bags: expressive power and complexity. SIGACT News,
27(2):30–44, 1996.

[15] Y. E. Ioannidis and R. Ramakrishnan. Containment of conjunc-
tive queries: Beyond relations as sets. ACM Trans. Database
Syst., 20(3):288–324, 1995.

[16] T. S. Jayram, P. G. Kolaitis, and E. Vee. The containment
problem for REAL conjunctive queries with inequalities. In Proc.
of the 25th ACM Symposium on Principles of Database Systems
(PODS 2006), pages 80–89, 2006.

[17] A. C. Klug. Equivalence of relational algebra and relational
calculus query languages having aggregate functions. J. ACM,
29(3):699–717, 1982.

[18] A. C. Klug. On conjunctive queries containing inequalities. J.
ACM, 35(1):146–160, 1988.

[19] D. E. Knuth. The Art of Computer Programming, Volume II:
Seminumerical Algorithms, 2nd Edition. Addison-Wesley, 1981.

[20] P. G. Kolaitis. Schema mappings, data exchange, and metadata
management. In Proc. of the 24th ACM Symposium on Principles
of Database Systems (PODS 2005), pages 61–75, 2005.

[21] P. G. Kolaitis, M. Lenzerini, and N. Schweikardt, editors. Data
Exchange, Integration, and Streams, volume 5 of Dagstuhl Follow-
Ups. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.

[22] S. Kopparty and B. Rossman. The homomorphism domination
exponent. Eur. J. Comb., 32(7):1097–1114, 2011.

[23] M. Lenzerini. Data integration: A theoretical perspective. In
Proc. of the 21st ACM Symposium on Principles of Database
Systems (PODS 2002), pages 233–246, 2002.

[24] L. Libkin. Data exchange and incomplete information. In Proc.
of the 25th ACM Symposium on Principles of Database Systems
(PODS 2006), pages 60–69, 2006.

[25] I. S. Mumick, H. Pirahesh, and R. Ramakrishnan. The magic of
duplicates and aggregates. In 16th International Conference on
Very Large Data Bases (VLDB 1990), pages 264–277, 1990.

[26] Y. Sagiv and M. Yannakakis. Equivalences among relational
expressions with the union and difference operators. J. ACM,
27(4):633–655, 1980.

[27] T. J. Schaefer. The complexity of satisfiability problems. In
Proc. of the 10th ACM Symposium on Theory of Computing,
STOC ’78, pages 216–226, 1978.

[28] B. ten Cate, L. Chiticariu, P. Kolaitis, and W.-C. Tan. Laconic
schema mappings: Computing the core with sql queries. Proc.
VLDB Endow., 2(1):1006–1017, Aug. 2009.

[29] B. ten Cate, P. G. Kolaitis, and W. Othman. Data exchange with
arithmetic operations. In Proc. of the Joint 2013 EDBT/ICDT
Conferences, pages 537–548, 2013.

[30] R. van der Meyden. The complexity of querying indefinite data
about linearly ordered domains. J. Comput. Syst. Sci., 54(1):113–
135, 1997.

