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Abstract

We study approximation algorithms and design truthful mechanisms for optimization

problems in networks that have direct applications in smart cities and urban planning.

We present new models and new techniques which could be of independent interest.

More specifically, in Chapter 2 we introduce a new model for pollution control and

propose two applications of this model. This is the first time this problem is studied

from the computational perspective. The network is represented by a graph where

nodes are the pollutants and edges between pollutants represent the effect of spread of

pollution. The government sets bounds on the levels of emitted pollution in both local

areas and the whole network. We mainly study the classes of planar graphs and trees

which model air and water pollution and design truthful approximate mechanisms.

In Chapter 3 we introduce a new mechanism design model for a new model for

the budgeted maximum lifetime coverage (BMLC) in wireless sensor networks (wsns).

BMLC generalizes the known maximum lifetime coverage problem to the case where

sensors are owned by selfish agents, where each agent has a private cost per unit time

of how much to be paid for deploying his sensor. We introduce a random instances

model for BMLC and design a novel approximate mechanism by reducing BMLC to

the fractional knapsack which is truthful under some technical assumptions. For a

closely related minimum coverage problem in wsns on unit disk graphs, we generalize a

recent PTAS for this problem to obtain a truthful PTAS for the problem where sensors’

costs are agents’ private data.

In Chapter 4 we study approximation algorithms which are based on the primal

dual method for network connectivity problems. We then prove that these algorithms

are monotone and thus can lead to truthful mechanisms.

Finally in Chapter 5 we study the problem of facility location on the real line under

non utilitarian objective functions. We extend previous models and derive inapproxima-

bility bounds for deterministic and randomized truthful mechanisms. As a byproduct

we show that the same approximation guarantees hold for the social utility objective.
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Chapter 1

Introduction

Internet is the most complex and valuable artifact among all the computational sys-

tems. This network of networks that grew with an immense speed since mid 1990’s,

has become undoubtedly a necessary means of communication in every day life. Its

universality, its availability as well as its robustness have attracted rapidly the global

economy. Through the years the economic activity has increased surprisingly on the

Internet. Many markets have now moved to the Internet and plenty of new online

stores have opened. Except from being an unlimited source of information and bring-

ing the global communications at a higher level, its bloom coincided with the inception

of online markets, e-services and e-commerce. It has become an environment where

entities with diverse economic interests and goals interact. As Papadimitriou points

out “The most novel and defining characteristic of the Internet is its socio-economic

complexity” [114]. Game Theory and Mathematical Economics have been proved useful

to model the online markets resulting in what is today called Internet economics. But

how did this term arise?

Over the last decades one of the directions that Theoretical Computer Science has

focused on, was the design of efficient algorithms for computationally intractable prob-

lems. Challenging and important problems have been studied extensively from an

algorithmic perspective; the scheduling of tasks to machines, the allocation of memory

to computer systems or the routing of messages in network environments are some

paradigmatic examples. The input to these problems has been taken for granted with-

out taking into account the human factor and the presence of incentives. In environ-

ments with multiple participating entities that require services from the owners of the

resources, an algorithm must consider the different preferences of every participant.

The environment can be seen as a somewhat multidimensional chessboard where the

participating entities are the players, each having as goal to “win” in the game. Each

of them will not play fair if cheating is more profitable. However the rules can change

in a way that cheating is not beneficial. This is the desired outcome for the central

authority who designs the game. In a larger scale the situation is pretty much similar.
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On the other side, economic theory has given solutions to problems in which dif-

ferent entities interact, such as auctions, supply chains or types of markets to name

a few. The field of game theory and economics which studies the design of economic

mechanisms towards the optimization of a given objective in settings where the players

act strategically is called Mechanism Design. Mechanism design studies solution con-

cepts in a class of games where there is some information that is kept private by the

participating players. A central authority, known in the literature as the mechanism

designer who is interested in the outcome of a game, is responsible for the design of its

structure. As Leonid Hurwicz points out in mechanism design the goal is given and the

mechanism is unknown, in contrast to the traditional game theory where the attention

is drawn in the analysis of a mechanism. This is the reason why mechanism design is

also called reverse game theory.

In problems like the house allocation or facility location a mechanism is simply an

algorithm. This area of problems is known under the term mechanism design without

money. However, due to the impossibility results by Gibard [59] and Satterthwaite [124]

the design of mechanisms that fulfill desired economic properties are restricted to very

specific ones. In order to overcome this obstacle there are several ways one of which is

the addition of money and thus the introduction of payments in the mechanisms. For

problems such as combinatorial auctions and bilateral trading a mechanism is simply

speaking an algorithm together with a payment scheme. This area of problems is known

under the term mechanism design with money.

Previous studies had not taken into account the computational issues of computing a

solution for a mechanism design problem. This factor was not considered until a decade

ago. The works by Koutsoupias and Papadimitriou [87], Roughgarden and Tardos [123]

and Nisan and Ronen [111] were the first to study algorithmic aspects of game theory

and economic concepts that arise from problems on the Internet, establishing the field

of Algorithmic Game Theory. Specifically [111] studied the design of computationally

efficient mechanisms in the presence of incentives and applied the tools of mechanism

design to algorithmic problems establishing the area of Algorithmic Mechanism Design.

Algorithmic Mechanism Design models mathematically problems where both com-

putational and economical issues coincide. A direct application is on the Internet. As

a first example, the sponsored search auctions taking place in search engines every

second are one of the problems where Algorithmic Mechanism Design can be applied

to. The applications of this new area are numerous and not limited to the Internet.

Auctions constitute a problem of major importance that has been extensively studied,

with applications in various sectors, apart from sponsored search. The sale of licences

for the use of a band in the electromagnetic spectrum by telecommunication compa-

nies (spectrum auctions), the purchase of transportation services by a company from

a number of bidding suppliers (transportation auctions) and the purchase of paths to
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connect pairs of specified nodes in a communication network are some paradigmatic

examples [113].

In the aforementioned applications the information which is given as input to the

mechanisms (roughly speaking the algorithms that solve the problem) is provided by

the participating entities, which from now on will be called agents1. The auctioneer,

which in this case is the mechanism designer, aims at computing an outcome that is

optimal according to an objective, e.g. his revenue, or the overall satisfaction of the

agents, a notion termed in the literature as the social welfare. In general, every agent

has a preference for each of the outcomes and thus orders them accordingly. Each

one of them declares this information (for cardinal mechanisms studied in this thesis

this preference is expressed by a number) to the mechanism designer and the latter

computes an outcome based on it. There are two issues that arise:

1. First, the declared information might not correspond to the true preferences of

the agents. Every agent acts selfishly and will try to manipulate the mechanism

by lying, if this strategy of his will result in a more beneficial outcome for him.

2. Second, the underlying problem that needs to be solved is not always tractable.

What is needed is the design of a mechanism that will find efficiently a solution,

possibly not the optimal, with respect to the objective, but which guarantees that no

agent will have an incentive to lie about his preferences. In other words, an agent

cannot gain by lying. In Mechanism Design the mechanisms that fulfill this property

are called truthful. For the hard optimization problems, one way is to design first

an approximation algorithm i.e. an algorithm that approximates the objective of the

mechanism designer and then modify it accordingly to achieve the property of truthful-

ness. We note there is no general way to convert an algorithm to a truthful mechanism

and so far there have been only seldom works in this direction. However, this task is

very demanding and for many problems there is a trade-off in between efficiency, ap-

proximation and truthfulness. Roughly speaking, we cannot always achieve them all,

thus we need to sacrifice one, or two of these factors in order to obtain the third e.g.

get a worse approximation for the underlying optimization problem in order to obtain

a truthful mechanism.

In this thesis we follow this line of research drawing our attention to Algorithmic

Mechanism Design aiming at designing approximation algorithms and truthful mecha-

nisms for optimization problems on networks. We extend the existing works, we propose

new network models and design truthful mechanisms. The ultimate goal is to get a

better understanding on what criteria a mechanism should fulfill in order to be truthful.

1For simplicity reasons we ascribe all agents the property of masculine gender.
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1.1 Urban planning

Governments and local authorities in many cities worldwide have managed to ensure

the success of their countries and cities in social, economic and environmental terms.

Urban planning has been proved a very important tool that contributes to the overall

urban planning modelling. With optimization being the base of sketch modelling, social

planners and regulators are enabled to find solutions to several urban planning problems

establishing minimum resource consumption, efficient routing of data on sensor devices,

the control of pollution and the socially “suitable” positioning of facilities. Keirstead

and Shah in a recent survey demonstrate the importance of optimization techniques

in urban planning modelling [78]. In this thesis we study optimization problems on

networks all related to urban planning. We extend previous models and introduce new

ones investigating in parallel the underlying game and the incentives of the participants

in it. Since most of these problems are intractable, we provide approximate solutions

(in some cases the best we can hope for) and design mechanisms based on existing

approximation algorithms or on their modifications.

One of the most important environmental problems in urban planning is the control

of emitted pollution by industrial units and means of transportation. In Chapter 3 we

introduce a new model for this problem. The government as a regulatory authority of a

country, is responsible to make efficient environmental policies to ensure that a balance

between the economic growth and the protection of the environment. To achieve this

goal, restrictions are set on the allowable levels of pollution globally in whole country

as well as locally in small regions along a country. Factories and cars consist the main

sources of pollution. The government auctions a fixed number of licences for factories

each one corresponding to a ton of CO2. The factory owners have to comply with these

pollution allowances, otherwise they are charged with a fine for any extra emission in

the environment. If theses levels are exceeded significantly, then the government is

responsible for shutting down the factories that are most harmful for the environment.

Furthermore, pollution licences are distributed to the mayors who then sell them to car

drivers.

The overall problem has been studied mainly in the environmental economics liter-

ature where the methodology of game theory is applied for the pollution control. In our

network game model, we not only study the problem from an economic perspective but

also make the first attempt (to the best of our knowledge) to analyze algorithmically

pollution control from the perspective of the regulator. In the underlying game, each

of the players (i.e. factory owners, mayors of cities) declares to the regulator his cost

of cleaning the area around him (around the factory for the owner and around a city

for the mayor). Each player has as strategy to be allocated as many licence permits as

possible and thus might lie for a more profitable outcome for him. We derive algorithms

that approximate the optimization problem and mechanisms for the game, studying it
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from a computational perspective (to the best of our knowledge this is the first time in

the literature).

The next problem after controlling pollution, is the detection of pollution levels in

the atmosphere and waters as well as the detection of fire in forests. This is achieved

through wireless sensor nodes i.e. multi-functional sensing devices that can measure

the temperature, the humidity and the pollution levels in the atmosphere. In Chapter

4 we focus in two problems that have been extensively studied in the literature and

investigate them from the mechanism design perspective. More precisely, we first study

the problem of lifetime maximization i.e. the problem of finding a proper schedule of

active/sleep wireless sensor nodes that monitor a set of target points in a predefined

area. The goal of a base station, who acts as a regulatory authority, is to monitor these

targets for the maximum time possible, known as the lifetime of the network under

the battery constraints of the sensor nodes. We introduce the underlying game of the

problem, in which each player (i.e. owner of a sensor node) declares an amount of cost

per unit time of monitoring his sensing area, which is then paid by the base station.

This cost consists a private information of the players, who may strategically lie about

it to the base station in order to be paid more. We introduce a random instances model

for this problem and design a novel approximate mechanism for the game.

We also extend this problem by introducing a budget constraint on the amount of

money that the base station is allowed to spend. The second problem that we study is

that of the weighted sensor cover in the plane. Given a set of target points and a set

of weighted sensor nodes, we are asked to find a subset of the sensor nodes that can

monitor all the target points having the minimum possible weight. We introduce the

underlying game of this problem providing also a mechanism for it. The mechanism is

based on the modification of a recently designed algorithm for the optimization problem.

This modification does not affect the approximation of the produced solution.

After setting a wireless sensor network, the next step is to ensure that, once a signal

is received or a measurement exceeds a specified level, this message will be broadcast

in the network and routed to the base station as soon as possible. In this new problem

we do not ask for an energy efficient solution but rather for the cheapest one. In large

networks the components are heterogeneous and thus can be owned by different owners.

The problem also differs from the previous one in that the owners do not possess nodes

of the network (sensors in the previous problems) but rather its edges, which in this

case are the interconnecting routes between sensor nodes in the network. In Chapter 5

we survey algorithms for these network design problems based on a specific algorithmic

technique and introduce the underlying game. We prove that their approximation

guarantee is preserved when we design the mechanisms for the game.

In cities with large populations it is the responsibility of mayoralty, which acts as

regulatory authority, to make a plan for the location of facilities such as schools, facto-
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ries, gym courts etc. in order that fairness is preserved among its inhabitants. Consider

for example the case where the government is planning to build a school and a factory

on a street. Citizens’ preferences for these facilities might significantly differentiate.

Those who work at the factory and also have children that go to school wish both facil-

ities to be built close to their homes. Citizens without children might want the school to

be build far because of the noise. Finally, those who do not work at the factory, prefer

its location to be far from their home to avoid the emitted pollution. It is clear that

preferences of the inhabitants are heterogeneous since each one of them might want to

be close to a facility, be away from it, or be indifferent about its presence. In Chapter 6

we extend previous models for the problem of heterogeneous facility location, we derive

inapproximability results and design mew mechanisms for this problem. We also note

that in contrast to the other three Chapters, in the designed mechanisms of Chapter 6

there is no presence of money.

This thesis is based on the following papers:

• Eleftherios Anastasiadis, Xiaotie Deng, Piotr Krysta, Minming Li, Han Qiao,

and Jinshan Zhang. ”Network Pollution Games.” In Proceedings of the Inter-

national Conference on Autonomous Agents & Multiagent Systems, pp. 23-31.

International Foundation for Autonomous Agents and Multiagent Systems, 2016.

• Eleftherios Anastasiadis, Xiaotie Deng, Piotr Krysta, Minming Li, Han Qiao, and

Jinshan Zhang. ”New Results for Network Pollution Games.” In Computing and

Combinatorics: 22nd International Conference, COCOON 2016, Ho Chi Minh

City, Vietnam, August 2-4, 2016, Proceedings, vol. 9797, p. 39. Springer, 2016.

• Eleftherios Anastasiadis, Dionisis Kandris, Piotr Krysta, Paul Spirakis. ”Mech-

anism design for coverage problems in wireless sensor networks”, Unpublished

manuscript.

• Eleftherios Anastasiadis, Argyrios Deligkas. ”Maxmin Heterogeneous Facility

Location Games on the Line”. Submitted.
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Chapter 2

Background

We continue by giving some basic definitions from optimization and mechanism design

which are necessary for the chapters that follow. We note that some of the definitions

are for maximization problems. For minimization problems the definition can be derived

in a similar way.

2.1 Optimization problems

We study constrained optimization problems under the presence of incentives that can

be formulated as Linear Programs (LPs) or an Integer Linear Programs (ILPs). More

formally let x ∈ Rn be a vector of n variables, A ∈ Nm×n be a known matrix of

coefficients and c ∈ Nn and b ∈ Nm be a vector of coefficients of the variables and a

vector of the bounds of the constraints, respectively. Let also opt ∈ {max,min} and

�∈ {≤,≥}. The LP formulation of an optimization problem is the following:

opt cTx

s.t. A · x � b

x ≥ 0

We refer to opt cT ·x as the objective function. Similarly, an Integer Linear Program

has as additional requirements that the values of the variables be discrete i.e. x ∈ Nn.

If in the above formulation opt = max, �=≤ and both A and b have non-negative

entries, then the maximization problem is called a Packing LP (PLP). The most notable

problem of this class is the Set Packing problem; given a universe of elements and a

family of subsets of the elements the goal is to find the maximum number of subsets

which are pair-wise disjoint.

In a similar way if opt = min, �=≥ and both A and b have non-negative entries,

then the minimization problem is called a Covering LP (CLP). The most notable

problem of this class is the Set Cover problem; given a universe of elements and a
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family of subsets of the elements the goal is to find the minimum number of subsets

the union of which is the universe.

Both PLP’s and CLP’s constitute very important classes of problems in computer

science, optimization and operations research. These problems as well as special cases

of them have numerous applications and have been extensively studied in the literature.

Although a problem in the continuous space can be tractable, it usually becomes

hard to solve efficiently if we impose the discretization requirements on x. Most of the

optimization problems of paramount importance, which can be be formulated as ILPs,

are NP-hard and thus no polynomial time algorithm exists unless P=NP. In order to

cope with the intractability of NP-hard problems, the research turns to approximation

algorithms, the study of heuristics and special cases of the problems as well as param-

eterized complexity. In this thesis the study is focused on approximation algorithms

for optimization problems. More formally let OPT denote the optimal value of an

optimization problem Π and let c(A, I) denote the value of the objective function that

polynomial-time algorithm A achieves for Π on instance I. We denote by |I| is the

binary encoding of input I. A β-approximation algorithm is defined as follows:

Definition 1. An algorithm A is a β-approximation for a maximization problem Π if on

any instance I of Π, the value c(A, I) ≥ 1
β ·OPT , where β ≥ 1. If Π is a minimization

problem then c(A, I) ≤ β ·OPT . The factor β is called the approximation ratio of A.

The approximation ratio can be a function that depends on the size of the input of the

problem. Several problems are hard to approximate within some factor. For example,

the Set Packing problem is known to be hard to approximate within O(m1/2−ǫ), where

m is the number of elements in the universe [66]. On the other hand, there are problems

for which the approximation ratio can be arbitrarily close to 1 whose running time is

inversely proportional to the approximation ratio. Roughly speaking we can trade the

approximation of the solution we want to derive with the running time. We say that

these problems admit a PTAS :

Definition 2. A polynomial time algorithm A is a Polynomial Time Approximation

Scheme (PTAS) for a maximization problem Π if for any ǫ > 0 and any instance I of Π

it returns a solution with value c(A, I) ≥ (1−ǫ)OPT (I) and runs in time O((1ǫ |I|)
g( 1

ǫ
)),

where g is a function independent from I. Similarly for a minimization problem the

value of the solution is c(A, I) ≤ (1 + ǫ)OPT (I).

Definition 3. An algorithm A is an Efficient Polynomial Time Approximation Scheme

(EPTAS) for a maximization problem Π if for any ǫ > 0 and any instance I of Π it re-

turns a solution with value c(A, I) ≥ (1−ǫ)OPT (I) and runs in time O(g(1ǫ )poly(|I|)),

where g is a function independent from I. Similarly for a minimization problem the

value of the solution is c(A, I) ≤ (1 + ǫ)OPT (I).
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The best family of algorithms we can hope for an NP-hard optimization problem,

assuming that P 6=NP is an FPTAS:

Definition 4. An algorithm A is a Fully Polynomial Time Approximation Scheme

(FPTAS) for a maximization problem Π if for any ǫ > 0 and any instance I of Π it

returns a solution with value c(A, I) ≥ (1−ǫ)OPT (I) and runs in time O(poly(1ǫ , |I|)),

where g is a function independent from I. Similarly for a minimization problem the

value of the solution is c(A, I) ≤ (1 + ǫ)OPT (I).

2.2 Mechanism design basics

A mechanism design problem is described by a set of goods or alternatives X and a set

N of the participating agents or players (the two terms will be used interchangeably

throughout the thesis). Every agent i ∈ N is associated with a value θi ∈ Θi called his

type, where Θi denotes the type space of agent i. The designer of the game also called

mechanism designer or social planner has complete information about the type spaces

Θ1, . . . ,Θn. However, the type θi consists the private knowledge of agent i, for every

agent i ∈ N .

A mechanism maps a type profile θ = (θ1, . . . , θn) to an allowed outcome o ∈

O = 2X . Every agent i has a preference on an outcome which is expressed by a real

valued function vi : Θi × O → Rd called his valuation function. Let Vi ⊆ Θi × O and

V = V1 × . . .× Vn. Let also V−i = V1 × . . .× Vi−1 × Vi+1 × . . .× Vn and V = (Vi,V−i).

In this thesis we follow this standard notation for players’ vectors with subscript −i.

Definition 5. A mechanism M = (A, p) for a given game Γ = (O,N ) is composed

of two elements: An allocation function A : V → O specified by an algorithm and a

payment scheme p = (p1, . . . , pn), where pi : V → R for each agent i. More specifically

a (direct revelation) mechanism consists of the following steps:

• Revelation: Every agent i submits a bid bi ∈ Θi to the mechanism designer. The

bid of an agent represents his strategy in the game.

• Allocation: The mechanism designer decides on an allocation of the alternatives

to the agents based on the declared strategy profile b = (b1, . . . , bn).

• Payment scheme: The mechanism designer charges every agent some monetary

payment (if the payment is negative, then the mechanism designer is charged to

pay this amount).

The payment scheme in the above definition applies only to mechanisms with money.

In mechanisms without money a mechanism is simply the allocation function. Every

agent is associated with a utility function ui ∈ V × O → R, where ui(bi|θi, b−i, o)

denotes the satisfaction of agent i over outcome o = A(b) when his bid is bi, his type is
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θi and the bids of the other agents are b−i. In mechanisms without money the utility

of agent i is his valuation whereas in mechanisms with money the utility is the quasi

linear function ui(bi|θi, b−i, o) = vi(θi, o)−pi(b) where pi denotes the amount of money

that agent i has to pay to the mechanism designer (or receive if pi is negative). Let

Ui denote the set of utility functions of agent i and let U = U1 × . . .× Un. We assume

that the agents act rationally i.e. they aim at maximizing their utility regardless of the

other agents’ declarations.

Definition 6. A bid bi is a dominant strategy of player i if it maximizes his utility for

any possible bids of the other agents. If all players have a dominant strategy and each

plays these strategies in the game then we reach a dominant strategy equilibrium.

The goal mechanism design is the design of mechanisms that guide the agents to

behave in a desired way, assuming that each one has some private information. In

game theoretic terms, we aim at designing a game that implements a social choice

function f : U → O in equilibrium, given that the mechanism designer does not know

the private information of the agents. In this thesis we study the implementation in

dominant strategies:

Definition 7. Given a game Γ = (O,N ) and a set of utility functions U , a mechanism

with allocation function A is an implementation of a social choice function f : U → O

if for any utility functions u = (u1, . . . , un) ∈ U the game possesses a dominant strategy

equilibrium b∗ such that A(b∗) = f(u).

The importance of designing an implementation in dominant strategies arises from

the fact that it leads to the design of truthful mechanisms:

Definition 8 (Truthful mechanism). A mechanism M = (A, p) is called truthful or

strategy proof if for any strategy profiles b = (bi, b−i) b′ = (b′i, b−i) with respective

outcomes o ∈ O and o′ ∈ O, it is a dominant strategy for all the agents to report their

types i.e.

ui(bi|θi, b−i, o) ≥ ui(b
′
i|θi, b−i, o

′), ∀b′i 6= bi = θi, b−i ∈ V−i

In other words, in a truthful mechanism the utility agent i gets on outcome o′ when

he reports b′i 6= θi cannot be greater than the utility he gets on outcome o when he

declares his true type bi = θi. We note that if o′ = o for different declarations bi 6= b′i,

the utility of every agent remains the same.

By the revelation principle (see below) a mechanism can be converted into a truthful

one that implements the same social choice function:

Theorem 1 (Revelation principle [113]). If there exists a mechanism that implements

a social choice function f in dominant strategies, then there exists a truthful mechanism

that implements f .
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For randomized mechanisms i.e. mechanisms whose allocation function is specified

by a randomized algorithm, we have the following weaker notion of truthfulness:

Definition 9. A randomized mechanism is truthful in expectation if for any b−i, bi

and b′i, E[ui(bi|θi, b−i, o)] ≥ E[ui(b
′
i|θi, b−i, o)], where E(·) is over the random bits.

Randomized algorithms and thus randomized mechanisms are useful since in many

cases they can achieve a better approximation ratio than the deterministic ones.

In a mechanism design optimization problem Π the outcome is specified by an

objective function f(o, t) and a set of feasible outcomes F ⊆ O. In an optimal solution

of Π we require that o ∈ F such that f(·) is optimized, while in an approximate solution

we require that o ∈ F and f(o, t) � β · f(o′, t), where o′ ∈ F , �∈ {≤,≥} and β is the

approximation ratio. We say that a mechanism solves an optimization problem when

it assures that a required outcome is given as a result. In this thesis we study the

following objective functions:

• minimization of the total costs of the agents or equivalently the maximization of

the social welfare i.e. the aggregation of the valuations of all the agents (Chapter

3, Section 4.4 and Chapter 5)

• the maximization of the network lifetime i.e. the total time that a set of con-

straints is fulfilled (Chapter 3)

• the maximization of the minimum utility of an agent (Chapter 6).

Conditions for truthfulness

From the above definitions we have that Vi ⊆ Rd. When agent i is single-parameter

i.e. d = 1, monotonicity is a property of social choice functions that is sufficient

and necessary condition to guarantee the truthfulness of a mechanism (see Chapter 12

in [113] and [14]). In simple words monotonicity means that if an agent changes his

valuation and the social choice function changes too, then this is because the agent

increased the value on the new choice in relation to the value of his old choice.

As an example consider the problem of combinatorial auction where the set of

alternatives is a set of items to be allocated to the players and the objective is the

maximization of the social welfare. Let S =
∑

i∈N vi and suppose that player i is

allocated no item. If he changes his valuation to v′i ≥ vi and the allocation of the items

also changes (and thus i is allocated an item or a bundle of items), then the change in

the social function S′ =
∑

j 6=i vj + v′i happened because of the change in i’s valuation.

Let now X consist of identical and divisible items. Suppose that each of these items

can be divided into k pieces. If k → ∞ then X becomes a continuous set. For an

outcome o ∈ O we define as load (sometimes denoted as work) wi : O → R the amount

of X allocated to agent i. Let us also define ci(θi, o) = θi · wi(o) to be the cost that
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agent i incurs when he is assigned load wi(o) over the outcome o = A(b). The valuation

function of agent i is then vi(θi, o) = −ci(θi, o) and the type θi denotes the cost per unit

of load assigned to agent i. We will abuse notation writing wi(b) instead of wi(o) when

the allocation function A is known in the context. Let b−i be fixed. Then the produced

outcome o is a non-increasing function if the load curve wi(bi, b−i) is non-increasing on

bi for every agent i. More formally:

Definition 10 (Monotone algorithm [14]). Let the bids b−i be fixed and let wi(b−i, bi)

be a single variable function of bi called the load or work of agent i. The allocation

function A is non-increasing if each of the associated load curves in non-increasing

i.e. wi(b−i, bi) is a non-increasing function of bi. An algorithm that preserves the

non-increasing load property for all agents is called monotone.

We will say that a mechanism satisfies the voluntary participation condition if every

agent who declares his true type to the mechanism does not incur a net loss. Archer

and Tardos provided a characterization of truthful mechanisms for single-parameter

agents by the following:

Theorem 2 (Payment scheme [14]). For single parameter agents, a mechanism is

truthful and admits voluntary participation if and only if the load of each agent is non-

increasing
∫∞
0 wi(b−i, u)du <∞ for all i, b−i and the payments are

pi(b−i, bi) = bi · wi(b−i, bi) +

∫ ∞

bi

wi(b−i, u)du. (2.1)

With the above characterization, in order to design a truthful mechanism it is suffi-

cient and necessary to design a monotone algorithm to specify the allocation function

together with a payment scheme as stated in equation (2.1) (for maximization prob-

lems), assuming that no externalities exist, i.e. the agents care only about their assigned

loads.

In discrete settings, monotonicity for a social welfare maximization problem means

that if agent i with original valuation vi is allocated a bundle of alternatives (a winning

declaration), then he will either be allocated the same bundle or a different one with

higher valuation for i, if he declares to the mechanism designer a valuation v′i ≥ vi.

Similarly, for a cost minimization problem agent i with original cost ci will be allocated

the same or another bundle of alternatives with higher valuation, when he declares a

cost c′i ≤ ci. More formally for discrete settings we have:

Definition 11. An algorithm A is monotone if for every agent i and any declarations

of the other agents b−i, if vi is a winning declaration then every higher declaration

v′i ≥ vi also wins.

By this definition, for a monotone allocation algorithm A and for any v−i there

exists a critical value ζi such that for all vi > ζi, vi is a winning declaration and for all

vi < ζi, vi is a losing declaration.
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Figure 2.1: A bitonic curve of a bitonic allocation algorithm

Consider now a setting where the objective is the maximization of the social wel-

fare. Let the allocation function be specified by an algorithm with several subroutines.

Mu’Alem and Nisan presented an array of algorithmic techniques in [107] to obtain

truthful mechanisms for special cases of algorithms as the one above. One of the stud-

ied cases is the “max” construct i.e. taking the best outcome as a solution from a

combination of different monotone algorithms. In the case where an allocation func-

tion is specified by an algorithm A that returns the outcome of one of its monotone

subroutines, then A is not necessarily monotone. Thus, they provided the stronger no-

tion of bitonicity which is sufficient for special cases of monotone allocation algorithms

which are called bitonic. For a monotone algorithm A, bitonicity provides a connection

between bi and the social welfare of the allocation A(b−i, bi). Roughly speaking, in the

allocation by a bitonic algorithm, the social welfare does not increase with respect to

bi, when agent i loses i.e. bi < ζi, and does not increase with respect to bi when i wins

i.e. bi > ζi (see Figure 2.1 reproduced from [107]). More formally:

Definition 12 (Bitonic algorithm [107]). A monotone algorithm A is bitonic if for

every agent i and every b−i, the social welfare denoted as SWA(b−i, bi) of the allo-

cation is a non-increasing function of bi when bi < ζi and a non-decreasing func-

tion of bi when bi > ζi. The value of the social welfare is then SWA(b−i, bi) ≤

max{limbi→ζ−i
SWA(b−i, bi), limbi→ζ+i

SWA(b−i, bi)}.

Generally speaking, an algorithm is bitonic if it is monotone and the computed cost

is proportional to the parameters i.e. improves when they improve. We now have the

following composition theorem which states that the combination of bitonic algorithms

for single-parameter agents is a monotone algorithm:

Theorem 3 ([21]). Consider a game with single-parameter agents and let M be a

procedure with m subproblems P1, . . . , Pm. Each subproblem is solved by a different

13



procedure Mi and returns the optimal solution with respect to a cost function ci(·). If

every procedure Mi is bitonic with ci(·), then M is monotone.

We note that for multi-parameter agents monotonicity is not a sufficient condition

for truthfulness. In such cases, we need the stronger condition of cycle monotonicity

[94]. If we restrict to social welfare maximization for multi-parameter agents, then

the celebrated VCG mechanism due to the works by Vickrey [140] Clarke [33] and

Groves [65] is known to be the optimal mechanism. In order to ensure truthfulness,

VCG charges payments to the agents, based on Clarke’s pivot rule [33]. Although this

mechanism solves the economic problem of maximizing the social welfare, it does not

take into account that the allocation algorithm can be NP-hard. Thus, despite the

fact that VCG can ensure truthfulness it cannot be computed in polynomial time for a

plethora of problems. A natural way to avoid this obstacle and have a computationally

efficient mechanism would be to compute an approximately optimal allocation based

on the solution produced by an approximation algorithm combined with the VCG

payments. The results of Lehmann et al. [96] and Nisan and Ronen [111] indicate that

such mechanisms are not truthful. Further study on this direction was made by Nisan

and Ronen [112], Holzman et al. [68] and Lavi et al. [93].

However, there are approximation algorithms that can be used to obtain truthful

mechanisms for social welfare maximization, when we use the VCG payments:

Definition 13. Let R be a subset of the allocations’ space. An algorithm is called

Maximum In Range (MIR) if on any possible input of valuations of the agents, it

returns the allocation which maximizes the social welfare in R.

The randomized variant of MIR mechanisms is to consider a set D of distribu-

tions over the allocation set. After choosing set D the resulting allocation rule, called

Maximal in Distributional Range (MIDR) is to choose the distribution that maximizes

the expected social welfare taking into account the reported valuations of the agents.

Based on MIDR mechanisms Lavi and Swamy [95] proposed a general technique to

obtain truthful in expectation mechanisms given an approximation algorithm for the

problem. The technique is based on the LP relaxation of the problem using the VCG

mechanism.
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Chapter 3

Network pollution games

3.1 The problem

The advance of technology and commercial freedom have fused and accelerated the

development process to an unprecedented scale. Environmental degradation however

has accompanied this progress, resulting in global water and air pollution. In many

developing countries, this has caused wide public concerns. As an example, in 2012,

China discharged 68.5 billion tons of industrial wastewater and the CO2 emissions

reached 21.2 million tons (National Bureau of Statistics of China, 2013). China has

become one of the most polluted countries in the world with industrial emissions as

the main source of its pollution. The recent annual State of the Air report of the

American Lung Association finds that 47% of Americans live in counties with frequently

unhealthy levels of either ozone or particulate pollution, see [5]. The latest assessment

of air quality, by the European Environment Agency, finds that around 90% of city

inhabitants in the European Union are exposed to very damaging air pollutants at

harmful levels, see [1]. Environmental research suggests that water pollution is one of

the very significant factors affecting water security worldwide [142]. It is the role of

regulatory authorities to make efficient environmental policies in balancing economic

growth and environment protection. Pollution control regulations are inspired by the

managerial approaches in environment policies, where models based on game theory

are proposed and analysed.

From a different point of view, Dasgupta, Hammond and Maskin [37] focus on min-

imizing the sum of pollution damages, abatement costs and individual rationality for

consumers. Spulber [129] develops a market model of environmental regulation with in-

terdependent production, pollution abatement costs and heterogeneous firms who have

private information about costs and pursue Bayes-Nash strategies in communication

with the regulator. Their paper illustrates that the full information optimum cannot be

attained unless gains from trade in the product market net of external damages exceed

the information rents earned by firms and aggregate output and externality levels are

lower at the regulated equilibrium than at the full information social optimum. A more
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extended literature overview can be found at the end of the chapter.

Pollution has a diffusion nature: emitted from one source, it will have an effect on

its neighbours at some decreased level. We consider two applications using a network

model. In the first application, the vertices represent pollution sources and edges are

routes of pollution transition from one source to another similar to Belitskaya [18]. Our

model measures the pollution diminishing transition by arbitrary weights on the edges,

which is also present in the model presented by Montgomery [106]. The polluters’

privately known clean-up cost and damage of the emitted pollution in our model are

inspired by Kwerel [92]. In the second application, the vertices represent mayors of

cities and the edges represent the roads between cities. The percentage of cars moving

from one city to another is represented by the weight of the corresponding edge.

Our model covers both aforementioned applications with details given in Section

3.2. The government, as the regulator, can decide to either shut down or keep open a

pollution source taking into account the diffusion nature of pollution. It sets bounds on

the global and local levels of pollution, while trying to optimize the social welfare. The

emissions that exceed the licences, if any, must be cleaned-up (hence, agent’s clean-up

cost). Furthermore our model allows the regulator to auction pollution licences for cars

to mayors. In this case, the pollution level of an agent (mayor), i.e., the number of

allocated licences, is set by the regulator together with the prices that the agent pays

to get them.

Furthermore we study water pollution in rivers modelled by tree networks. In

water pollution the government decides which pollution sources should be shut down

so that the effluent level in water is as low as possible. Water pollution cost sharing

was introduced in [109] where the network is a path (single river). This model was

extended to tree networks (a system of rivers) in [44]. We model a system of rivers as

a tree, but study a different pollution control model.

As a variant of the first application described above, we also consider the case in

which the government is allowed to sell licences to the pollution sources instead of decid-

ing to shut it down or keep it open. This is a widely used approach to control pollution

levels by auctioning a fixed number of licences or pollution allowances. For instance,

the European Emissions Trading System sells EU Emission Allowances (EUAs), each

one representing the right to emit one ton of CO2. In such an auction, firm’s bid is

a number of EUAs and per EUA price. The auction ranks all the bids in descending

order of per EUA price and determines the per EUA clearing price. The clearing price

is the first bid price such that the total volume of EUAs in the bids (demand) in this

descending order meets the total volume of EUAs offered by the regulator (supply).

All the bids above this clearing price are awarded and they all pay the clearing price,

see, e.g., [2]. This very simple auction does not take into account the diffusion relations

between polluters, etc.

16



General objective function Linear objective function

Bounded Degree ∆ Trees Planar

Lower bound Ω
(

∆
log∆2

)

NP-hard strongly NP-hard (δ violation)

PG(poly) O(∆)a FPTAS TiE O(1) DT PTAS (δ violation)

PG(general) O(∆) TiE
b FPTAS TiE

c O(1) TiE [10]

a Monotone increasing obj. function. b Piece-wise linear obj. function with one shift
and an additional mild assumption. c Running time is polynomial in q.

Table 3.1: Our results. TiE/DT: truthful in expectation/deterministic truthful mech-
anism. PG(poly) is PG with poly-size integer variables, PG(general) without this
assumption.

Finding an optimal social welfare solution to our problem, which we call Pollution

Game (PG), is NP-hard, since even in the special case of tree structures the well known

Knapsack problem can be reduced to PG. That is why we study polynomial time ap-

proximation algorithms which can lead to incentive compatible (truthful) mechanisms.

We study linear cost and damage functions and derive approximation algorithms and

truthful mechanisms focusing on planar network topologies. In contrast, Belitskaya [18]

assumes quadratic cost functions and linear damage functions deriving optimal social

welfare and Nash equilibria solutions by explicit analytic formulas. We focus our study

on planar network topologies which model realistic scenarios.

Most of the cited economics papers derive equilibria by closed analytic formulas.

Some of these papers provide computational mechanisms without investigating polyno-

mial running time. Our approach is algorithmic and focuses on efficiently computing

these solutions. We also analyze the computational complexity/hardness, of comput-

ing the social optimum in our model. To the best of our knowledge, this work is the

first attempt to algorithmically analyze pollution control from the perspective of regu-

lators by a network game model with information asymmetry between regulators and

polluters. Our results are summarized in Table 3.1.

3.2 Model and applications

We first give a brief description of our model for PG. In this model we are given a set of

agents each of whom gets a benefit by doing some work (production of goods, traffic on

roads) that results in emission of pollution. The benefit of each agent is expressed by

a function. The government sets some bounds on the total emitted pollution in local

area around every source and in the global area. Its objective is the maximization of

the social welfare (the sum of the benefits of the agents). More precisely PG is defined

as follows:

Definition 14 (Pollution Game). We are given a network represented by a graph

G = (V,E,w) where V is the set of polluters, E is the set of connecting edges (roads)
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between them and wuv is a percentage of the effect of pollution from u to v. Let p and pu

be bounds on the total allowable emitted pollution in whole network and in the local area

around polluter ui, ∀ui ∈ V respectively. Let also ru(·) denote the valuation function of

polluter u. In the Pollution Game we are asked to find an allocation of pollution permits

x = (xu, x−u) for the polluters of the network such that the social welfare
∑

u∈V ru(xu)

is maximized under the constraints that the emitted pollution does not exceed the bounds

both locally xu +
∑

v∈δG(u)wvuxv ≤ pv, ∀u ∈ V and globally
∑

u∈V xu ≤ p.

The game will become more clear in the following two applications. In the first

the government as the regulator of the game, allocates pollution licences to mayors of

cities which are then sold to car drivers. In the second application, the government has

to decide which pollution sources among many need to be shut down and which can

remain open.

We note that in this model no geometric assumptions are made.

3.2.1 Application 1: Allocation of pollution licences

Consider an area of n cities, each administered by its mayor (agent). In every city,

statistical observations are used to measure the traffic to the neighboring cities. More

precisely let G = (V,E,w) be a weighted digraph representing a network, where V is

the set of n agents (mayors of the cities), E is the set of roads connecting cities such

that (u, v) ∈ E if and only if u and v are neighbouring cities, and w : E → R represents

the percentage of cars entering a city from a neighboring one i.e. wuv denotes the

percentage of cars driving from u to v in some time interval measured by observations.

The duty of the regulator is to allocate a number of pollution licences (i.e. a licence

additional to the car licence) to the agents (mayors) such that the total welfare is

maximized while fulfilling a number of constraints. We denote by xu the number of

licences allocated to agent u. The agent with xu licences gains a benefit of bu(xu) which

is a monetary income coming from selling these xu licences to car drivers (our model

does not model this explicitly but just assumes for simplicity that all xu licences are

sold). We assume that bu(xu) is a concave increasing function (economic diminishing

marginal utility phenomenon)1 with bu(0) = 0.

The pollution damage caused in the area of agent u is given by the non-decreasing

damage function du
(

xu +
∑

v∈δ−
G
(u)wvuxv

)

(the damaging effect of more emitted pollu-

tion is accelerating), where δ−G(u) = {v ∈ V : (v, u) ∈ E}. The total valuation of agent

u is his benefit minus his damage cost:

1 [92] uses cost function rather than benefit function, which can be viewed as Mu − bv(xu), with
Mv a large constant for any u ∈ V . The author assumes that cost function is convex decreasing and it
is equivalent to bu(xu) being a concave increasing function. We use benefit function rather than cost
function for ease of analysis.
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ru = bu(xu)− du

(

xu +
∑

v∈δ−
G
(u)

wvuxv

)

(3.1)

The damage function shows that player u is affected by the damage of his own dis-

charged pollution if xu = 1 and by the total discounted pollution of his neighbours.

This models the fact that pollution spreads along the edges of G. The total utility that

the regulator aims to maximize is:
∑

u∈V bu(xu)− du
(

xu +
∑

v∈δ−
G
(u)wvuxv

)

.

The total number of licences for the whole network is bounded by a number p given

in the input of the problem. This constraint is called the global constraint :

∑

v∈V
xv ≤ p (3.2)

Naturally a percentage of cars with licences from city u remains in u and the rest

is split and drives into the neighboring cities. We denote by wu the percentage of cars

remaining in u and w′
vu the percentage of cars entering u from neighbouring city v. It’s

realistic to assume that wu 6= 0 since not all the cars with licence from city u move

to neighbouring cities at the same time. The maximum number of cars (maximum

number of licences) allowed at any moment in city u is bounded by p′u also given in the

input. This is represented by the local constraint: wuxu +
∑

v∈δ−
G
(u)w

′
vuxv ≤ p′u. The

last inequality can equivalently be written to the following constraint, called the local

constraint of u:

xu +
∑

v∈δ−
G
(u)

wvuxv ≤ pu (3.3)

where wvu = w′
vu/wu and pu = p′u/wu. Furthermore, the number of licences that can

be issued in city u, ∀u ∈ V , is bounded by qu which is decided by the government and

is given on input.

Combining the objective with all the above constraints, the problem of social welfare

maximization can be formulated in the general form by the following integer program:

max R(x) =
∑

v∈V

(

bv(xv)− dv

(

xv +
∑

u∈δ−
G
(v)

wuvxu

))

(3.4)

s.t.
∑

v∈V
xv ≤ p (3.5)

xv +
∑

u∈δ−
G
(v)

wuvxu ≤ pv, ∀v ∈ V (3.6)

xv ∈ {0, 1, . . . , qv}, ∀v ∈ V (3.7)

We call the above convex integer program Pollution Game (PG) with integer variables

(if xv ∈ Z) or with binary variables (if xv ∈ {0, 1}). For an instance I of PG, |I| denotes

19



the number of bits to encode I, and if q ∈ poly(|I|), where q = maxv∈V {qv}+1, we call

this problem PG with polynomial size integer variables.

We assume that the networks of this application are represented by planar graphs.

These graphs are close to real applications and it is natural to study planar net-

works [139]. Imagine a collection of cities (each being a contiguous geographic area)

and roads connecting them. This defines a planar map where we only consider edges

(roads) between neighbouring cities, which implies a planar graph. We disregard other

roads and we consider only frequent driving patterns in a time interval measured by

observations. They correspond to frequent commuters, e.g., between house and work,

which typically are neighbouring cities.

3.2.2 Application 2: Regulation of pollution sources

We are given an area of pollution sources (e.g. factories) each one owned by an agent.

The goal of the government as a regulator is to optimize the social welfare while restrict-

ing the levels of emitted pollution. More formally, given a weighted digraph G = (V,E),

where V is the set of n pollution sources (players, agents) and edge (u, v) ∈ E repre-

sents the fact that u and v are geographic neighbours i.e. (u, v) ∈ E if and only if the

pollution emitted by u affects v. For each (u, v) ∈ E weight w(u,v) = wuv denotes a dis-

count factor of the pollution discharged by player u affecting its neighbour v. Without

loss of generality we may suppose that wuv ∈ (0, 1], ∀(u, v) ∈ E.

The government has to decide which pollution sources must remain open and which

must be shut down. For each source u the variable xu ∈ {0, 1} denotes this where 0

means it must be shut down and 1 it will remain open. Furthermore the government

sets the total pollution quota discharged to the environment (by the number of pollution

sources that remain open) to be p. The global constraint, as it will be called in the

following, is:
∑

v∈V
xv ≤ p (3.8)

Each agent v has a non-decreasing benefit function bv : R≥0 −→ R≥0, where bv(xv) is a

concave increasing function (economic diminishing marginal utility phenomenon)2 with

bv(0) = 0 which represents the benefit incurred by v. Each v also has a non-decreasing

damage function dv : R≥0 −→ R≥0 (the damaging effect of more emitted pollution is

accelerating). The total valuation rv of player v is his benefit minus his damage cost:

rv = bv(xv)− dv

(

xv +
∑

u∈δ−
G
(v)

wuvxu

)

(3.9)

2 [92] uses cost function rather than benefit function, which can be viewed as Mv − bv(xv), with
Mv a large constant for any v ∈ V . The author assumes that cost function is convex decreasing and it
is equivalent to bv(xv) being a concave increasing function. We use benefit function rather than cost
function for ease of analysis.
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where, δ−G(v) = {u ∈ V : (u, v) ∈ E}, δ+G(v) = {u ∈ V : (v, u) ∈ E}. Thus, the damage

function shows that player v is affected by the damage of his own discharged pollution

if xv = 1 and by the total discounted pollution of his neighbours. This models the fact

that pollution spreads along the edges of G. We assume that the government decides

on the allowable local level of pollution pv, for every v ∈ V . This imposes the following

local constraints, as will be called in the following for every player v ∈ V :

xv +
∑

u∈δ−
G
(v)

wuvxu ≤ pv (3.10)

xv ≤ qv (3.11)

Thus we can model this application by the convex program (3.4)-(3.6) assuming

now that xv ∈ {0, 1} and qv = 1, ∀v ∈ V .

3.2.3 Basic definitions

We will introduce some basic definitions and propositions which will be necessary later

in proving the approximations of our algorithms. Let G = (V,E) be a graph and

I = (G,b,d,p,q,w, p) be an instance of PG, where b = (bv)v∈V is the benefit function,

d = (dv)v∈V is the damage function p = (pv)v∈V is the bound of the local constraint,

w = (wuv)uv∈E , p is the bound of the global constraint and q = (qv)v∈V denotes the

total quota of every player (bv is assumed private information of v and other parameters

are public). Let I be the set of all instances, and X the set of feasible allocations. For

a given digraph G = (V,E) we consider the undirected graph Gun = (V,Eun) where

Eun = {(u, v) ∈ E or (v, u) ∈ E}. An undirected graph G is k-outerplanar if for k = 1,

G is outerplanar and for k > 1, G has a planar embedding such that if all vertices on

the exterior face are deleted, the connected components of the remaining graph are all

(k− 1)-outerplanar. A planar graph is k outerplanar where k can be equal to +∞. We

will use the notation i ∈ [N ] to denote i ∈ {1, . . . , N}.

In the following we will denote by OPT fr
G (PG) the value of the optimal fractional

solution of PG on G. Similarly OPT in
G (PG) denotes the optimal integral solution.

The integrality gap of PG on G is defined as
OPT fr

G
(PG)

OPT in
G

(PG)
. The approximation ratio of

an algorithm A with respect to OPT in
G (PG) (OPT fr

G (PG) respectively) is ρin(A) =
OPT in

G (PG)

R(A) (ρfr(A) =
OPT fr

G
(PG)

R(A) respectively), where R(A) is the objective function of

the solution produced by A. Unless stated otherwise, the approximation ρ will be with

respect to OPT fr
G (PG).

When bv and dv are both linear functions we assume they have slopes s0v and s1v

respectively, i.e. bv(x) = s0vx and dv(y) = s1vy, for any v ∈ V . Let V = {v1, . . . , vn}.

The social welfare function is:
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R(x) =
∑

v∈V

[

bv(xv)− dv

(

xv +
∑

u∈δ−
G
(v)

wuvxu

)]

=
∑

v∈V

[

s0vxv − s1v

(

xv +
∑

u∈δ−
G
(v)

wuvxu

)]

=
∑

v∈V

[

(s0v − s1v)xv − s1v
∑

u∈δ−
G
(v)

wuvxu

]

=

[

(s0v1 − s1v1)xv1 − s1v1

∑

u∈δ−
G
(v1)

wuv1xu

]

+ . . . +

[

(s0vn − s1vn)xv1 − s1vn

∑

u∈δ−
G
(vn)

wuvnxu

]

=

[

s0v1 − s1v1 −
∑

u∈δ−
G
(v1)

s1uwv1u

]

xv1 + . . . +

[

s0vn − s1vn −
∑

u∈δ−
G
(vn)

s1uwvnu

]

xvn

∑

v∈V

[

s0v − s1v −
∑

u∈δ−
G
(v)

s1uwvu

]

xv =
∑

v∈V
ωvxv

(3.12)

where ωv = s0v − s1v −
∑

u∈δ−
G
(v) s

1
uwvu. For every variable xvi in the fourth line of the

above equations we have considered all the occurrences of xvi in all the terms in line 3.

In the following sections we will consider k-column sparse ILP packing problems

i.e. those in which each variable j participates in at most k constraints. The following

propositions will be useful in obtaining approximation algorithms and mechanisms for

packing problems:

Proposition 1 ([17], [117]). There is a polynomial-time deterministic algorithm for

k-column sparse linear packing programming problem with binary variables, achieving

the approximation ratio ρfr = γk, where γk = (e + o(1))k = O(k) for a fixed k.

Proposition 2 ([17]). There is a polynomial-time deterministic algorithm for k-column

sparse convex packing programming problem with binary variables, achieving the approx-

imation ratio ρfr = eγk
e−1 , where γk = (e + o(1))k = O(k) for a fixed k.

Proposition 3 ([95]). For any linear packing programming problem, if there is a poly-

nomial deterministic algorithm with the approximation ratio ρfr for this problem, then

there is a polynomial, randomized, individually rational, ρfr-approximation mechanism

for the same problem that is truthful in expectation.

3.3 Hardness

Observe that PG is weakly NP-hard even on stars and even without the global con-

straint with linear valuation functions. Consider the star where the central node u is

connected to nodes v1, v2, . . . , vn with valuations ωv1 , ωv2 , . . . , ωvn and the edges that

connect them have weights wuv1 , wuv2 , . . . , wuvn respectively. Then PG on this instance

(omitting the local constraints of all the nodes except u) can be formulated by the

following ILP:
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max ωuxu +
n
∑

i=1

ωvixvi

s.t. xu +
∑

vi∈δ−G(u)

wviuxvi ≤ pu

xvi ∈ {0, 1}, ∀vi ∈ δ−G(u)

The above ILP is the Knapsack problem [137]. In the Knapsack problem we are

given n items each having a weight wi and a value vi, ∀i = 1, . . . , n. We are also given

capacity W and we are asked to choose those items whose total value is maximized

under the constraint that the capacity is not exceeded. In the instance described above

the weights on the edges are the weights of the items and the values of the nodes are

the values of the items. Knapsack in known to be weakly NP-hard, thus PG on stars

is also weakly NP-hard.

v1

u

v2 vn. . .

wuv1 wuv2 wuvn

Figure 3.1: An instance of PG on a star

We note that inequality (3.5) can also be written as equality

∑

u∈V
xu = p (3.13)

since the upper limit of the total amount of the pollution is controlled by the govern-

ment. If
∑

v∈V xv < p in the final allocation, then the government can simply set p

equal to
∑

v∈V xv without any changes. However, for computational issues, these two

representations lead to different computational complexity of the problem. If inequality

(3.5) is replaced by (3.13), then even finding a feasible solution to PG is NP-complete

as shown in the following theorem:

Theorem 4. Finding a feasible solution to PG when pv = 1 ∀v ∈ V and wuv > 0 for

any (u, v) ∈ E and after replacing constraint (3.6) with (3.13), is NP-complete.

Proof. It is straightforward that the problem is in NP. Consider now a formula of

monotone 1-in-3 SAT where an instance of this problem consists of n Boolean variables

and m clauses. A YES instance is one in which there exists an assignment to its Boolean
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variables such that exactly one literal from each clause is true. The problem is known

to be NP-Complete even when there are no negations [125]. The following proof is

inspired by the reduction of 3-SAT to Independent Set (p. 248 [38]).

Let us represent a clause, say (x∨ y ∨ z), by a triangle with vertices labeled x, y, z.

Repeat this construction for all clauses. Next consider one of the literals, say x, which

appears in k clauses Ci1 , . . . , Cik . Let Tri1 , . . . , T rik be the triangles of the clauses

Ci1 , . . . , Cik respectively. Then connect x of Tri1 with all the vertices of Tri2 , . . . , T rik

except those labeled with x. Repeat this construction for x in all these triangles and

for all literals. For example consider the formula Φ = (x1 ∨ x2 ∨ x3)(x1 ∨ x4 ∨ x5) (see

Figure 3.2). First construct the triangles labeled x1, x2, x3 and x1, x4, x5 for the two

clauses respectively. Then connect vertex x1 of the first clause with the vertices x4

and x5 of the second clause. Similarly, connect vertex x1 of the second clause with the

vertices x2 and x3 of the first clause.

x1

x2 x3

x1

x4 x5

Figure 3.2: A gadget of reduction

Consider now an instance of 1-in-3 SAT which is true and let G = (V,E) be the

corresponding graph constructed as explained above. Furthermore for every vertex

u ∈ V , let pu = 1, p = m and 0 < wuv ≤ 1, ∀v ∈ δ−G(u). Suppose that we have a

truth assignment which satisfies all the clauses in 1-in-3 sense. This means we choose p

vertices in G without violating any of the constraints. Indeed if any two vertices have

the same label, they are not connected. If they have different labels, say x from clause

C1 and y from clause C2 and they are connected, then their corresponding clauses have

a common literal, either x or y. Thus if one of them has value true, the other will have

value false for the formula to be satisfiable. Finally, if two vertices belong to the same

clause, only one of them will have the value true.

Suppose now that we can decide in polynomial time whether there is a solution in

an instance of a graph constructed by a formula as described above with p = m vertices

when pv = 1, ∀v ∈ V . Then setting the literal in the set {v : xv = 1} is a solution of

1-in-3 SAT. The argument is as follows: in each triangle, there is exactly one vertex

such that its value is one since at most one vertex in each triangle can be selected and

there are m triangles and p = m. By the construction of G, these vertices consist of

a solution of 1-in-3 SAT. Thus exactly one literal in every clause has the value true in

the formula.
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In the following, unless stated otherwise, we will assume inequality (3.5) as a constraint

of PG.

Theorem 5. It is strongly NP-hard to find an optimal solution to PG when pv, ∀v ∈ V

is any constant number ≥ 1, bv(xv) is linear, dv(y) is piecewise linear (with at most

two pieces) and for any (v, u) ∈ E, wvu is a positive constant.

Proof. The reduction is based on the following construction. Given a graph G and an

instance of the Maximum Independent Set (MIS) problem on G we construct a bipartite

graph G′ and an instance of PG on G′. In MIS we are given a graph and we are asked

to choose the maximum number of pairwise disjoint nodes.

We will only consider undirected graphs, however, our reduction also applies to

directed graphs. Let G = (V,E) be a graph with degree d(G) ≤ d. Next construct a

bipartite graph G′ = (V ′, U ′, E′) with |V ′| = |V | and |U ′| = |E|, where each vertex of

V ′ corresponds to a vertex of V and each vertex of U ′ corresponds to an edge of E.

Connect a vertex v ∈ V ′ with a vertex u ∈ U ′ if the corresponding vertex of v is incident

to the corresponding edge of u in G. It can easily be seen that every v ∈ V ′ has degree

at most d and every u ∈ U ′ has degree 2. Let bv(xv) = xv and dv(xv) = 0, ∀v ∈ V ′.

Furthermore, for any u ∈ U ′, let bu(xu) = 0 and du(y) =
|V |(y−max{wvu,wv′u})

min{1,wvu+wv′u}−max{wvu,wv′u}
if y > max{wvu, wv′u} and du(y) = 0 otherwise, where (v, u) ∈ E′ and (v′, u) ∈ E′ .

Let W be an independent set of G with |W | = k ≤ p. Then the welfare of W for PG

on G′ is k. Suppose now there is a better solution W ′ with |W ′| > |W |. We then have

the following two claims:

Claim 1. W ′ ∩ U ′ = ∅.

Suppose W ′ ∩ U ′ 6= ∅. If a vertex u ∈ U ′ is included in W ′, then the valuation

((3.1)) is ru = bu(xu) + du(y) ≤ 0, where bu(·) and du(·) are as defined above. Hence,

removing u from W ′ ∩ U ′ will not decrease the total welfare.

Claim 2. Any two vertices u, v ∈W ′ are not connected to the same vertex in U ′.

Let u, v ∈ W ′ be two vertices connected to the same vertex in u′ ∈ U ′. Then

ru = rv = 1 since u, v ∈ V ′ (Claim 1) and bv(xv) = xv, dv(xv) = 0, as defined above.

However, since for the local level of pollution in u′ is y ≥ wvu +wv′u > max{wvu, wv′u},

we have ru′ = −du′(y) ≤ −|V |. Hence, the total welfare achieved by W ′ is at most

|W ′ ∩ V ′| − |V | ≤ 0 < k . Removing either u or v from W ′ will increase welfare by

|V | − 1.

Therefore, W ′ corresponds to an independent set in G with size larger than |W |.

Thus, any independent set W gives a welfare of |W | in G′. As a consequence, if we

can find the optimal solution of PG on G′, we can find a maximum independent set on

G.
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From [56] we know that it is strongly NP-hard to find the maximum independent

set on a planar graph with degree at most 3.

Corollary 1. For a planar graph G = (V,E) with degree at most 3, the problem of

finding an optimal solution in PG setting as in Theorem 5.10 is strongly NP-hard.

Proof. For any planar graph G = (V,E), the constructed graph G′ = (V ′, U ′, E′) in the

proof of Theorem 5.10 is planar. To see this, just add one vertex to the center of each

edge in G representing the edge vertex in U ′. The resulting graph is planar and the

same as G′. The corollary follows from the reduction in the proof of Theorem 5.10.

Theorem 6. PG is Unique Games-hard 3 to approximate within n1−ǫ and within ∆
log2 ∆

for graph G with degree ∆ when pv is any constant number ≥ 1, bv(xv) is linear and

dv(y) is piecewise linear (with two pieces) ∀v ∈ V and wvu is positive constant for any

(v, u) ∈ E.

Proof. According to [80], maximum independent set is Unique Games-hard to approx-

imate within n1−ǫ in general graphs and within ∆
log2 ∆

for graph G with degree ∆. The

theorem follows from the reduction in the proof of Theorem 5.10.

Theorem 7. There is no EPTAS for PG with binary variables on the directed planar

graph G = (V,E) when bv and dv are both linear functions, for any v ∈ V .

Proof. We reduce PG with binary variables on planar graphs to the two-dimensional

Knapsack problem. Recall (see beginning of section 3.3) that in Knapsack we are given

n weighted items and a maximum weight capacity. In the two-dimensional Knapsack

the weight of item i is given by a two dimensional vector wi = (wi1, wi2), ∀i = 1, . . . , n.

Furthermore the Knapsack has a two-dimensional capacity W = (W1,W2).

Consider now PG on the following simple planar graph. There are n + 2 vertices

labeled as {v1, v2, . . . , n, u, x} and the edge set E = E1∪E2 where E1 = {(u, vi), i ∈ [n]}

with weights wu,vi , i ∈ [n] and E2 = {(x, vi), i ∈ [n]} with weights wx,vi , i ∈ [n]. Let

pu and px be the bounds of the local constraints and ωv and ωx be the objectives of

nodes u and x respectively. Clearly for any two-dimensional Knapsack problem, there

exists an instance of PG with binary variables without the global constraint on such a

simple graph exactly corresponding to this two-dimensional Knapsack problem, where

W1 = pu, W2 = px, the weights of set E1 correspond to the weights wi1, ∀i = 1, . . . , n

and the weights of set E2 correspond to the weights wi2, ∀i = 1, . . . , n. According

to [91], there is no EPTAS for two dimensional knapsack. Hence, there is no EPTAS

for PG on this simple planar graph.

3The Unique Games Conjecture(UCG) [79] is used to prove inapproximability results for NP-
Complete problems which researchers are not able to prove otherwise. The conjecture is based on
the inapproximability of the Unique Game. A detailed survey can be found in [81].
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v1

u

v2 vn. . .

x

wuv1 wuv2 wuvn

wxv1 wxv2 wxvn

Figure 3.3: The two dimensional knapsack on an instance of a planar graph

3.4 Directed trees

We present approximation algorithms and mechanisms for PG on directed trees. A

digraph G is called a directed tree if the undirected graph Gun is a tree. We consider trees

whose arcs are directed towards the leaves. We first obtain a truthful in expectation

FPTAS for PG on directed trees by a two level dynamic programming approach and a

3-approximate deterministic truthful mechanism which is Maximal in Range (MIR).

We will also need the following tool from mechanism design for packing problems.

Recall that an integer linear packing problem with binary variables is a problem of

maximising a linear objective function over a set of linear packing constraints, i.e.,

constraints of form a · x ≤ b where x ∈ {0, 1}n is a vector of binary variables, and

a, b ∈ Rn
≥0.

Proposition 4 ([46]). Given an FPTAS for an integer linear packing problem with

binary variables, there is a truthful in expectation mechanism that is an FPTAS.

3.4.1 Truthful in expectation mechanisms

We obtain our truthful in expectation FPTAS for PG with binary variables on any

directed tree by a two-level dynamic programming (DP) approach. The first bottom-

up level is based on a careful application of the standard single-dimensional knapsack

FPTAS. The second level is by an interesting generalization of an FPTAS of [26] for a

special multiple choice multi-dimensional knapsack problem with a constant number of

constraints most of whose coefficients are of size poly(|I|) where I denotes the instance.

This FPTAS generalizes the results in [26], where the authors consider the one dimen-

sional knapsack problem with cardinality constraint. We first present an FPTAS on

directed trees without global constraint which captures our main technical ingredients.
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FPTAS without global constraint

The algorithm uses a dynamic programming approach and the FPTAS for knapsack

problem as a subroutine. Note that on a star, any instance of knapsack can be reduced

to a PG instance without global constraints. Thus, an FPTAS is the best we can hope

for such PG unless P = NP (see the reduction to Knapsack in the beginning of the

section).

We keep four values for each v ∈ V . Suppose that the father of v is v′ and let nv

denote the number of children of v. Let also Mv′in
vin denote the optimal value of PG on

the subtree rooted at v when both v′ and v are selected in the solution. Similarly, we

also have Mv′in
vout, M

v′out
vin and Mv′out

vout , where in denotes the fact that a node is chosen

and out that a node is not chosen in the solution. Let ui, i = 1, . . . , nv denote the

children of v. Suppose Mvin
uiin

, Mvin
uiout, M

vout
uiin

and Mvout
uiout have been calculated, for any

i = 1, . . . , nv. Some of them may be undefined due to infeasibility. We will calculate

now Mv′in
vin . Observe that Mv′in

vin is equal to the optimal value of the following knapsack

(IP1):

max
∑

i∈[nv ]

(Mvin
uiinxui

+ Mvin
uiout(1− xui

)) + ωv (IP1)

s.t. 1 + wv′v +
∑

i∈[nv ]

wuivxui
≤ pv

xui
∈ {0, 1} ∀i ∈ [nv]

where Mvin
uiin

and Mvin
uiout have finite values (otherwise we remove them).

If this knapsack problem has a feasible solution, we get the value Mv′in
vin , otherwise

we set Mv′in
vin to be undefined. Similarly we calculate Mv′in

vout, M
v′out
vin and Mv′out

vout . Thus,

if we can calculate an optimal solution at each step, this solution will be obtained by

the above DP approach. For knapsack with nv variables, there is an FPTAS. Hence,

at each step we get an approximate value M̄v′in
vin ≥ (1 − ǫ)Mv′in

vin in time polynomial in

nv and 1
ǫ by knapsack’s FPTAS. In a similar way we compute approximately the other

three values. Thus, in the final solution, M̄root ≥ (1− ǫ)kMroot, where k is the number

of levels of the tree and Mroot is the optimal value of PG without global constraints,

terminating in poly(|I|, 1ǫ ) time where |I| is the input size. If we let 1 − ǫ′ = (1 − ǫ)k,

we have that ǫ = Θ( ǫ
′

k ). The running time is poly(|I|, k
ǫ′ ) = poly(|I|, 1

ǫ′ ) due to k ≤ |I|,

giving an FPTAS for PG without global constraint.

FPTAS with global constraint

Suppose without loss of generality that p ≤ n, otherwise let p = n. For each vertex

v, we will keep 4p values. Suppose that the father of v is v′. Let Mv′in
vin (s) denote the

optimal value of PG on the subtree rooted at v when both v′ and v are selected in the
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solution, and the total pollution level allocated to the subtree rooted at v is no more

than s, s = 0, 1, . . . , p. Similarly, we also have Mv′in
vout(s), M

v′out
vin (s) and Mv′out

vout (s). Let

ui, i ∈ [nv] denote the children of v. Suppose that Mvin
uiin

(s), Mvin
uiout(s), M

vout
uiin

(s) and

Mvout
uiout(s) have been calculated, for any i ∈ [nv] and s = 0, 1, . . . , p. Some of them

may be undefined due to infeasibility. Note that Mvin
uiin

(0), Mvout
uiin

(0) are undefined and

Mvout
uiout(0) = Mvin

uiout(0) = 0. Now we calculate Mv′in
vin (ℓ). Observe that Mv′in

vin (ℓ) is equal

to the optimal value of the following knapsack problem (denoted Knapsackv(ℓ)) plus

ωv:

max
∑

i∈[nv ]

∑

s∈[p]
(Mvin

uiin(s)xis + Mvin
uiout(s)yis) (IP2)

s.t.
∑

i∈[nv ]

∑

s∈[p]
s(xis + yis) ≤ ℓ− 1

p
∑

s=0

(xis + yis) = 1, ∀i ∈ [nv]

1 + wv′v +
∑

i∈[nv ]

[wuiv(

p
∑

s=0

xis)] ≤ pv

xis, yis ∈ {0, 1}, ∀i ∈ [nv], s = 0, 1, . . . , p.

If Mvout
uiin

(s) and Mvout
uiout(s) do not have finite values they are removed from Knapsackv(ℓ).

Note that xi0 ≡ 0, for any i ∈ [nv]. If Knapsackv(ℓ) has a feasible solution, then we

get the value Mv′in
vin (ℓ), otherwise we set Mv′in

vin (ℓ) to be undefined. Similarly we calculate

Mv′in
vout(ℓ), M

v′out
vin (ℓ) and Mv′out

vout (ℓ), ℓ = 0, 1, . . . , p. From the analysis of the dynamic

programming approach without global constraints, we know that if there is an FPTAS

for Knapsackv(ℓ), then there is FPTAS for Knapsackroot(p) giving an FPTAS for PG

with binary variables on directed trees. Note that the constraint
∑p

s=0(xis + yis) = 1

can be replaced by
∑p

s=1(xis+yis) ≤ 1, ∀i ∈ [nv]. This constraint indicates that exactly

one variable from all the possible levels will be chosen in the solution.

FPTAS for the Special Knapsack Problem

We will now show how to obtain an FPTAS to compute (IP2). Consider the follow-

ing instance I of a Special multiple choice and multi-dimensional Knapsack Problem

(denoted as SKP):
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max H(x) =
∑

j∈[J ]

∑

k∈[K]

Cjkxjk (SKP )

s.t.
∑

j∈[J ]

∑

k∈[K]

A′
jkxjk ≤ B′

∑

k∈[K]

xjk ≤ 1 ∀j ∈ [J ]

∑

j∈[J ]

∑

k∈[K]

Aijkxjk ≤ Bi, ∀i ∈ [N ]

xjk ∈ {0, 1}, ∀j ∈ [J ], k ∈ [K]

The coefficients of the objective Cjk correspond to the coefficients Mvin
uiin

(s) and Mvin
uiout(s)

J is the number of items available for selection, K denotes the number of different classes

of items where at most one item can be chosen from each class and N is the number of

dimensions of the constraints or items, where Bi = poly(|I|), ∀ i ∈ [N ] and N = O(1).

Without loss of generality suppose all the parameters in the above knapsack problem

are integers and Aijk ≤ Bi = poly(|I|), ∀ i ∈ [N ], j ∈ [J ], k ∈ [K]. Let C = OPT (I)

and B = maxi∈[N ]Bi.

Lemma 1. There is a pseudo polynomial optimal algorithm for SKP, terminating in

O(CJKBN ) time.

Proof. Let ℓ = (ℓ1, ℓ2, · · · , ℓN ). Consider now the following linear program:

min hs(M, ℓ) =
∑

j∈[s]

∑

k∈[K]

A′
jkxjk

s.t.
∑

j∈[s]

∑

k∈[K]

Cjkxjk = M

∑

j∈[s]

∑

k∈[K]

Aijkxjk = ℓi, ∀i ∈ [N ]

∑

k∈[K]

xjk ≤ 1, ∀j ∈ [s]

Initially, h0(M, ℓ) = +∞, for all M , ℓ. Then set h0(0, 0) = 0. As a result, the recursion

can be calculated as follows:

hs(M, ℓ) = min{hs−1(M, ℓ), min
k∈[K]

{hs−1(M − Csk, (ℓi −Aisk)i∈[N ])}}.

Then the optimal solution of SKP is

max
M≤C,ℓi≤Bi,i∈[N ]

{M : hJ(M, ℓ) ≤ B′}

Note that the running time of this dynamic programming approach is O(CJKBN ).
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Let Cmax = maxj∈[J ],k∈[K]Cjk. Note that

OPT in(I)

J
≤ Cmax ≤ OPT in(I)

We now scale all the coefficients in the objective function H(x). Let

C̃jk = ⌈
CjkJ

ǫCmax
⌉ ≤

CjkJ

ǫCmax
+ 1, ∀j ∈ [J ], k ∈ [K]

The optimal value C̃ of scaled SKP is then upper bounded by

CJ

ǫCmax
+ J ≤

J2

ǫ
+ J

Consider the dynamic programming approach running on the scaled SKP as Ascaled.

Then we have

Theorem 8. Ascaled is an FPTAS for SKP, terminating in O(J
3KBN

ǫ ) time.

Proof. We only need to show the approximation part i.e. that the optimal solution

returned is within 1 − ǫ of the optimal value of SKP, since the running time straight-

forwardly follows from the running time of the dynamic programming approach

O(C̃JKBN ) = O((
J

ǫ
+ 1)J2KBN ) = O(

J3KBN

ǫ
)

Let S̃ and S denote the optimal solution of the scaled and the original SKP respectively.

Note that S̃ is a feasible solution to the original SKP. By scaling,

ǫ(C̃jk − 1)Cmax

J
≤ Cjk ≤

ǫC̃jkCmax

J
(3.14)

Then

H(S)−H(S̃) ≤
ǫCmax

J
(C̃(S)− C̃(S̃) + |S|)

≤
ǫCmax|S|

J
≤ ǫCmax ≤ ǫH(S)

where the last inequality comes from |S| ≤ J .

By Proposition 4 we have the following:

Theorem 9. There is a truthful in expectation mechanism for PG with binary variables

on directed trees, which is an FPTAS.

For general xv ∈ Z, we can replace each xv by qv duplicated variables xvj , j =

1, · · · , qv, i.e., {xv ∈ {0, 1, . . . , qv}} = {
∑

j∈[qv ] jxvj |
∑

j∈[qv ] xvj ≤ 1, xvj ∈ {0, 1}}.

Note that this transforms a polynomial size integer constraint into a multiple choice,

one dimensional knapsack constraint. Hence, for directed trees, by a DP approach,

we can construct a pseudo polynomial time algorithm to compute the exact optimal
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value of PG with integer variables, in time poly(|V |, q, OPT in(PG)). In addition, we

can remove OPT in(PG) from the running time by a loss of ǫ of the optimal value

using scaling techniques. Thus, there is a (1− ǫ)-approximation algorithm for PG with

integer variables with running time in poly(|V |, q, 1/ǫ). Finally, by Proposition 4, we

obtain the following:

Theorem 10. There is a truthful in expectation mechanism for PG with polynomial

size integer variables on directed trees, which is an FPTAS.

3.4.2 Deterministic truthful mechanisms on directed trees

We will use a maximal in range (MIR) mechanism to obtain a (3 + ǫ) approximate

deterministic truthful mechanism for PG with polynomial size integer variables on

directed trees. By transformation from integer constraint into multiple choice and one

dimensional knapsack constraint (see paragraph before Theorem 10), we only need to

show such an approximation algorithm for binary variables. Our mechanism is based on

a recent deterministic truthful PTAS for two-dimensional knapsack problem4 [28,42,88].

We will first need the following:

Definition 15. A vertex in a rooted directed tree is called at level i if the distance

between the vertex and the root is i in the undirected version of the tree.

Let Li denote the set of vertices of level 3k+i, k = 0, 1, 2, . . . , µ, for any i ∈ [3] where

µ = ⌈d3⌉ and d is the depth of the tree. For each vertex v, suppose that the number of

children of v is nv and that children are u1, u2, · · · , unv . Let ∆ = maxv∈V {nv}+1. Let

Gv denote the subtree constructed by v and its children. Then restricting PG on Gv

with capacity (global constraint) cv (enumerating on the values of cv < p) and xv = 0

is equivalent to solving the following linear programming problem (denoted as PGv):

max
∑

i∈[nv ]

ωui
xui

(PGv)

s.t.
∑

i∈[nv ]

wuivxui
≤ pv

∑

i∈[nv ]

cuivxui
≤ cv

xui
∈ {0, 1}, ∀i ∈ [nv]

where cuiv = 1, for i ∈ [nv]. For any solution sv of PGv, we use ω(sv) to denote

the objective value of this solution (recall from (3.12) that linear functions b(·) and

d(·) are replaced by ω(·)) given the input I = (G,b,d,p,q,w, p). Let us denote by

Iv = (Gv, ω(sv), p, q,w, cv) an instance of PGv restricted on Gv and OPT (PGv(cv)) to

denote the optimal value of PGv(cv) given input Iv.

4This PTAS also works for multiple choice and constant dimensional knapsack problem, which will
be used for PG with polynomial size integer variables.
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Lemma 2 ([28,88]). There exists a range Sv(cv) of solutions of PGv(cv), which does not

depend on the declarations in Iv and only depends on cv such that maxsv∈Sv(cv){ω(sv)} ≥

(1− ǫ)OPT . Besides, there exists an O(∆4+ 1
ǫ ) algorithm Av(cv) that finds the optimal

solution of the range Sv(cv), for any ǫ > 0.

Denote now by PGi the restriction of PG on Li and let Si =
⋃

v∈Φ Sv(cv), where

Φ = {v ∈ Li|cv ∈ [nv] ∧
∑

v∈Li
cv ≤ p}. In other words Si is a range restricted to Li

such that the nodes which are in its solution are no more than p. Then Si is a range of

PGi, i ∈ [3]. The high level idea of the range is to omit pairs of consecutive levels of

nodes such that the externalities between neighbouring nodes are avoided.

Lemma 3.

(1). maxsi∈Si
{ω(si)} ≥ (1− ǫ)OPT (PGi).

(2). There exists an O(|Li|∆
6+ 1

ǫ ) algorithm Ai that finds the optimal solution of the

range Si, for any ǫ > 0.

Proof. Suppose that in the optimal solution of PGi, each vertex PGv is allocated c∗v
amount of global pollution level. As we know

∑

v∈Li
c∗v ≤ p. Then

max
si∈Si

{ω(si)} ≥
∑

v∈Li

max
sv∈Sv(c∗v)

(ω(sv)) ≥ (1− ǫ)
∑

v∈Li

OPT (PGv(c∗v)) = (1− ǫ)OPT (PGi)

where the first inequality comes from
∑

v∈Li
c∗v ≤ pv, the second one is due to Lemma 2,

and the third one is from the definition. Suppose the fathers of vertices in Li are labeled

as v1, v2, · · · , vℓi . Let gi(C) denote the optimal value of PG restricted to vertices with

fathers v1, v2, · · · , vi on the range Si when the capacity allocated to this subproblem is

no more than C. We have the following recursive function:

gi+1(C) = max
cvi+1

≤C
{gi(C − cvi+1

) + OPT (PGvi+1
(cvi+1

))}

where OPT (PGi) = maxi∈[ℓi],C≤p gi(C). The total running time of this dynamic pro-

gramming approach is O(|Li|∆
2∆4+ 1

ǫ ) = O(|Li|∆
6+ 1

ǫ ).

Theorem 11. There is a deterministic ρin-approximate truthful mechanism for PG

with polynomial size integer variables on directed trees, where ρin = 3 + ǫ. For binary

variables the mechanism terminates in O(|V |2∆6+ 1
ǫ ) time.

Proof. We only need to prove this theorem for PG with binary variables. Note that

maxi∈[3]{OPT (PGi)} ≥
1
3OPT (PG) since OPT (PG) =

∑3
i=1OPT (PGi). Then by

Lemma 3 we have

max
i∈[3]
{max
si∈Si

{ω(si)}} ≥
1− ǫ

3
OPT (PG)

Using VCG payment rule on the range S =
⋃

i∈[3] Si, we can get a deterministic truthful

mechanism for PG on directed trees, achieving 1−ǫ
3 OPT (PG) social welfare. The run-

ning time O(|V |2∆6+ 1
ǫ ) follows directly by Lemma 3 and the payment rule of VCG.
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3.5 Planar graphs

We present two algorithms for PG on planar graphs. The first has a constant approx-

imation ratio, obtained by decomposing the graph without violating any constraint.

The second algorithm is a PTAS, obtained by rounding the variables and a dynamic

programming approach on a tree decomposition of the graph. This PTAS violates the

local constraints by a small value δ > 0.

3.5.1 Constant approximation without violations

Given a digraph G = (V,E) and a subset U ⊂ V , we call significant neighbours of U ,

SNG(U), all the vertices in V \ U with at least two neighbours in U (see Figure 3.4).

Consider a partition {V i}αi=1 of V . Now let SNGun(V i) = {u /∈ V i | ∃v ∈ V i, s.t.u

is a significant neighbour of v w.r.t.V i} denote the significant neighbours of V i in

Gun. Let Gi be the induced subgraph of V i ∪ SNGun(V i) in Gun. A partition {V i}αi=1

of V is called an (α, β)-partition (or (α, β)-decomposition) of G if for any i ∈ [α] and

v ∈ V i, |δ−
Gi(v)
| ≤ β, where α, β are two given positive integers and |δ−

Gi(v)
| is the number

of neighbours of v in Gi.

v1

v2
v3

v4

v5

v6

v7 v8

SN(V 1)

V 1

Figure 3.4: Significant neighbours SN(V 1) = {v2, v4, v6} of V 1 = {v3, v5, v7, v8} in the
graph of solid black lines.

According to the following Lemma 4, we can obtain a constant approximation for

PG with integer variables for any graph with (α, β)-decomposition, where α and β are

constants. Such a decomposition of planar graphs will be presented later. Recall from

Propositions 1 and 2 that γk = (e + o(1))k = O(k).

Lemma 4. If a directed graph G has an (α, β)-decomposition, then there is a determin-

istic (ρfr = αγβ+2 + 1)-approximation algorithm for PG with integer variables, and, a

truthful in expectation mechanism for the same problem with the same approximation.

Proof. If there is an ρfr-approximation algorithm for a linear packing problem with bi-

nary variables, then there is an (ρfr+1)-approximation algorithm for the same problem

with integer variables [17]. Hence, it is sufficient to show that there is an (ρfr = αγβ+2)-
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approximation algorithm for PG with binary variables. Now we consider PG with bi-

nary variables. Let {V i}αi=1 be an (α, β)-decomposition of graph G. Let x∗ be the opti-

mal fractional solution of PG with binary variables. Then R(x∗) ≤ αmaxi∈[α]{R(x∗
V i)},

where x∗
V i is a fractional solution such that its value is equal to x∗v, for any v ∈ V i and

0 otherwise. Let PGi denote the PG on G by setting xv = 0, for any v /∈ V i. Note that

x∗
V i is a feasible solution for PGi, which gives R(x∗

V i) ≤ OPT fr(PGi). Without loss

of generality, we suppose wuv ≤ pv, for any (u, v) ∈ E and v ∈ V (otherwise xv = 0

for PG). Observe that in PGi, only xv, v ∈ V i are variables. Now for any v ∈ V i, let

us see how many constraints in PGi contain xv. Suppose u ∈ V \ V i is a neighbour

of v in Gun. If u is not a significant neighbour of v, since wvu ≤ pu, we can remove

the constraint wvuxv ≤ pv in PGi. Hence, only the local constraints of the significant

neighbours of v remain containing variable xv. As {V i}αi=1 is an (α, β)-decomposition

of graph G, there are at most β + 1 local constraints containing variable xv (which

includes the local constraint of vertex v itself). Together with the global constraint, we

know xv appears in at most β+2 constraints in PGi, for any v ∈ V i, which means PGi

is β+2 column sparse. Therefore, by Proposition 1, there is a polynomial deterministic

algorithm for PGi with binary variables, finding an integer solution yi for PGi such

that γβ+2R(yi) ≥ OPT fr(PGi), for any i ∈ [α]. Then

αγβ+2 max
i∈[α]
{R(yi)} ≥ αmax

i∈[α]
{OPT fr(PGi)} ≥ αmax

i∈[α]
{R(x∗V i)} ≥ R(x∗) = OPT fr(PG)

A truthful in expectation mechanism with the same approximation ratio is guaranteed

by Proposition 3.

Planar graphs. The integrality gap of PG on planar graphs is at least 4 as shown by

a complete graph with four vertices. For a small ǫ > 0, let wuv = ǫ, for any (u, v) ∈ E,

and pv = ωv = 1, for any v ∈ V . There is no global constraint. The optimal integer

solution of PG on this graph is xv = 1 for some v ∈ V and xu = 0 for all u 6= v, implying

the optimal objective value 1. However, setting xv = 1 − 4ǫ, for any v ∈ V provides

a feasible fractional solution, which gives the objective value 4 − 16ǫ. Therefore, the

integrality gap is at least 4, meaning that our LP relaxation cannot lead to better than

4 (e.g., PTAS) approximations.

We provide an (α, β)-decomposition of any planar graph, with α = 18, β = 6. We

did not attempt to optimize these two parameters. However, we note that this is the

first algorithm with constant approximation for PG on planar graphs.

Theorem 12. There is an (α, β)-decomposition of a directed planar graph G = (V,E),

where (α, β) = (18, 6).

Proof. Let G′ = Gun. Suppose G′ is connected, otherwise we can run the algorithm on

each connected component respectively. Define the sequence of vertex sets {Ni}i of G′
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as follows. Fix an arbitrary vertex v0 ∈ V , and let N1 = {v0}; Ni is defined recursively

as

Ni = {v ∈ V \
i−1
⋃

j=1

Nj | (v, u) ∈ G′, for someu ∈ Ni−1},

for i = 1, 2, . . . , |V |. By this definition, for any v ∈ Ni and u ∈ Nj , if |i− j| ≥ 2, then

(u, v) /∈ E′. We also observe that Ni is the set of vertices with distance i − 1 to v0

in G′ (i.e., the shortest path distance with respect to the number of edges). Suppose

the length of the sequence {Ni}i is K. Let Si = {j ≡ i (mod 3) | j ∈ [K]}, i ∈ [3]. Let

S0 = S3, and V i =
⋃

j∈Si
Nj , i ∈ [3]. We will need the following Lemmas 5, 6 and 7.

Lemma 5. For each v ∈ Nj, the number of significant neighbours of v in Nj−1 with

respect to Nj is at most two.

Proof. Suppose there exists v1 6= v2 6= v3 ∈ Nj−1 ∩ δG′(v) and v 6= u1, u2, u3 ∈ Nj such

that (ui, vi) ∈ G′, i ∈ [3] (see Figure 3.5). By the definition of Nj , there is a path from

v0 to vi, i ∈ [3], and (v, vi) ∈ G′, i ∈ [3]. Suppose without loss of generality that v2 is

inside the circle constructed from the path of v0 to v1, v3 and edges (v, v1) and (v, v3)

in the planar embedding. Then (u2, v2) will intersect this circle, which contradicts that

G′ is planar.

v1 v2 v3

v0

u1 v u2 u3

. . . layer Nj−1

layer Nj

Figure 3.5: An illustration of relations between Nj and Nj−1

Next, we partition Nj into two sets N1
j and N2

j such that each vertex in N i
j , i ∈ [2],

has at most two significant neighbours in Nj+1. We say two vertices v, u ∈ Nj are

connected by a zigzag path if there exists a path (v, v1, v2, v3, . . . , vs, u) in G′ such that

vi and vi+1 alternatively belong to Nj+1 and Nj , i.e., v1 ∈ Nj+1 and v2 ∈ Nj . Note

that s must be odd. We define the zigzag length of this zigzag path as s+1
2 . The zigzag

distance between v and u, denoted dzuv, is defined as the zigzag length of the shortest

zigzag path between v and u if there exists one. Otherwise we set it to be undefined.

Note that the zigzag distance of v to itself is zero. The partition algorithm PA1 works

as follows (see Algorithm 1). Let N1
j = A1 and N2

j = A2, where A1, A2 is output of

PA1. (Note that PA1 is run for each j ∈ [K].)
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Algorithm 1: (PA1)

Input: A1, A2 ← ∅, B ← Nj

Output: A1, A2

1 while B 6= ∅ do
2 Select a vertex v ∈ B;
3 A1 ← A1 ∪B1; A2 ← A2 ∪B2;
4 B ← B \ (B1 ∪B2);
5 forall the nodes u ∈ V discovered by BFS(v) do
6 if dzuv is odd then
7 B1 = B1 ∪ {u}

8 else if dzuv is finite then
9 B2 = B2 ∪ {u}

Lemma 6. For each v ∈ N i
j , v has at most two significant neighbours in Nj+1 with

respect to N i
j , i ∈ [2].

Proof. First, note that if v and u are selected in different iterations of the while loop in

Algorithm 1, there is no zigzag path between them. Therefore, for a single iteration of

the while loop, suppose v ∈ B is selected. We only need to show that for any u ∈ Bi,

u has at most two significant neighbours in Nj+1 with respect to Bi, i ∈ [2]. First,

note that v ∈ B2 (its zigzag distance to itself is 0). Since all the other vertices in B2

have zigzag distance to v at least two, v has no significant neighbours with respect to

B2 in Nj+1. Now fix i ∈ [2]. Consider any two vertices u1, u2 ∈ Bi, u1 and u2 connect

to the same vertex in Nj+1 only if they have the same zigzag distance to v. Suppose

there exists three different vertices v1, v2, v3 ∈ Nj+1, such that they are significant

neighbours of u1 with respect to Bi (see Fig. 3.6). By similar arguments as above,

there exists zigzag paths from v to vi, i ∈ [3]. Also note that edges (u1, vi) ∈ G′, i ∈ [3].

Without loss of generality, suppose v2 is in the circle constructed from the zigzag paths

v to v1, v3 and edges (u1, v1) and (u1, v3). Since G′ is planar, there exists no edge

between v2 and another vertex in Bi with the same zigzag distance to u1. Therefore,

u1 has at most two significant neighbours with respect to Bi in Nj+1.

Next we will partition each set N i
j , i ∈ [2], j ∈ [K] into a constant number of

sets {N ik
j }k such that each vertex in N ik

j has at most a constant number of significant

neighbours with respect to N ik
j in Nj . We provide a partition algorithm which in spirit

is similar to Algorithm 1. For any two vertices v, u ∈ N i
j , we say they are connected by

a Nj-path if there exists a path (v, v1, v2, · · · , vs, u) in G′ such that vℓ ∈ Nj , ∀ℓ ∈ [s].

Nj-distance of two vertices v, u ∈ N i
j , denoted d

Nj
uv , is defined as the number of edges of

the shortest Nj-path between v and u if there exists one and∞ otherwise. The process

works as PA2 (Algorithm 2). Note that v ∈ B3, because the Nj-distance from v to
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v v′′ u1

v′ v1 v2 v3
. . .

layer Nj

layer Nj+1

Figure 3.6: Relations between Nj and Nj+1

itself is zero. Let N ik
j = Ak, k ∈ [3] (where A1, A2, A3 are a partition of N i

j output by

PA2).

Algorithm 2: (PA2)

Input: A1, A2, A3 ← ∅, B ← N i
j

Output: A1, A2, A3

1 while B 6= ∅ do
2 Select a vertex v ∈ B;
3 Find Bk’s below by BFS.
4 for k ← 1 to 3 do

5 Bk ← {u ∈ N i
j | d

Nj
uv ≡ k(mod 3)}

6 Ak ← Ak ∪Bk;

7 B ← B \ (B1 ∪B2 ∪B3);

Lemma 7. For any k ∈ [3], and each v ∈ N ik
j , v has at most 2 neighbours in Nj, or

has no neighbours in N ik
j nor significant neighbours with respect to N ik

j in Nj \N
ik
j .

Proof. First, note that if v and u are selected in different iterations of while loop in

Algorithm 2, there is no Nj-path between them. Therefore, for a single iteration of the

while loop, suppose v ∈ B is selected. Since v ∈ B3 (Nj distance to itself is 0), v has no

neighbours in B3 nor significant neighbours with respect to B3 in Nj \B3 by PA2. Now

fix k ∈ [3]. Consider any two vertices u1, u2 ∈ Bk, u1 and u2 connect to the same vertex

in Nj only if they have the same Nj-distance to v. Next we will show for any u1 6= v

and u1 ∈ Bk, for any k, u1 has at most two neighbours in Nj . Suppose there exist three

different vertices u1, u2, u3 ∈ Nj , such that (u1, u2) ∈ G′ and (u1, u3) ∈ G′. By similar

arguments as above, there exists Nj-paths from v to ui, i ∈ [3]. Since ui ∈ Nj , i ∈ [3],

there exist paths in G′ from v0 to ui, i ∈ [3]. We observe that it is only possible that

u1 is in the circle constructed from the Nj paths v to u2, u3 and paths from v0 to u2

and u3 (the case where u2 or u3 is in the circle constructed by the other two vertices

with v and v0 will violate the planarity of G′) (see Fig. 3.7). Since graph G′ is planar,

there exists no edge between u1 and another vertex in Nj (due to that such a vertex
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will have a path to v and v0 respectively). Therefore, u1 has at most two neighbours

in Nj .

v u2 u1 u3

v0

layer Nj

Figure 3.7: Relations between Nj and Nj

Combining Lemmas 5, 6 and 7, {N ik
j }ijk is an (α, β)- decomposition of G with (α, β) =

(18, 6), thus finishing the proof.

By Theorem 12 and Lemma 4, and observing that 18 min{γ8, 3γ6} = 18γ8 = O(1),

we have

Theorem 13. There is a randomized, individually rational and truthful in expectation

(18γ8 + 1)-approximation mechanism for PG on planar graphs with integer variables.

3.5.2 Better approximation under some mild condition

We will use the 4-color theorem for planar graphs to present an improved (6 + ǫ)-

approximate truthful in expectation mechanism for PG under the following natural

(and mild) assumption:
∑

u∈δ−
G
(v)

wuv ≤ pv (3.15)

This constraint means that if each of v’s neighbours emits only one unit amount of

pollution, the level of pollution in v will not exceed v’s local level of pollution. Let x1

be the optimal fractional solution of PG with binary variables without global constraint

on planar graph G.

Theorem 14. Suppose condition (3.15) holds and R(x1) ≥ 1. There is a random-

ized, individually rational, (ρfr = 6 + ǫ)-approximation mechanism that is truthful

in expectation for PG on planar graphs with integer variables, terminating in time

poly(|I|, log(1ǫ )).

Proof. Note that if condition (3.15) holds, then every independent set is a feasible solu-

tion for PG with binary variables without global constraint. By 4-color theorem [12,121]

for planar graphs, there is an independent set S ⊂ V such that 4R(zS) ≥ R(x1) where

zS is defined by zv = 1 if v ∈ S and zv = 0 otherwise. Further there is an O(|V |2)
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algorithm finding zS [121]. By Theorem 3 of [90] and R(x1) ≥ 1, there is a deter-

ministic (ρfr = 5 + ǫ)-approximation algorithm for PG with binary variables, running

in poly(|I|, log(1ǫ )) time. Then there is a deterministic (ρfr = 6 + ǫ)-approximation

algorithm for PG with integer variables, running in time poly(|I|, log(1ǫ )) [17]. By

Proposition 3, this (ρfr = 6 + ǫ)-approximation mechanism is truthful in expectation

for PG with integer variables.

3.5.3 A PTAS with δ violation of constraints

A PTAS with δ-violation: Our approach to obtain a PTAS has three main steps:

1. Round PG to an equivalent problem P̄G2 with polynomial size integer variables.

2. Using the nice tree decomposition (see Definition 17 later on this chapter), we

present a dynamic programming approach to solve P̄G2 optimally on a k-outerplanar

graph.

3. By a shifting technique similar to [15], we obtain a PTAS with 1 + δ violation of

local constraints for PG.

Step 1: Rounding Procedure. Recall from (3.12) that PG is equivalent to the

following integer linear program:

max
∑

v∈V
ωvxv (PG)

s.t.
∑

v∈V
xv ≤ p

wvvxv +
∑

u∈δ−
G
(v)

wuvxu ≤ pv, ∀v ∈ V

xv ∈ {0, . . . , qv}, ∀v ∈ V

where ωv = max{0, s0v − s1v −
∑

u∈δ+
G
(v) s

1
uwvu} and wv,v = 1 ∀v ∈ V , and bv and dv are

both linear with slopes s0v and s1v. For each v ∈ V , suppose qv ∈ [2ov−1 − 1, 2ov − 1).

We next consider an encoding of xv using a bit representation. Let ov = ⌊log2(qv)⌋+ 1

if qv 6= 2ov−1 − 1 and ov = ⌊log2(qv)⌋ + 2 otherwise; civ = 2i−1, i ∈ [ov − 1] and

covv = qv − 2ov−1 + 1. By simple calculations, we know

{xv |xv ∈ Z, 0 ≤ xv ≤ qv} = {
ov
∑

i=1

civy
i
v | y

i
v ∈ {0, 1}, i ∈ [ov]}

for any v ∈ V . Therefore, PG is equivalent to the following integer linear programming

problem (denoted as PG′):
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max
∑

v∈V

ov
∑

i=1

ωvc
i
vy

i
v (PG′)

s.t.
∑

v∈V

ov
∑

i=1

civy
i
v ≤ p

ov
∑

i=1

wvvc
i
vy

i
v +

∑

u∈δ−
G
(v)

ov
∑

i=1

wuvc
i
uy

i
u ≤ pv, ∀v ∈ V

yiv ∈ {0, 1}, ∀v ∈ V, i ∈ [ov]

Let o∗ = maxv∈V ov and ρ = o∗|V |. Recall that q = maxv∈V {qv} + 1. For any δ > 0,

let

w̄i
uv = ⌊

2wuvc
i
vρ

pvδ
⌋ and p̄v = ⌈

2pvρ

pvδ
⌉ = ⌈

2ρ

δ
⌉

for any u, v ∈ V . Then we have the following modified PG′ denoted as P̄G1:

max
∑

v∈V

ov
∑

i=1

ωvc
i
vy

i
v (PG1)

s.t.
∑

v∈V

ov
∑

i=1

civy
i
v ≤ p

ov
∑

i=1

w̄i
vvy

i
v +

∑

u∈δ−
G
(v)

ov
∑

i=1

w̄i
uvy

i
v ≤ p̄v, ∀v ∈ V

yiv ∈ {0, 1}, ∀v ∈ V, i ∈ [ov]

Lemma 8. Any feasible solution of PG′ is feasible in P̄G1, and any feasible solution

of P̄G1 is feasible for PG except violating each local constraint by a factor of 1 + δ.

Proof. We only prove local constraints for each direction since the proof of the global

constraint is similar. Let {yiv}v∈V, i∈[ov ] be a feasible solution of PG′. We know that

ov
∑

i=1

wvvc
i
vy

i
v +

∑

u∈δ−
G
(v)

ov
∑

i=1

wuvc
i
uy

i
v ≤ pv, ∀v ∈ V

Then

ov
∑

i=1

w̄i
vvy

i
v +

∑

u∈δ−
G
(v)

ov
∑

i=1

w̄i
uvy

i
v ≤

2ρ

pvδ

(

ov
∑

i=1

wvvc
i
vy

i
v +

∑

u∈δ−
G
(v)

ov
∑

i=1

wuvc
i
uy

i
v

)

≤
2ρ

pvδ
pv ≤ p̄v

(3.16)

as desired. On the other hand, suppose {yiv}v∈V, i∈[ov ] is a feasible solution of P̄G1. We

know that
ov
∑

i=1

w̄i
vvy

i
v +

∑

u∈δ−
G
(v)

ov
∑

i=1

w̄i
uvy

i
v ≤ p̄v, ∀v ∈ V
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Then from (3.16) we have:

ov
∑

i=1

wvvc
i
vy

i
v +

∑

u∈δ−
G
(v)

ov
∑

i=1

wuvc
i
uy

i
v ≤

pvδ

2ρ

(

ov
∑

i=1

(w̄i
vv + 1)yiv +

∑

u∈δ−
G
(v)

ov
∑

i=1

(w̄i
uv + 1)yiv

)

≤
pvδ

2ρ

ov
∑

i=1

w̄i
vvy

i
v +

∑

u∈δ−
G
(v)

ov
∑

i=1

w̄i
uvy

i
v +

pvδρ

2ρ
≤

pvδp̄v
2ρ

+
pvδ

2
≤

pvδ

2ρ

(

2ρ

δ
+ 1

)

+
pvδ

2

≤pv(1 + δ), ∀v ∈ V

Note that for each ℓ ∈ [qv], there is a solution {yiv}i∈[ov ] such that
∑ov

i=1 c
i
vy

i
v = ℓ. If

ℓ ≤ 2ov−1 − 1, set yovv = 0 and if 2ov−1 − 1 < ℓ ≤ qv, set yovv = qv − 2ov−1 + 1. In both

cases there is a unique solution such that
∑ov

i=1 c
i
vy

i
v = ℓ. Hence, there is a one-to-one

correspondence from xv to {yiv}i∈[ov ]. It is not difficult to see that for a given xv, the

solution {yiv}i∈[ov ] defined above is the one such that
∑ov

i=1 w̄
i
vvy

i
v+
∑

u∈δ−
G
(v)

∑ov
i=1 w̄

i
uvy

i
v

is minimized. Now let w̄vu(xv) =
∑ov

i=1 w̄
i
vuy

i
v, for any v, u ∈ V , where {yiv}i∈[ov ]

corresponds to the solution of xv. Let Λv = [qv]∪ {0}. Using these notations, we know

that P̄G1 (also PG) is equivalent to the following integer linear programming problem

(denoted as P̄G2):

max
∑

v∈V
ωvxv ( ¯PG2)

s.t.
∑

v∈V
xv ≤ p

w̄vv(xv) +
∑

u∈δ−
G
(v)

w̄uv(xu) ≤ p̄v, ∀v ∈ V

xv ∈ Λv, ∀v ∈ V

Step 2: Preliminaries of tree decompositions on k-outerplanar graphs

Definition 16. A tree decomposition of an undirected graph G = (V,E) is a pair

({Xi|i ∈ I}, T = (I, F )), where {Xi|i ∈ I} is a family of subsets of V , one for each

node of T , and T is a tree such that:

1.
⋃

i∈I Xi = V ,

2. for all edges (v, w) ∈ E, there exists an i ∈ I with v ∈ Xi and w ∈ Xi,

3. for all i, j, k ∈ I: if j is on the path from i to k in T , then Xi ∩ Xk ⊆ Xj

(running intersection property)

The width of a tree decomposition ({Xi|i ∈ I}, T = (I, F )) is maxi∈I |Xi| − 1. The

minimum width of all tree decompositions of G is called treewidth.
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Definition 17. A tree decomposition ({Xi|i ∈ I}, T = (I, F )) of G = (V,E) is called

a nice tree decomposition if T is a rooted binary tree and

1. if a node i ∈ I has two children j and k, then Xi = Xj = Xk (joint node),

2. if a node i ∈ I has one child j, then either Xi ⊂ Xj, and |Xi| = |Xj | − 1 (forget

node), or Xj ⊂ Xi and |Xj | = |Xi| − 1 (introduce node),

3. if node i ∈ I is a leaf of T , then |Xi| = 1 (leaf node).

Lemma 9 ( [77]). For any k-outerplanar graph G = (V,E), there is an algorithm to

compute a tree decomposition ({Xi|i ∈ I}, T = (I, F )) of G with treewidth at most

3k − 1 = O(k), and I = O(|V |) in O(k|V |) time.

Given a tree decomposition ({Xi|i ∈ I}, T = (I, F )) for G = (V,E) with treewidth k

and I = O(|V |), we can obtain a nice tree decomposition with the same treewidth k and

the same number of nodes O(k|V |) in O(k2|V |) time [84]. Thus, for any k-outerplanar

graph G = (V,E), we can compute a nice tree decomposition ({Xi|i ∈ I}, T = (I, F ))

of G with treewidth at most 3k − 1 = O(k), and I = O(k|V |) in O(k2|V |) time. In

the following, we will assume there is a nice tree decomposition for any k-outerplanar

graph.

Dynamic Programming (DP). We present a DP approach to solve P̄G2 on a di-

rected k-outerplanar graph using a nice tree decomposition of its undirected version.

Note that a nice tree decomposition of an undirected version of a directed graph is

also a nice tree decomposition of itself. Suppose we have a nice tree decomposition

({Xi|i ∈ I}, T = (I, F )) of a directed k-outerplanar graph G = (V,E). We will use a

bottom-up DP approach for P̄G2. In the following we will present our DP approach to

the more general application of the allocation of pollution licences (application 2).

For any node i ∈ I, suppose Xi = {vi1, v
i
2, · · · , v

i
t}, where t ≤ 3k. We say that

vertex vi1 belongs to node Xi. Similarly we say that a vertex belongs to a subtree of

T , meaning that this vertex belongs to some node of this subtree. Recall that given

any allocation of licences {xv}v∈V , the maximum number of cars (and so the maximum

number of licences) allowed at any moment in city v is w̄vv(xv) +
∑

u∈δ−
G
(v) w̄uv(xu)

(the local constraint). Let ~ai = (ai1, a
i
2, · · · , a

i
t) denote the number of licences allocated

to vertices in Xi, i.e., ais denotes the number of licences allocated to vertex vis, s ∈ [t].

Similarly ~ℓi denotes the locally maximum number of cars allowed at any moment in

vertices of Xi. Let Gi denote the subgraph generated by all the vertices belonging to

the subtree (node Xi) rooted at Xi. We use Qi to denote the total number of licences

allocated to Gi. Let Ωi(~ai, ~ℓi, Q
i) denote the optimal objective value of P̄G2 restricted

to the subgraph Gi, when the number of licences on vis and the number of allowed cars

at any moment on i are respectively ais and ℓis, s ∈ [t], and the total number of licences

on Gi is exactly Qi. If there is no feasible solution to Ωi(~ai, ~ℓi, Q
i), our DP approach
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will automatically set Ωi(~ai, ~ℓi, Q
i) to −∞. Let w̄uv(xv) ≡ 0 if (u, v) is not an edge in

G. Note that the range of ais we need to compute is in Λv, ℓis ranges from 0 to p̄vis ,

s ∈ [t] and Qi from 0 to p. The DP approach is as follows:

• Xi is a leaf node or a start node, where t = 1. Ωi(a
i
1, ℓ

i
1, Q

i) = ωvi1
ai1 if the triple

(ai, ℓi, Qi) is feasible, which can be verified easily e.g. Qi = ai1 and ℓi1 = w̄vi1v
i
1
(ai1).

Let Ωi(a
i
1, ℓ

i
1, Q

i) = −∞ if the triple (ai, ℓi, Qi) is not feasible.

• Xi is a forget node and suppose its child is Xj = Xi ∪ {v
j
t+1}.

Ωi(~ai, ~ℓi, Q
i) = max

ajt+1,ℓ
j
t+1

Ωj(~ai, a
j
t+1,

~ℓi, ℓjt+1, Q
i)

• Xi is an introduce node and suppose its child is Xj = Xi \ {v
i
t}. Let ajs = ais

and ℓjs = ℓis − w̄vitv
i
s
(ait), ∀s ∈ [t− 1]. Ωi(~ai, ~ℓi, Q

i) = Ωj(~aj , ~ℓj , Q
i − ait) + ωvit

ait if
∑

s∈[t] w̄visv
i
t
(ais) = ℓit, and Ωi(~ai, ~ℓi, Q

i) = −∞ otherwise.

• Xi is a joint node and suppose its two children j and k are such that Xj = Xk =

Xi. Ωi(~ai, ~ℓi, Q
i) = maxA{Ωj(~aj , ~ℓj , Q

j) + Ωk( ~ak, ~ℓk, Qk)}, where the condition

A = {(~aj , ~ℓj , Qj), ( ~ak, ~ℓk, Qk) | ~aj + ~ak = ~ai, ~ℓj + ~ℓk = ~ℓi, Qj + Qk = Qi}.

• Xi is the root of T , OPT (Qi) = max~ai,~ℓi
{Ωi(~ai, ~ℓi, Q

i)} is the optimal value (social

welfare) of P̄G2 when the total scaled number of licences is exactly Qi, i.e., the

global constraint satisfies
∑

v∈V xv = Qi.

Analysis of running time of DP. It is not difficult to see that the above DP approach

gives the correct solution of P̄G2 on k-outerplanar graphs. For each node Xi, we need

to keep O(pq3k⌈2ρδ ⌉
3k) = O(|V |q3k+1⌈2ρδ ⌉

3k) number of Ωi values. Each Ωi can be

computed in O(|V |q3k+1⌈2ρδ ⌉
3k) time (this is the worst case running time when Xi is

a joint node). There are O(k|V |) nodes in T . Therefore, the total running time of the

DP approach (by multiplying the above three numbers) is O(k|V |3q6k+2⌈2ρδ ⌉
6k).

Based on the above DP approach, we can solve P̄G2 on any k-outerplanar graph

optimally for any fixed k (which includes any directed tree whose treewidth is 2).

Therefore, for any δ > 0 and fixed k, we can use VCG to get an optimal deterministic

truthful mechanism for PG on any directed k-outerplanar graph that violates each local

constraint by a factor of δ and runs in O(k|V |3q6k+2⌈2ρδ ⌉
6k) time (note that Theorem

15 also works for bounded treewidth graphs).

Theorem 15. For any δ > 0 and fixed k, there is an optimal deterministic truthful

mechanism for PG on any directed k-outerplanar graph G = (V,E) that violates each

local constraint by a factor of 1 + δ and runs in O(k|V |3q6k+2⌈2ρδ ⌉
6k) time, where

ρ = |V |(⌊log2(q)⌋+ 2).

Step 3: PTAS for planar graphs Observe that when there are some boundary

conditions on k-outerplanar, the above DP approach still works. For example, if the
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number of licences of any vertex in any first and last face (level 1 and level k face) of

the k-outerplanar graph is zero, we just modify the dynamic programming approach

in a bottom-up manner to set Ωi = −∞ if any vertex v in any first and last face is a

parameter of Ωi and its number of licences aiv > 0. Then the modified DP approach

is the desired algorithm for P̄G2 on the k-outerplanar graph under this boundary

condition.

Proposition 5. PG is strongly NP-hard on planar graphs when we allow a δ violation

of local constraints.

Proof. Suppose we restrict PG instances to require that

∑

u∈δ−
G
(v)

wuv ≤ pv, ∀v ∈ V (3.17)

Then the maximum independent set problem can be solved as such PG problem with

each pv = 1. Further, observe that if δ = minu,v{wuv}, then even if we allow for

(1 + δ′)-violation of the local constraints, where 0 < δ′ < δ, the maximum independent

set problem can still be solved as such PG problem. Maximum independent set on a

planar graph with degree at most 3 is strongly NP-hard [56]. Theorem 17 provides a

PTAS for PG with q = poly(|V |) and (1 + δ′)-violation, giving a tight approximation

in this sense.

Theorem 16. For any fixed k and δ > 0, there is an O(k2|V |3q6k+2⌈2ρδ ⌉
6k) algo-

rithm for PG with integer variables on directed planar graph G = (V,E) that achieves

ρin-approximation and violates each local constraint by a factor of 1 + δ, where ρ =

|V |(⌊log2(q)⌋+ 2) and ρin = k
k−2).

Proof. We use OPT (P̄G2) to denote OPT in
G (P̄G2) omitting the superscript and sub-

script. By Lemma 8, we know OPT = OPT (PG) ≤ OPT (P̄G2). Let P̄G2(i) denote

the P̄G2 restricted on G when setting xv = 0 for each v that belongs to any face f ≡ i

or i + 1 (modk). Let {x∗v}v∈V be an optimal solution for P̄G2. Then we know

∑

i∈[k]

∑

v∈f :f≡i or i+1(mod k)

x∗v = 2OPT (P̄G2)

As a consequence, there exists i ∈ [k] such that

∑

v∈f :f≡i or i+1(modk)

x∗v ≤
2OPT (P̄G2)

k

Observe that {xv}v∈V is a feasible solution for P̄G2(i), where xv = 0 if v belongs to

any face f ≡ i or i + 1 (modk) and xv = x∗v otherwise. Thus,

OPT (P̄G2(i)) ≥ (1−
2

k
)OPT (P̄G2) ≥ (1−

2

k
)OPT
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Level 1 2 i

G1

boundary of G1

i+1 i+2 i+k

G2

boundaries of G2

i+k+1 i+k+2

boundary of G3

GLi

Figure 3.8: An illustration of how to select k-outerplanar graphs

Solving each P̄G2(i), i ∈ [k], then choosing maxi∈[k]{OPT (P̄G2(i))} (which is at least

(1− 2
k )OPT ) gives the desired result. Now let us see how to solve P̄G2(i). Note that for

P̄G2(i), xv = 0 for any v who belongs to any face f ≡ i or i+1 (modk). P̄G2(i) consists

of independent k′−outerplanar graphs, each of which has some boundary condition

i.e. the emission amount of any vertex in any first and last face is zero and k′ ≤ k.

Suppose the number of these independent k′-outerplanar graphs is Li. Without loss of

generality, suppose these k′-outerplanar graphs are ordered from exterior to interior as

Gs = (Vs, Es), s ∈ [Li] (e.g. Gs is the subgraph of G constructed by all the vertices of

levels from (s− 2)k + i + 1 to (s− 1)k + i, s = 2, · · · , Li − 1, with boundary xv = 0 if

v is of level (s− 2)k + i + 1 or (s− 1)k + i, see Figure 3.5.3).

Let Ωs(Q
s) denote the optimal value if there is a solution such that the total

allocated scaled emission amount to Gs is exactly Qs with boundary condition and

Ωs(Q
s) = 0 otherwise, which can be solved by the above DP approach on k′-outerplanar

graphs with boundary conditions. Then, it is not difficult to see the optimal solution for

P̄G2(i) is the optimal solution of the following integer linear program (denoted SUB):

max
∑

s∈[Li]

p
∑

Qs=0

Ωs(Q
s)ysQs (SUB)

s.t.
∑

s∈[Li]

p
∑

Qs=0

QsysQs ≤ p

p
∑

Qs=0

ysQs = 1

ysQs ∈ {0, 1}, ∀s ∈ [Li], Qs = 0, 1, . . . , p.

Let gt(Q) denote the optimal integer value of SUB when only Gs, s ∈ [t] is consid-

ered and the total emission amount allocated to these graphs is exactly Q. Then we
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have the following recursion function (which is essentially the same as that in Lemma 1):

gt(Q) = max
Qt=0,1,··· ,Q

{gt−1(Q−Qt) + Ωt(Q
t)}

The optimal value of SUB is maxQ=0,1,··· ,p{gLi(Q)}, which gives the optimal solution

of P̄G2(i) by tracking the optimal value of this dynamic programming approach. The

running time of this approach is O(|Li|p2). Hence, the total running time for obtaining

and solving P̄G2(i) is

O(|Li|p2) +
∑

s∈[Li]

O(k|Vs|
3q6k+2⌈

2ρ

δ
⌉6k) = O(k|V |3q6k+2⌈

2ρ

δ
⌉6k)

We need to solve P̄G2(i), for each i ∈ [k] and then get maxi∈[k]{OPT (P̄G2(i))}. There-

fore, the overall running time is O(k2|V |3q6k+2⌈2ρδ ⌉
6k) as desired.

Let 2
k = ǫ in Theorem 16. Also note that ρ = |V |(⌊log2(q)⌋+ 2). We have:

Theorem 17. For fixed δ, ǫ > 0 there is an

O

(

1

ǫ2
|V |12/ǫ+3q2⌈

2(⌊log2 q⌋+ 2)q

δ
⌉12/ǫ+1

)

=

(

|V |q(log2 q + 2)

δ

)O( 1
ǫ
)

(3.18)

time algorithm for PG on directed planar graph G = (V,E) that achieves social welfare

(1 − ǫ)OPT in(PG) and violates each local constraint by a factor of 1 + δ. This is a

PTAS for PG with polynomial size integer variables.

3.6 General objective function for bounded degree graphs

3.6.1 Approximation algorithms

If R(x) (recall from (3.4)) is monotone, we present an algorithm with an approximation

ratio of O(∆) for PG on a graph with maximum degree at most ∆.

Theorem 18. If R(x) with binary variables is monotone increasing, then there is an

(ρfr =
eγ∆+2

e−1 + 1)-approximation algorithm for PG with integer variables on graph with

degree at most ∆.

Proof. If xv ∈ {0, 1}, ∀v ∈ V , for any A ⊆ V , we define g(A) = R(x) where xv = 1,

∀v ∈ A and xv = 0, for any v /∈ A. Observe that R with binary variables is submodular

if and only if g satisfies g(A ∪ B) + g(A ∩ B) ≤ g(A) + g(B), for any A,B ⊂ V . For

any A ⊆ V , and v ∈ V , denote by A+ v the set A∪ {v}. Let gv(A) = g(A+ v)− g(A).

Then it is not difficult to see that g(A∪B)+g(A∩B) ≤ g(A)+g(B), for any A,B ⊂ V

if and only if for any A ⊆ B ⊆ V and v ∈ V \ B, gv(A) ≥ gv(B). Next we will prove

that gv(A) ≥ gv(B), which implies that R(x) is submodular.
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Let A ⊆ B ⊆ V and v ∈ V \B. Denote by drA+v
u the total welfare change of player

u by adding v to set A. Observe that

gv(A) = drA+v
v +

∑

u∈δ−
G
(v)∩A

drA+v
u .

By simple calculations,

drA+v
v = bv(1)− bv(0)− dv(1 +

∑

u∈δ−
G
(v)∩A

wuvxu) + dv(
∑

u∈δ−
G
(v)∩A

wuvxu),

drA+v
u = −du(

∑

u′∈δ−
G
(u)∩A

(wu′uxu′ + wvu)) + du(
∑

u′∈δ−
G
(u)∩A

wu′uxu′).

By convexity of du, we know that

drA+v
v ≥ ∆rB+v

v , ∀u ∈ δG(v) ∩A

drA+v
u ≥ ∆rB+v

u , ∀u ∈ δG(v) ∩A

∆rB+v
u ≥ 0, ∀u ∈ δ−G(v) ∩B

(3.19)

Hence, gv(A) ≥ gv(B) and R(x) with binary variables is submodular.

For the graph with degree ∆, note that PG is ∆+2 column sparse. By Proposition 2,

there is a randomized ρfr =
eγ∆+2

e−1 -approximate algorithm for PG with binary variables

if R(x) is monotone increasing (which can be derandomized to be deterministic with the

same approximation ratio). Now observe that for a concave function G(x) from R≥0 to

R≥0, we have G(x+y) ≤ G(x)+G(y), for any x, y ∈ R≥0 (without loss of generality let

x ≥ y > 0, by concavity of G, it holds that G(x+y)−G(x)
x+y−x ≤ G′(x) ≤ G′(y) ≤ G(y)−G(0)

y−0 ).

By this property, since bv(x) and −dv(x) are concave from R≥0 to R≥0, for any v ∈ V ,

for any feasible solution x = {xv}v and y = {yv}v, we have R(x + y) ≤ R(x) + R(y).

By ellipsoid algorithm for convex programming problem in [64], we can get an optimal

fractional solution of PG denoted as x∗ = {x∗v}v. Let z∗ = {z∗v}v where z∗v = ⌊x∗v⌋,

for any v ∈ V and x∗ = z∗ + y∗. Let y′ be an
eγ∆+2

e−1 -approximate solution for PG

with binary variables when R(x) is monotone increasing. Note that y∗ is a feasible

fractional solution for PG with binary variables. We know R(y∗) ≤ eγ∆+2R(y′)
e−1 . Let

x′ be an solution of PG with integer variables such that x′ = y′ if R(y′) ≥ R(z∗) and

x′ = z∗ otherwise. Therefore, we have R(x∗) ≤ R(z∗) + R(y∗) ≤ R(z∗) +
eγ∆+2R(y′)

e−1 ≤

(
eγ∆+2

e−1 + 1)R(x′).

3.6.2 Truthful in expectation mechanisms

In this section, we will prove that there is an O(γ∆+2) (recall the basic definitions in

the beginning of the chapter for γ) truthful in expectation mechanism for PG on any

graph with degree ∆ when bv is linear and dv is piece-wise linear with one shift point,

under a further natural assumption of a relaxation of the condition for the slopes of
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functions cv(xv) and dv(xv) (see inequalities (3.20) and (3.21) later in this section). For

each player v ∈ V , let bv(xv) = s0vxv, a linear function starting from the origin with

slope s0v. Let also dv be a piece-wise linear convex function with one shift point where

the first part is a linear function starting from the origin with slope s1v, the shift point

is (yv, s
1
vyv) and the second part is a linear function starting from the shift point with

slope s2v ≥ s1v (see Figure 3.9).

0 yv

Slope:s0v

Slope:s1v

Slope:s2v

bv(xv)

dv(xv)

Figure 3.9: An illustration of function bv and dv.

As we know if the emitted pollution from player v is large enough, the welfare of

player v should be negative. The damage function is piece-wise linear with one shift

point, which means player v’s welfare (valuation minus damage) will decrease after the

total pollution in v reaches yv. Precisely, when xv +
∑

u∈δ−
G
(v)wuvxu ≥ yv, we should

have s0v ≤ s2v. However, we can relax this condition to

s0v − s2v −
∑

u∈δ+
G
(v)

s1uwvu ≤ 0. (3.20)

The second condition on the slope s0v is somehow more subtle. Intuitively, player v’s

emitted pollution should not affect his neighbour’s total pollution too much. This

means that if his neighbour u’s pollution reaches yu, then the total social welfare R(x)

should decrease. That is, for any v ∈ V , and any u ∈ δ+G(v), if
∑

u′∈δ−
G
(u)wu′uxu′ ≥ yu,

then

s0v − s1v −
∑

u′∈δ+
G
(v)\{u}

s1u′wvu′ ≤ s2uwvu. (3.21)

Lemma 10. Let x∗ be an optimal fractional solution of PG under the condition that

functions bv and dv satisfy constraints (3.20) and (3.21), then x∗ has the following prop-

erty: for each v ∈ V , the local level of pollution in v satisfies that x∗v+
∑

u∈δ−
G
(v)wuvx

∗
u ≤

yv.
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Proof. We prove this lemma by contradiction. Suppose there exists v ∈ V , such that

x∗v +
∑

u∈δ−
G
(v)wuvx

∗
u > yv. If x∗v > 0, by constraints (3.20), we can decrease the value of

x∗v by an amount of α such that x∗v −α+
∑

u∈δ−
G
(v)wuvx

∗
u > yv. By simple calculation,

the total social welfare increases by an amount of −(s0v − s2v −
∑

u∈δ+
G
(v) s

1
uwvu)α ≥ 0.

Thus, we can do this until either x∗v = 0 or x∗v − α +
∑

u∈δ−
G
(v)wuvx

∗
u ≤ yv. If the

first case holds and the second case does not hold, then there exists u ∈ δ−G(v) with

x∗u > 0. Note that v ∈ δ+G(u). Since
∑

u∈δ−
G
(v)wuvx

∗
u > yv, if we decrease the value x∗u

by α, by simple calculation, the total social welfare increases by at least −(s0u − siu −
∑

u′∈δ+
G
(u)\{v} s

i
u′wuu′ − s2vwuv)α ≥ −(s0u − s1u −

∑

u′∈δ+
G
(u)\{v} s

1
u′wuu′ − s2vwuv)α, which

is non-negative by constraints (3.21). Here, the value i is defined as follows, if total

pollution in v is below yu then siu = s1u, otherwise siu = s2u, with the same argument

for siu′ . By this operation, we can decrease the value of v without loss of total social

welfare until the total level of pollution in v does not reach yv.

Lemma 11. If PG functions bv and dv satisfy constraints (3.20) and (3.21) then there

is a deterministic polynomial time algorithm with approximation ratio ρfr = γ∆+2.

Proof. By Lemma 10, we know the optimal fractional solution x∗ can satisfy that

x∗v +
∑

u∈δ−
G
(v)wuvx

∗
u ≤ yv, for any v ∈ V . Hence, we can modify the constraint (3.6)

in PG to

xv +
∑

u∈δ−
G
(v)

wuvxu ≤ min{yv, pv}. (3.22)

This modified PG has the same optimal fractional solution as PG. In the modified PG,

R(x) =
∑

v∈V ωvxv, where ωv = s0v− s1v−
∑

u∈δ−
G
(v) s

1
uwvu. By Proposition 1, there is a

deterministic polynomial time algorithm for the modified PG with approximation ratio

ρfr = γ∆+2. This algorithm is also an algorithm for PG with the same approximation

ratio.

With Lemma 11, there is a truthful in expectation mechanism for PG with approx-

imation ratio γ∆+2 = (e + o(1))(∆ + 2):

Theorem 19. Suppose the bidding strategy s0v of each player v ∈ V satisfies con-

straints (3.20) and (3.21). There is a randomized, individually rational, (ρfr = γ∆+2)-

approximation mechanism that is truthful in expectation for PG on G with degree at

most ∆.

Proof. Since the bidding strategy s0v of each player v satisfies constraints (3.20) and

(3.21), by Proposition 3 and Lemma 11, there is a randomized, individually rational,

γ∆+2-approximation mechanism that is truthful in expectation for the modified PG,

which is also a truthful in expectation mechanism for PG with the same approximation

ratio.
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Corollary 2. If bv and dv are linear functions for any v and the bidding strategy s0v of

player v is arbitrary, then there is a randomized, individually rational, (ρfr = γ∆+2)-

approximation mechanism that is truthful in expectation for PG.

Proof. Since dv is linear, it is equivalent to the above piece-wise linear function with

s2v = +∞ and yv = +∞, for any v ∈ V . By Theorem 19, there is a randomized,

individually rational, γ∆+2-approximation mechanism that is truthful in expectation

for PG.

Remark: We cannot anticipate an algorithm with constant approximation ra-

tio for PG on the graph with average degree ∆ (the average degree of a graph G is
∑

v∈V |δGun (v)|
|V | ) even if ∆ = 1. Consider a graph G′ consisting of a complete graph with

n vertices and n2−n isolated vertices with valuation 0. Note that G′’s average degree is
n2

n2 = 1. PG on G cannot be approximated within n1−ǫ unless Unique Game conjecture

fails. Thus, PG cannot be approximated within (n2)
1−ǫ
2 on G′, where n2 is the number

of vertices of G′.

3.7 Literature overview

An invaluable source of pollution control regulations comes from the managerial ap-

proaches in environment policies. The majority of literature in this field deals with

symmetric information. This problem however shows a fundamental asymmetry be-

tween the regulatory bodies and pollutants. The research contributions considering

environmental policy with asymmetric information and the diffusion nature of pollu-

tion have been limited until recently.

In order to control pollution, an incentive mechanism that is environmentally friendly

and resource efficient needs to be designed and deployed by regulatory authorities. How-

ever, it is not obvious how to design such a mechanism in the presence of asymmetric

information; just as Hurwicz [69] put it: the firms know that information will be used

by the regulator to design a policy which will affect their profits. Hence, they have an

incentive to manipulate reported information in order to influence the content of the

policy. In this context, Farell [48] discusses the relevance of the Coase Theorem. This

theorem basically asserts that bargaining will lead to an efficient outcome regardless

of the initial allocation of property if negotiation and trade in presence of externality

are possible and the transaction costs are sufficiently low. Considering the problems

of incomplete information, that paper shows that voluntary negotiation does not lead

to the first-best outcome that maximizes joint surplus in the presence of two-sided pri-

vate information. That is to say, centralised economic institutions such as government

control and intervention, and decentralised institutions such as bargaining and owner-

ship rights, should be viewed as complementary to each other. Therefore, a necessary
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condition for the government when designing an optimal pollution control plan is the

truthful information about firms.

Kwerel [92], Dasgupta et al. [37] and Spulber [129] have proposed mechanisms that

implement truth telling by firms to maintain a mild level of pollution. Under this

assumption the firms can communicate with the regulator but not with each other.

In Kwerel’s scheme [92] firms are informed in advance that their messages will be

translated into pollution taxes. The regulator issues a fixed number of transferable

pollution licences and offers a subsidy for those licences which firms hold in excess of

emission. Both the number of licences to be issued and the subsidy rate offered are

calculated on the basis of the cost information provided by firms.

Kim and Chang [83] constructed an optimal incentive tax/subsidy scheme in an

oligopoly market with pollution and suggested a differential damages mechanism, which

leads to an optimal emission level. McKitrick [103] proposes a Cournot Mechanism for

pollution control under asymmetric information, in which a Nash Equilibrium exists,

is stable and can be reached by iterative computations. Because firms may attempt

to manipulate the pollution level allocation to their own advantage, the adjustment

rule is exogenous and depends on the actions of the firms. The approach by Karp

and Livernois [75] is related to that in Conrad and Wang [34]. The authors examined

the steady-state properties of a tax adjustment mechanism in situations where the

government has no information about firms’ abatement costs.

These prior studies provide an overall framework in the administrative approach

to control pollution. However, those models are only a first level of approximation in

characterizing the reality. Although, there is some literature studying an economics

environment consisting of firms or countries with geographical distinction, few of them

take the diffusion nature of air and water pollution into consideration. For instance,

Petrosjan and Zaccour [116] study the problem of allocation over time of total cost

incurred by countries in a cooperative game of pollution reduction. Segerson [126]

develops a general incentive scheme for controlling nonpoint source pollution5 that

considers the diffusion nature, in which rewards for environmental quality above a

given standard are combined with penalties for substandard quality. Based on the

work of Petrosjan and Zaccour [116], Belitskaya [18] develops an n-person network

game model of emission reduction. Dorner et al. [45] create a multi-objective modeling

system using Bayesian probability networks to study nonpoint source pollution. Both

the work of Belitskaya [18] and Dorner et al. [45] are different from the setting of ours,

in either model assumption or function settings. In addition to these works built on

network framework, Dong et al. [44] models the water pollution problem as a cost

5Nonpoint source (NPS) pollution refers to both water and air pollution from diffuse sources, that is
sources without a specified fixed location. For instance, nonpoint source water pollution affects a water
body from sources such as polluted runoff from agricultural areas draining into a river, or wind-borne
debris blowing out to sea. This work deals mainly with point source pollution.

52



sharing problem on a tree network. However, none of the literature mentioned above

takes into account the role of governments in pollution abatement, more specifically

how to make policies assuming information asymmetry. A model that adequately takes

both factors into account is what we need to tackle such problems in reality.

Few other papers have studied air pollution in relation to network models. Singh

and Datta [128] use artificial neural network method to identify unknown pollution

sources in the groundwater. Gianessi et al. [58] analyze the national water pollution

control policies. And, finally, Trujillo and Hugh [135] study multi-objective air pollution

monitoring network design. These papers use networks in a very different context from

ours.

Turning into current practice, emission trading is a market-based approach used

to control pollution by providing economic incentives for achieving reductions in the

emissions of pollutants. Various countries have adopted emission trading systems as one

of the strategies for mitigating climate-change by addressing international greenhouse-

gas emission [132].

A central authority (usually a governmental body) sets a limit or cap on the amount

of a pollutant that may be emitted. The limit or cap is allocated and/or sold by the

central authority to firms in the form of emission permits which represent the right

to emit or discharge a specific volume of the specified pollutant [131]. Permits (and

possibly also derivatives of permits) can then be traded on secondary markets. For

example, the European Union Emissions Trading Scheme (EU ETS) trades primarily

in European Union Allowances (EUAs), the Californian scheme in California Carbon

Allowances, the New Zealand scheme in New Zealand Units and the Australian scheme

in Australian Units [133]. Firms are required to hold a number of permits (or allowances

or carbon credits) equivalent to their emissions. The total number of permits cannot

exceed the cap, limiting total emissions to that level. Firms that need to increase their

volume of emissions must buy permits from those who require fewer permits [131,132].

Currently a simple auction mechanism for selling EUAs is adopted in Europe, see,

e.g., [4]. Furthermore in order to limit the automobile pollution, governments use

policies of car taxation [71], [55]. A radical transport policy introduced in the UK and

first applied in Central London resulting in 19% reduction of CO2 emissions (see table

2 in [16]).

3.8 Open problems

We presented a new network model for the pollution control problem and studied planar

and tree networks which model realistic scenarios. These networks can be applied to

model air and water pollution from diffuse sources. Our main technical results include a

constant approximation algorithm and a PTAS with a small violation in the constraints

for the case of planar graphs and an FPTAS which is truthful in expectation and a 3-
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approximate deterministic truthful mechanism for the case of trees. We obtained these

results by introducing novel algorithmic techniques for planar and tree graphs which

could be of independent interest.

Many interesting open problems arise from this new model. Our main open question

is to determine whether PG with binary variables on planar graphs admits a PTAS or

whether it is APX-hard. Another direction would be to study lower bounds on truthful

(deterministic, universal, truthful in expectation) mechanisms for PG. Can externality

be used to obtain such lower bounds? Furthermore it would be interesting to generalize

our results to other graphs, e.g., Euclidean graphs.
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Chapter 4

Coverage problems in
wireless sensor networks

4.1 The problems

Modern technological advances in micro-electronic and mechanical systems, digital elec-

tronics, and wireless communications have boosted the low-cost development of multi-

functional sensing devices, called sensor nodes, which, despite their relatively small

dimensions, have exceptionally superior sensing, processing and communication capa-

bilities. A set of spatially distributed sensor nodes which are wirelessly interconnected

constitutes a so called Wireless Sensor Network (WSN) [7, 145].

WSNs thanks to their capability to monitor phenomena taking place in almost every

type of environment, are considered to be among the most emerging scientific domains

in 21st century and have an ever growing variety of applications [3]. However, the

utilization of WSNs is limited because of the strict energy limitations of the wireless

nodes. Specifically, a sensor node within a WSN dissipates amounts of energy mainly

during communication but also during sensing and processing. On the other hand,

typical sensor nodes are powered by simple batteries. Thus in WSNs comprising of

hundreds or even thousands of randomly deployed nodes, it is impractical to either

recharge or replace the node batteries that have run out of energy. As nodes get

depleted, the continuous monitoring of the whole network is deteriorated while the

energy cost of communication is increased because less multi-hop routing paths remain

available. In this way the network lifetime is rapidly reduced. That is why, great

amount of research in WSNs aims at the maximization of network lifetime [108,149].

Several definitions of network lifetime use a coverage variant i.e. the continuous

monitoring of whole areas or discrete targets of interest via the sensing nodes of WSNs.

Each sensor node monitors phenomena taking place within its sensing area, which is

typically considered as a disk with the sensor being placed at its center. Due to this

ability, WSNs have a continuously increasing range of applications [13].

The most common definition for the coverage variant uses 1-coverage to define the
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network lifetime as the time that the region of interest is covered by at least one node.

However, according to Friedrich and Dressler [39], coverage can be defined in different

ways, depending on both the configuration of the region of interest and the accomplished

redundancy of the coverage. Specifically, according to the region configuration there are

three possible types of coverage. The first one is the so called area or volume coverage,

where each point inside a two-dimensional area or a three-dimensional volume must

be covered. The second alternative is the so called target coverage case where only a

finite set of target points inside an area of interest has to be covered. Barrier coverage

is the third type of coverage case, where a mobile target can pass undetected through

a barrier of sensor nodes.

Similarly, there are two approaches to describe the degree of coverage redundancy

that can be accomplished by a given WSN. The first approach is termed α-coverage. It

requires that only a given percentage α of the region of interest is covered by at least

one sensor node. The second approach is named k-coverage. It requires that each point

within the region of interest is covered by at least k sensors.

In the case where sensor nodes are owned by selfish agents who may sell the service

of routing data [11] or for the coverage of an area/set of targets we want to derive

mechanisms that assign right payments to the agents who own the sensors. In this

sense the mechanism encourages them to declare the truth about their battery cost

per unit time (truthful mechanisms). At the same time we also want to maximize the

lifetime of the network. In particular we consider the following optimization problems:

• Budgeted Maximum Lifetime Coverage (BMLC) in which we want to find a proper

schedule of active/sleep sensor nodes such that the total time that the areas of

interest are monitored is maximized while a monetary budget is not exceeded.

• Weighted Sensor Cover (WSC) in which we aim at finding a set of weighted sensor

nodes that monitor all the target points having the minimum total weight.

We study two approaches (each suitable for a different scenario) for two problems of

target coverage. In the former, we propose a combinatorial model in which the targets

are covered by the sensor nodes with some probability given on input of the problem.

In the latter we consider a geometric model in which the sensor nodes, the targets and

the base station are deployed in the plane.

4.1.1 Our results

Inspired by applied scenarios in which full sensing is not possible as in the hidden

terminal problem [134], we introduce a random instance model for the budgeted max-

imum lifetime coverage (BMLC) problem and in this model we design a novel truthful

approximate mechanism for this problem. Our mechanism is randomized, polynomial

time and truthful with high probability with respect to both random instances and
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internal randomness of the algorithm. Technically, our approach is based on an inter-

esting reduction from the budgeted maximum lifetime coverage problem to the classic

knapsack problem. Then, we utilize the combinatorial structure of the coverage prob-

lem to prove that with high probability, i.e., on almost all instances of the problem,

this reduction results in a monotone algorithm, that leads to a truthful mechanism un-

der some technical assumptions. Monotonicity, which is an algorithmic property that

is sufficient and often also necessary for truthfulness for one parameter agents [14], is

usually difficult to achieve and there are only very few approaches known in literature

towards this goal. Our approach is an example of a new such technique and can also

be of independent interest.

Second, we study the closely related minimum sensor coverage problem in wireless

sensor networks on unit disk graphs, generalize and extend the recent PTAS [97] for

this problem to obtain a monotone algorithm and therefore a truthful PTAS for the

problem where the costs of sensor nodes are the private data of the agents. However,

since the algorithm chooses the minimum cost solution out of many possible ones, hence

a monotone algorithm for every subproblem does not necessarily lead to a monotone

algorithm for the whole problem, as shown in [107]. Thus we modify the algorithm and

consider the stronger notion of bitonicity. We first show that the combination of the

bitonic algorithms for each subproblem is monotone and therefore leads to a truthful

mechanism. To the best of our knowledge this is the first attempt to study strategic

issues for target coverage problems.

We finally show that the well known reduction based on the primal-dual Garg-

Koenemann framework, first used by Berman et al. [19], leads to the same approxima-

tion guarantee as for the classic maximum lifetime coverage problem, even if we have

many additional budget constraints. This implies a polynomial time approximation

scheme (PTAS) for the budgeted maximum lifetime coverage problem in unit disks

graphs (i.e., sensors are unit disks on the plane), and a O(log(m))-approximation for

the problem in general graphs, where m is the number of targets.

4.1.2 Motivation and related work

The simultaneous maximization of network lifetime as well as the network coverage

are considered to be crucially important issues in WSNs and various research ap-

proaches have been proposed to deal with them [9]. For instance, some of them

use the so called Maximum Lifetime Coverage Problem (MLCP) approach, propos-

ing sleep/activate schedules for sensor nodes in order to maximize the lifetime of target

coverage in the field [41]. Actually, Cardei et al. [27] first proposed the appropriate

scheduling of the operation of the network nodes in order to achieve the extension of

coverage lifetime in a network. Specifically, they defined two types of operational modes

of nodes and developed a linear programming algorithm and a greedy algorithm to ar-
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range the appropriate alternation of operational modes for each sensor node in order to

both conserve energy and retain the service quality of the coverage. Similarly, Zhu and

Sivakumar [150] proposed a communication strategy called Communication through

Silence (CtS) which primarily uses silence, along with a minimal amount of energy

to deliver information between sensor nodes to achieve energy-efficient communication

without significant degradation on overall throughput in WSNs.

The maximization of the coverage of an area under cost-efficiency and stability

constraints has also been addressed by applying optimization techniques [82]. Berman

et al. [19] reduced the area coverage problem to target coverage by adding O(N2)

targets where N is the number of sensor nodes and proposed an O(logN) approximation

algorithm for MLCP. Some other research schemes use clustering methods in order to

achieve efficient organization of sensor nodes into clusters [110].

Alternatively many research works pursue to extend the network lifetime through

energy efficient routing protocols which ensure that data are relayed from source nodes

to destination nodes by using multi-hop routing via the most energy-efficient paths

possible [74].

However, energy efficiency may be indeed anticipated from the point of view of the

overall network benefit, but not from the point of view of an individual and selfish

node profit. Generally, a node is considered to be selfish if it does not agree to provide

any of its available resources (battery reserves, CPU cycles, or network bandwidth) to

forward data which are not of its direct interest, even though it expects other nodes to

relay data on its behalf.

In order to stimulate cooperation among nodes in a network various protocols have

been proposed. These protocols may be classified into two main categories. The first

of them includes the so called reputation-based protocols, while the other one is the

market-based (or credit-based) approach.

In reputation-based approach, the behavior of every single node is dynamically

measured by the rest of the nodes that belong to the same network. The incentive

for a node is to keep relaying an estimated amount of traffic in order to maintain its

reputation to an acceptable level [101]. The relay of traffic from a node with high

reputation is facilitated by other nodes by virtue of its past behavior, and on the other

hand, nodes with poor reputation are isolated from the network participation. These

mechanisms relate the desire of a node to relay traffic with its reputation. In order to

achieve the reputation based forwarding methodology, the foremost requirement is the

effective implementation of a truthful and cheat proof mechanism.

For example, Marti et al. proposed in [102] a reputation-based system where nodes

use one mechanism to detect misbehaving nodes and another mechanism to avoid these

nodes during route selection. Michardi and Molva [105] proposed a mechanism which

not only makes decisions about cooperation but also identifies and avoids malicious
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nodes which on purpose drop the data packages they receive. This mechanism uses

a weighted combination of the values of three different reputation measures: subjec-

tive reputation (which is mainly based on the past observations), indirect reputation

(which includes only positive reports by other nodes) and functional reputation (which

evaluates task-specific reputation).

Buchegger and Le Boudec introduce in [22] a protocol, called CONFIDANT, which

aims at detecting and isolating misbehaving nodes, thus making it unattractive to deny

cooperation. For this reason, it uses experienced, observed, or reported routing and

forwarding behavior of other nodes in order to define trust relationships and make

routing decisions.

All of the above reputation-based protocols were evaluated purely through numerical

case studies. Analytical approaches to study reputation-based systems include the

following: Urpi et al. proposed in [136] a model, based on game theory, which is capable

of formally studying and analyzing strategies for cooperation and as an example they

developed a simple strategy that enforces packet forwarding among nodes.

Srinivasan et al. [130] determined the optimal throughput that each node should

receive and proposed a distributed and scalable acceptance algorithm which is used by

the nodes to decide whether to accept or reject a relay request.

In the market-based (or credit-based) approach, nodes receive a micro-payment (or

credit) for every packet that they forward. In return, nodes can use these payments

(credits) to send their own traffic.

Buttyan and Hubaux in [23] proposed the use of a counter, in each node, whose

indication decreases when the node sends an own packet, increases when the node

forwards a packet, and requires to remain always positive. Besides stimulating packet

forwarding, the proposed mechanism encourages the users to keep their nodes turned

on and to refrain from sending a large amount of packets to distant destinations.

Irissappane et al in [72] proposed a Partially Observable Markov Decision Process to

make routing decisions in an energy-efficient and secure manner, when the information

about the sensor nodes is limited.

In [148], Zhong et al. proposed a system to provide incentive to mobile nodes to

cooperate, which determines payments and charges from a game-theoretic perspective,

and motivates each node to report its behavior honestly, even when a collection of the

selfish nodes collude.

4.2 Preliminaries and models

In both BMLC and WSC the base station acts as a coordinator of a game aiming at

the coverage of the targets of interest. The base station pays the agents in order to

incentivize them to dispose their sensors in its service. More precisely the problems are

the following:
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Definition 18 (BMLC). We are given a network consisting of a set of n randomly

deployed sensor nodes each owned by a different agent, a set of m target points and

a base station of fixed locations in sensors’ vicinity. In BMLC we are asked to find a

schedule of sensor nodes’ activity to maximize the lifetime of the network subject to the

constraints that each target is continuously monitored by at least one sensor and that a

monetary budget of the base station is not exceeded.

Definition 19 (WSC). We are given a network consisting of a set of n weighted and

randomly deployed sensor nodes each owned by a different agent, a set of m target

points and a base station of fixed locations in sensors’ vicinity. In WSC we are asked

to find a set of sensor nodes whose weight is minimum subject to the constraint that all

target points are monitored.

4.2.1 Basic definitions

The network consists of the following elements: a base station, a set of sensor nodes

N = {s1, . . . sn}, each owned by a different agent, and a set of targets points of interest

T = {τ1, . . . , τm}. The positions of the all the elements are considered fixed. We

assume that all sensor nodes have the same sensing and transmission range and that

m = Θ(n). Each sensor node i has a limited battery capacity denoted by βi (measured

in energy units). A sensor node consumes energy when it is active i.e. when it monitors

its sensing area or when it transmits data. Otherwise it does not consume energy (sleep

mode). We assume that all batteries have the same consumption rate (1 unit of energy

per 1 unit of time). Thus we can measure the capacity of the batteries in time units as

well. We also denote by wi = 1/βi the weight of sensor si.

A sensor node si covers a target τj if the latter is in the sensing range of si. A set

S of sensor nodes that monitor all the target points at the same time will be called a

sensor cover or simply a cover. Denote by r the number of possible covers (note that r

can be exponentially large in n) and the j-th cover by Cj , j = 1, . . . , r. A cover Cj is

active for tj time units, if all its sensor nodes are active for tj time units. We use an

n× r matrix A to represent the set of covers. More specifically, the rows of A represent

the sensors and the columns represent the covers. If si belongs to Cj then Aij = 1,

otherwise Aij = 0.

In BMLC the objective is the maximization of the total time for which all the

targets are covered i.e. max
∑r

j=1 tj subject to battery and budget constraints. First,

the total time that a sensor is active must not exceed its battery capacity:

r
∑

j=1

Aijtj ≤ βi, ∀i = 1, . . . , n (4.1)

Furthermore, the base station has a budget capacity of C monetary units to dispose

to the agents for monitoring the targets of interest so:
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n
∑

i=1

r
∑

j=1

Aijtjci ≤ C (4.2)

Combining the above constraints we derive the following LP for BMLC:

max
r
∑

j=1

tj (LP1)

s.t.
n
∑

i=1

r
∑

j=1

Aijtjci ≤ C,

r
∑

j=1

Aijtj ≤ βi, ∀i = 1, . . . , n

tj ≥ 0, ∀j = 1, . . . , r

The non negativity constraints are imposed on tj ≥ 0, ∀j = 1, . . . , r due to the fact

that the variables correspond to time units. The cost per time unit ci expresses the

valuation of agent i and is considered to be his private information. Agent i declares to

the mechanism a value (his bid) bi about the cost/time of activity of si. An algorithm

for BMLC takes as input matrix A, the bids of the agents b = (bi, b−i) and the battery

capacities of the sensors βi, ∀i = 1, . . . , n. In a feasible solution for BMLC, the algorithm

assigns a value to tj , ∀j = 1, . . . , r. The active time of agent i is the total time its sensor

node is active i.e.
∑

j:si∈Cj tj and his profit is profiti(ci, b) = pi(b)− ci
∑

j:i∈j tj , where

pi is the payment defined in (2.1).

In WSC the valuation of i is his weight wi (measured in monetary units) which

corresponds to the amount needed for the disposal of si to monitor the targets in

sensing area. The profit of agent i is then profiti(wi, b) = pi(b)− wi.

4.3 Our mechanism for BMLC

We introduce here a natural model of randomly generated instances of BMLC that in

fact was considered in the literature before in context of the closely related minimum

cardinality set cover problem, see Vercellis [138]. Suppose the number of targets m is

given. Then every sensor node among n sensor nodes independently at random covers

each target, again independently at random, with probability ǫ > 0, where ǫ is a given

constant. Thus each sensor node covers ǫm targets in expectation. Our analysis carries

out even when each sensor node i covers each target j with probability ǫij , where

0 < ǫij < 1 for all i, j. In this case we have to replace ǫ with maxij ǫij in the analysis.

In this section let us assume that matrix A as defined in the (LP1) for BMLC is

the result of this randomly generated instance of BMLC. That is, each column of A is

a feasible cover.
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We design a mechanism that is truthful with high probability, that is, on almost all

instances in this random instances model. We are only aware of one paper employing

a similar approach using VCG-based mechanisms providing average case bounds for

mechanism design [141]. In contrast to that paper, we need to design a dedicated

mechanism for our problem, which is not VCG. We prove truthfulness of our mechanism

by exploiting the combinatorial structure of BMLC. We call this mechanism Random

Knapsack Greedy (RKG).

We now present a high level outline of the ideas leading to our new mechanism.

Note that BMLC is NP-hard to solve since it is a more general case of the lifetime

coverage problem known to be NP-hard when A is not of polynomial size [19]. Thus,

since the VCG mechanism requires an optimal solution, it does not admit a polynomial

time optimal algorithm unless P=NP. Because we aim at an efficient mechanism, we

are not able to use VCG. Then usually it is a complex task to design a monotone, i.e.,

truthful mechanism. We provide here a new technique which achieves this goal on the

majority of the instances of BMLC. We believe that this technique is of independent

interest. In addition to being theoretically interesting, this approach also is relevenat

to applications, because in practice one usually deploys mechanisms on typical, and

rather not worst-case instances.

We first introduce a relaxation of BMLC to an easier problem in such a way that we

are able to design a monotone mechanism for that easier problem (it is the fractional

maximum weighted knapsack problem, that has known monotone greedy algorithms).

Secondly, we need to translate the solution of the knapsack problem back to the original

space of variables of BMLC in a way that preserves monotonicity and enables us to

obtain a good approximation guarantee. The second step requires much care and it

crucially uses combinatorial properties of the random instances of BMLC. We describe

now the details.

To reduce BMLC to the knapsack problem our algorithm introduces a new variable

zi for every battery constraint of sensor node i to be

zi =
r
∑

j=1

Aijtj , i = 1, . . . , n, (4.3)

and then we normalize them to the variables yi = zi
βi
, ∀i ∈ [N ]. With the polynomially

many new variables, (LP1) becomes the following fractional knapsack LP

max
n
∑

i=1

βiyi (LP2)

s.t.
n
∑

i=1

ciβiyi ≤ C (4.4)

0 ≤ yi ≤ 1, ∀i = 1, . . . , n
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This new system is now polynomial in size and the problem can be solved optimally

in polynomial time by the Greedy algorithm [35]. Greedy sorts the items in decreasing

order of the ratio of profit (βi here) per size (ciβi here), ri = βi

ciβi
= 1

ci
. The items are

considered by Greedy in this order and added fully (that is if i is added then yi := 1) to

the solution one by one so long as the current solution does not exceed the budget C.

For the first item that violates the budget C only a fractional portion of it is added to

the solution to the extent that the constraint (4.4) is fulfilled with equality. Then the

Greedy stops. It is clear that Greedy is monotone since if agent i misreports to a value

c′i < ci this can only lead to higher ri and thus a higher position in the order. In this

case we see that the total time allocated to sensor i, that is, the value of yi = zi/βi,

doesn’t decrease as needed for monotonicity according to Archer and Tardos [14].

Once we have a solution to (LP2), we need to translate it back to the r-dimensional

space of (LP1). This is obtained by solving the system of linear equations (4.3). Note,

that it is crucial that we insist on the exact solution of the system (4.3) to preserve

monotonicity.

As the main technical ingredient of our construction, we will show that it suffices

to solve the system (4.3) on a carefully chosen n × n submatrix A′ of matrix A. This

submatrix has to have full rank to guarantee solvability of the system (4.3), and it has

to be column-sparse to guarantee good approximation to BMLC.

The columns of submatrix A′ are generated independently at random and each

consists of exactly q = ⌊α logm⌋ ones, where α is constant to be defined later. Vercellis

[138] considered the randomly generated instances described above for the set cover

problem and showed that the optimal, that is minimum cardinality, solution to the set

cover instance contains q sets. We prove that any randomly generated column of length

n with exactly q = ⌊α log(m)⌋ ones is a feasible cover with high probability (note that

in our notation, a one with index i in this column means that sensor node i is present in

the cover represented by this column, and zero means that sensor node i is not present).

Recall that matrix A is randomly generated by our random instances process, and

we will prove that A′ will be its submatrix with high probability.

Lemma 12. A column of matrix A′ with q = ⌊α log(m)⌋ ones is not a cover with

probability at most 1
md−1 , where α = d

log 1
1−ǫ

and d > 1 is a constant.

Proof. The probability that target τ is not covered by any of the α log(m) sensor nodes

in that column (we denote this event by τ̄), is

Pr(τ̄) = (1− ǫ)α logm = 2α logm log(1−ǫ)

= 2−α logm log( 1
1−ǫ

) = (
1

m
)α log( 1

1−ǫ
)

Let τ1, . . . , τm be all the target points. By the union bound, the probability that the
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cover represented by our column is infeasible is

Pr(τ̄1 ∨ . . . ∨ τ̄m) ≤
m
∑

i=1

Pr(τ̄i) =
m
∑

i=1

(
1

m
)α log 1

1−ǫ

= m(
1

m
)α log 1

1−ǫ = m−α log 1
1−ǫ

+1

Using the union bound and Lemma 12 we obtain:

Corollary 3. The probability that one vector out of n randomly chosen columns of A′

is not a cover is at most nm−α log 1
1−ǫ

+1 ≤ 1
n for a suitable choice of α.

In order to prove that n distinct vectors are linearly independent we will need the

following:

Lemma 13. Suppose we have k distinct 0/1 vectors v1, . . . , vk, each of length n and

each with exactly q = ⌊α logm⌋ ones and let λ1, . . . , λk be k real numbers. Any 0/1

vector v′ with exactly q ones that can be expressed as a linear combination v′ =
∑k

i=1 λi ·

vi is one of the vectors v1, . . . , vk.

Proof. The proof is by induction on k. The case of k = 1 is obvious. Now, we will prove

the base case of k = 2. Let v′ = λ1v
1+λ2v

2. Clearly, it is not possible that λ1 = λ2 = 0,

because then vector v′ does not contain q ones. Furthermore, since v1 6= v2, there is

at least one entry i for which v1i = 1 and v2i = 0 and another entry j 6= i for which

v1j = 0 and v2j = 1. Because v′ is a 0/1 vector, we must have that λ1, λ2 ∈ {0, 1}. Now

if λ1 = λ2 = 1, vector v′ will have more than q ones.

We now consider the cases: If v′j = 1 we have that λ1v
1
j + λ2v

2
j = 1 ⇒ λ1 = 0 and

λ2 = 1, so v′ = v2. Similarly if v′i = 1, we have that λ1 = 1 and λ2 = 0, thus v′ = v1.

Then, we have that v′j = v′i = 0 which is impossible because then λ1 = λ2 = 0. This

proves the base case.

Suppose now that the inductive hypothesis holds for k = s vectors, s ≥ 3. We

will prove that it also holds for k = s + 1. Let v′ be a 0/1 vector such that v′ =
∑s

i=1 λiv
i =

∑s−1
i=1 λiv

i + λsv
s. By induction hypothesis the first sum is one of the

vectors v1, . . . , vs−1. Now the sum reduces to the induction base case where λ1 = 1

and therefore the claim follows.

Our (randomized) algorithm to construct an n×n submartix A′ of matrix A simply

chooses n distinct columns of A, such that each such column has exactly q = ⌊α logm⌋

ones. By Lemma 13 these columns will be linearly independent. Let A′ be the resulting

matrix formed by these n columns.

Note that in RKG we do not need to explicitly write matrix A, so the time remains

polynomial. We now prove the correctness of our algorithm. Using Lemma 13, we

easily see that:
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Algorithm 3: The RKG Mechanism

Input : Instance of BMLC where each of the targets that each sensor node
selects to cover are chosen independently at random with prob.
ǫ ∈ (0, 1).

Output: A polynomial sequence of covers of all targets and the duration (tj) of
their sensor node being active, and payments – one to each sensor
node.

1 Formulate (implicitly) BMLC as (LP1) of possibly exponentially many variables
(one per cover).

2 Define the variables zi for every sensor node i as zi =
∑r

j=1Aijtj and yi = zi/βi.
Then obtain the fractional knapsack (LP2).

3 Solve (LP2) optimally by Greedy [35].
4 To get a solution for the original variables tj , (independently at random in

expected polynomial time) choose n distinct covers (columns) of matrix A to
form matrix A′ and solve the resulting system (4.3) with A replaced by A′ using,
e.g., Gaussian elimination. (* Note: A′ has full rank with high probability and
there is a unique solution for tj . *)

5 Compute payments as in (2.1). (* Note: The algorithm is single parameter (ci)
monotone, as needed in [14]. *)

Lemma 14. The n columns of matrix A′ as above are linearly independent with prob-

ability 1, i.e., with certainty.

Combining Corollary 3 and Lemma 14 we obtain:

Lemma 15. The n columns of matrix A′ as above are linearly independent with prob-

ability 1, and are all feasible covers with probability at least 1−nm−α log 1
1−ǫ

+1 ≥ 1− 1
n ,

for a suitable choice of α such that α = Θ(1/ log( 1
1−ǫ)).

The above algorithm is truthful and achieves an approximation of α logm with high

probability:

Theorem 20. Algorithm RKG runs in polynomial time, is truthful and achieves an

O(α log(m))-approximation for the randomly generated instances of BMLC with proba-

bility at least 1−nm−α log 1
1−ǫ

+1 if the system of equations (4.3) has a positive solution,

where α = Θ(1/ log( 1
1−ǫ)) for any fixed ǫ ∈ (0, 1).

Proof. Truthfulness follows by monotonicity and the use of payments defined by equa-

tion (2.1). The correctness of the algorithm follows by Lemma 15. We will prove now

the approximation guarantee. Let t be the optimal solution of BMLC. Each cover con-

tains at least one sensor node so
∑r

j=1 tj ≤
∑r

j=1 njtj , where nj is the number of sensor

nodes in cover j. Let ȳ be the optimal solution to knapsack, that is to (LP2), obtained

by Greedy. Let t̄ be the corresponding solution of the system (4.3). The value of the

objective is

n
∑

i=1

βiȳi =
n
∑

i=1

z̄i =
n
∑

i=1

r
∑

j=1

Aij t̄j =
r
∑

j=1

t̄j(
n
∑

i=1

Aij) =
r
∑

j=1

nj t̄j
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Since this is the optimal fractional solution to the linear program (LP2), we have that
∑r

j=1 njtj ≤
∑r

j=1 nj t̄j . The crucial observation now is that we can express the optimal

solution ȳ to knapsack by any submatrix of A that is full rank. Let A′ be an n×n matrix

with n columns, each of ⌊α logm⌋ sensor nodes as in Lemma 15. That is with probability

at least 1 − nm−α log 1
1−ǫ

+1, the system of equations z̄i =
∑r

j=1A
′
ij t̃j has a solution t̃

that is a feasible solution to BMLC. As above we now have that
∑n

i=1 z̄i =
∑r

j=1 n
′
j t̃j ,

where n′
j refers to the number of sensor nodes in column j of matrix A′ and we know

that n′
j ≤ α logm. This finally implies that

r
∑

j=1

tj ≤
r
∑

j=1

njtj ≤
r
∑

j=1

nj t̄j =
r
∑

j=1

n′
j t̃j ≤ α logm

r
∑

j=1

t̃j .

Resource augmentation

We note that the system of equations (4.3) does not always have a positive solution for

variables tj , ∀j = 1, . . . , r. In such cases one possible solution is using mobile sensor

nodes by the base station which can cover all the target points while occurring an

additional cost. This notion was used in a slightly different way in [47] under the name

of resource augmentation.

4.4 A truthful PTAS for WSC

Our approach follows and enhances the algorithm by Li and Jin [97]. The authors

presented a PTAS that finds a set of disks (sensor nodes with unit radius in the plane)

which cover all the target points and have the minimum total weight. Our main result

is a modification of the guessing phase of the algorithm in order to obtain a truth-

ful mechanism for WSC. Since we consider single parameter agents (here the private

parameter of each agent is the weight), in order to obtain truthfulness, we first need

to show that the algorithm is monotone. Then using the payment scheme by [14] we

derive a truthful mechanism for WSC. However, monotonicity is not sufficient when

combining several monotone subalgorithms. In order to circumvent this we need the

stronger notion of bitonicity [107], as the algorithm proceeds in iterations and chooses

the minimum cost solution.

4.4.1 The algorithm by Li and Jin [97]

Let ǫ > 0 be a fixed error parameter. We only outline their algorithm here (for details

see [97]). The algorithm consists of the following phases:

General description (plane partition): The algorithm proceeds in iterations choos-

ing the minimum cost solution computed. Let B be the area in the plane in which all
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the target points lie in. Define a coordination system of x and y axes. The algorithm

proceeds with a constant number of iterations in each of which B is partitioned into

squares, called blocks, of size L = 1
ǫ aligned to the coordination system. Each block is

further partitioned into squares of size µ = O(ǫ). The authors present an algorithm

that computes an approximate (1+ǫ) solution for each block and then take the union of

these solutions for whole B. In every iteration each block is shifted two squares to the

right and two squares up and a new solution is computed for every block and therefore

for B. The solution with the smallest weight among those is returned.

The algorithm proceeds with the following three phases in every block:

Steps for each block:

1. Guessing: It guesses whether the optimal solution contains more than K =

O(1/ǫ5) disks. In other words, the algorithm enumerates over all possible combi-

nations of a constant number of disks and returns that combination for which the

objective is minimum. If the optimal solution OPT contains at most K disks the

algorithm enumerates all possible combinations (in O(nK) time where n is the

number of disks) and chooses the combination of disks that cover all the targets

and have the smallest weight. Otherwise it guesses the set G of the K disks with

the largest weight. Assuming that the guess is correct the algorithm discards all

the targets that are covered by G and all the disks with weight larger than the

weight of the cheapest disk in G.

2. Construction of set H: Next, the algorithm chooses a set H of at most ǫK disks

from the remaining ones. The algorithm first adds in H the furthest pair of disks

in every square (independently of their weights). Next, a constant number of disks

are added to H. This is done by a careful way to break the uncovered regions

into two subregions which fulfill certain geometric properties that are related to

the geometric structure of disks and targets in the plane. The criteria for adding

a disk to cover these subregions depend either on the distance between pairs of

disks or on the intersections of disks. However these criteria are independent of

disks’ weights.

3. Dynamic Programming. Once G and H are found the remaining small pieces of

uncovered targets of the instance are solved optimally by dynamic programming.

4.4.2 Our truthful mechanism

We will describe now how to modify their algorithm to achieve monotonicity. We note

that in order to prove that the algorithm is bitonic it is enough to prove bitonicity for

one of the iterations. Furthermore, observe that the phase of construction of H and the

phase of dynamic programming are bitonic and therefore monotone because the choice
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of the disks is independent of the weights for the former and because we compute the

optimal solution for the latter.

The procedure of standard guessing as shown by Li and Jin is not monotone and

hence not bitonic. As an example consider the case where sensor node si is in the

guessed solution with weight wi and all other sensor nodes with weight larger than

wi are removed. Then if the weight of si decreases too much, this will result in an

infeasible solution since all non guessed sensor nodes will be removed.

In order to achieve bitonicity and therefore monotonicity we use the approach pro-

posed by Grandoni et al. [63] to guess not only the subset of largest weight disks but also

to guess their weights. This step is crucial for bitonicity and does not affect significantly

the approximation ratio and the running time of the algorithm.

Let wmin and wmax be the smallest and largest guessed weights of the disks, re-

spectively. Starting from a fixed high weight we keep decreasing its value using binary

search, until all disks are discarded, except from those that were guessed, leading to an

infeasible solution. At this point this value is wmin. Similarly if we keep increasing the

value until no disk is discarded leading to the same solution after some value, we have

found the value of wmax.

The next step is to guess the weights of the disks in a guessed subset. Let T be the

set of all the integer powers of (1+ǫ) between wmin and wmax. For a fixed guessed sub-

set of the K disks we guess the weights in the set T . We then consider all the possible

combinations of weights with values in T . Under each different assignment of weights

to disks we have a different subproblem. Each subproblem is formed of the K guessed

disks together with one of the possible assignments of the guessed weights of the disks.

The combinations of the K guessed disks is nK and the possible combinations of the

guessed weights to disks is (log1+ǫ
wmax

wmin
)K so in total the number of subproblems is

nK(log1+ǫ
wmax

wmin
)K which is polynomial, for a fixed constant K. Note that the approx-

imation guarantee with additional guess of weights follows the arguments of [63]. We

next prove that this procedure is bitonic.

Lemma 16. The procedure of guessing the disks and their weights is bitonic.

Proof. First fix a set G of the K guessed disks and fix an assignment of weights. Let

wD ∈ T denote the guessed weight of disk D. It is not difficult to see that the procedure

of guessing is monotone. Consider a disk D with original weight wD and suppose it is

in the set G of the guessed disks. If we consider the same instance where D now has

weight w′
D < wD then D ∈ G due to the deterministic procedure of choosing disks. We

will now show how the objective of the problem changes according to the change in the

weight of disk D.

Suppose that D /∈ G with weight wD. Then by monotonicity of guessing D /∈ G for

any weight w′
D > wD due to the deterministic procedure of guessing. Thus the value

of the objective will not change.
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Consider now the case where D ∈ G with weight wD. By monotonicity D ∈ G for

any weight w′
D < wD. Let S denote the fixed set of disks G when D ∈ G has original

weight wD and let w(S) denote its weight. Recall that the algorithm after the guessing

constructs the set H, it then computes the optimal solution on the remaining instance

and among all the possible guesses it chooses that one with the smallest total weight.

Consider now all the possible q solutions by the algorithm S1, . . . Sq in a non-decreasing

order of their weights i.e. w(S1) ≤ . . . w(Sq). Let S′ be the solution when w′
D < wD.

If w(S′) < w(S1) then the output solution has the smallest cost among all the possible

ones and the lemma holds. If w(S1) < w(S′) then the algorithm will output S1 which

has the smallest weight and the lemma holds.

Combining the bitonicity of construction of H, the bitonicity of the dynamic pro-

gramming procedure and Lemma 16, we have that every iteration of the modified

algorithm is bitonic and therefore the algorithm is monotone. The payments can be

computed in polynomial time by binary search in order to find the critical value. Com-

bining the monotone algorithm with this payment scheme we have the following:

Theorem 21. The modified algorithm described above leads to a truthful PTAS.

The overal algorithm is presented below. We denote by Si
j the value returned by

the algorithm Guessing Sensors and Weights (GSW) on shift i for block Bi
j .

Algorithm 4: The PTAS for WSC

Input : A plane B and ǫ
Output: A monotone PTAS for WSC on B

1 Partition B in blocks B1, . . . , Bp

2 for i← to p do
3 for j ← 1 to p do
4 Partition Bj in q squares
5 Si

j = GSW ((Bi
j))

6 Shift each block by two squares to the right and to squares to the top

7 end

8 end

Algorithm 5: Guessing Sensors and Weights (GSW)

Input : A block Bi and ǫ
Output: A monotone PTAS for WSC on Bi

1 Guess a constant number of the most expensive sensors in OPT
2 Guess the weights of the guessed sensors
3 Construct H of O(1/ǫ4) sensors and include it in the solution
4 Solve by Dynamic Programming the remaining instance
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4.5 An extension of the Garg-Konemann
algorithm for BMLC

We prove that the framework of Garg-Konemann [57] used by Berman et al. [19] retains

the approximation guarantee when we have many additional budget constraints (e.g.

a budget on the delay related to the Quality of Service of the transmitted data). The

algorithm reduces BMLC to WSC by losing an approximation factor of (1 + ǫ). Their

algorithm is based on a primal dual approach using LP1 and its dual which we denote

by LP3:

min
n
∑

i=1

βiωi + Cω0 (LP3)

s.t.
n
∑

i=1

Aij(ωi + ciω0) ≥ 1, ∀j = 1, . . . r

ωi ≥ 0, ∀i = 1, . . . , n

The ω0 variable in the above LP corresponds to the budget constraint of LP1. The

authors use an f approximation algorithm for the WSC as a subroutine to find an f

approximate minimum weight column on matrix A. We provide below the proof which

essentially follows the proof by Garg and Könemann [57] for completeness.

The ωi variables of the dual correspond to the weights of the sensor nodes for WSC.

As can be seen from LP3 the additional budget constraint only changes the weight of

sensor node si from ωi to ωi + ciω0. We can then consider their algorithm having as

weights to the sensor nodes the new ones and solve BMLC.

Theorem 22. The reduction of BMLC to set cover by Garg-Konemann is an (1 + ǫ)f

approximation, where f is the approximation factor of set cover.

Proof. The algorithm proceeds in iterations. Let D(k) ≡ D(ωk) = bTωk be the ob-

jective of the dual and gk−1 be the value of the primal variables at the beginning of

the k-th iteration. The algorithm calls an f approximation algorithm for set cover as

a subroutine to choose the minimum weighted column of A. Let q be the minimum

weighted column at k-th iteration and α(ω) = minj
∑

iAijωi be its value. The algo-

rithm finds the row p for which the value βi/Aij is minimum. The primal variables tq

are increased by bp/Ap,q and thus gk = gk−1 + bp/Ap,q. The duals change as follows

ωk
i = ωk−1

i (1 + ǫ
bpAi,q

βiAp,q
), where ǫ > 0. Furthermore the dual variables are initialized as

ω0
i = δ/βi and the algorithm stops at the iteration t for which D(t) ≥ 1. For iteration

k ≥ 1 we have:
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D(k) =
∑

i

βi · ω
k
i

=
∑

i

βi · ω
k−1
i + ǫ

bp
Ap,q

∑

i

Ai,q · ω
k−1
i

= D(k − 1) + ǫ(gk − gk−1) · α(k − 1)

≤ D(k − 1) + ǫ(gk − gk−1) · f · α(k − 1)

So recursively we have that :

D(k) ≤ D(0) + ǫ
k
∑

l=1

(gl − gl−1) ·D(l − 1) · f

If we let β = minω D(ω)/α(ω), then β ≤ D(l − 1)/α(l − 1) so

D(k) ≤ mδ +
ǫ

β

k
∑

l=1

(gl − gl−1) ·D(l − 1) · f

Define next

x(i)mδ +
ǫ

β

k
∑

l=1

(gl − gl−1)x(l − 1)

for all i ≥ 0 in order to solve the recurrence. We then have:

x(k) = mδ +
ǫ

β

k−1
∑

l=1

(gl − gl−1)x(l − 1) +
ǫ

β
(gl − gl−1)x(k − 1)

= (1 +
ǫ

β
(gk − gk−1))x(k − 1)

≤ eǫ(g
k−gk−1)/βx(k − 1)

≤ eǫg
k/βx(0) = mδ · eǫg

k/β

and since D(k ≤ x(k)) we get

D(k) ≤ mδefǫg
k/β

We then obtain
β

gt
≤

ǫ · f

ln(mδ)−1

by the stopping condition D(t) ≥ 1.

We note that the proof can be extended when multiple budgets are considered, pre-

serving the approximation ratio.
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4.6 Open problems

We provided here efficient and truthful mechanisms for coverage problems in sensor

networks. An interesting extension of our work is to combine issues of strategic coverage

by sensors (i.e. truthful payment to battery usage) with issues of incentive based

routing. Another extension would be to add the quality of service (e.g. delays) as a

second parameter of every agent to our basic BMLC problem. We note that the design

of truthful mechanisms for multidimensional problems (even for 2 dimensions) differs

radically than for one parameter.
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Chapter 5

The primal dual method for
network design problems

5.1 The problem

Network design is a topic which includes many problems with numerous applications

including telecommunications, transportation planning and electronics [70]. In the field

of Electronics, a classical objective when optimizing the area of Very Large Scale Inte-

gration (VLSI) layouts is the minimum total interconnection on the circuits. Although

there are several other criteria dominating the routing objective like the reliability and

manufacturability issues and noise, minimizing the length of the wires is of huge im-

portance in order to avoid high temperatures of the circuit [29, 86]. Given a number

of pins, called terminal pins we are asked to interconnect them using as less wire as

possible. The circuit might include other junctions which do not necessarily need to be

connected called Steiner pins. In the minimum Steiner tree problem we seek to find

the set of Steiner pins in order to minimize the total length of wires to connect the

terminal pins.

Similarly, in communication networks we are given pairs of nodes and again we are

asked to connect them minimizing the total length between them. However, parts of

the network are susceptible to failure or can be destructed for various reasons, thus the

existence of redundant paths between the pairs of nodes is necessary to increase the

survivability [100]. In the Survivable Network Design Problem (SNDP) we are given

pairs of network nodes and a number of required paths for the connection of each pair.

We seek to connect the pairs by the given number of alternative paths having the

minimum total length.

In large networks the components are heterogeneous and thus can be owned by

different entities, the agents. Every agent provides services to the central authority of

the network and gets a reward for this service. A task can be for example the forwarding

of messages through his component. Consider the representation of the network by a

graph where each edge represents a component of an agent. We need to connect pairs
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of nodes in the network with the minimum total cost by at least a number of edge

disjoint paths for every pair, where now every edge belongs to a different agent. The

input to the problem i.e. the costs of the edges is now given by the agents. We assume

that the costs of the edges are the private information of the agents and that each agent

owns exactly one edge. The problem now becomes more complicated since we have to

cope with the incentives of those agents. An agent declares a price for his service which

however might not correspond to his true cost for the service. Hence, we need to find

a solution to the optimization problem which will incentivize all the agents to declare

their true cost, or simply we need a truthful mechanism for the problem.

In this chapter we draw our attention to the network design problems described

above. More precisely we study the Survivable Network Design Problem (SNDP) and

its special cases of Steiner forests and Steiner trees. We survey approximation algo-

rithms that are based on the primal dual method, some of which achieve the best to

date approximation e.g. the algorithm by Goemans and Williamson [62] for Steiner

forests. We then prove that all these algorithms are monotone and thus we can obtain

truthful mechanisms with an appropriate payment scheme similarly to [14]. Because

of monotonicity the payment to agent i, ∀i ∈ E can be computed using binary search

until we find the critical value c̄i i.e. the value for which i will be in the solution for

any declared cost c′i ≤ c̄i and out of the solution for any c′i > c̄i. We note that we are

not aware of any explicitly written such proofs of monotonicity of these algorithms in

the literature.

5.2 Further related work

There has been a lot of work in the area of approximation algorithms for network design

problems. Especially for the Steiner tree problem the bibliography on approximation

algorithms is vast [24, 61, 76, 119,122,146].

A very simple algorithm which is not difficult to prove that it is also monotone,

achieves an approximation of 2 for the Steiner tree problem. The Minimum Spanning

Tree (MST) heuristic computes the minimum spanning tree on the metric closure of a

graph. Almost all the algorithms that followed are based on an initial computation of

the MST heuristic and then proceed with local improvements.

Until recently no LP relaxation was known with integrality gap smaller than 2.

Byrka et al. [24] presented an algorithm based on iterative randomized rounding with

approximation of ln(4)+ǫ < 1.39 on general graphs and also proved that the integrality

gap is at most 1 + ln(3)/2 < 1.55. Following the results of [24], Goemans et al. [61]

later considered the hypergraphic LP relaxations presented a deterministic ln(4 + ǫ)

algorithm for general graphs and proved an ln(4) upper bound on the integrality gap.

We note that there is no primal dual algorithm known for the Steiner tree problem on

general graphs with approximation ratio better than 2.
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SNDP is known to be NP-hard even when the requirements are equal to 1 for every

pair of nodes and even on the special case of quasi bipartite graphs. On general graphs

it is also known to be NP-hard when the cost of the edges are 1 or 2 [20]. Furthermore,

on quasi bipartite graphs it is hard to approximate within 96
95 of the optimal solution [32]

and thus there is no PTAS unless P=NP.

The first approximation algorithm for SNDP was given by Williamson et al. [143]

who obtained a ratio of 2k, where k is the maximum requirement of a set. Goemans

et al. [60] improved this ratio to 2Hk presenting a primal dual algorithm, where Hk =

1+ 1
2 + . . .+ 1

k is the harmonic function. The approximation ratio for both was obtained

by primal-dual algorithms. Jain [73] further improved this factor to 2 introducing

the iterative rounding method. Agrawal, Klein, & Ravi [6] obtain a 2-approximation

algorithm using the primal dual method for SNDP where the edge requirements for each

pair of terminal nodes are in {0, 1}. They also obtained a 2 log fmax-approximation

algorithm for SNDP when multiple copies are allowed, where fmax is the maximum

requirement of crossing between cuts of the graph.

5.3 The primal dual method

The Primal Dual Method constitutes a very important tool in combinatorial optimiza-

tion and can be used as a different means to solving linear programs. Kuhn first

proposed the Hungarian method for the assignment problem [89] which later inspired

Dantzig, Ford and Fulkerson [36] to propose the primal dual method.

For many network design combinatorial problems which are NP-hard, the best

to date Linear Programming (LP) based approximation algorithms use the iterative

rounding [73], the iterative randomized rounding [24] and some algorithms use the

Minimum Spanning Tree (MST) as a subroutine by an iterative primal dual approach

[85]. However the Primal Dual method possesses features that make it valuable to

study. Primal dual algorithms do not require the solution of the LP making them

faster to implement. Furthermore, these algorithms can be customized easily for a

specific problem and are often monotone, thus leading to truthful mechanisms.

Many fundamental problems in combinatorial optimization such as flows on net-

works, computation of shortest paths and matching either use the primal dual method

[115] or can be described in terms of this method e.g. Dijkstra’s algorithm for shortest

paths [40]. Many of the most fundamental combinatorial problems in P are solved

optimally by the primal dual method [115].

This method uses the LP formulation of two problems, the primal and the dual.

Initially a primal dual algorithm starts with a feasible solution to the dual and an

infeasible solution to the primal. It then gradually improves the objective of the dual

while also improving the feasibility of the primal, assuming that the complementary

slackness conditions are all the time fulfilled. The algorithm stops when a feasible
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solution to the primal is found. In this chapter we draw our attention on approximation

algorithms for NP-hard problems that produce a solution based on the primal dual

method. A more detailed terminology of the primal dual method can be found in

[67, 115].

5.4 Preliminaries and models

In the network design problems we are given a graph G = (V,E) representing the

network, a cost function on the edge set c : E → Q+ and a set of requirements. In

the Steiner tree problem the requirement is given set of nodes S ⊆ V called terminals.

More precisely we have the following:

Definition 20 (Steiner tree). Given a graph G = (V,E), a cost function c : E → Q+

and a set of terminal nodes S ⊆ V , find a minimum cost tree that spans the terminal

nodes.

A more general case of the problem is that of Steiner forests, where we are given

subsets of terminal nodes and are asked to connect all the nodes in each of the subsets.

If we also require that every pair of nodes u, v ∈ V are connected by r(u, v) edge disjoint

paths, then we have the generalized Steiner tree problem also known as the Survivable

Network Design Problem (SNDP). This connectivity requirement can be formulated by

a cut requirement function f : 2V → Z+ which specifies the number of edges that need

to cross every cut (S, V \ S) in a feasible solution, namely f(S) = max{r(u, v)|u ∈ S

and v ∈ V \ S}. More formally we have the following:

Definition 21 (SNDP). Given a graph G = (V,E), a cost function c : E → Q+ and a

cut requirement function f : 2V → Z+, find a minimum cost set of edges that connects

each pair u, v ∈ V satisfying the connectivity requirement of f .

The ILP formulation of SNDP is the following:

min
∑

e∈E
cexe (5.1)

s.t.
∑

e∈δ(S)
xe ≥ f(S), ∀S ⊆ V

xe ∈ {0, 1}, ∀e ∈ E

where the variable xe denotes whether edge e is taken in the solution or not according

to its value 1 or 0 respectively. We denote by δ(S) the set of edges which have one

endpoint in S and one in V \ S. Relaxing the integrality constraints and dropping the

redundant constraints xe ≤ 1, we get the following LP:
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min
∑

e∈E
cexe (5.2)

s.t.
∑

e∈δ(S)
xe ≥ f(S), ∀S ⊆ V

xe ≥ 0, ∀e ∈ E

and its dual LP is the following:

max
∑

S⊆V

f(S)yS (5.3)

s.t.
∑

S:e∈δ(S)
yS ≤ ce, ∀e ∈ E

yS ≥ 0, ∀S ⊆ V

Note that the number cuts and hence the number of constraints in (5.10) can be expo-

nentially large on the input graph. In the game theoretic setting of the problems, each

edge is owned by a selfish agent. The agent incurs a cost c : E → Q+ when providing

his edge in the service of the network, and this cost is considered to be his private

information.

5.5 Approximation algorithms in network design

We study three approximation algorithms for SNDP and its special cases, all based in

the primal dual method. We first study the Steiner tree problem on quasi bipartite

graphs. We continue with the study of Steiner forests on general graphs which are a

special case when function f is proper. We conclude the chapter with the more general

case of general functions f . The three primal dual algorithms that are presented are

based on the general framework of three phases: initialization, edge augmentation and

pruning (see Algorithm 6 below). In the edge augmentation phase, the dual variables

of every unsatisfied set are raised until an edge e becomes tight i.e. the constraint of

the dual LP for e is fulfilled with equality namely
∑

S:e∈δ(S) yS = ce. A set S is called

unsatisfied if δ(S) < f(S).

In order to break possible ties we consider that initially the edges are numbered

with distinct numbers. If there exists a tie, the edge with the smallest number is added

first in the solution. An example of how the algorithm proceeds can be seen in Figures

5.1,5.2,5.3,5.4,5.5 below, reproduced from [137].

Since the agents are single parameter, monotonicity is a sufficient condition for

truthfulness. Recall that monotonicity in this problem means that if an agent owning

edge e wins with a cost ce (i.e. is part of the final solution), he will keep winning if he

declares a cost c′e < ce.
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Algorithm 6: Primal Dual framework

1 INITIALIZATION:
2 Set A← ∅ and yS ← 0 for every set S ⊆ V
3 EDGE AUGMENTATION:
4 while ∃ an unsatisfied set do
5 Uniformly increase yS for every S until an edge (or arc) e becomes tight
6 Add e to A

7 end
8 PRUNING:
9 return A′ ← {e ∈ A|A \ {e} is infeasible for primal}

v1 v2

v3 v4

v5 v6

20

916

19

6 6

12 12

Figure 5.1: Initial instance at the beginning of the primal dual algorithm where the
black circles represent the required nodes and white circles the Steiner ones

v1 v2

v3 v4

v5 v6

6 6

6 6

20

1916 19

6 6

12 12

Figure 5.2: First and second iteration of the primal dual algorithm where the cicles
represent the values of the duals at the current iteration. The first edges that become
tight are (v1, v5) and (v2, v6) with cost 6, however they are added in to the solution in
different iterations.

78
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Figure 5.3: At the third and fourth iteration of the algorithm the edges (v1, v3) and
(v4, v6) become tight respectively

v1 v2

v3 v4

v5 v6

6 6

8 6

20
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19
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2

1

3

1

Figure 5.4: In the fifth iteration the edge (v1, v2) becomes tight and we get a connected
tree

5.5.1 Steiner trees on quasi bipartite graphs

In the Steiner tree problem we are given on input two sets of nodes R ⊆ V called the

set of required or terminal nodes and S ⊆ V called the set of Steiner nodes. We are

79
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Figure 5.5: The returned solution of the primal dual algorithm is represented by the
thick edges

asked to find a minimum cost tree that spans all the terminal nodes by possibly using

some of the Steiner nodes. In the special case of quasi bipartite graphs there is no edge

between any pair of Steiner nodes. The goal is to find the optimal set of Steiner nodes

I ⊆ S. Computing then the Minimum Spanning Tree on R∪I we give us the minimum

cost solution.

The best to date approximation for Steiner tree on quasi bipartite graphs is 73
60 ≈

1.217 due to Goemans et al. [61]. However on quasi bipartite graphs the primal-dual

algorithm by Rajagopalan and Vazirani [120] achieves an approximation of 3
2 based on

the bidirected cut relaxation described below.

In the bidirected cut relaxation the directed version of the graph is considered

first, where each edge e = (u, v) is replaced by two directed edges e′ = (u → v) and

e′′ = (v → u) with costs ce′ = ce′′ = ce. An arbitrary node r ∈ R is then chosen as a

root and according to this node a set of nodes S ⊆ V will be called valid if S contains

at least one terminal and V \ S contains r. A set is called unsatisfied if f(S) = 1, but

there is no edge crossing the cut (S, S̄). A minimally unsatisfied set is the smallest

(with respect to inclusion) unsatisfied set.

Let ~E be the set of directed edges. Then the ILP formulation of the problem is

shown below:

min
∑

e∈ ~E

cexe (5.4)

s.t.
∑

e∈δ(S)
xe ≥ 1, ∀ valid set S

xe ∈ {0, 1}, ∀e ∈ ~E

This ILP can be relaxed to the following LP after dropping the redundant con-

straints xe ≤ 1:
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min
∑

e∈ ~E

cexe (5.5)

s.t.
∑

e∈δ(S)
xe ≥ 1, ∀ valid set S

xe ≥ 0, ∀e ∈ ~E

and the dual LP is the following:

max
∑

valid set S

yS (5.6)

s.t.
∑

S:e∈δ(S)
yS ≤ ce, ∀e ∈ ~E

yS ≥ 0, ∀ valid set S

The optimal solution to the above ILP contains the edges that have the minimum

total cost such that there is at least one edge crossing every valid set. The authors

separate the algorithm into two parts called symmetric and asymmetric.

In the symmetric part each dual variable yS corresponds to a proper set S i.e. both

S and V \ S contain terminal nodes. Initially the dual variables of all the proper sets

are set to 0 and the set of edges in the solution A is empty. In every iteration the

algorithm raises uniformly the dual variables of all minimally unsatisfied sets (with

respect to inclusion) until a directed edge e = (u, v) becomes tight. If u is a Steiner

node the algorithm halts. In this case u is added to set I and the algorithm proceeds

to the next phase. Otherwise e is added to A. In case there are more than one tight

edges the edge that is added to the solution is chosen in an arbitrary way. Thus in

case of ties the tight edge with the smallest number will be added to the solution. The

symmetric part stops when there is a path consisting only of edges in A that connects

any pair of nodes in R i.e. when there is no unsatisfied set.

In the asymmetric part the edges in A are taken in reverse order to which they were

added in the symmetric part. Set arbitrarily a node r ∈ R to be the root. Let S be

a valid set and u ∈ S be a terminal node. If there is a path connecting u and r using

edges in A \ {e} for every u ∈ R \ {r} then e is deleted. This means that there is an

edge crossing every valid set S. Thus the edges of A constitute a directed tree with r as

a root. The algorithm returns the corresponding undirected edges of A. The algorithm

is described fully below.

Definition 22. We say that two sets A,B ⊆ 2V cross if A ∩ B 6= ∅ and A 6⊆ B and

B 6⊆ A.

Definition 23. A family of sets F ⊆ 2V is called laminar if no two sets A,B ∈ F are

crossing.
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Algorithm 7: Primal Dual algorithm for Steiner tree on quasi-bipartite graphs

Input : An edge weighted quasi bipartite graph G = (V,E), a set of terminals
R and a set I = ∅

Output: A Steiner tree on R∪ I of cost at most (3/2 + ǫ) ·OPT
1 INITIALIZATION:
2 Let I = ∅ and yS ← 0 for every proper set S
3 SYMMETRIC PART:
4 while there exists an unsatisfied set do
5 i← i + 1
6 Uniformly raise yS for every minimally unsatisfied set S until some edge

ei = (u→ v) becomes tight
7 if u ∈ S then
8 I =← I ∪ {ei} and i← 0
9 end

10 else
11 Compute MST(R∪ I)
12 end

13 end
14 ASYMMETRIC PART:
15 Pick as a root an arbitrary node r ∈ R
16 for j=i down to 0 do
17 if R∪ (I \ {ej}) is feasible for primal then
18 I ← I \ {ej}
19 end
20 return B ← Undirected(R∪ I)

21 end
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Lemma 17. The family of minimally unsatisfied sets ∪S is laminar.

Proof. For the purpose of contradiction suppose there are two minimally unsatisfied

sets S and S′ which have a crossing such that S is unsatisfied in iteration i and S′ gets

unsatisfied in iteration i′ with i′ > i. However S′ should have been unsatisfied in i, but

this contradict the minimality assumption for S.

As a corollary from Lemma 17 we get that if on some iteration i of the symmetric

part an edge e on the boundary of an unsatisfied set S becomes tight and chosen in

the solution, then in iteration i+ 1 (if any) the new unsatisfied set that is formed must

contain S and the endnode of e that is outside of S. If in iteration i there is some other

(at most one) unsatisfied set S′ that may contain e in its boundary then in any new

iterations any unsatisfied set that contains S must also contain S′.

Lemma 18. There are no cycles by the edges of A after the symmetric part.

Proof. We prove the lemma by induction. In the initialization part the number of

minimally unsatisfied sets is |R|. Clearly each set corresponds to a trivial tree. Suppose

that at iteration i we have a collection of trees. In the next iteration, i+1, when an edge

becomes tight, either an unsatisfied set will be extended by one edge or two unsatisfied

sets which do not have common nodes will be joined into a larger set containing the

edge. In any of the two cases the tree structure is maintained.

Observe that by Lemma 18 the only edges that will be removed in the asymmetric

part are those which are adjacent to one terminal and one Steiner node, since removing

an edge between two terminal nodes would make the problem infeasible. We can now

prove the monotonicity of the algorithm. Based on the above observations we get the

following:

Theorem 23. Algorithm 7 is monotone.

Proof. Consider an instance I in which arc e has cost ce and suppose that e ∈ A after

the deletion step. Now consider the instance I ′ where the only difference from I is that

e has cost c′e < ce. For the purpose of contradiction suppose that e /∈ A in I ′.

First observe that if e has cost c′e it will become tight either at an earlier iteration

or at the same iteration as when it has cost ce. Thus e ∈ A on I ′ after the symmetric

part. As a result e is deleted in the asymmetric part when it has smaller cost.

Let u1, v1 be two terminal nodes which are connected by a path p on I after the

asymmetric part and suppose e ∈ p. Let ē be the last arc that becomes tight and closes

the path p on I. Since e is deleted on I ′ there is another path p′ connecting u1 and v1

such that e /∈ p′. Let ẽ ∈ p′ be the last arc which becomes tight on I ′ before ē and closes

the path p′. Figure 5.6 depicts the case of the two paths p and p′. The black circles

represent terminal nodes an white circles the Steiner nodes. The dashed lines represent
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v1 u1

p
e ē

ẽ

p′

Figure 5.6: Instance of two paths closing a cycle between the terminal nodes u1 and
v1. It is also possible that p′ might share edges with p but e /∈ p′

a path between two nodes. We consider two cases according to the time instance that

ē becomes tight.

If ē becomes tight on I after e then it must also become tight on I ′ either at the

same or at an earlier iteration since the duals that have ē as a boundary can only reach

it earlier. But then we have two paths p and p′ closing a cycle, a contradiction.

Consider now the case where ē becomes tight on I before e. If cē < c′e then ē will

be come tight at the same iteration on I ′ as on I. If c′e ≤ cē ≤ ce then e will become

tight before ē on I ′. However the value of the duals around ē does not change thus if

ē becomes tight on iteration i on I it will become tight on i + 1 on I in this case. But

again we have a cycle by p and p′ which is a contradiction.

5.5.2 The Steiner forest problem

We will consider the more general class of proper functions:

Definition 24. A function f : 2V → N is proper if f(V ) = 0 and the following

conditions hold:

1. f is symmetric that is f(S) = f(V \ S)

2. f satisfies the maximality property that is f(A ∪B) ≤ max(f(A), f(B)), for any

disjoint sets A,B ⊆ V .

The class of 0-1 proper functions (i.e. 2V → {0, 1}) includes many network de-

sign problems that have been extensively studied in the literature, such as finding the

shortest path, the minimum spanning tree and the minimum Steiner forest in general

graphs. We will draw our attention to the more general one, the problem of finding the

minimum Steiner forest in general graphs.

In the Steiner forest problem we are given an edge weighted graph G = (V,E) and

k pairs of terminal nodes {u1, v1}, . . . {uk, vk}. We are asked to find a set of edges of

minimum total cost such that ui is connected to vi ∀i ∈ [k]. The primal dual algorithm

for this problem due to Goemans and Williamson [62], achieves an approximation ratio

of 2 which is the best known to date for this problem.
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Algorithm 8 shown below consists of the following phases. Initially the algorithm

begins with an empty forest, A = ∅ and the dual variables for all sets S ⊆ V set to 0.

In the first phase the dual variables are uniformly raised until a dual constraint,

which corresponds to a tight edge, becomes tight. This edge is then added to the

solution and the algorithm proceeds in the next iteration raising the dual variables

of the remaining unsatisfied sets. Following this procedure the primal feasibility is

improved. When f(S) = 0 for connected components of A a feasible solution for the

primal has been found. We note that we can break ties in a similar way as explained

in Algorithm 7 in the case of quasi bipartite graphs.

In the second phase the edges in A are considered in the order they were added to

the solution. For each edge e, if the solution A remains feasible without e, then e is

removed from A. The general form of the Steiner forest problem can be written the

following integer program:

min
∑

e∈E
cexe (5.7)

s.t.
∑

e∈δ(S)
xe ≥ 1, ∀ unsatisfied set S ⊆ V

xe ∈ {0, 1}, ∀e ∈ E

Relaxing the integrality constraints and after dropping the redundant constraints

xe ≤ 1, we get the following LP:

min
∑

e∈E
cexe (5.8)

s.t.
∑

e∈δ(S)
xe ≥ 1, ∀ unsatisfied set S ⊆ V

xe ≥ 0, ∀e ∈ E

and the dual LP is the following:

max
∑

S⊆V

yS (5.9)

s.t.
∑

S:e∈δ(S)
yS ≤ ce, ∀e ∈ E

yS ≥ 0, ∀S ⊆ V

Let yS be the dual variable of set S and δ(S) be the set of edges that cross the cut

(S, V \ S). We say that an edge e ∈ E is overtight if
∑

S:e∈δ(S) yS > ce. Let T denote

the set of terminal nodes. The algorithm starts with an initially feasible solution to
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the dual (y = 0) and an infeasible solution to the primal (A = ∅). Initially the active

sets are singletons each for every terminal node. It gradually increases the duals until

a feasible solution to the primal is found.

Algorithm 8: Primal Dual algorithm for Steiner forests and 0-1 proper functions

Input : An edge weighted graph G = (V,E) and a proper function
f : 2V → {0, 1}

Output: A set of edges A connecting all the pairs constituting a Steiner forest
of cost at most 2 ·OPT

1 INITIALIZATION:
2 Let A← ∅, i = 0 and yS ← 0 for every S ⊆ V
3 EDGE ADDITION:
4 while there exists an unsatisfied set S with f(S) = 1 do
5 i← i + 1
6 Uniformly increase yS for every active set S ∈ V until some ei ∈ E becomes

tight
7 A← A ∪ {ei}

8 end
9 EDGE DELETION:

10 for j=0 up to i do
11 if A \ {ej} is feasible for primal then
12 A← A \ {ej}
13 end
14 return A

15 end

In similar way as for Algorithm 7 we can prove the following:

Lemma 19. There are no cycles after the EDGE ADDITION part of Algorithm 8.

Theorem 24. Algorithm 8 is monotone.

Proof. First observe that the family of unsatisfied sets is laminar similarly to the case

of the primal dual algorithm by Algorithm 7 (see Lemma 17). Furthermore notice that

the edges are considered for deletion in order in which they were added and not in

reverse order as in Algorithm 7. It is not difficult to see that Algorithm 8 does not

halt as Algorithm 7. Thus if we follow the proof of Theorem 23 we derive the claimed

result.

5.5.3 General proper functions

We will now consider the case of general proper functions where the range of f can be

any nonnegative integer i.e. f : 2V → Z. The algorithm UNCROSSABLE presented

by Williamson et al. [143], which will be described later, achieves an approximation of

2 · fmax, where fmax is the maximum requirement of f i.e. fmax = maxS f(S).
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The algorithm by Williamson et al. [143] proceeds in phases. It starts with an empty

set A = ∅ and gradually increases the set of edges. Let Ap be the set of edges that have

been chosen at the end of phase p which satisfy the function fp(S) = min{p, f(S)}

i.e. Ap is a feasible solution to IP 5.7 for function fp. If we let fmax = maxS⊆V f(S),

then the algorithm will terminate after phase fmax producing a feasible solution to the

problem.

The set Ap−1 is augmented to Ap by finding a feasible solution to the following ILP:

min
∑

e∈E
cexe (5.10)

s.t.
∑

e∈δ(S)
xe ≥ h(S), ∀S ⊆ V

xe ∈ {0, 1}, ∀e ∈ Ep

where

h(S) =

{

1 if fp(S) = p and |δ(S) ∩Ap−1| < p,

0 otherwise

and Ep = E − Ap−1 is the set of edges considered in phase p. The function h is called

uncrossable if f is a proper function. More formally:

Definition 25. A function h : 2V → {0, 1} is uncrossable if h(V ) = 0 and for two

sets A and B for which h(A) = h(B) = 1 then either h(A ∪ B) = h(A ∩ B) or

h(A \B) = h(B \A) = 1.

In order to solve the above minimization problem, Williamon et al. [143] suggested

the UNCROSSABLE algorithm as shown below that gives a solution with approxima-

tion ratio 2 for any uncrossable function h:

There are two main differences between UNCROSSABLE and Algorithm 8 for 0-1

proper functions. In the first part of Algorithm 8, we increase the variables of the duals

of all the active sets S for which f(S) = 1. However, in UNCROSSABLE the active

sets are computed by the Max-V iolated(h,A) oracle. Max-V iolated(h,A) takes as

input the currently computed solution A and an uncrossable function h and returns a

set of minimally unsatisfied sets S (according to inclusion) for which h(S)− |δA(S)| =

maxX h(X)−|δA(X)| > 0, if there exists such a set. These sets are called the maximally

violated sets. Furthermore, UNCROSSABLE differs from Algorithm 8 in the deletion

step too. In UNCROSSABLE the edges are deleted in reverse order to which they were

added in A. We now have the following:

Lemma 20. UNCROSSABLE is monotone.
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Algorithm 9: UNCROSSABLE

Input : An edge weighted graph G = (V,E) and an uncrossable function h
Output: A Steiner forest A of cost at most 2 ·OPT connecting the pair of

nodes (ui, vi), ∀i = 1, . . . , k
1 A← ∅ i = 0 and yS ← 0 for every S ⊆ V
2 C ←Max-V iolated(h, ∅)
3 while there exists a unsatisfied set S ∈ C do
4 i← i + 1
5 Uniformly increase yS for every unsatisfied set S ∈ C until some e ∈ E

becomes tight
6 A← A ∪ {ei} (added edge)
7 C ←Max-V iolated(h,A)

8 end
9 for j=i down to 0 do

10 if A \ {ej} is feasible for primal then
11 A← A \ {ej} (deleted edge)
12 end
13 return A

14 end

Proof. Recall that the Max-V iolated(h,A) oracle returns the set of minimally unsat-

isfied sets S for which h(S) − |δA(S)| = maxX h(X) − |δA(X)| > 0, if there is such a

set. Since h : 2V → {0, 1}, the above equality has a positive value when h(S) = 1 and

|δA(S)| = 0. Furthermore the components of any minimally unsatisfied set constitute

a laminar family [143]. Consider now the following:

Claim 3. A minimally unsatisfied set is connected.

Proof. Consider a minimally unsatisfied set S with h(S) = 1 and for the purpose of

contradiction suppose that it consists of two (or more) connected components X1 and

X2. If an edge becomes tight and it connects X1 with X2 then S will remain unsatisfied.

Thus the edge must cross S so it will either cross X1 or X2. Either way one of the

two components will become satisfied which means that our assumption of S being the

minimally unsatisfied set was wrong. s a result X1 and X2 must be connected.

We will now show that if an edge e is not deleted in the reverse deletion step with

original cost ce, it will not be deleted with cost c′e < ce either. We will consider the

possible cases for an edge e.

Before we proceed the following observation will be helpful. Suppose an edge e

is added in one of the iterations of the algorithm connecting two sets X and Y and

suppose that it is later deleted in reverse deletion. Then the possible combinations for

the value of h on sets X and Y are h(X) = 0, h(Y ) = 1, h(X) = 1, h(Y ) = 0 and

h(X) = 1, h(Y ) = 1, omitting the case where h(X) = 0, h(Y ) = 0 as not possible. The

The first two cases are symmetric so we will consider next one of them.
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h(X) = 0 h(Y ) = 1

h(Z) = 1X Y

Z

e

e′

Figure 5.7: Instance of two sets X,Y with h(X) = 0 and h(Y ) = 1

Consider first the case where there are 3 sets X,Y and Z (the current minimally

unsatisfied sets) with h(X) = 0, h(Y ) = 1 and h(Z) = 1 as shown in Figure 5.7.

Suppose first that e is added before e′. Then by the reverse deletion step it will be

considered for deletion after e′. As can be seen e is redundant as by deleting it the

solution remains feasible. Furthermore if e is added after e′ then it will be considered

for deletion first. Again since the solution remains feasible without e it will be deleted.

Consider now the case depicted in Figure 5.8 where h(X) = 1, h(Y ) = 1 and

h(Z) = 1. Similarly as above, we consider the order to which the edges are added in

the solution. If e is added before e′ and e′′ then it will be considered last for deletion.

In this case both e′ and e′′ will not be deleted so that sets Z and W remain satisfied

and e will be deleted as redundant. Using similar argument if e is added before e′′ and

after e′ or before e′ and after e′′ it will be redundant and thus deleted.

With this observation let us now consider an edge e having cost initially ce and

suppose that it is added and not deleted in the solution by UNCROSSABLE. Consider

now the same instance with the only difference that e has now cost c′e < ce. Clearly

raising the duals uniformly, e will either become tight at an earlier iteration or at the

same as with the original cost. Suppose now that e is deleted with cost c′e. Then this

must be one of the cases discussed above and depicted in figures 5.7 and 5.8. But in

those cases e was deleted as redundant and independently of its cost. As a result e

should be deleted with cost ce, a contradiction.

The overall algorithm for general proper functions achieves an approximation of

2fmax since the algorithm proceeds in fmax phases, each calling UNCROSSABLE as a

subroutine.

Goemans et al. [60] improved the approximation of the above algorithm to 2H(fmax),

where H(k) = 1 + 1
2 + . . . + 1

k = O(log k) is the harmonic function, by also considering

the broader class of weakly supermodular functions:

Definition 26. A function f : 2V → Z is weakly supermodular if it satisfies the
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h(X) = 1 h(Y ) = 1

h(W ) = 1h(Z) = 1 X Y

WZ
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e′′

Figure 5.8: Instance of two sets X,Y with h(X) = 1 and h(Y ) = 1

following:

1. f(V ) = 0

2. For any two sets A,B ⊂ V at least one of the following holds:

• f(A) + f(B) ≤ f(A \B) + f(B \A)

• f(A) + f(B) ≤ f(A ∩B) + f(A ∪B)

The algorithm follows the general framework of raising the duals at every iteration

until an edge becomes tight and when a primal feasible solution is found the redundant

edges are deleted. The basic change in their algorithm is the selection process of the

edges in phase p. The set of edges Ap must now satisfy fp = f(S)− fmax + p. As the

previous algorithm, the improved one terminates after fmax phases and the solution

Afmax
is feasible. Furthermore if f is weakly supermodular, so is fp.

The improved algorithm calls UNCROSSABLE as a subroutine in every phase p =

1, . . . , fmax, which uses an uncrossable function hp(S) in order to augment the set of

edges from Ap−1 to Ap. The uncrossable function is now defined as

hp(S) =

{

1 if ∆p(S) = maxS ∆p(S) = fmax − p + 1,

0 otherwise

where ∆p(S) = f(S) − |δAp−1
(S)| is the deficiency of the set S. Deficiency shows the

number of edges we need to add to the current solution Ap−1 from δ(S) in order to

have f(S) and thus a feasible solution.

Theorem 25. Algorithm 10 is monotone.

Proof. Consider two instances of the problem which only differ in the cost of an edge e.

Let its cost be ce in instance I and c′e < ce in instance I ′. First observe that if an edge

becomes tight on some phase p it can only be deleted in p and not at any later phase.

This is because the set of edges considered in every phase does not contain any of the

edges added in previous iterations since Ep = E \Ap−1. Suppose that e becomes tight
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Algorithm 10: Primal Dual algorithm for SNDP and weakly supermodular func-
tions
Input : An edge weighted graph G = (V,E) and a weakly supermodular

function f for the requirements of every pair of nodes
Output: A set of edges A which constitute a feasible solution to SNDP of cost

at most 2H(fmax) ·OPT connecting the pair of nodes (ui, vi) with
requirements ruivi , ∀i = 1, . . . , k

1 INITIALIZATION PHASE:
2 A← ∅
3 for p← 1 to fmax do
4 PHASE p:
5 ∆p(S) = fp(S)− |δAp−1

(S)|, ∀S ⊂ V

6 hp(S)←

{

1 if ∆p(S) = maxS ∆p(S) = fmax − p + 1,

0 otherwise

7 Ep ← E \Ap−1

8 A′ =UNCROSSABLE(V,Ep, c, hp)
9 Ap ← Ap−1 ∪A′

10 return Afmax

11 end

in phase p on instance I. We only need to show that if e becomes tight and deleted

in any phase 1 ≤ i < p then the solution on I ′ will be the same to that of instance

I. If e is considered in phase p is it will become tight and will not be deleted since

UNCROSSABLE is monotone.

Let p′ < p be the phase in which e becomes tight and then deleted in instance I ′.

Recall the possible cases of e from Figures 5.7 and 5.8. Suppose that the presence of e

had as result the addition of a new edge ē in phase p′. This means that ē was necessary

for an unsatisfied set. However ē becomes tight independently of e so it should have

been added in instance I as well. But this contradicts our assumption. Similarly we

can prove that no other edge was deleted because of the presence of e.
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Chapter 6

Maxmin Heterogeneous Facility
Location Games on the Line

6.1 The problem

Facility location games lie in the intersection of AI, game theory and social choice

theory and have been studied extensively over the past years. In the basic version of

the problem, first studied by Procaccia and Tennenholtz [118], a central authority has

to locate a facility on a real line based on the reported preferences of selfish agents. Its

goal is to locate the facility in such a way that the sum of the utilities of the agents

is maximized. 1 However, the agents might misreport their preference and manipulate

the authority if the new location results in a better outcome for them.

In the more general case of the problem there are k facilities to be placed on the

line and each agent reports to the authority his preferred location and his preference

for each of the facilities. In what follows, we focus on the case where the locations of

the agents are publicly known and their preferences are their private knowledge.

One main objective for the planner is to design rules to locate the facility, or mecha-

nisms, that are truthful, i.e. no agent has incentives to misreport his preferences about

the locations of the facilities. The term approximate mechanism design without money,

introduced in [118], is usually deployed for problems like the one described above. Since

it is not always possible to design truthful mechanisms that find an optimal solution,

the goal is to design mechanisms that approximately maximize an objective function

under the constraint that they are truthful. In [118] homogeneous facility location

games were studied, where one or two identical facilities have to be placed on a real

line and every agent wants to be as close as possible to any of them. In this setting,

the agents were reporting to the planner a point on the line representing their location.

The objectives in that setting were the maximization of the social welfare, i.e. the sum

of the utilities and the maximization of the minimum utility of all the agents.

1Note that in [118], the objective was to minimize the social cost, which is equivalent to maximizing
the social welfare.
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However, in many real life scenarios the facilities and the agents’ preferences are

heterogeneous, i.e. each facility serves a different need and each agent has potentially

different needs from the others. In general, an agent might want to: be close to a

facility, be away from a facility, or be indifferent about its presence. Feigenbaum and

Sethuraman [49] studied one facility heterogeneous games where each agent reports his

preferred location on the line while the planner knows whether he wants to be close to

or away from the facility. Zou and Li [151] extended the model of [49] for heterogeneous

2-facility games and studied the social welfare objective for several different scenarios

of the information the planner knows. We note that none of [49, 151] studied the case

where some agents were indifferent for some of the facilities. Serafino and Ventre [127]

studied heterogeneous 2-facility games on discrete networks. In their setting, each agent

is located on a node of a graph and either is indifferent or wants to be close to each

facility. The authors studied the case where the planner knows the location of every

agent but not their preferences for the facilities.

We extend the models of [49, 127, 151] and study heterogeneous k-facility location

games (simply k-facility games) on the real line for maxmin objectives, which are im-

portant to measure the fairness of allocation. This class of objectives captures the well

studied minimum utility objective, termed Utility, and the recently proposed mini-

mum happiness objective, termed Happiness. Happiness is a novel fairness criterion

introduced in [104]. The happiness of an agent is defined to be the ratio between the

utility he gets under the locations of the facilities returned by the mechanism over the

maximum utility the agent could get under any possible locations of the facilities. To

the best of our knowledge, there is no prior work on this model. We note that while

our model is a natural extension of the aforementioned models almost none of those

results apply to ours.

We also note that facility location problem on the line can be seen from the net-

works perspective. Consider the problem of distributing the data in the databases of a

company to its data network as mentioned in [127]. The offices are located in specific

positions, however if we consider reducing their intermediate distance, then the prob-

lem can be modeled as the facility location game on the real line where an office can

be located in any position of the line.

6.1.1 Our contributions

We prove that there is no optimal deterministic or randomized truthful mechanism for

k-facility games even for instances with k = 2, two agents and known locations of the

agents. We furthermore derive inapproximability bounds for deterministic and ran-

domized truthful mechanisms. We note that the techniques we use are fundamentally

different from [127], since in our model the facilities can be located anywhere on the

line without any constraint, making the analysis more complex.
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We then propose truthful mechanisms for k-facility games. For k = 2 we propose a

general technique that produces approximately truthful mechanisms and can be used

for any maxmin objective. We derive explicit approximation ratios for Utility and

Happiness. More specifically, we prove that our mechanism is (1 −
√
2
2 )-approximate

for both objectives even if both agents’ locations and preferences for the facilities are

not known to the mechanism. If all the agents are indifferent or want to be close to

the facilities we prove that the mechanism that locates every facility in the middle of

the line is 1
2 -approximate for both objectives and any k ≥ 2. If the agents’ locations

are known to the mechanism, then we show how we can utilize the optimal mechanism

for the 1-facility game and get a 3
4 -approximate truthful mechanism for Utility when

k = 2. In the case where all the agents are indifferent or want to be away from the

facilities, we show that the mechanism that locates ⌊k2⌋ facilities at one end of the line

and the rest at the other end is ⌊k2⌋/k-approximate and truthful for both objectives

and any k ≥ 2. Finally, we provide a 1
2 -approximate randomized universally truthful

mechanism, for both objectives and any k ≥ 2. We note that the majority of our

mechanisms satisfy stronger notions of truthfulness like group strategy proofness.

As a byproduct we show that some of our mechanisms achieve the same approxi-

mation guarantee for the social welfare objective, thus we establish a lower bound that

was not known before and we complement the results of [151].

6.1.2 Further related work

There is a long line of work on homogeneous facility location games [8,43,53,54,98,99,

118, 147]. Different objectives and utility functions have been studied as well. In [50]

the objective that the authors studied was the sum of Lp norms of agent’s utilities,

while in [51] it was the sum of least squares. In [52] double peak utility functions were

introduced. The obnoxious facility game on the line i.e. the case where every agent

wants to be away from the facilities, was introduced in [30] and the model was later

extended to trees and cycles in [31]. In [144] the objective of least squares was studied

for obnoxious agents. The objective of maximum envy was recently introduced for

facility location games in [25].

6.2 Preliminaries and model

In a k-facility location game (simply k-facility game), there is a set N = {1, . . . , n} of

agents located on the line [0, ℓ] and a set of k distinct facilities F = {1, . . . , k} that

need to be located on the line. Each agent i is associated with a location xi ∈ [0, ℓ]

(we consider a restricted interval in contrast to [118] where xi ∈ R) and a vector

ti ∈ {−1, 0, 1}k that represents his preferences for the facilities.

If agent i wants to be far from the facility j, then tij = −1, if he is indifferent, then
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tij = 0 and if he wants to be close to j then tij = 1. We will use y = (y1, . . . , yk) to de-

note the locations of the facilities and s = (s1, . . . , sn) to denote the profile of the agents,

i.e. their declared tuples si = (xi, ti), ∀i ∈ N . A vector s−i = (s1, . . . , si−1, si+1, . . . , sn)

is the vector of tuples excluding si thus we can denote a profile as s = (si, s−i). A mech-

anism M is an algorithm that takes as input a profile s and outputs the locations of the

facilities, i.e. y = M(s). A mechanism is deterministic if it chooses the locations of the

facilities y deterministically and randomized if y is chosen according to a probability

distribution.

We study the two objectives Utility and Happiness. Utility that agent i gets

from facility j, denoted as uij , depends on the distance |xi − yj | and on the agent’s

preference for that facility. Formally, uij(xi, tij , yj) = gij(|xi − yj |) where gij : is an

increasing function if tij = −1, is a decreasing function if tij = 1 and is constant if

tij = 0. For normalization purposes we assume that gij(·) ≤ ℓ for every i ∈ N and j ∈ F

and gij(·) = ℓ, if tij = 0. If yj is chosen from a probability distribution with density

function p(yj), then the expected utility is equal to
∫ ℓ
0 p(yj) ·gij(|xi−yj |)dyj . The total

(expected) utility that agent i gets under y is defined as the sum of the utilities he gets

for each of the facilities, i.e. ui(xi, ti, y) =
∑

j∈[k] uij(xi, tij , yj). Happiness of an agent

for given locations of the facilities is the utility the agent gets under these locations

over the maximum utility the agent could get. Let u∗i (xi, ti) = maxy ui(xi, ti, y). Then,

the happiness of agent i under the locations y is the ratio ui(xi,ti,y)
u∗

i (xi,ti)
. Thus, Happiness

is maxy mini
ui(xi,ti,y)
u∗

i (xi,ti)
.

For every agent i ∈ [n] we define a function hi(ui) that is increasing with ui,

incorporating this way all the different objective functions. The function hi(ui) is

considered public knowledge for all i ∈ [n]. We aim at designing mechanisms that

locate the facilities in such a way that the minimum of hi(ui) is maximized. Formally,

we study objectives of the form maxy mini hi(ui(xi, ti, y)). Throughout this chapter we

assume that the functions gij and the locations xi of every i ∈ N and j ∈ F are public

knowledge, whereas the preferences of the agents are considered to be their private

knowledge, unless stated otherwise.

Let OPT(s) and M(s) denote the optimal value and the value of mechanism M

for the objective function under the profile s. A mechanism M achieves approximation

ratio α < 1, or it is α-approximate, if M(s) ≥ α ·OPT(s) for any type profile s.

A mechanism is called truthful if no agent can benefit by misreporting his prefer-

ences. Formally, let (si, s−i) be a true profile for which the returned locations by the

mechanism are y and let (s′i, s−i) be any misreported profile with returned locations y′.

A mechanism M is then truthful if ui(xi, ti, y) ≥ ui(xi, ti, y
′). A randomized mecha-

nism is universally truthful if it is a probability distribution over deterministic truthful

mechanisms and truthful in expectation if no agent can increase his expected utility by

misreporting his type. A mechanism is called group strategy proof if for any coalition
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of the agents no one can benefit by jointly misreporting their profiles. Furthermore

a mechanism is called false-name proof if no agent can benefit by using multiple and

different identities in the game.

We note that the solution to the optimization problem can be solved efficiently for

both objectives by the following LP (assuming that the objective functions are linear):

max ǫ

s.t. hi(ui(xi, ti, y)) ≥ ǫ, ∀i

y ∈ [0, ℓ]k

where we are searching the values of the locations (variables y) and the largest value

of variable ǫ such that hi(·) is larger than ǫ.

6.3 Inapproximability results

In this section we provide inapproximability results for truthful mechanisms for 2-

facility games considering hi(ui) = ui. We study two prominent objective functions,

namely the Utility and the Happiness objectives. We prove that placing the facilities

on the locations that maximize the objective under the declared preferences of the

agents, is not truthful even on instances with two agents. Furthermore, we provide

inapproximability results for truthful mechanisms. In the rest of the chapter we follow

the literature assuming that the utility of agent i ∈ N from facility j ∈ {1, 2} is defined

as:

uij(xi, tij , yj) =







|xi − yj |, if tij = −1
ℓ, if tij = 0

ℓ− |xi − yj |, if tij = 1.
(6.1)

Again, the utility of agent i from the facilities is the sum of the utilities over all the

facilities, i.e. ui(xi, ti, y) = ui1(xi, ti1, y1) + ui1(xi, ti2, y2).

6.3.1 Utility

We first study the Utility objective, defined as maxy mini ui(xi, ti, y) and prove that

there is no 0.851-approximate deterministic or randomized truthful mechanism.

Theorem 26. There is no α-approximate deterministic truthful mechanism for the

2-facility game with α ≥ 0.851.

Proof. Let us consider the instances I and I ′ depicted in Figure 6.1, where the white

circles correspond to the two agents. Agent a1 is located in 0 and agent a2 in x > 0,

where x will be specified later in the proof. Without loss of generality we assume that

ℓ = 1. On instance I the preferences of a1 are t1 = (−1, 1), while a2 has preferences

96



t2 = (0, 1). It is not hard to see that the optimal locations for the facilities are y1 = 1

and y2 = x
2 where each agent gets utility 2− x

2 . The optimal locations are depicted by

black circles in the figure.

On instance I ′ agent a1 has the same preferences as on instance I while the pref-

erences of agent a2 are t′2 = (−1, 1). The optimal locations for the facilities in this

instance are y1 = 1 and y2 = x where each agent gets utility 2− x.

−11

0
x
2

y2

01

y1

ℓx

(a) Instance I

−11

0

y2

−11

y1

ℓx

(b) Instance I
′

Figure 6.1: Example for preferences in {−1, 0, 1}2

Instances I and I ′ show that the mechanism which locates the facilities on the

optimal locations is not truthful. On instance I agent a2 can declare t′2 = (−1, 1) and

increase his utility from 2− x
2 to 2.

Let M be a truthful mechanism. First observe that M will locate facility f1 on 1

on instance I, since any other location decreases the utility of agent a1 and thus does

not achieve the maximum approximation guarantee on this instance e.g. if f1 = 1 − ǫ

then u11 = 1 − ǫ which results in smaller utility for a1 than when we place f1 on

1. Suppose that M locates facility f2 on y2 ≤ x on instance I. If x < y2, then the

approximation of M on instance I is not optimized, since this approximation guarantee

could be increased by setting y2 = x.

Since M is truthful, facility f2 cannot be located on any y′2 > y2 on instance I ′.

If y′2 > y2, then agent a2 from I could declare preferences t′2 = (−1, 1) and increase

his utility. We consider the following two cases concerning the location y′1 in which M

locates facility f1 on I ′:

• y′1 ≥ x. Then, obviously y1 = 1 since otherwise the utility of both agents in I ′

is decreasing and thus M does not achieve the maximum approximation. As a

result, under M agent a2 gets utility at most 2 − 2x + y2 and thus M achieves

approximation 2−2x+y2
2−x on instance I ′. Furthermore, on instance I, agent a1 gets

utility 2−y2, since as explained earlier, M locates f1 on 1. Thus, on this instance

the approximation of M is 4−2y2
4−x . Observe that the approximation guarantee of

M on I is decreasing with y2 while on I ′ it is increasing with y2. If we optimize

the approximation guarantee and solve for y2 we get that y2 = 6x−2x2

8−3x . If y′1 > x,

then the approximation of M is at most

4− 2 · 6x−2x2

8−3x

4− x
=

4x2 − 24x + 32

3x2 − 20x + 32
. (6.2)
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• If M locates f1 on y′1 < x on instance I ′, then observe that there is no location

y′2 for f2 such that both agents get utility strictly larger than 1. In this case M

achieves an approximation of at most

1

2− x
. (6.3)

Observe that the approximation guarantee in (6.2) increases with x while in (6.3) it

decreases with x. If we optimize on the approximation guarantee of M , we have to

solve for x the equation −4x3 + 29x2 − 60x + 32 = 0. The unique solution in [0, 1] is

x = 13−
√
41

8 . Using this value in (6.2) and (6.3) we get that any deterministic truthful

mechanism on instances I and I ′ achieves approximation less than 0.851.

The above inapproximability bound can be extended to randomized mechanisms

too.

Theorem 27. There is no α-approximate randomized truthful mechanism for the 2-

facility game with α ≥ 0.851.

Proof. We will use again the instances from Figure 1 to prove the claim setting x =
13−

√
41

8 . Recall that the optimal utility is 4−x
2 on instance I and 2− x on instance I ′.

Let M be a randomized truthful mechanism. Observe that the mechanism should

locate facility f1 on 1 on instance I in the same way as in proof of Theorem 26; every

other location for f1 decreases the approximation guarantee of M . Suppose now that

M locates f2 on y ∈ [0, 1] according to the probability distribution p(y). Without

loss of generality we can assume that p(y) = 0 for every y > x. This is because

the approximation guarantee of M can be increased if we locate the facility on x

instead of some y > x. Hence, under M agent a1 gets utility 1 from f1 and utility
∫ x
0 p(y)(1− y)dy = 1−

∫ x
0 p(y)ydy from facility f2, so

u1 = 2−

∫ x

0
p(y)ydy

in total, on instance I. Similarly, agent a2 gets utility 1 from f1 and utility 1 − x +
∫ x
0 p(y)ydy from facility f2 so in total

u2 = 2− x +

∫ x

0
p(y)ydy

On instance I ′ we have to consider two cases according to the location in which M

places facility f1. If M locates f1 on y′1 ≥ x, then without loss of generality we can

assume that f1 is placed on 1 since every other location decreases the utility of both

agents. Suppose that M places f1 on 1 with some probability and f2 on y according to

the probability distribution π(y). We can assume that M does not locate f2 on y > x,

since the utility of both agents could increase by placing it on x instead. Thus agent
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a2 gets utility 1− x from facility f1 and utility 1− x +
∫ x
0 π(y)ydy from facility f2 on

instance I ′, thus in total

u′2 = 2− 2x +

∫ x

0
p(y)ydy

Since M is truthful we have that
∫ x
0 π(y)ydy ≤

∫ x
0 p(y)ydy. If this was not the case,

agent a2 could declare preferences (−1, 1) and increase its utility on instance I. As a

result the approximation guarantee of M on I ′ is at most

1

2− x
·

(

2− 2x +

∫ x

0
p(y)ydy

)

(6.4)

The approximation guarantee on instance I will be 2
4−x ·(min{u1, u2}) and since u′2 < u2

the best approximation guarantee of M on I is at most

2

4− x
·

(

2−

∫ x

0
p(y)ydy

)

(6.5)

M achieves the best approximation on both instances when the quantities from (6.5)

and (6.4) are equal. Hence, if we equalize them and solve for the integral we get

that
∫ x
0 p(y)ydy = 6x−2x2

8−3x and the approximation guarantee is less than 0.851 on both

instances for the chosen x.

If the mechanism locates f1 on y′1 < x, then on any location for f2 there will be an

agent with utility at most 1 and the approximation guarantee of the mechanism will be

at most 1
2−x < 0.851. Thus, in all possible cases the approximation of M is bounded

by 0.851.

The non existence of optimal deterministic truthful mechanisms can be extended

even on instances with three agents where no agent has preference −1 for any facility

(Fig. 6.2). The same holds if no agent has preference 1 (or 0) for any facility (Fig. 6.3-

Fig. 6.4). We call these instances “two-preference instances”.

Theorem 28. For any k ≥ 2, there is no optimal deterministic truthful mechanism

for Utility for the k-facility game even on two-preference instances with three agents

and known locations.

6.3.2 Happiness

The second objective that we study is Happiness. Using similar arguments as in the

Utility objective we get the following:

Theorem 29. For any k ≥ 2, there is no optimal deterministic truthful mechanism for

Happiness for the k-facility game even on two-preference instances with three agents

and known locations.
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Figure 6.2: Example for preferences in {0, 1}2. The agent located on 0 in the instance
I can declare preferences (1, 1) and increase his utility by moving the facility f2 closer
to 0.

-1 1

0

1 1

ℓ
2 ℓ-ǫ

y2 y1

ℓ

(a) Instance I

-1 1

0

-1 1

ℓ-ǫ

y2 y1

ℓ

(b) Instance I
′

Figure 6.3: Example for preferences in {−1, 1}2. The agent located on ℓ − ǫ in the
instance I can declare preferences (−1, 1) and increase his utility by moving the facility
f2 closer to ℓ− ǫ.
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Figure 6.4: Example for preferences in {−1, 0}2. The agent located on 0 in the instance
I can declare preferences (−1,−1) and increase his utility by moving the facility f2 away
from 0. Observe that in Instance I ′ there are two optimal solutions (y1 = 0, y2 = ℓ and
y1 = ℓ, y2 = 0). However, this does not affect the correctness of our example assuming
that the mechanism chooses a solution deterministically.

6.4 Deterministic mechanisms

In this section we propose deterministic truthful mechanisms. An initial approach would

be to consider each facility independently and place it to its optimal location. As we

already proved, placing one facility on its optimal position is a truthful mechanism.

Furthermore, since we locate the facilities independently no agent has an incentive to

lie. However, this mechanism achieves poor approximation if for example the agents

want to be away from the facilities. Consider the case where there are n agents on

locations 0, 2ℓn ,
3ℓ
n , . . . ,

(n−1)ℓ
n , ℓ each of whom has preferences (−1,−1). Observe that

the optimal location for one facility is to be placed on ℓ
n since this location maximizes
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the minimum distance between any agent and the facility. Thus, both facilities will be

placed on the same location ℓ
n . Then the agent located in 0 has utility 2ℓ

n , the minimum

over all the agents. It is not hard to see that an optimal solution is to locate facility

f1 on 0 and facility f2 on ℓ where each agent gets utility ℓ. Hence, the mechanism that

locates the facilities independently in their optimal locations is 2
n -approximate.

The example above provides evidence that a mechanism with good approximation

ratio should not put both facilities on the same location if there are agents who have

preference −1 for the facilities. In the worst case the agent that is closest to the facilities

might have preference −1 for both of them and thus get low utility. On the other hand,

the facilities should not be far away from each other. This is because, in the worst case

again, an agent might have preference −1 for the facility that is close and preference 1

for the facility that is far from his location.

Using the intuition gained from the discussion above we propose a mechanism for

the 2-facility game that combines these ideas and places the facilities symmetrically

away from the endpoints of the line.

Algorithm 11: Mechanism 1

Input : Utility functions ui(xi, ti, y) for each i ∈ N and objective function
maxy mini hi(ui(xi, ti, y))

Output: Locations y = (y1, y2)
1 Maximize mini hi(ui(xi, ti1 , z) + ui(xi, ti2 , ℓ− z)) with respect to ℓ, for all

possible xi ∈ ℓ and all possible combinations of (ti1 , ti2)
2 Set y1 = z and y2 = ℓ− z

Mechanism 1 searches for the optimal value of variable z, under the constraint that

0 ≤ z ≤ ℓ, such that the two facilities are placed in y1 = z and y2 = ℓ− z. It solves the

problem of facility location when all the information of the agents (i.e. their location

and their preferences) is kept private. Since it does not use any information of the

agents and thus it is truthful. It does not even require the locations of the agents since

it optimizes over all possible locations. We could apply the same mechanism having the

locations as input but this would not change the worst case approximation guarantee.

We next use Mechanism 1 to derive approximate truthful mechanisms for Utility and

Happiness.

Case ti ∈ {−1, 0, 1}2. Under the Happiness objective, Mechanism 1 returns the

locations y = (z, ℓ− z) where z = (1−
√
2
2 )ℓ.

Lemma 21. ∀i the Happiness of agent i is ui(xi,ti,y)
u∗

i (xi,ti)
≥ 1−

√
2
2 .

Proof. We have to prove the claim for every possible ti and every xi. We will show that

the chosen y is optimal for Mechanism 2 and that it achieves the desired guarantee.
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Notice that if an agent has type 0 for some facility, then he gets utility at least ℓ no

matter where the facilities are located. Moreover, we note that the maximum utility

an agent can get is bounded by 2ℓ. Hence, any agent that has preference 0 for some

facility gets at least 1/2 of the maximum utility.

Let xi be the location of agent i and let ti be his preferences. Without loss of

generality we can assume that xi ≤
ℓ
2 , since similar analysis can be applied for xi >

ℓ
2 .

Furthermore, let y = (z, ℓ − z) be the locations of the facilities. We will consider the

cases where xi ≤ z and xi > z. The following two tables show the utility that agent i

gets under y when located on xi and the corresponding ratio for every case.

ti ui(xi, ti, y) u∗i (xi, ti) Ratio

1, 1 ℓ + 2xi 2ℓ ≥ 1/2

-1, 1 2z 2ℓ− xi ≥ z/ℓ

1, -1 2ℓ− 2z 2ℓ− xi ≥ 1/2

-1, -1 ℓ− 2xi 2ℓ− 2xi ≥ (ℓ− 2z)/(2ℓ− 2z)

Table 6.1: Case analysis when xi ≤ z.

ti ui(xi, ti, y) u∗i (xi, ti) Ratio

1, 1 ℓ + 2z 2ℓ ≥ 1/2

-1, 1 2xi 2ℓ− xi ≥ 2z/(2ℓ− z)

1, -1 2ℓ− 2xi 2ℓ− xi ≥ 2/3

-1, -1 ℓ− 2z 2ℓ− 2xi ≥ (ℓ− 2z)/(2ℓ− 2z)

Table 6.2: Case analysis when xi > z.

Our goal is to find a z ∈ [0, ℓ] that maximizes the minimum ratio. Notice that
z
ℓ ≤

2z
2ℓ−z for every z ∈ [0, ℓ/2]. The optimal guarantee of Mechanism 2 is achieved

when z
ℓ = ℓ−2z

2ℓ−2z . If we solve for z, the feasible solution is z = (1 −
√
2
2 )ℓ and the

approximation guarantee follows.

Observe that if at least two facilities need to be located, then maxy mini ui(xi, ti, y) ≥

maxy mini
ui(xi,ti,y)
u∗

i (xi,ti)
, since u∗i (xi, ti) ≥ ℓ. Thus, Mechanism 1 can be used for both Util-

ity and Happiness. Furthermore, since Mechanism 1 does not use any information of

the agents, it possesses all the desirable properties like group strategy proofness and

false name proofness.

Theorem 30. For 2-facility games Mechanism 1 is (1−
√
2
2 )- approximate group strategy

proof and false name proof for Utility and Happiness even when both the locations

and preferences are not known.

Theorem 30 shows the sharp contrast between 1-facility and 2-facility games where

both locations and preferences are private. Recall that for 1-facility games, when the
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locations of the agents are private, there is no deterministic truthful mechanism with

bounded approximation guarantee as shown in [49].

Case ti ∈ {0, 1}
2. In this case, under the Happiness objective, Mechanism 1 returns

the locations y = (ℓ/2, ℓ/2). Observe that ui(xi, ti, y) ≥ 2(ℓ−|xi−
ℓ
2 |) = 2ℓ−|2xi−ℓ| ≥ ℓ

for every possible combination of xi and ti. Notice also that u∗i (xi, ti) = 2ℓ for every

possible (xi, ti). As a result Mechanism 1 is 1
2 -approximate for the 2-facility game. It

is not hard to see that if there are k facilities, all located on ℓ
2 , then ui(xi, ti, y) ≥ k

2 ,

while u∗i (xi, ti) = k. Furthermore, observe that
∑

i ui(xi, ti, y) ≥ 1
2

∑

i u
∗
i (xi, ti) and

thus the mechanism achieves the same approximation for social welfare too and the

theorem follows:

Theorem 31. If ti ∈ {0, 1}
k for every i ∈ N , then the Mechanism that locates every

facility on ℓ
2 is 1

2 -approximate for Utility, Happiness and social welfare.

We next show that if every agent has preferences in {0, 1}2 and the agents’ locations

are known, then for the mechanism that places each facility independently on its optimal

location, denoted as OPT
2 is 3

4 -approximate for the 2-facility game with the Utility

objective.

Theorem 32. OPT
2 is 3

4 -approximate for Utility.

Proof. Before we analyze the approximation guarantee of the mechanism, let us first

study the locations in which the mechanism places the facilities. Since the preferences

of each agent are in {0, 1}2, it is not hard to see that the optimal location for each

facility is the median point between the locations of the leftmost and the rightmost

agents that want to be close to the facility.

Without loss of generality we can assume that the agent with the minimum utility

under OPT
2, denoted as a1, has preferences (1, 1). If ti = (1, 0), then the agent would

have utility at least 3
2ℓ since any other agent who wants to be close to the first facility

is located in distance at most ℓ from a1’s location. The maximum utility the agent can

get is 2ℓ, so the mechanism is 3
4 -approximate.

Suppose that a1 is located on x ≤ ℓ
2 . Without loss of generality we can assume

that he is located on 0, since for any other location the agent would be closer to the

facilities and thus his utility would have increased. Observe that agent a1 will define the

locations of the facilities along with the rightmost agents. Clearly if the rightmost agent

has preferences (1, 1), then OPT
2 is optimal. We can then assume that the rightmost

agent, denoted as ar1 , has preferences (0, 1). Observe that in the worst case ar1 will be

located on ℓ, since on any other location the utility of agent a1 will be lower. We have

to consider the two possible preferences for the second rightmost agent with preference

1 for the first facility and prove that OPT
2 achieves the desired approximation. We

will use ai to denote this agent and xi to denote his location.
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We first consider the case where agent ai has preferences (1, 1) and xi ≥
ℓ
2 . The

utilities of the agents for the facilities under the locations (y1, y2), where y2 ≤ xi, are

u1 = 2−y1−y2, ui = 2−2xi +y1 +y2 and ur1 = 1 +y2. OPT
2 will locate the facilities

on y1 = xi

2 and y2 = ℓ
2 and the utility of agent a1 will be u1 = 3−xi

2 . The locations of the

facilities that make the utilities of these three agents equal provide an upper bound on

the utility that agent a1 gets under the optimal solution, since any other solution would

yield lower utility for at least one of these agents. The locations of the facilities that

equalize the utilities of the agents are y1 = 2xi− ℓ and y2 = ℓ−xi and thus the optimal

utility of agent a1 is bounded by 2ℓ−xi. Hence, OPT
2 is α = 3−xi

4−2xi
≥ 3

4 -approximate.

In the case where xi <
ℓ
2 , it is not difficult to see that agent a1 gets utility at least

5
4ℓ under OPT

2. Under the optimal solution the utility of the agents is bounded by
3
2ℓ, since there are no locations for the facilities where both a1 and ar1 get more than
3
2ℓ. In this case the mechanism is 5

6 -approximate.

If the preferences of ai are (1, 0), then similar analysis can be applied.

Case ti ∈ {−1, 0}2. Under Happiness, Mechanism 1 returns the locations y = (0, ℓ).

For every possible combination (xi, ti) we get that ui(xi, ti, y) ≥ ℓ and that u∗i (xi, ti) ≤

2ℓ. Again, the mechanism can be generalized for the k-facilities game by locating ⌈k2⌉

facilities on 0 and facilities ⌊k2⌋ on ℓ.

Theorem 33. If ti ∈ {−1, 0}k for every i ∈ N , then Mechanism 1 is ⌊k2⌋/k-approximate

for Utility, Happiness and social utility.

6.5 A Randomized Mechanism

We next provide a randomized universally truthful mechanism for k-facility games.

Algorithm 12: Mechanism 2

1 With probability 1
2 set yj = 0 for every j ∈ F

2 With probability 1
2 set yj = ℓ for every j ∈ F

Theorem 34. Mechanism 2 is 1
2 -approximate for the Utility, Happiness and social

welfare.

Proof. It is easy to see that the mechanism is universally truthful since in each case

it chooses a fixed location. We will prove that every agent gets utility at least ℓ
2 in

expectation from every facility. Suppose that the agent i ∈ N is located on xi and has

preferences ti. Let us study the expected utility the agent gets from the facility fj . If

tij = 1, then the agent’s utility is ℓ− xi when yj = 0 and xi when yj = ℓ. If tij = −1,

then the agent gets utility xi if yj = 0 and ℓ−xi if yj = ℓ. If tij = 0, then the agent gets

utility ℓ irrespectively to yj . The agent gets utility at least ℓ
2 in expectation from each
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facility. As a result the agent gets utility at least k·ℓ
2 in expectation. The maximum

utility the agent can get is k · ℓ. The happiness of the agent is at least 1
2 . Since the

Happiness objective is a lower bound on the Utility objective the claim follows for

these two objectives. Furthermore, the expected social welfare is at least n · k·ℓ2 while

the maximum social welfare is trivially bounded by n · k · ℓ. Thus the claim follows for

the social welfare too.

6.6 Open problems

We studied heterogeneous k-facility location games on the real line for maxmin objec-

tives. For k ≥ 2, we derived inapproximability bounds for deterministic and random-

ized truthful mechanisms for the Utility and Happiness objectives. We provided

deterministic truthful mechanisms and a universally truthful mechanism that achieve

constant approximation.

Many questions arise from this study. The most obvious is to derive tight bounds

for truthful mechanisms. First, we leave as an open problem whether the optimal algo-

rithm to the optimization problem is truthful. Interestingly, apart from OPT
2 truthful

mechanisms that use the agents’ locations and beat the approximation guarantee of the

optimal algorithm do not seem easy to design. We conjecture that there is no truthful

mechanism that locates the facilities sequentially and uses the locations of the facilities

already placed in a non trivial way. Another interesting question is to study other

objectives, like the envy for heterogeneous facility location games. Finally, another line

of research is to extend our model on cycles, trees, or higher dimensions.
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Conclusions

In this thesis we studied approximation algorithms and truthful mechanisms for opti-

mization problems in networks having applications in smart cities and urban planning.

We presented new mechanism design models and new techniques which could be of

independent interest.

More precisely our techniques in order to obtain truthfulness of the mechanisms vary

depending on the problem. As we have seen for single parameter agents monotonicity

is a sufficient condition for truthfulness. However this property is algorithm specific

and thus we do not have a general way of proving whether an algorithm is monotone or

not. It is well known that the classes of greedy algorithms (Chapter 3) and primal dual

algorithms (Chapter 4) can be made monotone in general. Our novel approach was to

restrict the data instances of the problem and obtain monotonicity and thus truthfulness

with high probability on most of the instances. We are not aware of a similar approach

in the literature and we believe that it could be of independent interest.

A general question is whether the condition of monotonicity can be added as an

additional constraint in an LP and whether this way we could have monotone LP’s i.e.

a solution to the LP that would directly imply monotonicity.
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