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Abstract 

This paper investigates coupled electro-elastic shear waves propagating along a piezoelectric 

finite width waveguide consisting of layers separated by metallized interfaces and arranged in a 

periodic way along the guide. The modified matrix method is applied to obtain the dispersion 

equation for a waveguide with straight walls. Bragg resonances and the presence of trapped 

modes and slow waves are revealed and analysed for a periodic structure consisting of unit cells 

made up firstly from two different piezoelectric materials, and secondly from two identical 

piezoelectric materials. An analytical expression for the transmission coefficient for the 

waveguide with a defect layer is found that can be used to accurately detect and control the 

position of the passband within a stopband. This can be instrumental for constructing a tuneable 

waveguide made of layers of identical piezoelectric crystals separated by metallized interfaces.  
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1. Introduction 

 Recently the problem of elastic wave propagation in piezoelectric periodic structures has 

been attracting increasing attention due to extensive applications in smart materials and 

structures, particularly those made of two or more different constituents arranged periodically. 

For example, thin film piezoelectric layered structures have been widely used in high frequency, 

high performance, small size, low cost, low energy consumption technologies.  

 Electro-mechanical coupling in piezoelectric materials can significantly affect the 

properties of acoustic waves in periodic structures and reveal new properties compared to those 

of purely elastic crystals. These properties have been widely discussed and investigated in one, 

two and three dimensional piezoelectric periodic structures (Vashishth and Gupta, 2009; Wang 

et al. 2009; Wilm et al. 2002; Zou et al. 2008; Yan and Wang 2008; Piliposian et al. 2012). 
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 Due to the electro-mechanical coupling, piezoelectric phononic crystals become sensitive to 

the electric properties of the interfaces, here again exhibiting new and distinctive acoustic effects 

(Ghazaryan and Piliposyan, 2012; Sabina and Movchan, 2009).  

  Of particular interest are the properties of Bloch waves in a piezoelectric periodic 

waveguide. Identification of band gaps, frequencies of possible standing waves, trapped modes 

and slow waves in periodic piezoelectric waveguides can lead to advances in imaging devices, 

delay line device technologies, and the prevention and filtering of unwanted vibrations. Trapping 

waves due to thickness variations and mechanisms of slow waves near cut-off frequencies in an 

elastic waveguide have been investigated by Postnova  and  Craster (2007) and Craster et al. 

(2009). Using matrix methods these problems in in-plane and out-of-plane elasticity for waves 

in periodic waveguides have been studied in Adams et al. (2008) and (2009).  

  Piezoelectric periodic waveguides with full contact interfacial conditions have also 

attracted attention (Achaoui et al., 2010; Sugimoto and Makimoto, 1973; Guo et al., 2009), and 

in most cases the quasistatic approximation is adopted for governing equations. In some 

situations, however the dynamic setting of Maxwell’s equations is necessary to consider when 

investigating the coupling resonance effects of elastic and electromagnetic waves (Piliposyan 

et.al, 2015). This coupling is especially important in the case of reflection/transmission problems 

for acoustic waves in piezoelectric materials, where acoustic and electromagnetic waves can 

interact strongly, and electromagnetic theory needs to be considered to give an accurate 

description of the reflected and transmitted waves. Such problems include coupling between the 

surface electromagnetic waves and elastic fields (Darinskii et al., 2008) and the reflection of 

quasi-normal incident plane waves (Darinskii et al., 2008, Darinskii et al. 2007).  

  For a piezoelectric crystal of 6mm symmetry the dynamic setting of the problem does not 

make the problem technically more complicated compared to the quasistatic approximation 

(Belubekyan, 2008). Within elasto-electrodynamic theory the propagation of SH Bloch waves in 

a piezoelectric waveguide with full contact interfacial conditions is considered in Piliposyan et 

al. (2014).  The obtained analytical solutions describe both the propagation of acoustic waves and 

the effect of the internal resonance of electromagnetic and acoustic waves (phonon-polariton 

coupling), which cannot not be revealed within the quasistatic approximation.  

  The reflection and transmission for inclined incidence of a shear horizontal elastic wave 

on a stack of one dimensional piezoelectric layers made of an identical crystal with metallized 

interfaces is considered in Al’shits and Shuvalov (1995), where the existence of Bragg 

resonances is revealed and investigated. In the present paper a similar approach to that in 

Piliposyan et. al. (2014) is applied to obtain the analytical dispersion equation for a piezoelectric 

bi-material waveguide with periodically metallized interfaces. The problem is considered within 
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the dynamic setting of Maxwell’s equations. Although for acoustic frequencies the quasistatic 

approximation gives a sufficiently accurate description of the problem it is not valid for “super 

small” incidence angles cc /0 , where 
0

c  and c  are the sound and light velocities, and for 

that reason the results obtained using a quasistatic approximation do not accept the limit for the 

case of normal incidence (Al’shits and Shuvalov, 1995). In the present paper the case 

corresponding to the normal incidence is included into the analytical solution as a particular case. 

However, waveguides with metallized interfaces do not exhibit the acousto-optic phonon-

polariton coupling demonstrated in Piliposyan et. al. (2014) for waveguides with periodic full 

contact interfaces.   

    It is also of particular interest to consider piezoelectric waveguides with a defect layer 

which can be introduced into the structure, and, by changing the geometry and altering the elastic 

characteristics of these inclusions, design tunable periodic structures (Goffaux and Vigneron, 

2011). To the best of our knowledge the problem in the present setting with a defect layer has not 

been solved. We introduce a defect layer into the piezoelectric periodic waveguide with 

metallized interfaces and propose a novel tunable phononic waveguide. An analytical formula 

for the reflection/transmission coefficient is found which can be used to develop a tunable 

phononic waveguide. The problem is also investigated for a waveguide with periodically 

alternating boundary conditions on the waveguide walls.  

  

2. The statement of the problem and modal expansion 

In this section we obtain an analytical expression for the dispersion equation for electro-magneto-

elastic coupled SH waves propagating along a finite width periodic waveguide with a unit cell 

of length   and occupying a region  x ,  z , hy0 . Each cell is made of two 

different hexagonal piezoelectric materials: (1) of length 1a and (2) of length 2a  (= a1 + a2) 

with crystallographic axes directed along the Oz direction (Fig.1).    

 

Fig. 1.  Periodic waveguide with a unit cell made of two piezoelectric media. 

The interconnected elastic and electro-magnetic excitations are described by the following 

equations and constitutive relations (Piliposian et al., 2012)  
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where 
ij

  is the stress tensor,   the mass density, iu  the displacement vector field, iD  and iE  

are components of the electric displacement and electric field intensity, B  and H  the magnetic 

field induction and intensity vectors. In constitutive relations (3) ijklc  is the stiffness tensor, ijke  

and kls the piezoelectric and strain tensors and ij the dielectric permittivity matrix.  

 Harmonic time dependence, exp(i )t  for all the physical variables with   as a wave 

angular frequency is assumed henceforth. We assume that waves propagate in the (x,y) plane. 

Taking notation, zH i H , zu u  the system of equations (1)-(3) can be reduced to the 

following uncoupled system of equations  
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and constitutive relations expressed via ( , )H x y and ( , )u x y  
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where
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
  . Dimensionless coordinates x xh  and y yh  will be introduced and the 

tilde sign will be omitted henceforth. Two types of boundary conditions on the waveguide walls 

will be considered: 

1. Displacement-clamped and electrically-shorted 
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2. Traction free  ,0 0yz x  ,  ,1 0yz x   and electrically open, which, due to the equality 

( , ) ( , )
y
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The solution of (4)-(5) can be written as i i( ( , ), ( , )) ( ( ), ( ))(e ,e )qx sxu x y H x y u y H y leading to 

an eigenvalue problem with discrete eigenvalues n
q  and n

s , and corresponding mode solutions 
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where 15e e  and is included in the expression of ( , )nH x y  to harmonise the dimensions of all the 

wave-field functions and 
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0c  is the velocity of a transverse wave in the medium, c is the speed of the electromagnetic 

wave,  2,1i  correspond to the upper and lower terms in (12) with npn   and )1(  npn  , 

2,1,0n  respectively, corresponding to solutions for boundary conditions (8) and (9), and the 

following notations are introduced within a homogeneous material (Piliposyan et al., 2014) 
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where exp( )n nA iq x  and exp( )n nC is x  correspond to forward propagating, exp( )n nB iq x  and 

exp( )n nD is x  reflected waves and ,n nA B , ,n nC D are constants. 

2.1 Solution for a periodic piezoelectric waveguide with metallized interfaces   

The boundary conditions between two different homogeneous materials at the interfaces 0x

and 
2

x a are continuity conditions for the displacement and the normal stresses 
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and, since the layers are separated by thin metallized coatings, zero electrical field at both sides 

of the interfaces (Fig 1)  

 0)()1( xEy , 0)()2( xEy   (17) 

Using (11)-(13) these conditions can be written as 
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where the superscripts 1,2 indicate the first and second material respectively. 

An inner product can be defined as 
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which has an orthogonality feature within the same material. Taking the inner product of (18) 

with a single mode m gives  
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n nm m

nmn n
w x w x

a x L a x

L 

  
  

   
   

,  (21) 

where 
1

(1) (2)

0

( ) ( )
mn n m

L r y r y dy  , ( , 1,2,3n m  ). 

When the wave characteristics are continuous, the transfer matrix coupling the wave 

fields in neighboring cells can be constructed directly by joining the wave fields at the interfaces 

(Piliposian et al., 2012). The transfer matrix in the case of electrically shorted boundary 

conditions (19) is not possible to construct since in this case the interface matrices are degenerate 

and impossible to invert. In this case using (19) the amplitudes 
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where matrices ( )Q̂ j , ( )V̂ j  and  ( )Ŵ j have elements 
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Î is an identity matrix and mn  is the Kronecker delta operator. 

 Writing the Bloch-Floquet conditions as 
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where k  is the Bloch wave number, and using the transfer matrices (23) across the interfaces, 

the problem can be written in the following form 
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is the transfer matrix within a homogeneous material, and ( )Ĉ
n
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are N N  matrices with 

entries 
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nq x x along the main diagonal.  

 For homogeneous boundary conditions on the guide walls the matrix L̂  in (23) becomes 

an identity matrix, the propagating modes separate from each other and each gives rise to the 

following dispersion equation (Ghazaryan and Piliposyan, 2012) 
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Without the piezoelectric effect equation (27) will describe the propagation of the acoustic wave 

in the periodic waveguide with the dispersion equation cos( )k A  . 

 Dispersion equation (27) is the same both for displacement-clamped and electrically-shorted 

(8), and traction free and magnetically-closed boundary conditions (9) on the waveguide walls. 

In the case of boundary condition (8) mode 0n  , corresponding to the normal incidence, leads 

to a trivial solution for the displacement and the electromagnetic field independent of ,y

( , ) ( )H x y H x which due to electrically shorted interface conditions leads to no wave 

propagation. In the case of boundary condition (9) mode 0n   leads to a solution for the 

displacement that is independent of y, ( , ) ( ),u x y u x  and a trivial solution for the 

electromagnetic field function, giving the propagation only of an acoustic wave described by the 

dispersion equation cos( )k A  with the piezoelectric effect present only in the 

piezoelectrically stiffened elastic modulus G . 

 For a superlattice with cells composed of two identical piezoelectric materials ( 1 ,e e

2e e )
 
of equal widths 2 1a a a  , the dispersion equation (27) takes the following form:  
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where the parameters q and s are expressed by formulae (14) without indices. It is clear from 

(28) that for electrically shorted interfaces between two constituent materials in the waveguide 

band gaps are possible if these materials are identical. In this case however the opposite 

polarization will not affect the band structure.  

3. Reflection/Transmission of acoustic waves in a piezoelectric waveguide with finite 

stacks 

In this section we investigate the reflection/transmission properties of a finite stack of 

cells in a piezoelectric waveguide by coupling the wave fields in neighboring layers via a matrix 

propagator. We consider a structure consisting of a stack of M cells, each containing a pair of 

layers ja , (j= 1,2) made from different piezoelectric crystals and one additional single layer, 

thus 2M+1 layers altogether (Fig. 1). On each side the waveguide has two infinite piezoelectric 

substrates made from material 2.   

For continuity of wave fields between layers the matrix propagator can be constructed 

directly. The electrically shorted case however cannot be obtained from this as a particular case 

since the amplitudes at interfaces will become connected via degenerate matrices which cannot 

be inverted. To get around this problem electrically shorted boundary conditions (17) at the 

interfaces 1x m a  between two layers (m,1) and (m,2) (the same at the interface  (m,2) and 

(m+1,1)) can be incorporated into the continuity boundary conditions for displacements and 

stresses (16) (Al’shits and Shuvalov,1995). 

From (4)-(7) the complete magneto-elastic wave field in the mth cell is 
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 ,   (29) 

where the factor t))-i(exp( py is omitted and all the parameters apart from p have superscripts 

(j) which are also omitted, (j=1,2) correspond to the material number in the unit cell. We will 

investigate the transmission properties of only acoustic waves since the piezoelectric effect does 

not have a noticeable effect on electromagnetic waves.  From (29) and (17) the amplitudes 
)( jC

and )( jD in the expression for 
)( j

yE can be expressed via the amplitudes )( jA and )( jB  in the 

following way  
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The amplitudes 
)( jC and )( jD will be eliminated by substituting (30) into the expression for 

)()( xj

xz
  in the boundary conditions (16). Formula (16) will have only the incident and reflected 

amplitudes )( jA and )( jB of a coupled magneto-elastic wave. Then a 2 2  unimodular transfer 

matrix Ŝ coupling the amplitudes of forward and backward travelling waves )1(

mA  and )1(

mB in 

layers made from material 1 in the two neighbouring cells (m) and (m+1) can be constructed s    

uch that  
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where 
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and * in the superscript denotes the complex conjugate.  The amplitudes of the incident 
I

A , 

reflected RB  and transmitted TA  acoustic waves in the two substrates will thus have the relation 

 Ŝ
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A A

B

   
   

  
. (35) 

Using Sylvester’s theorem for a 2 2  unimodular matrix, the matrix Ŝ
M

can be written as  

  
11 12 11 1 2 12 1

* * * *

12 11 12 1 11 1 2
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where  
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and where the Bloch wave number k is defined by the equation 
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cos( ) = ( ) / 2k S S  . (37) 

From (35) and (36) the reflection/transmission problem can be written as  
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From (38) we find that the reflection coefficient is  
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and 
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For 0p  , corresponding to a normal incidence, the reflection coefficient R takes the following 

form  
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which shows that in this case there would be a total transmission for the piezoelectric waveguide 

with identical piezoelectric materials.  

At the band edges, where k n  , the reflectivity will be given by  
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and the transmissivity by 
2 2| | 1 | |T R  . 

Within the band gaps, where k  is complex, ik n    , formula (40) takes the form 
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It follows from (42) that the reflection coefficient will approach unity as the number of cells 

increases and the total reflection regions will precisely coincide with the stopband for Bloch 

waves.  

 

3.1 Transmission coefficient in the piezoelectric composite waveguide with a defect layer 

 We now introduce a defect layer Z as shown in Fig.2, such that the waveguide has a 

mirror symmetry about this layer.   

 

Fig. 2.  Finite stack piezoelectric waveguide between two infinite substrates and a defect layer. 

The transfer matrix now will have the following form:  
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where (1) (2)ˆ ˆ ˆZ Z Z , and the elements of the matrices (1)Z  and (2)Z can be obtained from the 

elements of the matrices 
(1)Ŝ  and 

(2)Ŝ by changing the material parameters of the second material 

in (32)-(34) to those of the defect layer. The Sylvester’s theorem can be used to obtain an 

expression for the transmission coefficient 
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is the transfer matrix through the defect layer and the following notations are introduced 
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The analytical expression (44) for the transmission coefficient can be used to investigate the 

defect mode in a waveguide with a finite stack of cells, each cell composed of either two different 

or two identical piezoelectric materials. 

4. Discussion 

4.1   Homogeneous boundary conditions on the guide walls the matrix 

 Numerical calculations have been carried out for two piezoelectric phononic crystals. 

Material parameters of PZT-4 and BaTiO3 have been used for one phononic crystal and PZT-4 

for the piezoelectric waveguide with identical layers (Table 1). For homogeneous boundary 

conditions on the guide walls the results are the same both for displacement-clamped and 

electrically-shorted (8), and traction free and magnetically-closed boundary conditions (9) on the 

waveguide walls. 

  Table 1. Material constants of PZT-4, 
3

LiIO
 
and

3
BaTiO  

Material 
Elastic constant

10
44 10c  

N/
2m  

Piezoelectric constant  

15
e C/

2m  

Permittivity 

11 1110
F/m 

Density 

 310 kg/
3m  

PZT-4
 

2.56 12.7 646 7.6 

3
LiIO  1.78 0.89 6.434 3.402 

3
BaTiO

 

5.43 11.6 1744 6.02 

   

 Fig. 3 shows wave trapping for the lowest mode for a BaTiO3 and LiIO3 waveguide, where 

the horizontal lines show the cut-off frequencies in two materials. The nature of the trapping is 

the same as that described in detail in Piliposyan et al. (2014).  For a waveguide with short thin 

cells ( h ) the mode is localized near the interfaces between the two materials for all values 

of the reduced wave number (Fig.3a). As the length of the unit cell increases compared to the 

waveguide height (Fig.3b) the dispersion curves for the piezoelectric waveguide become flatter. 

Due to a large difference between the acoustic impedances of BaTiO3 and LiIO3 the frequency 

http://www.sciencedirect.com/science/article/pii/S0041624X13002783


region of the piezoelectric waveguide with trapped waves is large and for longer cells includes 

several modes (Fig. 3b).  

(a)  (b)  

Fig. 3. Band structure for a LiIO3 and BaTiO3 piezoelectric phononic crystal for 1n  (a) β/h=0.5, (b) β/h=1.5. Solid lines and 

dashed lines show the band structure with and without the piezoelectric effect, horizontal lines show the cut-off frequencies in 

the two materials. 

 The transmission coefficients in Fig. 4 confirm the above results, showing full reflection 

when the Bragg resonance conditions are satisfied (i.e., when the value of the wave number lies 

inside the forbidden zones of the Bloch spectrum) and the number of layers is sufficiently large.  

 
(a) 

 
(b) 

Fig. 4. Absolute value of the transmission coefficient for a LiIO3 and BaTiO3 piezoelectric phononic crystal for (a) β/h=0.5, (b) 

β/h=1.5, M=50. Vertical gray lines show the cut-off frequencies in each material. 

 A superlattice made up of a unit cell with identical PZT-4 material also demonstrates 

frequency gaps and increasing cut-off frequencies for longer unit cells (Fig.5a,b). The frequency 

gaps in this case are only in the middle of the Brillouin zone, where the first gap remains always 

the largest, and as can be seen also from the reflection coefficient (Fig. 6) does not have 

significant change in its width.  

 
(a) 

 
(b) 

Fig. 5. a) Superlattice with identical PZT-4 crystals in both layers of the unit cell a) 5.0/ h , b) .5.1/ h Dashed lines 

show the band structure without piezoelectric effect, horizontal lines show the cut-off frequencies 

 



 Another interesting feature here is that the Bloch wave number can have a real value below 

the cut off frequency.  This is better shown for longer unit cells (Fig 5b.) and does not happen 

when the piezoelectric effect is neglected.  This can also be shown analytically from the 

dispersion equation (28) where below cut off acoustic frequencies 0/ 22

0

2  pc  and 

0/ 222  pc .  If we expand the right hand side of (28) as a series with respect to a small 

parameter , the first term of series is  

      
 

 
    

2 sin
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ap q
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q
a
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F

s
q  .   

Since    0 cosh / 1F h   , it follows that there is not propagating mode. At the cut-off 

frequency 0 0c p h  , taking into account that  
2

0 / 1c c  ,  0F   can be approximated as

0 01 - tanh( 2)<1a a   . This means that there exists a region below the cut-off frequency where 

the waveguide supports an evanescent mode. 

 
(a) 

 
(b) 

Fig. 6. Absolute value of the transmission coefficient for a superlattice with identical PZT-4 crystals in both layers of the unit 

cell (a) β/h=0.5, (b) β/h=1.5, M=100. Vertical gray lines show the cut-off frequency. 

 Due to the fixed electro-potential condition, a superlattice with identical elements in the unit 

cell demonstrates a much sharper resonant enhancement of transmission (Fig. 6). In this case 

each interface provides a reflection proportional to only the electromechanical coupling 

parameter 1   (Alshits and Shuvalov, 1995) and near the Bragg resonance, where 0T  for a 

sufficiently large number of layers, the transmission coefficient experiences a sharp decrease 

compared to waveguides with a unit cell made of different piezoelectric materials (Fig. 4).  

4.2 Periodically alternating boundary conditions 

  The transfer matrices (19) can also be used to solve the problem for piezoelectric 

waveguides with straight parallel boundaries imposed by alternating boundary conditions on the 

waveguide walls. If the lower wall is displacement-clamped and electrically-shorted ( 0u  , 

0xE ) and the upper wall traction-free and magnetically-closed ( 0
yz

  , 0H  ) the modes 

again separate and the problem is described by the dispersion equation (27) for all modes 

including mode 0n .  



 Calculations have been made for a LiIO3 and BaTiO3 phononic crystal which is displacement-

clamped and electrically-shorted on the lower wall and traction-free and magnetically-closed on 

the upper wall in the first layer of the unit call, and vice versa in the second layer.  The qualitative 

behavior of the wave propagation without the piezoelectric effect is similar to that for the 

waveguide with full contact interfacial conditions discussed in detail in Piliposyan et al. (2014). 

For short cell lengths ( 0.5)h  without the piezoelectric effect there is only a zero frequency 

cut off and no other band gaps. As the cell length increases ( 1.5)h  the modes start mixing, 

the zero frequency cut offs appear at higher frequencies and stop band gaps appear with a clear 

minimum within the Brillouin zone indicating the existence of slow waves (Piliposyan et al., 

2014). 

  
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

Fig. 7.  Band structure for a LiIO3 and BaTiO3 phononic crystals with 0u  , 0
x

E   on the lower wall and 0
yz

  , 0H   on 

the upper wall of the first material and vice versa in the second material  a) / 0.5h   (b),(c),(d) / 1.5.h   

 

For the piezoelectric waveguide, even for short cell lengths there is a zero frequency cut-off 

followed by a wide band gap (Fig.7a). Two completely flat curved within the first gap indicate 

standing waves with no propagating energy and this is associated with mode trapping. With the 

aspect ratio h  increasing the modes mix up, the first cut-off frequency increases and one of the 

flat curves stays well below the cut-off frequency. As the detailed pictures show (Fig. 7c, 7d) 

this mode mixing causes more trapped modes occurring within higher frequency gaps.  

http://www.sciencedirect.com/science/article/pii/S0041624X13002783
http://www.sciencedirect.com/science/article/pii/S0041624X13002783


  
(a) 

 
(b) 

 
(c) 

 

Fig. 8.  Band structure for PZT-4 phononic crystals with 0u  , 0
x

E   on the lower wall and 0
yz

  , 0H   on the upper 

wall of the first material and vice versa in the second material,  a) / 0.5h   (b),(c) 5.1/ h . 

  

The effect of the alternating boundary conditions on the waveguide walls on wave trapping are 

more visible for a piezoelectric waveguide with identical elements in the unit cell. For small 

values of h/  there are band gaps only in the middle of the Beryllium zone (Fig. 8a). The flat 

curve corresponding to standing waves with very little propagating energy occur below the first 

cut-off frequency. With larger values of h/  the cut-off frequency increases leaving below two 

slow modes. At higher frequencies the folding of modes causes modes crossing and opening of 

band gaps at the edge of Brillouin zone (Fig.8b) or stop band gaps appear with a clear minima 

within the Brillouin zone.  

 

4.3 Tuneable passband in the piezoelectric composite waveguide    

 We now use the transmission coefficient (45) to investigate the transmission properties 

of SH waves in the piezoelectric waveguide with a defect layer (Fig. 2).  

 
(a) 

 
(b)  

 
(c) 

  

Fig. 9. Absolute values of the transmission coefficient for a LiIO3 and BaTiO3 piezoelectric phononic crystal with displacement-

clamped and electrically-shorted boundaries on the guide walls for β/h=0.5, M=25 (a) without a defect layer, (b)with a defect 

layer with thickness cd , (c) with a defect layer with thickness 5.1cd .  

 Fig. 7 compares the transmission spectrum of the piezoelectric composite waveguide 

LiIO3 and BaTiO3 with and without a defect layer.  Without a defect layer (Fig.9a) a typical 

propagation feature with an acoustic bandgap is observed.  The presence of a defect layer, which 

has material parameters of LiIO3 without a piezoelectric effect, (Figs.9b & 9c) shows broadening 



of the forbidden band. Further, a passband with a transmission peak of 100% appears within the 

bandgap.  Increasing the thickness of the defect layer from cd  (Fig.9b) to 5.1cd  (Fig.9c) 

moves the passband from 7.8/ 01 c  to 4.8/ 01 c , demonstrating that the passband can 

be tuned by changing the thickness of the defect layer. 

 
(a) 

 
(b) 

 
 (c) 

 

Fig. 10. Absolute values of the transmission coefficient identical PZT-4 crystals in both layers of the unit cell with displacement-

clamped and electrically-shorted boundaries on the guide walls for β/h=0.5, M=25, (a)without a defect layer, (b)with a defect 

layer with thickness cd , (c) with a defect layer with thickness   5.1cd .  

 Fig. 10 shows similar results for a piezoelectric waveguide with cells composed of an 

identical piezoelectric material PZT-4.  The transmission spectrum for a waveguide without a 

defect layer is shown in Fig. 10a.  Figs. 10b &10c show that the presence of a defect layer, which 

has material parameters of PZT-4 without a piezoelectric effect, results in a slight broadening of 

the bandgap and the appearance of a 100% transmission passband within the bandgap. Changing 

the thickness of the defect layer from cd  (Fig.10b) to 5.1cd  (Fig.10c) moves the 

passband from 263.2/ 01 c  to 262.2/ 01 c  though in this case without changing the 

width of stopband.   

 

5. Conclusion   

The propagation of elasto-electromagnetic coupled SH waves in a quasi-one dimensional 

periodic piezoelectric waveguide with metallized interfaces is considered in this paper. The 

complete dispersion relation with perfectly matched physical fields at the interfaces is described 

by two coupled equations and include information about a coupled elasto-electromagnetic wave 

and acousto-optic resonances called phonon-polariton (Piliposyan et al., 2014). Without the 

piezoelectric effect the two equations decouple, one describing the propagation of an 

electromagnetic wave in a photonic crystal and the other an acoustic wave in a phononic crystal.   

In the case when there are not full interfacial contacts the wave process is described by 

only one dispersion relation which in the absence of the piezoelectric effect describes the 

propagation of only one acoustic wave in a phononic crystal. In this case only one coupled 

http://www.sciencedirect.com/science/article/pii/S0041624X13002783


electro-elastic wave propagates in the system combining both elastic and electro-magnetic 

effects.  

The structure of wave propagation strongly depends on the ratio of the length of the unit 

cell to the height of the waveguide h  and differences between the elastic and electromagnetic 

properties of the piezoelectric layers. 

 When the unit cell in the waveguide is made from two different constituent materials, wave 

trapping occurs with the waves exponentially decaying in one layer, creating a stop band below 

the lowest of the two cut-off frequencies where no propagation is possible.  

  In the case of electrically shorted interface conditions band gaps exist also when the 

constituent materials in the cells of the waveguide are identical. In this case the periodic system 

becomes a periodic system of interfaces where the magnetic field intensity experiences 

discontinuity. There is only one cut-off frequency and instead of trapping there are evanescent 

modes propagating below the cut-off frequency. The reflection of an electro-elastic wave is 

caused by the equipotential condition on the interfaces. Since the parameter of electromechanical 

coupling is normally very small, the reflection coefficient experiences a sharp increase near the 

resonances providing sharpening of certain properties compared to periodic structure made from 

different piezoelectric layers with both metallised and non-metallized interfaces.  

 Alternating boundary conditions on the waveguide walls for a piezoelectric waveguide 

with straight parallel boundaries introduce new effects and opens a possibility for new 

developments in the design of stopband acoustic homogeneous guides in which stopbands occur 

only due to alternating conditions on the walls. The existence of completely flat curves within 

the frequency gaps indicate standing waves with no propagating energy and this is associated 

with mode trapping. The results show situations where the stopbands achieve minimum values 

for the Bloch parameter strictly within the first Brillouin zone. This is related to the phenomenon 

of slow waves (Figotin and Vitebskiy, 2006) and in this case periodic guides with boundary 

perturbations exhibiting this behaviour can be easily constructed. These have many important 

potential applications, including for example improved elastic delay lines.   

 Controlling wave propagation properties including slowing down the propagation of light 

or sound or creating passband inside the stopband is also possible by introducing some disorder 

in periodically layered structures. We have found an analytical expression for the transmission 

coefficient that can be used to accurately detect the position of the passband inside a stopband. 

This can have applications in designing tunable waveguides which can even be made of layers 

of identical piezoelectric crystal separated by metallized interfaces.  
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