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Abstract. In analogy to the relation between symplectic packings and sym-

plectic blow ups we show that multiple point Seshadri constants on projec-
tive complex surfaces can be calculated as the supremum of radii of multiple

Kähler ball embeddings. We exemplify this connection on toric surfaces, also
discussing how toric moment maps reflect the packing.

0. Introduction

Symplectic Topology, searching for global properties of symplectic manifolds, de-
veloped rather recently out of Hamiltonian Mechanics which was mainly concerned
with the automorphisms of symplectic manifolds, or symplectomorphisms, as the
flow of Hamiltonian vector fields (see the in-depth treatise of McDuff and Salamon,
[MS95]). One of its most striking successes is the analysis and solution of several
symplectic packing problems: How large can symplectic balls of a given number be
when disjointly embedded in a given symplectic manifold? These questions are es-
pecially attractive as they exhibit the fundamental nature of symplectic structures:
local flexibility vs (sometimes) global rigidity. In particular, symplectic packing is
not so rigid as Euclidean (that is, distance-and-angle preserving) packing, leading
to questions like the Kepler conjecture on ball packings (and its solution by Hales
[Hal05, Hal12]), but may be less flexible than just volume-preserving packing. So
some symplectic packing problems reveal obstructions to packings without gaps,
whereas other packings are possible without gaps.
One of the most prominent class of such symplectic packing problems asks how
large symplectic balls of a given number can be when disjointly embedded in the
complex projective plane CP2. In more details, consider balls B0(r) ⊂ R4 of radius
r centered in 0 together with the symplectic form ωstd obtained by restricting the

standard symplectic form on R4. If
∐k
q=1B0(rq) denotes the disjoint union of k of

these balls, with possibly different radii, and ωFS denotes a Fubini-Study Kähler
form on CP2 , then a symplectic packing of CP2 with k symplectic balls is defined
as a symplectic embedding

ι :

k∐
q=1

B0(rq) ↪→ CP2,

that is, ι is a smooth embedding such that ι∗ωFS|B0(rq) = ωstd. The symplectic
packing problem asks for conditions on the radii rq for which such a symplectic
packing exist, and also how it can be explicitely constructed.
McDuff and Polterovich [MP94] connected this problem first to symplectic blow ups
and then to Algebraic Geometry: They showed that a symplectic packing with balls
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of radii rq is only possible if on σ : X → CP2, the blow up of CP2 (considered as a
complex manifold) in k points x1, . . . , xk, there exists a symplectic form representing

the cohomology class of σ∗l − π
∑k
q=1 r

2
qeq, where l and the eq are Poincaré dual

to a line L ⊂ CP2 and the exceptional divisors Eq = σ−1(xq). Then they proved
that as long as k ≤ 8 the only obstructions to the existence of such a symplectic
form are the same as for the existence of a Kähler form in this cohomology class,
namely (−1)-curves on X. Thus, these symplectic packing problems are related to
the algebraic-geometric theory of del Pezzo surfaces already extensively studied in
the 19th century (see [Man74] for a survey and results).
Next, Biran [Bir97] was able to prove that (−1)-curves remain the only obstacles
for symplectic packings with k ≥ 9 balls, and as a consequence he showed the
symplectic analogue of a celebrated algebraic-geometric conjecture named after
Nagata, who came across it when solving Hilbert’s Fourteenth Problem [Nag59].

Conjecture 0.1 (Nagata). With notations as above and k ≥ 9, there is a Kähler

form representing the cohomology class σ∗l − ε ·
∑k
q=1 eq for all ε < 1√

k
if the

blown-up points x1, . . . , xk are chosen sufficiently general.

This is the Kähler version of a purely algebraic-geometric statement:

Conjecture 0.2 (Nagata, algebraic-geometric version). Let C = {F = 0} be an
irreducible algebraic curve in CP2, given by an irreducible homogeneous polynomial
F = F (X,Y, Z) of degree d in three homogeneous variables X,Y, Z and with multi-
plicity mq in the point xq (that is, mq is the lowest degree of a non-vanishing term

in the Taylor series expansion of F around xq). If the points x1, . . . , xk ∈ CP2 are
chosen sufficiently general then

√
kd ≥

k∑
q=1

mq.

Choosing points on CP2 sufficiently general means that the points should not lie on a
union of (not explicitly determined) algebraic curves on CP2 given by homogeneous
polynomial equations. Excluding such ”special” positions of the points (e.g. more
than 2 points on a complex line) indeed decreases the Seshadri constant. This
restriction is not necessary for the centers of symplectically packed balls, due to the
greater flexibility of symplectic forms in contrast to Kähler forms.
The equivalence of these two conjectures follows from the fact that Kähler forms
representing an integral cohomology class are curvature forms of hermitian metrics
on an ample line bundle (that is Kodaira’s embedding theorem [Wel80, Thm.III.4.1,
III.4.6]) and that intersection numbers of ample cohomology classes with algebraic
curves are always positive (that is the easy half of Nakai-Moishezon’s Ampleness
Criterion [Laz04, Thm.1.2.23]). The Nakai-Moishezon Criterion is applied on the
strict transform C on X, that is the preimage of C under the blow-up map σ
without the exceptional divisors Eq (intersected mq times by C).
More on Biran’s proof and on what the symplectic methods tell us for the algebraic
situation (in particular, why they cannot be used so easily for Nagata’s Conjecture)
can be found in Biran’s lucid survey [Bir01].
The aim of this note is to show that the algebraic conjecture of Nagata is equivalent
to a more restricted packing problem, namely a Kähler packing problem.
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We work in a more general setting: V is assumed to be a 2-dimensional projective
complex manifold (surface for short), x1, . . . , xk ∈ V distinct points on V and L
an ample line bundle on V . Sometimes we interpret L also as a divisor on V . Let

σ : Ṽ → V be the blow up of the k points x1, . . . , xk, with exceptional divisors
Eq = σ−1(xq).

Definition 0.3. The multi-point Seshadri constant ε(L;x1, . . . , xk) is defined as

sup{ε > 0 : A multiple of σ∗L− ε
k∑
q=1

Eq is an ample divisor}.

Nagata’s Conjecture predicts that ε(L;x1, . . . , xk) = 1√
k

on V = CP2, where

L ⊂ CP2 is a line and x1, . . . , xk ∈ CP2 are points in sufficiently general position.
Seshadri constants were intensively investigated in Algebraic Geometry during the
last years, as a measure of local positivity (see e.g. [Laz04, Ch.5]).
Kähler packings can be defined on arbitrary Kähler manifolds:

Definition 0.4. Let (V, ω) be a n-dimensional Kähler manifold with Kähler form ω.
Then a holomorphic embedding

φ =

k∐
q=1

φq :

k∐
q=1

B0(rq)→ V

is called a Kähler embedding of k disjoint complex balls in Cn centered in 0, of
radius rq, if φ∗q(ω) = ωstd is the standard Kähler form on Cn restricted to B0(rq).

Returning to the setting where V is a projective surface and L an ample line bundle
there are many Kähler forms on V representing the first Chern class c1(L) of L.

Definition 0.5. The Kähler packing constant of V and L with k balls is given by

rK(V,L, x1, . . . , xk) := sup

r > 0 :

∃ Kähler form ω ∈ c1(L) and Kähler packing∐k
q=1 φq :

∐k
q=1(B0(r), ωstd)→ (V, ω)

with φq(0) = xq

 .

Section 1 is devoted to the proof of the following equality:

Theorem 0.6. In the setting above, ε(L;x1, . . . , xk) = rK(V,L, x1, . . . , xk).

It is possible to change the definition of Kähler packings to holomorphic embeddings

k∐
i=1

(B0(R),
ε

π
· ωFS)→ (V, ω)

for R arbitrarily large and ωFS the Fubini-Study metric restricted to
B0(r) ⊂ C2 ⊂ CP2, without changing the Kähler packing constant. This fol-
lows from Lem. 1.2. Thus, Thm. 1.5. in [WN15a] is equivalent to Thm. 0.6 if only
one point x1 is considered, i.e. k = 1. Witt Nyström does not study the case
of more than one point, but he generalizes Thm. 0.6 for one point to projective
complex manifolds of arbitrary dimension, using the obvious generalisations of the
notions of Seshadri constants, Kähler packings and Kähler packing constants on
a higher-dimensional projective complex manifold with ample line bundle L. See
also [WN15b] for related results. For the status of Thm. 0.6 for higher-dimensional
projective complex manifolds and arbitrarily many points see Rem. 1.1.
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In Section 2 we discuss Kähler packings on a smooth projective complex toric
surface V when the blown-up points x1, . . . , xk are fixed points of the torus action
on V . In this situation it is easy to calculate the multi-point Seshadri constant
ε(L;x1, . . . , xk), generalizing the case k = 1 discussed in [DR99], [BDRH+09], see
Cor. 2.3. It is also possible to approximate Kähler packings by Fubini-Study balls
using Kähler forms induced by global sections of large enough multiples of L stable
under the torus action, see Thm. 2.5. Actually, choosing global sections carefully
the same idea works for general surfaces V . The additional tool needed to prove
Thm. 0.6 is the symplectic blow-up and blow-down procedure developed by McDuff
and Polterovich [MP94, §5], to glue in flat resp. Fubini-Study balls.
Finally, we show in Thm. 2.5 that the toric symplectic moment maps induced by
those sections pulled back to the embedded balls approximate the Fubini-Study
moment map on a Fubini-Study ball. This gives an interpretation to the change
from the toric moment polytope of the line bundle L on V to the toric moment
polytope of π∗L−ε

∑
q Eq on the blow-up of V (see Prop. 2.2 for a precise statement

and Ex. 2.4 for an illustration): The cut-off triangles of the moment polytope are
the shadows of the embedded balls under the moment map.

Acknowledgements. The author thanks the anonymous referee for suggestions on
how to improve the exposition and to include examples, and David Witt Nyström
for discussing his results in [WN15a, WN15b] with the author.

1. Proof of Theorem 0.6

The inequality ε(L;x1, . . . , xk) ≥ rK(V,L, x1, . . . , xk) follows immediately by using
symplectic blow up constructions on Kähler manifolds as described in [MP94, §5.3,
in particular §5.3.A] (see also [Laz04, Lem.5.3.17]).
The idea to prove the other inequality of Thm. 0.6 is to construct Kähler forms
on the blow-up of V from global sections of L⊗m vanishing to higher and higher
order in the points x1, . . . , xk. If the sections are carefully chosen the vanishing is
homogeneous in all directions, and the Kähler forms get sufficiently flat around the
exceptional divisors Eq over xq, so that one can glue in a standard Kähler ball of
a radius arbitrarily close to

√
ε
π . The main technical tool for the gluing procedure

is the symplectic blow down described by McDuff and Polterovich [MP94, §5.4].
In more details, recall that the standard Kähler form ω0 on C2 is given in affine holo-
morphic coordinates (x, y) by i

2 (dx∧dx+dy∧dy), whereas the Fubini-Study Kähler

form τ0 on CP1 is given in homogeneous coordinates [S : T ] by i
2π∂∂ log(SS+TT ).

Note that the latter (1, 1)-form is well-defined on CP1 because SS + TT is homo-
geneous in S and T , and that it represents c1(OCP1(P )) for any point P ∈ CP1.
More generally, if s0, . . . , sN are sections of a line bundle L on a complex manifold
X defining an embedding

X ↪→ CPN , x 7→ [S0 : · · · : SN ] = [s0(x) : · · · : sN (x)]

(for example, if the si span H0(X,L) and L is very ample) then we can use this
embedding to construct a Kähler form on X, by restricting the Fubini-Study form
i

2π∂∂ log(
∑N
k=0 SkSk) in homogeneous coordinates [S0 : · · · : SN ] on CPN to X.

We say that this restricted Kähler form on X is induced by the sections s0, . . . , sN .
The Kähler form can also be seen as the curvature form of the hermitian metric h
induced by the sections on L, defining the length of the vector ξ(x) for each section
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ξ of L and point x on X by

‖ ξ ‖2h:=
ξ(x)ξ(x)∑N

k=0 sk(x)sk(x)
.

Let (x, y) be local complex coordinates around xq ∈ V , and denote by
S := x

y , T := y
x the induced homogeneous coordinates on the exceptional divi-

sor Eq ∼= CP1. If Uq(δ) denotes a ball centered in xq of sufficiently small ra-
dius δ, measured according to the coordinates x, y, then the tubular neighborhood

σ−1(Uq(δ)) ⊂ Ṽ of Eq is projected to Eq ∼= CP1 by a holomorphic map pq collaps-
ing the lines in Uq(δ) through (0, 0). Furthermore σ−1(Uq(δ)) is covered by two
charts with coordinates (x, t) resp. (s, y), with transition maps given by y = xt
and s = 1/t. Note that the exceptional divisor Eq intersects these charts as the
vanishing locus of x resp. y.
Now assume that ε ∈ Q. Then for every integer n > 0 such that nε is also an

integer, the line bundle L̃n := σ∗(L⊗n) ⊗ OṼ (−nε ·
∑k
q=1Eq) is ample. On Uq(δ)

the line bundle L⊗n is trivial, hence we can define a hermitian metric h0 on L⊗n|Uq(δ)
by

‖ ξ ‖2h0
:=

ξ(x)ξ(x)

exx+yy

with everywhere positive curvature form 1
πω0 = i

2π (dx ∧ dx + dy ∧ dy). If σ∗h0

denotes the pulled back metric on σ∗(L⊗n) its curvature form σ∗ω0 is everywhere
semipositive on Uq(δ) and positive away from Eq.

The sections of Oσ−1(Uq(δ))(−nε ·
∑k
q=1Eq) given in the coordinates (x, t) of one of

the charts covering σ−1(Uq(δ)) by√(
nε

j

)
tj , j = 0, . . . , nε,

define a hermitian metric hq on Oσ−1(Uq(δ))(−nε ·
∑k
q=1Eq). Note that the

coefficient of tj allows to rewrite the metric induced by these sections on

Oσ−1(Uq(δ))(−nε ·
∑k
q=1Eq) as a power of the metric induced by the sections 1

and t on Oσ−1(Uq(δ))(−
∑k
q=1Eq). Since the curvature form of hq is positive on

Eq the tensor product σ∗h0 ⊗ hq is a hermitian metric h0,q on L̃n|σ−1(Uq(δ)) with
everywhere positive curvature form

ω0,q :=
1

π
σ∗ω0 + nε · p∗qτ0.

Step 1. For n � 0 we can find sections s0, . . . , sN spanning H0(Ṽ , L̃n) such that

the induced hermitian metric h̃ on L̃n has a positive curvature form ω̃ satisfying

ω̃|Eq = nε · τ0 and ω̃(P ) =
1

π
(σ∗ω0)(P ) + nε · (p∗qτ0)(P ),
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for all q = 1, . . . , k and all points P ∈ Eq: For n � 0 the line bundle L̃n is
sufficiently ample such that the restriction maps

H0(Ṽ , L̃n ⊗OṼ (−2

k∑
r=1

Er)) →
k⊕
r=1

H0(Er, L̃n|Er ⊗OEr (−2Er)) =

=

k⊕
r=1

H0(Er,OEr (−(nε+ 2)Er)),

H0(Ṽ , L̃n ⊗OṼ (−
k∑
r=1

Er))→
k⊕
r=1

H0(Er,OEr (−(nε+ 1)Er)),

H0(Ṽ , L̃n⊗OṼ (−
∑
r 6=q

Er))→
⊕
r 6=q

H0(Er,OEr (−(nε+1)Er))⊕H0(Eq,OEq (−nεEq))

are surjective for each q = 1, . . . , k, by Serre Vanishing [Laz04, Thm.1.2.6]. For
each q = 1, . . . , k we can thus find

• sections in H0(Ṽ , L̃n) restricting to Snε+2, Snε+1T, . . . , Tnε+2 on Eq (when
divided by the square of the defining function of Eq) and vanishing to order
≥ 2 on all exceptional divisors Er 6= Eq,

• sections in H0(Ṽ , L̃n) restricting to (scalar multiples of)
Snε+1, SnεT, . . . , Tnε+1 on Eq (when divided by the defining function
of Eq) and vanishing to order ≥ 2 on all exceptional divisors Er 6= Eq, and

• sections in H0(Ṽ , L̃n) restricting on Eq to (scalar multiples of)
Snε, Snε−1T, . . . , Tnε, a basis of H0(Eq,OEq (−nεEq)) and vanishing to or-
der ≥ 2 on all exceptional divisors Er 6= Eq.

Uniting a basis of H0(Ṽ , L̃n ⊗OṼ (−2
∑k
r=1Er)) ⊂ H0(Ṽ , L̃n) with suitable linear

combinations of the sections above we obtain a set of sections s0, . . . , sN spanning

H0(Ṽ , L̃n) which can be subdivided in three disjoint parts for each q = 1, . . . , k:
In terms of the (x, t) coordinates in one of the charts around Eq the sections are
either of the form √(

nε

j

)
tj + x3 · fj(x, t), j = 0, . . . , nε, or

x · (

√(
nε+ 1

l

)
tl + x · gl(x, t)), l = 0, . . . , nε+ 1, or x2 · h(x, t),

where the fj , gl and h are regular functions in x, t and there exists exactly one
section of the respective form for each j and each l. By multiplying with snε

and using t · s = 1 and x = sy we obtain expressions for the sections in the
(s, y)-coordinates of the other chart around Eq, and these expressions in s, y are
completely similar to those in x, t.

Let h̃ denote the hermitian metric on L̃n and ω̃ the Kähler form on Ṽ induced
by the sections σ0, . . . , σN . Using the coordinates (x, t) around Eq (the calcula-
tions are completely analogous when using the coordinates (s, y) of the other chart
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around Eq) the Taylor series expansion of log shows that

ω̃(0, 0) =

 i

2π
∂∂ log(

N∑
j=0

σj(x, t)σj(x, t))

 (0, 0) =
1

π

(
dx ∧ dx+ nεdt ∧ dt

)
=

=
1

π
σ∗ω0(0, 0) + nεp∗2τ0(0, 0),

because F :=
∑N
j=0 σj(x, t)σj(x, t) is a power series in x, x, t, t, and the only terms

of order ≤ 2 in F are 1, xx, nεtt. Similarly in other points P = (0, t0) ∈ Eq: Choose

a unitary matrix

(
a b
c d

)
∈ U(2) such that t0 = c

a , and rewrite F in terms of the

coordinates (x′, t′) given by

x = x′(a+ bt′), t =
c+ dt′

a+ bt′
.

Then F · |a+ bt′|2nε is a power series in x′, x′, t′, t′, and as before the only terms of

order ≤ 2 are 1, x′x′, nεt′t′ because

(
a b
c d

)
∈ U(2) implies that

(1 + tt) · |a+ bt′|2 = |a+ bt′|2 + |c+ dt′|2 = 1 + t′t′.

Since ∂∂ log |a+ bt′|2 = 0 we conclude once again that

ω̃(P ) =
1

π
(dx′ ∧ dx′ + nεdt′ ∧ dt′) =

1

π
σ∗ω0(P ) + nεp∗2τ0(P ).

Finally, the statement on ω̃|Eq follows because F|x=0 = (1 + tt)nε.

Step 2. On the tubular neighborhoods σ−1(Uq(δ)) we glue the metrics h̃ on L̃n
and h0,q on L̃n|σ−1(Uq(δ)): To this purpose we use a partition of unity (ρ1, ρ2)

subordinate to the open cover (Ṽ − σ−1(Uq(δ/2)), σ−1(Uq(δ))) of Ṽ . We con-
struct ρ1, ρ2 from a partition of unity (ρ1, ρ2) subordinate to the open cover
(R− (−δ2/4, δ2/4), (−δ2, δ2)) of R, by setting

ρi(x, t) := ρi(|σ(x, t)|2) = ρi(|σ(s, y)|2), i = 1, 2.

Note that we can choose ρi such that the first-order partial derivatives of ρi are
bounded by a constant multiple of 1/δ and the second-order partial derivatives of
ρi by a constant multiple of 1/δ2.

Let s0, . . . , sN be the global sections of L̃n constructed in Step 1. Then in coordi-

nates (x, t) around Eq the metric h̃ induced by these sections is given by

h̃(s(x, t)) = |s(x, t)|/(
N∑
j=0

|sj(x, t)|2)
1
2 = |s(x, t)| · e− 1

2φ1(x,t),

with φ1(x, t) = log(
∑N
j=0 |sj(x, t)|2), for each section s of L̃n. Similarly,

h0,q(s(x, t)) = |s(x, t)| · e− 1
2φ2(x,t)

with φ2 = nε log(1 + tt) + 1
πxx(1 + tt). Then the glued metric h can be constructed

as

h(s(x, t)) = |s(x, t)|e− 1
2 (ρ1φ1+ρ2φ2) = |s(x, t)|e− 1

2 (φ1+ρ2(φ2−φ1)).
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Its curvature is
i

2π

[
∂∂φ1 + ∂∂(ρ2(φ2 − φ1))

]
=

i

2π

[
∂∂φ1 + ∂(ρ2 · ∂(φ2 − φ1) + ∂ρ2 · (φ2 − φ1))

]
=

=
i

2π

[
∂∂φ1 + ∂ρ2 · ∂(φ2 − φ1) + ρ2 · ∂∂(φ2 − φ1) + ∂∂ρ2 · (φ2 − φ1) + ∂ρ2 · ∂(φ2 − φ1)

]
.

The Taylor series expansion of log and the properties of the sections sj discussed
in Step 1 show that φ2 − φ1 expands to a power series in x, t only containing
terms of order ≥ 3. Hence the remarks on the partial derivatives of ρ1 and ρ2

imply that around (x, t) = (0, 0) all summands but the first converge everywhere
on σ−1(Uq(δ)) − σ−1(Uq(δ/2)) to 0 when δ tends to 0. Since i

2π∂∂φ1 is strictly

positive being the curvature of h̃, it follows that h is a positive metric on L̃n for
n sufficiently large and δ sufficiently small. Calling ω the Kähler form obtained as
the curvature of h we have that

ω|σ−1(Uq(δ/2)) = ω0,q.

Step 3. We glue in standard Kähler balls of radius
√

ε
π to (Ṽ , 1

nω) replacing the
exceptional divisors Eq: Let L(r) denote the preimage of the ball B(r) centered in
0 ∈ C2 under the standard blow-up σ of C2 in 0 and let ρ(δ, ε) denote the Kähler
form

ρ(δ, ε) := δ · σ∗ω0 + ε · p∗2τ0
on L(r), for δ, ε > 0. The construction of ω implies that an appropriate rescaling
of the (x, y)-coordinates around xq without changing the homogeneous coordinates
S, T on Eq yields holomorphic embeddings

φq : L(1 + εq) ↪→ Ṽ

such that φ∗q(
1
nω) = ρ(δq, ε), for some εq, δq > 0. The symplectic blow-down con-

struction in [MP94, §5.4, in particular §5.4.A] shows that there exist a Kähler form
on V representing c1(L) and a Kähler embedding of k standard balls of radii

√
ε
π

into V , wrt this Kähler form. �

Remark 1.1. The equality of Thm. 0.6 should hold in arbitrary dimensions, using
the obvious generalisations of the notions of Seshadri constants, Kähler packings
and Kähler packing constants: The proof of Thm. 0.6 above should generalize to
higher dimensions. However, especially calculating the estimates needed for the
glueing process will become rather tedious, so to stay on the safe side Thm. 0.6 is
stated only for surfaces – an interesting enough case, in view of Nagata’s Con-
jecture. The author does not know whether the arguments of Witt Nyström
[WN15a, WN15b] can be adapted to the case of several points.

We finally show that a Fubini-Study ball can be glued into a flat Kähler ball and
vice versa, by suitably modifying the symplectomorphism between flat Kähler balls
and Fubini-Study balls given by

φ : (B0(1), ωstd)→ (C2, ωFS), (z1, z2) 7→ 1

(1−
∑2
i=1 |zi|2)

1
2

· (z1, z2)

(see [MS95, Ex.7.14]) and its inverse:

Lemma 1.2. For all R, ε, λ > 0 there is a Kähler form τ = τ(R, ε, λ) on C2 such
that

τ|B0(R) = λ2 · 1

R2 + 1
ωstd and τ|C2−B0(R+ε) = λ2ωFS.
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For all 0 < ε < 1
2 , λ > 0 there is a Kähler form σ on B0(1) such that

σ|B0(1−2ε) = λ2 · 1

4ε(1− ε)
ωFS and σ|B0(1)−B0(1−ε) = λ2ωstd.

Proof. We obtain τ as the pull back of λ2ωFS via the monotone embedding given
in polar coordinates u ∈ S3, r ∈ (0,∞) on Cn − {0} by

(u, r) 7→ (u, r/R) 7→ (u, r(R2 − r2)−
1
2 ) on B0(R)− {0},

z 7→ z on Cn −B0(R+ ε)

and smoothened on B0(R + ε)− B0(R). Then τ is a Kähler form by [MP94, §5.1]
and satisfies the requested properties.
Similarly, we obtain σ as the pull back of λ2ωstd via the monotone embedding given
by

(u, r) 7→
(
u, r

2(ε(1−ε))
1
2

)
7→

(
u, r

(r2+2(ε(1−ε))
1
2 )

1
2

)
on B0(1− 2ε)− {0},

z 7→ z on B0(1)−B0(1− ε)

and smoothened on B0(1− ε)−B0(1− 2ε). �

Note that rescaling yields symplectomorphisms

(B0(R), λ2 · 1

R2 + 1
ωstd)→ (B0(

R

(R2 + 1)
1
2

), λ2ωstd)

and

(B0(1− 2ε), λ2 · 1

4ε(1− ε)
ωFS)→ (B0(

1− 2ε

2(ε(1− ε)) 1
2

), λ2ωFS).

Thus Lem. 1.2 implies that we can change the definition of a Kähler packing with
balls as indicated after Def. 0.5 without changing the Kähler packing constant.
Note that globally on V , the Chern class of the Kähler form is not changed by
gluing in the balls because the new Kähler form is constructed as a pullback via a
map homotopic to the identity.

2. Kähler packings on toric surfaces

We start with fixing notations and recall some facts on toric varieties following
[Ful93]: N ∼= Zn denotes a lattice of rank n, M := HomZ(N,Z) the dual lattice of
N , ∆ a fan of rational strongly convex polyhedral cones σ ⊂ NR := N ⊗Z R and
X(∆) the n-dimensional toric variety associated to ∆, together with the natural
action of the torus TN ∼= (C∗)n on X(∆).
A toric variety X(∆) is covered by the affine toric varieties Uσ := C[σ∨∩M ], σ ∈ ∆,
where σ∨ = {u ∈ MR : 〈u, v〉 ≥ 0 for all v ∈ σ} is the dual cone to σ in MR and
σ∨ ∩M is a semigroup in M .
A toric variety X(∆) is complete if the support |∆| =

⋃
σ∈∆ σ covers all of NR.

TN -invariant morphisms X(∆′) → X(∆) between two n-dimensional toric va-
rieties correspond to abelian group homomorphisms α : N → N such that
αR := α⊗Z R : NR → NR maps each cone of ∆′ into a cone of ∆.
Cones σ ∈ ∆ of maximal dimension n correspond to TN -fixed points xσ ∈ X(∆)
whereas cones in ∆ of lower dimension correspond to higher-dimensional TN -orbits
in X(∆). In particular the rays τ ∈ ∆ correspond to (n−1)-dimensional TN -orbits
whose closures are the irreducible TN -stable Weil divisors on X(∆). For a ray τ ∈ ∆
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let vτ ∈ N denote the generator of τ in N , and Dτ the Weil divisor corresponding
to τ .
A TN -stable Cartier divisor D on X(∆) is defined by elements uD(σ) ∈ M for
each σ ∈ ∆ of maximal dimension n such that uD(σ) − uD(σ′) ∈ (σ ∩ σ′)⊥. The
corresponding Weil divisor is given as D = −

∑
σ⊃τ∈∆ ray〈uD(σ), vτ 〉Dτ .

X(∆) is nonsingular if each cone σ ∈ ∆ is generated by n vectors v1, . . . , vn ∈ N
that are a Z-basis of N . In that case the TN -stable Weil divisors coincide with
the TN -stable Cartier divisors. Note also that the dual cone σ∨ ⊂ MR and the
semigroup σ∨ ∩M ⊂ M are generated by a Z-basis of M if σ is generated by a
Z-basis.

Proposition 2.1 ([Ful93, Sec.2.4]). Let X(∆) be a nonsingular toric variety and
σ ∈ ∆ a cone of maximal dimension corresponding to the TN -fixed point xσ.
Then the blow up of X(∆) in xσ is given by the morphism X(∆′) → X(∆) where
∆′ is constructed from ∆ by subdividing σ into n cones σi generated by

v1, . . . , vi−1, v1 + · · ·+ vn, vi+1, . . . , vn

where v1, . . . , vn ∈ N are spanning σ and also are a Z-basis of the lattice N .
The exceptional divisor on X(∆′) is TN -stable and corresponds to the ray τ gener-
ated by v1 + · · ·+ vn. �

A TN -stable Cartier divisor D =
∑
τ∈∆ ray aτDτ on X(∆) defines a rational convex

polyhedron PD in MR,

PD = {u ∈MR : 〈u, vτ 〉 ≥ −aτ for all rays τ ∈ ∆}.

The elements of PD ∩M correspond to TN -stable generators of the space of global
sections of OX(∆)(D).
D is ample if and only if the elements uD(σ) ∈ M describing D are exactly the
vertices of PD (see [Ful93, p.70]). If (and only if) such an ample TN -stable divisor
exists on X(∆) and X(∆) is complete then the toric variety X(∆) is projective.
The following two results can be found in [BDRH+09, §4] but we present the proof
for the convenience of the reader and because some details are needed later on.

Proposition 2.2 ([BDRH+09, §4]). Let X(∆) be an n-dimensional non-singular
projective toric variety, σ ∈ ∆ a cone of maximal dimension n with correspond-
ing TN -fixed point xσ and π : X(∆′) → X(∆) the blow up of X(∆) in xσ, with
exceptional divisor Eσ, as constructed in Prop. 2.1. Let D be an ample TN -stable
Cartier divisor on X(∆) with associated polyhedron PD.

(a) Let v1, . . . , vn ∈ N be the generators of the edges of σ and w1, . . . , wn ∈M
the generators of the edges of σ∨. If σ′ ∈ ∆ is a cone of maximal dimension
n intersecting σ in the facet spanned by v1, . . . , vi−1, vi+1, . . . , vn then the
vertices uD(σ) and uD(σ′) of PD differ by a multiple εiwi of wi, εi > 0.

(b) Dε := π∗D − εEσ is an ample (Q-)divisor if and only if ε < mini=1,...,n εi,
and its associated polyhedron PDε is obtained from PD by taking away the
simplex with vertex uD(σ) and edges εwi starting in uD(σ).

Proof. Let v′i span the one edge τ ′ of σ′ that is not an edge of σ. In particular, v′i
and vi lie on different sides of the hyperplane spanned by v1, . . . , vi−1, vi+1, . . . , vn.
Consequently, 〈wi, v′i〉 < 0.
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If D =
∑
τ∈∆ ray aτDτ then uD(σ) = −

∑n
i=1 aiwi because 〈uD(σ), vi〉 = −ai, and

the wi are a Z-basis of M dual to the Z-basis vi of N . Since D is ample we must
have 〈uD(σ), v′i〉 > −aτ ′
All these facts imply that there is εi > 0 such that 〈uD(σ)+εiwi, v

′
i〉 = −aτ ′ whereas

〈uD(σ) + εiwi, vj〉 = −aj for j = 1, . . . , i − 1, i + 1, . . . , n. By the same argument
as before, we may conclude uD(σ) + εiwi = uD(σ′), and (a) is shown.
For (b) note that w1 − wi, . . . , wi, . . . , wn − wi generate the semigroup σ∨i ∩M as
these elements are a dual basis to v1, . . . , v1 + · · ·+ vn, . . . , vn. Furthermore,

Dε = π∗D − εEσ =
∑

τ∈∆ ray

aτDτ + (
∑

τ∈∆ ray

aτ )Eσ − εEσ.

Consequently, σi corresponds to the vertex of PDε given by

−
n∑

k=1,k 6=i

ak(wk − wi)− (

n∑
k=1

ak)wi + εwi = −
n∑
k=1

akwk + εwi = uD(σ) + εwi.

So Dε is ample if ε < εi for all i = 1, . . . , n, and the polyhedron PDε replaces
the vertex uD(σ) of PD by the vertices uD(σ) + εwi, cutting off the simplex as
described. �

Corollary 2.3. Let X(∆) be an n-dimensional non-singular projective toric va-
riety, let π : X(∆′) → X(∆) be the blow up of X(∆) in several TN -fixed points
xσ1

, . . . , xσk , with exceptional divisors Ek, and let D be an ample TN -stable Cartier

divisor on X(∆). Then π∗D − ε
∑k
l=1Ek is an ample (Q)-divisor if, and only if,

ε <
1

2
min

1≤l≤k,1≤i≤n
εli,

where the εli > 0 are those numbers determined for each edge τi of the cones σl in
Prop. 2.2. �

Example 2.4. Consider the nonsingular toric projective variety P2
C, on which the

torus TN ∼= (C∗)2 acts as (s, t) · [X : Y : Z] = [sX : tY : Z]. The three cones
of maximal dimension in the fan ∆ describing P2

C = X(∆) are separated by the
rays τX , τZ and τY spanned by vX = (1, 0), vZ = (−1,−1) and vY = (0, 1) in N ,
respectively. σZ , σY and σX correspond to the three TN -fixed points xZ = [0 : 0 : 1],
xY = [0 : 1 : 0] and xX = [1 : 0 : 0] in P2

C, respectively. The rays τX , τZ and
τY correspond to the TN -stable divisors DX = {X = 0}, DZ = {Z = 0} and
DY = {Y = 0}, respectively. These are lines in P2

C, hence linearly equivalent
divisors. For an integer k > 0 the moment polytope PD of the divisor D := kDZ is

PD = {(u1, u2) ∈ R2 : u1, u2 ≥ 0, u1 + u2 ≤ k}.

σZ

σY

σX

τZ

τX

τY

vX

vY

vZ

PD

(0, 0)
(k, 0)

(0, k)
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Blowing up the TN -fixed points xZ , xY and xX yields a toric variety X̃ = X(∆̃) with

fan ∆̃ obtained from ∆ by subdividing the cones σZ , σY and σX with rays spanned
by vXY = (1, 1), vZX = (0,−1) and vY Z = (−1, 0), respectively. These rays corre-
spond to the exceptional divisors EZ , EY and EX , respectively, of the blow up mor-

phism π : X̃ → P2
C. The rays τX , τZ and τY correspond to the strict π-transforms

of DX , DZ and DY , respectively. Consequently, for D̃ = kπ∗DZ− lEX− lEZ− lEY
the moment polytope PD̃ is given as

PD̃ = {(u1, u2) ∈ R2 : 0 ≤ u1 ≤ k − l, 0 ≤ u2 ≤ k − l, l ≤ u1 + u2 ≤ k},

and D̃ is ample if and only if 0 < l < k
2 . This implies that

ε(D;xZ , xY , xX) =
1

2
.

τXY

τY Z

τZX

vXY

vY Z

vZX

PD̃

(l, 0) (k − l, 0)

(k − l, l)

(l, k − l)(0, k − l)

(0, l)

We now construct approximations to Kähler packings on toric varieties using TN -
stable global sections of high enough multiples of L. We also investigate how the
toric symplectic moment maps induced by these global sections pull back to the
embedded balls.
Recall that on an n-dimensional projective toric variety X with very ample divisor
D, a toric moment map is given by

µ : X → 1∑
u∈PD∩M |x

u|2
·
∑

x∈PD∩M
|xu|2 · u ∈ Rn

where the xu ∈ H0(X,OX(D)) are a basis of TN -stable global sections. Then
µ(X) = PD [Ful93, Ch.4.2] and µ is a symplectic moment map for the SN -action
on X where SN ⊂ TN is the real torus subgroup of TN given by points (z1, . . . , zn)
with |zi| = 1 [MS95, Ex.5.48]. These properties do not change when we multiply
the xu with arbitrary constants cu ∈ C∗. Furthermore,

µstd : B0(r)→ Rn, (z1, . . . , zn) 7→ (|z1|2, . . . , |zn|2)

is a symplectic moment map for the standard SN -action on a ball B0(r).

Theorem 2.5. Let X(∆) be a nonsingular projective toric surface and
π : X(∆′) → X(∆) the blow-up of TN -fixed points xσ corresponding to 2-
dimensional cones σ ∈ ∆, with Eσ ⊂ X(∆′) the exceptional divisor over xσ.
Let L be an ample divisor over X(∆) and let 0 < ε ∈ Q such that
Lε := π∗L − ε ·

∑
σ Eσ is ample on X(∆′). Then for k � 0 with kε an integer

and δ > 0 there exist TN -stable global sections s
(δ)
0 , . . . , s

(δ)
Nk
∈ H0(X(∆), L⊗kε) in-

ducing the Kähler form ωδ on X(∆) and the moment map µδ : X(∆) → R2, and

there exist embeddings φ
(δ)
σ : B0(

√
ε
π )→ X(∆) with φ

(δ)
σ (0) = xσ such that
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(1) φ
(δ)∗
σ ωδ tends to ωstd on B0(

√
ε
π ) for δ → 0, and

(2) µδ ◦ φ(δ)
σ : B0(

√
ε
π ) → R2 tends to the standard moment map µstd on

B0(
√

ε
π ) for δ → 0.

Both limits hold pointwise, but also in the appropriate C∞-topologies.

Proof. Let D be a TN -stable Cartier divisor on X(∆) such that L = OX(∆)(D),
and choose a sufficiently divisible k � 0. For a 2-dimensional cone σ ∈ ∆ the two
generators w1, w2 ∈ M of the edges of σ∨ ∩M correspond to affine coordinates
z1, z2 on Uσ ∼= Spec C[σ∨ ∩ M ] ∼= A2

C centered in xσ. Then all the TN -stable
global sections of L⊗kε can be written as monomial terms cuz

u, with cu ∈ C and
u ∈ (PkεD − ukεD(σ)) ∩M .
Since ε < ε(L;x1, . . . , xk) Cor. 2.3 implies that global sections za1z

b
2 with

0 ≤ a + b ≤ kε do not coincide with global sections of that form but with re-
spect to affine coordinates on Uσ′ , σ

′ another 2-dimensional cone in ∆.
For each 2-dimensional cone σ ∈ ∆ we choose the coefficient ca,b of the monomial
za1z

b
2, 0 ≤ a + b ≤ kε, to be the square root of the coefficient of the monomial

|z1|2a|z2|2b in (δ2 + |z1|2 + |z2|2)kε. For all the other TN -stable global sections we
choose the coefficient to be 1.
The TN -stable global sections provided with these coefficients induce a Kähler form
ωδ whose restriction to Uσ is

ωσ|Uσ =
1

k
· i

2π
∂∂ log

(
(δ2 + |z1|2 + |z2|2)kε + terms in |z1|2, |z2|2 of order > kε

)
and a moment map whose restriction to Uσ is

µδ|Uσ (z) =
1

k
· 1∑

u∈PkεD−kεuD(σ) |cu|2|z|2u
∑

u∈PkεD−kεuD(σ)

|cu|2|z|2u · u.

For the embedding

φδ,R : B0(R)→ Uσ ⊂ X(∆), z 7→ δ · z

we obtain that

φ∗δ,Rωδ = 1
k ·

i
2π∂∂ log

(
δ2kε(1 + |z1|2 + |z2|2)kε + terms in of order > kε in δ2

)
δ→0−→ 1

k ·
i
π · kε · ∂∂ log(1 + |z1|2 + |z2|2) = ε · ωFS.

Similarly, µδ ◦ φδ,R tends to

z 7→ 1

k
· 1

(1 + |z1|2 + |z2|2)kε
·
∑
|u|≤kε

|cu|2

δ2(kε−|u|) |z|
2u · u

for δ → 0, and that is the toric moment map generated by the global sections(
kε

u1+u2

)(
u1+u2

u1

)
zu1

1 zu2
2 , 0 ≤ u1 + u2 ≤ kε, hence the symplectic moment map with

respect to ε · ωFS.
Rescaling the symplectomorphism φ : (B0(1), ωstd) → (Cn, ωFS) discussed before
Lem. 1.2 and noting that φ is SN -invariant we deduce properties (1) and (2). The
limit processes on B0(

√
ε
π ) obviously hold pointwise, but also work in the appro-

priate C∞-topologies because the involved functions are power series in δ and the
real and imaginary parts of the complex coordinates converging in a neighborhood
of B0(

√
ε
π ). �
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Note that the limits of ωδ and µδ on X(∆) do not exist, as the embeddings degener-
ate to maps onto points. Instead one needs the techniques in the proof of Thm. 0.6
to glue in flat resp. Fubini-Study balls.

References

[BDRH+09] T. Bauer, S. Di Rocco, B. Harbourne, M. Kapustka, A. Knutsen, W. Syzdek, and
T. Szemberg. A primer on Seshadri constants. In Interactions of classical and numer-

ical algebraic geometry, volume 496 of Contemp. Math., pages 33–70. Amer. Math.

Soc., Providence, RI, 2009.
[Bir97] P. Biran. Symplectic packing in dimension 4. Geom. Funct. Anal., 7(3):420–437,

1997.

[Bir01] P. Biran. From symplectic packing to algebraic geometry and back. In European
Congress of Mathematics, Vol. II (Barcelona, 2000), volume 202 of Progr. Math.,

pages 507–524. Birkhäuser, Basel, 2001.
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