

Accepted Manuscript

Efficient Availability Assessment of Reconfigurable Multi-State
Systems with Interdependencies

Hindolo George-Williams, Edoardo Patelli

PII: S0951-8320(16)30128-4
DOI: 10.1016/j.ress.2017.05.010
Reference: RESS 5830

To appear in: Reliability Engineering and System Safety

Received date: 7 June 2016
Revised date: 3 March 2017
Accepted date: 3 May 2017

Please cite this article as: Hindolo George-Williams, Edoardo Patelli, Efficient Availability Assessment
of Reconfigurable Multi-State Systems with Interdependencies, Reliability Engineering and System
Safety (2017), doi: 10.1016/j.ress.2017.05.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.ress.2017.05.010
http://dx.doi.org/10.1016/j.ress.2017.05.010

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• An extension of the load-flow simulation approach
to model interdependencies, multi-commodity sys-
tems, and limited maintenance scenarios in multi-
state systems.

• We define a straight-forward procedure for uncou-
pling the interdependencies in systems and propose
an intuitive mathematical model for their represen-
tation.

• An intuitive approach that requires less human ef-
fort and, therefore, robust to human-induced er-
rors.

• We also propose a real-time component ranking
procedure to help decide the sequence of main-
tenance response that maximises system perfor-
mance.

• To enhance the efficient extraction of multi-state
system availability and performance indices from
the simulation result, easily implementable algo-
rithms have been proposed

• Implemented in the open-source uncertainty quan-
tification toolbox, OpenCossan, and, therefore
readily available.

1

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Efficient Availability Assessment of Reconfigurable
Multi-State Systems with Interdependencies

Hindolo George-Williamsa,b, Edoardo Patellia,∗

aInstitute for Risk and Uncertainty, Chadwick Building, University of Liverpool, Peach Street, Liverpool L69 7ZF, United Kingdom
bInstitute of Nuclear Engineering & Science, National Tsing Hua University, Hsinchu, Taiwan

Abstract

Realistic engineering systems often possess attributes that complicate their availability assessment. Notable exam-
ples being complex topology, multi-state behaviour, component interdependencies, and interactions with external
phenomena. For such systems, analytical techniques have limited applicability, and efficient simulation techniques
are therefore required. In this paper, a novel load-flow simulation approach is proposed to simplify the availability
assessment of realistic engineering systems. The approach is simple and generally applicable to systems, including
those with limited maintenance teams, reconfiguration requirements, and multiple commodity flows. A novel metric
for assessing maintenance inadequacy and a real-time component ranking procedure are also introduced. In real-time
ranking, failed components are assigned maintenance priorities during simulation in accordance with how much their
availability improves system performance and how many idle maintenance teams there are. This eliminates the need
for component importance ranking algorithms prior to simulation, which for some systems are unnecessary. The ap-
plicability of the approach is demonstrated by analysing an offshore plant producing oil, gas, and water. The solution
obtained is compared against another Monte Carlo simulation-based solution that requires the enumeration of the
plant’s cut-sets. The proposed approach is shown to be more intuitive, robust to human-induced errors, and require
less human effort.

Keywords:
Multi-State System, Simulation, Interdependencies, Availability, Limited Maintenance, Multi-Commodity

1. Introduction

Engineers and system designers are under immense
pressure to build systems robust and adequate enough
to meet the ever increasing human demand and expec-
tation. Unavoidably, the resultant systems are complex
and highly interconnected, which ironically constitute a
threat to their resilience and sustainability. Majority of
the systems we interact with on a day-to-day basis exist
as multi-state interdependent systems. Two systems are
interdependent if at least a pair of nodes (one from each
system) are coupled by some phenomena, such that a
malfunction of one affects the other. The coupling phe-
nomenon could be proximity in space [1], functional
dependence/interdependence [2], or both [3]. A water
distribution network, where pumps and other electrical

∗Corresponding author
Email addresses: H.George-Williams@liv.ac.uk (Hindolo

George-Williams), epatelli@liverpool.ac.uk (Edoardo Patelli)

power-driven appliances rely on the reliability and per-
formance of the power grid is a typical example.

The components of a system are normally prone to ran-
dom failures arising from their intrinsic properties or in-
duced failures stemming from targeted attacks [4], ex-
treme environmental events [5], and erroneous human-
system interactions. In interdependent systems, an un-
desirable glitch in one system could cascade and cause
disruptions in coupled systems. The cascade could be
fed back into the initiating system and the overall conse-
quences may be catastrophic [1, 6]. This was made clear
by the massive blackout that struck Italy in September
2003, affecting the internet network in the process. In
the same year, North America was hit by a blackout that
lasted 4 days, affecting parts of USA and Canada [7].
To minimize the effects of these failures, some interde-
pendent systems are equipped with reconfiguration pro-
visions. This normally entails transferring operation to
another node, rerouteing flow through alternative paths,
or shutting down parts of the system. It is, therefore, vi-

Preprint submitted to Reliability and System Safety May 8, 2017

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

tal to analyse the system’s performance under the spec-
trum of possible vulnerability conditions, for adequate
planning of defensive and contingency measures [8].

In general, the achievement of maximum overall system
performance is desirable. However, in many applica-
tions, it is more important to recover the required system
performance in the shortest possible time after compo-
nent failure. This is the case, for instance, in nuclear
power plant risk assessment, where the time-dependent
recovery probability of offsite power is an important in-
put to the overall safety of the plant [9]. Hence, system
recovery time is not only a performance parameter, but
a fundamental safety parameter as well. Given the pos-
itive correlation between costs and resources (human,
financial, and material) required to maintain a system,
under economic constraints, there may not be sufficient
resources for a speedy recovery. Therefore, an informed
and robust decision making process would dictate that
the decision support tool used be capable of modelling
relevant realistic aspects of the system, including the
possibility of limited recovery response.

Various models have been developed to study the ef-
fects of interdependencies on systems [8, 10]. How-
ever, a good number of these only assess their response
to targeted attacks, variation in some coupling factor
or the relative importance of system nodes [1, 2, 11].
According to Ouyang [10], these models alone cannot
sufficiently analyse the performance of interdependent
systems. He intimated that flow based approaches, tak-
ing into account material or service flow across the sys-
tem were required. When faced with the situation of
random node failures, a complete reliability and avail-
ability analysis should be performed. However, renown
analytical multi-state system reliability evaluation tech-
niques like Binary Decision Diagrams (BDD) [12, 13],
Sum-of-Disjoint-Products (SDP) [14], and the Univer-
sal Generating Function (UGF) [15–17] are of very lit-
tle use to the evaluation of these systems. Their in-
applicability is amplified if, nodes can undergo non-
Markovian transitions, their restoration can be delayed,
the system is reconfigurable or in the case of BDD and
SDP, the system is complex, such that state enumera-
tion is infeasible. In spite of these challenges, there
are a few successful attempts at their application to sys-
tems with some form of dependencies. Levitin, for in-
stance, in [18] and [15], respectively applied the UGF
approach to systems with lateral dependencies and sys-
tems prone to common-cause failures. Both instances,
however, involved only one system with a single com-
modity. Stochastic Petri Nets [19, 20] and Bayesian
Networks [21] are another set of powerful computa-

tional tools for reliability modelling of systems with de-
pendencies. However, they also require state enumera-
tion when applied to multi-state systems, which may be
infeasible for some complex system architectures.

Certain realistic aspects of interdependent systems, as
previously mentioned, are implementable only by sim-
ulation algorithms [22]. However, most multi-state sys-
tem simulation algorithms rely either on the structure
function of the system or enumeration of the system’s
path or cut sets [22, 23]. Both procedures get cumber-
some even for complex systems of moderate size, and
with them, the shut down and restart of components (a
type of reconfiguration) is non-intuitive [24].

1.1. Proposed Approach

The authors recently presented a load-flow simulation
technique for the analysis of multi-state systems [24]. In
the technique, each system node is modelled as a semi-
Markov stochastic process and the system structure as
a directed graph. An event-driven simulation is used to
reconstruct the random failure and repair events of sys-
tem nodes. As nodes go through their cycle of failures
and subsequent repairs, their capacities change, and the
interior-point algorithm [25] is used to determine the
performance of the system. The approach employs an
adjacency matrix to define the structure of the system
and derives the equations of flow across the entire sys-
tem in the form of matrices. This particularly makes
it suitable and intuitive for any system architecture and
easily programmable on a digital computer. In terms
of applicability, it outperforms other multi-state sys-
tem analysis approaches, since it does not require state
enumeration or cut set definition. It considers realistic
system aspects like flow losses, reconfiguration, forced
transitions, and multiple competing demands. The ap-
proach, however, is only applicable to homogeneous in-
dependent systems and does not consider restrictions on
the number of simultaneous maintenance actions that
can take place in the system.

In this work, the load-flow simulation approach is ex-
tended to support interdependencies, multi-commodity
systems, and model limited maintenance team scenar-
ios. Though largely built on the principles proposed in
the original work [24], this work makes a series of new
contributions as highlighted thus;

• We define a straight-forward procedure for uncou-
pling interdependencies in systems and propose
an intuitive mathematical model for their adequate
representation.

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• Two recursive algorithms are proposed to accu-
rately account for these interdependencies and
compute the performance of the system during
simulation.

• To enhance the efficient extraction of system avail-
ability and performance indices from the simula-
tion result, easily implementable algorithms have
been proposed. Availability, as used here, refers
to the ability of a system to function as expected.
It, therefore, encompasses the reliability, the out-
put characteristics, and the recovery probability of
the system after its deviation from expected perfor-
mance.

• System reliability and output characteristics are al-
ready very common system availability indices.
We use the recovery probability and a new met-
ric for assessing the adequacy of the maintenance
process as additional system performance indices.

• We also propose a real-time component ranking
procedure to help decide the sequence of main-
tenance response that maximises system perfor-
mance. In practice, the system operator would use
this procedure whenever a scenario dictating pref-
erential maintenance arises.

• Finally, a simple but important modification is also
made to the original system flow calculation proce-
dure, resulting in appreciable gains in computation
time.

In summary, this work extends the applicability of the
load-flow simulation approach and improves its compu-
tational efficiency.

1.2. Paper Structure

The remainder of the paper is organised as follows; the
next section is dedicated to providing an overview of the
relevant modifications to the load-flow approach to in-
clude interdependencies. In this section, a generalised
procedure for assessing the availability of interdepen-
dent multi-state systems is also presented. Details of
the simulation procedure and availability assessment al-
gorithms are respectively provided in Sections 3 and 4.
Section 5 addresses the availability assessment problem
of an offshore multi-commodity plant. The plant is used
to illustrate the systematic roll out of the solution strat-
egy developed in Section 2 to a practical problem of in-
dustrial relevance. The usefulness of the new metric for
maintenance inadequacy and real-time component rank-
ing are also illustrated here. Implications of the results,

efficiency of the approach and its limitations climax this
section. Finally, the closing remarks; drawing conclu-
sions on the proposed approach make up Section 6.

2. Implementation

1
2 3

4 5

7 89 10

11

12

S1

S2

S3

S4

Commodity A
Commodity B
Commodity C
Commodity D6

13

n m
One-way dependence
of m on n

Figure 1: An example of a typical interdependent system

In this section, the relevant principles governing the
modelling of the system and its components are de-
scribed. They are based on the earlier work presented
in [24], as a result, premium is placed only on the nec-
essary modifications. For this purpose, we use the arbi-
trary system shown in Fig. 1, which could be a binary-
state system or a multi-state flow network [26]. It con-
sists of 4 subsystems and 13 nodes, transporting 4 com-
modities. The number of subsystems is normally de-
fined by the number of commodities or more generally
by the number of closed-loops. This implies, a sys-
tem could be composed of multiple subsystems even
when only one commodity type is involved. Nodes 1, 2,
and 3, transporting commodity-B, respectively require
commodity, A, C and D to operate and nodes 9 and
13 in subsystem S 3 rely on flow from subsystem S 1.
Also, a certain failure mode of node 5 in subsystem S 1,
triggers the partial failure of node 7 in subsystem S 4.
This type of interdependence is called one-way depen-
dence, since the failure of node 5 affects node 7, but
state change events in node 7 have no effect on node
5. Even for a system this simple, deriving all cut-sets
is time-consuming and error-prone. In the remainder of
this section, a generally applicable procedure to over-
come these complications is presented.

2.1. Decoupling the System

To start the modelling process, all the elements affect-
ing the operation of the system are identified and num-
bered as illustrated in Fig. 1. This is followed by
the identification and definition of all the node depen-
dencies. Constituent systems (hereafter referred to as
subsystems), determined by the different commodities

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

flowing in the system or the number of closed-loops are
assigned subsystem IDs. For each subsystem, the asso-
ciated nodes are identified, the subsystem graph model
developed and the relevant flow equation parameters ob-
tained (see [24, 27] for details). In identifying the nodes
of a subsystem, only nodes with actual commodity flow
are considered. Nodes representing external common-
cause initiators, environmental events, or human-system
interactions do not belong to a subsystem. Next, the
possible states of each node are identified and modelled
as outlined in [24].

Consider the system presented in Fig. 1, with fo-
cus on load dependencies. Node 2, for instance,
uses commodity-C to drive its operation but transmits
commodity-B. One would say it exhibits a dual opera-
tion mode, operating both as a sink and a transmission
node. The sink mode directly influences flow in S 3,
while the transmission mode has a direct influence on
flow in S 2. It’s, therefore, logical to separate the node
into its constituent nodes, each representing a mode of
operation. The node representing the sink mode is as-
signed a new ID while the other retains the ID of the
original node. A load-source dependency exists be-
tween the nodes, since the transmission node is inca-
pacitated if flow into the sink node is inadequate. They,
therefore, make a load-source pair, with the transmis-
sion node being the load, and the sink node, the local
source. This procedure is applied to all load depen-
dency relationships in the system to obtain the follow-
ing load-source pairs, {2, 14}, {3, 16}, {1, 18}, {13, 15},
and {9, 17}, as highlighted in Fig. 2.

Local sources, otherwise known as support nodes in
load-source pairs are modelled as binary-state objects.
State 1, designated active, and assigned a capacity, l,

1

2 3

4 5

6

7 89 10

11

12

S1

S3

S2

S413

14
15

1617

18

Figure 2: Interdependent system showing load-source pairs

signifies the availability of the dependent node. State

2, with 0 capacity, and designated inactive, depicts oth-
erwise. l is the minimum level of support required to
operate the node in the transmission mode, and in prac-
tical cases represents the load rating of that component.
A 4kW rated 3-phase centrifugal pump, for instance,
would have l = 4kW.

To incorporate these interdependencies in the compo-
nent model proposed in [24], two additional parameters;
L and D are introduced. Let i be the index of a node,
with Li = { j, l} defining its load dependency with node
j. The dependency defined by Li is interpreted as, node
i requiring a minimum of l level of flow from node j to
operate. When i and j belong to different subsystems,
the subsystems are said to be interdependent, since a
state change in either node affects flow in both subsys-
tems. If i has load dependency relationships with multi-
ple nodes, Li takes the form of a 2-column matrix; each
row defining its relationship with another node. Param-
eter Di = {d j1, d j2, d j3, d j4}u×4 | j = 1, 2, ..., u − 1, u de-
fines the single-way causal-effect relationship between
node i and other nodes. This type of coupling specifies
induced state changes in other nodes following a state
change in i. d j1 is the state of i triggering the event,
d j2; the affected node, d j3; the state the node has to be
in to be affected, and d j4; its target state on occurrence
of the event. Each row of Di, therefore, defines the be-
haviour of an affected node, and u, the number of rela-
tionships. If i and the affected node, d j2, belong to dif-
ferent subsystems, the subsystem the latter belongs to is
dependent on the subsystem of the former. In Fig. 2, for
instance, S 4 depends on S 1, consequent of the relation-
ship between nodes 5 and 7. Suppose state 3 of node 5
triggers the partial failure (state 2) of node 7. If this hap-
pens only when node 7 is in state 1, their dependency is
defined by D5 as,

D5 =
(

3 7 1 2
)

(1)

Equation 1 effectively defines the state change induced
in node 7 by a state change in node 5. Using the no-
tation described in the preceding paragraph, the expres-
sion states if node 5 makes a transition to state 3 whilst
node 7 is in state 1, the latter is forced through a tran-
sition to state 2. Similarly, if a state change in node 7
triggered a state change in node 5 or any other node, D7

would be required to express this mathematically.

The final step entails the derivation of the dependency
tree relating the subsystems, and the ranking of these
subsystems according to their position on the tree. In the
ranking procedure, the independent subsystem is chosen
as reference and assigned rank 1. The other subsystems

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

are ranked in increasing order of their longest distance
from this reference. Fig. 3 shows the dependency tree
for an arbitrary 4-subsystem system (different from the
system in Fig. 1), where the designation [a, b] speci-
fies that the rank of subsystem a is b. If two subsys-

[1,1]

[2,3]

[4,2]
[3,4]

Figure 3: Dependency tree for a 4-subsystem system

tems are interdependent, their mutual link on the tree
is discarded, and the ranking done as earlier described.
However, if after discarding the mutual links, a node is
totally cut off from the rest of the tree, it’s assigned the
same rank as its dependent pair on the tree. If it’s in
relationship with multiple nodes, its rank, b, is given by
max (R), R being the set of ranks of all subsystems it
is associated with. Fig. 4 is an illustration of the rank-

1

2 3

4

5
6

[1,5]

3

[4,3]

[5,4]
[6,2]

[2,1]

[1,5]

[2,1] [3,3]

[4,3]

[5,4]
[6,2]

stage 1 stage 2

Figure 4: Dependency tree: Subsystem ranking procedure

ing procedure for a system composed of six subsystems
with interdependencies. Starting with the tree on the
left, all mutual links are discarded, leaving node 2 as
the only node without a parent. Hence, it is taken to be
the reference, and the nodes ranked to complete stage
1 of the ranking procedure. Discarding the mutual links
leaves node 3 completely isolated. However, it is in rela-
tionship with nodes 2 and 4, ranked 1 and 3 respectively.
Node 3, therefore, is assigned rank 3; the maximum of
the ranks of the nodes it is associated with.

Let S1, S2, S3 and S4 be the sets of nodes respectively
belonging to subsystems S 1-S 4 of the system presented
in Fig. 1. From Fig. 2, S1 = {4, 5, 6, 15, 17, 18},
S2 = {1, 2, 3}, S3 = {9, 10, ..., 14} and S4 = {7, 8, 16}.
With numbers 1-4 chronologically assigned to subsys-
tems S 1-S 4, the system’s dependency tree is shown in
Fig. 5. With all the subsystems ranked, an indicator reg-
ister, I, of zeros, such that each element corresponds to

[1,1]

[2,2]

[4,2]

[3,2]

Figure 5: Dependency tree for sample interdependent system

a subsystem is defined. This register indicates (by logic
1 in the relevant position) the subsystem(s) affected by
the last node transition.

2.2. Accounting for Dependencies

Let µ be the vector holding the current performance lev-
els of system nodes. When node i makes a transition that
results in a change in its performance level, the current
capacity of its load-source pair, j, is modified. If c{i}x− is
the node’s capacity before transition and c{i}x , its current
capacity, the capacity of node j changes according to
Equation 2. Where (j,µ) denotes the jth element of µ.

(j,µ) = c{ j}x =


0 If c{i}x− > 0 and c{i}x = 0

l If c{i}x− = 0 and c{i}x > 0
(2)

A recursive algorithm is required to account for the
causal-effect relationships between nodes because of the
possibility of nested dependencies. If Di and xi are re-
spectively the dependency matrix and current state of
node i, the following steps summarise the algorithm;

Step 1 Define a register to hold affected nodes and their
target states.

Step 2 Find all nodes affected by the state change (us-
ing Di and xi) and update the register defined in
step 1.

Step 3 Select the last entry, node y, of the register, set
its current state to its target state and delete its
records from the register.

Step 4 Using Dy and xy obtained in step 3, in place of
Di and xi, repeat steps 2 and 3.

Step 5 Repeat steps 2 through 4 until the register de-
fined in step 1 is empty.

On each node transition, µ is updated, and any load de-
pendencies accounted for as described by Equation 2.

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2.3. Node Reconfiguration

Node i is shut down if its flow falls to or below its
threshold, Λi, or if flow through its load-source pair, j,
falls below l. If a node is shut down, its current and next
states are saved, its next transition time set to ∞, and
its current capacity, to 0. When the condition leading
to shut down is resolved, the node is restarted and re-
stored to its previous state. The period, tshi f t, spent in
shut down is accounted for by shifting its next transi-
tion time to t′next + tshi f t, where t′next is its transition time
before shut down. This time shifting is repeated for the
node’s next preventive maintenance due time, if its pre-
ventive maintenance interval is a function of the time
spent in operation.

In practice, maintenance durations are not affected by
node shut down events. Therefore, if the next state of
a node is superior in performance and reliability to its
current, only its current capacity is modified. Modi-
fying its next transition time would mean delaying its
restoration, which may negatively affect the simulation
outcome. Algorithms for shut down and restart of nodes
are presented in [24]. However interdependencies are
not considered, therefore the following modifications
should be adopted.

Let δ be the set of all nodes currently in shut down state
and η, the vector of system node flows. Node i is added
to δ if and only if its shut down is due to the condi-
tion, (i, η) ≤ Λi. As a rule-of-thumb, nodes that do not
satisfy the threshold flow condition are shut down first.
Next, flows through sink nodes that have load-source
pairs are assessed. If for a sink node, j, (j, η) < l, its
load-dependent node, i, is shut down. The same order is
followed for node restart, where node flows are assessed
for satisfaction of the relevant conditions. If the condi-
tion (j, η) = l is met for a sink node, its load-dependent
pair, i, in shut down is restarted.

2.4. Determining system performance at time t

The goal of system analysis is to determine the amount
of commodity flow through output nodes. This in turn
requires that flow is calculated after every transition that
results in a performance level change of a node. Owing
to node interdependencies, a state change in one node
may give rise to state changes in a series of other nodes.
The system may go through a number of performance
levels in the process, but the effective performance is
the one attained after the last transition. A recursive
algorithm is employed for this purpose, as outlined thus;

Step 1 Define µt; a temporary variable and set its value
to µ (i.e., µt = µ). Where µ is the vector of
current node capacities.

Step 2 In µt, set the capacities of all the nodes in δ to
their values before shut down. This step is re-
quired to determine which nodes in shut down
can be restarted.

Step 3 Using I, select the highest ranked subsystem
which indicator is 1 and calculate its flow us-
ing µt. The highest ranked subsystem corre-
sponds to the subsystem with the smallest rank.
If multiple subsystems meet this requirement,
randomly select a candidate. Go to step 8 if there
are no non-zero elements in I.

Step 4 Set in I, the indicator for the subsystem in step
3 to 0.

Step 5 Restart and shut down nodes according to the
procedure outlined in Section 2.3.

Step 6 Following a node transition, the subsystem host-
ing the node is identified, and its position in I
set to 1. This is only required if the shut down
or restart of the node is a direct effect of a state
change in its load-source pair (see Section 2.1).

Step 7 Repeat steps 1 to 6, making sure interdependen-
cies are accounted for, and µ updated on every
transition.

Step 8 Get the flows through the output nodes, save as
a function of time and terminate algorithm.

3. The System Simulation Procedure

Simulation normally entails repeated calculation of sys-
tem output, as nodes undergo their transition cycles.
Calling the interior-point algorithm for every transition,
as proposed in [24], may impose unprecedented com-
putational burden. This is because, a certain system
configuration may be attained more than once, mak-
ing multiple calculations for the same configuration a
possibility. To overcome this problem, it’s desirable to
determine node flows for all the possible combinations
of system node performance levels prior to simulation.
Let β be the matrix holding these combinations and C{i}u ,
the set of unique performance levels of node i. β is an
M ×∏M

i ni matrix; M being the total number of nodes
excluding external nodes, and ni, the number of unique
performance levels of node i. For instance, if the ca-
pacity of node 1 is defined by C = {10, 20, 0, 0, 10},
C{1}u = {0, 10, 20} and n1 = 3. For each combination
of performance levels, the corresponding node flows are
calculated and recorded in a second matrix, F. During

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

simulation, β is searched for the combination of node
performances corresponding to the current system con-
figuration, and its pre-stored node flows in F simply
read off. By this, flow calculation for every configu-
ration is carried out only once. It is worthwhile noting
that for large systems, β gets prohibitively large, such
that the time to search for a configuration exceeds its
flow calculation time. The search time, however, can
be reduced by smart allocation and search procedures.
Therefore, it’s advised that the average times to com-
plete both procedures are compared prior to simulation.

For an interdependent system like the one in Fig. 1,
the procedure described above is carried out for each
subsystem, and in each case, only nodes belonging to
that subsystem are considered.

3.1. Node Transition Parameters

Determining the transition time, tnext, of nodes is the
core of every simulation algorithm. Given the current
state, x, of a node, all the possible transitions from x are
sampled, and their minimum value, tmin, selected. The
transition producing tmin is the node’s next transition,
occurring at tnext = t + tmin, t being the current simula-
tion time. If tmin is associated with multiple transitions,
one of them is randomly selected, as specified by the
sampling algorithm in [24].

3.2. Forcing Maintenance

Algorithm 1 Forcing maintenance: Limited dedi-
cated maintenance teams
Require: m1, m′1, m2, m′2, h1 and h2

1: k ← 1 . initialize indicator
2: while k ≤ 2 do
3: v← mk − m′k . get idle teams
4: while v > 0 and hk , ∅ do
5: select node according to priority
6: make maintenance state the current state x
7: sample next transition using x
8: delete node from hk

9: v← v − 1, m′k = m′k + 1
10: end while
11: k ← k + 1
12: end while

With limited maintenance teams, maintenance actions
are not instantaneous. Therefore, the transition from a
degraded state or to Preventive Maintenance has to be

Algorithm 2 Forcing maintenance: Limited shared
maintenance teams
Require: m, m′, h

v← m − m′ . get idle teams
while v > 0 and h , ∅ do

select node according to priority
make maintenance state the current state x
sample next transition using x
delete node from queue (h and one of h1 and h2)
v← v − 1, m′ = m′ + 1

end while

manually executed during simulations. Let m1 denote
the number of teams dedicated to Corrective Mainte-
nance (CM), m2, the number of Preventive Maintenance
(PM) teams, m′1, the number of busy CM teams, and
m′2, the number of busy PM teams. Following its tran-
sition, a node is added to the set, h1, of nodes requiring
repairs if its new state is directly linked to a CM state,
and to h2, if its PM is due. At time, t, maintenance is
forced if there are idle maintenance teams and h1 or h2

is not empty. This procedure is described by Algorithm
1, where k = 1 and k = 2 respectively denote CM and
PM.

If PM is carried out only when the system is perfect,
the algorithm is terminated after the task for k = 1 if
at least one of h1 , ∅, m′1 > 0, and m′2 > 0 is true.
Each of these conditions means either there is a failed
component waiting to be repaired or maintenance is in
progress, any of which suggests the system is not in a
perfect state. In most applications, PM of a node is de-
layed if it is in a degraded state until after CM. If this is
the case, a node belonging to both h1 and h2 is rejected
when selected during the PM task (k = 2) of the algo-
rithm. Also, most systems are assumed to operate under
a perfect maintenance scenario. This means, nodes are
repaired to an as-good-as-new condition, making any
pending PM tasks for a repaired node no longer nec-
essary. In such cases, a node’s records are deleted from
both h1 and h2 after CM.

Algorithm 1 is based on the assumption that CM and
PM are carried out by different teams (dedicated main-
tenance). It is, however, adaptable to systems where
the same team can carry out both maintenance actions
(shared maintenance). Let m be the total number of
maintenance teams, m′, the number of busy mainte-
nance teams, and h = (h1 ∪ h2), the set of nodes in the
maintenance queue. Algorithm 2 outlines the procedure
for forcing maintenance in shared maintenance scenar-

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ios.

3.3. Maintenance Priority & Real-time Ranking

In practical applications, system availability is com-
puted based on some predefined maintenance priority
ranking of nodes [22]. However, for complex systems,
node priority ranking is either impossible, time con-
suming, error-prone, or requires component importance
ranking algorithms [28, 29]. Priority maintenance is re-
quired to reduce the maintenance response inadequacy
for critical nodes, a measure of how long a node waits
in the maintenance queue. It depends on the number
of CM teams, the failure characteristics of nodes, and
the efficiency of the maintenance teams. This implies, a
system may have fewer CM teams than nodes and still
not require priority maintenance if node failures are rare
or maintenance durations are relatively short. For such
systems, pre simulation priority ranking is a mere waste
of time and computing resources. In view of this, real-
time node ranking, where nodes are ranked during sim-
ulation is proposed. Prior to forcing maintenance, failed
nodes are arranged into groups, based on the number of
available CM teams. Let v1 = m1 − m′1 be the num-
ber of idle CM teams at time t, and n1, the number of
failed nodes. If there are more failed nodes than there
are available CM teams (i.e., v1 < n1 | v1 , 0), all
the possible combinations of nodes that can be repaired
are generated. This produces

(
n1
v1

)
groups, each contain-

ing v1 failed nodes. The nodes in the first group are
temporarily set to their expected performance levels af-
ter CM, whilst those in the other groups remain in their
current states. The expected system performance, given
the new node states is determined, and the procedure re-
peated for all the node groups. The maintenance of the
nodes in the group with the best system performance is
initiated.

Real-time ranking, therefore, does not only take into
consideration the current system conditions, but takes
place only when necessary. The latter being an im-
portant computational efficiency feature, especially for
complex systems. The ranking procedure described can
be replicated for PM and shared maintenance scenarios.
In the case of PM, performance levels of nodes are set
to their expected values during PM.

3.4. The Simulation Algorithm

With the relationships between system nodes defined,
a Monte Carlo simulation algorithm is required to re-
construct the operation of the system, and derive its

availability indices. An efficient event-driven and non
system-specific simulation algorithm is proposed for
this purpose. It proceeds by going through sampled
node transitions, determining the flows through output
nodes, and collecting these flows as a function of time.
Starting with nodes in their initial states at time, t = 0,
the system’s initial performance is determined, and the
next transition times of nodes sampled. The simulation
jumps to a new time, t = tmin, where tmin is the minimum
of the next transition times of nodes. Nodes with transi-
tion times equal to tmin are identified, the required state
changes effected, their next transition times sampled,
the new system performance deduced, and the next sim-
ulation jump determined. This continues until the mis-
sion time, tm, is exceeded. The relevant availability and
performance indices are derived at the end of the sim-
ulation from the saved system performance history. To
ease the computational burden, flow is calculated only
if at time, t, the current and previous system node ca-
pacity vectors (µ and µold) are different. The simulation
procedure is summarised thus;

Step 1 Initialise the register to store the output node his-
tory, and calculate flows across all the subsys-
tems, as described in Section 3. Define the mis-
sion time, tm, number of simulation samples, N,
and number of maintenance teams, (m1,m2).

Step 2 Define, µ from the initial states of nodes, and the
initial output node performance (from step 1).
Set µold = 0, δ = h1 = h2 = ∅, t = m′1 = m′2 = 0,
and all the elements of I to zero.

Step 3 Sample the next transition time for all the nodes,
and update τ (the register holding node transi-
tion times). Also determine their PM due times
(if applicable), and store in t pm.

Step 4 Identify the nodes with transition time equal to
t. Update their current states, µ, h1, and account
for any interdependencies.

Step 5 For each node in step 4, determine its subsys-
tem, and set the indicator of the latter in I to 1.
Sample the node’s next transition, and update τ.
If it is just from PM, determine its next PM due
time, and update t pm.

Step 6 Determine nodes whose value in t pm equals t,
and add them to h2.

Step 7 Force maintenance, as described in Section 3.2,
if there are nodes in the maintenance queue and
there are available maintenance teams. That is,
h1 , ∅ & m1 −m′1 > 0 or h2 , ∅ & m2 −m′2 > 0.

Step 8 If µold , µ, determine the system performance,
as outlined in Section 2.4.

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Step 9 Set µold = µ, and determine the next system
transition time, t. This is given by the mini-
mum of all the possible transition times. The
next simulation jump, therefore, occurs at time,
t, where t is given by, min(min(τ),min(t pm)).

Step 10 Repeat steps 4 through 9 until t exceeds tm.
Step 11 Repeat steps 2 through 10, N times, and com-

pute the relevant availability indices.

4. Obtaining the Availability and Performance In-
dices

Details on frequently used availability and performance
indices are available in many standard reliability texts
[15, 30]. However, the following indices; reliability, re-
covery probability, instantaneous availability, steady-
state availability, instantaneous output, and expected
output have been considered, for completeness.

0 t1 t2 t3 t4 t5 t6 tm t
φ1

φ2

φ3

Ψ

Figure 6: Example of a system performance history for one Monte
Carlo realisation

During system simulation, a node transition results in
system transition only if it leads to the attainment of a
new system performance level. The main task, there-
fore, is the collection of these performance levels and
their corresponding attainment times. For a simulation
sample, let system performances be stored in Ψ, as they
are attained, and the corresponding transition times, in
t.

Ψ = {ψi} j | ψi ∈ Φ, t = {ti} j | 0 < ti ≤ tm (3)

Let these be defined according to Equations 3, where ti
is the ith transition time, ψi, the corresponding system
performance, and j, the total number of system tran-
sitions. Φ = {φ1, φ2, ..., φk} is the set of possible sys-
tem performances obtained from the simulation, where
φz | z = 1, 2, ..., k is the zth system performance level and
k, the number of possible performance levels. Shown

in Fig. 6 is the performance history of a hypotheti-
cal 3-performance level system. A system simulation
of N samples contains N such histories, and are used
to derive the various reliability and availability indices.
The algorithms proposed for this purpose are based on
an efficient translation of the system simulation history.
Translating the multi-state performance history, Ψ, to
a binary string effectively reduces the multi-state reli-
ability problem to its simpler binary-state counterpart.
This enhances the application of well-known binary-
state system reliability algorithms to the calculation of
multi-state system reliability and performance indices.

4.1. System Reliability and Recovery Probability

The reliability, R(t), of a repairable system at time, t,
is the probability that the system will not fail between
times 0 and t, given it was new or repaired to as-good-
as-new at time 0. Failure is relative, and depends on the
type of system and the success criteria set by the ana-
lyst. For multi-state systems, it is normally defined with
respect to the system operating below a certain perfor-
mance level. The likelihood that the system will be re-
stored to this performance level in time, t, after failure,
is defined by its recovery probability, r(t).

Consider the system represented by Fig. 6, and let it
be considered failed when operating below φ3. Fig. 7

0 t1 t2 t3 t4 t5 t6 tm t
φ1

φ2

φ3

tr1tf1 tr2

tf2

1 00 01 0 1 1

Ψ

Figure 7: System performance history showing failure and recovery
times

shows its performance history for one simulation sam-
ple, with annotations portraying the physical meanings
of failure and recovery. t fi is the time the system takes
at φ3 before the ith failure, and tri , the corresponding
recovery duration. If the transitions resulting in system
performance of φ3 are replaced with 1, and 0, otherwise,
the system performance history is translated into a string
of 1’s and 0’s, as shown in Fig. 7. This string is used
in conjunction with t to derive the reliability and other

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

performance indices of the system. For instance, system
failures and recovery are easily identified respectively
by the positions of the sub strings ‘1 − 0’ and ‘0 − 1’
in the string. If these positions are defined by vectors
σ f and σr, the sets of system failure and corresponding
recovery times can be obtained from t. These sets re-
spectively define the failure and recovery time density
functions, f (t f) and f (tr) of the system. Their corre-
sponding cumulative density functions, F(t f) and F(tr)
are used to deduce R(t) and r(t) from 1 − F(t f) and
1 − F(tr) respectively. For a multi component system
assumed initially perfect (which is the case if reliability
calculation is of interest), only the first failure times, t f1 ,
of each simulation sample are used to define f (t f). This
is explained by the fact that, depending on the structure
and properties of its components, a system may have
one or more components in a degraded state and still at-
tain/maintain the required performance level. It is the
case, for example, in a 2-branch, purely parallel system,
where, one branch is sufficient to attain nominal system
performance. Though both yield the same performance,
the system with only one branch available has a higher
probability of failure. System failure times yielded in
this case, therefore, underestimate the reliability of the
system. A system’s performance history alone cannot
say exactly the states of its nodes at system recovery. It
is, therefore, impossible to determine whether higher or-
der failure times, t f2 , t f3 , ..., t f j , were yielded by the per-
fect system. Though this is possible by collecting the
system state vector (vector of node states) at every tran-
sition, it is a computationally expensive option. Hence,
system reliability, redefined as a function of first failures
only, is expressed as, R(t) = 1 − F(t f1).

A system’s reliability and recovery probability have
been shown to be derived from the cumulative density
functions of its failure and recovery times respectively.
These density functions are directly obtainable from the
system performance history via an approximation tech-
nique. With the failure and recovery times collected, the
mission time, tm, can be divided into time-steps, δt, and
the average contribution of each failure time, t fi , and
recovery time, tri , to each time-step estimated. The ac-
curacy of the estimates is determined by how small δt
is, relative tm. It’s, however, worthwhile noting that the
discretisation is only required to estimate the instanta-
neous performance indices, the actual simulation does
not require time-steps. Outlined below are the steps for
deducing R(t) and r(t) from the system performance his-
tory.

Step 1 Define n; the number of time-steps, such that
n = dtm/δte and φre f , the performance of inter-

est. Set R(t) = r′(t) = {0}n, λ = 1 and count = 0,
where count is the number of recovery times
computed, and λ, the index of the current sim-
ulation history.

Step 2 Given Ψλ and tλ are the performance history of
the λth simulation sample, modify their contents
to include system performances at t = 0 and
t = tm. The performance, ψ j, at the last sys-
tem transition is taken to be the performance at
t = tm.

Step 3 Define a binary string, Θ = {θi} j | i = 1, 2, ..., j,
such that θi = 1 if ψi ≥ φre f , and 0, otherwise.

Step 4 Obtain σ f and σr; the locations of failures and
recoveries in Θ with their corresponding times,
T f and Tr, such that T f =

(
σ f + 1, t

)
and Tr =

(σr + 1, t).
Step 5 Take the first element of T f , determine ch; the

number of time-steps it represents and incre-
ment the first ch values of R(t) by 1. That
is, (1→ ch,R(t)) = (1→ ch,R(t)) + 1; where,
ch = dT f (1)/δte and (1→ ch,R(t)) represents
elements 1 to ch of R(t).

Step 6 Discard the last element of T f if it has more el-
ements than Tr, and determine the recovery du-
rations, rtime, such that, rtime = Tr − T f .

Step 7 Take the first element of rtime, determine ch;
the number of time-steps it represents and in-
crement the first ch elements of r′(t) by 1, such
that, (1→ ch, r′(t)) = (1→ ch, r′(t)) + 1. Also
increment the recovery time counter, count, by
1, such that, count = count + 1.

Step 8 Repeat step 7 until all the elements in rtime have
been covered, and increment the simulation in-
dex counter, λ, by 1, such that, λ = λ + 1.

Step 9 Repeat steps 2 to 8 until λ = N + 1, N being the
number of simulation samples.

Step 10 Compute the reliability as, R(t) = R(t)/N, the
non-recovery probability, as r′(t) = r′(t)/count,
the recovery probability as 1 − r′(t), and termi-
nate the algorithm.

4.2. Instantaneous Availability and Expected System
Output

Instantaneous availability, A(t), is the probability that
system performance at time, t, is greater than or equal to
some reference, φq. The expected system performance
at this time defines the instantaneous output, X(t).

Let P(t) = {pi(t)}k be the vector of instantaneous state
probabilities; the probability of the system being in each

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

of the performance levels, Φ = {φ1, φ2, ..., φk} at time,
t. Assuming the elements of Φ are ordered, such that,
φi < φi+1 < ... < φk, A(t) and X(t) are defined as,

A(t) =

k∑

i≥q

pi(t), X(t) =

k∑

i=1

φi pi(t) (4)

The average values of A(t) and X(t) over the mission
time, respectively define the steady-state availability
and the expected system output. They are obtained from
Equation 4 by replacing the instantaneous state proba-
bilities, pi(t), with their steady-state values, pi. Where,
pi is the fraction of the mission time spent at perfor-
mance level i. Therefore, obtaining a system’s state
probabilities is key to its availability and performance
assessment. The following steps describe how this is
efficiently achieved.

1. Define n; the number of time-steps, such that n =

dtm/δte, k; the number of performance levels, and
set i = 1. Where, i is the system performance level
under consideration.

2. Set pi(t) = {0}n, τi = 0, and λ = 1. Where, τi is the
total time spent at performance level i.

3. Modify the contents ofΨλ and tλ to include system
performances at t = 0 and t = tm.

4. Define a binary string, Θ = {θl} j | l = 1, 2, ..., j,
such that, θl = 1 if ψl = φi, and 0, otherwise.

5. Set the last element of Θ to 0. This ensures the pe-
riod between the last transition and tm is accounted
for, given the transition was to performance level i.

6. Obtain σ; the locations of the sub string, ‘1 − 0’ in
Θ. Compute T1 = (σ, t), T2 = (σ + 1, t), and τi,
such that, τi = τi +

∑
(T2 − T1).

7. Deduce ch1 and ch2; the number of time-steps the
first elements of T1 and T2 respectively represent.
Increment elements ch1 to ch2 of pi(t) by 1, that is,
(ch1 → ch2, pi(t)) = (ch1 → ch2, pi(t)) + 1.

8. Repeat step 7 for the remaining elements of T1 and
T2, and set λ = λ + 1.

9. Repeat steps 3 to 8 until λ = N + 1, compute pi =

τi/Ntm, pi(t) = pi(t)/N, and set i = i + 1.
10. Repeat steps 2 to 9 until i = k + 1, and terminate

the algorithm.

With the system state probabilities known, A(t) is ob-
tained from Equation 4. Often, only the availability with
respect to a set of states or a range of performances is
required. In both cases, deriving all the system state
probabilities is unnecessary and time consuming. How-
ever, the algorithm described above remains applicable,
but with minimal modifications. The availability with

respect to a given condition is obtained by disregarding
step 10 and modifying step 4 to reflect the desired con-
dition (s). For instance, the availability with respect to
system performance being between 10 and 20 would be
implemented as, θl = 1 if 10 ≤ ψi ≤ 20 in step 4.

4.3. Maintenance Response Inadequacy

When there are as many maintenance teams as re-
pairable nodes, the latter spend negligible time in failed
or degraded states before maintenance intervention.
This is not the case with limited maintenance teams,
as failed nodes would have to wait in the maintenance
queue until a maintenance team is available. The proba-
bility that at time, t, a node is in the maintenance queue
defines the system’s maintenance response inadequacy
relative to that node. It is a measure of how severe the
effect of limited maintenance is on the node’s availabil-
ity and contribution to system performance.

With the basis for increasing the maintenance team size
established, a system’s maintenance response inadequa-
cies can be used to determine which nodes to prioritize,
assuming certain node repairs require specific special-
ist skills. The maintenance response inadequacy of a

0 t1 tm t

P
ro
b
a
b
il
it
y

Figure 8: Bounds on maintenance response inadequacy of a sample
system

node is a right continuous increasing function that ap-
proaches a steady-state value with time. It is obtained
by adding the instantaneous state probabilities of the
node’s repairable failed and degraded states. At the sys-
tem level, the maintenance response inadequacies of all
its nodes can be combined, and a bound on the proba-
bility of at least one of them being in the maintenance
queue obtained. These bounds provide a means of com-
paring the efficiency of two maintenance teams with-
out explicit reference to system performance. They also
indicate when, during the mission a maintenance team
size scale-up is actually necessary, an attribute useful to

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ageing systems. Fig. 8, for instance, suggests mainte-
nance team size scale-up for the sample system is nec-
essary only after t = t1.

Though the maintenance response inadequacy indicates
the need to increase the maintenance team size, it does
not state its actual effect on system performance. In or-
der to justify this need under cost constraints, its effect
on system performance should be established. This en-
tails comparing the performances yielded by the system
under zero maintenance response inadequacy, and with
the current maintenance team size. Zero maintenance
response inadequacy is obtained by setting the num-
ber of maintenance teams to infinity. The difference in
performance represents the maximum achievable gain
from scaling up the maintenance team. Its monetary
value can be obtained and compared against the mini-
mum maintenance team scale-up cost, thereby enhanc-
ing a robust decision making process.

5. Case Study: An Offshore Oil Installation

Using the system originally presented in [22], we illus-
trate the application of the proposed approach to inter-
dependent systems and systems prone to limited main-
tenance teams. Preliminary results were presented at
the 26th edition of the European Safety and Reliability
Conference [31].

5.1. Problem Formulation

Figure 9: Schematic of offshore installation

Fig. 9 shows the schematic of the offshore installation.
Fig. 10 describes the failure and repair transitions of
six of its components, the remainder are assumed to
be perfectly reliable. The notations in these figures are
defined thus, TG; Turbo Generator, TC; Turbo Com-
pressor, TEG; Try-ethylene Glycol Unit, EC; Electro-
Compressor, λmn; failure rate from state m to n, and

0 1 2

λ02

λ01
λ12

μ20

μ10

(a) TCs and TGs

0 2

λ02

μ20
(b) TEG and EC

Figure 10: State-space diagrams of components

µmn; repair rate from state m to n. State 0, in Fig. 10
represents the relevant component in its normal oper-
ating mode, and state 1, its partial failure. When par-
tially failed, the component maintains its nominal per-
formance, but with an increased failure probability to
state 2, where it is completely failed.

The Well nominally produces 5.0 × 106 units of gas,
26500 units of oil, and 8000 units of water a day. These
are separated at the Separation Unit, and transmitted via
independent dedicated paths, as shown in Fig. 9. The
nominal gas demand is 3× 106 units at 60bar, and when
gas production exceeds demand, for safety reasons, the
excess is burnt as flare. Additional details on the off-
shore plant are available in [22].

Table 1: Component PM Schedule

PM Type Component Interval (h)
Mean

Duration(h)
1 TC, TG 2160 4
2 EC 2666 113
3 TC, TG 8760 120
4 TC, TG 43800 672

5.1.1. Interdependencies & Reconfiguration

The major components of the plant (TEG, EC, oil pump
and water pump) require continuous supply of elec-
tricity to function. This reliance creates a functional
coupling between the electricity network and the paths
transporting the three commodities. A second func-
tional coupling is introduced by the reliance of TCs
and TGs on dried compressed gas, for their function-
ing. Each TG is rated 13MW, the TEG and EC con-
sume 6MW each, while the two pumps consume 7MW
each. When only one TG is available, the EC and the
water pump are shut down to maintain the production
of oil and gas. To ensure nominal production, a fraction
of dried compressed gas (1.0 × 106 units) is diverted,
compressed by the EC to 100bar, and re-injected into
the Well. If the EC is unavailable, the gas is injected

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 2: Component Repair Priority

Priority Component System Condition

1
TEG -
TG other TG unavailable
TC other TC unavailable

2
EC -
TC other TC available

3 TG other TG available

directly into the well at 60bar, resulting in a production
at 80% of nominal levels. With no gas injection, pro-
duction level drops to 60%.

5.1.2. Maintenance Policy

Corrective maintenance (CM) is carried out according
to a predefined priority, as expressed in Table 1. Repairs
once initiated, remain unaffected by the failure of other
components, regardless of their superiority on the prior-
ity list. In addition to CM, TCs and TGs undergo three
types of preventive maintenance interventions, while the
EC undergoes one. To ensure minimal effect on per-
formance, PM is carried out only when the system is
perfect. Table 1 outlines the various PM types, their in-
tervals, and mean duration. The latter are assumed to be
exponentially distributed, and the former, as the abso-
lute time between successive PM interventions.

5.1.3. Monte Carlo Simulation

In [22], the goal was to determine the production avail-
ability of the plant under the maintenance policy de-
scribed. It was approached by enumerating the plant’s
production levels, reconstructing the cycle of compo-
nent failures & maintenance, and monitoring produc-
tion level occurrences. Identifying the production level
corresponding to a given plant configuration during the
simulation had required the use of an innovative ap-
proach based on cut sets. In practice, each production
level is identified by a pair of cut sets defined as mini-
mum and maximum cut sets. Although the solution pro-
posed was very efficient and innovative, it required the
manual identification of those cut sets and their corre-
sponding production levels. This, even for a moderately
sized system can be quite time-consuming, error-prone,
and may become impractical for some systems.

5.2. Solution Procedure

Given the challenges of the Monte Carlo Simulation de-
scribed in Section 5.1.3, the simulation and modelling

approach described in the preceding sections are applied
to the plant. The step-by-step modelling procedure is
presented here.

0

2

1

PM

CM

S

2

3

45

S: shutdown normal transition

forced transition

Figure 11: Modified state-space diagram for components EC and TEG

0

1

1
PM

CM

S

4

76

2

CM2

PMPM

3
5

89

Figure 12: Modified state-space diagram for components TCs and
TGs

Figures 11 and 12 are modifications of the state dia-
grams of the plant’s components presented in Fig. 10.
The modifications are such that the realistic operation
of components, consequent of system dynamics is re-
flected. The state, Shutdown (S), is introduced to ac-
count for restart and shut down (reconfiguration of the
component). In the plant, PM takes place only when all
its components are in their perfect states. This explains
why the transition to PM in the modified state diagrams
is from state 0. With the exception of state 4 in Fig. 12,
a component has 0 capacity when in any of the Shut-
down, CM and PM states. State 4 is an exception, since
the transition represents a minimal repair, and there is
no need to take the component out of operation. Hence,
its capacity from state 2 is retained. Transitions to the
maintenance states; CM and PM are forced, as they de-
pend on the availability of an idle maintenance team.
For instance, a component remains in state 3 indefinitely

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

until an idle maintenance team commences its repair.
Similarly, transitions to Shutdown are forced, since they
represent an induced unavailability of a component due
to the unavailability of another component.

5.2.1. Modelling the Plant

Shown in Fig. 13 is the plant’s schematic, with the rele-
vant nodes and their relationships. The Well is separated
into three nodes, 1, 2, and 3, each supplying gas, oil, and

Figure 13: System model showing dependencies

water respectively. Its third production level is unreach-
able, since there is no gas lift only if the entire system
is failed. Therefore, each of the three nodes exists in
only two states, 100% (state 1) and 80% (state 2) nom-
inal output. A third state, with capacity 0 is introduced
to account for the period when the plant is completely
shut down, consequent of either PM or component fail-
ure. Transitions between the non-zero output levels are
triggered by the EC (node 16), and are, therefore, con-
sidered forced transitions. The alternative path for gas
lift, node 17, is activated on the unavailability of node
16, and deactivated when available. It, therefore, has
a standby relationship with the latter, and exists in two
states, active (state 1) and standby (state 2). Nodes 1, 2,
and 3 are affected accordingly on its activation or deac-
tivation, as specified in Equation 5.

D16 =


1 17 1 2
2 17 2 1
5 17 2 1

 , D17 =



1 1 1 2
1 2 1 2
1 3 1 2
2 1 2 1
2 2 2 1
2 3 2 1


(5)

The plant is separated into two subsystems, on the basis
of commodity transported. The paths transporting gas,
oil, and water are considered a single subsystem (pro-
duction subsystem), by virtue of their independence.
The flare is excess gas, and it’s, therefore, discarded,
since it has no effect on the gas output. The demands at
nodes 7, 11, and 13 are respectively taken as the nom-
inal Well output of gas, oil, and water. The capacities
of nodes 8, 9, 14, and 15 are each 0.1 × 106 units of
gas, and those of nodes 16 and 17, 1 × 106 units of gas.
These nodes, according to the plant’s schematic (Fig.
13) appear to be competing with node 7 for the gas out-
put from the TEG. In reality, the quantity of gas required
to keep the TGs and TCs in operation and the gas lift
are used up first, and any excess exported via node 7.
However, this is not considered by the subsystem’s net-
work model. Therefore, the gas output (flow through
node 7), as deduced from the network model should be
corrected. The effective gas is the difference between
the gas flow into the TEG, the quantity used for gas lift
(Xli f t = 1×106), and the gas consumed by any available
TCs and TGs.

Xgas = s

η6 − Xli f t −
∑

i∈w
c{i}x



Xoil = η11, Xwater = η13

(6)

Following flow calculation, the effective outputs, Xgas,
Xoil, and Xwater, of the three commodities are given by
Equation 6. Where, ηi is the flow through node i, w =

{8, 9, 14, 15}, and s is an indicator function that takes the
value 1 when η7 > 0, and 0, otherwise.

Shown in Fig. 14 is the plant’s network model, with the
maximum flow along each link indicated. Flow along
the gas production line is in Mega units, the oil and wa-
ter lines, in kilo units, and the electricity line, in MW.
The electricity network is considered a separate subsys-
tem, as shown in Fig. 14. Nodes 21 to 24 are demand
points (local sources) for nodes 12, 10, 16, and 6 from
the production subsystem. They, therefore, exist in two
states, active, when their respective dependent nodes are
working, and inactive, otherwise. Node 20 is a dummy
node, assumed perfectly reliable, and assigned a con-
stant capacity of 26 units, the combined maximum out-
put of the TGs. The minimum threshold flows, Λ21 and
Λ23, of nodes 21 and 23 are set to 5.99 and 6.99 units
respectively, to account for the unavailability of one TG.
With only one TG available, the flows through nodes 21
and 23 fall below their threshold, and are shut down,
as explained in Section 2.3. This augments the flows
through nodes 22 and 24 to their required levels, and

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2.2 2.2 23.3 7

2.2 2.2

3 0.1
0.1 0.1 0.1 1 1

23.3 7

13 13

6 6 7 7

Well_Gas Well_Oil Well_Water

TC1 TC2

TEG

GasOut 8 9

OilPump

OilOut

WaterPump

WaterOut

14 15 EC

TG1 TG2

20

24 23 22 21

17

Production Subsystem Electricity Subsystem

Node 11

Node 7

Node 13

Figure 14: Plant network model

keeps the EC and the oil pump in operation. The de-
mands at the three output nodes are fixed, and the oil and
water pumps, as well as node 20, are perfectly reliable.
Their reconfiguration (shut down and restart), therefore,
is unnecessary. This condition has been implemented
by assigning a negative value to their threshold flows.
With this manipulation, the shut down requirement due
to their effective load is never satisfied, since the actual
load flows are non-negative. The remaining nodes are
assigned a 0 minimum threshold flow requirement.

5.2.2. Production Level Determination

To determine the production availability of the plant,
the evolution of Xgas, Xoil, and Xwater are recorded as
the simulation progresses. At the end of the simulation,
the possible performance levels of each commodity are
determined from the performance history of its relevant
output node. The possible combinations of performance
levels of the three commodities are generated, and their
occurrences in the simulation history identified, to de-
duce the possible plant performance levels.

5.3. Simulation Results

A Matlab application was developed to model the plant
under the following scenarios, CM only by one team
(Case 1), CM only by two teams (Case 2), and both CM
and PM by two teams; one dedicated to each mainte-
nance type (Case 3). 105 Monte Carlo simulations of
the plant’s performance evolution for a mission time,
tm = 1000 hours were used in cases 1 and 2, while
3 × 104 samples and 2 × 105 were used in case 3. A

much larger mission time was used in the latter to ac-
commodate several cycles of PM type 4, occurring once
every 43800 hours (see Table 1).

Six production levels of gas and three each, of oil
and water were identified by the simulation algorithm.
These were ordered from lowest to highest, and as-
signed production level numbers, as shown in Table 3.
Their steady-state probabilities are given in Tables 4-6.
At the plant level, 7 production levels were identified,
as presented in Table 7. The probabilities of the plant
residing in any of these levels during a given mission
time are presented in Table 8. Fig. 15 shows the instan-
taneous production of the plant under CM only, for both
1 and 2 maintenance teams. As expected, the plant per-
forms better with two maintenance teams. Overall, its
availability at the nominal level improves, albeit slightly
(see Table 8). However, both scenarios yield the same
performance, within the first 30 to 45 hours of opera-
tion. This is explained by the high initial reliability of
components, such that there are only a few failures, and
can be covered by a single team. As fatigue creeps in,
failed components begin to queue and more than one
maintenance team is required. It’s evident in Table 8
and Tables 4-6 that the overall performance drops with
PM. This is attributed to the fact that components ex-
hibit exponential failure characteristics. PM increases
their unavailability without improving their reliability
[22]. Consequently, the smooth curves in Fig. 15 are
replaced by rough curves in Fig. 16, the deep drops
in performance being due to PM of critical components
(e.g., TEG). A similar trend is portrayed by the plant’s
instantaneous availability as, shown in Fig. 17.

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 3: Production levels of individual commodities

Production Level
Commodity

Gas (×106) Oil (×103) Water (×103)
1 0 0 0
2 0.9 21.2 6.4
3 1 23.3 7
4 2.6
5 2.7
6 3

Table 4: Gas production level probabilities

Production Level
State Probabilities

Case 1 Case 2 Case 3
6 9.22 × 10−1 9.30 × 10−1 7.78 × 10−1

5 3.85 × 10−2 3.60 × 10−2 8.95 × 10−2

4 4.80 × 10−3 4.70 × 10−3 4.09 × 10−2

3 2.50 × 10−3 1.10 × 10−3 5.90 × 10−3

2 3.06 × 10−2 2.76 × 10−2 8.19 × 10−2

1 1.90 × 10−3 7.84 × 10−4 3.80 × 10−3

Table 5: Oil production level probabilities

Production Level
State Probabilities

Case 1 Case 2 Case 3
3 9.52 × 10−1 9.57 × 10−1 8.58 × 10−1

2 4.62 × 10−2 4.19 × 10−2 1.38 × 10−1

1 1.90 × 10−3 7.84 × 10−4 3.84 × 10−3

Table 6: Water production level probabilities

Production Level
State Probabilities

Case 1 Case 2 Case 3
3 9.52 × 10−1 9.57 × 10−1 8.58 × 10−1

2 5.20 × 10−3 4.80 × 10−3 4.26 × 10−2

1 4.29 × 10−2 3.79 × 10−2 9.90 × 10−2

Table 7: Plant production levels identified

Output Type
Production Level

1 2 3 4 5 6 7
Gas (×106) 3 0.9 2.7 1 2.6 0.9 0
Oil (×103) 23.3 23.3 21.2 21.2 21.2 21.2 0
Water (×103) 7 7 0 0 6.4 6.4 0

Table 8: Comparison of plant production level probabilities

Production Level
State Probability

Case 1 Case 2 Case 3
1 9.22 × 10−1 9.30 × 10−1 7.74 × 10−1

2 2.99 × 10−2 2.74 × 10−2 8.03 × 10−2

3 3.84 × 10−2 3.60 × 10−2 8.93 × 10−2

4 2.50 × 10−3 1.10 × 10−3 5.90 × 10−3

5 4.70 × 10−3 4.70 × 10−3 4.09 × 10−2

6 3.11 × 10−4 1.43 × 10−4 1.70 × 10−3

7 1.90 × 10−3 7.84 × 10−4 3.80 × 10−3

5.3.1. Expected Production

Table 9: Expected annual production

Commodity
Expected Cumulative Output

Case 1 Case 2 Case 3
Gas 1.062 × 109 1.069 × 109 1.007 × 109

Oil 8.453 × 106 8.464 × 106 8.366 × 106

Water 2.446 × 106 2.456 × 106 2.292 × 106

A frequently used indicator of performance is the ex-
pected cumulative amount of commodity flow through
output nodes within a specified period. Using the data
in Tables 4 to 6 and the identified production levels of
each commodity, their expected annual outputs are as
presented in Table 9.

0 100 200 300 400 500 600 700 800 900 1000

2.95

3

3.05

TIME(hrs)E
X

P
E

C
T

E
D

 O
U

T
P

U
T

(M
S

m
3)

INSTANTANEOUS GAS OUTPUT PER DAY

1 CM team
2 CM teams

0 100 200 300 400 500 600 700 800 900 1000
23

23.2

23.4

TIME(hrs)

E
X

P
E

C
T

E
D

 O
U

T
P

U
T

(k
m

3)

INSTANTANEOUS OIL OUTPUT PER DAY

1 CM team
2 CM teams

0 100 200 300 400 500 600 700 800 900 1000
6.6

6.8

7

7.2

TIME(hrs)

E
X

P
E

C
T

E
D

 O
U

T
P

U
T

(k
m

3)

INSTANTANEOUS WATER OUTPUT PER DAY

1 CM team
2 CM teams

Figure 15: Instantaneous plant performance under CM only

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

1.5

2

2.5

3

TIME(hrs)E
X

P
E

C
T

E
D

 O
U

T
P

U
T

(M
S

m
3)

INSTANTANEOUS GAS OUTPUT PER DAY

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

21

22

23

24

TIME(hrs)

E
X

P
E

C
T

E
D

 O
U

T
P

U
T

(k
m

3)

INSTANTANEOUS OIL OUTPUT PER DAY

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

2

4

6

8

TIME(hrs)

E
X

P
E

C
T

E
D

 O
U

T
P

U
T

(k
m

3)

INSTANTANEOUS WATER OUTPUT PER DAY

Figure 16: Instantaneous plant performance under CM and PM

5.3.2. Reliability and Recovery

The reliability and recovery of the plant are defined with
respect to its nominal production level (state 1). Using
the algorithm proposed in Section 4.1, the two quantities
were obtained as shown in Fig. 18. The structure and
properties of the plant are such that, the unavailability of
any component leads to the plant’s deviation from nom-
inal performance. Since maintenance comes into play
only after component failure, plant reliability is unaf-
fected by the number of maintenance teams. Also, as
outlined in Table 1, four types of PM actions are ap-
plicable, but the earliest starts after 2160 hours. This
implies, plant performance during the first 2160 hours
is unaffected by PM. These considerations explain why
the same reliability curve was obtained for all the three
cases, as Fig. 18a shows.

Unsurprisingly, Fig. 18b indicates 2 corrective mainte-
nance teams ensure a higher recovery probability, ex-
plained by the increased response to component fail-
ures. For recovery within the first 22 hours of devia-
tion from nominal performance, the policy implement-
ing CM and PM gets the upper edge. This is because a
significant proportion of these deviations is due to type-
1 PM, with a mean duration of only 4 hours. In most
instances, however, the PM of some component may be
due while another component is under corrective main-
tenance. Given PM is only carried out when the plant is
in its perfect state, the component’s PM is deferred un-
til all failed components are repaired. Even though the
plant momentarily returns to nominal performance after

0 200 400 600 800 1000
0.9

0.92

0.94

0.96

0.98

1
INSTANTANEOUS PLANT AVAILABILITY

TIME(hours)

P
R

O
B

A
B

IL
IT

Y

(a) CM only by 1 team

0 0.5 1 1.5 2

x 10
5

0

0.2

0.4

0.6

0.8

1

TIME(hours)

P
R

O
B

A
B

IL
IT

Y
INSTANTANEOUS PLANT AVAILABILITY

(b) CM and PM

Figure 17: Plant availability relative to state 1

the last repair, this is not regarded a recovery, as nominal
performance is lost instantaneously when the queueing
component is shut down for PM. This explains why the
recovery probability for case 3 is on average the least.

5.3.3. Effects of Real-time component ranking

The plant’s production availability was reassessed using
real-time component ranking, by maximizing gas pro-
duction. Though the same outcome yielded by the pre-
defined priority ranking shown in Table 2 was obtained,
real-time ranking presented an intuitive alternative with
little additional computational burden.

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time (hours)

P
ro

ba
bi

lit
y

CM ONLY (1 TEAM)
CM ONLY (2 TEAMS)
PM+CM

(a) Reliability

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Time (hours)

P
ro

ba
bi

lit
y

PM+CM

CM ONLY (2 TEAMS)

CM ONLY (1 TEAM)

(b) Recovery Probability

Figure 18: Plant reliability and recovery probability relative to state 1

5.3.4. Effects of limited maintenance teams

The plant’s maintenance response inadequacy with re-
spect to each of its six maintainable components was
obtained. To enhance this, their state transitions dur-
ing simulation were collected and saved as a function
of time. As shown by their state-space diagram, TCs
and TGs can be shut down from state 2 (see Fig. 12),
but that does not remove them from the maintenance
queue. Since maintenance response inadequacy defines
how likely it is to have a component in the maintenance
queue, transitions to and from shutdown (state 6) were
not recorded. Fig. 19 shows the maintenance response
inadequacies under one corrective maintenance team.

0 200 400 600 800 1000
0

1

2

3

4

5

6
x 10

−3

Time (h)

P
ro

ba
bi

lit
y

TC1
TC2
TEG
EC
TG1
TG2

Figure 19: Maintenance response inadequacies for one CM team

Table 10: Maximum gains from maintenance team scale-up

Commodity Expected Output
Percentage Gain
Case 1 Case 2

Gas 1.070 × 109 0.75 0.09
Oil 8.467 × 106 0.17 0.04
Water 2.458 × 106 0.49 0.08

To investigate the effects of limited maintenance on sys-
tem performance and quantify the possible gains from a
maintenance team scale-up, the plant was re-analysed
with an unlimited number of maintenance teams. The
expected annual production levels were obtained and
compared with the values presented in Table 9. The ex-
pected output, with unlimited maintenance teams and
the possible gains in cases 1 and 2 are given in Table
10. The table reveals, gas production is most effected
by limited maintenance, and that case 2 is already close
to the optimum number of maintenance teams.

5.4. Comments and Discussions

The proposed simulation and modelling approach has
allowed us to obtain the same production levels iden-
tified via hand calculation by the original authors [22].
In addition, it yielded availability values at the nomi-
nal level that are within 5% of the reported values, even
though 70% less samples were used in case 3. Using
19 cores on a 1895.257MHz AMD Opteron(tm) 6168
processor, cases 1 and 2 took an average of 10.69 min-
utes and case 3, a few hours. Cases 1 and 2 required an

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

additional 2.13 minutes when the plant was re-analysed
using real-time component ranking.

To verify the effects of the modifications made to the
flow calculation procedure, the case studies presented in
[24] were re-analysed on the same computer. Prior cal-
culation of node flows improved the simulation speed
by 52.9% in case 1 and 39.73% when applied to an un-
published 14-node system. However, it wasn’t a feasi-
ble alternative when the 21-node system presented in
the second case study was considered. The verifica-
tion outcome suggests, the smaller the size of matrix β
(see Section 3), the more advantageous the alternative of
calculating and storing node flows prior to simulation.
In addition, storage problems may be encountered with
large systems, since node flows for all the possible sys-
tem configurations have to be stored. These constraints
make flow calculation during simulation inevitable for
large systems, resulting in increased computational bur-
den. The increased burden, however, can be mitigated
with access to parallel computing, where the required
number of simulation samples is shared across several
computers or several workers on a multi-core computer.

The plant under analysis can exist in 437 configurations,
considering corrective maintenance alone. Traditional
approaches would require matching each of these to a
production level [22]. Since this procedure can be time
consuming and error prone, Zio et al [22], proposed an
innovative approach based on the minimal and maxi-
mum cut-sets of each production level. This approach,
however, requires considerable human effort and a de-
tailed knowledge of the plant’s operational dynamics. It
also suffers the set back of not being sufficiently general
and intuitive, as a system’s cut-sets and performance
levels depend on its structure and the properties of its
components. Therefore, every system would require a
unique approach and a unique degree of difficulty.

Though the approach this paper proposes is computa-
tionally more demanding than Zio et al’s [22], it does
not require the manual identification of production lev-
els and enumeration of system cut sets. All it re-
quires are the definition of inter-component relation-
ships, component properties, and the structure of the
system. The rest of the analysis is carried out by ef-
ficient algorithms. These attributes, coupled with the
fact that it allows system structure to be defined by an
adjacency matrix, make it easily applicable to any sys-
tem structure. Considering the time and human effort
involved in the manual identification of production lev-
els, and the possibility of costly errors, the proposed
approach is an efficient and credible alternative. Its ad-

vantages particularly stand out when applied to complex
systems.

6. Conclusions

In this paper, an efficient and powerful simulation
tool has been presented for the availability assessment
of complex multi-state systems with interdependen-
cies, multi-commodity flows, and limited maintenance
teams. Algorithms for quantifying the relevant system
availability and performance indices, including a new
metric for the inadequacy of maintenance response have
also been presented. The proposed simulation approach
can implement reconfiguration requirements and derive
system performance without reference to the system
cut-sets or predefined system performance levels. Tra-
ditional approaches, however, would require the manual
listing of all the system performance levels and their as-
sociated cut-sets, which difficulty increases with system
complexity and size. This attribute, therefore, is a key
advantage and an illustration of its intuitiveness. Its ap-
plicability has been demonstrated by assessing the avail-
ability of a multi-commodity offshore plant operated
by limited maintenance teams. By only defining the
intra and inter component relationships, the approach
provided (within an acceptable time frame) an outcome
similar to one in literature, without prior knowledge of
the plant’s production levels or cut sets. This renders
it less dependent on human effort, intuitive, robust to
human-induced errors, and suitable for any system ar-
chitecture. It is implemented in the open-source un-
certainty quantification tool, OpenCossan [32, 33], and,
therefore, readily available to academics and industry.

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Acknowledgement

The authors would like to acknowledge the gracious
support of this work through the EPSRC and ESRC
Centre for Doctoral Training on Quantification and
Management of Risk & Uncertainty in Complex Sys-
tems & Environments.

References

[1] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, S. Havlin,
Catastrophic cascade of failures in interdependent networks, Na-
ture 464 (7291) (2010) 1025–1028.
URL http://dx.doi.org/10.1038/nature08932

[2] E. Zio, G. Sansavini, Modeling interdependent network
systems for identifying cascade-safe operating margins,
IEEE Transactions on Reliability 60 (1) (2011) 94–101.
doi:10.1109/TR.2010.2104211.

[3] R. Zimmerman, Social implications of infrastructure network
interactions, Journal of Urban Technology 8 (3) (2001) 97–119.
URL http://dx.doi.org/10.1080/106307301753430764

[4] E. Bompard, C. Gao, R. Napoli, A. Russo, M. Masera, A. Ste-
fanini, Risk assessment of malicious attacks against power
systems, IEEE Transactions on Systems, Man, and Cybernetics
Part A:Systems and Humans 39 (5) (2009) 1074 – 1085.
URL http://dx.doi.org/10.1109/TSMCA.2009.2020687

[5] T. Adachi, B. R. Ellingwood, Serviceability of earthquake-
damaged water systems: Effects of electrical power availabil-
ity and power backup systems on system vulnerability, Reli-
ability Engineering & System Safety 93 (1) (2008) 78 – 88.
doi:http://dx.doi.org/10.1016/j.ress.2006.10.014.

[6] J. Johansson, H. Hassel, An approach for modelling interde-
pendent infrastructures in the context of vulnerability analy-
sis, Reliability Engineering & System Safety 95 (12) (2010)
1335 – 1344, 19th European Safety and Reliability Conference.
doi:http://dx.doi.org/10.1016/j.ress.2010.06.010.

[7] U.S.-Canada Power System Outage Task Force, Final report on
the august 14, 2003 blackout in the united states and canada:
Causes and recommendations, Tech. rep. (April, 2004).

[8] E. Zio, Challenges in the vulnerability and risk
analysis of critical infrastructures, Reliability Engi-
neering & System Safety 152 (2016) 137 – 150.
doi:http://dx.doi.org/10.1016/j.ress.2016.02.009.

[9] H. George-Williams, M. Lee, E. Patelli, A framework for power
recovery probability quantification in nuclear power plant sta-
tion blackout sequences, in: Proceedings of the Probabilistic
Safety Assessment and Management Conference, Vol. 13, 2016.

[10] M. Ouyang, Review on modeling and simulation of in-
terdependent critical infrastructure systems, Reliabil-
ity Engineering & System Safety 121 (2014) 43 – 60.
doi:http://dx.doi.org/10.1016/j.ress.2013.06.040.

[11] V. Rosato, L. Issacharoff, F. Tiriticco, S. Meloni, S. D.
Porcellinis, R. Setola, Modelling interdependent infras-
tructures using interacting dynamical models, International
Journal of Critical Infrastructures 4 (1/2) (2008) 63+.
doi:10.1504/ijcis.2008.016092.
URL http://dx.doi.org/10.1504/ijcis.2008.016092

[12] X. Zang, D. Wang, H. Sun, K. Trivedi, A bdd-based algorithm
for analysis of multistate systems with multistate components,
Computers, IEEE Transactions on 52 (12) (2003) 1608–1618.
doi:10.1109/TC.2003.1252856.

[13] L. Xing, Y. Dai, A new decision-diagram-based method for
efficient analysis on multistate systems, Dependable and Se-
cure Computing, IEEE Transactions on 6 (3) (2009) 161–174.
doi:10.1109/TDSC.2007.70244.

[14] W.-C. Yeh, An improved sum-of-disjoint-products technique
for symbolic multi-state flow network reliability, Relia-
bility, IEEE Transactions on 64 (4) (2015) 1185–1193.
doi:10.1109/TR.2015.2452573.

[15] G. Levitin, The Universal Generating Function in Reliability
Analysis and Optimization, Springer-Verlag London Limited,
2005.

[16] G. Levitin, A. Lisnianski, Multi-state System Reliability Analy-
sis and Optimization, in: Handbook of Reliability Engineering,
Springer, 2003, Ch. 4, pp. 61–90.

[17] A. Lisnianski, I. Frenkel, Y. Ding, Multi-State System Relia-
bility Analysis and Optimization for Engineers and Industrial
Managers, Springer-Verlag London Limited, 2010.

[18] G. Levitin, A universal generating function approach for the
analysis of multi-state systems with dependent elements, Reli-
ability Engineering & System Safety 84 (3) (2004) 285 – 292.
doi:http://dx.doi.org/10.1016/j.ress.2003.12.002.

[19] M. Malhotra, K. S. Trivedi, Dependability modeling using petri-
nets, IEEE Transactions on Reliability 44 (3) (1995) 428 – 440.
URL http://dx.doi.org/10.1109/24.406578

[20] Z. Liu, Y. Liu, B. Cai, X. Li, X. Tian, Application of
petri nets to performance evaluation of subsea blowout pre-
venter system, {ISA} Transactions 54 (2015) 240 – 249.
doi:http://dx.doi.org/10.1016/j.isatra.2014.07.003.

[21] H. Langseth, L. Portinale, Bayesian networks in reliability, Re-
liability Engineering & System Safety 92 (1) (2007) 92 – 108.
doi:http://dx.doi.org/10.1016/j.ress.2005.11.037.

[22] E. Zio, P. Baraldi, E. Patelli, Assessment of the availability of
an offshore installation by monte carlo simulation, International
Journal of Pressure Vessels and Piping 83 (4) (2006) 312 – 320.
URL http://dx.doi.org/10.1016/j.ijpvp.2006.02.010

[23] J. E. Ramirez-Marquez, D. W. Coit, A monte-carlo simulation
approach for approximating multi-state two-terminal reliability,
Reliability Engineering & System Safety 87 (2) (2005) 253 –
264. doi:http://dx.doi.org/10.1016/j.ress.2004.05.002.

[24] H. George-Williams, E. Patelli, A hybrid load flow and event
driven simulation approach to multi-state system reliability eval-
uation, Reliability Engineering & System Safety 152 (2016) 351
– 367. doi:http://dx.doi.org/10.1016/j.ress.2016.04.002.

[25] M. Kojima, S. Mizuno, A. Yoshise, A primal-dual interior
point algorithm for linear programming, in: N. Megiddo (Ed.),
Progress in Mathematical Programming, Springer New York,
1989, pp. 29–47.

[26] W.-C. Yeh, An improved method for multistate flow network re-
liability with unreliable nodes and a budget constraint based on
path set, IEEE Transactions on Systems, Man, and Cybernetics-
Part A: Systems and Humans 41 (2) (2011) 350–355.

[27] H. George-Williams, E. Patelli, M. Lee, Reliability & perfor-
mance analysis of multi-state systems based on analytical load
flow considerations, in: Proceedings of the European Safety and
Reliability Conference, Vol. 26, 2016.

[28] G. Feng, E. Patelli, M. Beer, F. P. Coolen, Imprecise system re-
liability and component importance based on survival signature,
Reliability Engineering & System Safety 150 (2016) 116 – 125.
doi:http://dx.doi.org/10.1016/j.ress.2016.01.019.

[29] W. Kuo, X. Zhu, Some recent advances on importance measures
in reliability, IEEE Transactions on Reliability 61 (2) (2012)
344–360. doi:10.1109/TR.2012.2194196.

[30] M. Čepin, Assessment of Power System Reliability: Methods
and Applications, Springer, London, 2011, Ch. Distribution and
Transmission System Reliability Measures, pp. 215–226.

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[31] H. George-Williams, E. Patelli, Efficient availability assessment
of reconfigurable complex multi-state systems with interdepen-
dencies, in: Proceedings of the European Safety and Reliability
Conference, Vol. 26, 2016.

[32] E. Patelli, Handbook of Uncertainty Quantification, Springer
International Publishing, 2017, Ch. COSSAN: A Multidisci-
plinary Software Suite for Uncertainty Quantification and Risk
Management, pp. 1–69.

[33] E. Patelli, M. Broggi, M. D. Angelis, M. Beer, Opencossan: An
efficient open tool for dealing with epistemic and aleatory uncer-
tainties, in: Vulnerability, Uncertainty, and Risk: Quantification,
Mitigation, and Management - Proceedings of the 2nd Interna-
tional Conference on Vulnerability and Risk Analysis and Man-
agement, ICVRAM 2014 and the 6th International Symposium
on Uncertainty Modeling and Analysis, ISUMA 2014, 2014, pp.
2564 – 2573.
URL http://dx.doi.org/10.1061/9780784413609.258

22

