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Abstract 

 

Mucosa-associated adherent, invasive Escherichia coli (AIEC), found in increased number in 

Crohn’s disease (CD) ileal and colonic mucosae, can survive and replicate within underlying 

host immune competent cells (e.g. macrophages and dendritic cells) without triggering host 

cell death. The intra-macrophage environment plays an essential role in bacterial killing 

where engulfed bacteria are exposed to a hostile environment of low pH, high levels of 

proteolytic/lysosomal enzymes, high nitrosative and high oxidative stress, and the activation 

of a respiratory burst with generation of superoxide ions. Although a few stress response 

genes have been identified that likely support the paradigm ileal AIEC isolate LF82 to 

survive and replicate within the macrophage, the key molecular mechanisms involved in 

supporting Crohn’s disease (CD) mucosa-associated AIEC to resist killing by host mucosal 

macrophages within harsh environment of the phagolysosome still remains largely unclear.  

Here we aimed to compare the ability of a number of E. coli strains to survive and replicate 

inside macrophages, including a number of clinical isolates (from CD, colorectal cancer 

(CRC) and ulcerative colitis (UC) patients and other infective or non-inflamed sources), and 

this to toleration of growth in chemical-induced stress conditions mimicking the intra-

phagolysosome environment. In addition, a focus was to further understand the molecular 

mechanisms responsible for acid tolerance of the paradigm CD isolates and examine their 

replication within macrophages defective in NF-κB pathway signalling. Finally, to also assess 

whether CD AIEC possess ability to alter host oxidative stress response gene expression in 

macrophages to support their survival/replication. 

 

Both ileal and colonic CD isolates (AIEC) were found to possess ability to either survive 

and/or replicate within murine macrophages (i.e. J774-A1 cell-line and wild-type (WT) 

C57BL/6 bone marrow derived macrophages [BMDM]) and to tolerate all stress conditions 

mimicking those within the phagolysosome, e.g. low nutrient, high acid, high nitrosative, 

high oxidative stress including exposure to superoxide ions. Interestingly pathogenic E. coli 

isolates from urinary tract infection (UTI) and some healthy-mucosa associated E. coli strains 

behaved similarly. Crohn’s AIEC were unable to survive and replicate inside Nfκb1-/- and 

Nfκb2-/- BMDM, whilst they survived/replicated within WT and c-Rel-/- BMDM. Thus 

Crohn’s AIEC survival and replication appears dependent on host NFκB signalling within the 



macrophage. Conversely, all CRC and UC isolates tested and the majority of laboratory E. 

coli strains studied were unable to survive inside murine J774-A1 macrophage 

phagolysosomes and they were also intolerant to most stress conditions, in particular 

superoxidative stress. Colonic CD AIEC isolate HM605 showed higher initial levels of 

expression of acid response genes gadA and gadB that may support adaptation to the intra-

macrophage phagolysosome niche. Adaptation to an intra-macrophage lifestyle appeared not 

to be through any ability to alter host macrophage oxidative stress response to infection as no 

differential changes were observed in the expression of 84 host genes related to oxidative 

stress to that seen with non-replicating laboratory E. coli strain.  

Overall this study provides new insight into how CD mucosa-associated E. coli isolates resist 

killing by mucosal macrophages through adaptation to the acidic, high oxidative environment 

within the macrophage phagolysosome. The data may support future development of new 

therapeutic strategies that target the fundamental pathology of CD, in particular support a 

reduction in bacterial persistence/increased killing of intra-macrophage E. coli in CD patient 

mucosae.  
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1.1 Definition and epidemiology of inflammatory bowel disease  
 

Crohn’s disease (CD) is a chronic relapsing immunologically mediated inflammatory 

disorder, affecting the bowel and along with ulcerative colitis (UC), they form the two major 

groups of inflammatory bowel disease (IBD). Significant overlap in the clinical features of 

both CD and UC is evident, although the immune response in CD is different from that seen 

in UC. CD may affect any part of the gastrointestinal tract from mouth to anus, but 

commonly affects the terminal ileum  at which the precise reasoning remains unexplained [1]. 

Crohn’s patients usually suffer from abdominal pain, diarrhoea, tenesmus and significant 

weight loss which may be associated with extra-intestinal manifestations such as skin rashes 

(e.g. erythema nodosum and pyoderma gangrenosum), eye inflammation  (episcleritis and 

uveitis), venous thromboembolism, arthritis and renal stones [2, 3]. Meta-analysis also 

showed a positive association between IBD and the risk of stroke (7 studies for CD and 6 

studies for UC) [4]; Extraintestinal manifestations of CD are illustrated in Figure 1.1. CD 

patients may have symptoms for many years before diagnosis, because the clinical 

manifestations of CD are more variable than UC [5, 6]. The diagnosis of CD is usually 

established with the imaging studies and endoscopic findings in a patient with a compatible 

clinical history. 

 

The intestinal pathological findings in CD are characterised by transmural inflammation 

(inflammation in all layers from mucosa to serosa), deep mucosal ulcers, increased goblet 

cells, abscesses, fissures and granuloma formation; see Figure 1.1 [7]. These chronic 

inflammatory lesions are proposed to develop due to a disrupted intestinal barrier, Paneth cell 

dysfunction and a disturbed innate immune response, resulting in the accumulation antigen-

presenting cells, such as dendritic cells and macrophages, lymphocytes and plasma cells 

within the intestinal mucosal layer [1, 8]. Pathological characteristics resemble the mucosal 

lesions and intestinal inflammation seen in response to classic enteric infection, with gut 

pathogen such as Shigella, Yersinia and Salmonella species (spp.) [9]. Whilst in UC, there is 

no inflammation beyond the submucosal level and inflammatory cells such as neutrophils are 

present in the lamina propria, with forming crypt abscesses and associated depletion of goblet 

cells (and mucins) from the epithelium is evident [10]. 
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Males and females are equally affected in CD and has  classically been described to have a 

bimodal incidence with the highest rates seen in adolescents and young adults and a second 

peak in later years[11, 12]. The CD concordance rate in monozygotic twins is estimated to be 

in the region of  20 to 50%, meanwhile in dizygotic twins, brought up in the same 

environment, it is  below 10% [13]. The concordance rate of UC in monozygotic twins has 

been reported at around 16% and that in dizygotic twins, around 4% [14].  When it comes to 

the epidemiology, CD is more common in Europe and North America than observed in 

Africa and Asia [15]. For example, CD affects more than 115,000 people in the UK [16], and 

the frequency of onset and relapse in IBD showed seasonality in CD with a peak in July and 

August, but this has not been established for UC [17]. However, incidence rate of CD is 

rapidly increasing worldwide particularly in developing and developed nations adopting a 

western-style diet [15], as seen in Japan [18]. Likewise, those emigrating from poor and 

developing nations to the West, within a few years of moving are at increased risk of 

developing CD presumably due to a key change in their lifestyle and environment [19]. 

Animal studies in support of this include experiments in mice which have established that 

maternal high-fat diet (HFD) and resultant obesity promotes the early onset of severe CD-like 

ileitis in genetically susceptible offspring [20]. CD is associated with very considerable 

morbidity, disrupting ability to work and study and family life, and also confers a small 

increase in mortality, with a standardised mortality ratio of 1.52 [21, 22]. Two meta-analyses 

also concluded that mortality in CD did not decrease over time, despite changes in patient 

management [21, 23]. Historically, nearly 80% of CD cases need surgery at some time during 

lifetime [24]. However, the use of immunosuppressants and biologics is associated with a 

reduction in risk of major surgery [25].  
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Figure 1.1 Crohn’s disease manifestations. 

(A) The appearance of intestinal mucosa of a healthy individual and a Crohn’s patient. (B) The diagram 

illustrates extraintestinal manifestations of Crohn’s disease, adapted from http://www.physio-

pedia.com/Crohn's_Disease (accessed 08-12-2016).  

 

  

http://www.physio-pedia.com/Crohn's_Disease
http://www.physio-pedia.com/Crohn's_Disease
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1.2 Factors involved in Crohn’s disease pathogenesis: 

1.2.1 Defective mucosal barrier function and alteration in the gut 

microbiota  

 

The intestinal epithelium, as well as it established absorptive and digestive functions, is an 

efficient barrier against encroachment of the resident commensal microbiota and 

opportunistic enteric gut pathogens. There are a number of contributing factors involved in 

mucosal defence including the mucus layer, intestinal peristalsis, innate antibacterial factors 

such as lactoferrin and lysozyme, and hydrophobic antibacterial peptides produced by Paneth 

cells present at the base (crypts) of the small intestine. The intestinal mucosa also possesses 

specific immunological protection strongly facilitated by secretion of immunoglobulin A 

(IgA) [26].  

 

Human gut microbiota plays an essential role in the shaping of the intestinal immune 

response in the healthy individuals [27]. Gut microbiome is established during the first 2 

weeks of life and usually remains stable thereafter [28]. All human gut microbiome consists 

of around 1150 species, and each individual hosts approximately 160 species in which 

anaerobes of the Firmicutes and Bacteriodetes phyla are predominant [29].  

 

In order to broaden insight into the pathogenesis of CD, multiple studies have been intensely 

carried out on CD intestinal microbiota over the last decade. Based on a number of previous 

human and animal experimental studies, the microbiota has been proposed to be involved in 

chronic inflammatory lesions formation particularly in two ways: first, a low-grade infection 

by a persistent pathogen, either traditional or opportunistic; and second, an imbalance 

between the beneficial commensals and the potentially harmful microbiota [30]. 

 

Results confirm a decrease in ‘protective’ bacterial phyla beneficial to gut health, including 

Firmicutes and Bacteriodetes (containing Gram-positive bacteria species) as compared to the 

microbiota of healthy controls, and the increase in abundance of Proteobacteria, including 
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potentially harmful Gram-negative intestinal bacteria, including Escherichia coli (E. coli) 

[31, 32]. E. coli which are known to be numerically dominant inhabitants of the healthy 

human gut microbiota and play an essential role for maintaining normal intestinal 

homeostasis and the stability of luminal microbiota via, for example involvement in 

synthesizing vitamin B and K as well as metabolizing bile acids [33]. However, there are 

virulent E. coli strains that are likely to cause a variety of intestinal and extra-intestinal 

diseases; this imbalance in the gut microbial population is referred to as 'dysbiosis'. Studies of 

faecal and gut mucosal-associated microbiota in patients with UC, demonstrated quantitative 

and qualitative changes in the composition, suggestive of dysbiosis [34-36]. 

 

Reduced diversity of other micro-organisms is also recently been described in IBD patients, 

including fungal microbiota (mycobiome) [37-39] and viruses (virome) [40, 41] and 

suggested to play a possible role in disease pathogenesis. 

 

The correlations between CD and dysbiosis have been established to be more clearly marked 

in the mucosal biopsies (mucosa–associated bacteria populations) than bacterial communities 

from the intestinal lumen (faecal samples) [42-46]. In addition, the significant shift of normal 

gut microbial community is associated with intestinal inflammation in both experimental 

colitis and human IBD [47]. Even though CD pathogenesis is still poorly understood and the 

exact aetiology is still unknown, there is clear evidence suggestive that a number of lifestyle 

factors contribute to the dysbiosis of gut microbiota, including environmental triggers such as 

smoking [48, 49], ‘adolescent’ diet (notably a ‘westernised’ diet, high in fat and refined 

sugar, low in intake of fruit and vegetable fibre [50, 51]. For example, recent studies  report 

that Western-style diet alters the microbiota composition within 1 day [52], and can result in  

increase in gut colonisation of a Crohn’s associated E. coli  in transgenic CEABAC10 mice, 

expressing human CEACAMs, including CEACAM6, a receptor for CD-mucosa-associated 

ileal E. coli strains [53]. A result from a meta-analysis study indicated that the intake of 

dietary fibre, particularly fruit fibre, was significantly associated with a decreased risk of 

inflammatory bowel disease [54, 55]. It was also reported that supplementation of some types 

of dietary fibre may prolong remission and reduce the intestinal mucosa lesions during the 

course of the disease [56]. Avoidance of fibre was found to be associated with a greater risk 

of CD flare within a period of 6 months [57]. In addition, other  studies , have revealed that 
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acute ileitis promotes dysbiosis, especially increased mucosa association of E. coli in mice, 

and colonic inflammation (colitis) induced in rats can drive dysbiosis and lead to barrier 

disruption of the intestinal mucosa [58, 59]. 

 

Smoking has been proven to increase the risk of CD development and is associated with a 

higher rate of recurrence post-operation for CD patients [60]. It has also been proven to play 

a role in the pathogenesis of CD in children who are exposed to passive smoking, [61]. 

Smoking alters the gut microbial community (dysbiosis) and also results in dysfunction of 

mucosal macrophages to handle gut pathogens [62, 63]. Conversely for UC, the protective 

effects of smoking are well described with a reduction in the relapse rate among smokers 

with UC [64, 65].  

 

Other key predisposing factors include genetic susceptibility (see section 1.2.2) and an 

inappropriate innate and adaptive immune host response have been proven as well to be 

implicated in increasing the susceptibility of the intestines to bacterial infection, chronic 

intestinal inflammation and consequently CD development (see Figure 1.2) [66].  A 

population-based cohort study from Denmark, demonstrated that individuals were at an 

increased risk of developing CD especially in those who had had previous gastrointestinal 

inflammation caused by Salmonella spp.[67].  

 

Taken together, primary gut infections by specific bacterial pathogens might lead to dysbiosis 

of gut microbiota, and also to a defective intestinal mucosal barrier function which are 

implicated in CD aetiology. However, more efforts and further investigations are required to 

identify what the principal origin driving dysbiosis is, and also to understand the mechanisms 

of how whether the recent exposure to gastrointestinal pathogens or chronic carriers of these 

pathogens are implicated in the predisposition of CD [68]. The ‘Hygiene hypothesis’ suggests 

that those individuals having reduced microbial exposure during childhood might lend them 

to an immune hypersensitivity response later in their lives when challenged with bacteria, 

including those involved in CD pathogenesis [69]. The effect of sex hormones on IBD 

pathogenesis is still largely unclear. However, a key in vivo study showed that female mice 
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are less sensitive to dextran sodium sulphate (DSS)-induced colitis and this protection was 

proposed to be conferred by oestradiol [70]. 

 

 

1.2.2 Immunological and genetic susceptibility factors in bacterial 

recognition, autophagy and phagocyte function 

 

The recent identification of genes associated with CD has been informative in improving our 

understanding of its pathogenesis, highlighting impairment of genetic components essential 

for innate immunity, intestinal barrier integrity and in microbial recognition and 

clearance[71] (see Figure 1.2). Following on from earlier work [72, 73], Genome-wide 

association studies (GWAS) have now identified 163 IBD risk loci, 30 of which are CD 

specific and 110 shared between UC and CD [74]. Many IBD loci are reported to be 

implicated in other immune-mediated disorders, including ankylosing spondylitis and 

psoriasis [74]. Key identified polymorphisms in the innate immune system of CD patients 

include genes that are linked to processes such as pathogen recognition [nucleotide-binding 

oligomerisation domain-containing-2 (NOD2)/Caspase-recruitment domain 15 (CARD15) 

and interleukin 23 receptor (IL23R)] and autophagy [immunity-related GTPase M (IRGM) 

and autophagy-related 16-like 1 (ATG16L1)], all relevant to killing of bacteria within 

macrophages [71-73]. 

CARD15 encoding the NOD2 receptor [75, 76]. Mutations in this gene probably account for 

about 15% of CD causation in the West although there are geographical variations with a 

lesser effect in northern European countries and no apparent impact on CD causation in Japan 

[77].  The NOD2/CARD15 protein is part of the innate immune system and is expressed in 

the cytoplasm of macrophages and Paneth cells [78]. CD-associated mutations in 

NOD2/CARD15 affect the leucine-rich domain recognising the bacterial cell wall 

peptidoglycan component, muramyl dipeptide (MDP), of both Gram-positive and Gram-

negative bacteria. After recognition, NOD2 activates nuclear factor kappa B (NF-κB) and 

induces the production and release of proinflammatory cytokines. Crohn’s-associated 

NOD2/CARD15 mutations are considered to be loss of function mutations with evidence for 

reduced production of anti-bacterial defensins by Paneth cells and for a reduced IL-8 
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response to MDP by macrophages [79].  In association with NOD2/CARD15 mutations, 

polymorphism in genes SLC22A4 and SLC22A5, encoding the organic cation transporters 

OCTN1 and OCTN2 have also been identified with variants expressed in intestinal epithelial 

cells, T cells and macrophages[80]. In addition, a mutation in two haplotypes of DLG5, 

encoding scaffolding protein, has also been confirmed to be associated with NOD2/CARD15 

mutations in CD patients [81].  

 

ATG16L1 and IRGM autophagy genes: Two key genes associated with CD are the 

autophagy genes Autophagy-related 16-like 1 (ATG16L1) and immunity-related GTPase M 

(IRGM) [82-84]. Both encode proteins that play a key role in facilitating disposal of protein 

aggregates, DNA, lipids and damaged organelles but also in the mechanistic events by which 

macrophages degrade, kill and clear invading phagocytosed bacteria (a process also termed 

‘xenophagy’), including pathogens such as Mycobacteria and Salmonella spp. [85-87].  

 

Other microbial handling/recognition genes: Additional CD susceptibility loci relevant to 

aberrant microbial recognition and handling and/or phagocyte function include toll-like 

receptor 4 (TLR4), leucine-rich repeat serine, threonine protein kinase-2 (LRRK2), neutrophil 

cytosolic factor-4 (NCF4) and IL-23R. TLR4 is an apical cell-surface pathogen recognition 

receptor on intestinal epithelial cells, macrophages and dendritic cells, key in detection of 

lipopolysaccharide (LPS) presented on the outer-membrane surface of Gram negative 

bacteria, with polymorphism of TLR4 at D299G leading to hypo-responsiveness to LPS [88]. 

LRRK2 has been linked to CD through the association of a single nucleotide polymorphism 

on chromosome 12q12 [73] and in murine studies where LRRK2-deficiency resulted in 

increased inflammation and significantly poorer clinical outcomes following administration 

of dextran sodium sulphate to induce colitis [89]. A Meta-analysis study showed that the 

T1237C polymorphism of the TLR9 gene is implicated in the susceptibility of IBD [90]. 

 

The identification of NCF4 as a CD susceptibility gene is also important  as it  encodes the 

p40-phox subunit of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase crucial 

for reactive oxygen species (ROS) production by phagocytic cells in response to microbial 

infection [83]. Similar molecular defect in NADPH oxidase had also been established to be 
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associated in chronic granulomatous disease [91, 92]. Key studies show that altered 

neutrophil recruitment, along with an abnormal production of cytokines and reduced bacterial 

clearance, follow either acute trauma to the rectum and ileum [93] or subcutaneous injection 

of heat-killed E. coli in CD patients [94]. The latter of these studies suggests that 

macrophages may be involved in a key step of the observed immune dysfunction in CD. 

However, it is not yet clear whether this represents an inherent defect in macrophage 

function. Variants of the IL-23R gene have also been linked to CD [95, 96]. IL-23R is 

expressed by activated dendritic cells and macrophages, and IL-23 can induce production of 

pro-inflammatory cytokines that may contribute to intestinal inflammation [97]. CD is 

defined as a T helper 1 (Th1)-mediated disease where there is abundant interferon gamma 

(IFN-γ) producing lymphocytes found within the inflamed gut of CD patients [98], also 

associated with elevated levels of IL-12, inducing Th1 cell differentiation in humans [99]. 

Further studies in mice also reported the key involvement of loss of anti-inflammatory IL-10 

in CD and UC pathogenesis [100, 101]. For example, Il-10-/- mice lacking Il-10 are observed 

to be colitis-free when were raised in a germ-free environment. However, when exposed to 

gut microbiota following transfer to specific pathogen-free conditions, a rapid development 

of chronic bacterial antigen-specific T-cell-mediated colitis resembling IBD was noticed, 

suggesting the importance of commensal intestinal bacteria in the pathogenesis of chronic, 

immune-mediated experimental colitis [102-104].  

 

The role of vitamin D in several immune related diseases, including IBD, has been 

established [105]. For example in a mouse model (Il-10-/- mice), vitamin D deficiency 

increased susceptibility to dextran sodium sulphate (DSS)-induced colitis, whereas dietary 

supplementation with active 1,25(OH)2 vitamin D3 ameliorated symptoms [106]. Vitamin D 

deficiency also predisposes to adherent, invasive E. coli (AIEC)-induced barrier dysfunction 

and experimental colonic injury [107]. Additional evidence supporting this comes from the 

study of Lagishetty et al. where elevated levels of colonic bacteria (~50-fold higher) were 

seen in colonic tissue of vitamin D deficient mice with DSS-induced colitis and reduced 

levels of anti-microbial peptides [108]. In addition, results of a cross-sectional study 

concluded an association between vitamin D deficiency/insufficiency and higher disease 

activity in IBD patients [109-111]. It is also reported that 70% of quiescent CD patients are 

deficient in vitamin D [112]. Vitamin D receptor (VDR) polymorphisms are also associated 
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with CD [113]. Treatment with vitamin D reduces the risk of clinical relapse in CD [114, 

115].  

 

 

 

 

 

Figure 1.2  A model for the development of Crohn’s disease. 

Multiple predisposing factors are proposed to impair the intestinal mucosal barrier and promote alteration in the 

gut microbiota, resulting in an increase in mucosal recruitment by of Enterobacteriaceae, especially adherent, 

invasive E. coli. Dysbiosis of gut microbiota may increase the susceptibility to infection or vice versa. 
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1.3 The role of specific bacteria in Crohn’s disease pathogenesis 

 

Increased luminal concentrations of Bacteroides spp., Eubacterium spp., Peptostreptococcus 

spp., and Coprococcus spp. were reported in CD patients [116]. Key early studies from 

France [117], Netherlands [118], and Germany [119, 120] all reported an increase in mucosa-

associated bacteria in CD. Listeria spp., and Streptococci, along with E. coli were also 

reported to play a role in the pathogenesis of CD [121]. 

 

There have been a number of distinctive studies that strongly favour the hypothesis that a 

specific bacterium plays a pivotal role in the initiation of chronic inflammation and 

development of CD. Early serological and culture studies suggested that Mycobacterium 

avium subspecies paratuberculosis (MAP), an obligate intracellular bacterium, causing a 

similar chronic inflammatory disease that primarily affect small intestine of cattle known as 

Johne’s disease, was more prevalent in CD patients [122-125]. A study by Ryan and 

colleagues [126] supports the idea of the presence of MAP DNA in granulomatous lesions of 

CD patients. MAP-reactive CD4 T cells have also been found in patients with CD [124, 127]. 

Even though, MAP has been hypothesised to be as contributing agent for CD pathogenesis, 

there is still great controversy, and absence of conclusive evidence, to fully supporting this 

hypothesis [128, 129]. However, a new study using better laboratory techniques proved the 

frequency detection of MAP in CD-patients which was significantly in greater proportion 

than in non-CD individuals [130]. 

 

Our own studies have suggested that microbial mannan (present in yeast cell wall and 

Mycobacterium species such as MAP) may be a key environmental factor to suppress 

macrophage killing of intracellular bacteria, including CD mucosa-associated E. coli, such as 

AIEC [131]. The shared susceptibility association of NOD2 and IL23R polymorphisms seen 

in both CD and Mycobacterial  disease (including leprosy) suggests MAP may yet be 

important in CD pathogenesis [132, 133].  

 



13 

 

Reduction in specific beneficial bacteria such as the Firmicute Faecalibacterium prausnitzii 

(F. prau), may also play an important role here. Low levels of F. prau are strongly associated 

with early disease recurrence after intestinal surgery in CD [43, 134]. This effect may be due 

to reduced production of bacterial anti-inflammatory molecules, with culture supernatants 

from F. prau shown to reduce the severity of colitis in animal models [43, 134].  

 

Enteric E. coli bacterium is a member of the natural microbiota that is present in gut of 

normal healthy individuals, but also can be an opportunistic gut pathogen that when acquired 

causing significant morbidity and mortality worldwide [135]. Early serological studies 

described high antibody titres against mucosa-associated E. coli in the biopsies obtained from 

both paediatric and adult patients with CD [136, 137], and this was later supported by 

immunohistochemical studies demonstrating E. coli antigens within macrophages in CD 

tissue [121]. Many groups, including our own, have shown an increased number of mucosa-

associated E. coli (including those with the AIEC phenotype) in CD, both in the ileum and in 

the colorectum [30, 117, 138-142]. We ourselves observed that aerobic culture of 

colonoscopic biopsies after removal of the mucus layer with dithiothreitol (DTT) is often 

sterile in the colon of control patients (irritable bowel syndrome (n = 13), sporadic polyposis 

(n = 4), piles (n = 3), diverticulitis (n = 2), pruritus ani (n = 1), and healthy (screening; n = 1),  

whereas the colon in CD and colon cancer contains increased bacterial numbers in this sub-

mucus niche, more than 50% of which were E. coli [139], even though these organisms only 

account for less than 1% of the faecal microbiota [28]. Poor correlation between site of 

inflammation and presence of E. coli [142], and tendency to show that the same organisms 

can be identified from various sites within the same colon [139, 143] are compatible with the 

organisms having a causative role in the inflammation rather than merely colonising inflamed 

intestinal mucosa. Evidence for a primary pathogenic role is also given by their presence 

within granulomas [144], the histological hallmark of CD, by their ability to induce 

granuloma formation in vitro [145] and ability for similar E. coli to cause granulomatous 

colitis in Boxer dogs [146], and potentially in cats and swine too [147]. This E. coli pathovar 

associated with CD has been designated AIEC based on their ability to adhere to, and invade 

into, intestinal epithelial cell-lines (differentiated Caco-2 and undifferentiated I-407 cell-

lines), induce release of pro-inflammatory cytokines, and possess an ability to survive and 

replicate within human peripheral blood monocyte-derived macrophages and within murine 

(J774-A1) macrophages [148, 149]. I-407 cell-line, of embryonic intestinal origin, is now 



14 

 

well documented to be contaminated with HeLa cells (originating from a cervical carcinoma), 

with other cell-lines derived from colorectal carcinomas, e.g. Caco-2 and HT-29, and the 

HEp-2 epithelial cell-line also documented as being HeLa cell contaminated [150]. 

Therefore, there is some significant doubt as to whether studies using some sources of these 

cell lines are indeed useful to understand mechanisms of CD pathogenesis (given their non-

intestinal, transformed or cancerous origin) and/or their use as a model for measuring the 

ability of enteric bacteria to adhere to, and to invade into, intestinal epithelial cells. 

 

ExPEC, belonging to the normal commensal gut microbiota of healthy individuals, are 

defined as facultative pathogens, having abilities to cause disease outside of the gut. Key 

examples include those strains from major subtypes such as Uropathogenic E. coli (UPEC), 

neonatal meningitis-associated E. coli (NMEC) and sepsis-causing E. coli (SEPEC) [151].  A 

study from Martinez et al., [152]  showed  only 4 out of 63 ExPEC isolates from different 

origins showed an AIEC phenotype suggesting little similarity between ExPEC and AIEC 

despite of the genetic similarities seen using multilocus sequence typing (MLST) [152], a 

technique used for typing of multiple loci of housekeeping genes [153]. 

 

According to the phylogenetic analysis, E. coli strains can be divided into four main 

phylogenic groups (A, B1, B2 and D) [154] although eight phylo-groups are now recognized: 

A, B1, B2, C, D, E, F and the eighth Escherichia cryptic clade I [155]. Most commensal E. 

coli strains belong to group A, and virulent (ExPEC) strains have been shown to mainly 

belong to B2 and D [156].  Mucosa-associated E. coli that were detected in high numbers in 

the mucosal biopsies of patients with CD and those from patients with ulcerative colitis, 

another inflammatory bowel disease, belong to B2 and D phylogenetic groups [142]. 

Nowrouzian et al. also showed that E. coli strains found mainly in the faeces of healthy 

individuals belong to phylogroup A and B1, while E. coli from the microbiota of the 

colorectal mucosae of 13 Swedish schoolgirls sampled in the 1970s (all found to have 

asymptomatic bacteriuria in a school-screening program) belong to B2 and D [157]. 

Genomes of four CD mucosa-associated AIEC strains, belonging to B2 group have been 

sequenced and published [9, 158-160], and novel virulence factors, including those encoding 

a type-6 secretion system, were detected in their genomes [9]. A recent comparative genomic 

analysis of AIEC and non-AIEC strains however did not identify a molecular property 
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exclusive to the AIEC phenotype and recommended that a broader approach to the 

identification of the bacteria-host interactions and its role in CD pathogenesis [161]. 

 

 

1.4 Crohn’s disease associated E. coli - host intestinal mucosa interactions  

 

Crohn’s E. coli phenotype AIEC colonise the intestinal epithelial cells via adhering to form 

biofilms over the intestinal mucosa and invade them via macropinocytosis-like process [162].  

17 out of 27 AIEC strains and only 9 out of 38 intestinal non-AIEC strains were biofilm 

producers [163]. In vitro studies have demonstrated the ‘paradigm’ ileal  AIEC strain  LF82  

is  able to translocate a number of human epithelial cell-lines, including HEp-2, intestine-407, 

Caco-2 and HCT-8 [164] other colonic AIEC strains, meanwhile, behaved similarly [30, 

139]. Aphthous ulcers of the “dome” or follicle-associated epithelium (FAE), overlying 

Peyer’s patches in the distal ileum and lymphoid follicles of the colon are likely the initial 

mucosal lesions occurring in CD patients [165-167], and have been observed in patients using 

magnifying chromoendoscopy [168]. The FAE effectively forms the interface between the 

intestinal lymphoid system and the luminal environment. Specialized microfold (M) cells, 

accounting for about 5% of cells in the FAE, are optimized for antigen adherence and 

transport, and for immunological sampling of microorganisms [169]. 

 

Several invasive bacteria take advantage of the transcytotic characteristics of M cells to cross 

the gut mucosal barrier, including Yersinia, Salmonella and Shigella spp. [170-173]. It was 

suspected that the portal of mucosal entry of CD AIEC was also likely through M cells [174] 

and recent studies successfully modelling M cells in vitro, demonstrated that CD AIEC could 

indeed translocate through M cells (up to 20-fold compared with parent Caco-2 cells) and 

through isolated human ileal FAE [175]. Adhesion and subsequent translocation of CD AIEC 

across murine and human ileal Peyer’s patches, and across M cells in vitro, was observed to 

be dependent on possession of the lpf operon, encoding long polar fimbriae (Lpf) in CD 

AIEC [176, 177]. In a recent study, the genomes of 8 phylogenetically diverse AIEC strains 

were sequenced. AIEC were distributed across different phylogroups, with enrichment seen 

in genes encoding propanediol utilization, iron acquisition and long-polar fimbriae. These 
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traits correlated with the ability of AIEC to utilize fucose and iron, invade epithelial cells, 

translocate across M-cells, and persist within macrophages. It was also identified from 

analysis of the lpfA sequences that there were two variants, distinguished in part by the 

position of the lpf operon, lpfA141 and lpfA154. The lpf141 operon of ileal E. coli encodes Lpf 

that exhibits high amino acid sequence similarity to enteropathogenic E. coli Lpf, whereas the 

lpf154 operon encodes Lpf exhibiting high amino acid sequence similarity to Stg fimbriae 

from avian pathogenic E. coli. Prevalence of lpfA154 was observed in 71% of human ileal 

AIEC examined, and demonstrated to promote translocation of AIEC across M-cells, with 

deletion of lpfA154 from a murine AIEC strain CUMT8 effecting significantly reduced M-cell 

translocation, which is consistent with previous studies showing translocation across M cells 

in vitro and ex-vivo Peyer’s patches of the lpfA141-expressing ileal CD-mucosa associated 

AIEC LF82 [178, 179]. Isolates expressing lpf have been found to be more prevalent in 

colonic mucosae of CD patients than that of non-IBD controls [180].  

 

Ex vivo studies also indicate a defective mucosal barrier to bacteria in the Peyer’s patches 

from CD patients [181, 182]. It is plausible therefore that increased bacterial load at M cells 

is important in the development of CD. A striking correlation also exists between the age-

related incidence of CD and the number of Peyer’s patches in the small bowel, the latter 

peaking in late adolescence and then falling away [12]. CD ileal AIEC strains also typically 

produce type-1 pili (FimH) on their surface supporting adherence to ileal enterocytes via 

interaction with Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) 

receptors known to be over expressed on the inflamed ileal (but not colonic) epithelium in 

CD [183].  Highly glycosylated CEACAMs have also been proposed as M cell microbial 

receptors [184]. It is plausible that one or more members of the CEACAM receptor family 

may play an important role in regulating endocytosis of CD mucosa-associated E. coli into 

host M cells. A recent study also reported that the glycoprotein 2 (GP2), specifically 

expressed on the apical plasma membrane of M cells among enterocytes, is recognized by 

FimH [185]. Mannose-derived FimH antagonists (such as biaryl or ‘two-ring’ mannosides) 

were reported to have promising therapeutic potential for UTI and CD, and also it was 

predicted that one or more FimH antagonists will be entering the clinic within the next two 

years [186]. 
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A recent study, [187] also reported that the glycoprotein 2 (GP2), specifically expressed on 

the apical plasma membrane of M cells among enterocytes, [188] is recognized by FimH, the 

adhesin of type 1 pili on bacteria. By an intriguing coincidence it has also been found that the 

same GP2 protein is the epitope for the “anti-pancreatic” antibody found in CD sera [189]. In 

addition, CD mucosally-associated AIEC outer-membrane vesicles (OMVs) also show ability 

to interact with enterocyte endoplasmic reticulum stress response glycoprotein 96 receptor, 

increased in expression on the inflamed intestinal epithelium [190]. These OMVs, in 

association with flagellin, also possess significant ability to evoke pro-inflammatory cytokine 

release [149]. Colonic mucosa-associated AIEC strains expressing afimbrial adhesin afa 

operon, more commonly associated with diarrhoeagenic diffusely adherent E. coli (DAEC), 

have also been observed to be more prevalent in CD patients than in non-IBD controls. The 

presence of the afa operon correlates with diffuse adherence to, and invasion of intestinal 

epithelial cells [180]. A summary of Crohn’s AIEC host intestinal mucosal interactions is 

presented in Figure 1.3. CD mucosally-associated AIEC strains have also the ability to 

reduce the autophagy response inside intestinal epithelial cells by up-regulating levels of the 

microRNAs such as miR30C and miR130A [191]. Recently, an in vitro study reported that 

AIEC strain LF82 induces ROS production and mucin expression in intestinal epithelial T84 

cells [192].  
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Figure 1.3 Model for host intestine-ileal Crohn’s disease adherent, invasive E. coli interaction. 

Ileal Crohn’s disease-associated (CD) E. coli colonise and translocate intestinal epithelial cells via binding of 

type 1 fimbrial (FimH) adhesive protein expressed on the surface of CD AIEC with host CEACAM-6 receptors 

over expressed on the apical surface of inflamed ileal tissue epithelial cells. Also interaction via FimH occurs 

with GP2 receptors expressed on the apical surface of Microfold (M) cells overlying Peyer’s patches. In 

addition, interactions have been described via outer membrane vesicles (OMV) binding to GP96 stress response 

protein expressed on the surface of inflamed ileal epithelial cells in CD patients. CD AIEC, after translocation, 

are taken up by, and survive/replicate within mucosal macrophages and dendritic cells (DC). Their residence 

here might then support formation of granulomata, characteristic of CD mucosae. 
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1.5 Neutrophils and their role in CD pathogenesis 

 

Neutrophils are a type of polymorphonuclear leukocytes. They are professional, highly motile 

phagocytes involved in the first line of the innate immune defence against pathogenic 

microbes in healthy individuals and  several lines of evidence indicate that they are also 

involved in chronic inflammatory conditions and adaptive immune responses [193, 194].  

Neutrophils are typically the first leukocytes to be recruited to an inflammatory site and  their 

key strategies to kill invaded pathogenic microorganisms are phagocytosis,  release of soluble 

antimicrobials from their cytoplasm granules, including primary (azurophil), secondary 

(specific) and tertiary (gelatinase) granules, lysosomes [195], and generation of neutrophil 

extracellular traps (NETs) [196]. These killing strategies are activated via receptors that 

recognize bacterial peptides such as N-formyl-Met-Leu-Phe (f-MLP) or via pro-inflammatory 

mediators such as C5a and IL-8 [197, 198]. It is evident that neutrophils possess more rapid 

rates of phagocytosis and higher intensity of oxidative respiratory response than do 

macrophages [199]. 

 

In vitro, ileal AIEC LF82 has been shown survive and replicate inside human neutrophils, 

and also to induce interleukin-8 (IL-8) production from infected neutrophils. Up regulation of 

autophagy of infected-neutrophils enhanced intracellular killing of LF82 and limited the 

AIEC-induced inflammatory response. In other words, subversion of autophagy in LF82-

infected neutrophils induces inflammation and cell death [200]. In vivo studies in CD patients 

on the other hand  demonstrated a defect in neutrophil recruitment along, with an abnormal 

production of cytokines (including IL-8), following either acute trauma to the rectum and 

ileum [201], or subcutaneous injection of heat-killed E. coli (see Figure 1.4) [94]. Therefore, 

a defect of neutrophil chemotaxis has been suggested to be resultant of a reduced IL-8 

secretion from macrophages [202]. However, ex vivo studies reported chemotaxis of CD 

neutrophils is normal [203, 204], and also our recent lab studies on MDM obtained from CD 

patients and healthy controls (HC) infected with colonic mucosa-associated AIEC HM605, E. 

coli K-12 or Staphylococcus aureus Oxford strain revealed that no significant differences 

were observed in killing of these bacteria between CD (active and quiescent) and HC, nor any 

differences in production pro-inflammatory cytokines TNF, IL-6 and IL-8) between groups. 

In addition, E. coli- infected MDM from CD patients and HC showed equivalent ability to 
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induce neutrophil chemotaxis relative to unaffected controls [205]. Another key study 

however suggested a defect in functionality and in signal transduction activation of peripheral 

neutrophils from quiescent CD patients and a decrease in their trans-epithelial migration in 

vitro in response to IL-8 compared to healthy controls [206].  

 

 

 

 

 

 

Figure 1.4 Patients with Crohn’s disease (CD) exhibit reduced bacteria clearance of subcutaneously 

injected 32P-labelled heat-killed E. coli relative to healthy controls (HC) and patients with ulcerative 

colitis (UC). 

Reproduced with permission, © 2009 Rockefeller University Press. Originally published in Journal of 

Experimental Medicine 206:1883-1897. 
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1.6 Macrophages: Phagocytosis and Autophagy response mechanisms  

 

Macrophages are professional phagocytes, playing an important role in innate immunity 

showing phagocytotic activity against a wide range of pathogens, inducing synthesis and 

release of pro-inflammatory cytokines, although they are relatively less effective at bacterial 

killing than neutrophils [207-209]. Activated macrophages can crudely be classified into 

classically-activated macrophages (M1-macrophages), which are immune effectors against 

pathogenic bacteria associated with a large amount production of lymphokines, and 

alternatively activated macrophages (M2-macrophages), divided into four subgroups (2a, b, c 

and d) having a variety of functions, including immunity regulation, tissue repair and wound 

healing [210-212]. Monocytes and M1 macrophages in the lamina propria are found to invade 

intestinal tissues directly and are involved in disrupting the intestinal epithelial barrier 

through deregulation of tight junction proteins and induction of epithelial cell apoptosis (i.e. 

leading to chronic intestinal inflammation) [213]. Macrophages in UC mainly act within the 

intestinal mucosa, while in CD it can also be found within the muscularis and the mesenteric 

fat tissue compartments [213]. 

 

Within macrophages, pathogenic bacteria are killed and degraded by either phagocytosis or 

autophagy initiated by two distinct mechanisms, although having similarities in the last stages 

where the phagosomes and autosomes merge with lysosomes and mature to phagolysosomes 

and autolysosomes. Phagocytosis is defined as a process at which extracellular particles such 

as pathogens are engulfed and surrounded by a double membrane to form internal vesicles 

termed phagosomes as presented in Figure 1.5.  These phagosomes fuse with lysosomes to 

form mature phagolysosomes, in which their contents are degraded by ROS and proteolytic 

enzymes [209, 214]. ROS are chemically reactive molecules containing free oxygen radicals, 

including superoxide anions (O2
-), hydrogen peroxide (H2O2), and hydroxyl radicals (OH-) 

produced within the intracellular compartment under aerobic conditions through the 

activation of multicomponent NADPH oxidase. ROS are cytotoxic to foreign cells and are 

essential in microbicidal process of monocytes [215, 216]. Although macrophages and 

neutrophils are phagocytes, there are differences between them in how they perform 

phagocytosis and also in the final outcome of the phagocytotic process [217].   
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Figure 1.5 Bacteria phagocytosis process. 

The phagocytosis process is initiated by the recognition of bacterium pathogen-associated molecular patterns 

(PAMPs) via membrane-bound pattern recognition receptors (PRRs) on phagocytes followed by bacteria 

engulfment into an intracellular vesicle called a phagosome. Phagosome-lysosome fusion then occurs to form a 

mature phagolysosome, followed by degradation of the bacterium. Degraded material is released by exocytosis. 
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Autophagy, or ”self-eating”, is a eukaryotic cellular process implicated in a range of 

physiological processes ranging from control of cell growth [218, 219], removal of old 

cellular structures and maintaining the intracellular nutritional homeostasis during starvation, 

and in contribution to type II programmed cell death [220]. Autophagy is also involved in 

inducing secretion of immune mediators [221], controlling adaptive immunity by inducing 

MHC class-II antigen presentation [222] and T-lymphocyte homeostasis [223], and in 

defence from cellular invasion by pathogenic bacteria, providing immune protection through 

targeted recognition and elimination of microbes such as Mycobacterium tuberculosis [85], 

group A Streptococcus and S. aureus  [224]. Autophagy in response to pathogens is typically 

referred to as ‘xenophagy’. Autophagy is initiated in response to stresses such as hypoxia, 

nutrient starvation, endoplasmic reticulum stress and infection [225, 226]. Engulfed bacteria 

trigger xenophagy via a number of different mechanisms including induction of nutrient 

starvation (i.e. competing for nutrients) and stimulation of the innate immune receptors, 

including membrane bound Toll-like receptors (TLRs), cytoplasmic receptors such as 

ATG16L1 and NOD2 and sequestosome 1-like receptors (SLRs) [86, 219, 227];  as briefly 

summarised in Figure 1.6.  
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Figure 1.6 Intracellular elimination of invading microorganisms by autophagy. 

Once a microorganism is engulfed by host cells, such as a macrophage, the autophagy machinery is activated by 

pathogens through one the following mechanisms: 1, nutrient starvation; 2, stimulating innate immune receptors 

via membrane bound pathogen-recognition receptors (PRRs) and sequestosome1-like receptors (SLRs). 

Pathogens trigger Toll-like receptors (TLRs) leading to activation of TNF receptor-associated factor 6 (TRAF6) 

or NADPH oxidase 2/ reactive oxygen species. (NOX2/ROS) mediated autophagy or microtubule-associated 

protein 1A/1B-light chain 3 (LC3)-associated phagocytosis (LAP). Cytoplasmic PRRs, triggered by pathogens 

include nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and autophagy-related protein 

16‑ like 1. (ATG16L1) receptors). Lysosomes mature to become autolysosomes, where intraphagolysosome 

materials are then degraded by either oxygen-dependent (production of ROS) or oxygen-independent 

(production of granules containing proteolytic enzymes) at the final stage of the autophagy process. Source of 

Figure adapted from [219]. 
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1.7 Defective autophagy and lack of clearance of Crohn’s disease mucosa-

associated AIEC 

 

ATG16L1 and IRGM function in autophagosome formation and evidence from recent studies 

supports a role for autophagy as an antimicrobial mechanism downstream of cell-surface 

TLR and cytosolic NOD-like receptor signalling. Activation of NOD2 by MDP induces 

autophagy in antigen-presenting cells (such as dendritic cells and macrophages) in a receptor-

interacting serine/threonine kinase-2 (RIPK-2) dependent manner [228]. Knock-down of 

ATG16L1 and IRGM mRNA using siRNA approaches resulted in defective recognition and 

clearance of CD mucosa-associated E. coli within host epithelial cells and macrophages [229, 

230]. However, deficiency in either gene did not interfere with the replication and survival 

ability of other non-pathogenic, environmental, commensal, or gastroenteritis-inducing E. 

coli, suggesting a specific role for autophagy in restraining Crohn’s AIEC. Similarly, 

expression of the CD variant ATG16L1*300A in intestinal Caco2 epithelial cells impairs their 

ability to capture internalized Salmonella spp. within autophagosomes [231] and is also 

associated with abnormalities in Paneth cell granule exocytosis [221], impaired production of 

antimicrobial α-defensins [232], and increased production of pro-inflammatory cytokines IL-

1β and IL-18 by macrophages in response to LPS [233]. In addition, Lapaquette and 

colleagues established that impaired expression of ATG16L1, IRGM or NOD2 lead to an 

increase of intra-macrophage CD AIEC, and was associated with an increase secretion of 

both IL-6 and TNF, while induction of autophagy lead to a decrease in AIEC 

intramacrophage survival and replication and in pro-inflammatory cytokine production. It 

seems that any impairment of autophagy leads to a defect in bacterial clearance associated 

with increased intra-cellular bacteria replication within phagocytes (illustrated in Figure 

1.7). Stimulating autophagic machinery in CD patients has therefore been postulated as a 

potential therapeutic approach to restrain the intra-macrophage CD AIEC replication and to 

reduce inflammation [234].  The anti-malarial drug chloroquine, for example, has been 

reported to enhance the late stage of autophagy, particularly fusion of autophagosomes with 

lysosomes [235], inhibiting intra-macrophage replication of Mycobacterium tuberculosis, and 

enhancing the anti-tuberculosis protectiveness of isoniazid and 25 OH-vitamin D3 [236]. 

However, stimulating autophagy with rapamycin, was reported to be ineffective particularly 

when intramacrophage replication of CD AIEC was well established [234]. 
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Figure 1.7 Impairment of autophagy leads to a defect in bacterial clearance associated with increased intra-cellular 

bacteria replication within phagocytes. 

Reproduced with permission from the author: Caprilli R. et al. J. Crohn’s Colitis 2010; 4,(4): 377-83[237] and 

by permission of Oxford University Press; License Number 3700681014379; Copyright (2010). 
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1.8 Virulence factors supporting ability of Crohn’s disease mucosa-

associated E. coli to survive within host macrophages 

 

AIEC strains obtained from CD ileal and colonic biopsy tissue demonstrate ability to, survive 

and replicate within phagolysosomes of macrophages [8, 149]; see Figure 1.8.  However, 

they are not unique in this ability as other pathogens are also known to survive and replicate 

within macrophages, including Mycobacteria, Salmonella, Shigella, Legionella, Coxiella, 

Brucella and Listeria species. Key adaptive defence mechanisms adopted by these pathogens 

support their resistance to killing within the low pH, low nutrient environment, high oxidative 

and nitrosative stress environment of the phagolysosome. Whilst Shigella and Listeria are 

able to escape from the mature phagolysosome, Salmonella spp. prevent fusion of phagosome 

with the lysosome, and Mycobacterium tuberculosis modify the intra-phagolysosome 

environment to support their survival respectively [238-241].  

 

Some of the virulence factors supporting survival and replication of AIEC within 

macrophages have been identified using isogenic mutants of the “paradigm” ileal AIEC 

LF82. Genes identified include htrA (encoding high temperature stress protein), dsbA 

(encoding an oxidoreductase) and hfq (encoding a RNA chaperone important in mediating 

bacterial adaptation to chemical stress) [242-244]. However, HtrA and DsbA are fairly 

ubiquitous in E. coli, and it is likely that other unidentified factors are needed to support 

Crohn’s AIEC survival within the stressful conditions of the phagolysosome. One recently 

identified factor is GipA. GipA deletion impairs Crohn’s AIEC translocation across M cells 

and their ability to replicate inside macrophages; their colonization of PPs and dissemination 

to mesenteric lymph nodes in mice was also impaired. GipA deletion also reduced lpfA 

mRNA levels in Crohn’s AIEC. GipA expression was also found to be induced by bile salts, 

intraphagolysosome reactive oxygen species and acidic pH conditions. In addition, survival 

of Crohn’s AIEC-ΔgipA bacteria was reduced in medium containing either H2O2 or acidic pH 

[245]. 
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Acid stress is the antimicrobial environment likely encountered by active enteric bacteria 

within the phagolysosome. Salmonella spp., Shigella spp. and E. coli have all been reported 

to possess a repertoire of low pH inducible systems that support resistance, tolerance and 

habituation during environmental acid stress. Likewise, Crohn’s AIEC certainly appear to be 

tolerant of the low pH intraphagolysosome environment [246].  E. coli is notable due to its 

possession of four known acid resistance systems. The first system requires sigma factor 

RpoS and the cyclic AMP  (cAMP) receptor protein CRP, with RpoS functioning as a major 

environmental stress response regulator in both E. coli and Salmonella spp. [246].  

 

Deletion of rpoS from a Crohn’s AIEC (strain O83:H1) has been observed to increase 

sensitivity of this clinical isolate to oxidative stress [247]. The second system requires 

extracellular glutamate. The components of glutamate-dependent acid response are two 

isoforms of glutamate decarboxylase encoded by gadA and gadB, and a glutamate-γ-

aminobutyric acid antiporter encoded by gadC [248, 249]. Murine intestinal commensal E. 

coli have been observed to respond to chronic intestinal inflammation by up-regulating 

expression of stress response genes such as gadA and gadB [250].  Proven to be essential as 

regulators of gad stress response gene expression are gadE and gadX [251]. The third acid 

resistance system requires is arginine-dependent utilising of arginine decarboxylase (AdiA 

and AdiC) antiporter [246] and the fourth is lysine dependent, involving lysine decarboxylase 

[249]. In addition, E. coli also harbour specific mechanisms that enable them to resist high 

levels of reactive oxygen species (ROS) that form the oxidative and superoxidative to 

phagocytosed pathogens. These defensive resources have been found to be grouped into two 

regulated sets of genes designated as soxRS and oxyR regulons [252, 253]. E. coli SOS 

system is a network regulating the expression of more than 40 genes which is activated to 

rescue cells from severe DNA damage by physical and chemical factors, including ROS. 

Based on a knock-out study, E. coli SOS genes dinf was reported to protect against oxidative 

stress, although the exact nature of the DinF activity remains to be identified [254, 255]. 

Despite of all these fundamental pieces of knowledge on the virulence genes of Crohn’s-

associated E. coli strains, genetic factors that are characteristic of AIEC phenotypes are still 

required to be studied. 
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Figure 1.8 Transmission electron micrograph of adherent, invasive E. coli within macrophages. 

A: Crohn’s disease colonic mucosa-associated isolate HM605surviving and replicating within vesicles of J774-

A1 murine macrophages; B: Double membrane around intra-macrophage vesicle indicates bacteria are 

contained within phagolysosomes (solid arrow). Images courtesy of Dr. Carol L. Roberts (University of 

Liverpool, United Kingdom). 
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1.9 Current therapeutic approaches for CD and the potential for future 

treatment via targeting intra-macrophage Crohn’s disease mucosa-

associated AIEC 

 

Superficial mucosal lesions in Crohn’s patients are likely to heal, while deep ulcers and 

fissures heal with more difficulty and may lead to the development of fibrotic strictures. 

When the lesions are extensive, CD becomes symptomatic associated with local 

complications such as dilatation, perforation, haemorrhage, abscess and fistula along with 

fibrosis and stricture formations [3]. Smoking cessation was found to be beneficial in patients 

with CD [256], which has been suggested to be as a result of the recovery of immune cell 

function. However, this has not been studied on CD patients [257]. The main goals of 

gastroenterologists, during treatment of CD patients, are first to induce remission and second 

to prevent relapse by either surgery or drugs. However, the ideal therapy that should reduce 

inflammation without inducing immunosuppression remains a challenge.  

 

Current treatment approaches:  

Patients with active CD are routinely treated with immune suppressing drugs such as 

corticosteroids (prednisolone), thiopurines (azathioprine, mercaptopurine) and anti-TNF 

antibody (infliximab and adalimumab) [258]. The use of 5-aminosalicylic acid (5-ASA) 

drugs, including Sulfasalazine and Mesalazine in CD is still controversial and studies 

evaluating their efficacy have produced mixed results [259-261]. According to a recent 

network meta-analysis study, the most effective therapies for induction and maintenance of 

remission of Crohn's disease are adalimumab (ADA) and infliximab+ azathioprine (AZA) 

[262]. It has been reported that biologic therapies had higher durability for induction and 

maintenance therapy than immunomodulators [263]. It is recently reported that ADA 

response in Crohn’s patients is genetically predisposed by a Single Nucleotide Polymorphism 

(SNPs) in CD-associated genes and found ATG16L1 as the most promising candidate gene 

for adalimumab response [264]. Using a polymerase chain reaction-denaturing gradient gel 

electrophoresis (PCR-DGGE) of 16S rRNA gene fragments and quantitative PCR, 

respectively in colonic mucosal biopsies from 15 CD patients compared with 4 healthy 

subjects, treatment with ADA was reported to induce short-term changes in the microbiota 
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with those phyla recovering after treatment including beneficial Firmicutes, and a decrease in 

the prevalence of Proteobacteria, such as E. coli [265].  

 

Monoclonal anti-TNF antibodies used in CD have limitations including increased risk of side 

effects such as reactivation of hepatitis and granulomatous disease (tuberculosis), and bone 

marrow suppression, and long-term complications such as risks of malignancies [266, 267]. 

Since, TNF inhibitors are not useful for one third of all patients,  other strategies have 

recently been developed such as monoclonal antibodies targeting the interleukin (IL)-6 

receptors, which are expected to hold greater promise to be helpful in the future  [268].   

 

Surgical resection of an isolated inflamed ileal segment in adolescents with active CD is very 

effective, leading to a clinical improvement (symptom relief) and a reduction in medication 

requirements [269]. However, the recurrence of CD was  observed approximately in 80% of 

cases after ileal resection surgery of the  inflamed part  and the recurrence was mostly 

occurred in ileal part which was proximal to the anastomosis with the large intestine, 

suggesting  that the recurrence is more likely to be dependent on the proximity to the large 

bowel contents where the bacteria niches are abundant [270].  Identifying the risk factors for 

postoperative CD recurrence will be beneficial in order to assist the clinician in implementing 

more aggressive prophylactic treatment to sustain remission and to prevent recurrence.   

 

Further meta-analysis of six randomised placebo-controlled clinical trials showed that the use 

of antibiotics, including ciprofloxacin, metronidazole and co-trimoxazole in these patients are 

highly likely to induce remission in patients with active CD, and  patients who received 

antibacterial therapy were clinically improved compared with CD patients who received only 

placebo [271, 272]. Another clinical trial demonstrated CD endoscopic recurrence was at a 

high rate following 1 year surgery, but after CD patients received metronidazole or 

ornidazole antibiotics, the post-operative endoscopic recurrence was reduced [273]. However, 

a recent meta-analysis failed to provide any benefit for the use of antibiotics in maintaining 

remission period, and also in the treatment of active intraluminal and perianal disease [274]. 
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Some probiotic microorganisms such as E. coli Nissle 1917 might have  positive effects on 

maintaining remission of IBD, particularly UC [275, 276], and this probably occurs due to 

bacterial competition [277, 278], and they may be effective in maintaining remission period 

in postoperative prophylaxis [279]. However, a number of studies on  children  have shown 

antibiotic exposure in children, mainly at age ≤ 3 months, is a significant risk factor for 

development of CD [280, 281], and a 4-year prospective study established  that most patients 

with IBD, received antibiotic treatment  demonstrate a more severe clinical course [282].  

 

Therapeutic targeting of intra-macrophage Crohn’s disease mucosa-associated AIEC: 

The hypothesis of the implication of AIEC in the pathogenesis of CD was supported by 

clinical and experimental data. Therefore, this bacterium is considered to be as a potential 

target in the treatment of Crohn’s patients using antibiotics [149]. It shows killing of 

intramacrophage E. coli in vitro. However, ileal CD AIEC has been observed to manifest 

resistance to a range of antibiotics, including ciprofloxacin, rifampicin, clarithromycin, 

tetracycline, and trimethoprim/sulfamethoxazole, plus 42% of ileal Crohn’s AIEC are 

categorised as Multidrug-resistant (MDR) [283].  

 

A study investigating CD patients, having an active ileal lesion, with circulating antibodies 

directed against E. coli and Pseudomonas fluorescens, reported that these patients had a 

higher response rate to budesonide in combination with metronidazole and ciprofloxacin 

compared to those patients without circulating anti-bacterial antibodies [284]. The most 

appropriate target for use of antibiotics in CD patients is proposed as being those intra-

macrophage replicating CD AIEC. However, antibiotic treatment for active CD is still 

thought to be non-beneficial, although there is evidence supporting the use of antibiotics to 

prevent post-operative recurrence of CD [273, 285]. In addition, studies on both human and 

animal  clinical isolates indicate that antimicrobial resistance is common in E. coli associated 

with CD and granulomatous colitis, and that resistance to antibiotics such as ciprofloxacin 

and enrofloxacin may correlate to poor clinical outcome of disease [283, 286, 287]. 

Administration of a triple antibiotic regimen has been recommended to avoid the antibiotic 

resistance which proved to reduce intra-macrophage survival of CD AIEC to 3% compared to 

untreated controls. Antibiotics that were able to enter macrophages, including azithromycin, 
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ciprofloxacin, rifampicin, sulfamethoxazole, tetracycline and trimethoprim were all effective 

against CD AIEC surviving and replicating within the macrophage phagolysosome, while  

antibiotics that are unable to penetrate macrophages are considered to be ineffective [149]. 

However, due to drug to drug interactions/side effects that may occur  between some class of 

antibiotics and azathioprine (an immunosuppressant regularly used to treat CD patients with 

active disease), other alternative strategies using agents to manipulate the intra-

phagolysosome environment have been explored since CD AIEC are known to be dependent 

on an acidic environment for their survival [242]. This suggests that alkalinisation of the 

intra-phagolysosome would perhaps reduce Crohn’s AIEC survival within macrophages. For 

example, hydroxychloroquine, a weak base with the ability to increase phagolysosome pH, is 

reported to improve intra-macrophage killing of bacteria with an intra-phagolysomal life-

style such as Coxiella burnetii, causing Q-fever [288] and Tropheryma whipplei, causing 

Whipple's disease  [289, 290] . In this context, recent research studies in our own lab revealed 

that hydroxychloroquine directly reduced survival and replication of intra-macrophage AIEC 

and enhanced the efficacy of antibiotics (such as Doxycycline and Ciprofloxacin) to kill 

intra-macrophage Crohn’s AIEC [205]. A recent study on the use of species-specific 

antibiotics termed colicins for treatment of CD-associated AIEC reported that the ability of 

colicins E1 and E9 to kill intra-phagolysosome AIEC in RAW264.7 macrophages, and no 

toxicity was observed toward macrophage cells, indicating the potential of colicins as 

therapeutics for the eradication of E. coli from the gastrointestinal tract of CD disease 

patients [291]. The corticosteroid dexamethasone has been found to promote phagocytosis 

and enhance killing of Staphylococcus aureus inside human monocytes/macrophages in vitro 

[292].   

 

Vitamin D deficiency is common in approximately 70% of CD patients in the either active or 

quiescent phase of disease [112, 293]. A retrospective study where 3217 CD  patients with a 

low requirement for surgery, showed higher levels of vitamin D at which 30ng/ml was 

considered as a cut off [294]. There was a reduction in the risk of relapse following patients 

with quiescent CD given vitamin D supplements [115]. Vitamin D (1, 25 OH2-vitamin D3) 

supplementation also enhanced killing process of intra-macrophage CD AIEC in both murine 

and human macrophage phagolysosomes [205].  However, there is no data yet, proving the 

effects of vitamin D on in vivo macrophage CD AIEC interactions. Several individual studies 

recently verified alterations in the composition of intestinal microbiota in CD patients and the 



34 

 

role of abnormal intestinal microbiota in CD pathogenesis. Faecal microbiota transplantation 

(FMT), which was successfully tested in recurrent Clostridium difficile infections [295], has 

been established as a promising therapeutic option for CD via modifying microbiota, 

restoring the balance of intestinal flora and reversing the inappropriate immune stimulation 

make intestinal ecosystem less suitable for intestinal E. coli colonization [296-298].  FMT 

has recently been reported to  improve the quality of life in IBD patients [299]. The efficacy 

of exclusive enteral nutrition (EEN) for CD via (A) down regulation of inflammatory 

cytokines production, (B) reduction of intestinal permeability, and (C) modulating the 

intestinal microbiome have been also established [300-303]. Nutritional supplementation is 

essential for CD patients with evidence of malnutrition and it may help in maintaining 

remission [304]. Whether FMT, EEN and nutritional supplements alter macrophage function 

to support killing intra-macrophage Crohn’s AIEC is as yet undetermined. 

  

 

1.10 Hypothesis and aims:  
 

1.10.1 Hypothesis 

 

Key additional molecular mechanisms are likely to be involved in supporting Crohn’s disease 

(CD) mucosa-associated AIEC to resist killing by host mucosal macrophages, and that these 

mechanism support their ability to survive and replicate within the low pH, low nutrient, high 

oxidative and nitrosative stress environment of the phagolysosome. 
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1.10.2 Aims 

 

In this study, our main targets were to:  

1. Assess and validate the ability of CD mucosally-associated E. coli to survive and 

replicate inside macrophages compared with other E. coli strains, including clinical 

isolates from colorectal cancer and ulcerative colitis patients.  

 

2. To understand the role of host NF-κB pathway activation in supporting intra-

macrophage replication of CD AIEC.  

 

3. Investigate whether CD mucosally-associated E. coli can tolerate and grow in low pH, 

low nutrient, high nitrosative and high superoxidative stress conditions, mimicking 

the harsh environment within an active macrophage phagolysosome.  

 

4. Identify bacterial molecular mechanisms underlying tolerance of CD AIEC surviving 

and replicating within the phagolysosome.  

 

5. To assess whether CD AIEC possess ability to alter host oxidative stress response 

gene expression in macrophages.  
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Chapter 2  

 

Materials and Methods 
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2.1 Bacterial strains and their culture conditions 

2.1.1  Bacterial strains 

 

The heterogeneous population of bacterial strains used throughout this study are:  

1) Ileal CD E. coli isolates 

Ileal Crohn’s disease (CD) E. coli strains LF10, LF11, LF13, LF82* and LF86, isolated from 

inflamed lesions of clinically active Crohn’s patients were kindly provided by the late 

Professor Arlette Darfeuille-Michaud (Pathogénie Bactérienne Intestinale, Laboratoire de 

Bactériologie, Université d'Auvergne, Clermont-Ferrand, France) [243]. An additional ileal 

CD strain, 541-15A*, was obtained from Professor Kenneth Simpson, Cornell University, 

College of Veterinary Medicine, Ithaca NY, USA) [178, 305]. 

 

2) Colonic CD E. coli isolates 

Colonic CD strains were previously isolated from colonic biopsy tissue specimens of CD 

patients in the remission with either a history of active ileal inflammation, ileo-colonic 

disease or colonic inflammation alone [139]. The latter bacteria strains designated as HM 

were isolated from patients attending the Royal Liverpool University Hospital by Dr. Helen 

Martin; Gastroenterology Research Unit, University of Liverpool, Liverpool, UK [139]. 

  

Table 2.1 Sources of colonic CD E. coli isolates. 

HM95*, HM96, HM104, HM413* and 

HM419*  

 

Isolated from non-inflamed colonic tissues of 

Crohn’s patients in the remission with a 

history of active ileal inflammation 

HM427* Obtained from non-inflamed colon tissues of 

Crohn’s patients who previously had ileo-

colonic inflammation 

HM154*, HM580*, HM605* and HM615*   Isolated from inflamed colon tissues of 

Crohn’s patients 
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3) Ulcerative colitis E. coli isolates 

Ulcerative colitis E. coli strains HM233, HM250, HM378, HM394 and HM457* isolated 

from the inflamed colon tissues of clinically active UC patients and HM464 from colon 

tissues of UC patients during remission period.  

 

4) Colorectal cancer (CRC) E. coli isolate 

CRC E. coli strains HM229, HM230, HM244, HM358*, HM312, HM44*, and HM374, 

isolated from colon mucosa of patients with colon cancer [139].  

 

Note - for all IBD (CD and UC) and CRC isolates detailed above, those indicated with an 

asterisk (*) indicates that they are adherent, invasive E. coli (AIEC) as per the definition 

defined by Darfeuille-Michaud A in 2001 [148], i.e. that they adhere to, and invade into, 

intestinal epithelial cell-lines (differentiated Caco-2 and undifferentiated I-407), induce 

release of pro-inflammatory cytokines, and possess an ability to survive and replicate within 

human and murine macrophages [148]. 

 

5) Other E. coli clinical isolates 

E. coli strains ECOR40, ECOR48, ECOR50 and ECOR64 (ECOR48 and 64 from patients 

with acute cystitis, and ECOR40 and 50 with acute pyelonephritis) provided by the STEC 

Centre, Department of Microbiology and Molecular Genetics, Michigan State University 

(MSU), USA. E. coli strains SJH2, J96 and CP9 obtained from patients with urinary tract 

infection, termed Uropathogenic Escherichia coli (UPEC), were obtained from Professor 

Craig Winstanley (Department of Clinical Infection, Microbiology and Immunology, Institute 

of Global Health & Infection, University of Liverpool, UK) and Dr Alison O'Brien 

(Department of Microbiology and Immunology, Uniformed Services University of the Health 

Sciences, Bethesda MD USA) [306], E. coli strains obtained from healthy individuals 

ECOR1, ECOR35, healthy individuals with IBS [HM484 (AIEC) and HM488 (AIEC)] with 

sporadic polyposis [HM428 (AIEC), HM454 (AIEC) and HM456 (AIEC)] and with piles 

[HM463 (AIEC)], and from a healthy infant ECOR51.  

 

Probiotic E. coli Nissle 1917 (EcN) was a kind gift to the department from Dr. C. Enders 

(Ardeypharm; Herdecke, Germany). E. coli K-12, i.e E. coli (Migula) Castellani and 

Chalmers ATCC® Number 10798, was obtained from the American Type Culture Collection 

(LGC Standards; Middlesex, UK) with E. coli XL-1Blue obtained from Agilent Technologies 
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(Santa Clara, USA) and E. coli K-12 derivative (EPI300-T1) from Epicentre (Madison, 

USA). 

 

6) Other bacteria 

Salmonella enterica serovar Typhimurium (S. Typhimurium) strains LT2 and 4/74 were a 

kind gift to the department from Professor Craig Winstanley (Clinical Infection, 

Microbiology and Immunology, University of Liverpool, UK). 

 

 

2.1.2  Bacterial storage and culture 

 

All studied bacteria strains were stored in Protect micro-preservation beads in a -80oC 

freezer, with routine working stocks kept at -20oC and grown on Luria Bertani (LB) agar 

plates for 24 h in the incubator at 37°C and 5% v/v CO2 atmosphere. LB agar plates (pH 7) 

were made by mixing of 10g Bacto-tryptone, 5g Bacto-yeast extract, 5g NaCl, and 15g agar 

in a litre of distilled water and then autoclaving for sterilization, followed by pouring the 

sterile LB agar into sterile Petri dishes. 
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2.2 Murine macrophage J774-A1 cell-line culture 

 

Obtained from the European Collection of Animal Cell Culture (ECACC catalogue number 

91051511; Porton Down; United Kingdom), murine macrophage-like cell line J774-A1 

(taken from ascites or reticulum cell sarcoma of a female mouse;) was maintained in Roswell 

Park Memorial Institute (RPMI) 1640 medium (supplied by Sigma-Aldrich, Poole, UK) 

supplemented with 10% v/v foetal calf serum (FCS) (Gibco; Paisley, Scotland), 100 U/ml 

penicillin (Sigma), 100 µg/ml streptomycin (Sigma), and 4mM L-glutamine (Sigma), within 

75 cm2tissue culture flasks (Appleton Woods Limited; Birmingham, UK) in the incubator at 

37°C in a humidified atmosphere of 95% v/v air and 5% v/v CO2. J774-A1 cells were grown 

to 80% confluency and gently passaged using cell scrapers (Corning®; Chorges, France); see 

Figure 2.1. Macrophages were routinely passaged twice weekly and used in experiments at 

passage numbers between 8 and 20, with cells counted using a glass haemocytometer. In 

order to replenish the stock cultures to the cryobank, 80% confluent J774-A1 cells were 

aliquoted into cryo-vials in freezing media containing 90% v/v FCS and 10% v/v dimethyl 

sulphoxide (DMSO).  

For experiments, J774A1 macrophages were routinely seeded to 24-well tissue culture plates 

at a density of 1x105 cells per well (see section 2.7). 
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Figure 2.1 J774-A1 macrophage cell line at 80% confluency (48h post seeding; Magnification x20) cultured 

in RPMI medium. 

The morphology of our macrophage cultures was representative of those images seen on-line 

http://www.pheculturecollections.org.uk/products/celllines/generalcell/detail.jsp?refId=91051511&collecti

on=ecacc_gc (accessed 08-12-2016). 

  

Macrophage cell line (J774-A1)

http://www.pheculturecollections.org.uk/products/celllines/generalcell/detail.jsp?refId=91051511&collection=ecacc_gc
http://www.pheculturecollections.org.uk/products/celllines/generalcell/detail.jsp?refId=91051511&collection=ecacc_gc
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2.3 Generation of high yields of healthy bone marrow-derived 

macrophages (BMDM) from murine wild-type, Nf-κb and c-Rel deficient 

bone marrow (BM) cells 

 

Femurs from mice as follows: Wild-type mouse C57BL/6 (n=2♂, n=2♀); mice deficient in 

NF-κB1 (Nfκb1-/-; n=1♂, n=3♀), mice deficient in NF-κB2 (Nfκb2-/-; n=2♂) and those 

deficient in c-Rel (c-Rel-/-; n=3♀ were kindly provided by Dr. Carrie Duckworth and Dr. 

Ahmed Elramli, Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, 

University of Liverpool, UK). Wild-type C57BL/6 mice supplied by Charles River (Margate, 

UK), and transgenic strains on a C57BL/6 background, including Nfĸb1−/− and Nfĸb2−/− mice 

[307, 308] and c-Rel-/- mice [309] were maintained at the University of Liverpool’s specific 

pathogen-free (SPF) Biomedical Services animal Unit. Bone marrow from Il-1r-/-, Il-18r-/- 

and Myd88-/- (on a C57Bl/6 background) were a kind gift from by Dr. Stuart Marshall-Clarke 

(Human Cell Biology & Anatomy, University of Liverpool, UK), with the Myd88-/- mice 

originally provided with the generous permission of Prof Shizuo. Akira (Osaka University, 

Japan) [310].  

High yields of healthy bone marrow-derived macrophages were obtained following 

adaptation of the method of Manzanero et al. [307, 311]. All femurs were first soaked in 70% 

v/v ethanol inside a Petri dish for disinfection. After 3 to 5 min, bones were rinsed off ethanol 

via placing them into a Petri dish containing sterile PBS, pH 7.3 (Life Technologies; Paisley, 

UK). Both bone ends were carefully trimmed with sterile scissors in order to expose bone 

marrow shaft and a needle was then inserted through a cut made at the top ends with sterile 

scissors, followed by flushing BM with 5 ml per bone of RPMI 1640 medium into a sterile 

tube. After centrifugation (250 g for 5 min), supernatants were removed and pellets of BM 

progenitor cells (at cell density ranging from 1.4 to 2.5 x 106 cells/ml) were resuspended in 

RPMI 1640 medium supplemented with 10% v/v foetal calf serum, 4mM L-glutamine. The 

steps of this procedure are briefly summarised in Figure 2.2. BM progenitor cells could then 

either stored in liquid nitrogen cell bank in freezing media (90% v/v FCS and 10% v/v 

dimethyl sulphoxide (DMSO) for future experimentation, or differentiated to adherent 

macrophages following addition of purified recombinant Mouse Macrophage Colony 

Stimulating Factor (rM-CSF) from PeproTech EC Ltd. (London, UK). For the latter, BM 

cells were placed into 12-well cell culture plates and volume adjusted up to 10 ml per dish 
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with medium supplemented with rM-CSF, followed by incubation at 37°C, in a humidified 

incubator of 95% v/v air and 5% v/v CO2 for 6 d. Using BM progenitor cells from C57Bl/6 

and Nfkb2-/- mice, initial concentrations of rM-CSF ranging from 50-100 ng/ml were 

examined for ability to effect differentiation of, and proliferation and survival of, 

macrophages (see Figure 2.3 and Figure 2.4). A concentration of 100 ng/ml rM-CSF 

showed greater activity and this level was selected therefore to differentiate BM progenitor 

cells from all other wild-type and knockout mouse strains (see Figure 2.5). After incubation, 

media containing the non-adherent, non-differentiated BM cells were discarded. Adherent 

differentiated macrophage cells (elongated in morphology) were washed twice with 5 ml 

sterile PBS, scraped and resuspended in a further 10 ml (5 ml per femur) medium 

supplemented with rM-CSF followed by seeding cells into 24-well plates (i.e. placing 1 ml of 

medium containing cells into each well) and then incubating for overnight prior to infection; 

see section 2.7 for detail of the intra-macrophage replication assay. For more information and 

details on the growth and differentiation of murine BM cells into macrophages, see [311].  

  



44 

 

 

 

 

Figure 2.2 The main steps of preparation of Bone Marrow (BM) cells. 

(1) The femur is first disinfected and then the both ends of the femur are trimmed (2) BM is then flushed using a 

30 gauge needle coupled to a one  ml syringe into a 50mL Falcon tube. (3) After centrifugation (at 250 g for 5 

min), BM cell pellets were resuspended in 10 ml RPMI 1640 medium supplemented with rM-CSF and (4) 

placed into a 10mL Petri dish for culture at 37oC, 95%/5% v/v air/CO2. Adapted from 

http://dx.doi.org/10.14440/jbm.2014.12 (accessed 08-12-2016). Permission sought from authors and publisher. 

  

1

3 4

2

http://dx.doi.org/10.14440/jbm.2014.12
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Figure 2.3 Frozen Bone marrow (BM) cells from a wild-type C57BL/6 mouse differentiate into 

macrophages.  

Representative images at magnification x20 of a wild-type mouse (C57BL/6) BM cells differentiated into 

macrophages on day 3 (left hand panel) and day 6 (right hand panel).  

  

C57BL/6 Day 3 C57BL/6 Day 6
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Figure 2.4 Comparative images illustrating morphological features of Nf-κb2 knock-out bone marrow 

(BM) progenitor cells at different rM-CSF concentrations. 

BM progenitor cells were cultured for 6 days in RMPI 1640 medium at rM-CSF concentration of 50 ng/ml (left 

hand panel) compared to those cultured in 100 ng/ml (right hand panel). The differentiation levels (conversion) 

of BM progenitor cells into macrophages are higher at r-MCSF concentration of 100 ng/ml. 

 

 

 

 

 

 

 

 

 

Nfkb2-/- Day 6 (rM-CSF 50ng) Nfkb2-/- Day 6 (rM-CSF 100ng)
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Figure 2.5 Morphology of differentiated BM-derived macrophages from Nf-κb1 (A), Nf-κb2 (B) and c-Rel 

(C) knock-out mice at days 1, 2 and 6 post recombinant mouse colony stimulating factor (rM-CSF) 

treatment.(Panel A). 

Representative images (Magnification x20) illustrate the morphology of BM progenitor cells from (A) Nf-κb1-/- 

(B) Nf-κb2-/-  and (C) c-Rel-/-  mice following1, 2 and 6 days of culture in RPMI 1640 medium supplemented 

with 100 ng/ml of rM-CSF. On day 1, BM progenitor cells are small in size with a defined cell-membrane, 

while adherent differentiated macrophages with branched and extended morphology are clearly visible from day 

3 onwards. 

 

  

Nfkb1-/- Day 1 Nfkb1-/- Day 3

Nfkb1-/- Day 6

A
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Figure 2.5 (Continued): Morphology of differentiated BM-derived macrophages from Nf-κb1 (A), Nf-κb2 

(B) and c-Rel (C) knock-out mice at days 1, 2 and 6 post recombinant mouse colony stimulating factor 

(rM-CSF) treatment.(Panel B) 

Representative images (Magnification x20) illustrate the morphology of BM progenitor cells from (A) Nf-κb1-/- 

(B) Nf-κb2-/-  and (C) c-Rel-/-  mice following1, 2 and 6 days of culture in RPMI 1640 medium supplemented 

with 100 ng/ml of rM-CSF. On day 1, BM progenitor cells are small in size with a defined cell-membrane, 

while adherent differentiated macrophages with branched and extended morphology are clearly visible from day 

3 onwards. 

 

  

Nfkb2-/- Day 1 Nfkb2-/- Day 3

Nfkb2-/- Day 6

B
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Figure 2.5 (Continued): Morphology of differentiated BM-derived macrophages from Nf-κb1 (A), Nf-κb2 

(B) and c-Rel (C) knock-out mice at days 1, 2 and 6 post recombinant mouse colony stimulating factor 

(rM-CSF) treatment. (Panel C). 

Representative images (Magnification x20) illustrate the morphology of BM progenitor cells from (A) Nf-κb1-/- 

(B) Nf-κb2-/-  and (C) c-Rel-/-  mice following1, 2 and 6 days of culture in RPMI 1640 medium supplemented 

with 100 ng/ml of rM-CSF. On day 1, BM progenitor cells are small in size with a defined cell-membrane, 

while adherent differentiated macrophages with branched and extended morphology are clearly visible from day 

3 onwards. 

  

c-Rel-/- Day 1 c-Rel-/- Day 3

c-Rel-/- Day 6

C
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2.4 Generation of BMDM from a variety of genes knock out BM cells 
 

Frozen BM cells from Il-1r-/-, Il-18r-/- and Myd88-/- mice underwent the same growth 

conditions and period of incubation as mentioned above to differentiate them to mature 

adherent macrophages (Figure 2.6). Myeloid differentiation primary response gene 88 

(Myd88) is an adapter protein, used by almost all TLRs (except TLR3) to activate the 

transcription factor NF-κB [312].  
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Figure 2.6 Frozen BM cells from Il-1r-/-, Il-18r-/-, Myd88-/-mice well differentiate into macrophages. 

Representative images (Magnification x20) illustrate the morphology of BM progenitor cells from (A) Il-1r -/- 

(B) Il-18r.-/- and (C) Myd88.-/-  mice after 6 days of culture in RPMI 1640 medium supplemented with 100 ng/ml 

of rM-CSF. Differentiated macrophages with branched and extended morphology are clearly visible. 

Il-1r-/- Day 6A

Il-18r-/- Day 6B

Myd88-/- Day 6C
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2.5 Verification of successful murine BM monocyte differentiation into 

mature macrophages 

 

F4/80 antigen is a mature mouse cell surface glycoprotein expressed at high levels on various 

macrophages including: Kupffer cells, splenic red pulp macrophages, microglia, macrophages 

of the gut lamina propria, and Langerhans cells in the skin [313]. This antigen is also 

expressed on the macrophages within connective tissue, heart, kidney, and those within the 

reproductive and neuroendocrine systems. F4/80 antigen has been established as one of the 

most important antigens used to identify mature mouse macrophages (macrophage marker) 

[313]. Expression levels of F4/80 are frequently used to estimate the maturation of 

macrophage cells [314].  

 

BM cells were first incubated for 6 days in Petri dishes. Cells were then transferred to 12 well 

cell cultures plates on to sterile 13mm glass cover-slips for 24h.Culture medium was then 

removed and replaced with 10% formalin. Following incubation for 30 min at room 

temperature, formalin was replaced with ice-cold 100% methanol and the culture plate was 

incubated for 5-10 min at a -20oC freezer. Methanol was removed and wells washed three 

times with sterile PBS. To block non-specific antibody binding, 10% w/v Bovine Serum 

Albumin (BSA) (Sigma) was applied to the cells for 1h at room temperature. The cells were 

then incubated overnight with primary antibody; F4/80/EMR1 antibody (CI-A3-1; catalogue 

number NB600-404; Novus Europe; Abingdon, United Kingdom) at dilution 1:100. The 

following day, the cells were again washed three times with PBS and the secondary antibody 

(anti-mouse Ig antibody; Vectashield Antifade Mounting Medium with DAPI; VECTOR 

Laboratories Ltd.; Peterborough, UK) as then applied to cells and the plate was incubated for 

an hour at room temperature. After washing with PBS, pre-prepared diaminobenzidine 

(DAB)-substrate solution [Two DAB tablets (Sigma) added to 5 ml distilled water] was 

applied to cells for 5-10 min at room temperature. Cells were then viewed after washing with 

sterile PBS. For more details regarding the F4/80 primary antibody please see the 

manufacturer’s datasheet; see http://ww.novusbio.com/NB600-404 (accessed 08-12-2016). 

  

http://ww.novusbio.com/NB600-404
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2.6 Intramacrophage replication assay 

 

Survival and replication abilities of CD E. coli strains, compared to other clinical E. coli 

isolates and to S. Typhimurium strains, within J774-A1 murine macrophage cell line were 

assessed by gentamicin protection assay, as previously described [131, 149, 205]. Replication 

assessment of ileal and colonic Crohn’s disease mucosa-associated E. coli strains LF82 and 

HM605 was also performed in wild-type bone marrow-derived macrophages (BMDM) and 

within macrophages derived from the BM of Nfκb1-/-, Nfκb2-/- and c-Rel-/- mice.  

 

All macrophages tested were seeded onto two 24-well tissue culture plates at a density of 

1x105 cells per well, , and incubated for 24 h at 37°C in atmosphere of 5% CO2 . Macrophage 

monolayers were infected in triplicate at multiplicity of infection (MOI) of 10 with a number 

of E. coli strains obtained from biopsies of CD, UC and CRC patients, those with UTI, from 

healthy individuals, and non-pathogenic laboratory E. coli strains. Before infection, these 

bacterial strains were resuspended in sterile PBS to the required optical density (OD) for each 

strain defining a bacteria cell count of 1 x 109 bacteria/ml; see Figure 2.7. In order to allow 

macrophages to phagocytose bacteria, infected cells were incubated for 2 h. After incubation, 

the media were removed and infected macrophages were washed with sterile PBS. One 

millilitre of pre-warmed medium, containing gentamicin (20 µg/ml) in order to kill 

extracellular bacteria was added into each well. The first 24-well plate was then incubated for 

1h, the second meanwhile for 3h to allow those resident intracellular bacteria to either 

replicate or be killed by the macrophage. After washing, cells with sterile PBS, 1 ml 1% v/v 

Triton X-100 (Sigma) in deionized water was added for 5 min to lyse cells. Ten-fold serial 

dilutions of the cell lysates were performed followed by plating of 50 µl of each, starting 

from 102 fold dilution of cell lysates down to 104, on standard Luria broth (LB) agar plates 

(four plates per dilution step). After 24 h incubation at 37°C, bacterial colonies were 

enumerated as colony forming units (CFU). In order to measure the relative replication of 

bacteria strains, CFU at 6h post-infection were compared with CFU at 3h post-infection. 
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Figure 2.7 Bacteria growth calibration curve. 

Representative bacterial growth curve to support E .coli enumeration; by comparison colony forming unit (CFU) 

counts per millilitre (CFU/ml) established by overnight culture on LB agar relative to  optical density (OD600nm) 

reading of the same bacterial suspension. Each value represents the mean ± standard error of the mean (SEM). 

This calibration curve was used to identify the required reading at OD600nm, containing the target number of 

working stock bacteria (1x109 CFU/ml),  OD of 0.9 [n=3]. This curve is representative for the colonic mucosa-

associated CD AIEC HM605. 
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2.7 Assessment of the phagocytic abilities of BMDM from knock-out strains 

of mice 

 

Phagocytosis of Nfκb1-/-, Nfκb2-/-, c-Rel-/-, Il-1r-/- , Il-18r-/-and  Myd88-/- BMDM were studied 

with an assay that detected internalization of Fluorescently-labelled heat-killed Escherichia 

coli K-12 strain BioParticles®, Alexa Fluor® 488 conjugate (Catalogue number E-13231; 

Life Technologies; Paisley, UK) at different time points (3, 6 and 24h post-infection) by 

fluorescence microscopy (Olympus bx51 microscope; images were taken by AQM software 

(Kinetic Imaging) and adjusted by AJ imaging software) C57BL/6 BMDM was used as a 

control. To maintain conditions in the standard intra-macrophage replication assays only, 

following addition of the K-12 BioParticles for 1h, a further 2h incubation in media 

containing gentamicin (20 µg/ml) was performed. Fluorescence of E. coli K-12 BioParticles 

conjugates bound to the macrophage cell surface was quenched with 0.4% w/v Trypan blue 

(Sigma) before imaging. For further information on Alexa Fluor® 488 conjugated 

Escherichia coli K-12 strain BioParticles®, visit 

http://ww.lifetechnologies.com/order/catalog/product/V6694 (accessed 08-12-2016).  

 

 

2.8 Bacteria growth curve in standard nutrient media at differing pH 

 

Overnight bacteria cultures were harvested and washed three times with sterile PBS, and then 

resuspended at an optical density (OD600nm) = 0.1 in RPMI  1640 medium without phenol red 

(Life Technologies). A 2 mL sample was placed into a cuvette tube and OD at wavelength 

600nm was measured hourly using a GeneQuant Pro UV/VIS Spectrophotometer, DNA/RNA 

Calculator (Amersham BioSciences; Piscataway NJ, USA). This was performed using 

standard RPMI medium at pH 7 and at pH 5 (titration using 1M HCl and then 0.2µm sterile 

filtered). 

  

http://ww.lifetechnologies.com/order/catalog/product/V6694
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2.9 Bacteria survival and growth in acidic nutrient-poor M9 medium 

 

At early exponential growth phase (OD600=0.1), bacteria were resuspended in a differing pH, 

ranging from 4 to 7, nutrient-poor (Minimal salts/Minimal microbial growth M9) medium 

(Life Technologies) supplemented with 100mM Bis-Tris (Sigma), 0.1% w/v Casamino Acids 

(MP Biomedicals; Loughborough Leicester, UK), 0.16% v/v glycerol (Sigma) and 10µM 

magnesium chloride (Sigma), each essential compounds for bacteria to grow. OD at 

wavelength 600nm of each bacterial suspension was subsequently measured hourly at time 

points 0 to 8h by spectrophotometer. 

 

 

2.10 Low pH, high nitrosative and high oxidative stress tests on solid 

growth media  

 

At OD600=0.1, bacteria underwent ten-fold serial dilution steps. 20 µl from each dilution was 

placed, in triplicate, into five LB agar plates, containing one of the following stress agents: 

100 mM 4-Morpholine ethanesulfonic acid (MES) (Sigma) pH 5.0, 100 mM MES pH 5.0 + 1 

mM sodium nitrite (NaNO2) (Sigma), 1 mM methyl viologen (MV) (Sigma) pH 7.0, 1 mM 

hydrogen peroxide (H2O2) (Sigma) pH 7.0, and a plain LB agar at pH 7.0 was used as a 

control. Plates were then subjected to the incubator for overnight incubation at 37°C 

(Summarised in Figure 2.8). This method as per [244]. 
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Figure 2.8 A diagram summarising the main steps of performing bacteria stress tolerance tests. 
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2.11 RNA extraction and cDNA synthesis of intra-macrophage E. coli 

strains besides those grown in acidic M9 media  

 

Using the RNeasy Mini Kit (Qiagen; Ltd, Crawley, UK), bacterial RNA was extracted from 

Crohn’s AIEC strain HM605, and laboratory E. coli strains (EPI300, XL-1Blue and K-12) 

cultured in acidic (pH 4.5) M9 media at 6h time point of their growth curve. In additional 

separate experiments, RNA from was isolated from AIEC HM605 and EPI300 inside J774-

A1 macrophages post 3h and 6h infection.  

 

Bacteria cells were lysed by adding 350 µl of RLT lysis buffer (Qiagen) to each bacterial 

pellet and mixed by pipetting up and down, followed by vortexing and centrifugation at full 

speed (Hawk 15/05 microcentrifuge, with rotor radius of 75 mm) in a 2ml Qia-shredder tube 

(Sigma) for 2 min. One volume of 70% v/v ethanol was added to the lysate and mixed by 

pipetting. A 700µl aliquot of each sample was then transferred into RNeasy Mini spin 

columns (RSC) placed in a 2 ml collection tube and centrifuged ≥8000 rpm (centrifuge as 

above) for 15 seconds. After discarding the flow-through, 700µl buffer RW1 was added to 

the RCS and samples again centrifuged for a further 15 seconds. The flow-through was 

discarded and 500µl buffer RPE was then added to the RCS followed again by 15 seconds 

centrifugation. After discarding flow-through, another 500 µl buffer RPE was again added to 

the RCS and centrifuged for 2 min, again at ≥8000 rpm. The RCS was placed in 1.5 

collection tube and 45µl RNase-free water was directly added to centre of the RCS, and 

centrifuged at ≥8000 rpm for 1 min to elute the extracted RNA. A NanoDrop Lite 

Spectrophotometer (Thermo Fisher Scientific, USA) was used to quantify the eluted RNA 

(with concentrations routinely obtain ranging from 50 to 100 ng/µl). Complementary DNA 

(cDNA) at concentration ranging from 2-2.5 µg/µl was synthesised from the sample RNA 

using a Transcriptor First Strand cDNA Synthesis Kit (Roche Diagnostics Ltd., Burgess Hill, 

UK) was initiated by adding the all components presented in the following Table 2.2. The 

reaction tube was then incubated at 25ºC in a bench heating block for 10 min, then at 55ºC 

for a further 30 min, followed by heating to 85ºC for 5 min to inactivate Transcriptor Reverse 

Transcriptase. The sample was then cooled on ice for 5 min. The cDNA was stored at -20ºC 

freezer for use in subsequent qRT-PCR experiments.  
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Table 2.2 Components for setting up a single reverse transcription reaction. 

 

 

  

Component Volume

Sample RNA

Final concentration

2.5 µM

2 µl

1 µl
Anchord-oligo(dt)18 

primer, 50pmol/µl

Water, PCR-grade 10 µl

Transcriptor Reverse 

Transcriptase Reaction 

Buffer, 5x concentration
4 µl 1 x

Protector Rnase 

Inhibitor, 40 U/µl
0.5 µl 20 U

Deoxynucleotide Mix 2 µl 1 mM

Transcriptor Reverse 

Transcriptase,20 U/µl
0.5 µl 10 U

Final volume 20 µl
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2.12 Quantitative real time polymerase chain reaction analysis (qRT-PCR) 

for assessment of bacteria stress genes supporting acid tolerance 

 

Quantitative RT-PCR was performed in order to quantify the expression levels of stress 

response genes of the Glutamic acid decarboxylase operon (gad) system, used for tolerance to 

an acidic environment, by E. coli strains EPI300, K-12, XL-1Blue and CD AIEC HM605 

grown in an acidic (pH 4.5) low nutrient (M9) growth medium and those within the 

phagolysosome of J774-A1 macrophages. After reverse transcription of extracted RNA from 

bacteria, 5 µl of the cDNA template was added into each well of the Light Cycler® 480 

Multiwell plate, containing 15 µl of PCR mix (Roche Diagnostics Ltd., UK) prepared by 

mixing 10 µl Light Cycler® 480 Sybr Green I Master with 2 µl primers, listed in Table 2.3, 

which are real-time oligonucleotide primers designed by Eurogentec (Southampton, UK), in a 

final volume (3 µl) of water, PCR- grade. In each experiment, 5µl of water PCR-grade was 

added into PCR mix regarded as no template control (NTC). As a training test to fulfil our 

curiosity, a PCR mix was prepared by adding 2 µl of uidA primers into 2 µl Taqman probe 

(200nM), 10 µl Light cycler® 480 probe master mix and 2 µl water, PCR-grade and then 5 µl 

of each dilution from the fivefold serial dilutions (1:5) of E. coli K-12 cDNA templates were 

added to the PCR mix in the multiwell plate. Multiwell plates were sealed and then 

centrifuged at 1500 g (Sorvall Heraeus, Multifuge 3S-R, rotor radius 145 mm) for 2 min. 

Using the Light Cycler® 480 Instrument, multiwell plate was loaded and afterwards run with 

conditions as per the manufacturer’s instructions (Light Cycler® 480 Sybr Green I Master, 

Roche): 95 °C for 5 min then 45 cycles of 95 °C for 10 sec and 60 °C for 20 sec followed by 

72°C for 30 seconds and then cooling step of 40 °C for 10 sec. The specificity of 

amplification was confirmed by melting curve analysis.  All reactions were run in duplicate. 

Threshold cycle (Cp) for each well was automatically defined by the real time cycler 

software. 
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Table 2.3 Oligonucleotide primers used in this study to measure gadA and gadB expression by qPCR. 

 

 

Primer sequences taken from Smith et al.[315] 
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2.13 RT2 Profiler PCR Array to quantify host macrophage oxidative stress 

response genes in response to E. coli infection  

 

The Qiagen/SABiosciences RT2 Profiler PCR Array (Catalogue Number 330231 PAMM-

065ZA, Qiagen Ltd, Crawley, UK) was used to quantify the level of 84 oxidative stress genes 

expressed from J774-A1 macrophages post 6h infection with Crohn’s AIEC HM605, LF82 

and laboratory E. coli strain EPI300 (see Table 2.4). RNA of these infected cells was 

extracted using RNeasy, Mini Kit (Qiagen), followed by cDNA synthesis using RT2 First 

Strand Kit (Catalogue Number 330401; Qiagen). An aliquot (91 μl) of RNase-free water was 

then added into each sample cDNA. The cDNA concentration of all samples was ranging 

from 168 to 309 ng/µl, see Table 2.5. 

 

RT2 PCR components mix was prepared in a 5 ml tube as described in Table 2.6. Since the 

PCR Array plate already contains primers, 25 μl PCR components mix was then dispensed to 

each well of the RT2 Profiler PCR Array plate using an 8-channel pipette. The plate was 

carefully sealed and centrifuged for 1 min at 1500 g in a Sorvall Heraeus Multifuge 3S-R, 

rotor radius 145 mm) for 2 min. RT2 Profiler PCR Array plate was placed in Light Cycler 480 

and the PCR cycling program was set up according to Table 2.7.  The Cp values for all wells 

were exported to Excel files and uploaded on 

http://pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php (accessed 08-12-2016) 

for analysis. 

  

http://pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php


63 

 

 

Table 2.4 RT2 PCR Oxidative stress profiler array gene list (Mouse). 

 

Antioxidants 

Glutathione Peroxidases (GPx): Gpx1, Gpx2, Gpx3, Gpx4, Gpx5, Gpx6, Gpx7, Gstk1, Gstp1. 

Peroxiredoxins (TPx): Ehd2, Prdx1, Prdx2, Prdx3, Prdx4, Prdx5, Prdx6 (Aop2). 

Other peroxidases: Apc, Cat, Ctsb, Duox1, Epx, Lpo, Mpo, Ptgs1 (COX1), Ptgs2 (COX2), Rag2, Serpinb1b, Tpo. 

Other Antioxidants: Alb, Gsr, Sod1, Sod3, Srxn1, Txnrd1, Txnrd2, Txnrd3. 

Reactive Oxygen Species (ROS) Metabolism 

Superoxide Dismutases (SOD): Sod1, Sod2, Sod3. 

Superoxide Metabolism Genes: Ccs, Cyba, Ncf1, Ncf2, Nos2  (iNOS), Nox1, Nox4, Noxa1, Noxo1, Recql4, Scd1, Ucp2. 

Other Reactive Oxygen Species (ROS) Metabolism Genes: Aox1, Fmo2, Il19, Il22. 

Oxidative Stress Responsive Genes:  

Als2, Apoe, Cat, Ccl5 (RANTES), Ctsb, Duox1, Epx, Ercc2 (XPD), Ercc6, Fth1, Gclc,Gclm, Gpx1, Gpx2, Gpx3, Gpx4, G

px5, Gpx6, Gpx7, Gsr, Gss, Hmox1, Hspa1a (hsp70A1), Idh1, Krt1, Mpo, Nqo1, Park7,Prdx1, Prdx2, Prdx6 (Aop2), Prnp

, Psmb5, Sod1, Sqstm1, Tpo, Txn1, Txnip, Txnrd1, Txnrd2, Ucp3, Xpa. 

Oxygen Transporters 

Atr, Cygb, Dnm2, Fancc, Ift172, Mb, Ngb, Slc38a1, Vim. 

 

https://www.qiagen.com/gb/shop/pcr/primer-sets/rt2-profiler-pcr-arrays/?catno=PAMM-

065Z#geneglobe (accessed 08-12-2016). 
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Table 2.5 cDNA concentration of J774-A1 at 6h post infection. 

 

 

 

 

Table 2.6 RT2 PCR component mix. 

 

 

 

Table 2.7 Cycling conditions for Roche Light Cycler 480. 

 

 

 

  

J774-A1macrophages Uninfected EPI300 HM605

Sample 1 179 ng/µl 309 ng/µl 195 ng/µl

Sample 2 208 ng/µl 170 ng/µl 168 ng/µl

Sample 3 180 ng/µl 302 ng/µl 206 ng/µl

Array Format 96-well

RT2 SYBR Green Mastermix (2x) 1350µl

cDNA reaction 102µl

RNase free water 1248µl

Total volume 2700µl

Procedure Cycles Duration Temperature (oc)

Pre-incubation 1 10 min 95

Amplification 45 15 sec

1 min

95

60

Melt Curve 1 95

Cooling 1 1 min 30
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2.14 Data analysis 

 

All data sets presented in this thesis are expressed as mean ± SEM unless otherwise stated, 

where N is the total number of individual experiments (or mice) and n is the number of 

sample replicates.  Independent sample groups were assessed for normality by Shapiro-Wilk 

test. Equality of sample variances were analysed by Levene’s test. Following this, statistical 

comparisons of normally distributed data sets were performed by one way analysis of 

variance (ANOVA) followed by Dunnett’s post-hoc test to make pair-wise comparisons of 

treatment means to untreated/uninfected controls (StatsDirect version 2.6.2; Sale, United 

Kingdom). This included comparisons of survival and fold replications of CD E. coli strains 

compared to treatment with a non-replicating control E. coli EPI300 (i.e. for the intra-

macrophage replication assays), and also comparisons of the survival/growth of IBD and 

non-IBD E. coli strains under various chemical stress conditions compared to unstressed 

control conditions. Differences were considered significant when P<0.05. Where appropriate, 

non-parametric correlation coefficient (Spearman’s rank) analysis was used to assess for any 

association between % bacterial growth in stress conditions and ability to replicate inside 

murine macrophages. 
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Chapter 3  

  

Investigating the ability of E. coli strains from various diseases to replicate 

inside murine macrophages 
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3.1 Introduction  

 

Several studies examined gut microbiota in the inflamed and non-inflamed segments of CD 

and UC, and established a significant reduction in the biodiversity of faecal and mucosa-

associated microbiome in IBD patients compared with those healthy controls [66], reported 

that a relative decrease of Firmicutes and Bacteriodetes phyla, and an increase of 

Proteobacteria, particularly the family Enterobacteriaceae (including species such as E. coli) 

in CD, while in UC,  there is reduction in Clostridium spp. and an increase in E. coli [316], 

see Introduction, section 1.2.1. Mucus, coating the healthy intestine is discontinuous in the 

small intestine and continuous in the colorectum, consisting of two layers: the outer of which 

is a loosely adherent layer which contains/is inhabited by commensal bacteria representative 

of the faecal stream and an inner tightly adherent layer which is normally sterile, as is the 

sub-mucus niche, so as to protect the epithelium. Mucosa-associated E. coli (including the 

phenotype AIEC) have been found in increased number in the ileal and colonic mucosae 

(including the inner adherent mucus layer) of CD patients [30, 36, 317, 318] and to a lesser  

extent patients with UC [119, 142] and colorectal cancer (CRC) [139, 143]. AIEC phenotype 

has been found to represent 9.3%, 3.7% and 3.1% of E. coli population obtained from ileal, 

ileo-colonic and colonic biopsies of CD patients [319]. In addition, clear experimental 

evidence has been provided for the causal role of gut bacterial dysbiosis in chronic ileal 

inflammation development (Crohn's disease-like ileitis) [320].  

 

A number of independent studies have reported that intra-mucosal E. coli or mucosa-

associated E. coli isolated from CD patients possess invasive properties. For example, in vitro 

studies on paradigm CD AIEC strains from the ileum, LF82, and from the colon, HM605 

[117, 138, 139] showed they possessed the ability to translocate and replicate within both 

murine and human monocyte-derived macrophages (HMDM) [8, 305, 321, 322].  Electron 

microscopy, in addition, validated the ability of Crohn’s strains LF82 and HM605 replication 

inside vacuoles/phagolysosome [8, 131, 305, 321]. Interestingly, AIEC strains were isolated 

from the mucosa of healthy subjects and found to be more abundant in the ileum than the 

colonic mucosal biopsies [30]. Supported by the fact that AIEC strains have been isolated 

from healthy individuals, they are probably better defined as pathobionts (disease-causing 

organisms that live as symbionts under circumstances of normal gut health) [138, 283]. 
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Despite all the advances that have been made in the last decade, more knowledge on AIEC 

pathogenesis and that regarding AIEC-macrophage interactions are still required, including 

whether AIEC are involved in the aetiology of CD and/or the mechanisms/environmental 

triggers that determine their increased presence in high numbers the inflamed mucosae of CD 

patients. Understanding the mechanisms of AIEC-host macrophage interactions in the 

pathogenesis of CD may provide key insight into CD pathogenesis and enable to develop 

different therapeutic strategies, based on the killing/clearance of this CD mucosa-associated 

pathovar. Here, we aimed, as an initial step, to assess and compare the survival and 

replication abilities of a number of CD, UC and CRC mucosally-associated E. coli strains, 

pathogenic E. coli strains isolated from patients with urinary tract infection (UTI), non-

pathogenic E. coli strains isolated from healthy individuals, and non-pathogenic laboratory E. 

coli strains within murine macrophages in vitro using a gentamicin protection assay (see 

Materials & Methods; section 2.6). This would likely shed light on the best paradigmatic E. 

coli strains representing each disease to be singled for further studies. Some of these studied 

E. coli strains isolated from CD, UC and CRC, meet the criteria of being designated as AIEC 

phenotype [148], including the following examples: CD (HM95, HM605 and HM615, and 

LF82), UC (HM457), and CRC (HM44 and HM358). For a full listing, see Materials & 

Methods, section 2.1.1. For all other E. coli strains, their origin/source is known, but their 

phenotype is not well established, i.e. they have not be examined to determine as to whether 

they can be designated as AIEC or non-AIEC. Crohn’s AIEC strains, during the later phase 

of murine macrophage infection, induce chronic activation of NF-κB, which correlates with 

increased TNF-α secretion [323]. AIEC replication within macrophages is suggested to be 

dependent on TNF-α secretion [8, 149, 324]. In addition, how intra-macrophage replicating 

Crohn’s AIEC strains HM605 and LF82 behave within murine BMDM from various Nfκb  

family member knockout mice, including the classical pathway Nfκb1-/- (p105→p50) and c-

Rel-/- (p65) and alternative pathway Nfκb2-/- (p100→p52) was examined [325]. Phagocytosis 

of these BMDMs from mice with immune response-related gene deletions (e.g., Il-1r-/-, Il-

18r-/- and the TLR adaptor Myd88-/-) was also examined. 
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3.2 Crohn’s disease mucosa-associated AIEC HM605 shows greater ability 

to survive and replicate inside macrophages compared to other E. coli  

 

Determination of fold replication of bacteria within murine J774-A1 macrophages showed 

that the paradigm Crohn’s disease (CD) mucosa-associated ileal isolate LF82 significantly 

survived and replicated within macrophages (4.056 ± 1.16-fold [mean ± SD]) compared to a 

non-adherent, non-invasive laboratory strain E. coli K-12 derivative EPI300 (0.83 ± 0.42); 

P<0.05; n=3, ANOVA. Similarly, and to a greater extent, the two paradigm CD mucosa-

associated colonic E. coli isolates HM615 (4.87 ± 1.06-fold; p<0.01) and HM605 (8.97 ± 

0.67-fold increase; p<0.0001) also showed significant survival and replication within 

macrophages (see Figure 3.1).  

 

 

Figure 3.1  Intramacrophage survival and replication of paradigm Crohn’s disease mucosa-associated 

AIEC. 

Increased replication of Crohn’s disease mucosa-associated AIEC ileal isolate LF82, and two colonic isolates 

HM615 and HM605 compared with the reference non-pathogenic E. coli K-12 derivative strain EPI300 within 

J774-A1 murine macrophages. Results are expressed as the relative number of intracellular bacteria at 6h post 

infection relative to that obtained after 3h post infection (i.e. bacteria fold replication). Each value represents the 

mean ± standard error of the mean (SEM) of three independent experiments (N=3) with 3 replicates undertaken 

(n=3). Differences in survival and replication of each AIEC were statistically significant. *P ≤ 0.05, **P ≤ 0.01, 

and ****P ≤ 0.0001 respectively; ANOVA with Dunnett’s post-hoc test compared to the reference laboratory E. 

coli strain EPI300.  
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The gentamicin exclusion assay, using J774-A1 macrophages, was further expanded to 

compare the paradigm CD AIEC strains with other E. coli from various conditions (including 

additional E. coli strains from CD, mucosally-associated isolates from UC patients, CRC 

patients, UTI isolates and those from the non-inflamed intestine of healthy individuals.  

Overall, Crohn’s disease (ileal and colonic) mucosa-associated E. coli strains showed 

significantly greater ability to survive and replicate within J774-A1 murine macrophages 

compared to E. coli isolates from healthy individuals and patients with UC, CRC and those 

with a UTI ; see Figure 3.2. Comparison of intra-macrophage survival and replication inside 

J774-A1 macrophages of individual strains to that observed with CD AIEC HM605 (10.18 ± 

1.82-fold [mean ± SD]; N=6, n=3) and non-pathogenic EPI300 (0.51 ± 0.16–fold; N=6, n=3) 

were as follows:  CD colonic E. coli isolates HM95 (3.68 ± 0.54-fold) and HM413 (3.7 6± 

0.27-fold) and ileal isolate LF86 (4.54 ± 0.43- fold) and LF82 (4.06 ± 1.16-fold) replicated 

significantly better than CD E. coli HM427 (1.07 ± 0.28-fold), HM96 (1.19 ± 0.20-fold) and 

HM104 (0.94 ± 0.15-fold); N=1-3, n=3; see Figure 3.2. 

 

Non-pathogenic laboratory E. coli strains, including the reference strain EPI300 (see above), 

E. coli XL-1 Blue (0.89 ± 0.07-fold), and two S. Typhimurium strains (ST4/74 and ST LT2 

[0.92 ± 0.06 and 0.88 ± 0.10-fold respectively], showed inability to resist intra-macrophage 

killing at 6h; Figure 3.2. Some isolates were just able to survive at 6h, not to replicate, inside 

macrophages, including E. coli K-12 strain (1.07 ± 0.05-fold), and isolates from healthy 

individuals ECOR51 (1.11 ± 0.18-fold) and HM488 (1.42 ± 0.13-fold). However, some 

healthy E. coli isolates were also seen to replicate effectively inside murine macrophages, 

such as ECOR35 (2.05 ± 0.33-fold) and ECOR1 (5.62 ± 1.28-fold).  All UTI-associated E. 

coli strains showed ability to survive and replicate within J774-A1 macrophages, albeit to 

varying degrees, including significant replication by ECOR64 (7.15 ± 1.24-fold; P<0.001 

ANOVA) and lower level (non-significant) replication by ECOR40 (2.47 ± 0.53), ECOR50 

(2.24 ± 1.05) and ECOR48 (1.59 ± 0.52-fold). In contrast, all CRC mucosa-associated E. coli 

isolates HM44, HM312 and HM358 were killed by J774A1 macrophages at 6h. Similarly, 

some UC mucosa-associated E. coli isolates, including HM250 (0.67 ± 0.21-fold) and 

HM464 (0.50 ± 0.09-fold) were also effectively killed, although other UC mucosa-associated 

E. coli either just survived or minimally replicated within murine macrophages at 6h 

(HM394, 1.07 ± 0.04 -fold and HM233, 2.12 ± 0.50 –fold compared to EPI300).  
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3.3 Confirmation of generation of mature bone marrow-derived 

macrophages (BMDM) from cryopreserved mouse femur bone marrow 

(BM) cells by F4/80 glycoprotein expression analysis 

 

In order to verify that the BM cells from wild-type C57Bl/6 mice and knock-out mice strains 

on C57Bl/6 background differentiated into mature macrophages after being cultured in media 

supplemented with rM-CSF (100 ng/mL) for 6 days, immunocytochemistry using anti-mouse 

F4/80 antibody was performed. The following representative images show the expression of 

F4/80 antigen on mature BMDM from wild-type and one of the knock out strains, Nfκb2-/- 

mice (Figure 3.3). 

 

 

Figure 3.3 Immunocytochemistry using anti-mouse F4/80 EMR1 antibody (CI-A3-1). 

Two representative images of adherent BM cells from Nfκb2-/- (A) and C57BL/6 (B) mice following 6d of 

differentiation in rM-CSF (100ng/mL) showing  branched and extended cellular morphology and 

immunoreactivity with anti-mouse F4/80 antibody. Blue arrows point to sites of mature macrophage aggregation 

with high level F4/80 antigen expression. (Magnification x20) N=2 mice, n=2 replicates. 

Nfkb2-/- BMDM
A

B
C57BL/6 BMDM
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3.4 Crohn disease (CD) mucosa-associated AIEC HM605 and LF82 

replicate inside C57Bl/6 BMDM 

 

Intra-phagolysosome survival and replication of CD AIEC HM605 within wild-type C57Bl/6 

BMDM at 6h post-infection was 4.47 ± 1.00-fold [mean ± SD] above that seen at 3h post 

infection; BM cells were obtained from a wild-type mouse C57BL/6 (n=2♂, n=2♀), N=3, 

n=2 replicates; see Figure 3.4A and Figure 3.4B. The paradigm ileal CD AIEC isolate LF82 

also replicated within wild-type BMDM at a similar level (4.00 ± 0.75-fold), N=1, n=2 

replicates; Figure 3.4A and Figure 3.4C. These results indicate these AIEC strains are able 

to survive and significantly replicate within wild-type C57Bl/6 BMDM differentiated from 

cryopreserved mouse femur bone marrow using rM-CSF (100 ng/mL, over 6 days). 

 

 

3.5 Crohn’s disease AIEC strains HM605 and LF82 are unable to survive 

nor replicate within Nfκb1 and Nfκb2 deficient murine BMDM 

 

Intra-macrophage replicating CD mucosa-associated AIEC strains HM605 and LF82 were 

both unable to replicate or to survive inside BMDM, derived from Nfκb1-/- (Figure 3.5A) or 

Nfκb2-/- mice (Figure 3.5B). Relative replication within BMDM from Nfκb1-/- was 0.47 ± 

0.19-fold and 0.56 ± 0.28-fold respectively for HM605 (N=2, n=2) and LF82 (N=1, n=2); 

with relative replicate in Nfκb2-/- BMDM being 0.82 ± 0.06-fold and 0.25 ± 0.08-fold for 

HM605 (N=3, n=2) and LF82 (N=1, n=2) respectively. 
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Figure 3.4 Intra-macrophage replication of Crohn’s disease AIEC HM605 and LF82 in C57Bl/6 BMDM. 

(A) CD mucosa-associated E. coli HM605 and LF82 showed ability to survive and replicate within wild-type  

C57BL/6 BMDMs as determined by gentamicin protection assay, 6h/3h post infection. Representative images of 

intra-macrophage HM605 and LF82 respectively at 3h and 6h post infection time for (B) HM605 and (C) LF82 

as determined by overnight culture on LB agar and CFU enumeration; HM605; N=3, n=2 replicates, and LF82; 
N=1, n=2 replicates. 
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Figure 3.5 Crohn’s disease (CD) AIEC HM605 and LF82 show inability to survive and replicate within 

Nfκb1-/- and Nfκb2-/- BMDM. 

As determined by gentamicin protection assay, at 6h/3h post infection, both CD mucosa-associated E. coli 

HM605 and LF82 showed inability to survive and replicate within (A) Nfκb1-/- BMDM [N=2, n=2 replicates for 

HM605 and N=1, n=2 replicates for LF82], and (B) Nfκb2-/-BMDM [N=3, n=2 replicates for HM605 and N=1, 

n=2 replicates for LF82]. (C) Representative images of AIEC HM605 CFU grown overnight on LB agar plates 

obtained by lysis of Nfκb2-/- BMDM at 3h and 6h post infection.  
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3.6 Crohn’s disease mucosa-associated AIEC strains HM605 and LF82 

survive and replicate normally within c-Rel-/- BMDMs 

 

Crohn’s AIEC strain HM605 survived and replicated within c-Rel-/- BMDMs (2.70 ± 0.62-

fold; N=1, n=2) at levels similar to those seen for wild-type BMDM; see Figure 3.6A and 

Figure 3.6 B. For ileal CD mucosa-associated LF82, this isolate was seen to only survive 

(and not replicate) at 6h post infection within BMDM from c-Rel-/- mouse (1.10 ± 0.32-fold at 

6h/3h; N=1, n=2) see Figure 3.6A and Figure 3.6C respectively. The ability to only survive 

(and not replicate) has been previously observed in some J774-A1 intramacrophage 

replication assays using the AIEC LF82. 
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Figure 3.6 HM605 and LF82 fold replication within c-Rel-/- BMDM. 

(A) Bacteria fold replication of Crohn’s AIEC HM605 and LF82 within c-Rel-/- BMDM. (B) Representative 

examples of LB agar plates, containing bacteria colonies of AIEC HM605, and (C) AIEC LF82 obtained from 

intra c-Rel-/- BMDM at time points 3h and 6h post infection. N=1, n=2 replicates. 
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3.7 Other immune-related gene knockout BMDM infected with HM605 at 

MOI of 100 show better outcomes 

 

Long-term cryopreserved BM (>10 years frozen in liquid N2) from immune-related gene 

knock-out animals showed high variability in ability to differentiate to BMDM. Whilst Il-1r-/- 

Il-18r-/- and Myd88-/- BM progenitor cells differentiated well into macrophages when cultured 

within media supplemented with rM-CSF. 

 

In gentamicin exclusion assay, the intracellular bacteria were typically counted at 102 fold 

dilution of cell lysates infected at MOI of 10, but unfortunately no intracellular bacteria were 

obtained from, Il-1r-/-, Il-18r-/- , and Myd88-/- BMDM cells in 102 fold dilution plates (N=1, 

n=2 replicates). Therefore, in order to troubleshoot this issue, it was decided to infect 

BMDMs with CD AIEC HM605 and LF82 at both MOI of 10 and 100, and comparisons 

made (Figure 3.7). Representative images (Figure 3.7A and B) show that the intracellular 

bacterial numbers of the plates of the neat and 101 fold dilutions of lysates of cells infected at 

MOI of 100 were higher than those infected at MOI of 10. Figure 3.7C and D show 

comparison between the numbers of intracellular bacteria in the plates of neat and 101 fold 

dilutions of Il-1r-/- cell lysates infected at MOI of 10 at 3h with those at 6h post infection. 

Intra-macrophage replication of both HM605 and LF82 were seen to be higher (∼5 and ∼1.5-

fold respectively) in Il-1r-/- murine BMDM (N=1, n=2). Other knockout BMDMs did not 

yield any conclusive datasets. Since all these BM cells were cryopreserved for many years 

(since 2002), it is more likely that the age of BM presented a challenge to effect adequate 

differentiation to mature/active macrophages and those that had differentiated showed little or 

no functional ability to examine intra-macrophage survival and replication.  

 

Phagocytic function analysis of the various genes knock-out BMDM versus wild-type 

C57BL/6 BMDM cells showed no defect in ability to phagocytose and internalise 

fluorescein-labelled heat-killed E. coli K-12 in Nfκb-/- and Myd88-/- BMDM cells (Figure 

3.8). In contrast, phagocytosis was noticed to be impaired in Il-1r-/- and Il-18r-/- BMDM and 

these two cells were unable to degrade fluorescein-labelled heat-killed E. coli K-12 (Figure 

3.8).  
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Figure 3.7 Comparisons between cells infected at MOI of 10 and MOI of 100 (Panel A). 

Bacteria inside C57BL/6 BMDM cells, 3h post infection with AIEC HM605 at MOI of 10 compared with at 

MOI of 100 (A) and with AIEC LF82 at MOI of 10 compared with at MOI of 100 (B). A comparison between 

the intra- Il-1r-/-   BMDM numbers of HM605 (C) and LF82 (D) at 3h and 6h post infection. N=1, n=2 replicates. 
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Figure 3.7 (Continued): Comparisons between cells infected at MOI of 10 and MOI of 100 (Panel B). 

Bacteria inside C57BL/6 BMDM cells, 3h post infection with AIEC HM605 at MOI of 10 compared with at 

MOI of 100 (A) and with AIEC LF82 at MOI of 10 compared with at MOI of 100 (B). A comparison between 

the intra- Il-1r-/-   BMDM numbers of HM605 (C) and LF82 (D) at 3h and 6h post infection. N=1, n=2 replicates. 
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Figure 3.7 (Continued): Comparisons between cells infected at MOI of 10 and MOI of 100 (Panel C). 

Bacteria inside C57BL/6 BMDM cells, 3h post infection with AIEC HM605 at MOI of 10 compared with at 

MOI of 100 (A) and with AIEC LF82 at MOI of 10 compared with at MOI of 100 (B). A comparison between 

the intra- Il-1r-/-   BMDM numbers of HM605 (C) and LF82 (D) at 3h and 6h post infection. N=1, n=2 replicate. 
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Figure 3.7 (Continued): Comparisons between cells infected at MOI of 10 and MOI of 100 (Panel D). 

Bacteria inside C57BL/6 BMDM cells, 3h post infection with AIEC HM605 at MOI of 10 compared with at 

MOI of 100 (A) and with AIEC LF82 at MOI of 10 compared with at MOI of 100 (B). A comparison between 

the intra- Il-1r-/-   BMDM numbers of HM605 (C) and LF82 (D) at 3h and 6h post infection. N=1, n=2 replicates. 
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Figure 3.8 Phagocytosis time course studies (Panel A). 

Phagocytosis was intact in C57BL/6 BMDM (A) Nfκb2-/-(B), and Myd88-/-(E) BMDM cells. In contrast, 

phagocytosis was impaired in Il-1r-/- (C) and Il-18r-/- (D) BMDM respectively. 
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Figure 3.8 (Continued):  Phagocytosis time course studies (Panel B). 

Phagocytosis was intact in C57BL/6 BMDM (A) Nfκb2-/-(B), and Myd88-/-(E) BMDM cells. In contrast, 

phagocytosis was impaired in Il-1r-/- (C) and Il-18r-/- (D) BMDM respectively. 

 

 

 

 

 

 

 

 

Nfkb2-/- BMDM

3h post infection 6h post infection 

24h post infection 

B



85 

 

 

 

 

 

Figure 3.8 (Continued): Phagocytosis time course studies (Panel C). 

Phagocytosis was intact in C57BL/6 BMDM (A) Nfκb2-/-(B), and Myd88-/-(E) BMDM cells. In contrast, 

phagocytosis was impaired in Il-1r-/- (C) and Il-18r-/- (D) BMDM respectively. 
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Figure 3.8 (Continued): Phagocytosis time course studies (Panel D). 

Phagocytosis was intact in C57BL/6 BMDM (A) Nfκb2-/-(B), and Myd88-/-(E) BMDM cells. In contrast, 

phagocytosis was impaired in Il-1r-/- (C) and Il-18r-/- (D) BMDM respectively. 
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Figure 3.8 (Continued): Phagocytosis time course studies (Panel E). 

Phagocytosis was intact in C57BL/6 BMDM (A) Nfκb2-/-(B), and Myd88-/-(E) BMDM cells. In contrast, 

phagocytosis was impaired in Il-1r-/- (C) and Il-18r-/- (D) BMDM respectively. 
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3.8 Summary of results 

 

1. All Crohn’s ileal- and colonic-mucosa associated E. coli strains, excepting one isolate 

HM104, possessed ability to either survive and/or replicate within murine (J774-A1) 

macrophages. Interestingly, all UTI E. coli isolates and some healthy mucosa-

associated E. coli strains behaved in a similar manner. 

 

2. All CRC mucosa-associated E. coli strains tested, two out of four UC mucosa-

associated isolates and the majority of laboratory E. coli strains (excepting E. coli K-

12) were unable to survive inside J774-A1 macrophage phagolysosomes. 

 

3. Wild-type C57BL/6 mouse BM cells and murine Nfκb1-/-, Nfκb2-/- and c-Rel-/- BM 

progenitor cells (fresh and 2-8 week frozen cells) were successfully differentiated into 

macrophages when cultured within media supplemented with rM-CSF. Mature 

BMDM macrophages generated were identified by cell morphology analysis and by 

their expression of F4/80 epitope using immunocytochemistry. 

 

4. Crohn’s disease paradigm ileal and colonic AIEC strains LF82 and HM605, showed 

ability to survive and replicate within wild-type C57BL/6 BMDMs. Data suggests that 

both paradigm CD isolates were unable to survive and replicate inside Nfκb1-/- and 

Nfκb2-/- BMDMs, whilst they both survived and replicated within BMDM derived 

from c-Rel-/- mice. No defect in the phagocytosis was seen in Nfκb-/- family BMDMs. 
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3.9 Discussion 

 

There is growing evidence supporting the hypothesis that Crohn’s disease (CD), a chronic-

relapsing inflammatory bowel disease (IBD),  is a result of innate immunodeficiency, such as 

a defect in bacteria handling and clearance, and impaired neutrophil chemotaxis [94, 326]. 

However, no abnormality in phagocytosis and respiratory burst function of monocyte-derived 

macrophages (MDM) obtained from CD patients has been described to date [327]. 

 

Our intra-macrophage replication assays, simultaneously comparing relative replication of 

various E. coli strains from 4 different diseases (CD, UC, CRC and patients with a UTI) 

along with from non-IBD control patients, is the first to our knowledge. Paradigm CD ileal 

and colonic AIEC (LF82 and HM605 respectively), were shown to possess ability to survive 

and replicate following engulfment by antigen-presenting immune cells such as macrophages 

and dendritic cells known to play critical roles in the induction of chronic inflammation (see 

Chapter 3, section 3.2) and this is in agreement with our own previous findings [131, 149, 

179]  and that observed by others [8, 229, 242, 243]. E. coli isolates from UTI patients along 

with some healthy-mucosa associated E. coli strains, obtained from healthy individuals also 

showed the ability to replicate within (J774-A1) macrophages. The latter result is consistent 

with findings of Subramanian et al. [149] in which mucosa-associated E. coli strains isolated 

from the non-inflamed intestine of non-IBD patients, diagnosed with sporadic benign polyp 

lesions or with IBS, were able to significantly replicate within J774-A1 macrophages (see 

reference [149]). Likewise, there is some evidence in the literature that UPEC strains isolated 

from patients with UTI can also survive and replicate within mouse macrophages, as well as 

replicating within urogenital epithelial cells [328, 329]. A previous study has shown that 7% 

of UPEC meet the criteria of the AIEC phenotype [30]. In contrast, all CRC mucosa-

associated E. coli strains tested and the majority of laboratory E. coli strains (excepting E. 

coli K-12) were unable to survive inside J774-A1 macrophage phagolysosomes. E. coli K-12 

was able to survive within murine macrophages over 6h and this result has also been 

previously observed by Subramanian and colleagues [149]. Two out of four UC mucosa-

associated isolates and the majority of laboratory E. coli strains (excepting E. coli K-12) were 

unable to survive inside J774-A1 macrophage phagolysosomes. It has been documented that 

there is lower prevalence of E. coli-laden macrophages seen in UC [330], supporting earlier 
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studies where levels of intramucosal bacteria isolated from UC was found to be much lower 

than that seen in CD [139, 141, 330]. Here 2/3 colonic mucosa-associated isolates from UC 

mucosae were shown to possess ability to replicate within murine macrophages and further 

study on a greater number of clinical isolates is warranted.  

 

A correlation between the colonic E. coli colonization density and the severity of ileal 

inflammation in Crohn’s patients has been demonstrated [157]. Pathogenic E. coli, being able 

to penetrate the intestinal epithelial barrier and resist macrophage killing process, have been  

found to be able to trigger a huge host inflammatory response [331]. Infected murine 

macrophages (J774-A1) harbouring Crohn’s disease AIEC strains within, including LF82 and 

13I, found to secrete high levels of proinflammatory cytokine TNF [323, 324, 332]. AIEC 

LF82 and 13I strains appear to survive within murine macrophage phagolysosomes by 

suppressing acute NF-κB signal pathway activation during the initial phase of infection, a 

common strategy used by other pathogenic bacteria for their intra-cellular survival [323, 333, 

334]. Persistence of intra-macrophage AIEC during the later phase of infection seems to be 

through induction of chronic activation of NF-κB, which correlates with increased TNF 

secretion from infected macrophages [323]. Exogenous addition of TNF was also reported to 

increase intra-macrophage replication of AIEC LF82 [324], with secreted levels correlating to 

number of intra-macrophage AIEC LF82 within infected monocyte-derived macrophages 

(MDM) [335], Interestingly, AIEC (LF82)-infected MDM- from patients with quiescent CD 

appear to release significantly higher amounts of both IL-6 and TNF than those obtained from 

patients with active disease or those from healthy controls. although our own recent 

laboratory studies indicate that peripheral blood monocyte-derived macrophages obtained 

from healthy volunteers and Crohn’s patients produced roughly similar quantities of 

proinflammatory cytokines, including TNF, after infection with Crohn’s mucosa-associated 

AIEC HM605 [205]. 

 

Plasma TNF levels in Crohn’s patients with active disease are known to be significantly high 

[336]. Inhibition of proinflammatory cytokine production (including TNF) by triterpene 

ganoderic acid C1 (GAC1) treatment of  either isolated peripheral blood mononuclear cells 

(PBMCs) or inflamed colonic biopsies taken from Crohn’s patients occurs via blockade of 

NF-κB activation [337, 338]. Gross impairment in the secretion of proinflammatory 
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cytokines TNF, IL-4, IL-5, IL-13, IL-15, and IFN-γ by macrophages from Crohn’s patients 

has been reported in response to infection with heat-killed E. coli NCTC 10418 (HkEc) [94, 

339], and recent published data from two different research  groups showed that monocyte-

derived macrophages (MDM) from Crohn’s patients stimulated with the same E. coli strain 

released attenuated levels of TNF and interferon gamma (IFNγ) compared with those secreted 

from healthy control macrophages [327, 340]. Moreover, THP-1 (human monocytic cell line) 

macrophages infected with the Crohn’s AIEC LF82 secrete large amounts of exosomes (i.e. 

extracellular vesicles that function in intercellular communication and have been implicated 

in host responses to intracellular pathogens) to induce a proinflammatory response [341]. 

 

NF-κB signalling can be attributed to actions of five family member protein subunits/protein 

subunit complexes, including NF-κB1, NF-κB2, RelA (p65), RelB and c-Rel, controlling 

DNA transcription and subsequent  expression of proinflammatory cytokines to  play a 

pivotal role in regulating immune response to infection [342]. Results of our intramacrophage 

replication assays undertaken with Crohn’s AIEC strains within murine BMDM from various 

Nfκb family member knockout mice, indicated that neither ileal not colonic CD 

representative AIEC strains LF82 and HM605 survived within Nfκb1-/- (classical pathway 

p105→p50) nor alternative pathway Nfκb2-/- (p100→p52) BMDM. Both strains were able to 

survive and replicate within wild-type C57BL/6 and c-Rel-/- (p65) BMDM. Our phagocytosis 

function analysis data also showed that this engulfment process was not impaired in BMDM 

deficient in Nfκb family member proteins/protein subunits. Recent in vitro studies on mice 

lacking the c-Rel subunit showed that they were more susceptible to colitis and colitis-

associated cancer than wild-type mice, whilst Nfκb2-/- mice exhibited less severe colitis and 

an attenuated cytokine response in comparison to C57BL/6, Nfκb1-/- and c-Rel-/- mouse 

groups following DSS administration [343].  

 

The fact that NF-κB pathway signalling is found to be chronically active in IBD (as well as in 

other inflammatory conditions, including gastritis) [344] suggests that methods of inhibiting 

NF-κB signalling would likely have potential therapeutic application [345], including 

countering AIEC macrophage persistence seen in ileal and colonic Crohn’s disease mucosae. 
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Chapter 4   

 

Studying the ability of Crohn’s E. coli strains to grow in conditions 

mimicking the harsh environment found inside vacuoles/phagolysosomes of 

the macrophage  
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4.1 Introduction  

 

A number of strategies are adopted by differing pathogenic bacteria to avoid being killed 

inside the intra-cellular vacuoles/phagolysosomes of macrophages. These include a variety of 

adaptive responses, including avoidance of phagocytosis, inhibition of phagolysosome 

maturation and resistance of antimicrobial killing environment of mature phagolysosomes 

(i.e. low pH, low nutrient, high oxidative and nitrosative stress conditions) [346-348]. 

Classical pathogens known to survive and replicate within macrophages, including 

Mycobacterium, Salmonella, Shigella, Brucella, Legionella and Listeria spp. [224]. Key 

defence mechanisms adopted by these pathogens support their resistance to killing within the 

environment of the phagolysosome. Shigella and Listeria are able to escape from the mature 

phagolysosome, whilst Salmonella spp. can inhibit fusion of phagosome with the lysosome, 

and species such as Mycobacterium tuberculosis is able to modify the intra-phagolysosome 

environment [224]. Salmonella spp., Shigella spp. and E. coli have all been reported to 

possess a repertoire of low pH inducible systems that support resistance, tolerance and 

habituation during environmental acid stress likely encountered by active enteric bacteria 

within the phagolysosome. Other examples of pathogens showing adaptation to an intra-

phagolysomal life-style include Coxiella burnetii causing Q-fever [288] and Tropheryma 

whipplei causing Whipple's disease [289, 290].  

 

Paradigm Crohn’s AIEC strains HM605 and LF82, and other CD mucosa-associated E. coli, 

have been shown to be present within mature phagolysosomes by gentamicin exclusion assay 

and microscopy, including transmission electron microscopy (TEM) [8, 131, 149]. Earlier 

studies have shown that ileal AIEC LF82 appears to be tolerant of a low pH intra-

phagolysosome environment thus facilitating ability to replicate within the macrophage 

[349]. This persistence within macrophages supports giant cell formation and development of 

granulomata in vitro [350]. The presence of granulomas in mesenteric lymph nodes (MLN) 

has been found to be associated with postoperative recurrence in CD [351]. 
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The mechanism of how these Crohn’s AIEC isolates resist the killing process and survive, 

even replicate, within macrophage phagolysosomes without inducing cell death is still poorly 

understood. Some key genes supporting AIEC survival and replication within macrophages 

have been identified using isogenic mutants of the ‘paradigm’ ileal AIEC LF82, including 

htrA, dsbA, hfq and gipA [241-245]. However, htrA and dsbA encoded stress response 

proteins HtrA and DsbA are fairly ubiquitous in E. coli, and it is likely that other unidentified 

factors are needed to support AIEC survival within the stressful conditions of the 

phagolysosome. Treatments that target the fundamental pathology of CD are still required 

and therefore studies understanding their ability to resist killing within mucosal macrophages 

are likely to improve current drugs used to maintain and treat this condition, and also support 

development of novel drug therapy that might be much more effective for patients with CD. 

 

In this chapter, we aimed therefore to investigate the growth of intra-macrophage replicating 

Crohn’s mucosa-associated E. coli clinical isolates (including those with confirmed as 

AIEC), other IBD and cancer mucosa-associated E. coli, as well as pathogenic and non-

pathogenic E. coli strains in chemical-induced stress conditions mimicking the intra-

phagolysosome environment. 

 

 

4.2 Growth of E. coli strains in a high nutrient environment 

 

An initial examination of a collection of various E. coli strains isolated from healthy 

individuals and UTI patients (ECOR strains), in comparison to the colonic CD AIEC strain 

HM605 and the non-intra-macrophage replicating laboratory E. coli strain EPI300, grown in 

nutrient rich RPMI culture media showed little differences between strains at both pH 5 and 7 

but that all showed significant reduction in growth at pH 5 (>50% less growth; HM605 54%, 

ECOR1 44%, ECOR35 56%,  ECOR51 48%, ECOR40 49%, ECOR48 51%, ECOR64 52%, 

ECOR50 51%, and EPI300 43%; n=3) (see Figure 4.1)  
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Figure 4.1 E. coli growth patterns in high nutrient RPMI culture medium at differing environmental pH 

(pH 7 and pH 5).  

Changing pH of high-nutrient media from 7 to 5 remarkably affected the bacteria growth. There was no 

significant differences seen in growth between strains. Each point represents the optical density mean of an 

experiment run in triplicate (n=3). 
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4.3 Crohn’s disease E. coli isolates are better able to grow in an acidic (pH 

4.5), low nutrient environment 

 

In order to assess their ability Crohn’s E. coli strains, including those of confirmed AIEC 

phenotype such as HM605 and LF82, to survive within the low nutrient, acidic environment 

inside the macrophage phagolysosome, strains were grown in low-nutrient medium (M9) at 

differing pH ranging from pH 4.0 to pH 7.0. The intra-phagolysosome pH of human-and 

murine derived macrophages after infection with bacteria such as Mycobacterium 

tuberculosis has been estimated in previous studies to be ∼ pH 5 (pH 4.8 to 5.5) [352-354]. 

 

Four CD E. coli strains previously characterised as AIEC phenotype, LF82, HM605, HM615 

and HM427 showed increased growth tolerance over 8h to an acidic, low nutrient M9 media, 

especially at pH 4.5, compared to that seen by non-AIEC laboratory E. coli strains K-12 

EPI300 and XL1Blue, which demonstrated intolerance to low nutrient and low acid 

conditions over the same time frame (Figure 4.2). Two S. Typhimurium strains used showed 

better growth than laboratory E. coli strains down to pH 5 but remarkably could not tolerate 

low nutrient at pH 4.5 and below (Figure 4.2). In contrast, not all E. coli strains from CD 

patients (non AIEC types) were able to show significant growth at pH 4.5, suggesting that 

there are specific properties of adaption held by certain strains (see Figure 4.3). Other studied  

E. coli  strains; i.e. those E. coli strains obtained from UC, cancer and UTI patients, and those 

from healthy individuals showed as similar inability, albeit with some variation, to grow at 

pH 4.5 as per the non-AIEC CD E. coli strains (see Figure 4.3). There was no remarkable 

growth in M9 minimal media of any bacteria studied at pH 4 (Figure 4.2). To support future 

studies using fluorophore expressing AIEC isolates, we compared the growth characteristics 

of colonic CD AIEC HM615 expressing enhanced green fluorescent protein (eGFP) which 

showed identical tolerance to growth in M9 minimal media at all differing pH as per the wild-

type isolate (Figure 4.4).  
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Figure 4.2 Comparisons of the growth patterns of Crohn’s-associated E. coli strains and non-Crohn’s E. 

coli isolates in low-nutrient medium (M9) at differing pH from 7 to 4.  

Four CD AIEC strains showed increased growth tolerance over 8 h to an acidic, low nutrient M9 media, at pH 

4.5, All grew over 8h at pH 5, 6 and 7 and no significant differences among them were observed, Laboratory E. 

coli strains, XL-1 Blue, S. Typhimurium LT2 and 4/74 were unable to grow well at pH 4.5 and below. No 

bacteria studied were able to grow in M9 minimal media at pH 4; n=3.  
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Figure 4.3 The growth curves of a collection of E. coli strains isolated from a range of diseased 

individuals, besides two Crohn’s-associated E. coli strains, in a M9 medium at pH 4.5. 

All bacteria’s growth lines increased regularly over time and no noticeable differences among them were 

observed. n=3. 
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Figure 4.4 A comparison of the growth curves of wild-type Crohn’s disease colonic mucosa-associated 

AIEC strain HM615 in differing pH M9 media with those of HM615 strain engineered to express 

enhanced Green fluorescent protein (eGFP). 

eGFP expression has no adverse effect on the ability of this bacteria strain to grow in minimal media over an 

range of pH environments. n=3. 

  

Crohn’s AIEC
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4.4 The majority of Crohn’s E. coli strains not only have better ability to 

tolerate low pH but also to tolerate high oxidative and nitrosative stress 

conditions typical of the phagolysosome environment 

 

Bacterial strains were grown on plain solid LB agar plates at pH 7 (referred to as normal 

growth condition controls), and on LB agar plates providing environmental stress conditions, 

including (i)  acid (low pH) stress, (ii) high nitrosative stress at pH 5, and (iii) oxidative and 

(iii) superoxidative stress, both at pH 7 (see Methods section 2.10) . Unfortunately, it was 

not possible to grow bacterial strains on LB agar media at pH 4.5 and 4.0 because we found 

that warm LB agar media at each of these  pH conditions resulted in inability of the agar to  

set/solidify in petri dishes.  According to the results illustrated in Figure 4.5, the growth of 

Crohn’s E. coli strains (AIEC) HM605, HM615 and LF82, HM427 was not influenced by 

any of the chemical stress conditions that mimicked the harsh low pH, high nitrosative, and 

low and high oxidative stress environment within macrophage phagolysosome. All were able 

to tolerate growth on LB agar under these conditions at a similar level to that seen on LB agar 

at pH7 (Figure 4.5). Conversely, the growth of laboratory E. coli strains EPI300 and XL-

1Blue were both significantly inhibited all of the stress conditions compared with growth 

seen on LB agar control plates at pH 7 (see Figure 4.6).  Interestingly, S. Typhimurium 

strains LT2 and 4/74 and colonic cancer E. coli isolate HM358 showed the ability to tolerate 

the stress of low pH (pH 5), high nitrosative stress and mild oxidative stress conditions, but 

showed no tolerance under superoxidative stress condition where growth was remarkably 

impaired (see Figure 4.6). Surprisingly, non-pathogenic E. coli K-12 tolerated and grew in 

all stress challenge conditions (Figure 4.6). Again to support future in vivo intestinal mucosa 

oxidative stress response studies using fluorophore expressing AIEC isolates, we compared 

the growth characteristics of colonic CD AIEC HM615 expressing eGFP under the four stress 

environments compared to wild-type. Both wild type and the eGFP expressing isolate showed 

tolerance to all conditions tested (Figure 4.7) and this is consistent with the results observed 

for growth in minimal media at differing pH; Figure 4.4. 
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Figure 4.5 Crohn’s E. coli strains have better ability to tolerate low pH, high oxidative and nitrosative 

stress. 

Crohn’s E. coli strains (AIEC); HM605 (A), LF82 (B), HM615 (C) and, and HM427 (D) in low pH, nitrosative, 

low oxidative, and superoxidative conditions. Bacteria growth in plain LB at pH 7 was used as a control.  

Bacteria CFUs were frequently counted at dilution factor 105 and presented as relative growth response. N=4, 

n=3 replicates. Morpholine ethanesulphonic acid (MES) sodium nitrite (NaNO2), methyl viologen (MV) and 

hydrogen peroxide (H2O2). 
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Figure 4.6 Laboratory E. coli strains, except K-12, and colonic cancer E. coli isolate HM358 and S. 

Typhimurium strains showed no tolerance under superoxidative stress condition. 

Stress tolerance tests of Laboratory E. coli strains EPI300 (A), XL-1Blue (B) and ST strains 4/74 (C) and LT2 

(D), Cancer AIEC strain HM358 (E) and E. coli strain K-12 (F) in low pH, nitrosative, oxidative, and 

superoxidative conditions. Bacteria growth in plain LB at pH 7 was used as a control.  Bacteria CFUs were 

frequently counted at dilution factor 105 and presented as relative growth response. N=4, n=3 replicates. * P 

≤0.05, ** P ≤ 0.01, **** P ≤ 0.0001, ANOVA with Dunnett’s post-hoc test. Morpholine ethanesulphonic acid 

(MES) sodium nitrite (NaNO2), methyl viologen (MV) and hydrogen peroxide (H2O2). 
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Figure 4.7 A comparison of the growth  of wild-type Crohn’s disease  colonic mucosa-associated AIEC 

strain HM615 in stress conditions  with those of HM615 strain engineered to express enhanced Green 

fluorescent protein (eGFP). 

eGFP expression has no adverse effect on the ability of this bacteria strain to grow in low pH, nitrosative and 

low and high oxidative stress environments. N=4, n=3 replicates. 
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4.5 CD AIEC isolates survive the combined stress of low pH (pH 5) 

oxidative and superoxidative stress of the intra-macrophage 

phagolysosome  

 

It is already known that bacteria within macrophage phagolysosomes face low pH 

environment, ranging from pH 4.8 to pH 5.5 [352-354] associated with other harsh conditions 

such as high nitrosative and oxidative/superoxidative stress. We therefore attempted to 

compare the survival and growth of some E. coli strains in an acidic environment (pH 5) in 

combination of either oxidative or superoxidative stress conditions to those bacteria grown 

under stress but under  non-acid conditions (i.e. pH 7). Bacteria were also grown on standard 

LB agar plates at pH 7 and at low pH, pH 5 as controls. The results (see Figure 4.8; panels 

A, B, C and D) showed that Crohn’s E. coli strains had significantly greater ability to tolerate 

all oxidative and superoxidative stress conditions at both acidic and non-acidic environments. 

Likewise, similar results were seen for non-pathogenic E. coli K-12 (Figure 4.9; panel C). It 

was also noted that non-pathogenic and laboratory E. coli strains were seen to show greater 

growth under superoxidative stress conditions at pH 5 compared to superoxidative stress at 

pH 7 (see Figure 4.9; panels A and B), potentially suggesting that acidic pH affected 

negatively production of superoxide radicals from MV and perhaps to some degree H2O2 

activities. Non-AIEC CRC strain HM358 was able to tolerate oxidative stress condition 

effected by H2O2
 but not under superoxidative conditions at pH 7 (see Figure 4.8; panel D) 

and refer to Figure 4.6; panel E).  
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Figure 4.8: CD AIEC isolates survive the combined stress of low pH (pH 5) oxidative or superoxidative 

stress environments on solid LB a growth media, mimicking the environment of intra-macrophage 

phagolysosome. 

(A-D) Comparisons of the growth of CD E. coli strains in LB media containing chemical stress conditions, 

either superoxidative (Left hand panel) or oxidative (right hand panel) at differing pH (pH 5 and  pH 7) to that 

growth seen at differing pH but on plain LB media (control). N=4, n=3 replicates. 
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Figure 4.8 (continued): CD AIEC isolates survive the combined stress of low pH (pH 5) oxidative or 

superoxidative stress environments on solid LB a growth media, mimicking the environment of intra-

macrophage phagolysosome.  

(A-D) Comparisons of the growth of CD E. coli strains in LB media containing chemical stress conditions, 

either superoxidative (Left hand panel) or oxidative (right hand panel) at differing pH (pH 5 and  pH 7) to that 

growth seen at differing pH but on plain LB media (control). N=4, n=3 replicates. 
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Figure 4.9: Laboratory E. coli strains and a CRC mucosa-associated E. coli show greater growth under 

superoxidative stress conditions at pH 5 compared to superoxidative stress at pH 7. 

(A-D) Comparisons of the growth of three laboratory and one CRC E. coli strain in LB media containing 

chemical  stress conditions, either superoxidative (Left hand panel) or oxidative (right hand panel) at differing 

pH (pH 5 and  pH 7) to that growth seen at differing pH but on plain LB media (control). It is speculated that the 

acidic environment (at pH 5) negatively impacted on the production of superoxide radicals from MV and 

perhaps to some degree hydroxyl radicals from H2O2. N=4, n=3 replicates. * P ≤ 0.05, *** P ≤ 0.001, **** P ≤ 

0.0001; ANOVA with Dunnett’s post-hoc test (using LB pH 7 as control).  

  

0

20

40

60

80

100

120

LB pH 7 LB+MV pH 7 LB pH 5 LB+MV pH 5

%
 B

a
c
te

ri
a
 g

ro
w

th
 c

o
m

p
a
re

d
 t

o
 

c
o

n
tr

o
l

HM605

0

20

40

60

80

100

120

LB pH 7 LB+MV pH 7 LB pH 5 LB+MV pH 5%
 B

a
c
te

ri
a
 g

ro
w

th
 c

o
m

p
a

re
d

  
to

 
c
o

n
tr

o
l

HM615

0

20

40

60

80

100

120

LB pH 7 LB+H2O2pH 7 LB pH 5 LB+H2O2 pH 5%
 B

a
c
te

ri
a
 g

ro
w

th
 c

o
m

p
a

re
d

  
to

 
c
o

n
tr

o
l

HM615

0

20

40

60

80

100

120

140

LB pH 7 LB+H2O2pH 7 LB pH 5 LB+H2O2 pH 5

%
 B

a
c
te

ri
a
  
g

ro
w

th
 c

o
m

p
a
re

d
 t

o
 

c
o

n
tr

o
l

HM605

Superoxidative OxidativeA

0

20

40

60

80

100

120

LB pH 7 LB+MV pH 7 LB pH 5 LB+MV pH 5

%
 B

a
c
te

ri
a

 g
ro

w
th

 c
o

m
p

a
re

d
 t

o
 

c
o

n
tr

o
l

HM605

0

20

40

60

80

100

120

LB pH 7 LB+MV pH 7 LB pH 5 LB+MV pH 5%
 B

a
c
te

ri
a
 g

ro
w

th
 c

o
m

p
a

re
d

  
to

 
c
o

n
tr

o
l

HM615

0

20

40

60

80

100

120

LB pH 7 LB+H2O2pH 7 LB pH 5 LB+H2O2 pH 5%
 B

a
c
te

ri
a
 g

ro
w

th
 c

o
m

p
a

re
d

  
to

 
c
o

n
tr

o
l

HM615

0

20

40

60

80

100

120

140

LB pH 7 LB+H2O2pH 7 LB pH 5 LB+H2O2 pH 5

%
 B

a
c
te

ri
a

  
g

ro
w

th
 c

o
m

p
a

re
d

 t
o

 
c

o
n

tr
o

l

HM605

Superoxidative OxidativeB



108 

 

 

 

Figure 4.9 (continued): Laboratory E. coli strains and a CRC mucosa-associated E. coli show greater 

growth under superoxidative stress conditions at pH 5 compared to superoxidative stress at pH 7. 

(A-D) Comparisons of the growth of three laboratory and one CRC E. coli strain in LB media containing 

chemical  stress conditions, either superoxidative (Left hand panel) or oxidative (right hand panel) at differing 

pH (pH 5 and  pH 7) to that growth seen at differing pH but on plain LB media (control). It is speculated that the 

acidic environment (at pH 5) negatively impacted on the production of superoxide radicals from MV and 

perhaps to some degree hydroxyl radicals from H2O2. N=4, n=3 replicates. * P ≤ 0.05, *** P ≤ 0.001, **** P ≤ 

0.0001; ANOVA with Dunnett’s post-hoc test (using LB pH 7 as control).  
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4.6  Correlation of the growth of various E. coli strains in superoxidative 

stress environment to ability to survive and replicate within macrophages 

 

Given the interesting preliminary data from the solid LB agar bacteria stress tolerance tests, 

particularly in the MV-induced superoxidative stress environment, seen for a number of CD 

E. coli strains when compared to intolerant laboratory strains and one CRC isolate, we 

therefore decided to perform further studies on a wider range of E. coli strains obtained from 

Crohn’s disease, UC, CRC and UTI patients and those from non-inflamed disease controls 

and healthy individuals (see Appendix, Section 9.3 - supplementary stress tolerance data). 

This data is summarised in Figure 4.10, panel A, which includes the previous experimental 

datasets in section 4.5 and 4.6. Interestingly, other Crohn’s disease ileal mucosa-associated 

E. coli isolates LF10, LF11, LF13 and 541-15A, and colonic mucosa-associated isolates, 

HM96, and HM104, were unable to tolerate superoxidative stress conditions as seen by 

Crohn’s AIEC strains such as, for example, LF82 and HM605 (see Figure 4.5). Interestingly, 

other intra-macrophage replicating E. coli strains, obtained from healthy and UTI patients, 

were also observed to significantly tolerate (i.e. survive and replicate) in growth media 

containing MV. Other clinical isolates able to show survival on MV containing LB agar were 

E. coli K-12 and E. coli Nissle 1917 (EcN). On the other hand, all UC E. coli isolates studied, 

all CRC isolates (excepting for HM229) and all non-pathogenic laboratory E. coli showed 

inability to survive superoxidative conditions. Since, the majority of intra-macrophage 

replicating E. coli strains tolerated growing in the superoxidative stress environment, a 

correlation between fold replication of E. coli strains inside macrophages, previously shown 

in Figure 3.2, with their % growth observed in MV agar was performed (see Figure 4.10 

panels B and C). Overall, although results indicate that there is variation in the data sets, 

Spearman's Rank Correlation Coefficient analysis showed that there is a strong link between 

the ability of bacteria to grow under superoxidative stress conditions and their ability to 

significantly replicate inside murine macrophage phagolysosomes. (rho = 0.74). This was 

supported by Principal component analysis (PCA) also indicating that a strong pattern exists 

between these measurable factors. 
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Figure 4.10: Comparison between the % growth of E. coli strains from different diseases in MV and their 

fold replication within murine macrophages. E. coli strains from different diseases. (Panel A) 

(A) Survival and growth of a variety of E. coli strains in superoxidative stress condition and (B) comparison of 

their growth in MV with their fold replication inside macrophage phagolysosomes. Spearman’s rank correlation 

coefficient for this dataset is (rho =0.74. Principal component analysis (PCA) of % bacteria growth in MV and 

bacteria fold of replication (C). 
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Figure 4.10 (continued): Comparison between the % growth of E. coli strains from different diseases in 

MV and their fold replication within murine macrophages. E. coli strains from different diseases. (Panel 

B) 

(A) Survival and growth of a variety of E. coli strains in superoxidative stress condition and (B) comparison of 

their growth in MV with their fold replication inside macrophage phagolysosomes. Spearman’s rank correlation 

coefficient for this dataset is (rho =0.74. Principal component analysis (PCA) of % bacteria growth in MV and 

bacteria fold of replication (C). 
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Figure 4.10 (continued): Comparison between the % growth of E. coli strains from different diseases in 

MV and their fold replication within murine macrophages. E. coli strains from different diseases. (Panel 

C) 

(A) Survival and growth of a variety of E. coli strains in superoxidative stress condition and (B) comparison of 

their growth in MV with their fold replication inside macrophage phagolysosomes. Spearman’s rank correlation 

coefficient for this dataset is (rho =0.74. Principal component analysis (PCA) of % bacteria growth in MV and 

bacteria fold of replication (C). 
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4.7 Summary of results 

 

1. Chemical stress conditions mimicking the intra-macrophage phagolysosome 

environment (low pH, low nutrient, high nitrosative stress, high oxidative/super- 

oxidative stress) were seen to have no adverse effects on the growth of  Crohn’s 

disease mucosa-associated AIEC, and intramacrophage replicating UTI and healthy-

mucosa associated E. coli isolates. 

 

2. All laboratory, CRC and UC mucosally associated E. coli isolates (with only a few 

exceptions) were seen to be intolerant to stress conditions mimicking those within the 

phagolysosome, in particular superoxidative stress conditions.  
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4.8 Discussion  

 

Within the macrophage phagolysosome, engulfed bacteria are killed and degraded in an 

acidic, high nitrosative, high oxidative, nutrient-limited stress environment to support 

subsequent antigen presentation [355]. Oxygen-dependent degradation in the phagolysosome 

relies on ROS and RNS, whereas oxygen-independent degradation depends on the release of 

proteolytic enzymes and antimicrobial peptides [356]. Tolerance of this acidic, nutrient-

limiting environment inside intra-macrophage vacuoles has been found to be important for 

the survival and replication of key enteric bacteria such as Salmonella spp. [357, 358] and has 

also been suggested as important for ileal Crohn’s disease (CD) mucosa-associated adherent, 

invasive E. coli (AIEC) isolate LF82 [322]. 

 

The mechanism of how Crohn’s disease AIEC isolates resist the killing process and survive, 

even replicate, within macrophage phagolysosomes without inducing cell death is still poorly 

understood. Here we studied the ability of a collection of E. coli, including CD mucosa-

associated E. coli isolates, to tolerate stressful growth conditions that would closely mimic 

the harsh environmental conditions typical of the macrophage intra-phagolysosome. Wild-

type (and eGFP expressing) CD mucosa-associated isolates, including colonic and ileal 

strains (including LF82), showed tolerance to growth in nutrient minimal media at differing 

pH (including acidic conditions) and to all stress environments tested, including high 

oxidative, high superoxidative and high nitrosative conditions. This supports the previous 

study of AIEC LF82-containing phagosomes which when treated with alkalinising agents 

chloroquine and ammonium chloride, intracellular replication of this was inhibited [322]. It 

should be noted also, that alteration of phagolysosome pH in macrophages causes inhibition 

of acidic proteases which leads to a diminished proteolytic activity against intracellular 

pathogens [359]. 

 

Some key genes have been identified in AIEC LF82 as supporting intramacrophage 

replication, such as htrA and DsbA [242, 243] but these are fairly ubiquitous to all E. coli 

strains including colonic CD mucosa-associated E. coli [180]. A more recent paper has 

identified that gipA may be more importance in supporting Crohn’s disease AIEC to persist in 
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this phagolysosome niche [245]. The phagolysosomes stress environment (particulalry acidic 

pH) may switch on expression of tolerance/virulence genes. Expression of gipA was induced 

by reactive oxygen and low pH treatment conditions [245].  

 

Chemical stress conditions mimicking the intra-macrophage phagolysosome environment 

(low pH, low nutrient, high nitrosative stress, high oxidative/super- oxidative stress) were 

also seen to have no adverse effects on the growth of intramacrophage replicating UTI and 

healthy-mucosa associated E. coli isolates. Likewise, there is some evidence in the literature 

that UPEC strains isolated from patients with UTI can also survive and replicate within 

mouse macrophages, as well as replicating within urogenital epithelial cells [328, 329]. A 

previous study has shown that 7% of UPEC meet the criteria of the AIEC phenotype [30]. 

Having invaded bladder epithelial cells, internalized UPEC can clonally replicate into 

biofilm-like intracellular bacterial communities (IBCs) of thousands of bacteria while 

avoiding key host clearance mechanisms and that these  bacteria tolerate oxidative stress 

within the IBCs [360]. 

 

Our data showed that all laboratory, CRC and UC mucosally-associated E. coli isolates (with 

only a few exceptions) were seen to be intolerant to stress conditions mimicking those harsh 

conditions encountered within the phagolysosome, in particular high superoxidative stress (as 

generated experimentally by MV). Two notable exceptions included non-pathogenic 

reference E. coli K-12 and Gram-negative EcN. Both strains tolerated all growth stress 

conditions (see Appendix, section 9.3). E. coli K-12 has previously been reported to tolerate 

1.5 mM hydrogen peroxide (H2O2) levels over 24 hours of incubation in LB broth [149, 361] 

and this may perhaps support its noted ability to survive/persist (but not to replicate 

significantly) inside both murine J774-A1 macrophages and human peripheral blood 

monocyte-derived  macrophages [149]. Gram-negative EcN,  reported to be useful in 

maintenance of remission of UC [362], and its ability to tolerate growing within macrophages 

might perhaps support its anti-inflammatory activity in UC and counter  increased numbers of 

mucosa-associated E. coli observed in UC some studies , albeit in lower numbers than that 

seen in CD mucosae. EcN and E. coli K-12 are genetically very similar strains, but differ 

markedly in their ability to activate the inflammasome where E. coli K-12 has a markedly 

greater ability than EcN [363]. 
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Some of the mucosa-associated non-inflamed E. coli isolates and those ECOR healthy control 

E. coli isolates tested also showed ability to survive and/or replicate in our study and tolerate 

all stress conditions. The ability of commensal Escherichia coli to survive killing within 

macrophages (including murine commensal E. coli NC101, with an AIEC phenotype) has 

been previously documented, facilitated by the protective action of small heat-

shock/chaperone proteins (e.g. IbpAB) specifically to prevent killing by macrophage-derived 

reactive oxygen species [364]. 

 

We had tried to further mimic the phagolysosome environment with a combination 

environment of both oxidative and superoxidative stress with low pH but it was also noted 

that non-pathogenic and laboratory E. coli strains (as per AIEC) were seen to show greater 

growth under superoxidative stress conditions at pH 5 compared to superoxidative stress at 

pH 7. We hypothesised that the acidic pH had negatively affected the production of 

superoxide radicals from MV and perhaps to some degree H2O2 oxidative activities. Our 

results were found to be consistent with findings of a published paper by van Dijk and 

colleagues [365] which demonstrated that MV generates superoxide radicals only at pH 

environments higher than 6 and not at pH 5 as tested in our studies [365]. Thus creating in 

vitro growth conditions to mimic multiple elements of the phagolysosome environment is a 

challenge for future studies, and may only be achievable in live isolated macrophages or in 

vivo with oxidative, nitrosative and pH sensitive molecular probes, and probes that measure 

proteolytic enzyme activities too.  
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Chapter 5  

 

To characterise genes relevant to the ability of Crohn’s AIEC to tolerate the 

intraphagolysosome environment that would support their growth, survival 

and replication within macrophages. 
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5.1 Introduction 

 

A number of key genes have been implicated as being important to support survival and 

replication of Crohn’s AIEC strains within macrophages including htrA, dsbA, hfq and gipA 

[190, 245, 366-368]. A screening study using a transposon mutant library constructed from 

AIEC LF82 identified both htrA and dsbA favouring LF82’s ability to resist macrophage 

killing and to replicate within macrophages [243, 367]. DsbA had already been reported to be 

necessary for virulence (including colonisation, adhesion, invasion and intra-macrophage 

survival) of pathogens such as S. Typhimurium [369], E. coli K-12 [370], Enteropathogenic 

E. coli [371] and Shigella flexneri [372]. Hfq protein was already shown  to play a pivotal 

role in controlling the virulence of AIEC LF82, with hfq deletion found to affect both the 

bacteria stress tolerance and its motility, confirming the importance of this protein in LF82 

virulence by RpoS and RpoE-independent mechanisms [244]. Previous studies had already 

established that Hfq is essential for bacteria virulence (motility and invasiveness) [373] of 

UPEC [374], Pseudomonas aeruginosa [375] and S. Typhimurium [376]. It was also reported 

that the absence of ibeA in the genome of AIEC strain NRG857c could result in inability of 

this strain to invade the mucosa, and to subsequently survive within macrophages of the 

inflamed murine intestine [377], which is consistent with the role of this invasion in other 

pathogenic E. coli strains, such as APEC [378]. In Crohn’s disease AIEC LF82, gipA appears 

important to support persistence in the phagolysosome niche with its expression induced by 

reactive oxygen and low pH [245]. Other virulence genes such as afaC (encoding afimbrial 

adhesin (Afa), pks, and lpf, which are not usually present in non-pathogenic E. coli, also been 

frequently found, in AIEC strains [179, 180], but none of these appear to be relevant in 

supporting survival and growth within macrophages. 

 

It is however known that E. coli harbour specific mechanisms that enable them to resist high 

levels of reactive oxygen species (ROS) that form the oxidative and super-oxidative response 

to phagocytosed pathogens. These defensive resources may be grouped into two regulated 

gene sets, the soxRS and oxyR regulons [252, 253]. The soxRS and oxyR regulons orchestrate 

defence mechanisms of E. coli against oxidative stress via induction of transcription of a set 

of genes that increase resistance to oxidative stress [379, 380]. An additional study has also  

shown that overexpression of btuE, encoding glutathione peroxidase (GPXs) BtuE peroxidase 
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protein, causes a decrease in the amounts of oxidative damage and also a decrease in the 

levels of transcription of key stress-induced genes such as ibpA, soxS and katG [381]. 

 

Of significant note, E. coli may also possess acid environment tolerance response systems. Of 

the 4 known, the first system requires sigma factor RpoS and the cyclic AMP receptor protein 

CRP, with RpoS functioning as a major environmental stress response regulator in both E. 

coli and Salmonella spp. [246]. Deletion of RpoS from a CD AIEC (strain O83:H1) has been 

observed to increase sensitivity of this clinical isolate to oxidative stress [247]. The second 

acid resistance system requires is arginine-dependent utilising of arginine decarboxylase 

(AdiA and AdiC) antiporter [246]. The third system is lysine dependent, involving lysine 

decarboxylase [249]. The system requires extracellular glutamate. The components of 

glutamate-dependent acid response are two isoforms of glutamate decarboxylase encoded by 

gadA and gadB, and a glutamate-ƴ-aminobutyric acid (Gad) antiporter encoded by gadC 

[248, 249]. Various types of E. coli strains are already known to contain acid stress response 

genes of this system, including gadA and gadB which are up regulated in response to acidic 

environment changes ranging from pH 2.5 to 4.5 [246, 248, 382]. Of note, murine commensal 

E. coli have been observed to respond to chronic intestinal inflammation by up-regulating 

expression of gadA and gadB [250]. This altered expression of gadA and gadB in luminal 

commensal E. coli was shown to reduce bacterial survival and attenuate the colitis, which 

likely occurred due to decreased translocation of bacteria across intestinal epithelium and 

increase of their susceptibility to bacterial killing by host antimicrobial peptides (AMPs) 

[250]. 

 

We therefore aimed to measure the expression levels of acid stress genes gadA and gadB in 4 

E. coli (CD AIEC colonic isolate HM605 or non-intra-macrophage replicating laboratory E. 

coli EPI300 in response to changes in M9 media under acidic conditions and also the 

expression levels of these two genes 3h and 6h post infection of J774-A1 macrophages. Also 

examined was the host oxidative stress responses that occurred when macrophages were 

infected with either CD AIEC colonic isolate HM605 or non-intra-macrophage replicating 

laboratory E. coli EPI300 (i.e. a strain susceptible to macrophage killing), using a Mouse 

Oxidative Stress RT2 Profiler PCR Array (which profiles the expression of 84 genes related 

to oxidative stress; see Methods section 2.13). 
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5.2 Acid stress response genes gadA and gadB expression increases 

following a change of pH from 7 to 4.5 in M9 minimal nutrient media 

 

Laboratory E. coli strains EPI300, XL-1Blue and E. coli K-12 showed some ability to tolerate 

acidic stress in M9 media at pH 4.5 following.  Crohn’s disease AIEC HM605 growth in M9 

demonstrated increased growth at 6h compared to 3h (see OD growth curves, Figure 5.1). 

 

 

 

 

Figure 5.1 A comparison of the studied E. coli strains (samples) growth in M9 minimal nutrient media 

under acidic stress conditions (pH 4.5) at 3h to 6h time points.  

All strains were able to grow in this stress medium at pH 4.5 despite of the growth variations among them; N=2, 

n=3. 
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Bacteria were then taken for RNA extraction and amplified using qRT-PCR for gadA 

expression. E. coli strains EPI300, XL-Blue and K-12 all showed an increase shift in gene 

expression when grown at pH 4.5 compared to growth in media at pH 7 over 6h (see Figure 

5.2; N=2, n=2). The expression of gadB was at similar levels to that seen for gadA in each of 

the 4 E. coli strains studied (see Figure 5.3; N=2, n=2).  Shift in gadA gene expression (i.e. 

shift in Cp value, Cp ranged from 3.5 to 7.0 when grown at pH 4.5 compared to growth in 

media at pH 7 over 6h. For gadB, Cp ranged from 2.2 to 6.5; see Figure 5.4A and Figure 

5.4B. The biggest shift in gad expression in response to acidic stress was seen with E. coli K-

12 with a Cp for gadA of 7.00  2.9 and gadB of 6.57  1.78 (mean  SEM) and confirms 

previous observations of tolerance to solid agar stress responses to acid (Chapter 4; Figure 

4.6). Interestingly, both gadA and gadB expression was seen to be significantly high in the 

CD AIEC isolate HM605 grown in M9 media for 6h at pH 7 and as a consequence, following 

growth in M9 media at pH 4.5, this isolate showed much less of an increase shift in gad 

expression when grown at pH 4.5 (Figure 5.4A and Figure 5.4B; N=2, n=2). 

  



122 

 

 

 

  

B

g
a

d
A

 E
x
p

e
ri

m
e

n
ts

051015202530354045

0
5

10
15

20
25

30
35

40
45

Florescence (483-533)

C
yc

le
s

H
M

6
0
5

pH
4.

5
pH

7
 N

TC

051015202530354045

-5
5

15
25

35
45

Florescence (483-533)

C
yc

le
s

K
1

2

pH
4.

5
pH

7
 N

TC

C

051015202530354045

0
5

10
15

20
25

30
35

40
45

Florescence (483-533)

C
yc

le
s

E
P

I3
0

0

pH
4.

5
pH

7
 N

TC

D
E

051015202530354045

0
5

10
15

20
25

30
35

40
45

Florescence (483-533)

C
yc

le
s

X
L

-1
B

lu
e

pH
4.

5
pH

7
N

TC

051015202530354045

0
5

10
15

20
25

30
35

40
45

Florescence (483-533)

C
yc

le
s

Ex
pr

es
si

on
 o

f g
ad

A 
fr

om
 E

. c
ol

ii
n 

 M
9 

pH
4.

5 
co

m
pa

re
d 

to
 p

H
7

pH
7:

 E
PI

30
0

pH
7:

 X
l-1

B
lu

e
pH

7:
 k

12
pH

7:
  H

M
60

5
pH

7:
 N

TC

pH
4.

5:
  E

PI
30

0
pH

4.
5:

  X
l-1

B
lu

e
pH

4.
5:

  K
12

pH
4.

5:
 H

M
60

5
pH

4.
5:

 N
TC

A

F
ig

u
re

 5
.2

 G
lu

ta
m

a
te

-ƴ
-a

m
in

o
b

u
ty

ri
c 

a
ci

d
 a

n
ti

p
o

rt
er

 g
a
d

A
 e

x
p

re
ss

io
n

 l
ev

el
s 

o
f 

E
. 

co
li

 s
tr

a
in

s 
fo

ll
o

w
in

g
 g

ro
w

th
 i

n
 a

ci
d

ic
 s

tr
e
ss

 c
o

n
d

it
io

n
s.

 

(A
) 

R
ev

er
se

 t
ra

n
sc

ri
p

ti
o

n
 r

ea
l-

ti
m

e 
q

P
C

R
 f

o
r 

b
ac

te
ri

al
 g

a
d
A

 e
x
p

re
ss

io
n
 i

n
 E

. 
co

li
 s

tr
ai

n
s.

 E
x
p

re
ss

io
n

 l
ev

el
s 

o
f 

g
a

d
A

 w
e
re

 o
b

se
rv

ed
 t

o
 b

e 
in

cr
ea

se
d

 b
y
 a

ll
 f

o
u

r 

E
. 

co
li

 s
tr

ai
n
s 

g
ro

w
n
 i

n
 M

9
 m

in
im

al
 n

u
tr

ie
n
t 

m
ed

ia
, 

o
v
er

 6
h

, 
at

 p
H

 4
.5

 c
o

m
p

ar
ed

 t
o

 p
H

 7
, 

fo
r 

(B
) 

C
D

 A
IE

C
 H

M
6

0
5

, 
(C

) 
K

1
2

, 
(D

) 
E

P
I3

0
0

 a
n
d

 (
E

) 
X

L
-1

B
lu

e.
 

N
=

2
, 

n
=

2
 r

ep
li

ca
te

s.
 L

o
w

 c
y
c
le

 n
u

m
b

er
 (

C
p

 v
al

u
e)

 i
n
d

ic
at

e
s 

h
ig

h
er

 e
x
p

re
ss

io
n

 l
ev

el
s.

 N
e
g
at

iv
e 

te
m

p
la

te
 c

o
n

tr
o

l 
is

 g
ro

w
th

 m
ed

ia
 w

it
h
o

u
t 

in
fe

ct
io

n
 a

t 
p

H
 7

 

(b
la

ck
) 

an
d

 p
H

 4
.5

 (
g
re

y
).

 

 



123 

 

 

 

  

B

g
a

d
B

 E
x

p
e

ri
m

e
n

ts

C

D
E

051015202530354045

0
5

10
15

20
25

30
35

40
45

Florescence (483-533)

C
y
c

le
s

H
M

6
0
5

pH
4.

5
pH

7
 N

TC

051015202530354045

0
5

10
15

20
25

30
35

40
45

Florescence (483-533)

C
y
c

le
s

K
1
2

pH
4.

5
pH

7
 N

TC

051015202530354045

0
5

10
15

20
25

30
35

40
45

Florescence (483-533)

C
y
c

le
s

E
P

I3
0
0

pH
4.

5
pH

7
 N

TC

051015202530354045

0
5

10
15

20
25

30
35

40
45

Florescence (483-533)

C
y
c

le
s

X
L

-1
B

lu
e

pH
4.

5
pH

7
N

TC

051015202530354045

0
5

10
15

20
25

30
35

40
45

Florescence (483-533)

C
yc

le
s

Ex
pr

es
si

on
 o

f g
ad

B
 fr

om
 E

. c
ol

ii
n 

 M
9 

pH
4.

5 
co

m
pa

re
d 

to
 p

H
7

pH
7:

 E
PI

30
0

pH
7:

 X
l-1

B
lu

e
pH

7:
 k

12
pH

7:
  H

M
60

5
pH

7:
 N

TC

pH
4.

5:
  E

PI
30

0
pH

4.
5:

  X
l-1

B
lu

e
pH

4.
5:

  K
12

pH
4.

5:
 H

M
60

5
pH

4.
5:

 N
TC

A

F
ig

u
re

 5
.3

 G
lu

ta
m

a
te

-ƴ
-a

m
in

o
b

u
ty

ri
c 

a
ci

d
 a

n
ti

p
o

rt
er

 g
a
d

B
 e

x
p

re
ss

io
n

 l
ev

el
s 

o
f 

E
. 

co
li

 s
tr

a
in

s 
fo

ll
o

w
in

g
 g

ro
w

th
 i

n
 a

ci
d

ic
 s

tr
e
ss

 c
o

n
d

it
io

n
s.

 

(A
) 

R
ev

er
se

 t
ra

n
sc

ri
p

ti
o

n
 r

ea
l-

ti
m

e 
q

P
C

R
 f

o
r 

b
ac

te
ri

al
 g

a
d
B

 e
x
p

re
ss

io
n
 i

n
 E

. 
co

li
 s

tr
ai

n
s.

 E
x
p

re
ss

io
n

 l
e
v
el

s 
o

f 
g

a
d

B
 w

e
re

 o
b

se
rv

ed
 t

o
 b

e 
in

cr
ea

se
d

 b
y
 a

ll
 f

o
u
r 

E
. 

co
li

 s
tr

ai
n
s 

g
ro

w
n
 i

n
 M

9
 m

in
im

al
 n

u
tr

ie
n
t 

m
ed

ia
, 

o
v
er

 6
h
, 

at
 p

H
 4

.5
 c

o
m

p
ar

ed
 t

o
 p

H
 7

, 
fo

r 
(B

) 
C

D
 A

IE
C

 H
M

6
0

5
, 

(C
) 

K
1

2
, 

(D
) 

E
P

I3
0

0
 a

n
d

 (
E

) 
X

L
-1

B
lu

e.
 

N
=

2
, 

n
=

2
 r

ep
li

ca
te

s.
 L

o
w

 c
y
c
le

 n
u

m
b

er
 (

C
p

 v
al

u
e)

 i
n
d

ic
at

e
s 

h
ig

h
er

 e
x
p

re
ss

io
n
 l

ev
e
ls

. 
N

e
g
at

iv
e 

te
m

p
la

te
 c

o
n
tr

o
l 

is
 g

ro
w

th
 m

ed
ia

 w
it

h
o

u
t 

in
fe

ct
io

n
 a

t 
p

H
 7

 

(b
la

ck
) 

an
d

 p
H

 4
.5

 (
g
re

y
).

 

 



124 

 

 

 

 

Figure 5.4 (A) Shift in gadA and (B) gadB expression (∆Cp) from E. coli strains HM605, K-12, EPI300 

and XL-1Blue  when grown at pH 4.5 compared to growth in media at pH 7 over 6h.  

Each value represents the mean ± standard error of the mean (SEM) of three independent experiments (N=2, 

n=2 replicate).  
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It was attempted to undertake qPCR analysis of gad expression in CD AIEC HM605 and all 

four E. coli strains (EPI300, XL-1Blue, K-12 and HM605) following a gentamicin protection 

assay of infected J774-A1 macrophages at 6h compared to 3h post-infection. Figure 5.5 and 

Figure 5.6 shows Cp values of gadA and gadB expression which was detected at lower 

expression levels for all E. coli strains expressed from the E. coli strains inside murine 

macrophages studied showed similar but smaller shifts in gad expression at 6h within 

macrophages. (N=1, n=2). 
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5.3  Mouse J774-A1 macrophage oxidative stress gene expression levels 6h 

post-infection with Crohn’s disease AIEC HM605 

 

The expression of 84 genes related to oxidative stress, including peroxidases and reactive 

oxygen species following infection of J774-A1 murine macrophages for 6h with CD AIEC 

isolate HM605 or non-replicating strain E. coli K-12 derivative EPI300 were analysed using 

RT2 Profiler Array. Scatter plot figures show the host oxidative stress response genes that 

show increased expression (in red), no change (in black) and lowered expression (in green) 

after infection with EPI300 (group 1; Figure 5.5) and Crohn’s disease AIEC HM605 (group 

2; Figure 5.6) compared to uninfected controls. Ten genes were up-regulated and 8 down-

regulated in response to EPI300 infection (Figure 5.5) and 9 up-regulated and 4 down-

regulated following CD AIEC HM605 infection (Figure 5.6). Common up-regulated genes to 

both infections were Cat and Ptgs2 (Peroxidase/cyclooxygenase), Ccl5, Prdx5 and Sqtsm1 

(Oxidative Stress response), Gpx3 (Glutathione Peroxidase), Ncf1 and Nos2 (Superoxide 

Metabolism) and Sod2 (Superoxide Dismutases). Significant changes (>2 fold) seen in same 

8 genes in response to EPI300 and HM605 infection (4 genes elevated and 4 decreased; see 

Figure 5.7). Superoxide stress response genes Ncf1 and Sod2 were all upregulated to similar 

levels at 6h (>2-fold) in both E. coli HM605 and K-12 derivative EPI300-infected 

macrophages compared to uninfected controls, suggesting that CD isolate HM605 does not 

alter macrophage oxidative stress response to infection to promote its own intra-

phagolysosome growth (see Figure 5.7). For further detail of expression of those genes 

changed/unaltered by EPI300 and HM605 infection of J774A1 murine macrophages 

following RT2 Profiler PCR Array analysis can be found in Chapter 9; see Appendix 

section 9.1 (Table 9.1) and section 9.2 (Table 9.2). 
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Figure 5.7 Scatter plot of host oxidative stress response genes following infection with non-pathogenic E. 

coli EPI300 compared to uninfected control.  

Scatter plot figure illustrating host oxidative stress response genes that show increased expression (in red), no 

change (in black) and lowered expression (in green) after infection with E. coli EPI300 (group 1) compared to 

uninfected control. N=3, RT2 Profiler PCR Array Data Analysis programme version 3.5. The id of the genes, 

their fold change and their position on the array plates can be found in Appendix 9, Table 9.2. 
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Figure 5.8 Scatter plot of host oxidative stress response genes following infection with Crohn’s mucosa-

associated AIEC HM605 compared to uninfected control.  

Scatter plot figure illustrating host oxidative stress response genes that show increased expression (in red), no 

change (in black) and lowered expression (in green) after infection with CD AIEC HM605 (group 2) compared 

to uninfected control. N=3, RT2 Profiler PCR Array Data Analysis programme version 3.5. The id of the genes, 

their fold change and their position on the array plates can be found in Appendix 9, Table 9.2. 
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Figure 5.9 Bar chart illustrating oxidative stress genes expression in J7774-A1 murine macrophages 

infected with E. coli EPI300 or HM605. 

Barr indicate > 2-fold change (mean ± SEM) of key oxidative stress genes that were either over- or under-

expressed (in J7774-A1 murine macrophages infected with E. coli EPI300 or HM605, each compared to 

uninfected controls. N=3. 
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5.4 Summary of results 

 

1. Expression of bacteria acid stress response antiporter glutamate-ƴ-aminobutyric acid 

(Gad) genes gadA and gadB were observed to be much higher in the E. coli strains 

studied following 6h growth in minimal nutrient media at pH 4.5 (i.e. mimicking the 

environment inside murine macrophage phagolysosome), than that observed at pH 7.  

 

2. Crohn’s disease mucosa-associated AIEC HM605 showed higher initial levels of 

expression of both gadA and gadB in low nutrient media at pH 7 and this elevated 

state of gad expression may support adaptation to an intra-macrophage 

phagolysosome survival/replication lifestyle (see Chapter 3; Figure 3.1 and Figure 

3.2).  

 

3. Other non-pathogenic E. coli strains that show some ability to tolerate acid stress, 

such as E. coli K-12 (see Chapter 4, Figure 4.6), were seen to show the greatest 

upregulation of gad gene expression in response to acid stress in low nutrient media.  

 

4. The expression of gadB was observed to be at similar levels to that seen for gadA in 

each of the 4 E. coli strains studied (i.e. HM605, K-12,  EPI300 and  XL-1Blue), and 

again all strains showed an increase shift in expression of this particular gene when 

grown at pH 4.5 compared to growth in media at pH 7 over 6h. 

 

5. Adaptation of Crohn’s disease AIEC HM605 to the phagolysosome niche appears not 

to be through its ability to alter host macrophage oxidative stress response to 

infection, as no differential changes were observed in the expression of 84 host genes 

related to oxidative stress to that response seen with EPI300, a non-intra-macrophage 

replicating laboratory E. coli strain.  
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5.5 Discussion 

 

Having previously verified that Crohn’s disease AIEC strains possess greater ability to 

survive and replicate inside macrophages and that they may  endure growth in chemical 

stress-induced conditions resembling that of the intra-macrophage phagolysosome 

environment, we subsequently examined for potential genes that might play a role in its 

virulence phenotype, using the AIEC strain, HM605 as a representative isolate. Gad system 

genes seemed likely good initial candidates, given that various types of E. coli are already 

known to contain this acid stress response system, which is upregulated in response to 

exposure to a low pH environment [382], and that two previous studies have shown that 

luminal commensal AIEC strain NC101 responds to chronic intestinal inflammation by 

upregulation of expression of these two acid stress response genes, gadA and gadB [250, 

383]. We therefore initially looked for expression of these genes in CD E. coli strain HM605 

compared to non-pathogenic and laboratory strains (i.e. EPI300, XL-1Blue and K-12). Higher 

initial basal levels of gad gene expression seen for the AIEC isolate HM605 meant that as a 

consequence this isolate showed much less of an increase shift in gad expression when grown 

in nutrient poor media at low (acidic) pH. One could speculate that E. coli with an AIEC 

phenotype may perhaps already be adapted with high level of gad expression to 

counter/respond rapidly to acid stress encountered when phagocytosed into the macrophage 

phagosome environment, and that they may use this acid stress tolerance system to not only 

facilitate their initial survival but also subsequently to extensively replicate rapidly within 

maturing macrophage vacuoles, i.e. when phagosomes fuses with lysosomes. Notably, the 

largest shift observed in gad gene expression in response to the experimentally-induced 

acidic stress conditions was for the non-pathogenic E. coli K-12 strain, suggesting this strain 

rapidly adapts to acid stress to facilitate its survival/tolerance of high acid growth conditions. 

This response was also seen in the earlier solid agar chemical stress growth assays described 

in Chapter 4 (see Figure 4.6). This gad system activation response may explain the 

observations in this study (Chapter 3; Figure 3.2) and that of others [149] that E. coli K-12 

is also able to survive, albeit not replicate extensively, within murine macrophages over 6h 

study time. 
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Macrophages are well known to effectively generate reactive oxygen and nitrogen species, to 

facilitate intra-macrophage bacteria killing [384], and in order to defend themselves from the 

intra-phagolysosome toxic reactive oxygen species, E. coli strains trigger transcription of 

other stress-response regulators, such as OxyR, PerR and SoxR, which promote/enhance 

virulence [385, 386]. The RT2 Profiler PCR Array results presented here in this Chapter 

clearly illustrated that a number of key host macrophage oxidative stress genes were 

significantly upregulated in response to infection with AIEC HM605. This included; 1.) the 

neutrophil cytosolic factor 1 gene Ncf1 which encodes a cytosolic subunit protein of NADPH 

oxidase, p47 (phox) [387]; 2.) superoxide dismutase 2 mitochondrial gene Sod2, encoding a 

protein that binds superoxide by products of oxidative phosphorylation and then converts 

them to hydrogen peroxide and diatomic oxygen [388]; 3.) the p62/sequestosome 1 gene 

Sqstm1, encoding an autophagosome cargo protein that interacts with other proteins 

responsible for selective autophagy [389, 390]; and 4 ) Prdx5, encoding  peroxiredoxin-5 

protein [391]. These proteins are all involved in defending against superoxide/reactive 

oxygen species and control excessive inflammatory responses after macrophage activation 

[392], with peroxiredoxin 5 (PRX5) and manganese-containing superoxide dismutase (Sod2) 

being highly upregulated after TLR activation of macrophages during microbial infection 

[388, 393]. 

 

Oxidative stress genes that were significantly down-regulated in AIEC-infected macrophages, 

included the following; 1.) The glutamate-cysteine ligase gene Gclc, encoding a catalytic 

protein involved in the first step in the synthesis of glutathione important for protection 

against infection [394, 395]; 2.) The isocitrate dehydrogenase 1 gene Idh1, catalysing 

oxidative decarboxylation of citrate cytosolic NADP+-dependent ribozyme [396]; 3.) RecQ 

protein-like 4 gene Recql4, encoding the ATP-dependent DNA helicase Q4 [397], and 4.) 

The antioxidant prostaglandin-endoperoxide synthase 1/cyclooxygenase 1 gene Ptgs1, 

catalysing the conversion of arachidonic acid to prostaglandin [398]. Our data also indicate 

that no differential changes were observed in the expression of 84 host genes related to 

oxidative stress to that seen with the non-replicating laboratory E. coli strain EPI300 in terms 

of both up-regulation and down-regulation of the mouse oxidative stress genes post 6h 

infection. Overall, this result suggest that adaptation to the phagolysosome niche of Crohn’s 

disease AIEC, such as HM605, appears not to be through any ability to alter host macrophage 

oxidative stress response to infection. 
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Studies have identified presence of key virulence genes thought to associate to a ‘AIEC’ 

phenotype, i.e. being significantly higher among AIEC strains isolated from CD patients than 

non-IBD controls [180, 245, 399, 400]. Comparison of the complete genome of ileal CD 

AIEC E. coli NRG857c (O83:H1) had confirmed a phylogenetic linkage between AIEC and 

ExPECs [9]. A more recent comparative RNASeq analysis of AIEC strain LF82 compared to 

a non-invasive strain HS also showed enrichment for pdu operon genes [401], as did the 

study of Dogan et al. [178] and further analysis of the complete genomes for 13 AIEC and 11 

non-invasive E. coli revealed that a number of CRISPR-associated Cas genes (encoding 

proteins that recognize foreign genetic material in plasmids and phages) may serve as AIEC-

specific biomarkers [401]. One particular gene ibeA (encoding an invasion protein) also 

shown to be enriched in AIEC in the same study [401], plays a role in resistance of E. coli to 

hydrogen peroxide stress [402] and supporting survival of AIEC within macrophage [377]. 

However, a recent whole genome sequencing study of 41 B2 phylogroup E. coli strains, 

isolated from 19 patients with IBD (i.e. 14 with CD, 5 with UC), and 17 without IBD, 

interestingly showed no exclusive identifiable molecular features for the AIEC phenotype 

[161].  
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Chapter 6  

 

Overall study outcomes  
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6.1 Overall summary of the key findings 
 

The following list summarises the key findings on CD-E. coli isolates that have been 

identified throughout working in the lab so far: 

 

1. The majority of Crohn’s ileal- and colonic-mucosa associated E. coli strains possess 

ability to either survive and/or replicate within murine (J774-A1) macrophages. 

Notably, all pathogenic UTI E. coli isolates examined and some healthy mucosa-

associated E. coli strains behaved in a similar manner. All CRC mucosa-associated E. 

coli strains tested, two out of four UC mucosa-associated isolates and the majority of 

laboratory E. coli strains were unable to survive inside J774-A1 macrophage 

phagolysosomes (see Chapter 3, Figure 3.2). 

 

2. Bone marrow progenitor cells from wild-type C57BL/6, Nfκb1-/-, Nfκb2-/- and c-Rel-/- 

mice were successfully differentiated into mature adherent macrophages when 

cultured in media supplemented with rM-CSF (see Chapter 2, section 2.3). Paradigm 

Crohn’s ileal and colonic AIEC isolates LF82 and HM605 showed ability to survive 

and replicate within wild-type C57BL/6 bone-marrow derived macrophages 

(BMDM). They were, however, unable to survive and replicate inside Nfκb1-/- and 

Nfκb2-/- BMDM, whilst they both survived and replicated within c-Rel-/- BMDM. (see 

Chapter 3, section 3.4, 3.5 and 3.6). 

 

3. Chemical stress conditions mimicking the intra-macrophage phagolysosome 

environment were observed to have no adverse effects on the growth of Crohn’s 

disease mucosa-associated AIEC, and those intra-macrophage replicating UTI and 

healthy-mucosa-associated E. coli isolates. All laboratory, CRC and UC mucosally-

associated E. coli isolates (with only a few exceptions) were seen to be intolerant to 

the same stress conditions, in particular superoxidative stress. (see Chapter 4, section 

4.2 and 4.3). 
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4. Expression of bacteria acid stress response antiporter glutamate-ƴ-aminobutyric acid 

genes gadA and gadB were observed to be much higher in the studied E. coli strains in 

minimal nutrient, low pH (acidic) growth conditions. CD AIEC HM605 showed 

higher base levels of expression of both gadA and gadB suggesting this may benefit 

survival in a highly acidic phagolysosome environment (see Chapter 5, section 5.2). 

 

5. Adaptation to the phagolysosome niche of Crohn’s disease AIEC HM605 appears not 

to be any ability to alter host macrophage oxidative stress response to infection, as no 

differential changes were observed in the expression of 84 host genes related to 

oxidative stress to that seen with the non-replicating laboratory E. coli strain EPI300 

(see Chapter 5, section 5.3). 
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Chapter 7  

 

Discussion 
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7.1 Intra-macrophage survival and replication of Crohn’s disease mucosa-

associated AIEC isolates inside the vacuolar environment of the mature 

phagolysosome 

 

There is accumulating evidence supporting the importance of host–microbe interactions in 

the pathogenesis of CD and this has been consolidated by genome-wide association  studies 

[326]. Delayed/aberrant clearance of bacteria from mucosal tissues of Crohn’s patients by 

macrophages, along with retention of undigested bacteria has been proposed to cause chronic 

granulomatous inflammation and stimulation of secondary adaptive immune response [403]. 

Th1-related cytokines (TNF, IFN-γ, and IL-12) and Th17-associated cytokines (IL-17A, IL-

21, and IL-23) have been reported to markedly increase in the inflamed mucosa of Crohn’s 

patients and their increased levels are associated with the progression of CD [7, 404].  

 

Several international research groups have identified the increased abundance of E. coli 

(including the proposed ‘pathovar’ AIEC ) in both the ileal and colonic mucosa of active and 

newly diagnosed Crohn’s patients (both adult and paediatric) [30, 46, 117, 139, 305, 405]. 

These E. coli have frequently been observed to translocate the Crohn’s intestinal mucosae of 

patients to be found scattered within the lamina propria, submucosa, the muscle layers, and 

the perivascular areas of the subserosa [120]. Other studies have also reported increased E. 

coli abundance in active UC patients as well as in those with active CD [140, 142, 406-410]. 

These E. coli have been detected in the lamina propria of UC patients [120], but there is no 

evidence for their ability to translocate to mucosa layer [411, 412]. In addition, intra-

macrophage E. coli were commonly found in lamina propria (LP) macrophages in mucosal 

biopsies from 71% CD, 11% UC patients, but from non-inflamed controls (0%) [330]. A 

Canadian group had also previously shown that E. coli strains from UC showed higher 

percent survival inside murine (RAW264.7) macrophages than those isolates from CD and 

healthy controls after 20h infection [410]. Similar intra-mucosal and intra-epithelial E. coli 

have also been found in increased numbers from patients with CRC [139, 143]. This is 

supported by recent studies, including quantitative profiling/detection by PCR [413, 414]. 

Some of these E. coli strains were shown to possess the characteristics of both DAEC and 

genotoxic AIEC [180],[413, 414]. Several studies have identified presence of key virulence 

genes thought to associate to a ‘AIEC’ phenotype, i.e. being significantly higher among 
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AIEC strains isolated from CD patients than non-IBD controls [180, 245, 399, 400]. 

Virulence factors supporting survival and replication within macrophages have been 

identified using isogenic mutants of the “paradigm” ileal AIEC LF82, including HtrA, DsbA, 

Hfq and GipA [242-245]. The AIEC phenotype has also been frequently observed amongst 

intestinal pathogenic E. coli (InPEC) strains from various animal species [415]. However, a 

recent whole genome sequencing study showed no identifiable molecular features for an 

exclusive AIEC phenotype [161].  

 

In our study we have provided further evidence of the ability of Crohn’s disease mucosa- 

associated E. coli to replicate within murine macrophages and also shown that Crohn’s AIEC 

strains have better ability to survive and replicate than those isolates obtained from both CRC 

and UC patients. We have also shown that E. coli strains from other disease and non-

inflamed conditions also share AIEC phenotypic properties (especially those obtained from 

UTI patients). AIEC replication within macrophages is suggested to be dependent on host 

TNF secretion [8, 149, 323, 324]. Crohn’s AIEC LF82 and 13I have been reported during 

macrophage infection to induce chronic activation/nuclear translocation of NF-κB, which 

correlates with increased TNF secretion and ongoing intracellular replication of these strains 

[323]. In this study, intra-macrophage Crohn’s AIEC strains HM605 and LF82 survival and 

replication were observed within murine BMDM from various Nfκb family member 

knockout mice, including the classical pathway, Nfκb1-/- (p105→p50) and c-Rel-/- (p65), and 

the alternative pathway, Nfκb2-/- (p100→p52). Phagocytosis of these AIEC was not impaired, 

but our data showed that both isolates showed little ability to replicate within Nfκb1-/- and 

Nfκb2-/- BMDM, while they managed to survive and replicate within c-Rel-/- BMDM, like that 

of WT BMDM. This supports the role of host Nfκb signal pathway activation in supporting 

intra-macrophage survival and persistence, although whether subsequent elevation TNF 

levels occur to support survival/replication was not studied here. However, previous data 

from our own lab show that peripheral blood monocyte-derived macrophages obtained from 

healthy volunteers and Crohn’s patients produced roughly similar quantities of 

proinflammatory cytokines, including TNF, after infection with Crohn’s mucosa-associated 

AIEC HM605 [205]. This contradicts other studies showing that exogenous addition of TNF 

increases numbers of intra-macrophage replicating AIEC LF82 [324, 335]. It would be 

interesting to examine the replication of these paradigm AIEC isolates replication within 

BMDM derived from knock-outs of TNF and TNF receptor family members [416, 417]. CD 
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AIEC LF82 isolate have also been reported to have the ability to delay apoptosis in the 

infected macrophages by a mechanism involving increase of S-nitrosylation and proteasomal 

degradation of Caspase-3 [418]. Interestingly, tumour necrosis factor-like weak inducer of 

apoptosis (sTWEAK) has been found to be elevated in Crohn’s patients, suggesting that 

TWEAK may play a role in the aetiology of CD [404]. 

 

Adaptation to an intracellular lifestyle is not uncommon in the pathogen world including Q-

fever-associated Coxiella burnetii [288] and Whipple's disease-associated Tropheryma 

whipplei [289, 290] as key examples. Likewise, enteric pathogens Salmonella and Shigella  

have both been reported to possess a repertoire of inducible systems that support tolerance of 

the harsh phagolysosome environment [224]. Paradigm Crohn’s AIEC strain LF82, has also 

been shown to be present within mature phagolysosomes and appears to be tolerant of a low 

pH and high oxidative stress environment typical of the phagolysosome [322]. This 

persistence within macrophages supports giant cell formation and development of 

granulomata in vitro [145]  

 

Our study data supports these earlier observations and extend this to a wider range of CD 

isolates. Here we demonstrated that following acid, oxidative, superoxidative and nitrosative 

stress, Crohn’s disease mucosa-associated E. coli strains possessing the AIEC phenotype 

were better able to tolerate growth in ‘killing’ conditions inside the macrophage 

phagolysosome. Interestingly, other studies on ExPEC strains has also demonstrated the 

ability to survive/adapt to/tolerate the intracellular bactericidal mechanisms within peripheral 

blood-derived human neutrophils [419].  

Other important mechanisms may also be important for intracellular survival of CD mucosa-

associated E. coli at the level of the epithelial interface. Hypoxia inducible transcription 

factor (HIF)-1α protein, encoded by HIF1A gene, plays an essential role in cellular and 

systemic responses to hypoxia [420]. There is strong evidence showing that CD AIEC strains 

promote gastrointestinal inflammatory disorders via activation of HIF-dependent responses 

leading to an over expression of HIF-1α protein in inflamed ileal epithelium of Crohn’s 

patients [421] and also HIF-1α was found to mediate CEACAM6 expression and regulate the 

xenophagy process of CD AIEC within intestinal epithelial cells [422]. 
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Identifying the other stress response genes favouring Crohn’s AIEC survival and replication 

ability within the macrophage phagolysosome was a key target in this study. The glutamate-

dependent acid response system, particularly two isoforms of glutamate decarboxylase 

encoded by gadA and gadB [248, 249], was a good target given that a number of E. coli are 

already known to contain acid stress response genes of this system [246, 248, 382], and  is 

likely the most effective system in protecting E. coli strains from low pH compared with 

other acid resistance mechanisms [423-425]. Here we showed that expression of the acid 

stress response antiporter glutamate-ƴ-aminobutyric acid system genes gadA and gadB from 

bacteria grown in low nutrient media (pH 4.5) mimicking the active phagocytic-vacuole 

environment, were observed to be much higher in all E. coli strains than that seen at pH 7. 

Crohn’s AIEC HM605 showed higher initial levels of expression of both gadA and gadB in 

low nutrient media at pH 7, which might suggest that elevated levels at initial entry to the 

phagolysosome confer an advantageous position in adaptation for survival/replication within 

this niche. AIEC adaptation to the phagolysosome niche appears not to be through ability to 

alter host macrophage oxidative stress response to infection as no differential  changes were 

observed in the expression of 84 host genes related to oxidative stress to that seen by with 

non-replicating laboratory E. coli strain EPI300. Murine commensal E. coli have been 

observed to respond to chronic intestinal inflammation by up-regulating expression of gadA 

and gadB [250] and in the same study, it was hypothesised that these strains might upregulate 

these acid response genes during inflammation to enhance their survival and virulence. 

Conversely, they showed that upregulation of acid tolerance pathways limited commensal E. 

coli survival and colitogenic potential [250]. Notably though, the largest shift observed in gad 

gene expression to the experimentally-induced acidic stress conditions in our study was for 

the non-pathogenic E. coli K-12 strain, and this certainly supported its survival/tolerance of 

high acid growth conditions. The higher initial gad gene levels observed here in human CD 

mucosa-associated E. coli may also suggest that AIEC differ considerably to commensal 

strains. 
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7.2  Host macrophage–Crohn’s disease mucosa-associated AIEC interactions: 

Opening up new therapeutic strategies 

 

Understanding the Crohn’s disease (CD) mucosa-associated E. coli-host macrophage 

interaction may perhaps provide key insight into CD pathogenesis and support the 

development of new therapeutic strategies that target the fundamental pathology of CD and 

support development of novel drugs that might be much more effective for patients with CD. 

The main focus of the studies of this thesis, i.e. to investigate how CD mucosa-associated 

AIEC isolates resist killing process of mucosal macrophages through adaptation to the 

environment within the macrophage phagolysosomes, would clearly lend towards this goal.  

 

Our data has clearly validated the ability of Crohn’s ileal- and colonic-mucosa associated 

AIEC isolates to survive and replicate within mucosal macrophages, while the majority of 

ulcerative colitis (UC) and colorectal cancer (CRC) mucosa-associated E. coli isolates were 

unable to replicate. Crohn’s AIEC survival and replication appear also to be dependent on 

host NFκB signalling and possibly subsequent host TNF secretion from the macrophage. 

Blockade of the NFκB signaling pathway, both classical and alternative pathways, has 

become a potential target for pharmacological intervention [426]. Various anti-inflammatory 

agents including glucocorticoids, non-steroid anti-inflammatory drugs (NSAIDs), and 

immunosuppressants (some commonly used to treat CD patients) strongly inhibit NF-κB 

activation by mechanisms that are not fully understood [426] but may support a reduction in 

bacterial persistence/increase in killing of intra-macrophage E. coli as part of their therapeutic 

action to get CD patients into remission and maintain them there. Clearly, future agents that 

might specifically target NFκB activation within antigen-presenting cells harbouring 

persistence AIEC may have greater therapeutic potential here.  

 

These CD E. coli isolates are also clearly tolerant of the harsh chemical environment within 

the phagolysosome suggesting innate or acquired adaptation to an intracellular 

lifestyle/persistence. Therefore, understanding the factors that support intra-macrophage E. 

coli (mainly AIEC) persistence needs to reach beyond conventional immune response 

manipulation; i.e. approaches that decrease the intra-macrophage bacterial load. Such 
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approaches are being undertaken, including use of a) vitamin D supplementation to enhance 

AIEC intra-macrophage killing [205], supported by Vitamin D supplementation trail data to 

prevent relapse in Crohn’s [115]; b) antibiotics to target AIEC [149] and use of 

phagolysosome environment modifying agents that change the niche to support killing of 

intra-vacuolar persisting E. coli [205]. The latter study has led to a trial of combination 

Antibiotics and Hydroxychloroquine (APRiCOT Trial) 

[https://clinicaltrials.gov/ct2/show/NCT01783106 ].  

  

https://clinicaltrials.gov/ct2/show/NCT01783106
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9.1 Appendix  
 

Table 9.1 Fold-change values of all 82 stress related gene, expressed from mouse J774-A1 macrophage 

after infection with either E. coli EPI300 or HM605, each compared to uninfected control, using the 

Qiagen/SABiosciences RT2 Profiler PCR Array. Increased expression (in red), no change (in black) and 

lowered expression (in green) (N=3). 

 

Position 
Gene 

Symbol 

Fold Change (comparing to control group)* 

EPI300 HM605 

Fold 

Change 
95% CI  Comments** 

Fold 

Change 
95% CI  Comments** 

A01 ALB 0.50 
(0.00001, 

1.23) 
C 0.55 

(0.38, 

0.72) 
C 

A02 ALOX12 0.65 
(0.34, 

0.96) 
A 0.71 

(0.51, 

0.91) 
A 

A03 AOX1 0.50 
(0.00001, 

1.23) 
C 0.55 

(0.38, 

0.72) 
C 

A04 APOE 1.09 
(0.90, 

1.28) 
B 0.93 

(0.82, 

1.04) 
B 

A05 ATOX1 0.59 
(0.20, 

0.98) 
B 0.52 

(0.23, 

0.81) 
B 

A06 BNIP3 1.00 
(0.68, 

1.32) 
OKAY 0.80 

(0.55, 

1.05) 
OKAY 

A07 CAT 4.05 
(0.00001, 

17.81) 
OKAY 4.79 

(0.00001, 

21.05) 
OKAY 

A08 CCL5 1602.38 
(603.17, 

2601.59) 
A 1126.79 

(632.71, 

1620.87) 
A 

A09 CCS 0.77 
(0.61, 

0.93) 
OKAY 0.94 

(0.79, 

1.09) 
OKAY 

A10 CYBB 0.74 
(0.07, 

1.41) 
OKAY 1.02 

(0.92, 

1.12) 
OKAY 

A11 CYGB 0.95 
(0.42, 

1.48) 
OKAY 1.05 

(0.89, 

1.21) 
OKAY 

A12 DHCR24 1.47 
(0.65, 

2.29) 
B 0.98 

(0.69, 

1.27) 
B 

B01 DUOX1 0.62 
(0.28, 

0.96) 
OKAY 0.78 

(0.65, 

0.91) 
OKAY 

B02 DUOX2 0.50 
(0.00001, 

C 0.55 
(0.38, 

C 
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1.23) 0.72) 

B03 DUSP1 1.36 
(0.71, 

2.01) 
B 0.80 

(0.49, 

1.11) 
B 

B04 EPHX2 0.52 
(0.00001, 

1.26) 
B 0.55 

(0.38, 

0.72) 
C 

B05 EPX 0.72 
(0.22, 

1.22) 
OKAY 1.04 

(0.92, 

1.16) 
OKAY 

B06 FOXM1 0.93 
(0.45, 

1.41) 
B 0.84 

(0.63, 

1.05) 
B 

B07 FTH1 0.65 
(0.31, 

0.99) 
B 1.00 

(0.66, 

1.34) 
B 

B08 GCLC 0.47 
(0.00001, 

1.15) 
B 0.51 

(0.41, 

0.61) 
OKAY 

B09 GCLM 1.72 
(0.33, 

3.11) 
OKAY 1.46 

(1.16, 

1.76) 
OKAY 

B10 GPX1 0.27 
(0.18, 

0.36) 
OKAY 0.30 

(0.24, 

0.36) 
OKAY 

B11 GPX2 0.63 
(0.51, 

0.75) 
OKAY 0.72 

(0.69, 

0.75) 
OKAY 

B12 GPX3 0.71 
(0.00001, 

1.56) 
OKAY 0.73 

(0.59, 

0.87) 
OKAY 

C01 GPX4 0.50 
(0.00001, 

1.23) 
C 0.55 

(0.38, 

0.72) 
C 

C02 GPX5 3.12 
(1.25, 

4.99) 
B 2.28 

(2.06, 

2.50) 
OKAY 

C03 GPX6 0.45 
(0.41, 

0.49) 
OKAY 0.60 

(0.54, 

0.66) 
OKAY 

C04 GPX7 0.50 
(0.00001, 

1.23) 
C 0.55 

(0.38, 

0.72) 
C 

C05 GSR 0.50 
(0.00001, 

1.23) 
C 0.55 

(0.38, 

0.72) 
C 

C06 GSS 0.50 
(0.00001, 

1.23) 
C 0.57 

(0.39, 

0.75) 
OKAY 

C07 GSTP1 0.86 
(0.54, 

1.18) 
OKAY 0.95 

(0.90, 

1.00) 
OKAY 

C08 GSTZ1 0.75 
(0.51, 

0.99) 
OKAY 1.07 

(0.90, 

1.24) 
OKAY 

C09 GTF2I 0.61 
(0.34, 

0.88) 
OKAY 0.66 

(0.45, 

0.87) 
OKAY 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1843
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2053
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=8288
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2305
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2495
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2729
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2730
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2876
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2877
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2878
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2879
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2880
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=257202
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2882
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2936
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2937
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2950
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2954
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2969
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C10 HMOX1 0.55 
(0.25, 

0.85) 
B 0.58 

(0.29, 

0.87) 
B 

C11 HSPA1A 1.05 
(0.32, 

1.78) 
OKAY 0.95 

(0.89, 

1.01) 
OKAY 

C12 KRT1 0.51 
(0.00001, 

1.25) 
B 0.55 

(0.38, 

0.72) 
C 

D01 LPO 0.34 
(0.20, 

0.48) 
OKAY 0.42 

(0.32, 

0.52) 
OKAY 

D02 MB 0.64 
(0.13, 

1.15) 
B 1.00 

(0.65, 

1.35) 
B 

D03 MBL2 1.58 
(0.89, 

2.27) 
B 0.87 

(0.57, 

1.17) 
B 

D04 MGST3 0.50 
(0.00001, 

1.23) 
C 0.55 

(0.38, 

0.72) 
C 

D05 MPO 0.50 
(0.00001, 

1.23) 
C 0.55 

(0.38, 

0.72) 
C 

D06 MPV17 0.50 
(0.00001, 

1.23) 
C 0.55 

(0.38, 

0.72) 
C 

D07 MSRA 1.06 
(0.20, 

1.92) 
B 1.00 

(0.00001, 

2.02) 
B 

D08 MT3 0.50 
(0.00001, 

1.23) 
C 0.55 

(0.38, 

0.72) 
C 

D09 NCF1 2.05 
(1.24, 

2.86) 
OKAY 2.33 

(1.81, 

2.85) 
OKAY 

D10 NCF2 0.74 
(0.43, 

1.05) 
OKAY 0.77 

(0.66, 

0.88) 
OKAY 

D11 NOS2 0.50 
(0.00001, 

1.23) 
C 0.55 

(0.38, 

0.72) 
C 

D12 NOX4 125.89 
(67.99, 

183.79) 
A 105.27 

(72.11, 

138.43) 
A 

E01 NOX5 1.79 
(1.15, 

2.43) 
OKAY 1.30 

(0.07, 

2.53) 
B 

E02 NQO1 0.50 
(0.00001, 

1.23) 
C 0.55 

(0.38, 

0.72) 
C 

E03 NUDT1 0.50 
(0.00001, 

1.23) 
C 0.55 

(0.38, 

0.72) 
C 

E04 OXR1 0.69 
(0.54, 

0.84) 
OKAY 0.78 

(0.24, 

1.32) 
B 

E05 OXSR1 0.67 
(0.00001, 

1.42) 
B 0.85 

(0.35, 

1.35) 
B 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=3162
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=3303
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=3848
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4025
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4151
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4153
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4259
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4353
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4358
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4482
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4504
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=653361
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4688
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4843
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=50507
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=79400
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1728
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4521
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=55074
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=9943
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E06 PDLIM1 0.84 
(0.41, 

1.27) 
OKAY 0.83 

(0.70, 

0.96) 
OKAY 

E07 PNKP 1.21 
(0.73, 

1.69) 
OKAY 1.12 

(0.90, 

1.34) 
OKAY 

E08 PRDX1 0.59 
(0.48, 

0.70) 
OKAY 0.67 

(0.40, 

0.94) 
OKAY 

E09 PRDX2 0.77 
(0.73, 

0.81) 
OKAY 0.83 

(0.81, 

0.85) 
OKAY 

E10 PRDX3 0.89 
(0.00001, 

1.82) 
OKAY 0.90 

(0.78, 

1.02) 
OKAY 

E11 PRDX4 2.30 
(1.21, 

3.39) 
OKAY 2.67 

(2.21, 

3.13) 
OKAY 

E12 PRDX5 0.78 
(0.50, 

1.06) 
OKAY 0.65 

(0.52, 

0.78) 
OKAY 

F01 PRDX6 0.48 
(0.00001, 

1.02) 
B 0.65 

(0.57, 

0.73) 
OKAY 

F02 PREX1 0.89 
(0.26, 

1.52) 
OKAY 0.95 

(0.82, 

1.08) 
OKAY 

F03 PRNP 0.23 
(0.16, 

0.30) 
OKAY 0.33 

(0.29, 

0.37) 
OKAY 

F04 PTGS1 141.63 
(59.90, 

223.36) 
A 68.82 

(37.19, 

100.45) 
A 

F05 PTGS2 0.50 
(0.00001, 

1.23) 
C 0.55 

(0.38, 

0.72) 
C 

F06 PXDN 0.30 
(0.19, 

0.41) 
OKAY 0.34 

(0.30, 

0.38) 
OKAY 

F07 RNF7 0.50 
(0.00001, 

1.23) 
C 0.55 

(0.38, 

0.72) 
C 

F08 SCARA3 1.15 
(0.47, 

1.83) 
B 0.98 

(0.76, 

1.20) 
B 

F09 VIMP 0.93 
(0.73, 

1.13) 
OKAY 0.83 

(0.75, 

0.91) 
OKAY 

F10 SEPP1 0.70 
(0.35, 

1.05) 
OKAY 0.79 

(0.49, 

1.09) 
OKAY 

F11 SFTPD 8.18 
(2.88, 

13.48) 
OKAY 6.97 

(6.04, 

7.90) 
OKAY 

F12 SIRT2 0.50 
(0.00001, 

1.23) 
C 0.55 

(0.38, 

0.72) 
C 

G01 SOD1 2.98 
(2.38, 

3.58) 
OKAY 2.82 

(2.62, 

3.02) 
OKAY 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=9124
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=11284
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=5052
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=7001
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=10935
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=10549
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=25824
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=9588
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=57580
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=5621
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=5742
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=5743
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=7837
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=9616
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=51435
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=55829
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=6414
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=6441
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=22933
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=6647


194 

 

G02 SOD2 1.00 
(0.39, 

1.61) 
OKAY 1.31 

(1.21, 

1.41) 
OKAY 

G03 SOD3 0.50 
(0.00001, 

1.23) 
C 0.55 

(0.38, 

0.72) 
C 

G04 SQSTM1 2.24 
(1.40, 

3.08) 
OKAY 1.57 

(0.95, 

2.19) 
B 

G05 SRXN1 0.84 
(0.56, 

1.12) 
OKAY 1.29 

(1.18, 

1.40) 
OKAY 

G06 STK25 1.28 
(0.87, 

1.69) 
OKAY 1.31 

(1.20, 

1.42) 
OKAY 

G07 TPO 0.96 
(0.57, 

1.35) 
A 1.18 

(0.90, 

1.46) 
A 

G08 TTN 1.01 
(0.91, 

1.11) 
B 0.96 

(0.75, 

1.17) 
B 

G09 TXN 0.67 
(0.43, 

0.91) 
OKAY 0.86 

(0.80, 

0.92) 
OKAY 

G10 TXNRD1 0.50 
(0.00001, 

1.23) 
C 0.62 

(0.39, 

0.85) 
B 

G11 TXNRD2 0.75 
(0.48, 

1.02) 
OKAY 0.81 

(0.74, 

0.88) 
OKAY 

G12 UCP2 1.11 
(0.44, 

1.78) 
OKAY 0.96 

(0.64, 

1.28) 
OKAY 

H01 ACTB 1.07 
(0.70, 

1.44) 
OKAY 1.10 

(1.00, 

1.20) 
OKAY 

H02 B2M 1.59 
(0.62, 

2.56) 
OKAY 1.43 

(1.28, 

1.58) 
OKAY 

H03 GAPDH 0.69 
(0.50, 

0.88) 
OKAY 0.78 

(0.67, 

0.89) 
OKAY 

H04 HPRT1 0.73 
(0.58, 

0.88) 
OKAY 0.72 

(0.66, 

0.78) 
OKAY 

H05 RPLP0 1.16 
(0.91, 

1.41) 
OKAY 1.13 

(1.02, 

1.24) 
OKAY 

 

Footnote: 

* Fold change values greater than 1 indicate a positive- or an up-regulation. Fold change values less than 1 

indicate a negative or down-regulation. 

  

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=6648
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=6649
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http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=10587
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=7351
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=60
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=567
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=2597
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=3251
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=6175
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**Comments: 

(Comment A): This gene’s average threshold cycle is relatively high (> 30) in either the control or the test 

sample, and is reasonably low in the other sample (< 30). These data mean that the gene’s expression is 

relatively low in one sample and reasonably detected in the other sample suggesting that the actual fold-change 

value is at least as large as the calculated and reported fold-change result. This fold-change result may also have 

greater variations if p value > 0.05; therefore, it is important to have a sufficient number of biological replicates 

to validate the result for this gene. 

(Comment B): This gene’s average threshold cycle is relatively high (> 30), meaning that its relative expression 

level is low, in both control and test samples, and the p-value for the fold-change is either unavailable or 

relatively high (p > 0.05). This fold-change result may also have greater variations; therefore, it is important to 

have a sufficient number of biological replicates to validate the result for this gene. 

(Comment C): This gene’s average threshold cycle is either not determined or greater than the defined cut-off 

value (default 35), in both samples meaning that its expression was undetected, making this fold-change result 

erroneous and un-interpretable.  

The following SABiosciences/Qiagen web link is the array gene list studied: 

https://www.qiagen.com/gb/shop/pcr/primer-sets/rt2-profiler-pcr-arrays/?catno=PAMM-

065Z#geneglobe (accessed 08-12-2016). 

  

https://www.qiagen.com/gb/shop/pcr/primer-sets/rt2-profiler-pcr-arrays/?catno=PAMM-065Z#geneglobe
https://www.qiagen.com/gb/shop/pcr/primer-sets/rt2-profiler-pcr-arrays/?catno=PAMM-065Z#geneglobe
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9.2 .Appendix  
 

Table 9.2 Oxidative stress genes that were either over- or under -expressed (> 2-fold change) in J7774-A1 

murine macrophages infected with E. coli EPI300 or HM605, each compared to uninfected controls. 

Increased expression (in red), no change (in black) and lowered expression (in green) (N=3). 

 

 

 

Footnote: 

Fold Regulation represents fold change results in a biologically meaningful way. Fold change values greater 

than 1 indicate a positive- or an up-regulation, and the fold regulation is equal to the fold change. Fold change 

values less than 1 indicate a negative or down-regulation, and the fold regulation is the negative inverse of the 

fold change. 

Fold Difference:

Arrays included in Test Group: EPI300, EPI300, EPI300

Arrays included in Control Group: Uninfec, Uninfec, Uninfec

Genes Over-Expressed in Genes Under-Expressed in 

Group 1 vs. Control Group Group 1 vs. Control Group

Position Gene Symbol Fold Regulation Comments RT2 Catalog Position Gene Symbol Fold Regulation Comments RT2 Catalog

A07 Cat 4.054 OKAY PPM04394C B08 Fmo2 -2.1297 B PPM25634F

A08 Ccl5 1602.3793 A PPM02960F B10 Gclc -3.657 OKAY PPM05283A

C02 Gpx3 3.1152 B PPM06171A C03 Gpx4 -2.2048 OKAY PPM06010F

D09 Ncf1 2.0458 OKAY PPM25068A D01 Idh1 -2.9567 OKAY PPM25551A

D12 Nos2 125.8883 A PPM02928B F01 Prnp -2.0811 B PPM06209A

E11 Prdx5 2.2963 OKAY PPM60228E F03 Ptgs1 -4.4301 OKAY PPM03803F

F04 Ptgs2 141.6317 A PPM03647E F06 Recql4 -3.3342 OKAY PPM05394E

F11 Sod2 8.1832 OKAY PPM04371F H06 MGDC -2.6463 B

G01 Sqstm1 2.9814 OKAY PPM28731F

G04 Txn1 2.2387 OKAY PPM35777B

Note: only the genes which are checked are exported into this file

Arrays included in Test Group: HM605, HM605, HM605

Arrays included in Control Group: Uninfec, Uninfec, Uninfec

Genes Over-Expressed in Genes Under-Expressed in 

Group 2 vs. Control Group Group 2 vs. Control Group

Position Gene Symbol Fold Regulation Comments RT2 Catalog Position Gene Symbol Fold Regulation Comments RT2 Catalog

A07 Cat 4.7943 OKAY PPM04394C B10 Gclc -3.2913 OKAY PPM05283A

A08 Ccl5 1126.7877 A PPM02960F D01 Idh1 -2.3872 OKAY PPM25551A

C02 Gpx3 2.2836 OKAY PPM06171A F03 Ptgs1 -3.0427 OKAY PPM03803F

D09 Ncf1 2.3262 OKAY PPM25068A F06 Recql4 -2.98 OKAY PPM05394E

D12 Nos2 105.2736 A PPM02928B H06 MGDC -2.4261 OKAY

E11 Prdx5 2.666 OKAY PPM60228E

F04 Ptgs2 68.8157 A PPM03647E

F11 Sod2 6.9708 OKAY PPM04371F

G01 Sqstm1 2.818 OKAY PPM28731F

Note: only the genes which are checked are exported into this file
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9.3 Appendix - Supplementary Stress tolerance data  
 

 

 

Figure 9.1 Non-pathogenic clinical isolate Nissle 1917 (EcN) tolerated stress conditions. (Included as part 

of the data set, regarding tolerance to MV, in Chapter 4, Figure 4.10). 

Bacteria growth in plain LB at pH 7 was used as a control.  Bacteria CFUs were frequently counted at dilution 

factor 105 and presented as relative growth response. Each value represents the mean ± standard error of the 

mean (SEM) of three independent experiments (N=4, n=3 replicate). * P ≤0.05, ** P ≤ 0.01, **** P ≤ 0.0001, 

ANOVA with Dunnett’s post-hoc test. 
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Figure 9.2 (A-I) E. coli isolates from healthy individuals were able to tolerate all stress conditions 

(Included as part of the data set, regarding tolerance to MV, in Chapter 4, Figure 4.10). Each value 

represents the mean ± standard error of the mean (SEM) of three independent experiments (N=4, n=3 replicate).  
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Figure 9.3 (A-L) CD E. coli isolates, excepting LF86 and HM413 were intolerant to the superoxidative 

stress condition (included as part of the data set, regarding tolerance to MV, in Chapter 4, Figure 4.10). 

Each value represents the mean ± standard error of the mean (SEM) of three independent experiments (N=4, 

n=3 replicate). * P ≤0.05, ** P ≤ 0.01, **** P ≤ 0.0001, ANOVA with Dunnett’s post-hoc test. 

0

20

40

60

80

100

120

140

LB pH7 LB pH5 LB+MV LB+H2O2%
B

a
c
te

ri
a

 g
ro

w
th

 c
o

m
p

a
re

d
 t

o
c

o
n

tr
o

l

HM580

0

20

40

60

80

100

120

140

LB pH7 LB pH5 LB+MV LB+H2O2%
B

a
c
te

ri
a

 g
ro

w
th

 c
o

m
p

a
re

d
 t

o
c

o
n

tr
o

l

HM154

0

20

40

60

80

100

120

140

160

LB pH7 LB pH5 LB+MV LB+H2O2%
B

a
c
te

ri
a

 g
ro

w
th

 c
o

m
p

a
re

d
 t

o
c

o
n

tr
o

l
HM413

0

20

40

60

80

100

120

140

LB pH7 LB pH5 LB+MV LB+H2O2%
B

a
c
te

ri
a

 g
ro

w
th

 c
o

m
p

a
re

d
 t

o
c

o
n

tr
o

l

HM419

**** ****

****

I

K

J

L



201 

 

 

 

 

Figure 9.4 (A-G) E. coli isolates from UTI patients were tolerant to all stress conditions (Included as part 

of the data set, regarding tolerance to MV, in Chapter 4, Figure 4.10). Each value represents the mean ± 

standard error of the mean (SEM) of three independent experiments (N=4, n=3 replicate).  
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Figure 9.5 (A-F) E. coli isolates, excepting HM229 were unable to tolerate the superoxidative stress 

conditions (Included as part of the data set, regarding tolerance to MV, in Chapter 4, Figure 4.10). Each 

value represents the mean ± standard error of the mean (SEM) of three independent experiments (N=4, n=3 

replicate). * P ≤0.05, ** P ≤ 0.01, **** P ≤ 0.0001, ANOVA with Dunnett’s post-hoc test. 
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Figure 9.6 (A-F) E. coli isolates from UC patients were intolerant to the superoxidative stress condition 

(Included as part of the data set, regarding tolerance to MV, in Chapter 4, Figure 4.10). Each value 

represents the mean ± standard error of the mean (SEM) of three independent experiments (N=4, n=3 replicate). 

* P ≤0.05, ** P ≤ 0.01, **** P ≤ 0.0001, ANOVA with Dunnett’s post-hoc test. 

 

0

20

40

60

80

100

120

140

160

180

LB pH7 LB pH5 LB+MV LB+H2O2%
B

a
c
te

ri
a

 g
ro

w
th

 c
o

m
p

a
re

d
 t

o
c

o
n

tr
o

l

HM464

0

20

40

60

80

100

120

140

160

180

LB pH7 LB pH5 LB+MV LB+H2O2%
B

a
c
te

ri
a

 g
ro

w
th

 c
o

m
p

a
re

d
 t

o
 

c
o

n
tr

o
l

HM250

0

20

40

60

80

100

120

140

160

180

LB pH7 LB pH5 LB+MV LB+H2O2%
B

a
c
te

ri
a

 g
ro

w
th

 c
o

m
p

a
re

d
 t

o
c

o
n

tr
o

l

HM394

0

20

40

60

80

100

120

140

160

180

LB pH7 LB pH5 LB+MV LB+H2O25
B

a
c
te

ri
a

 g
ro

w
th

 c
o

m
p

a
re

d
 t

o
c

o
n

tr
o

l

HM378

** ****

***

A

D

B

C

0

20

40

60

80

100

120

140

160

LB pH7 LB pH5 LB+MV LB+H2O2%
B

a
c
te

ri
a

 g
ro

w
th

 c
o

m
p

a
re

d
 t

o

c
o

n
tr

o
l

HM457

0

20

40

60

80

100

120

140

160

LB pH7 LB pH5 LB+MV LB+H2O2%
B

a
c
te

ri
a

 g
ro

w
th

 c
o

m
p

a
re

d
 t

o
c

o
n

tr
o

l

HM233

**** ****

E F


