
Modularity Through Inseparability :
Algorithms, Extensions, and Evaluation

Thesis submitted in accordance with the requirements of the University of

Liverpool for the degree of Doctor in Philosophy by

WILLIAM ANDREW JAMES GATENS

May 2017

Abstract

Module extraction is the task of computing, given a description logic ontology

and a signature Σ of interest, a subset (called a module) such that for certain

applications that only concern Σ, the ontology can be equivalently replaced by

the module. In most applications of module extraction it is desirable to compute

a module which is as small as possible, and where possible a minimal one.

In logic-based approaches to module extraction the most popular way to

define modules is using inseparability relations, the strongest and most robust

notion of this being model Σ-inseparability, where two ontologies are called

Σ-inseparable iff the Σ-reducts of their models coincide. Then, a Σ-module is

defined as a Σ-inseparable subset of the ontology.

Unfortunately deciding if a subset of an ontology is a minimal Σ-module,

over ontologies formulated in even moderately expressive logics, is of perpetu-

ally high complexity and often undecidable, and for this reason approximation

algorithms are required. Instead of computing a minimal Σ-module one com-

putes some Σ-module and the main research task is to minimise the size of

these modules — to compute an approximation of a minimal Σ-module.

This thesis considers research surrounding approximations based on the

model Σ-inseparability relation including: improving and extending existing

approximation algorithms, providing a highly-optimised implementations, and

the introduction a new methodology to evaluate just how well approximations

approximate minimal modules, all supported by a significant empirical invest-

igation.

i

For my brother,

Robert Edward Harry Gatens
1992 – 2015

iii

Contents

1 Introduction 1

1.1 Producing high quality ontologies 1

1.2 Reuse of ontologies . 3

1.2.1 Modules . 4

1.3 Contributions . 7

1.3.1 Contributions of this Thesis 9

1.3.2 Structure of this Thesis . 11

2 Background 13

2.1 Description Logics . 13

2.1.1 Signatures . 19

2.1.2 Acyclic Terminologies . 19

2.2 Quantified Boolean Formulas . 21

2.3 Inseparability-based modules . 24

2.3.1 Robustness properties . 29

2.3.2 Safety . 31

2.3.3 Complexity and computability 32

2.4 Modules for inseparability relations 33

2.4.1 Model inseparability modules for ELI and ALCI 33

2.4.2 Concept and Query Inseparability for DL-Lite 34

2.4.3 Datalog Modules . 35

v

2.4.4 Locality based modules 36

2.5 Success of approximations . 42

2.6 Summary . 44

3 Approximations for Acyclic Terminologies 47

3.1 Model-inseparable modules . 48

3.2 Acyclic ALCI Approximation . 51

3.2.1 One-point criterion . 51

3.2.2 Unrestricted signatures . 54

3.2.3 Approximation Extraction Algorithm 56

3.3 Logical extensions . 58

3.3.1 Terminologies with repeated concept inclusions 58

3.3.2 Deciding inseparability for acyclic ALCQI with RCIs . . . 62

3.4 Improving practical performance 71

3.4.1 Detecting axiom dependencies 72

3.4.2 Deciding inseparability . 77

3.4.3 Introducing AMEX . 79

3.5 Comparing performance . 83

3.6 Conclusion . 86

4 Hybrid Module Extraction 89

4.1 Combining depleting modules . 90

4.2 Combining STAR and AMEX . 97

4.3 Splitting ontologies for AMEX . 101

4.3.1 Moving non-terminological axioms 102

4.3.2 Breaking terminological cycles 104

vi

4.4 Conclusion . 109

5 How Good is an Approximation? 111

5.1 Upper and lower approximations 112

5.2 Computing the lower approximation 115

5.3 Deciding exactly n-inseparability from the empty ontology 119

5.3.1 Nominals . 131

5.3.2 Extracting exactly n-depleting modules 133

5.4 Conclusion . 134

6 Experimental Evaluation 137

6.1 Research questions . 138

6.2 Experimental Setting . 140

6.2.1 Ontology selection . 142

6.2.2 Signature selection . 145

6.3 Experiments on NCI . 146

6.3.1 Fragments of NCI . 146

6.3.2 Full NCI . 153

6.4 Experiments over the experimental corpus 157

6.4.1 Differences in upper approximations 158

6.4.2 Minimality . 162

6.4.3 Performance . 165

6.5 Conclusion . 166

7 Conclusions 169

7.1 Conclusions . 169

7.2 Future Work . 170

vii

A Experimental Ontologies 173

B Experimental Results : Comparing Upper Approximations 181

Bibliography 185

viii

List of Figures

2.1 The families EL and AL . 14

2.2 Description Logic Constructors 15

2.3 TBox Axioms . 16

2.4 RBox Axioms . 16

2.5 Propositional syntax . 21

2.6 General depleting module extraction algorithm 30

2.7 Extracting a locality based module 40

3.1 Original module extraction algorithm 57

3.2 Translation of cardinality restrictions into propositional formulas 62

3.3 Extracting minimal dependency-free Σ-modules from acyclic

ALCQI terminologies with RCIs 67

3.4 Locating a separability causing axiom 78

3.5 AMEX module extraction algorithm 79

3.6 Comparison of “checks” between old and new algorithms 84

3.7 Chain metrics for AMEX . 85

4.1 Hybrid extraction algorithm . 92

4.2 STAR-AMEX extraction algorithm 98

4.3 Computing dependency graph . 106

4.4 Detecting cycles of a terminology using a dependency graph . . . 108

ix

5.1 Translation of roles to propositional formulas 120

5.2 Translation of concepts to propositional formulas 120

5.3 Translation of TBox axioms into propositional formulas 121

5.4 Translation of RBox axioms into propositional formulas 122

5.5 Translation of nominals to propositional atoms 132

5.6 Exactly n-depleting module extraction algorithm 134

6.1 Expressivity distribution for experimental corpus 144

6.2 Frequency of genuine module sizes for NCI? and NCI?(≡) 150

6.3 Comparing AMEX and STAR across NCI fragments 151

6.4 Comparing upper and lower approximations across NCI fragments 154

6.5 Modules of NCI . 155

6.6 Frequency of genuine module sizes for NCI 156

6.7 Axiom signatures showing differences between STAR and Hybrid

STAR-AMEX modules . 159

6.8 Differences between STAR and hybrid STAR-AMEX modules over

axiom signatures . 160

6.9 Observed modules that coincide with minimal 163

x

CHAPTER 1

Introduction

Ontologies in computer and information science are a means of knowledge rep-

resentation used to specify and establish the vocabulary of a domain of interest

in order to facilitate the exchange of information. Ontologies have the benefit

of being able to represent information to be computer understandable, typic-

ally specified in a logical language to underpin the represented knowledge with

unambiguous semantics. An important class of ontologies are based on De-

scription Logics, a family of knowledge representation languages consisting of

several decidable fragments of first-order logic which allows the formulation of

ontologies from logical formulas known as axioms [Baa+03].

The introduction of the World Wide Web Consortium (W3C) endorsed on-

tology language OWL built on a description logic foundation, along with the

research and development of a variety of tools to assist ontology engineering

has lead the existence of ontologies covering a wide variety of domains, in-

cluding: Medicine [Spa00; Gol+11], Biology [Whe+11], Chemistry [Deg+08],

Law [Hoe+07] and Geography [HKH08].

1.1. Producing high quality ontologies

Once a domain’s vocabulary is established, an ontology is constructed by

translating the conceptual knowledge of the chosen domain into that of the

chosen ontology language, giving meaning to the terms which make up the

vocabulary. How this is achieved is particularly important; for ontologies to be

useful they should to be of high quality, accurately capturing the knowledge of

1

CHAPTER 1. Introduction

the agreed conceptualisation, providing coverage for the vocabulary – not being

under-specified, whilst also not being over-specified. Part of achieving this is

making the correct choice of underlying logic, a trade-off between expressive

power and complexity of deriving information from the ontology. The chosen

logic should be expressive enough to represent the knowledge correctly whilst

providing appropriate performance for the ontology in the desired application.

These considerations make ontology engineering an intensive task, typically

a collaborative effort between ontology engineers and domain experts, it is also

an ongoing task, ontologies are constantly in need of maintenance, repair and

extension. In order to assist this process, research has been focussed into the

development of number of tools including, but not limited to:

• Editors and management systems – to assist modelling and to promote

collaborative development, notable examples include Protégé [TNM08]

and SWOOP [Kal+06b].

• Reasoners – to reveal and debug the information explicitly encoded in the

ontology’s axioms. As previously mentioned, the complexity of standard

reasoning procedures is relative to the expressive power of the under-

lying logic ranging from PTIME [Cal+07; BBL05] for the least express-

ive to 2EXPTIME for the most [Kaz08] in the size of the input ontology.

Even with high worst-case complexity considerations, highly optimised

reasoners mean using very expressive logics is still often feasible, not-

able examples of reasoners include: Fact++ [TH06], Racer [Haa+12], Her-

miT [Cla10] and Pellet [Sir+07].

• Repair tools – to debug and fix incorrectly specified knowledge and mod-

elling errors [LB10a; Kal+06a].

• Design patterns – for guidance and methodologies for creating high

quality ontologies [LST13] and tools for evaluating the results [GF95;

Ric+14].

2

CHAPTER 1. Introduction

The development of many large and complex ontologies which are of high

quality has been possible with these various supporting tools in place. Im-

portant examples include: Systematized Nomenclature of Medicine – Clinical

Terms (SNOMED CT) [Spa00] a large medical terminology used in the health-

care system of over 20 countries, the National Cancer Institute’s Thesaurus and

Ontology (NCI) [Gol+11] used to facilitate the use and standardisation of ter-

minology across the domain of cancer related research and, the gene ontology

(GO) [The12] providing a consistent description of gene products in terms of

their associated biological processes.

1.2. Reuse of ontologies

The design of certain ontologies puts particular emphasis on reusability.

Foundational or “upper” ontologies are generic ontologies which are applicable

to many domains, prominent examples include: the Descriptive Ontology for

Linguistic and Cognitive Engineering (DOLCE) [Gan+02] and the Basic Formal

Ontology (BFO) [GSG04]. Beyond this, there are many motivating reasons

which makes reusing pre-existing knowledge highly desirable, especially con-

sidering the significant undertaking required to produce a high-quality onto-

logy. Reusing an existing ontology not only saves time and effort, but allows a

modeller to draw on knowledge over a vocabulary which they may not be an

expert in.

In practice, reusing one ontology can often be achieved by simply im-

porting it into another — the OWL standard even provides an annotation

(owl:imports) to describe precisely this procedure [Hit+09]. However, in

information intensive domains such as the Life Sciences, ontologies can be of

considerable size, for example a 2015 version of NCI consists of over 250,000

axioms which define around 100,000 different terms. These axioms represent

a vocabulary covering a wide number of topics, including: Genes, Diseases,

Organisms and Processes. Attempting to reuse some information contained

within such a large ontology by reusing the whole ontology comes with the

3

CHAPTER 1. Introduction

inherent risk of greatly increasing the size, engineering effort, and complexity

of the target application, along with importing information which may be irrel-

evant. In order to reduce the impact and required effort of reuse, the notion of

modularity has been developed to facilitate the partial reuse of ontologies.

A module is a subset of an ontology, a set of axioms, providing coverage for a

relevant part of the ontology’s vocabulary. A user may only be interested in re-

using the knowledge the ontology provides about certain terms, and can specify

this by means of a signature, a subset of vocabulary, and a module will contain

all the information relevant to the terms the signature contains. The purpose

of this is to allow modules to act as an equivalent replacement for the whole

ontology in applications which only consider only this restricted vocabulary.

For modules to be useful they should be as small as possible, allowing the

reuse of relevant information without significant overhead. Ideally modules

should only contain the axioms providing relevant knowledge, disregarding

those which are deemed irrelevant.

1.2.1 Modules

The underlying motivation for modules creates the research task of deciding,

given a signature, which axioms of the ontology the module should contain to

provide all the relevant information – a task known as module extraction. For

an ontology O, the methodologies to extract a moduleM ⊆ O for a signature

Σ can be roughly divided into two categories:

• Structural – syntactically traverse through the axioms of the ontology us-

ing some heuristic to determine which axioms are relevant to the desired

signature.

• Logical – extract modules satisfying desirable logical properties in order

to preserve the knowledge contained within the axioms of an ontology.

4

CHAPTER 1. Introduction

Structural Approaches

Notable structural approaches include the PROMPT-FACTOR [NM03] tool,

which given a signature Σ, goes through the axioms of the ontology O and

adds to a module M any axiom which use a symbol from Σ. The signature

is then expanded with any new symbols occurring in M and this process is

repeated until a fixed point is reached. Another structural approach [SS09]

used for the segmentation of the medical ontology GALEN, utilises a different

heuristic to collect axioms that define signature symbols, pruning irrelevant

axioms by traversing the hierarchical structure of the ontology “upwards”

towards the most general symbols.

The inherent limitation of structural-based approaches is that they ignore

the semantics of the ontology. Purely syntactical approaches can often collect

axioms semantically irrelevant to the signature, or even worse, miss axioms

which do convey relevant semantic information [Gra+07]. In this they have

limited use as modules, they cannot reliably be used as a replacement for the

entire ontology as they may represent different knowledge over the chosen sig-

nature.

Considering the effort to model ontologies to be of high quality, to accurately

capture conceptual knowledge and to preserve this knowledge through re-use,

logic-based module extraction approaches have become increasingly desirable.

Logical Approaches

The aim of a logic based module M is to preserve the semantic knowledge

encoded in an ontology O with respect to a signature Σ.

One approach is to use Modular Ontology Languages (MOL), a family

of formalisms which provide new syntax and semantics building ontologies

which allows knowledge to be separated into distinct modules at development

time. Notable examples include E-Connections [Kut04; CPS06], Distrib-

uted Description Logics (DDL) [BS03] and Package-based Description Logics

5

CHAPTER 1. Introduction

(P-DL) [BCH06a; BCH06b]. With the boundaries of the knowledge clearly

demarcated it is apparent where information to be re-used is located within the

ontology. Unfortunately, the expressive powers of such ontologies are limited

in order to maintain the modular structure of the knowledge, additionally,

non-standard semantics means one may require non-standard tools to perform

key tasks such as reasoning.

A preferred alternative is to maintain the standard ontology representation

by building ontologies in a conventional way, using description logic axioms,

and to extract modules from these ontologies directly to meet desirable lo-

gical properties in order to guarantee knowledge preservation. This typically

amounts to the preservation of models or entailments over a given signature.

With the desire for modules to be free of redundant information, an additional

task is to produce a module which is small as possible, computing minimal mod-

ules. In addition to preserving knowledge, the underlying semantics of logic-

based modules allows one to produce a module that will not cause unintended

interactions in the common import scenario [Gra+08].

Several different notions for these logical modules exist, the majority of

which are based around extracting a module which satisfies a so called insepar-

ability relation, a family of equivalence relations which generalise conservat-

ive extensions [GLW06; LWW07]. If a module is inseparable for a signature

Σ, it is logically indistinguishable from the original ontology over the vocab-

ulary of Σ, and so comes with the guarantee to preserve all the knowledge

over Σ. Several inseparability relations exists of varying strength depending

on which logical properties need preserving based on the requirements of the

desired application, the strongest is that of model-inseparability in which the

extracted module is guaranteed to preserve every second-order entailment over

Σ [Kon+09a]. In addition, the guarantee of knowledge preservation over a sig-

nature allows logical modules to be utilised in applications beyond the import

scenario, this includes: reasoning [Gra+10; GPS12b; RGH12; TP12b], forget-

ting/hiding [KS13; LK13; LK14], logical difference [GPS12a; LK14], locating

6

CHAPTER 1. Introduction

justifications [Sun+08; BS08], and matching [NK10].

Unfortunately the decision problems associated with logical modules based

on inseparability relations, including that of model-inseparability, are perpetu-

ally of high complexity and often undecidable. As a result algorithms to pro-

duce minimal inseparability-based modules are only available for ontologies

formulated in inexpressive description logics [Kon+09b; KWZ10; Kon+08a;

Kon+13]. For more expressive logics, the undecidability considerations has

driven research into production of practical algorithms that produce sound ap-

proximations, modules which still preserve the desired logical properties but

which do not come with a guarantee of minimality. Nevertheless, one still wants

to achieve a module which is as small as possible – to approximate minimal

modules.

Different methodologies exist for computing approximations, including

those based on model-theoretic notions of inseparability [Kon+13; Kon+08a],

graph theory [NBM13], and datalog reasoning [Rom+14]. The most popular

kind however, are those based on locality [Gra+08; SSZ09], applicable to

very expressive logics and can produce a sound approximation of a module

satisfying the model-inseparability relation using polynomial time algorithms.

One limitation of the locality approach is often producing modules that are a

lot larger than they need, containing many surplus axioms irrelevant to the

specified signature, which may limit their usage in certain applications. As

a result, there is still the need for the development of better approximations

which contain fewer redundant axiom and which therefore better approximate

minimal modules.

1.3. Contributions

The contributions presented in this thesis are motivated by the desire to

understand how we can improve upon the approximations of minimal modules

in expressive logics. To do this we will develop new approximation algorithms

which can extract modules satisfying the model-inseparability relation in an

7

CHAPTER 1. Introduction

attempt to improve on the corresponding approximations — those extracted for

the same signature — produced by existing approaches. To measure the extent

of the improvements our new approximations offer, we evaluate them against

the following research questions which we will investigate over the course of

this thesis.

Difference in module size

As we mentioned in the previous section, existing approaches can produce

sound approximations which can be a lot larger than they need to be, and it

is desirable to minimise these approximations. If also we produce a corres-

ponding module which is a sound approximation but is also relatively smaller

in size, we obtain the same logical guarantees of knowledge preservation but

reduce the overhead of reusing the knowledge preserved within the module.

This gives us the research question:

• How large and significant is the difference in size between the approxim-

ations we compute and the size of existing approximations?

Minimality

The main research task is still to achieve a module which is a small as possible,

and ideally minimal, and although our approximations may be relatively smal-

ler than the approximations produced by other approaches, they may still be

considerably larger than the minimal modules they approximate. This leads to

the next research question:

• How close in size are the approximations we compute to the minimal

modules they approximate?

8

CHAPTER 1. Introduction

Performance

Finally, for our new approximations to be most useful, computing an approxim-

ation shouldn’t come with significant overhead, especially considering the most

popular existing approach based on locality is already known to be practically

efficient [Del+12; Ves+13]. So our last research question is:

• Using our approaches, how much time does it take on average, and in the

worst case, to compute an approximation?

1.3.1 Contributions of this Thesis

Towards answering the given research questions, this thesis makes new ad-

vances in the area of research surrounding the approximation of minimal mod-

ules in several ways:

Improving approximations. We present a new approximation algorithm

which extends the model-theoretic approach for approximating minimal

modules. This new algorithm offers notable improvements over its pre-

decessor, namely it supports computing approximations from a wider

range of ontologies by extending the model theoretic notions of modu-

larity to more expressive description logics. It is also highly optimised,

by examining and exploiting properties of the original approximation

algorithm we obtain an algorithm that offers measurably better practical

performance. More importantly, we also show this new algorithm can of-

ten produce modules that are significantly smaller than the corresponding

approximations produced by competing approaches.

Combining approximations. As we discussed in the previous section there

are several different notions which lead to the production of approxim-

ations for minimal modules defined over the model-inseparability rela-

tion which in turn can lead to the content of corresponding approxima-

tions produced by different approaches varying considerably. Each sound

9

CHAPTER 1. Introduction

approximation contains the minimal module so it is the surplus axioms

which do not preserve any knowledge over the specifying signature for

which the approximations differ. From this observation we introduce a

general way of combining two different approximations together into a

single approximation algorithm which enables for the extraction of better

approximations by discarding those axioms which are not considered rel-

evant over the signature by both approximations. The modules produced

this way are shown to be at least as small as the approximations produced

by either approximation independently but may be even smaller.

Evaluating approximations. Evaluating the success of existing approxima-

tions is currently an open problem. If an approximation produced by

one method is smaller than the corresponding approximation produced

by another it is only comparatively closer to the minimal module it ap-

proximates, and may still be significantly larger. Nothing is currently

known about how large and significant the difference in size is between

approximations and minimal modules. In answer to this we introduce a

novel approach which can estimate, for the first time, the difference in size

between an approximation and its minimal module. This result being of

particular importance to research surrounding approximations, as it can

help identify those cases where approximations contain a large number

of axioms which do not convey relevant knowledge about the specifying

signature, so that they might be extended and improved.

We also present the results of large empirical investigation which not only

shows the approximations which we produce are often smaller than rival

approaches, but that they very successful approximations, and often coin-

cide with the ideal minimal modules. In addition, we found each of our

introduced approximations could be computed very efficiently in practice

which we evaluated over a corpus of real-world ontologies. These results

combined, we showed there is strong empirical evidence to prefer our

new improved approximations in combination with existing approxima-

10

CHAPTER 1. Introduction

tions, rather than just existing approximations on their own.

1.3.2 Structure of this Thesis

The thesis is organised as follows:

• Chapter 2 is split into two parts. In the first part we introduce the syntax

and semantics of relevant logical formalisms relevant to the thesis which

includes Description Logics. The second part explores existing logic-based

approaches to modularity which provides the setting for our new contri-

butions.

• Chapter 3 is focussed on developing the improved module extraction al-

gorithm which is called AMEX. Included is a small experimental evalu-

ation to showcase the improved performance of the AMEX algorithm.

• In Chapter 4 we present a general methodology for combining approx-

imation extraction procedures together. We also look at the specific case

of combining the newly introduced AMEX algorithm with a locality-based

notion of computing approximations.

• In Chapter 5 we introduce the methodology for evaluating the success of

approximations — how significant the difference is between an approx-

imation and its corresponding minimal module — and establish how this

can be determined.

• Chapter 6 brings together all the results from the previous chapters into

an extensive experimental evaluation in order to answer our proposed

research questions. In this chapter we compare the approximation al-

gorithms we have developed alongside the most popular rival approach

across a corpus of real-world ontologies. We also use the methodology

described in Chapter 5 to evaluate the success of each approximation.

11

CHAPTER 1. Introduction

• Finally, we have the Appendix which contains more detailed informa-

tion about the ontologies our experimental evaluation and more in-depth

breakdown of the results of the experiments.

Large portions of Chapter 3 along with some of the experimental results

from Chapter 6 were published in the paper [GKW13] which was presented at

the Workshop on Modular Ontologies (WOMO) 2013. These results were later

extended in the paper [GKW14] which included the theoretical results from

Chapter 5 and additional results from Chapter 6, this paper was presented at

the European Conference on Artificial Intelligence (ECAI) 2014.

12

CHAPTER 2

Background

In this chapter we look at how ontologies can be formulated from one of the

many logics that belong to the Description Logic family, outlining the syntax

and semantics which allow conceptual knowledge to be described in an un-

ambiguous way. Additionally, we describe how signatures are constructed to

describe topics of interest from the global vocabulary of an ontology allowing

the desired content of a module to be specified.

We will go on to explore current approaches to extracting logic-based mod-

ules from Description Logic ontologies which satisfy an inseparability relation,

a class of equivalence relations which guarantees that a module preserves all

the knowledge from an ontology over a given signature, distinguishing when

minimal modules of these kinds are computable and when approximations are

required.

2.1. Description Logics

Description Logics (DL) are decidable fragments of first-order logic (FOL)

typically used to model a domain of interest by describing the relevant concepts

of that domain, and the interrelations between them. The syntax of Description

Logics is based on three countably infinite and disjoint sets of atomic elements:

• individuals, denoted NI, corresponding to FOL constants, used to denote

single entities within the domain. Examples of individuals would be gra-

ham, liverpool or fido.

• atomic concepts, denoted, NC, also called concept names, correspond to

13

CHAPTER 2. Background

FOL unary predicates, used to describe the classes of individuals in the domain.

Examples of atomic concepts would be, Otter, Person or Hospital

• atomic roles, denoted NR, also called role names, correspond to FOL binary

predicates, used to relate concepts together. Examples of atomic roles would

be hasPart, locatedIn, or eats.

The formal semantics of a DL is given by interpretations I = (∆I , ·I), where

the domain ∆I is a non-empty set and ·I is an interpretation function that maps

each A ∈ NC to a subset AI of ∆I and each r ∈ NR to a binary relation rI ⊆

∆I × ∆I . The size of an interpretation I is given by the number of elements

in its domain which is denoted by]∆I . An interpretation is then called an

n-element interpretation if]∆I = n.

Family Name Syntax Semantics

EL Top concept > ∆I

Intersection C uD CI ∩DI

Existential Restriction ∃r.C {d ∈ ∆I | ∃e(d, e) ∈ rI ∧ e ∈ CI}
AL Top concept > ∆I

Bottom concept ⊥ ∅
Intersection C uD CI ∩DI

Atomic Negation ¬A ∆I \ AI

Limited Existential Restriction ∃r.> {d ∈ ∆I | ∃e(d, e) ∈ rI}
Universal Restriction ∀r.C {d ∈ ∆I | ∀e(d, e) ∈ rI → e ∈ CI}

Figure 2.1: The families EL and AL

A DL also provides constructors, particular logical symbols which admit the

inductive construction of complex concepts and complex roles. The expressive

power or expressitivity of a DL is defined by the constructors which the logic

permits. We consider two base description logics, AL and EL and their exten-

sions throughout this thesis, the constructors available in these respective logics

and the corresponding semantics can be found in Figure 2.1.

One may extend a base language by introducing additional constructors.

Figure 2.2 lists commonly used DL constructors along with the semantics and

14

CHAPTER 2. Background

corresponding symbol used to represent that constructor. The name of the res-

ulting logic is obtained from name of the base logic, plus the symbols which

represent any additional constructors used, for example, the logic ALCI is the

language AL extended with both concept negation and inverse roles.

In more expressive languages, particularly those admitting concept nega-

tion, some expressions can serve as syntactic abbreviations for others (logically

equivalent alternatives) notably: ⊥ for ¬>, C t D for ¬(¬C u ¬D), ∀r.C for

¬∃r.¬C. Should the language additionally permit unqualified number restric-

tions further abbreviations can be used, (> 1 r.C) for ∃r.C, (6 0 r.¬C) for ∀r.C,

(6 n r.C) for ¬(≥ (n+ 1) r.C) and (= n r.C) for (6 n r.C) u (> n r.C).

Symbol Name Syntax Semantics

U Union C tD CI ∪DI

C Concept Negation ¬C ∆I \ CI

N Unqualified Number
Restriction

(≥ n r.C) {d ∈ ∆I | |{e | (d, e) ∈ rI}| ≥ n}
(≤ n r.C) {d ∈ ∆I | |{e | (d, e) ∈ rI}| ≤ n}
(= n r.C) {d ∈ ∆I | |{e | (d, e) ∈ rI}| = n}

Q Unqualified Number
Restriction

(≥ n r.C) {d ∈ CI | |{e | (d, e) ∈ rI}| ≥ n}
(≤ n r.C) {d ∈ CI | |{e | (d, e) ∈ rI}| ≤ n}
(= n r.C) {d ∈ CI | |{e | (d, e) ∈ rI}| = n}

O Nominals aI {a}I

I Inverse Role r− {(e, d) ∈ ∆I ×∆I | (d, e) ∈ rI}
Where C,D are concepts, r, s are roles and a an individual

Figure 2.2: Description Logic Constructors

A description logic ontology is a tuple O = (T ,R) consisting of TBox T

describing the interrelations between (complex) concepts and an RBoxRwhich

does the same but for (complex) roles. These interrelations are modelled using

a finite set of axioms, well-formed formulas constructed using special logical

symbols. The syntax and semantics of TBox and RBox axioms relevant to the

thesis can be found in Figure 2.3 and Figure 2.4 many of which also have a

symbol representing if they are permitted in the chosen DL.

There are some exceptions to this naming scheme which describe particular

15

CHAPTER 2. Background

Name Syntax Semantics

Concept Inclusion C v D CI ⊆ DI

Concept Equivalence C ≡ D CI = DI

Figure 2.3: TBox Axioms

Symbol Name Syntax Semantics

+ Transitivity Trans(r) (⋃i≥1(rI)i) = rI

F Functionality Func(r) ∀d ∈ ∆I |{e ∈ ∆I | (a, b) ∈ rI}| ≤ 1

H Role Inclusion s v t sI ⊆ tI

Role Equivalence s ≡ t sI = tI

R

Role Inclusion s v t sI ⊆ tI

Role Equivalence s ≡ t sI = tI

Complex Role Inclusion r1 ◦ r2 v r (r1 ◦ r2)I v rI

Role Disjointness Disj(r1, r2) rI1 ∩ rI2 = ∅
Symmetric Role Symm(r) rI = (r−)I

Asymmetric Role Asymm(r) rI ∩ (r−)I = ∅
Reflexive Role Refl(r) ∀d ∈ ∆I , (d, d) ∈ rI

Irreflexive Role Irrefl(r) ∀d ∈ ∆I , (d, d) 6∈ rI

Where r and r1, r2, . . . , rn are atomic roles and s and t are possibly complex roles

Figure 2.4: RBox Axioms

families of languages, notable exceptions which have relevance to this thesis

are: S – equivalent to ALC+, which is often extended itself with further con-

structors, for example, SHIQ is equivalent to ALCIQ+; DL-Lite – a syntactic-

ally restricted sub-language of SHIF(D); and EL+ + – equivalent to ELOR.

Note in some cases an ontology may have an empty RBox in such a case

we just refer to the ontology as a TBox. We also need to refer to an ontology

containing no axioms, the empty TBox which we denote ∅.

The expressitivity of an ontology O is defined by the expressitivity of the

description logic L needed to express all the axioms contained within O such

that there is no logic L′ ⊆ L able to express all the axioms of O, we call such

an ontology an L ontology. Example 2.1.1 shows an ALCQI ontology with an

accompanying natural language translation.

16

CHAPTER 2. Background

Example 2.1.1 (An ALCQI TBox describing bees).

T = {Bee ≡ Drone tWorker t Queen (2.1)

Bee v ∀eats.Honey u ∃eats−.Bird (2.2)

Hive v (= 1 has. Queen)} (2.3)

A translation into natural language could be as follows – (2.1) a Bee is defined

as a Drone or a Worker or a Queen, (2.2) A Bee is a member of the sets of things

which only eats Honey AND are eaten by a Bird, (2.3) a Hive has exactly one

Queen.

The satisfiability of ontologies is decided by means of interpretations, an

interpretation I satisfies an axiom α if the formula αI , obtained by mapping

each entity in sig(α) using the interpretation function ·I , is logically true. If I

satisfies an axiom α we say I is a model of α, written I |= α. If I satisfies every

axiom of an ontology O we say I is a model of O, written I |= O. If every

possible interpretation is a model of an axiom α (resp. ontology O) we say α

(resp. O) is a tautology.

One of the most common reasoning tasks is to reveal what information can

be inferred from an ontology even if it is not explicitly encoded in the form

of axioms. If every model of an ontology O is also a model of some axiom α,

we say α is an entailed from O or α follows from O, if so we write O |= α.

This simple example illustrates how entailments are not necessarily explicitly

encoded in the axioms of an ontology but are derived from them.

Example 2.1.2 (Entailment). Consider the following ontology O consisting of the

axioms E1 and E2.

A v B (E1)

B v ∃r.C (E2)

First notice the axioms of an ontology are always entailments by definition,

17

CHAPTER 2. Background

clearly if for some interpretation I if it holds that I |= O we must also have

I |= Ei for i = 1, 2. We can also derive implicit entailments from O. Derived from

E2 we can see it holds that O |= B v ∃r.>, and from E1 and E2 together we can

infer that O |= A v ∃r.C, both B v ∃r.> and A v ∃r.C are also entailments of

O.

Entailments that can be inferred from every ontology (i.e. tautologies) are

known as trivial entailments for example: A v >, A v A or ⊥ v >.

Web Ontology Language - OWL

The Web Ontology Language (OWL) is a family of languages each built on a de-

scription logic foundation. The OWL family was designed to provide standard-

isation for authoring ontologies and is recommended by the World Wide Web

Consortium (W3C). In addition to the logical underpinning, the OWL standard

provide non-logical features such as support for annotations, describing com-

mon operations such as importing one ontology into another.

The current version, OWL 2, defines several profiles (or species), language

variants which have been specially selected based on their levels of expres-

sitivity and associated computational complexity, the idea being the ontology

author selects the profile which best suits their intended application. The most

important profiles, relevant to this thesis, in increasing order of expressitivity:

• OWL EL — based on EL + + — an extension of EL for which standard

reasoning tasks are still tractable [BBL05].

• OWL QL — based on DL-Lite — which offers low computational com-

plexity for standard reasoning and query answering, particularly useful in

applications using large amounts of data, where query answering is the

most important task [Cal+07].

• OWL DL - based on SROIQ - designed to provide the highest expres-

sitivity whilst maintaining computational completeness and decidabil-

18

CHAPTER 2. Background

ity [HKS06; Kaz08].

2.1.1 Signatures

In the Introduction we described the role of signatures to specify which sub-

set of the ontology’s vocabulary for which module should provide coverage, in

practice this is simply a subset taken from the concept and role names from

which the ontology is constructed.

A signature Σ is a finite subset of concept and role names i.e Σ ⊆ (NC ∪

NR). The signature sig(C) (sig(α), sig(O)) of a concept C (axiom α, ontology O

resp.) is the set of concept and role names that occur in C (α,O, respectively),

discarding any non-logical symbols such as concept or axiom constructors. If a

sig(C) ⊆ Σ we call C a Σ-concept. We refer to the members of a signature as

entities or symbols. As an example:

sig(Hive v (= 1has.Queen)) = {Hive, has,Queen}

Sometimes it is useful to describe when two interpretation interpret signa-

ture symbols in an identical way. Given a signature Σ the Σ-reduct I|Σ of an

interpretation I is obtained from I by by setting ∆I|Σ = ∆I and XI|Σ = XI for

all X ∈ Σ and XI|Σ = ∅ for all X 6∈ Σ. Two interpretations I and J are said to

coincide on a signature Σ if I|Σ = J |Σ.

2.1.2 Acyclic Terminologies

Acyclic terminologies are a class of ontologies consisting of only a TBox which is

constructed in a restricted way. The construction of acyclic terminologies limits

the expressivity of the ontology as a whole but often offers better computational

complexity than general (unrestricted) ontologies – a particular case pertaining

to module extracting we will explore in Section 2.3. Furthermore it is often

the case large parts of popular high quality ontologies conform to the restricted

19

CHAPTER 2. Background

acyclic terminology specification, this includes both NCI and SNOMED CT.

Terminology

A TBox T is called a terminology if it satisfies the following two conditions:

1. All axioms of the TBox are of the form A ≡ C or A v C where A is a

concept name.

2. No concept name occurs more than once on the left-hand side of an axiom.

Any TBox that is not a terminology is referred to as a general TBox. When de-

scribing a terminology we often need to refer to the axioms it contains without

distinguish between concept inclusions and equivalances, in this case we use

the notation A ./ C to describe an axiom which is of the form A ≡ C or A v C.

Acyclicity

To describe acyclicity in the context of terminologies we use the the depends

relation ≺T ⊆ NC × (NC ∪ NR), which is defined by setting A ≺T X if there

exists an axiom A v C or A ≡ C in T such that X ∈ sig(C). A terminology

T is then called acyclic if the transitive closure ≺+
T of ≺T is irreflexive. Intuit-

ively, a terminology is acyclic if it never defines any concept names in terms of

themselves. Any terminology which is not acyclic is called cyclic.

Example 2.1.3. (Acyclic Terminology)

T = {Worker v ∀eats.Honey

Queen v ∃hasParent−.Bee

Bee v ∀collects.Nectar}

T ′ = {Worker v ∀eats.Honey

Worker v ∃hasParent.Queen

Queen v ∃hasParent−.Worker}

T (left) is a valid acyclic terminology, T ′ (right) is a general cyclic TBox, the

concept Worker is repeated on the left hand side of the first two axioms and is also

defined in terms of itself: Worker ≺+
T Worker.

20

CHAPTER 2. Background

2.2. Quantified Boolean Formulas

Several technical results of this thesis require a reduction to Quantified

Boolean formulas (QBF) which are an extension of propositional formulas using

quantifiers. We use the widely accepted syntax and semantics for QBF formulas,

recounted here for completeness and to establish nomenclature for the sections

that follow.

Propositional Formulas

Syntactically, formulas in propositional logic are built from atoms (also called

propositional variables) of which we assume there are a countably infinite

amount which we denote by letters such as p, q, r etc. which may be logically

true or false. Atoms are combined using logical operators (also known as

connectives) to produce formulas – an atom itself being a valid propositional

formula – more complex formulas are inductively defined using the operators

outlined in Figure 2.5.

Name Syntax

Conjunction α ∧ β
Disjunction α ∨ β
Negation ¬α

Figure 2.5: Propositional syntax

We use syntactic abbreviations for certain complex formulas: implication

α→ β for ¬α ∨ β and equivalence α↔ β for (α→ β) ∧ (β → α).

To provide a standard representation for propositional formulas it is useful

to use a normal form such as Conjunctive Normal Form (CNF) which is built

from literals – a literal being an atom p or its negation ¬p.

Definition 2.2.1 (Clause). A clause is a formula γ = (L1∨, . . . ,∨Ln) where Li

(1 ≤ i ≤ n) is a literal.

21

CHAPTER 2. Background

Definition 2.2.2 (Conjunctive Normal Form). A formula α is in conjunctive nor-

mal form (CNF) if and only if α is a conjunction of clauses α = γ1∧, . . . ,∧γn where

γi (1 ≤ i ≤ n) is a clause.

For every propositional formula there exists a logically equivalent one in

CNF which can be achieved through the application of transformation rules

which unfortunately can lead to exponential explosion of the formula [BL99a],

for example the formula:

(x1 ∧ y1) ∨ (x2 ∧ y2) ∨ · · · ∨ (xn ∧ yn)

when transformed into CNF produces a formula with 2n clauses. One way to

avoid this is to use a short normal form translation such as the encoding de-

scribed in [Tse68], by the introduction of fresh atoms one can produce a CNF

formula which is not logically equivalent to the original formula but does pre-

serve equisatisfiablity.

Quantified Boolean Formulas

Quantified Boolean formulas (QBF) are an extension to propositional formulas

admitting universal (∀) and existential (∃) quantifiers. For the purposes of this

thesis we only consider and describe QBF formulas in a normal form called

prenex form which all QBF formula can be transformed into whilst maintaining

logical equivalence [Bie+09].

Definition 2.2.3 (Prenex QBF Syntax). The syntax of well-formed QBF formulas

is defined inductively:

1. A propositional formula is a well-formed QBF formula

2. If ψ is a well-formed QBF formula then for propositional variables x, y the

formulas ∀xψ and ∃yψ are well-formed QBF formulas

3. Only formulas given by 1. and 2. are well-formed QBF formulas

22

CHAPTER 2. Background

QBF formulas in prenex form consist of a sequence of quantifiers, called the

prefix followed by a propositional formula called the matrix. A QBF formula Φ

is called closed if every variable in the matrix of Φ also appears in the prefix of

Φ. A variable occurring in the prefix is called bound. All other variables which

occur in the matrix and not the prefix are called free i.e. all variables occurring

in the matrix are either free or bound.

An example closed QBF formula in prenex form:

∀p∃q∃r(p ∨ q) ∧ r

If a quantifier is used more than once sequentially within a prefix it is often

omitted to provide a compact representation e.g. ∀p∃q, r(p∨ q)∧ r is equivalent

to the example given above.

Definition 2.2.4 (QBF semantics). A truth assignment v given free variables

{y1, . . . , yn} is a mapping:

v : {y1, . . . , yn} → {true, false}

Which is extended to give a truth assignment of an arbitrary QBF formula Φ

defined inductively on the structure of Φ:

Φ = yi : v(Φ) = v(yi) for 0 ≤ i ≤ n

Φ = ¬Φ′ : v(¬Φ′) = true⇐⇒ v(Φ′) = false

Φ = Φ1 ∧ Φ2 : v(Φ1 ∧ Φ2) = true⇐⇒ v(Φ1) = v(Φ2) = true

Φ = Φ1 ∨ Φ2 : v(Φ1 ∨ Φ2) = true⇐⇒ v(Φ1) = true or v(Φ2) = true

Φ = ∃yΦ′ : v(∃yΦ′) = true⇐⇒ v(Φ′[y/0]) = true or v(Φ′[y/1]) = true

Φ = ∀xΦ′ : v(∀xΦ′) = true⇐⇒ v(Φ′[x/0]) = v(Φ′[x/1]) = true

Where Φ′[z/a] denotes the substitution of free occurrences z by a in Φ′.

23

CHAPTER 2. Background

We say a QBF formula Φ is satisfiable if and only if there exists a truth assign-

ment v where v(Φ) = 1. If for all truth assignments v(Φ) = 0 then we say Φ is

inconsistent. If Φ is a closed formula, there exists precisely one truth assignment

for Φ [Bie+09], in this case we say Φ is true if it is satisfiable or false when it is

inconsistent.

2.3. Inseparability-based modules

As ontology is extended with new axioms it is often desirable to guarantee

the modified version does not express any new information over a given signa-

ture, that the modifications do not imply any new unintended knowledge, this

can be formally defined by means of conservative extensions. Inseparability

relations further generalise conservative extensions which allows the definition

of logic-based modules which guarantee the preservation of knowledge over a

specified signature.

Definition 2.3.1 (Ghilardi et al. [GLW06] and Lutz et al. [LWW07]). LetM,O

M ⊆ O be L ontologies and Σ a signature

• O is a deductive Σ-conservative extension ofM if for all entailments α ∈ L

with sig(α) ⊆ Σ it holds thatM |= α if and only if O |= α

• O is a model Σ-conservative extension ofM if

{I|Σ | I |=M} = {J |Σ | J |= O}

• M is a dCE Σ-module (mCE Σ-module) of O if O is a deductive Σ-

conservative extension (model Σ-conservative extension) ofM.

Deductive conservative extensions are defined in terms of a particular on-

tology language and there may exist an entailment constructed from a more

expressive language than L which is entailed by O but not M. In compar-

ison, O being a model-conservative extension ofM is a much stronger notion,

24

CHAPTER 2. Background

and guarantees that every entailment over Σ is preserved irrespective of the

DL in which a given entailment is formulated, and in fact is equivalent to M

preserving every second-order formula over Σ [Kon+09a]. As a result, if O is

a model Σ-conservative extension of M it is also a deductive Σ-conservative

extension, and hence every mCE Σ-module is a dCE Σ-module, the converse

however does not typically hold.

Inseparability relations are a family of equivalence relations between ontolo-

gies which generalise conservative extensions, applicable to arbitrary ontologies

not only those defined over the subset relation.

Definition 2.3.2 (Inseparability relation). Given two ontologies O1 and O2, a

signature Σ, and an inseparability relation S, if O1 and O2 satisfy S w.r.t Σ we say

they are S inseparable and write O1 ≡S
Σ O2.

Like conservative extensions, inseparability relations are parameterised by a

signature, and if two ontologies satisfy an inseparability relation they are con-

sidered inseparable from each other – one cannot distinguished between them

based on the information they provide over the signature — otherwise they are

considered separable, some information over the signature can be derived from

one ontology but not the other. For our purposes consider the specific relations

which generalise the conservative extensions defined in Definition 2.3.1.

Definition 2.3.3 (Konev et al. [Kon+09a] and Sattler et al. [SSZ09]). Given

two L ontologies O1 and O2 and a signature Σ

• O1 and O2 satisfy the subsumption inseparability relation S = v if for every

L-entailment α such that sig(α) ⊆ Σ we have O1 |= α if and only if O2 |= α.

If this is the caseO1 andO2 are called subsumption inseparable and we write

O1 ≡vΣ O2.

• O1 and O2 satisfy the model inseparability relation S = mod if

{I|Σ | I |= O1} = {J |Σ | J |= O2}

25

CHAPTER 2. Background

If this is the case O1 and O2 are called model inseparable and we write

O1 ≡mod
Σ O2.

Analogous to the relationship between the notions of conservative exten-

sions, for each signature Σ we have ≡mod
Σ ⊆ ≡vΣ. The flexibility of using insepar-

ability relations allows for the definition of several types of modules:

Definition 2.3.4 (Konev et al. [Kon+08b; Kon+09a] and Grau et al.

[Gra+07]). Let M ⊆ O be ontologies, Σ a signature and S an inseparabil-

ity relation. ThenM is called:

• A plain Σ-module ifM≡S
Σ O

• A self-contained Σ-module ifM≡S
Σ∪sig(M) O

• A depleting Σ-module if O \M ≡S
Σ∪sig(M) ∅

A plain (self-contained, depleting) Σ-module M is called minimal if there is no

plain (self-contained, depleting) Σ-module N with N ⊂M.

A module is only useful if it is complete, in that it should provide coverage

for Σ — any information over Σ provided by O should also be provided by

M. This can be considered a minimal requirement for a module, as a module

can only reliably be used as an equivalent replacement for the entire ontology

if this property holds. With this in mind, plain modules come as a natural

definition for modules using inseparability relations. IfM is a plain module it

is indistinguishable from O as far as Σ is concerned, preserving all knowledge

over Σ as to satisfy the chosen inseparability relation.

Consider the following ontology O consisting of the axioms {α1 − α4}:

A v B u ∃r.C (α1)

A v C (α2)

C v B (α3)

B v E (α4)

26

CHAPTER 2. Background

For the inseparability relation S =v and signature Σ = {A,B}, the modules

M1 = {α1} andM2 = {α2, α3} are both plain Σ-modules. It is easy to see, the

only non-trivial inclusion entailed by O using only Σ-symbols is α = A v B,

which follows from bothM1 andM2.

One limitation of plain Σ-modules however, is they are not guaranteed to

contain all the information about every symbol they utilise, but only those

which have been specified by the chosen signature. As a result, in the common

reusage scenario, one would have to keep track of the of the original specify-

ing signature in order to know what information the module provides from the

original ontology.

A stronger notion of modularity is that of self-contained Σ-modules, which

have to be inseparable from the original ontology, not only for the specifying

signature, but also the signature of the module itself. If we consider the plain Σ-

moduleM1 above, we can see it utilises the symbol C in addition to the symbols

in original signature Σ, yet it “misses” α2 = A v C which is entailed by O, and

therefore is not a self-contained Σ-module. Conversely, M2 is a self-contained

module, any entailment over Σ∪ sig(M2) entailed by O is also entailed byM2.

Even the stronger notion of self-containment is not enough to capture all

the relevant information described by an ontology — if M is a self-contained

module, O \M may still entail information over Σ ∪ sig(M) which is already

entailed by M. Stronger still, depleting Σ-modules ensure no information is

“left” in the ontology, and require O \ M to be inseparable from the empty

ontology for Σ ∪ sig(M) i.e. O \M must have no non-trivial entailments over

Σ ∪ sig(M). This means they have the benefit of preserving every justification

for non-trivial entailments over Σ ∪ sig(M), the minimal sets of axioms which

are sufficient for each entailment to hold.

Consider the self-contained Σ-module M2 which is not a depleting Σ-

module, the axiom α1 causes O \ M2 to entail A v B, an entailment con-

structed solely from Σ ∪ sig(M). A valid depleting Σ-module would consist of

the axioms M3 = {α1, α2, α3}, where O \M3 consist of the single axiom α4,

27

CHAPTER 2. Background

which although uses the Σ-symbol B causes no additional entailments over

Σ ∪ sig(M).

With regards to the relative size of different modules, generally the stronger

the module notion the larger the module; depleting modules are typically larger

than self-contained modules which in turn are larger than plain modules. If one

considers modules of the same type, stronger notions of inseparability typically

lead to larger modules as a module must usually contain more axioms in order

to preserve a stronger relation, e.g. a plain mCE Σ-module will typically be

larger than a plain dCE Σ-module.

It is important to note, if a module is depleting it is not necessarily plain

or self-contained. The relationship between the different types of modules de-

scribed in Definition 2.3.4 strongly depends on so called robustness properties

of the inseparability relations – how well the properties of an inseparability

relation are preserved under the manipulation of the ontologies or signatures

involved.

Example 2.3.1. Consider the following ALC ontology O consisting of the axioms

{β1 − β3} as defined below:

Student v ∃livesIn.Flat (β1)

∃livesIn−.> v Property (β2)

Property v ⊥ (β3)

Consider the module M = {β3} and the signature Σ = {Student,Property}.

Observe that M is a depleting dCE Σ-module of O, and there is no non-trivial

ALC entailment α with sig(α) ⊆ Σ∪ sig(M) which follows from O \M. But now

consider the ALC inclusion β = Property v ⊥ and notice that O |= β but also

that M 6|= β, and since sig(β) ⊆ Σ, M is neither a plain nor self-contained dCE

Σ-module.

28

CHAPTER 2. Background

2.3.1 Robustness properties

Definition 2.3.5 (Kontchakov et al. [Kon+09b]). Given ontologies O1 and O2.

An inseparability relation S is called monotone if it satisfies the following two

conditions:

(MΣ) If O1 ≡S
Σ O2 then O1 ≡S

Σ′ O2 for all Σ′ ⊆ Σ

(MO) If O1 ⊆ O2 ⊆ O3 and O1 ≡S
Σ O3 then O1 ≡S

Σ O2

The first point implies the inseparability relation is preserved under shrink-

ing of the signature, the second implies any ontology sandwiched between two

inseparable ontologies should be inseparable from either.

Definition 2.3.6 (Kontchakov et al. [Kon+09b] and Grau et al. [Gra+08]).

Consider a description logic L and all L-ontologies O′, O1 and O2 and an insepar-

ability relation S, then S is called robust under replacement if for all signatures Σ

we have O′ ∪O1 ≡S
Σ O′ ∪O2 whenever O1 ≡S

Σ O2 and sig(O′)∩ sig(O1 ∪O2) ⊆ Σ.

If an inseparability relation S is robust under replacement andM ⊆ O is a

plain Σ-module (M≡S
Σ O) then, for any ontologyO′ such that sig(O′)∩sig(O) ⊆

Σ it holds that O′∪M ≡S
Σ O′∪O. That is,M can be used in place of O without

losing any information over the signature Σ. Moreover this does not depend

on a particular version of O′ which may continue to evolve independently as

long as it continues to only share Σ-symbols with O. For these aforementioned

reasons, robustness under replacement is considered critical for ontology re-

use, a fundamental application of ontology modules, and is strongly preferable

to consider modules based on inseparability relations satisfying this property.

Proposition 2.3.1 (Kontchakov et al. [Kon+09b]). For an inseparability relation

S:

• If S satisfies (MΣ) then every self-contained Σ-module is a plain Σ-module.

• If an S is robust under replacement then every depleting Σ-module is a self-

contained Σ-module.

29

CHAPTER 2. Background

Input: Ontology O, Signature Σ, inseparability relation S which is
monotone and robust under replacement

Output: Unique minimal depleting Σ-moduleM for S
1 M ::= ∅,W ::= ∅
2 while O \M 6=W do
3 choose α ∈ (O \M) \W
4 W ::=W ∪ {α}
5 ifW 6≡S

Σ∪sig(M) ∅ then
6 M ::=M∪ {α}
7 W ::= ∅
8 end
9 end

10 returnM

Figure 2.6: General depleting module extraction algorithm

The first point from Proposition 2.3.1 is simply a shrinking of the signature

(MΣ), the second follows from if T \M ≡S
Σ∪sig(M) ∅ then (T \M)∪M ≡S

Σ∪sig(M)

M and so T ≡S
Σ∪sig(M) M. Assuming a chosen inseparability relation is both

monotone and robust under replacement depleting Σ-modules become the most

attractive type of modules to consider, as they come with the guarantee that

they are additionally both self-contained and plain. Furthermore, there always

exists a unique minimal depleting Σ-module.

Proposition 2.3.2 (Kontchakov et al. [Kon+09b]). If S is monotone and ro-

bust under replacement there is a unique minimal depleting Σ-module and it is

produced by the algorithm in Figure 2.6.

Figure 2.6 is a general algorithm for the extraction of unique depleting Σ-

modules, applicable to any inseparability relation both monotone and robust

under replacement. It works by incrementally building a subset W ⊆ T \M

one axiom at a time (Lines 3–4). If this subset causes separability for S w.r.t

Σ ∪ sig(M) (Line 5) the last axioms added to W must be the cause, and must

be relevant for Σ∪ sig(M), and is so added to the moduleM. Following thisW

is reset (Line 7) and the process is restarted considering inseparability for the

updated signature Σ ∪ sig(M). This continues until every remaining axiom in

O \M has been considered and no cause for separability has been found w.r.t

30

CHAPTER 2. Background

Σ ∪ sig(M). The algorithm terminates returning the unique minimal depleting

Σ-module of O for S.

The algorithm runs in O(|O| + |Σ|)2 × Tc(O,Σ) where Tc(O,Σ) is the time

need to check for an ontology O whether O ≡S
Σ ∅. For specific logics and

inseparability relations we will discuss the known decidability and complexity

of deciding whether O ≡S
Σ ∅ in Section 2.4.

Proposition 2.3.3 (Konev et al. [Kon+09a]). The model-inseparability relation

S = mod is both monotone and robust under replacement.

As a result for each signature by Proposition 2.3.2 there exists a unique de-

pleting mCE Σ-module which by Proposition 2.3.1 is also self-contained and

plain. For deductive inseparability however, robustness under replacement of-

ten fails for many standard DLs. For example, any of the logics ALC, ALCI,

ALCQ, ALCQI, ALCO or ALCHO are not robust under replacement for the

inseparability relation S = v [Kon+09a].

2.3.2 Safety

Along with containing all the information relevant to the signature, it is de-

sirable that when reusing an ontology by importing a module that the module

does not have any unintended interactions with the ontology that imports it. In a

typical ontology re-use scenario a module may be utilised because the modeler

is not an expert in the topic for which the module is relevant, and importing it

should not change the information which the module provides. This notion has

lead to the definition of safety.

Definition 2.3.7 (Grau et al. [Gra+08]). Given an ontology O, an inseparability

relation S and signature Σ, O is safe for S if for every ontology O′ such that

sig(O) ∩ sig(O′) ⊆ Σ it holds that O ∪O′ ≡S
sig(O′) O′.

Typically importing a module M into an ontology O one would expected

new information over sig(O) particularly those symbols from Σ which are re-

used fromM. If an ontology is safe it provides a safe interface for a signature

31

CHAPTER 2. Background

Σ, and any module describing Σ symbols may be imported with unintended

interactions.

Theorem 2.3.1 (Grau et al. [Gra+08] and Konev et al. [Kon+13]). Consider

an ontology O and signature Σ. If O ≡mod
Σ ∅ then O is safe for Σ.

Theorem 2.3.1 formulates safety such a way that quantification over the

imported ontology as in Definition 2.3.7 is eliminated. Also, as a consequence,

ifM is a depleting Σ-module for the inseparability relation S = mod thenO\M

is safe for Σ ∪ sig(M), and so the moduleM can be maintained independently

of O.

2.3.3 Complexity and computability

We have seen strong arguments for inseparability-based modules particu-

larly those defined by model-inseparability relations. Unfortunately, deciding

inseparability-based modules suffers from high complexity and even undecid-

ability in moderately expressive logics. Deciding if one ontology is a deductive

conservative extension of another for a signature Σ, and hence deciding if

M ⊆ O is deductive Σ-module, is EXPTIME-complete for general EL ontolo-

gies [LW10], for ALC and ALCQI is 2EXPTIME-complete [GLW06; LWW07],

for ALCQIO this problem becomes undecidable [LWW07]. Deciding model-

conservative extensions is even harder, only for acyclic EL terminologies is

deciding model-conservative extensions in PTIME, for general EL and acyclic

ALC the same problem is undecidable [LWW07]. One way to reduce the com-

plexity is to only consider concept signatures – signatures consisting of concept

names only – then, deciding if two ontologies are model-inseparable for a signa-

ture for both general EL and acyclic and general ALCI is CONEXPNP-complete.

The special case for deciding if an ontology is model-inseparable from the

empty ontology, for unrestricted signatures is still known to be undecidable for

general EL and both acyclic and general ALC, for concept signature it goes

down to PTIME for general ELI ontologies and Πp
2 for general and acyclic

32

CHAPTER 2. Background

ALCI [Kon+08a].

2.4. Modules for inseparability relations

As a consequence of the complexity results, two different approaches exist

for computing logic-based modules. The first is to limit the expressivity of the

logics, for example Konev et al. [Kon+08a] describe a method for computing

minimal model Σ-modules acyclic ELI terminologies in polynomial time. The

second, for more expressive logics, approximations are used. Approximations

are modules that still satisfied the desired inseparability relation but are not

necessarily minimal. That said, there is still a strong desire for modules to

be as small as possible – to approximate minimal modules. The most popular

kind of approximations are based on a notion called locality [Gra+08; SSZ09]

which for general ontologies up to SROIQ in expressitivity, can compute an

approximation of the minimal mCE Σ-module.

In the following section we will look in more detail at modules based on

inseparability relations, noting when they are computable and when approxim-

ations are required. We focus in particular at those inseparability relations and

modules that preserve the properties described in Section 2.3.1 which we have

argued are critical for the common applications for which modules are relevant.

As we have seen, preserving these properties guarantees that for each signature

Σ, every depleting Σ-module is uniquely determined and both self-contained

and plain. Furthermore, the relationship between inseparability relations guar-

antees the mCE Σ-modules we consider are also dCE Σ-modules, preserving

both models and subsumptions over a signature.

2.4.1 Model inseparability modules for ELI and ALCI

Konev et al. [Kon+08a; Kon+13] describe an approach for extracting plain

and depleting modules for acyclic ELI terminologies – which they call weak

and strong modules respectively. They show for the model-inseparability re-

33

CHAPTER 2. Background

lation that separability from the empty TBox in acyclic ELI terminologies is

caused by so called direct or indirect dependencies between signature symbols.

A dependency is present if an axiom A v C ∈ T with A ∈ Σ uses another

symbol X ∈ Σ either directly or indirectly in its definition.

In order to extract a depleting Σ-module, their algorithm goes through the

axioms of T \ M and determines if any axiom causes a dependency between

the symbols of Σ∪ sig(M). If such an axiom is located it is added to the module

M and the signature of Σ ∪ sig(M) is updated accordingly. Once no axiom in

T \M contains a dependency between Σ ∪ sig(M) symbols then the algorithm

terminates guaranteeing T \ M ≡mod
Σ ∅, which results in M being the unique

minimal depleting Σ-module. Deciding if an ELI TBox contains dependencies,

whether direct or indirect, can be done syntactically, and so the module extrac-

tion algorithm runs in polynomial time.

The authors also introduce an algorithm for extracting depleting mCE Σ-

modules from acyclic ALCI terminologies. Following from the undecidability

constraints of model-conservative extensions for ALCI, they again utilise the

idea of direct dependencies but to regain decidability, and they use a modified

version of the algorithm in Figure 2.6 in order to compute an approximation

of the minimal depleting mCE Σ-module. We will look at the algorithm in

more detail in Chapter 3, where we will propose practical optimisations and

improvements.

2.4.2 Concept and Query Inseparability for DL-Lite

Kontchakov et al. [Kon+09b] investigates the computation of minimal modules

for several dialects of DL-Lite ontologies. They look at both deductive insepar-

ability modules and additionally those based on the relation query inseparabil-

ity ≡qΣ. Two DL-Lite ontologies are considered query inseparable for a signature

Σ if they always give the same answers to a query ϕ with sig(ϕ) ⊆ Σ. They ar-

gue that query inseparability is the most appropriate inseparability relation for

DL-Lite ontologies, typically providing an interface for querying instance data.

34

CHAPTER 2. Background

They also investigate the computation of plain dCE Σ-modules (MCM mod-

ules) which are shown to be minimal but not uniquely determined, and de-

pleting query inseparability based modules (MDQM modules) which are both

minimal and uniquely determined. The latter result coming as a direct con-

sequence of Proposition 2.3.2 and the inherent robustness properties of query

inseparability. Both MCM and MDQM modules can be computed by reducing

the inseparability tests to the satisfiability of a class of QBF formulas which is

Πp
2-complete. Since query inseparability is decidable for DL-Lite, MDQM mod-

ules can be computed using the algorithm in Figure 2.6 with Line 5 deciding if

W 6≡qΣ∪sig(M) ∅.

2.4.3 Datalog Modules

Romero et al. [Rom+14] introduce a novel module extraction approach using

a reduction to reasoning in the rule-based query language datalog [AHV95;

Dan+01]. The intuition behind the approach is to convert an ontology O into a

datalog program P by mapping every axiom to (possibly several) datalog rules.

The resulting datalog program represents a strengthening of the original onto-

logy, as the limited expressiveness of datalog means it is necessary to convert

any disjunctions in the input ontology to conjunctions in the resulting datalog

program.

The authors show that the proof that a Σ-formula ϕ (sig(ϕ) ⊆ Σ) is entailed

by O can be embedded in a proof ρ of the datalog program P. This embedding

has the key property that for any axiom in O needed to entail ϕ there will

always exist at least one corresponding datalog rule in P which will be used in

the proof of ρ, so it is sufficient to examine the rules used in the proof of ρ to

identify those axioms of O which are necessary for the entailment to hold.

Utilising this property turns out to be a very flexible way to extract mod-

ules, as the construction of the datalog program and subsequent proofs can be

tailored to ensure modules preserve different kinds of Σ-formulas in order to

satisfy a chosen inseparability relation, which includes, but is not limited to,

35

CHAPTER 2. Background

both deduction and model inseparability.

The modules extracted using the datalog approach are by default plain Σ-

modules, but further modifications to the datalog programs are possible to addi-

tionally ensure each extracted module is also self-contained and depleting. The

modules are also approximations, no minimality is guaranteed due to the fact

that the datalog program P is a strengthening of the ontology O, and there may

be a proof of P corresponding to a Σ-formula which isn’t actually an entailment

of O, which may then lead to unnecessary axioms appearing in an extracted

module.

For all ontology languages that we have considered, the complexity of both

producing a datalog program from an ontology and module extraction via data-

log reasoning is tractable.

2.4.4 Locality based modules

Locality based modules (LBMs) are a family of approximations for minimal de-

pleting mCE Σ-modules based on the locality of individual axioms. An axiom

is considered “local” if given a signature Σ, it can always be satisfied independ-

ently of the symbols in Σ, but in a restricted way. The particular way in which

the interpretation of an axiom is restricted is dependant on the variety of local-

ity which is chosen, and there exists both semantic and syntactic methodologies

for testing the locality of axioms, the former as hard as standard reasoning for

the chosen logic, the latter can be performed in polynomial time. With the low

complexity of syntactic locality, and the ability to extract modules from very

expressive logics, LMBs are the most popular kind of approximation, and have

found use in a variety of applications [Gra+10; KS13; LK14; Sun+08; NK10].

Semantic Locality

Semantic locality comes in different varieties depending on how the non-Σ sym-

bols are interpreted. Satisfying every axiom α by interpreting every non-Σ sym-

36

CHAPTER 2. Background

bol as the empty set is known as ∅-locality, whereas interpreted as the entire

domain is known as ∆-locality.

Definition 2.4.1 (Grau et al. [Gra+08] and Sattler et al. [SSZ09]). An axiom

α is called ∅-local (∆-local) w.r.t a signature Σ if, for each interpretation I there

exists an interpretation J such that I|Σ = J |Σ and J |= α and for each X ∈

sig(α) \ Σ, XJ = ∅ (for each C ∈ sig(α) \ Σ, CJ = ∆J , for each R ∈ sig(α) \

Σ, RJ = ∆J ×∆J).

The intuition behind locality is to establish when an axiom says nothing

about a signature Σ, if an axiom is local w.r.t a signature Σ, it is irrelevant

for Σ, as for any interpretation I of Σ-symbols we can always find a model J

of α which interprets the Σ-symbols in a uniform way, meaning the axiom is

satisfiable however the Σ-symbols are interpreted.

Theorem 2.4.1 (Grau et al. [Gra+08]). If all axioms in O \M are semantically

local (either ∅− or ∆− local) for Σ∪sig(M) thenM is a depleting mCE Σ-module.

The converse of Theorem 2.4.1 typically does not hold. A minimal example

from [Gra+08], the axiom α = A ≡ B and Σ = {A} then α is neither ∅

or ∆ local and will be included in the LBM for Σ but {A ≡ B} ≡mod
Σ ∅. As

a consequence of this locality based modules are approximations, depleting

mCE Σ-modules but not necessarily minimal ones, as they may contain surplus

axioms which are non-local but irrelevant for Σ ∪ sig(M).

Testing the locality of single axioms and by Theorem 2.4.1 extracting LBMs

can be achieved using off-the-shelf DL-reasoners, which makes it easier than

deciding minimal logic-based modules (Section 2.3.3). However, standard reas-

oning in expressive description logics is still complex, for example SROIQ it

is N2EXPTIME-complete [Kaz08]. In order to produce a tractable notion of

locality and thereby a tractable module extraction procedure, a syntactic ap-

proximation to locality has been introduced.

37

CHAPTER 2. Background

Syntactic Locality

Grau et al. [Gra+08] introduce a syntactic approximation for both types of

semantic locality for the description logic SHIQ. The intuition behind syntactic

locality is that it is often possible to determine if an axiom is local or not just

by examining the syntax of that axiom. Jimenez-Ruiz et al. [Jim+08] later

extended the notion to the more expressive SROIQ.

Each type of semantic locality as in Definition 2.4.1 has a syntactic variant.

>-locality is analogous to ∆-locality whereas ⊥-locality is to ∅-locality. Like

semantic locality, syntactic locality is decided on a per axiom basis. Firstly

one identifies those concept expressions which may be interpreted trivially

whichever interpretation of Σ symbols is taken.

Definition 2.4.2 ([Gra+08]). Given a signature Σ, concept name A 6∈ Σ, role

name r 6∈ Σ, positive integer n and define two sets of concept expressions: Bot(Σ)

and denote the members of this set X⊥, and Top(Σ) whose members are denoted

X>. Depending on the type of syntactic locality required, these sets of expressions

are inductively defined as below.

(a)⊥-locality

Bot(Σ) ::= A⊥ | ⊥ | ¬C> | C1 u C⊥2 | C⊥1 u C2 | ∃r.C⊥ | > n r.C⊥ | ∃r⊥.C | > n r⊥.C

Top(Σ) ::= > | ¬C⊥ | C>1 u C>2 | > 0 r.C

(b)>-locality

Bot(Σ) ::= ⊥ | ¬C> | C1 u C⊥2 | C⊥1 u C2 | ∃r.C⊥ | > n r.C⊥

Top(Σ) ::= A> | > | ¬C⊥ | C>1 u C>2 | ∃r>.C> | > n r>.C> | > 0 r.C

Intuitively each member of the set Bot(Σ) can be interpreted as the empty

set, whereas those in Top(Σ) the whole domain without constraining the inter-

pretation of Σ-symbols. Secondly, utilising this information of which expres-

sions can be trivially interpreted one identifies those axioms which are syn-

tactically local.

38

CHAPTER 2. Background

Definition 2.4.3. Given an axiom α and a signature Σ, let C,D be arbitrary

concept expressions, r, s be role names. Then α is:

1. Syntactically ⊥-local if it is of the form

C⊥ v D | C v D> | C⊥ ≡ D⊥ | C> ≡ D> | r⊥ v s | Trans(r⊥) | Func(r⊥)

For C⊥, D⊥, r⊥ ∈ Bot(Σ) and C>, D> ∈ Top(Σ)

2. Syntactically >-local if it is of the form

C⊥ v D | C v D> | C⊥ ≡ D⊥ | C> ≡ D> | r v s> | Trans(s>) | Func(s>)

For C⊥, D⊥ ∈ Bot(Σ) and C>, D>, s> ∈ Top(Σ)

Theorem 2.4.2 (Grau et al. [Gra+08] and Jimenez-Ruiz et al. [Jim+08]). If all

axioms in O\M are syntactically local (either >- or ⊥-local thenM is a depleting

mCE-module of O.

The procedures to check for syntactic locality are all syntactic and so the

complexity of deciding the locality of a single axiom can be done in polynomial

time.

Extracting and combining locality based modules

As locality based modules are decided on a per-axiom basis and not defined

using an inseparability relation, a different algorithm is used, as described in

Figure 2.7. One can observe that actually this algorithm is very similar to the

one given for minimal depleting modules based on inseparability relations (Fig-

ure 2.6), but is described on a per-axiom basis. For some notion of locality

x ∈ {∆, ∅,>,⊥}, the algorithm goes through all the axioms of the ontology O

repeatedly to ensure every axiom in O \ M is x-local for Σ ∪ sig(M). Then

by Theorem 2.4.1 and Theorem 2.4.2 the “x-module” M is a depleting mCE-

module of O.

39

CHAPTER 2. Background

Input: Ontology O, Signature Σ, x ∈ {∅,∆,>,⊥}
Output: x-moduleM of O w.r.t Σ

1 M ::= ∅,O′ ::= O
2 repeat
3 changed = false
4 foreach α ∈ O′ do
5 if α not x-local w.r.t Σ ∪ sig(M) then
6 M ::=M∪ {α}
7 O′ ::= O′ \ {α}
8 changed = true
9 end

10 end
11 until changed = false
12 returnM

Figure 2.7: Extracting a locality based module

The basic algorithm runs in cubic time, needing to test for locality at most

(|O| + |Σ|)2 times. Tsarkov [Tsa12] describes an optimised approach to reduce

the complexity further to only require at most (|O| × s) locality checks where

s = maxα∈O(|sig(α)|).

Proposition 2.4.1 (Grau et al. [Gra+08]). Given M ⊆ O be ontologies and Σ

a signature. If M, is a ⊥-module for Σ then M is a ∅-module for Σ. If M is a

>-module for Σ thenM is a ∆-module for Σ.

Proposition 2.4.1 implies that since each syntactically LBM contains its se-

mantic counterpart, it is also a depleting mCE Σ-module. The converse of this

proposition does not typically hold, there exist axioms which are syntactically

local but not semantically for the analogous notion of locality. For example

the axiom α = ∃r.¬A v ∃r.¬B is ∅-local for Σ = {r} since for any interpret-

ation I of r, there always exists an interpretation J such that rJ = rI and

AJ = BJ = ∅ which is a model of α. However, one can verify α is not ⊥-local,

it does not match the syntactic structure required by Definition 2.4.3.

For this reason, syntactic locality can be seen as an approximation for se-

mantic locality which in turn is an approximation for the minimal depleting Σ

modules. Syntactic locality is typically preferred due to the low computation

40

CHAPTER 2. Background

complexity of testing for locality, combined with complexity of module extrac-

tion algorithm Figure 2.7 means syntactic LBMs can be extracted in polynomial

time.

An additional property of locality based modules means different types of

locality capture different relationships between the subclass/superclass rela-

tionship involving signature symbols. This can be described by the following

proposition:

Proposition 2.4.2 (Grau et al. [Gra+08] and Jimenez-Ruiz et al. [Jim+08]).

LetO be an SROIQ ontology and Σ a signature then the following are equivalent:

1. O |= A v B

2. The ⊥-module for Σ = {A},M⊥, we haveM⊥ |= A v B

3. The >-module for Σ = {B},M>, we haveM> |= A v B

This property has been exploited for optimising ontology classification, com-

puting the asserted hierarchy of concept names of the ontology [RGH12; TP12a;

Gra+10]. Since every syntactic locality module is a semantic locality module

by Proposition 2.4.2 also holds for ∆ and ∅-modules.

Combining locality based modules

With the hope of producing smaller modules ⊥− and > locality (∅− and ∆−

locality) can be iteratively nested until a fixed point, first extracting a >− (∆−)

module and from the result extracting a ⊥− (∅−) module for the same signa-

ture, until a fixpoint is reached, producing ⊥>∗-modules (∅∆∗-modules) which

are at least as small as the equivalent >− or ⊥− modules (∆− or ∅− mod-

ules). The number of iterations needed to reach a fixpoint is at most at large as

the number of axioms in the ontology [SSZ09]. Such modules do not typically

capture the subclass/superclass relationship involving signature terms (Propos-

ition 2.4.2) but are still guaranteed to be depleting mCE Σ-modules [SSZ09].

41

CHAPTER 2. Background

The properties of depleting Σ-modules guarantee the sequence of nesting

module extraction is not important, e.g. >⊥∗ and ⊥>∗ modules are the same

for a given input signature. And analogously to Proposition 2.4.1, each ⊥>∗

module is also a ∅∆∗ module extracted for a given signature. For LBMs the

proof of this by Kazakov is published in [Ves13], whilst we prove the analogous

case for depleting mCE Σ-modules generally in Chapter 4.

Syntactic vs. Semantic Locality

With the desire for small as possible approximations and with both syntactic

and semantic notion of locality available a question is raised – “Is syntactic

locality a good approximation?”. Do we find the syntactic locality modules

close in size to the corresponding semantic ones or should we prefer the more

expensive semantic locality modules to obtain a better approximation of the

minimal depleting mCE Σ-modules?

To answer this, Vescovo et al. [Ves+12; Ves+13] conducted a number of em-

pirical studies over a wide range of real-world ontologies comparing semantic

and syntactic locality on both a per-axiom and per-module basis. The conclu-

sion of both studies is that statistically there no observable difference between

any kind of semantic locality and its corresponding syntactic notion.

As ⊥>∗ modules not only contain the corresponding ∅∆∗ modules they can

be computed efficiently and are at least as small as the equivalent > or ⊥-

modules they are the most attractive kind of locality based modules. We will

henceforth refer to ⊥>∗-modules as STAR modules for ease of reference and

pronunciation for the remainder of the thesis.

2.5. Success of approximations

When approximations are necessary, and minimal modules exist, as is the

case for depleting mCE modules, it is still desirable to have modules which

are as small as possible – to approximate minimal modules. How successful

42

CHAPTER 2. Background

an approximation is can be measured by how close it is in size to the minimal

module which it approximates. Currently there is limited support for this task

and the only way to evaluate an approximation is to compare it to an extraction

algorithm for inexpressive logics for which minimal modules can be automatic-

ally extracted.

⊥-modules are compared to modules produced by the MEX system for acyc-

lic ELI in [Kon+08a]. Both approaches extract a depleting mCE Σ-modules,

as a reminder, the MEX-modules are guaranteed to be minimal whereas the

⊥-modules are an approximation. The experimental evaluation considered the

large scale EL terminology SNOMED CT consisting of around 400,000 axioms.

In the experimental evaluation, signatures of sizes 100 to 1000 consisting of

random symbols were taken from the signature of the ontology and used to

extract modules. On average the size of the MEX-modules ranged between 200

and 6000 axioms, the corresponding ⊥-modules were up to around 4x as large.

A further comparison in [Kon+13], this time to STAR modules for different

version of the SNOMED CT ontology both random and 159 specially tailored

signatures representing various subsets of the ontology were chosen. For the

random signatures the result was much the same, with STAR modules being

up to 3.5x larger than the corresponding MEX module. For tailored signatures

however, the STAR and MEX modules coincided in 83 of 159 cases, for the

remaining cases the STAR module was up to 3x as large as the corresponding

MEX module. The cases where MEX and STAR coincide is explained by proving

that if an ontology only consists of EL concept inclusions (of the form C v D)

then MEX and STAR always coincide for any input signature, and hence the

STAR module is the ideal minimal, which is what was observed in the axioms

of the ontology relevant to the 83 tailored signatures.

STAR modules were also compared to MEX modules over a larger num-

ber of ontologies in [Ves+13] in which a corpus of 242 real-world ontologies

of varying expressivity were selected. As MEX can only extract modules from

acyclic ELI terminologies, ELI terminological versions of each ontology were

43

CHAPTER 2. Background

created by removing axioms more expressive than ELI and breaking termino-

logical cycles. Extracted from these preprocessed ontologies the sizes of STAR

and MEX modules were compared using both random and axiom signatures as

input. The results conclude that, for either random or axiom signatures, MEX

modules were smaller than the corresponding STAR modules in around 27% of

ontologies, the MEX module being between 0− 26 axioms smaller or relatively

0− 80% of STAR module size.

In summary, several experiments comparing LMBs to minimal depleting

mCE Σ-modules for the inexpressive logic ELI reveal the approximation

provided by locality-based approaches may sometimes coincide with the ideal

minimal module but often may be significantly larger – the locality approxima-

tion is far from optimal in these cases – however, LBMs can be applied to much

more expressive logics and nothing is yet known about the success of these

approximations. In addition, nothing is known about the success of any other

of the alternative approaches to producing approximations of depleting mCE

Σ-modules, either the datalog approach or the model-theoretic approximation

for ALCI.

2.6. Summary

We have introduced the various logics relevant to this thesis including the

family of Description Logics and have described how they are used to build

ontologies in order to model a domain of interest. We also introduced insepar-

ability relations which formally define when two ontologies are considered to

represent the same knowledge over a given signature leading to the definition

of several kinds of module which preserve specified knowledge from an onto-

logy. We then surveyed the current approaches to extracting modules from on-

tologies, detailing when minimal modules can be automatically extracted, and

when approximations are required. Finally, we commented on how the success

of approximations can be evaluated, and currently how there is limited support

for this task. In the next chapter we will look more on the model-theoretic ap-

44

CHAPTER 2. Background

proximation for ALCI and consider extensions and practical improvements to

the originally proposed algorithm.

45

CHAPTER 3

Approximations for Acyclic Terminologies

In the previous chapter we described how the unique minimal depleting mCE

modules for acyclic ELI terminologies can be extracted in PTIME, and when

compared to corresponding STAR-module — extracted for the same signature

— may sometimes coincide in size but are often significantly smaller. In more

expressive logics, where approximations are necessary, it is currently unclear

which approaches produce the most successful approximation for a given sig-

nature, that which is closest in size to the corresponding minimal module.

In this chapter we focus on extending and optimising the approximation al-

gorithm for acyclic ALCI terminologies described by Konev et al. [Kon+08a;

Kon+13], with the aim to develop a practically efficient algorithm which we

may utilise in an series of experiments to evaluate the relative size of this ap-

proximation in comparison to others.

In Section 3.2 we look at what is already known from [Kon+08a; Kon+13],

the theory which underpins an ALCI approximation algorithm, and how the

decidability of depleting mCE Σ-module extraction can be regained by the intro-

duction of an additional syntactic condition on the ontology. From Section 3.3

onward, we present our new contributions, using the ALCI approximation al-

gorithm as a starting point, we propose a number of logical extensions to allow

for the extraction of depleting modules from syntactic variants of acyclic ter-

minologies, constructed from the more expressive ALCQI. With these logical

extensions in place, in Section 3.4 we exploit the properties the algorithm to

propose a number of optimisations, which in turn lead to the development of

a new rule-based algorithm AMEX. We show that AMEX produces an identical

47

CHAPTER 3. Approximations for Acyclic Terminologies

module to the unoptimised version, but offers measurably better practical per-

formance. We confirm this, in Section 3.5, through a small experimental eval-

uation of module extraction applied to a real-world ontology. The AMEX al-

gorithm will also become the basis for a larger, much more comprehensive in-

vestigation in Chapter 6, in which we provide a comparison between AMEX

and several other approximations producing depleting mCE Σ-modules, includ-

ing the locality based STAR module.

For the remainder of the thesis we mostly focus on mCE Σ-modules, and

for simplicity, we simply refer to them as Σ-modules. Additionally, we drop the

mod superscript and use ≡ to represent the model-inseparability relation and

make it explicitly clear if any modules are not Σ-modules or not based on the

model-inseparability relation.

3.1. Model-inseparable modules

As we have seen, for two ontologies to be model-inseparable for a signature,

for each model of one ontology there must exist a corresponding model of the

other which interprets the signature symbols in the same way. This allows

for the definition of modules — which are rarely logically equivalent to the

ontology from which they are extracted — that are guaranteed to represent

exactly the same information over a specified signature. Consider the following

example of a plain module:

Example 3.1.1 (Plain Module). Let O be an ontology which consists of the fol-

lowing inclusions α1 − α4

Dermal_Neoplasm ≡ ∀hasCell.Neoplastic_Cell u Skin_Neoplasm (α1)

Dermal_Neoplasm v Malignant_Skin_Neoplasm (α2)

Malignant_Skin_Neoplasm v ∃hasCell.Malignant_Cell u Skin_Neoplasm (α3)

Malignant_Cell v Cell (α4)

48

CHAPTER 3. Approximations for Acyclic Terminologies

and letM = {α1, α4}. Clearly O andM are not logically equivalent, but for

the signature Σ = {Dermal_Neoplasm, Skin_Neoplasm}, O ≡Σ M, M is a plain

module, and one can verify that {I|Σ | I |= O} = {J |Σ | J |=M}. In fact the

information both the ontology and module provides over Σ can be expressed as a

concept inclusion β = Dermal_Neoplasm v Skin_Neoplasm, and it can be verified

that O ≡Σ M≡Σ {β}.

However, as we noted in the previous chapter, model-inseparability is strictly

stronger than deduction-inseparability, and ontologies implying the same inclu-

sions over a signature are not necessarily model-inseparable. Consider the signa-

ture Σ′ = {Dermal_Neoplasm,Malignant_Cell}, there is no inclusion over Σ′ which

is implied by O but not M or vice versa. But, if we consider a model of M,

I = {∆I = {d}, Dermal_NeoplasmI = {d} and Malignant_CellI = ∅, · · · }, such

a model exists, yet there is no model J of O such that I|Σ′ = J |Σ′, and since

Σ′ ⊆ Σ ∪ sig(M),M is not a self-contained module. Additionally, there exists no

model ofO\M which coincides with I on Σ∪sig(M), soM is also not a depleting

module.

Throughout this thesis we particularly focus on the stronger notion of de-

pleting modules, which for the model-inseparability relation come with the

guarantee of also being plain and self-contained modules by means of Proposi-

tion 2.3.1. Since every interpretation is a model of the empty ontology, in order

to establish if some M ⊆ O is a depleting module i.e. O \M ≡Σ∪sig(M) ∅, we

must ensure for every interpretation I there exists a model J of O \M which

coincides with I on Σ ∪ sig(M).

Consider the following example, where instead of describing the contents of

a module itself, we describe the axioms left in an ontology after a module has

been extracted, then by verifying if the residual axioms are inseparable from the

empty ontology for Σ∪ sig(M), we can determine whether or not the extracted

module is depleting.

Example 3.1.2 (Depleting Module). Let O be an ontology and M be module

49

CHAPTER 3. Approximations for Acyclic Terminologies

M⊆ O and let O \M consist of the axioms β1 − β4 below:

Lung_Site ≡ Lung t ∃hasLocation.Lung_Tissue (β1)

Membrane v Lung_Tissue (β2)

Pleura v Membrane (β3)

Pleura v ∀hasLocation.ThoracicCavity (β4)

ThenM is a depleting module where Σ ∪ sig(M) = {Pleura, hasLocation}. To

see this, let I be any interpretation, and define J by setting ∆J = ∆I , PleuraJ =

PleuraI and hasLocationJ = hasLocationI , then select some d ∈ ∆J and interpret

the remaining symbols O \M of in the following way:

MembraneJ = {d} ∪ PleuraJ

Lung_TissueJ = {d} ∪ PleuraJ

LungJ = {d}

ThoracicCavityJ = {e | (d, e) ∈ hasLocationJ }

and then interpret Lung_Site by its definition

Lung_SiteJ = (Lung t ∃hasLocation.Lung_Tissue)J

one can verify that J is a model of O \M with I|Σ = J |Σ. As the choice of I

was arbitrary, we have shown that for every interpretation I there always exists

a model J of O \M that concides with I on Σ ∪ sig(M) it follows that M is a

depleting Σ-module by definition.

Now consider some subsets of O which are not depleting modules, letM′ ⊆ O

and O \M′ = {β1 − β4, γ} where

γ = Membrane v ¬Lung_Site

The axiom γ expresses the disjointness of the concepts Membrane and Lung_Site,

50

CHAPTER 3. Approximations for Acyclic Terminologies

and although it contains no symbols from Σ itself, it does constrain the interpret-

ation of Σ symbols. Consider the one-element interpretation I with ∆I = {d},

PleuraI = {d} and hasLocationI = {(d, d)}, then one can verify there is no model

J of O\M′ that coincides with I on Σ∪ sig(M), soM′ is not a depleting module.

Next, consider the subsetM′′ ⊆ O with O \M′′ = {β1 − β4, δ} where

δ = ThoracicCavity v ∃hasLocation.Thorax

Although for every one-element interpretation, we can always find an model J

of O\M′′ that coincides on Σ∪sig(M), for the two-element interpretation defined

as ∆I = {d, e},PleuraI = {d}, hasLocationI = {(d, e)} such a J doesn’t exist, and

then, again,M′′ is not a depleting module.

3.2. Acyclic ALCI Approximation

In the previous chapter we described how Konev et al. [Kon+08a; Kon+13]

showed for acyclic ELI terminologies it is possible to produce the minimal

depleting module in PTIME. For acyclicALCI terminologies T , deciding if some

M ⊆ T is a depleting module is undecidable, meaning automatic extraction

of these modules is impossible. In answer to this, [Kon+13] introduced an

approximation extraction algorithm, the theory that underpins this we recount

in this section in order to establish what is already known, which in turn will

provide a basis for several extensions and improvements of our own.

3.2.1 One-point criterion

The theory which motivates the ALCI approximation stems from that checking

inseparability from the empty ontology for concept signatures (Σ ⊆ sig(O) ∩

NC) is decidable. It turns out that in order to decide if an ALCI ontology is

inseparable from the empty ontology for a signature, it is sufficient to decide

inseparability considering only one-element interpretations.

51

CHAPTER 3. Approximations for Acyclic Terminologies

Definition 3.2.1 (1-Σ-inseparability). Let O1 and O2 be ontologies and Σ a sig-

nature. Then O1 and O2 are called 1-Σ-inseparable for Σ, in symbols O1 ≡1
Σ O2

if: {
I|Σ

∣∣∣]∆I = 1 and I |= O1
}

=
{
J |Σ

∣∣∣]∆J = 1 and J |= O2
}

Lemma 3.2.1 (One-Point Criterion – Konev et al. [Kon+13]). Let O be a first-

order ontology preserved under disjoint unions and Σ a concept signature. Then

O ≡Σ ∅ iff O ≡1
Σ ∅.

Theorem 3.2.1 (Konev et al. [Kon+13; Kon+08a]). For an acyclic ALCI ter-

minology T and a concept signature Σ, it is in Πp
2 to decide whether T ≡Σ ∅. The

same problem is Πp
2-hard for acyclic ALC TBoxes.

The decidability of Theorem 3.2.1 follows from Lemma 3.2.1 in that to check

for inseparability from the empty ontology one only needs to enumerate every

one-element interpretation I — of which there is a finite amount — and verify

if there exists an interpretation J such that I|Σ = J |Σ. Noting that when I is a

one-element interpretation, and I|Σ = J |Σ then J must also be a one-element

interpretation, so all quantification is over objects of polynomial size.

We present here the proof of the Πp
2 upper bound for ALCI taken from

[Kon+13], which is achieved by reduction to ∀∃-QBF. For anALCI TBox T and

concept signature Σ, we want to decide if T ≡Σ ∅, the first step in the reduction

is to convert T into a propositional formula, starting with the concepts which

make up the axioms. Firstly taking a propositional variable pA for each concept

name A ∈ Σ and a distinct concept name qX for each symbol X ∈ sig(T) \ Σ.

The translation is inductively extended to convert arbitrary complex concepts

into propositional formulas D†:

52

CHAPTER 3. Approximations for Acyclic Terminologies

A† = pA for all A ∈ Σ ∩ NC

A† = qA for all A ∈ (sig(T) \ Σ) ∩ NC

(D1 uD2)† = D†1 uD
†
2

(¬D)† = ¬D†

(∃r.D)† = (∃r−.D)† = qr ∧D† for all r ∈ sig(T) ∩ NR

So that for a one-element interpretation I with ∆I = {d} and v a truth

assignment that:

• d ∈ AI iff v(pA) = 1 for all A ∈ Σ ∩ NC

• d ∈ AI iff v(qA) = 1 for all A ∈ (sig(T) \ Σ) ∩ NC)

• (d, d) ∈ rI iff v(qr) = 1 for all A ∈ (sig(T) ∩ NR)

Then d ∈ DI iff v(D†) for all ALCI concepts D over sig(T). The propositional

translation is then extended to entire TBoxes

T † =
∧
CvD

C† → D† ∧
∧
C≡D

C† ↔ D†

to ensure that I |= T iff v(T †) = true. This can be used to verify for a particular

one-element interpretation I whether it is a model of T . To ensure that for

every I there is a J such that I|Σ = J |Σ and J |= T we must ensure that

however I interprets Σ symbols (concepts) some J interprets them identically,

and that J is a model of T . Let ~p denote the sequence of variables pA for A ∈ Σ

and ~p denote those pX with X ∈ sig(T) \ Σ then the QBF formula

ϕT = ∀~p∃~qT †

is logically true, by Lemma 3.2.1, iff T ≡Σ ∅, and checking if a QBF formula of

the form ∀~p∃~qϕ is logically true, is well known to be Πp
2-complete [Bie+09].

53

CHAPTER 3. Approximations for Acyclic Terminologies

Although not explicitly proven in [Kon+13], the authors note that the

upper-bound in the case of concept signatures is extremely robust under

modifications of the description logic involved, with the Πp
2 lower bound

already holding acyclic ALC TBoxes without role names, and the Πp
2 upper

bound still holding for very expressive description logics such as SHIQ and

first-order ontologies with models which are known to be preserved under

disjoint unions [LPW11]. This motivates us to extend the upper-bound proof,

in Section 3.3.2, to cover the more expressive logic ALCQI.

The authors also note that Lemma 3.2.1 fails if one wants to decide model-

inseparability between two TBoxes instead of just from the empty ontology, or

when Σ contains a role name.

3.2.2 Unrestricted signatures

Konev et al. [Kon+08b; Kon+13] also identify a syntactic condition, known

as direct Σ-dependencies, which can be used to identify those axioms of an

acyclic terminology T which may cause it to be separable w.r.t a signature Σ

from the empty ontology i.e. T 6≡Σ ∅. Their key observation is that if T is

an acyclic ALCI terminology, and T contains no direct Σ-dependencies, then

deciding inseparability for unrestricted signatures becomes equivalent to that

of deciding inseparability for concept signatures, and hence decidable.

This property is particularly useful for deciding ifM⊆ T is a depleting mod-

ule. If all axioms causing a direct Σ ∪ sig(M)-dependency are moved straight

toM, then verifying if T \M ≡Σ∪sig(M) ∅ becomes decidable. However, in the

case of ALCI, this syntactic condition is not entirely accurate, and may identify

axioms which do not cause separability for Σ ∪ sig(M), yet it is necessary to

move them toM in order to regain decidability. The consequence of this is that

M may not be the minimal depleting Σ-module but an approximation.

54

CHAPTER 3. Approximations for Acyclic Terminologies

Direct Σ-dependencies

Firstly, using the depends relation ≺T used to define acyclicity in Section 2.1.2,

denote by ≺+
T the transitive closure of the ≺T relation, and set dependT (A) =

{X | A ≺+
T X}. Intuitively dependT (A) consists of all the symbols which are

used in the definition of A in T .

Definition 3.2.2 (Direct Σ-dependencies – Konev et al. [Kon+08a; Kon+13]).

Let T be an acyclic terminology, Σ a signature, and A ∈ Σ. We say that A has

a direct Σ-dependency in T if dependT (A) ∩ Σ 6= ∅. We say that T contains an

direct Σ-dependency when there is an A ∈ Σ that has an direct Σ-dependency in

T . We sometimes say A depends on a symbol X when X ∈ dependT (A) ∩ Σ.

The notion of direct Σ-dependencies generalises the notion of acyclicity

(A 6∈ dependT (A)) to describe if within an acyclic terminology there exists a

relationship between two symbols taken from a signature. It is known that the

presence of a direct Σ-dependency in an acyclic ELI terminology implies that

T 6≡Σ ∅ [Kon+13; Kon+08a].

Example 3.2.1. Let T be the following EL acyclic terminology

T = {Dog v ∃hasOwner.Human} and Σ = {Dog,Human}.

T contains a direct Σ-dependency, since Dog ∈ Σ and dependT (Dog) ∩ Σ =

{Human}. To show that T 6≡Σ ∅, let I be the following interpretation ∆I = {d},

DogI = {d} and HumanI = hasOwnerI = ∅ then one can verify there is no model J

of T such that I|Σ = J |Σ, one cannot find a model J of T without reinterpreting

Σ-symbols from I.

This property fails however when one considers, even simple ontologies,

formulated in the more expressive ALC.

Example 3.2.2. Let T be the following ALC acyclic terminology

T = {Pet v Dog t Cat} and Σ = {Pet,Cat}.

Clearly T contains a direct dependency (Pet depends on Cat), but notice that

T ≡Σ ∅, to see this, consider any interpretation I and the interpretation J which

55

CHAPTER 3. Approximations for Acyclic Terminologies

is identical to I except for setting DogJ = PetI , then J |= T and I|Σ = J |Σ, and

since I was arbitrary such a J always exists.

Deciding inseparability from the empty ontology is then decidable if an acyc-

lic ALCI ontology contains no direct Σ-dependencies, taken from the following

lemma:

Lemma 3.2.2 ([Kon+13]). Let T be an acyclic ALCI terminology Σ a signature

and let:

LhsΣ(T) = {A ./ C ∈ T | A ∈ Σ or ∃X ∈ Σ (A ∈ dependT (X))}

then for every interpretation I the following are equivalent:

1. there is a model J of T with J |Σ = I|Σ

2. there is a model J of LhsΣ(T) with J |Σ = I|Σ

Intuitively, the set LhsΣ(T) contains all axioms of T that are influenced by Σ.

The key observation in regaining decidability is that if an acyclic ALCI termin-

ology T contains no direct Σ-dependencies then LhsΣ(T) contains no role name

from Σ. Given an acyclic ALCI terminology T such that T contains no direct

Σ-dependencies, by Lemma 3.2.2, T ≡Σ ∅ iff LhsΣ(T) ≡Σ ∅ but since T con-

tains no direct Σ-dependencies then LhsΣ(T) contains no role name from Σ, and

since model-inseparability is monotone by Proposition 2.3.3 then LhsΣ(T) ≡Σ ∅

iff LhsΣ(T) ≡Σ∩NC ∅ which by Theorem 3.2.2 can be decided in Πp
2.

Theorem 3.2.2 (Konev et al. [Kon+13]). Given an acyclic ALCI terminology

T and signature Σ, such that T contains no direct Σ-dependencies, it is in Πp
2 to

decide whether T ≡Σ ∅.

3.2.3 Approximation Extraction Algorithm

A consequence of Theorem 3.2.2 enables a modified version of the general al-

gorithm producing the unique minimal depleting module for an inseparability

56

CHAPTER 3. Approximations for Acyclic Terminologies

relation (Figure 2.6), which can be applied to acyclicALCI terminologies. The

result of the modification is shown in Figure 3.1. The modification simply en-

sures that on each iteration of the algorithm, any subset W ⊆ T \M does not

contain a direct Σ ∪ sig(M) dependency, guaranteeing that W 6≡Σ∪sig(M) ∅ is

decidable (Line 6).

Theorem 3.2.3 (Konev et al. [Kon+13]). Let T be an acyclic ALCI-TBox and Σ

a signature. Then the algorithm given in Figure 3.1 computes the unique minimal

depleting Σ-module M such that T \M does not have any direct (Σ ∪ sig(M))-

dependencies.

Input: Acyclic ALCI TBox T , Signature Σ
Output: Minimal depleting moduleM such that T \M has no direct

Σ ∪ sig(M)-dependency
1 M ::= ∅
2 W ::= ∅
3 while T \M 6=W do
4 choose α ∈ (T \M) \W
5 W ::=W ∪ {α}
6 ifW contains a direct (Σ ∪ sig(M))-dependency orW 6≡Σ∪sig(M) ∅ then
7 M ::=M∪ {α}
8 W ::= ∅
9 end

10 end
11 returnM

Figure 3.1: Original module extraction algorithm

It is possible the syntactic check for direct Σ∪sig(M)-dependencies may cap-

ture axioms which do not cause separability in T \M— shown by the simple

example Example 3.2.2 — i.e. M is still a depleting module without these

axioms included, yet they need to be removed from T \ M to ensure we can

decide that M is a depleting module. The module produced by Figure 3.1

is therefore an approximation and may not coincide with the unique minimal

depleting module, which is known to exist by Proposition 2.3.2, but the decid-

ability constraints mean it cannot be automatically extracted.

As for the runtime of the algorithm, recall in the general case is in O((|O|+

57

CHAPTER 3. Approximations for Acyclic Terminologies

|Σ|)2 × Tc(O,Σ)), where Tc(O,Σ) is the time needed to check for an ontology

O and signature Σ whether O ≡Σ ∅. In the case of acyclic ALCI terminologies

T , checking for direct Σ-dependencies can be achieved by simple reachability

analysis which is in O(|T |), and deciding if T ≡Σ ∅ where T contains no direct

Σ-dependencies is in Πp
2.

3.3. Logical extensions

Now we have established what is already known about the model-theoretic

based ALCI approximation algorithm, we next consider extending the theor-

ems in the previous section to facilitate depleting module extraction variant

of acyclic terminologies that admit repeated concept inclusions, which, in addi-

tion, may be constructed using the more expressive logic ALCQI. We note the

new extensions we present are strictly generalisations and are still applicable to

acyclic ALCI terminologies.

3.3.1 Terminologies with repeated concept inclusions

A variant of acyclic terminologies are those with repeated concept inclusions.

These ontologies satisfy all the conditions for being an acyclic terminology with

the exception that they contain repeated concept inclusions (RCIs) of the form

A v C1, . . . , A v Cn for some concept name A which we call a repeated concept

name. A terminology containing at least one repeated concept name we call

acyclic terminology with RCIs. Real-world ontologies which contain RCIs in-

clude the important NCI ontology, the 08.09d version of which contains 14,326

repeated concept names with up to 31 RCIs for a single repeated name.

One can convert such a ontology into a logically equivalent acyclic termino-

logy by replacing each RCI of the form A v C1, . . . , A v Cn with a fresh axiom

A v C1 u · · · uCn. However, such an explicit conversion is an unattractive solu-

tion when targeting an ontology for depleting module extraction, because if the

fresh axiom is added to a module, the signature of the module now contains

58

CHAPTER 3. Approximations for Acyclic Terminologies

every symbol from sig(Ci) for 1 ≤ i ≤ n. As extracting depleting modules con-

siders Σ ∪ sig(M), a larger amount of symbols within sig(M) comes with the

inherent risk of increasing the size of the resulting module considerably.

Example 3.3.1 (Repeated Concept Inclusions). Consider the logically equivalent

EL terminologies T1 = {α1 − α5} and T2 = {β1 − β3}, and notice T2 is identical

to T1 apart from the RCIs for the concept name Insulin are joined to produce the

single concept inclusion β1.

T1 = {Insulin v Pancreatic_Product (α1)

Insulin v Hormone (α2)

Insulin v Biological_Product (α3)

Pancreatic_Product v Hormone (α4)

Hormone v Biological_Product} (α5)

T2 = {Insulin v Pancreatic_Product u Biological_Product u Hormone (β1)

Pancreatic_Product v Hormone (β2)

Hormone v Biological_Product} (β3)

For the signature Σ = {Insulin,Pancreatic_Product} consider the unique min-

imal depleting modules extracted from each ontology. The module M1 extracted

from T1 consists of a single axiom M1 = {α1}, whereas the module M2 for T2

consists of the whole ontologyM2 = T2.

This is because M2 must contain the axiom β1 as it expresses non-trivial in-

formation over Σ which resulting in us having

{Pancreatic_Product,Biological_Product,Hormone} ⊆ (Σ ∪ sig(M2))

which then “pulls in” the axioms β2 and β3 to ensure T2 \M2 ≡Σ∪sig(M2) ∅.

Conversely, M1 only contains single axiom α1 which we can show to

be a depleting module of T1 for Σ. Let I be any interpretation, and con-

59

CHAPTER 3. Approximations for Acyclic Terminologies

struct a model J of T1 \ M1 as follows: set ∆J = ∆I , InsulinJ = InsulinI

and Pancreatic_ProductJ = Pancreatic_ProductI and Biological_ProductJ =

HormoneJ = (InsulinJ ∪Pancreatic_ProductJ), then I|Σ∪sig(M1) = J |Σ∪sig(M1) and

J |= (T1 \M1) and so T1 \M1 ≡Σ∪sig(M1) ∅.

By not combining every RCI into a single axiom we obtain a module which

is a much smaller percentage of the original ontology. This module can also be

considered a better approximation, as it only contains axioms which represent

knowledge over the input signature rather than those which are collected as a

side-effect of converting our ontology into an valid acyclic terminology.

To avoid the situation described in Example 3.3.1, we take a more con-

sidered approach, extending the existing notions for depleting module extrac-

tion for acyclic terminologies to those which may additionally contain RCIs.

This enables us to identify those RCIs which are relevant to Σ ∪ sig(M) so that

we may only target them for extraction into a module, preventing irrelevant

axioms unnecessarily appearing in our extracted modules.

Per-axiom direct Σ-dependencies

We first extend the notion of direct Σ-dependencies defined on on a per-axiom

basis, starting with the generation of dependencies from a terminology with

RCIs.

Definition 3.3.1. (Per-axiom dependencies) Given an acyclic terminology with

RCIs TRCI, define dependTRCI
(A ./ C) for an axiom A ./ C ∈ TRCI

dependTRCI
(A ./ C) =

⋃
X∈sig(C)∩ NC

dependTRCI
(X)

Intuitively, the set dependTRCI
defines for an axiom, the set of symbols that

an axiom uses in its definition, even indirectly, allowing us to establish which

axioms use a particular symbol from sig(T).

60

CHAPTER 3. Approximations for Acyclic Terminologies

Example 3.3.2. Let T be the following acyclic terminology with RCIs:

Cat v Pet (3.1)

Dog v Pet (3.2)

Dog v ∀eats.Meat (3.3)

Pet ≡ Animal (3.4)

By Definition 3.3.1: dependTRCI
(Pet ≡ Animal) = {Animal} and dependTRCI

(Dog v

∀eats.Meat) = {eats,Meat} as they only contain undefined concepts and role

names. Now by the transitive nature of the depends relation dependTRCI
(Dog v

Pet) = dependTRCI
(Cat v Pet) = {Pet,Animal}.

Notice that if a concept name is not repeated in T then dependT (A) =

dependTRCI
(A ./ C) for the single axiom A ./ C ∈ T . That is, per-axiom de-

pendencies are still general enough to apply to those TBoxes without RCIs.

This property also allows us to generalise the definition of acyclicity to those

terminologies with RCIs.

Definition 3.3.2 (Acyclic Terminology). Given a terminology with RCIs TRCI, we

say it is acyclic if for all axioms A ./ C ∈ T we have A 6∈ dependTRCI
(A ./ C),

otherwise it is called cyclic.

The notion of direct Σ-dependencies (Definition 3.2.2) links the de-

pendencies between symbols used in the definition of a concept, to that of

Σ-inseparability, a direct Σ-dependency present in a ALCI acyclic terminology

may imply separability from the empty ontology. The following notion is

analogous to direct Σ-dependencies but defined over axioms.

Definition 3.3.3 (Axiom dependencies). An axiom A ./ C causes an axiom Σ-

dependency in an acyclic terminology with RCIs TRCI, for a signature Σ, if A ∈ Σ

and dependTRCI
(A ./ C) ∩ Σ 6= ∅. We say T contains an axiom Σ-dependency if

there is axiom α ∈ T which has an axiom Σ-dependency.

61

CHAPTER 3. Approximations for Acyclic Terminologies

More importantly, by Theorem 3.2.2, for a signature Σ, if no direct Σ-

dependencies are present in an acyclic ALCI terminology T then it is decid-

able to verify if T ≡Σ ∅, which is essential for computing depleting modules.

Motivated by this idea, in the next section we will show decidability for the

same problem is also possible for ALCQI terminologies with RCIs, as long as

no axiom Σ-dependencies are present.

3.3.2 Deciding inseparability for acyclic ALCQI with RCIs

Concept signatures for acyclic ALCQI

To extract a depleting module an acyclic ALCQI ontology with RCIs, we must

be able to decide inseparability from the empty ontology for unrestricted sig-

nature. Towards this result we first we prove that deciding if TRCI ≡Σ ∅ is

still decidable where TRCI is an acyclic ALCQI terminology with RCIs and Σ

is a concept signature. We achieve this extending the reduction provided by

Lemma 3.2.1.

(≥ n r.C)† =

n = 0 >
n = 1 qr ∧ C†
n > 1 ⊥

(≤ n r.C)† =

n = 0 ¬qr ∨ ¬C†
n = 1 >
n > 1 >

(= n r.C)† = (≤ n r.C)† ∧ (≥ n r.C)†

Figure 3.2: Translation of cardinality restrictions into propositional formulas

To extend the reduction, we consider how arbitrary cardinality restrictions

can be translated into propositional formulas in order to determine the validity

of acyclic ALCQI terminologies with RCIs under one-element interpretations.

The translation of a cardinality restriction D to a propositional formula D† is

shown in Figure 3.2, where qr is a propositional variable associated with the

role name r.

62

CHAPTER 3. Approximations for Acyclic Terminologies

With the extended translation in place, the translation of ALCQI axioms

to propositional formulas, and construction of the QBF formula is achieved in

the same fashion described in the proof of Theorem 3.2.1, which leads to the

following lemma:

Lemma 3.3.1. For an acyclic ALCQI terminology with RCIs TRCI and a concept

signature Σ, it is in Πp
2 to decide whether TRCI ≡Σ ∅.

Proof. To decide if TRCI ≡Σ ∅ it is sufficient to decide if TRCI ≡1
Σ ∅ by

Lemma 3.2.1, as ALCQI has models preserved under disjoint unions [LPW11].

The bound for deciding if TRCI ≡1
Σ ∅ is given using the same reduction to QBF

used in the proof of Lemma 3.2.1, extending the result from ALCI to ALCQI

by adding the translation of arbitrary cardinality restrictions to propositional

formulas as described in Figure 3.2. This still amounts to deciding the validity

of a ∀∃-QBF formula, which is in Πp
2.

In Chapter 5 we establish the correctness of the reductions used in both

Lemma 3.2.1 and Lemma 3.3.1 where we examine exactly n-Σ-inseparability

for ontologies up to SHIQ in expressitivity, which we will go on to utilise in

evaluating the success of approximations. Exactly n-Σ-inseparability is defined

as inseparability from the empty ontology if considering only interpretations

of size n for some 0 < n, generalising the case of 1-Σ-inseparability, and like

1-Σ-inseparability is reducible to ∀∃-QBF.

Regaining decidability for unrestricted signatures

To show decidability, in the Πp
2 bound, for unrestricted signatures, we provide a

proof analogous to Lemma 3.2.2 which applies to acyclicALCQI terminologies

with RCIs.

First we introduce a notion of definitional depth, which is useful for order-

ing the axioms for acyclic terminologies. We use a definition of this notion to

include RCIs.

63

CHAPTER 3. Approximations for Acyclic Terminologies

Definition 3.3.4 (Definitorial depth dTRCI). For an acyclic terminology with RCIs

TRCI, set dTRCI(A) = 0 if there is no A ./ C ∈ TRCI. If A ./ C ∈ TRCI is not

repeated for a concept name A set dTRCI(A) = 1+max{dTRCI(B) | B occurs in C} for

some concept name B. For a repeated concept name A with axioms A v C1, A v

C2, . . . , A v Cn ∈ TRCI set dTRCI(A) = 1 +max{dTRCI(B) | B occurs in any Ci, 0 <

i ≤ n}.

The “defined” concepts of T are defined as Def(TRCI) = {A |A ≡ C ∈ T }, the

undefined ones Undef(TRCI) = {A | A ./ C 6∈ T } i.e. concepts with dTRCI(A) = 0.

The ordering asserted by definitorial guarantees that for any axiom A ./ C ∈ T

that if B ∈ sig(C) then dTRCI(B) < dTRCI(A).

Example 3.3.3. Consider the following acyclic terminology with RCIs:

T = {Animal v ∃eats.Meat

Dog v Animal

Dog v ∀eats.Meat

Meat v Food}

Since dTRCI(Food) = 0, Food is undefined, then, as Food appears in the defin-

ition of Meat it follows that dTRCI(Meat) = 1 similarly as Meat appears in the

definition of Animal, dTRCI(Animal) = 2. Now, the repeated concept name Dog uses

both Animal and Meat in its definition, taking the maximal values of these concepts

results in dTRCI(Dog) = 3.

Lemma 3.3.2. Let TRCI be an acyclic ALCQI terminology with RCIs and Σ a

signature and let:

LhsΣ(TRCI) = {A ./ C ∈ TRCI | A ∈ Σ or ∃X ∈ Σ (A ∈ dependTRCI
(X))}

For every interpretation I the following are equivalent:

1. there is a model J of TRCI with J |Σ = I|Σ

64

CHAPTER 3. Approximations for Acyclic Terminologies

2. there is a model J of LhsΣ(TRCI) with J |Σ = I|Σ

Proof. From (1) ⇒ (2) is immediate. For the proof from (2) ⇒ (1). Let J be

a model of LhsΣ(TRCI) such that I|Σ = J |Σ. Let Σ′ = sig(TRCI) \ sig(LhsΣ(TRCI))

Obtain an interpretation J ′ by setting ∆J ′ = ∆J and:

• XJ
′ = XJ for all X ∈ (NC ∪ NR) \ Σ′

• rJ
′ = rJ for all role names r ∈ Σ′

• For concept names A ∈ Σ′ the definition of AJ ′ is by induction on the

definitorial depth of A. Set AJ ′ = AJ with dTRCI(A) = 0. Assume BJ ′ has

been defined for all B with dTRCI(B) = n. Let A ∈ Σ′ with dTRCI(A) = n+ 1.

If A 6∈ Def(TRCI) then set AJ ′ = ∅ otherwise there is a unique concept

definition A ≡ C such that each BJ
′ is defined for all B ∈ sig(C). Set

AJ
′ = CJ

′

Since XJ
′ = XJ for all X ∈ (NC ∪ NR) \ Σ′ and additionally for all role

names r ∈ sig(TRCI) we have rJ
′ = rJ and for all concepts A ∈ Undef(TRCI)

we have AJ ′ = AJ then for all symbols X ∈ Σ we have XJ ′ = XJ and since

J |Σ = I|Σ then J ′|Σ = I|Σ as required.

We now show that J ′ is a model of TRCI. Since J coincides with J ’ on

sig(LhsΣ(TRCI)) J ′ is a model of LhsΣ(TRCI). Now let A ./ C ∈ TRCI \ LhsΣ(TRCI).

By definition of LhsΣ(TRCI) we have A ∈ sig(TRCI) \ sig(LhsΣ(TRCI)). We dis-

tinguish two cases: First, let A ./ C be of the form A v C, by definition of

LhsΣ(TRCI) if A v C ∈ TRCI \ LhsΣ(TRCI) then for all other repeated concept-

inclusions A v D we have A v D ∈ TRCI \ LhsΣ(TRCI). Since AJ ′ = ∅ then J ′

satisfies every, possibly repeated, concept-inclusion. Second, let A ./ C be of

the form A ≡ C, then AJ ′ = CJ
′ and so J ′ satisfies A ≡ C as required.

Lemma 3.3.3. Given a signature Σ and an acyclic terminology with RCIs TRCI,

65

CHAPTER 3. Approximations for Acyclic Terminologies

if TRCI contains no axiom Σ-dependencies, then LhsΣ(TRCI) contains no role name

from Σ.

Proof. Let Σ be a signature and TRCI an acyclic terminology with RCIs. For a

proof by contradiction assume there exists some axiom B ./ D ∈ LhsΣ(TRCI)

such that for some r ∈ Σ we have r ∈ sig(D). Now since B ./ D ∈ LhsΣ(TRCI),

one of the following conditions hold:

1. B ∈ Σ. Since r ∈ sig(D) we have r ∈ dependTRCI
(B ./ C) ∩ Σ, and TRCI

contains an axiom Σ-dependency contradicting our original assumption.

2. There exists some X ∈ Σ such that B ∈ dependTRCI
(X). Then there must

an axiom X ./ D′ such B ∈ dependTRCI
(X ./ D′) caused by the axiom

B ./ D and since r ∈ sig(D) we also have r ∈ dependT (X ./ D′) ∩ Σ

and so TRCI contains an axiom dependency, again contradicting the initial

assumption.

Theorem 3.3.1. Given an acyclic ALCQI terminology with RCIs TRCI, and sig-

nature Σ, such that TRCI contains no axiom Σ-dependencies, it is in Πp
2 to decide

whether TRCI ≡Σ ∅.

Proof. By Lemma 3.3.2 TRCI ≡Σ ∅ iff LhsΣ(TRCI) ≡Σ ∅ but since TRCI contains no

axiom Σ-dependencies then by Lemma 3.3.3 LhsΣ(TRCI) contains no role name

from Σ, and since model inseparability is known to be monotone by Propos-

ition 2.3.3, it follows that LhsΣ(TRCI) ≡Σ ∅ iff LhsΣ(TRCI) ≡Σ∩NC ∅ which by

Lemma 3.3.1 can be decided in Πp
2.

Modified Algorithm

Theorem 3.3.1 suggests a modification of the original ALCI extraction al-

gorithm (Figure 3.1) which can be applied to acyclic ALCQI with RCIs to

produced what will be referred to as a dependency-free depleting Σ-module.

66

CHAPTER 3. Approximations for Acyclic Terminologies

Input: Acyclic ALCQI terminology with optional RCIs TRCI, Signature Σ
Output: Minimal dependency-free depleting Σ-module of TRCI

1 M ::= ∅
2 W ::= ∅
3 while TRCI \M 6=W do
4 choose α ∈ (TRCI \M) \W
5 W ::=W ∪ {α}
6 ifW contains an axiom (Σ ∪ sig(M))-dependency orW 6≡Σ∪sig(M) ∅

then
7 M ::=M∪ {α}
8 W ::= ∅
9 end

10 end
11 returnM

Figure 3.3: Extracting minimal dependency-free Σ-modules from acyclic
ALCQI terminologies with RCIs

Definition 3.3.5 (Dependency-free depleting Σ-module). Let TRCI be an acyclic

ALCQI terminology with RCIs, and a signature Σ, then M ⊆ TRCI is a called a

dependency-free depleting Σ-module of TRCI if TRCI \ M contains no axiom Σ ∪

sig(M)-dependencies and TRCI \M ≡Σ∪sig(M) ∅.

Figure 3.3 shows the result of this modification, and to produce a

dependency-free depleting Σ-module it can be seen that direct Σ ∪ sig(M)-

dependencies are replaced with axiom Σ ∪ sig(M)-dependencies to ensure

W 6≡Σ∪sig(M) ∅ for someW ⊆ TRCI \M (Line 6) is decidable by Theorem 3.3.1.

The algorithm terminates, returning M, when TRCI \ M contains no axiom

Σ ∪ sig(M)-dependencies and TRCI \ M ≡Σ∪sig(M) ∅, which ensures M is a

depleting Σ-module. But again an approximation of the unique minimal de-

pleting Σ-module, as like direct Σ-dependencies, axiom Σ-dependencies may

still capture axioms irrelevant for Σ ∪ sig(M). However, it is also possible to

show the module produced in Figure 3.3 is the unique minimal dependency

free Σ-module using the following lemma, which is a direct generalisation of a

claim used in the proof of Proposition 2.3.2 taken from [KWZ10].

Lemma 3.3.4. Let TRCI be an acyclic ALCQI terminology with RCIs, Σ a signa-

ture, and M ⊆ TRCI be a dependency-free depleting Σ-module of TRCI. Suppose

67

CHAPTER 3. Approximations for Acyclic Terminologies

there exists a Σ′ such that Σ ⊆ Σ′ ⊆ (Σ ∪ sig(M)) and let W ⊆ TRCI be a min-

imal set such that either W contains an axiom Σ′-dependency or W 6≡Σ′ ∅. Then

W ⊆M.

Proof. Suppose the lemma does not hold, that W 6⊆ M, we show that W con-

tains no axiom Σ′-dependency and thatW ≡Σ′ ∅, contradicting the assumptions

of the lemma. Let X =W∩M and observe that X can neither contain an axiom

Σ′-dependency nor can we have X 6≡Σ′ ∅, as either of which would be contrary

to the minimality ofW.

First we prove that W contains no axiom Σ-dependency. To show this we

demonstrate that (TRCI \ M) ∪ X ⊇ W contains no axiom Σ′-dependency. If

this is not the case then there exists a pair of symbols {A,X} ⊆ Σ′ with an

axiom A ./ C ∈ (TRCI \ M) ∪ X and where the set chainX(TRCI\M)∪X (A ./ B) is

non-empty. Let γ be a dependency chain γ = A1 ./ C1, A2 ./ C2, . . . , An ./ Cn ∈

chainX(TRCI\M)∪X (A ./ B). Since (TRCI\M)∪X is an acyclic terminology with RCIs,

each Ai ./ Ci appears in TRCI \M or in X . Observe both γ 6∈ chainXTRCI\M(A1 ./

C1) and γ 6∈ chainXX (A1 ./ C1) as either would cause TRCI \M or X to contain

an axiom Σ′-dependency. As the definition of dependency chains implies each

Ai+1 appears in sig(Ci), then either there must exist an Ai ∈ sig(X) such that

Ai ∈ dependTRCI\M(A1 ./ C1) or an Aj ∈ sig(X) with X ∈ dependTRCI\M(Aj ./ Cj)

or an {Ai, Aj} ⊆ sig(X) such that Aj ∈ dependTRCI\M(Ai ./ Ci) where 1 < i ≤ n

and i < j. In each of these cases, as (Σ′ ∪ sig(X)) ⊆ (Σ ∪ sig(M)), TRCI \ M

contains an axiom Σ ∪ sig(M)-dependency, contradicting the assumption that

M is a dependency-free depleting Σ-module.

Now we show that W ≡Σ′ ∅. As TRCI \ M ≡Σ∪sig(M) ∅ by the definition

of a dependency free depleting Σ-module and the fact by Proposition 2.3.3

inseparability is robust under replacement we obtain (TRCI\M)∪X ≡Σ∪sig(M) X .

Then using Σ′ ⊆ Σ ∪ sig(M) and the fact the inseparability is both a transitive

and monotone relation, we conclude from X ≡Σ′ ∅ that (TRCI \M) ∪ X ≡Σ′ ∅.

As ∅ ⊆ W ⊆ (TRCI \M) ∪ X we obtainW ≡Σ′ ∅ as required.

We have now shown thatW does not contain an axiom Σ′-dependency and

68

CHAPTER 3. Approximations for Acyclic Terminologies

thatW ≡Σ′ ∅ which contradicts the original assumptions of the lemma.

Now for the minimality claim. In the proof of the following theorem, and in

general, we refer to one execution of the main while loop of the Figure 3.3 as

an iteration, and denote a particular iteration with an index i, the state of the

setsW andM on this iteration are denotedWi andMi respectively.

Theorem 3.3.2. The algorithm in Figure 3.3 produces the unique minimal

dependency-free depleting Σ-module.

Proof. Analogously to the algorithm forALCI (Figure 3.1), we partition our on-

tology into two setsW andM, whereW has no axiom Σ∪sig(M)-dependencies

andW ≡Σ∪sig(M) ∅. The algorithm terminates when we have TRCI \M =W res-

ulting in anM which is a depleting module of TRCI such that TRCI \M contains

no axiom Σ ∪ sig(M)-dependency, a dependency-free depleting Σ-module by

definition.

For the uniqueness and minimality claim, let M0 ⊆ TRCI be a dependency-

free depleting Σ-module of TRCI. We prove by induction on the iterations of the

main while loop of the algorithm that theM produced is contained inM0.

Base case: On iteration 1 we haveM1 = ∅ ⊆ M0. Inductive Step: Assume

for all iterations m < l that Mm ⊆ M0. Consider iteration l and assume

w.l.o.g it is the first iteration such thatWl−1 does not have an axiom dependency

or that Wl−1 ≡Σ∪sig(Ml−1) ∅ but by choosing an axiom α (Line 4) and setting

Wl = Wl−1 ∪ {α} that Wl contains an axiom Σ ∪ sig(Ml)-dependency or that

Wl 6≡Σ∪sig(Ml) ∅. In either case we obtain α ∈Ml. Line 7.

Now to prove thatMl ⊆ M0 we must also show that α ∈ W0. To this end

again considerWl and notice there must exist a minimalW0 withW0 ⊆ Wl for

which we have α ∈ W0. Since by the induction hypothesis sig(Ml) ⊆ sig(M0)

we can conclude Σ ∪ sig(Ml) ⊆ Σ ∪ sig(M0) and can now apply Lemma 3.3.4

(with W = W0 andM =M0) and conclude W0 ⊆ M0 which implies α ∈ M0

as required.

69

CHAPTER 3. Approximations for Acyclic Terminologies

As an example, consider an application of the extraction algorithm in Fig-

ure 3.3 to the following acyclic terminology with RCIs:

Example 3.3.4. Let TRCI = α1 − α5 be the following acyclic ALCQ terminology

with RCIs, and let Σ = {Animal_Group, Lion}.

Animal_Group v (≥ 2 has.Animal) (α1)

Lion v Mammal (α2)

Lion v Cat (α3)

Mammal v Animal (α4)

Mammal v ∀has.WarmBlood (α5)

Assuming the algorithm chooses the axioms (Line 4) in the given order, it can be

verified thatW contains no axiom Σ∪sig(M)-dependencies and thatW ≡Σ∪sig(M)

∅ until W = {α1} when we find, W contains no axiom Σ ∪ sig(M)-dependency

butW 6≡Σ∪sig(M) ∅, and we setM =M∪ {α1} and thenW is reset (Line 8).

Σ∪ sig(M) = {Animal_Group, Lion, has,Animal} and we take action next when

W = {α2, α3, α4} where we find W contains an axiom Σ ∪ sig(M)-dependency,

as Lion ∈ Σ ∪ sig(M) and Animal ∈ dependW(α2) ∩ (Σ ∪ sig(M)) resulting in

M =M∪ {α4}, andW is again reset.

Σ ∪ sig(M) = {Animal_Group, Lion, has,Animal,Mammal}, we next find an

axiom Σ ∪ sig(M)-dependency when W = {α2} as Lion ∈ Σ ∪ sig(M) and

Mammal ∈ dependW(α2) ∩ (Σ ∪ sig(M)) and set M = M ∪ {α2}, W is reset,

Σ ∪ sig(M) is unchanged.

Finally when W = {α3, α5}, W contains an axiom Σ ∪ sig(M)-dependency

as Mammal ∈ Σ ∪ sig(M) and has ∈ dependW(α5) ∩ (Σ ∪ sig(M)) and we set

M =M∪{α5}. At this point it can be verified that there there is noW ⊆ TRCI\M

that contains a axiom Σ ∪ sig(M)-dependency or that W 6≡Σ∪sig(M) ∅, so the

algorithm terminates withM = {α1, α2, α4, α5}.

There are a couple of interesting observations about the module produced in

70

CHAPTER 3. Approximations for Acyclic Terminologies

Example 3.3.4. Firstly, the module does not contain every RCI for the repeated

name Lion (α3 does not belong toM). This is achieved by having dependencies

work on a per-axiom basis, which is beneficial for keeping the module as small

as possible, especially when a repeated name corresponds to several RCIs.

Secondly, the RCI α5 is captured by an axiom Σ-dependency but is not con-

tained in the minimal depleting module for Σ. The minimal is in fact M′ =

{α1, α2, α4}, the module produced is an approximation. To see this, let I be an

arbitrary interpretation, to construct a model J of TRCI \M′, first set XJ = XI

for all symbols X ∈ {Lion,Mammal, has} to ensure I|Σ∪sig(M′) = J |Σ∪sig(M′), fi-

nally set CatJ = LionJ and WarmBloodJ = {e | (d, e) ∈ hasJ }, then one can

verify J |= TRCI \M′ and so TRCI \M′ ≡Σ∪sig(M′) ∅, M′ is a depleting module

for TRCI for Σ withM′ ⊆M.

3.4. Improving practical performance

As module extraction has many practical applications, it is certainly desir-

able to have an algorithm that performs well practically, especially as we are

interested in providing an implementation for comparative purposes.

The algorithms for both original approximation for acyclic ALCI, and our

newly proposed modification stem naturally from their associated theorems,

ensuring a depleting module is produced from the supplied ontology and signa-

ture. However, by exploring the theory supporting the algorithms, it is possible

to identify several details that may be modified to provide a computational sav-

ing.

In the sections that follow we will work towards developing a new algorithm

which produces an identical module but offers measurably better practical per-

formance. We achieve this using the module extraction algorithm for acyclic

ALCQI with RCIs (Figure 3.3) as our starting point, which we refer to, for

ease of reference, as the iterative extraction algorithm.

71

CHAPTER 3. Approximations for Acyclic Terminologies

3.4.1 Detecting axiom dependencies

The “black box” nature of the iterative algorithm, each iteration incrementally

building a subset W ⊆ TRCI \ M one axiom at a time, has the limitation that

the detection of an axiom Σ ∪ sig(M)-dependency inW results in only a single

axiom being added to the moduleM. We observe a relation between axioms,

allowing us to identify some cases where more than one axiom may be added

toM on a single iteration of the algorithm.

Additionally, to determine if an axiom Σ∪ sig(M)-dependency is present on

a particular iteration, we must compute the set dependW for the current W, as

it may change each time an axiom is added. We show it is possible to avoid

this re-computation entirely, the set dependTRCI
can be used for deciding if a

dependency is present for any W ⊆ TRCI \ M, and only needs to computed

once.

Axiom Chains

Definition 3.4.1 (Axiom Chains). An axiom chain is an ordered set A1 ./

C1, A2 ./ C2, . . . , An ./ Cn with each Ai+1 ∈ sig(Ci) for 0 < i ≤ n. The “head” of

the chain is the first axiom in the chain, i.e. A1 ./ C1. The length of a chain γ is

defined number of axioms in the chain.

Definition 3.4.2 (Dependency Chain). For an acyclic terminology with RCIs

TRCI, let chainXTRCI
(A1 ./ C1) be the set of all axiom chains γ = A1 ./ C1, A2 ./

C2 . . . An ./ Cn with X ∈ sig(Cn) and γ ⊆ TRCI.

A dependency chain represents the sequence of axioms which induces a

particular symbol in dependTRCI
, formalised by the following lemma:

Lemma 3.4.1. Given an acyclic terminology with RCIs TRCI, a symbol D ∈

dependTRCI
(A ./ C) iff there exists a dependency chain γ ∈ chainDTRCI

(A ./ C).

Proof. First consider the set of dependencies dependγ(A ./ C) induced by a

chain γ ∈ chainDTRCI
(A ./ C), clearly D ∈ dependγ(A ./ C) and since γ ⊆ TRCI it

72

CHAPTER 3. Approximations for Acyclic Terminologies

follows that dependγ(A ./ C) ⊆ dependTRCI
(A ./ D) and so D ∈ dependTRCI

(A ./

C).

Now assume the exists an arbitrary D ∈ dependTRCI
(A ./ C). By definition

there exists some X1 ∈ (sig(C) ∩ NC) such that D ∈ dependT (X1) and so there

exists a sequence of depends relations X1 ≺TRCI X2 ≺TRCI . . . ≺TRCI Xm ≺TRCI D

which must be induced by sequence of axioms γ = A ./ C,X1 ./ C1, . . . , Xm ./

Cm with γ ⊆ TRCI and X1 ∈ sig(C) and both Xi+1 ∈ Ci for 0 < i ≤ m and

D ∈ sig(Cm), γ conforms to the definition of a chain γ ∈ chainDTRCI
(A ./ C).

Since our choice of symbol D was arbitrary such a dependency chain always

exists.

Chains as part of a module

We now look at the relationship between dependency chains and the depleting

module produced for a signature Σ when the iterative algorithm is applied to

an acyclic terminology with RCIs.

Theorem 3.4.1. Let TRCI be an acyclic TBox with RCIs and Σ a signature. Let

Mmin ⊆ TRCI be the minimal dependency-free depleting Σ-module of TRCI. Suppose

that for some run of the algorithm in Figure 3.3 at some iteration i, for some

axiom chain γ ∈ chainXTRCI\Mi
(A1 ./ C1) we have {A1, X} ⊆ Σ ∪ sig(Mi). Then

γ ⊆Mmin.

Proof. Let i be an iteration and γ be a chain γ ∈ chainXTRCI\Mi
(A1 ./ C1), and

assume that {A1, X} ⊆ Σ∪ sig(Mi). We prove the theorem by induction on the

length of γ.

Base case: For a chain length 1, the chain γ consists of the single axiom A1 ./

C1. Consider a run of the algorithm in Figure 3.3 which selects α = A1 ./

C1 in the next iteration and setsW = {α}. Since γ ∈ chainXTRCI\Mi
(A1 ./ C1)

we have X ∈ sig(C1), and by the original assumption we have {A1, X} ⊆

Σ∪ sig(Mn), so clearly A1 ./ C1 causes an axiom Σ∪ sig(Mn)-dependency

73

CHAPTER 3. Approximations for Acyclic Terminologies

inW, and setMi+1 =Mi ∪ {α} (Line 7). As the algorithm in Figure 3.3

always outputsMmin regardless of the choice of α, γ ⊆Mmin.

Inductive step:

Assume for all runs of the algorithm and all iterations i, for all chains γ of

length m < l, with γ ∈ chainXTRCI\Mi
(A1 ./ C1) and {A,X} ⊆ Σ ∪ sig(Mi)

that γ ⊆Mmin.

Let the length of γ be l, so γ = A1 ./ C1, A2 ./ C2, . . . , Al ./ Cl.

Let j : 1 ≤ j ≤ l be the smallest number such that for W = {A1 ./

C1, A2 ./ C2, . . . , Aj ./ Cj} either W contains an axiom (Σ ∪ sig(Mi))-

dependency or W 6≡Σ∪sig(Mi) ∅, notice that such a j always exists as the

set γ contains an axiom Σ ∪ sig(Mi) dependency itself by the original

assumption. As a result, there exists an iteration i of the algorithm in

Figure 3.3, which adds Aj ./ Cj toMi.

Now consider the state of the algorithm on iteration i + 1 and notice the

remaining axioms of γ′ in TRCI \ Mi consist of two chains γ1 = A1 ./

C1, . . . , Aj−1 ./ Cj−1 and γ2 = Aj+1 ./ Cj+1, A2 ./ C2, . . . , Al ./ Cl which

both satisfy the conditions of the theorem. To see this, distinguish three

cases based on the position of the axiom Aj ./ Cj within γ which was

added toMi:

1. Aj ./ Cj = A1 ./ C1.

γ1 is empty. For γ2, by the original assumption we have X ∈ sig(Cn)

so γ2 ∈ chainXTRCI\Mi
(A2 ./ C2), also by the original assumption X ∈

Σ ∪ sig(Mi) and since A1 ./ C1 ∈ Mi with A2 ∈ sig(C1) we have

{A2, X} ⊆ Σ ∪ sig(Mi).

2. Aj ./ Cj = Ak ./ Ck for 1 < k < l.

• γ1 : Since Ak ∈ sig(Ck−1) we have γ1 ∈ chainAk

TRCI\Mi
(A1 ./ C1),

and since Ak ./ Ck ∈ Mi, and by the original assumption A1 ∈

Σ ∪ sig(Mi), we have {A1, Ak} ⊆ Σ ∪ sig(Mi).

74

CHAPTER 3. Approximations for Acyclic Terminologies

• γ2 : By the original assumption we have X ∈ sig(Cn) so γ2 ∈

chainXTRCI\Mi
(Ak+1 ./ Ck+1), and since Ak ./ Ck ∈ Mi and Ak+1 ∈

sig(Ck) we have Ak ∈ Σ∪sig(Mi) and by the original assumption

X ∈ Σ ∪ sig(Mi) we have {Ak, X} ⊆ Σ ∪ sig(Mi)

3. Aj ./ Cj = An ./ Cn

γ2 is empty. For γ1, since An ./ Cn ∈ Mi with An ∈ sig(Ci−1), we

have both γ1 ∈ chainAn

TRCI\Mi
(A1 ./ C1) and An ∈ Σ ∪ sig(Mi), also by

the original assumption A1 ∈ Σ ∪ sig(Mi) so {A1, An} ∈ Σ ∪ sig(Mi)

Since both γ1 and γ2 are less than l in length, then by the induction hypo-

thesis we have γl ⊆Mmin, for l = 1, 2, so γ ⊆Mmin.

Clearly Theorem 3.4.1 is only applicable if on some iteration i, we have an

axiom Σ∪ sig(Mi)-dependency in TRCI \Mi. As a consequence of this theorem,

locating an axiom Σ ∪ sig(M)-dependency on some iteration, means we are

able to identify possibly several dependency chains which may be immediately

added to the module, as we can be assured they will be added on some fu-

ture iteration. We will utilise property in producing a more efficient module

extraction algorithm in Section 3.4.3.

Detecting dependencies in TRCI \M

Lemma 3.4.2. Let TRCI andM ⊆ TRCI be acyclic terminologies with RCIs, and Σ

a signature, and let there exist an axiom A1 ./ C1 ∈ TRCI \ M, then: A1 ./ C1

causes an axiom Σ ∪ sig(M)-dependency in TRCI if and only if A1 ./ C1 causes an

axiom Σ ∪ sig(M)-dependency in TRCI \M.

Proof. ⇐ The proof in this direction is trivial. Since TRCI \ M ⊆ TRCI the set

dependTRCI\M(A1 ./ C1) ⊆ dependTRCI
(A1 ./ C1) for all axioms A1 ./ C1 ∈ (TRCI \

M) hence, an axiom causing a dependency in TRCI \ M implies it causes a

dependency in TRCI.

75

CHAPTER 3. Approximations for Acyclic Terminologies

⇒ Assume A1 ./ C1 causes an axiom Σ ∪ sig(M)-dependency in TRCI, by

definition A ∈ Σ ∪ sig(M) and some symbol X ∈ dependTRCI
(A1 ./ C1) ∩ (Σ ∪

sig(M)), then by Lemma 3.4.1 there exists a chain of axioms γ = A1 ./ C1, A2 ./

C2, . . . , An ./ Cn ∈ chainXTRCI
(A). By the original assumption we know A1 ./ C1 ∈

TRCI \M but for the other axioms in the chain γ this may not still be the case,

so we distinguish two cases:

1. γ ⊆ TRCI\M. We haveA1 ∈ Σ∪sig(M) by the initial assumption, and since

γ ∈ chainXTRCI
(A) by Lemma 3.4.1 it still holds that X ∈ dependTRCI

(A1 ./

C1)∩ (Σ∪ sig(M)), therefore A1 ./ C1 causes a Σ∪ sig(M)-dependency in

TRCI \M.

2. γ 6⊆ TRCI \ M. The chain must now stop at some axiom Aj ./ Cj, for

1 < j < n, which implies Aj+1 ./ Cj+1 ∈ M, so Aj+1 ∈ Σ ∪ sig(M).

From the definition of a axiom chain we have Aj+1 ∈ sig(Cj) and since

A1 ∈ Σ ∪ sig(M) by the initial assumption, and Aj+1 ∈ dependTRCI\M(A1 ./

C1) ∩ (Σ ∪ sig(M)), A1 ./ C1 causes an axiom Σ ∪ sig(M)-dependency in

TRCI \M.

The immediate consequence of Lemma 3.4.2 is that to determine if some

axiom A ./ C causes a Σ ∪ sig(M)-dependency in TRCI \M, instead of building

up a set W ⊆ TRCI \ M incrementally – as in the iterative algorithm – we

can simply check if A ./ C causes one in TRCI. This can be achieved utilising

dependTRCI
which unlike dependW , which may change on each iteration, is fixed

and only needs to be computed once, and can be retained for the purpose of

checking the presence of any axiom Σ∪ sig(M)-dependency. The benefit of this

is a computational saving over every iteration of the algorithm.

76

CHAPTER 3. Approximations for Acyclic Terminologies

3.4.2 Deciding inseparability

Recall that in the iterative algorithm, we must establish for someW ⊆ (TRCI\M)

if W 6≡Σ∪sig(M) ∅, which is decidable when W contains no axiom Σ ∪ sig(M)-

dependencies by Theorem 3.3.1. If we find that W 6≡Σ∪sig(M) ∅ we identify

the last axiom α added to W as “separability causing” and setM = M∪ {α}.

This ensures when the algorithm terminates, TRCI \M ≡Σ∪sig(M) ∅, M being a

depleting module.

Locating Separability Causing Axioms

Instead of building up subsets W ⊆ TRCI \ M one axiom at a time until a

separability causing axiom is located, we take a more goal-orientated approach.

First we establish formally exactly what a separability causing axiom is:

Definition 3.4.3 (Separability Causing Axiom). We call an axiom A ./ C ∈

TRCI \M “separability causing” if there exists aW ⊆ TRCI \M such that:

• A ./ C ∈ W

• W \ {A ./ C} ≡Σ∪sig(M) ∅

• W 6≡Σ∪sig(M) ∅

Theorem 3.4.2. TRCI \M 6≡Σ∪sig(M) ∅ iff TRCI \M contains a separability causing

axiom.

Proof. First assume TRCI \ M 6≡Σ∪sig(M) ∅, then there must exist a non-empty

W ⊆ TRCI \M such thatW 6≡Σ∪sig(M) ∅. Now letW ′ ⊆ W be the smallest non-

empty subset such thatW ′ 6≡Σ∪sig(M) ∅, and choose some α ∈ W ′, but sinceW ′

is the smallest of its kind then W ′ \ {α} ≡Σ∪sig(M) ∅, α is a separability causing

axiom by definition.

Now assume TRCI \ M contains a separability causing axiom, then there

must exist some W ⊆ TRCI \ M such that W 6≡Σ∪sig(M) ∅, and then clearly

TRCI \M 6≡Σ∪sig(M) ∅.

77

CHAPTER 3. Approximations for Acyclic Terminologies

Input: Acyclic terminology with optional RCIs TRCI, ModuleM (possibly
empty) and Signature Σ such that TRCI \M contains no axiom
Σ ∪ sig(M)-dependencies and TRCI \M 6≡Σ∪sig(M) ∅

Output: Separability causing axiom α
1 W := lastAdded := top_half(TRCI \M)
2 lastRemoved := bottom_half(TRCI \M)
3 while lastAdded 6= ∅ do
4 if LhsΣ(W) ≡Σ ∅ then
5 lastAdded := top_half(lastRemoved)
6 W :=W ∪ lastAdded
7 lastRemoved := lastRemoved \ lastAdded
8 else
9 lastRemoved := bottom_half(lastAdded)

10 W :=W \ lastRemoved
11 lastAdded := lastAdded \ lastRemoved
12 end
13 end
14 return the last axiom ofW

15 function top_half(W) := return {W [0], . . . ,W [b |W|2 c − 1]}
16 function bottom_half(W) := return {W [b |W|2 c], . . . ,W [|W| − 1]}

Figure 3.4: Locating a separability causing axiom

Given an acyclicALCQI terminology with RCIs such that TRCI\M 6≡Σ∪sig(M)

∅, we can use the algorithm described in Figure 3.4 to locate a separability

causing axiom. The algorithm works much like a binary search, treating TRCI\M

as an ordered set. First considering W equal to the top half of TRCI \ M, we

check ifW ≡Σ∪sig(M) ∅, if this is indeed the case, we growW from the bottom,

if not we half it again, each time verifying if W ≡Σ∪sig(M) ∅. This process is

repeated until we have W such that W 6≡Σ∪sig(M) ∅ where by shrinking W by

a single axiom would result in W ≡Σ∪sig(M) ∅, the last axiom in W is therefore

separability causing.

Another improvement this algorithm offers is the utilisation of LhsΣ∪sig(M)(W)

for deciding inseparability (Line 4), which can be used as an equivalent for

W as a result of Lemma 3.3.2. LhsΣ(W) may contain significantly fewer ax-

ioms than the whole of W, especially for a large W, a smaller input offering

78

CHAPTER 3. Approximations for Acyclic Terminologies

a potential reduction in the amount of computation necessary to decide if

W ≡Σ∪sig(M) ∅.

Locating separability causing axioms using the algorithm in Figure 3.4 has

a clear benefit over the iterative algorithm. In the worst case, the iterative

algorithm requires |TRCI \M| inseparability checks to find a single separability

causing axiom, in contrast the binary search algorithm in needs just log2(|TRCI \

M|).

3.4.3 Introducing AMEX

Based on our observations about the enhancements in the methods for detecting

axiom dependencies and deciding inseparability, we propose a new algorithm,

called AMEX, for the extraction of dependency-free depleting Σ-modules from

acyclic ALCQI ontologies with RCIs.

Input: Acyclic ALCQI terminology with RCIs TRCI, signature Σ
Initialise: M = ∅.
Apply rules R1 and R2 exhaustively, preferring R1.
Output: M the unique minimal dependency-free Σ-module of TRCI

(R1) If an axiom A ./ C ∈ TRCI \M causes an axiom
Σ ∪ sig(M)-dependency in TRCI \M, then for each
X ∈ dependTRCI

(A ./ C) ∩ Σ ∪ sig(M) setM :=M⋃
γ∈chainX

TRCI
(A./C) γ

(R2) If LhsΣ∪sig(M)(TRCI \M) 6≡Σ∪sig(M) ∅, then locate the first separability
causing axiom A ./ C ∈ TRCI \M and setM :=M∪ {A ./ C}

Figure 3.5: AMEX module extraction algorithm

Figure 3.5 shows the proposed new algorithm, the extraction of depleting

modules broken into two rules, moving away from the “black box” nature of

the iterative algorithm. The first rule R1 represents the syntactic detection of

axiom Σ ∪ sig(M)-dependencies and the second R2 the semantic condition to

ensure TRCI \M ≡Σ∪sig(M) ∅.

79

CHAPTER 3. Approximations for Acyclic Terminologies

Theorem 3.4.3. Given an acyclic ALCQI terminology with RCIs TRCI and signa-

ture Σ, the algorithm in Figure 3.5 produces a dependency-free depleting Σ-module

of TRCI.

Proof. By the definition of a dependency-free depleting Σ-module, we must

show that TRCI \M contains no axiom Σ ∪ sig(M)-dependency and thatM is a

depleting Σ-module i.e. TRCI \M ≡Σ∪sig(M) ∅.

If R1 is applied then some axiom A ./ C ∈ TRCI \ M causes a axiom Σ ∪

sig(M)-dependency for the current Σ ∪ sig(M) and we add the corresponding

dependency chains to M. It is sufficient to add every γ ∈ chainXTRCI\M(A ./ C)

for every X ∈ dependTRCI\M(A ./ C) ∩ Σ ∪ sig(M) to M to ensure A ./ C

causes no axiom Σ ∪ sig(M)-dependency in TRCI \ M, as by Lemma 3.4.1 if

chainXTRCI\M(A ./ C) = ∅ then X 6∈ dependTRCI\M(A ./ C), so A ./ C no longer

causes an axiom dependency in TRCI \M.

Now if R2 is applicable then TRCI \ M contains no axiom Σ ∪ sig(M)-

dependency, and it is decidable to verify if TRCI \ M ≡Σ∪sig(M) ∅ by The-

orem 3.3.1. If we find TRCI \M 6≡Σ∪sig(M) ∅ then TRCI \M must contain at least

one separability causing axiom by Theorem 3.4.2, one of which can be, one of

which can be located and added toM using the algorithm in Figure 3.4.

Since both rules are applied exhaustively, when R1 is not applicable

then TRCI \ M contains no axiom Σ ∪ sig(M)-dependency, and when R2 is

not applicable TRCI \ M contains no separability causing axiom, and then

TRCI \M ≡Σ∪sig(M) ∅ by Theorem 3.4.2, and thereforeM is a dependency-free

depleting Σ-module as required.

Theorem 3.4.4. Let TRCI be an acyclic terminology with RCIs and Σ a signature.

Then the AMEX algorithm in Figure 3.5 produces the unique minimal dependency-

free depleting Σ-module of TRCI.

Proof. AMEX produces dependency-free depleting Σ-module by Theorem 3.4.3.

We just need to prove the minimality claim.

80

CHAPTER 3. Approximations for Acyclic Terminologies

To do this, let M0 be the unique minimal dependency-free depleting Σ-

module of TRCI. For some run of the algorithm, we prove by induction on the

number of rule applications that M ⊆ M0 by showing every axiom added to

M by either rule is also contained inM0.

Base case: M = ∅ ⊆ M0

Inductive step: Assume for all m < l rule applications we have M ⊆ M0.

Consider rule application l and distinguish between which rule is applicable:

• R1 is applicable. Then there exists an axiom A ./ C ∈ TRCI \ M which

causes an axiom Σ ∪ sig(M)-dependency in TRCI \ M. So we have A ∈

Σ ∪ sig(M) for which dependTRCI\M(A ./ C) ∩ (Σ ∪ sig(M)) 6= ∅. Then

for each X ∈ dependTRCI\M(A ./ C) ∩ (Σ ∪ sig(M)) by Lemma 3.4.1 there

exists at least one chain γ ∈ chainXTRCI\M(A ./ C). But now consider output

Miter of the iterative algorithm for the same signature, since we have

{A,X} ⊆ Σ ∪ sig(M) and γ ∈ chainXTRCI\M(A ./ C), by Theorem 3.4.1

we have γ ⊆ Miter, but by Lemma 3.3.4 Miter = M0, so for each X ∈

dependTRCI\M(A ./ C)∩(Σ∪sig(M)) and each chain γ ∈ chainXTRCI\M(A ./ C)

we have γ ⊆M0 as required.

• R2 is applicable. Then TRCI \M 6≡Σ∪sig(M) ∅ and there must exist a separ-

ability causing axiom by Theorem 3.4.2. Locating a separability caus-

ing axiom using the procedure in Figure 3.4 locates a W ⊆ TRCI \ M

such that W 6≡Σ∪sig(M) ∅, but where removing a single axiom α from W

we have W \ {α} ≡Σ∪sig(M) ∅, the axiom α is “separability causing”. It

should be clear there must exists some minimal subsetW ′ ⊆ W such that

W ′ 6≡Σ∪sig(M) ∅ with α ∈ W ′ but since by the induction hypothesis we

have sig(M) ⊆ sig(M0) then Σ ∪ sig(M) ⊆ Σ ∪ sig(M0) but now we can

apply Lemma 3.3.4 (with W = W ′ andM0 =M) and conclude α ∈ M0

as required.

81

CHAPTER 3. Approximations for Acyclic Terminologies

Deciding if R1 is applicable — if an axiom A ./ C causes an axiom Σ ∪

sig(M)-dependency in TRCI \M— can be achieved in practice by deciding if an

axiom A ./ C causes an axiom Σ∪ sig(M)-dependency in TRCI, by Lemma 3.4.2.

After a dependency is detected, locating the dependency chains which cause the

dependency can be achieved using reachability analysis, following the sequence

of symbols used in the dependency causing axiom.

To decide if R2 is applicable, we first verify if TRCI \ M 6≡Σ∪sig(M) ∅, then

we only need search for a separability causing axiom if one exists, only a single

inseparability check is required to verify that TRCI \M ≡Σ∪sig(M) ∅. In compar-

ison to the iterative algorithm, the we are required to perform an inseparability

check each time we add an axiom to some W that does not cause an axiom

Σ ∪ sig(M)-dependency, failure to do so could miss the detection of a separab-

ility causing axiom.

The application of both rules is achieved utilising the whole of TRCI \ M,

it is not necessary to build up a subset W ⊆ TRCI \ M as in the iterative al-

gorithm which reduces the space requirement compared to the original iterative

algorithm.

The worst case complexity for AMEX is the same as the iterative algorithm,

which is O(|TRCI| + |Σ|) × Πp
2. Even considering this, we show in the next sec-

tion and through our extensive experimental evaluation in Chapter 6 that the

optimisations we have introduced means extracting a module using AMEX can

be done extremely efficiently in practice.

Example 3.4.1. As a comparison we extract a module using the same ontology

and signature as the example for the iterative approach Example 3.3.4.

Starting with the ontology TRCI = {α1 − α5} from Example 3.3.4 and Σ =

{Animal_Group, Lion}.

First R1 is not applicable but R2 does apply as it can be verified that TRCI \

M 6≡Σ∪sig(M) ∅, so we locate the first separability causing axiom using the proced-

ure in Figure 3.4. First we considerW to be the top half of TRCI\M,W = {α1, α2}

82

CHAPTER 3. Approximations for Acyclic Terminologies

and we find W 6≡Σ∪sig(M) ∅, so we shrink W by half, resulting in W = {α1}, and

still can verify that W 6≡Σ∪sig(M) ∅ and since W was shrunk by a single axiom,

we locate α1 as the separability causing axiom and setM =M∪ {α1}, and then

Σ ∪ sig(M) = {Animal_Group, Lion, has,Animal}.

Next, we find that R1 is applicable, that α2 causes an axiom Σ ∪ sig(M)-

dependency in TRCI \ M, as we have Lion ∈ Σ ∪ sig(M) and {Animal, has} ⊆

dependTRCI
(α2) ∩ (Σ ∪ sig(M)). And we find two chains γ1 = {α2, α4} ∈

chainAnimal
TRCI\M(α2) and γ2 = {α2, α5} ∈ chainhas

TRCI\M(α2) and set M = M ∪ γi for

i = 1, 2.

No rule is now applicable so we are done. The result is an identical module as

the iterative algorithm example,M = {α1, α2, α4, α5}.

If we compare the number of operations needed to extract the module in

Example 3.4.1 compared to iterative algorithm in Example 3.3.4 assuming the

axioms are processed in the order specified by input ontology. We find AMEX

does slightly less computation to both detect axiom Σ ∪ sig(M)-dependencies

in TRCI \ M and to locate separability causing axioms to establish that TRCI \

M ≡Σ∪sig(M) ∅. This is expected over such a small ontology, the computational

saving AMEX provides comes from the efficient collection of dependency chains

and separability causing axioms, which is most effective over a larger search

space.

For a clearer picture of the potential performance improvements AMEX can

provide, we now compare the iterative algorithm to AMEX for a range of signa-

tures by extracting modules from a larger real-world ontology.

3.5. Comparing performance

We now provide a comparison between newly introduced AMEX (Figure 3.5

and the iterative algorithm (Figure 3.3). It is important to note, comparing the

highly optimised AMEX to a naive implementation of the iterative algorithm is

hardly a fair one, therefore we present the result of these experiments to give

83

CHAPTER 3. Approximations for Acyclic Terminologies

the reader some idea of the potential improvements AMEX offers.

We have implemented both algorithms in Java using the library for onto-

logy manipulation OWL-API [HB11], and use the QBF solver sKizzo [Ben04]

for deciding inseparability. As we expect the iterative algorithm to perform

poorly in practice, as input to our experiments, we use the small ontology Lipid

Ontology (LiPrO) taken from the bio-medical BioPortal repository [Whe+11].

The terminological part of LiPrO is an ALCIN acyclic terminology with RCIs,

consisting of 776 axioms whose signature consists of 764 symbols. Our input

signatures are 400 signatures taken at random from the signature of LiPrO, they

consist of four sets of 100 signatures containing 25, 50, 75 or 100 symbols.

By Theorem 3.3.2 and Theorem 3.4.4, for a given signature, both algorithms

produce the same module as output — the unique minimal dependency-free de-

pleting Σ-module. We examine the number of total operations each algorithm

performs as a metric for comparison. Figure 3.6 shows a table summarising

the results of our experimental evaluation, achieved by extracting modules for

each of the 400 signatures from the LiPrO ontology. We distinguish and count

each type of “check” each algorithm makes, whether it be dependency check

(Dep.), deciding if TRCI \M contains any axiom Σ∪ sig(M)-dependencies, or an

inseparability check (Insep.) deciding if TRCI \M ≡Σ∪sig(M) ∅, both algorithms

utilising checks in a different manner towards the same result.

Iterative algorithm Avg. AMEX Avg.
|Σ| |M| Dep. Insep. Total Dep. Insep. Total
25 82.99 18,132 18,051 36,183 7,728 1.2 7,729.2
50 136.50 29,236 29,105 58,362 14,382 1 14,382
75 196.30 36,726 36,529 73,256 19,788 1 19,789
100 234.00 42,109 41,859 83,970 24,463 1 24,464

Figure 3.6: Comparison of “checks” between old and new algorithms

Evaluating the results, it is obvious AMEX performs considerably fewer

checks of either kind than the iterative algorithm for the extracted signatures.

Notice, even in the worst case we use 41.45% fewer dependency checks on

average for any input signature, going up to 57.19% in the best case. This

84

CHAPTER 3. Approximations for Acyclic Terminologies

can be explained by the collection of dependency chains in AMEX, a single

dependency check identifying several axioms to be added to the module. Fig-

ure 3.7 shows the average length of the dependency chains detected, and the

average frequency of occurrence of chains greater than one axiom in length.

We observe a larger signature correlates to a higher frequency of chains, but

chains which tend to be shorter in length.

|Σ| Length Avg. Freq. length > 1 Avg.
25 15.35 19.65
50 13.88 40.81
75 12.90 66.00

100 12.55 88.53

Figure 3.7: Chain metrics for AMEX

The largest difference, however, comes from the number of inseparability

checks which are performed in each case. Notice for all of the signatures of size

50, 75 or 100, AMEX performs only a single inseparability check on average per

extraction. This implies that in these cases, moving every axiom which causes

an axiom Σ ∪ sig(M)-dependency toM is sufficient to capture all separability

causing axioms, the single inseparability check is simply used to verify thatM

is indeed a depleting module. Even in the case of signatures size 25, all but

two of the extractions required a single inseparability check, the remaining two

used 11 inseparability checks each to locate two inseparability causing axioms,

resulting in an average of 1.2 checks per extraction.

To summarise, for the LiPrO ontology, the total checks over both deciding

the presence of axiom dependency and deciding inseparability are significantly

reduced. This is particularly notable in the case of deciding inseparability, which

is the most computationally expensive procedure in the algorithm (in Πp
2). This

suggests module extraction with AMEX would perform generally better than

the iterative algorithm when applied to any ontology. We perform an extensive

experimental evaluation in Chapter 6, in which we will observe how well AMEX

performs over a much larger ontology and signature selection.

85

CHAPTER 3. Approximations for Acyclic Terminologies

3.6. Conclusion

In this chapter we began by exploring what is already known from

[Kon+08a; Kon+13]. The authors show for an acyclic ALCI terminology

T , deciding if T ≡Σ ∅ is decidable in Πp
2, on the condition that Σ consists only

of concept names, and that same problem for unrestricted signatures is also

decidable in Πp
2 if an additional syntactic condition is imposed on the ontology,

namely it being free of direct Σ-dependencies. This observation then lead to the

development of an algorithm which allows, for an acyclicALCI terminology T ,

and a signature Σ, the extraction of the unique minimal depleting module M

such that T \M contains no direct Σ∪ sig(M)-dependencies, an approximation

of the ideal minimal module.

For the remainder of the chapter we presented our new contributions. We

started by extending the theory which underpins the ALCI approximation, in

order to support depleting module extraction from acyclic ALCQI terminolo-

gies, which may additional contain repeated concept names. To this end, by

Lemma 3.3.1, we showed that deciding if TRCI ≡Σ ∅ where TRCI is an acyc-

lic ALCQI ontology with RCIs and Σ is a concept signature is also decidable in

Πp
2. The case for unrestricted signatures, by Theorem 3.3.1, we showed was also

decidable in Πp
2, if like the ALCI case, we impose an additional syntactic condi-

tion on the ontology. For this we used axiom Σ-dependencies, which generalise

the notion of direct Σ-dependencies in order to support acyclic terminologies

with RCIs. With these theoretical results established, we showed a modification

of the ALCI extraction algorithm can be used to extract a depleting module,

which, by Theorem 3.3.2, we proved is the unique minimal dependency-free

depleting Σ-module (minimal depleting Σ-module such that TRCI \M contains

no axiom Σ-dependency) which can be extracted from an acyclic ALCQI ter-

minology with RCIs.

Finally, using the ALCQI extraction algorithm as a starting point, we sug-

gest a number of optimisations which led to the production of a new rule-based

86

CHAPTER 3. Approximations for Acyclic Terminologies

algorithm AMEX, which produces an identical module but offers measurably

better practical performance. The potential performance gain we verified by

comparing AMEX to the unoptimised algorithm by means of a small experi-

mental evaluation in which we extracted modules from the real-world ontology

LiPr0.

87

CHAPTER 4

Hybrid Module Extraction

We have now considered several approaches which produce approximations,

necessary under the undecidability constraints of computing minimal deplet-

ing Σ-modules in even moderately expressive logics. These approximations

range from the specialised AMEX procedure which we introduced in the pre-

vious chapter, only applicable to acyclic ALCQI terminologies which may op-

tionally contain RCIs, to the very general locality-based ones such as STAR

(>⊥∗-locality), applicable to general, cyclic SROIQ ontologies.

The benefit of using a general approach means a module can be extracted

from a wider number of ontologies, but a procedure with such a broad scope

can lead to approximations which are much larger than the minimal depleting

Σ-modules they approximate, containing many surplus axioms which do not

belong to the minimal Σ-module. We show exactly this in Chapter 6, where our

experimental analysis reveals that the modules produced by the STAR approach

can be significantly larger than the corresponding ones produced by AMEX.

With this in mind, in this chapter we aim to combine several extraction

procedures together, utilising the often more successful specialised approxima-

tions to remove unnecessary axioms from our modules, whilst still maintaining

the inclusive nature of the general approximations. The approach we take is

to generalise the already successful STAR approximation which combines two

different locality notions together into a single extraction procedure.

In our effort to combine extraction procedures together we will be draw-

ing on the specifics of the locality-based STAR-modules. As a reminder for the

reader we recounted the details of locality-based modules including STAR mod-

89

CHAPTER 4. Hybrid Module Extraction

ules in Section 2.4.4.

4.1. Combining depleting modules

As we described in Section 2.4.4, the syntactic locality-based modules

(LBMs) >− and ⊥-modules are both known to be depleting Σ-modules, but

the nature of each locality variant means they may capture different axioms

in the modules they produce. The observation about the types of axiom each

variant captures has been exploited to particular success in helping to improve

ontology classification [Cla10].

Beyond this, the main research task surrounding modularity is to minim-

ise the size of approximations. To this end, with the aim of reducing the size

of the locality approximations STAR-modules (⊥>∗- modules) were developed,

produced by iteratively extracting >− and ⊥-modules from one from the other

until a fixpoint is reached. STAR modules have also been shown to be de-

pleting Σ-modules, and are at least as small as the corresponding ⊥ or > Σ-

modules [SSZ09].

It turns out this property is not only limited LBMs, and in fact we can show

that any two procedures which can extract a depleting Σ-module from an onto-

logy can be combined together to produce a depleting Σ-module which, under

some natural conditions, is no larger than the corresponding modules extracted

by either procedure.

Definition 4.1.1 (Module extraction procedure). Let O be an ontology, and x a

procedure. If x can extract a depleting Σ-module from O for a signature Σ, we call

x a depleting module extraction procedure for O.

Definition 4.1.2 (x-module). Let O be an ontology and x be a depleting module

extraction procedure for O. If M is a Σ-module extracted from O using x for

a signature Σ, we call M an x-module and we write M = x-mod(O,Σ), e.g.

M = STAR-mod(O,Σ) represents the moduleM extracted by the STAR procedure

from O for Σ.

90

CHAPTER 4. Hybrid Module Extraction

First we show that by nesting the extraction of depleting Σ-modules we

obtain a depleting Σ-module.

Theorem 4.1.1. LetM⊆M′ ⊆ O be ontologies and Σ a signature such thatM′

is a depleting Σ-module of O andM is a depleting Σ-module ofM′. ThenM is a

depleting Σ-module of O.

Proof. Assume that M ⊆ M′ ⊆ O and Σ is a signature such that M′ is a de-

pleting Σ-module of O and M is a depleting Σ-module of M′ To prove that

M is a depleting Σ-module of O, consider an interpretation I. We have to

show that there exists a model J of O \M such that J |Σ∪sig(M) = I|Σ∪sig(M).

As M is a depleting Σ-module of M′, there exists an interpretation J ′ such

that J ′|Σ∪sig(M) = I|Σ∪sig(M) and J ′ |= (M′ \M). Similarly, asM′ is a deplet-

ing Σ-module of O, there exists an interpretation J such that J |Σ∪sig(M′) =

J ′|Σ∪sig(M′) and J |= (O \ M′). As sig(M) ⊆ sig(M′) ⊆ sig(O) we have

J |Σ∪sig(M) = I|Σ∪sig(M) and J |= (M′ \ M). But then J |= ((O \ M) and

so J is as required.

Corollary 4.1.1. Let O be an ontology, Σ a signature and x and y be de-

pleting module extraction procedures for O. Then both xy-mod(O,Σ) =

x-mod(y-mod(O,Σ),Σ) and yx-mod(O,Σ) = y-mod(x-mod(O,Σ),Σ) are de-

pleting Σ-modules.

Proof. Since both x and y extract depleting modules from O, it is an immediate

consequence of Theorem 4.1.1.

Corollary 4.1.1 allows us to extract depleting Σ-modules by nesting proced-

ures together and the approximations we produce as a result are still guaran-

teed to be depleting Σ-modules for the input ontology. This allows us to po-

tentially produce better approximations; the different notions used to produce

approximations by extraction procedures means that for a signature Σ different

axioms may be considered irrelevant — not contained in the minimal depleting

Σ-module — and by nesting procedures these axioms can be discarded, result-

ing in a module which may be closer the ideal minimal.

91

CHAPTER 4. Hybrid Module Extraction

We can improve on this further by generalising the STAR procedure into

what will be known as the hybrid extraction procedure, which works by ex-

tracting a sequence of nested modules in an iterative fashion until a fixpoint is

reached. We can achieve this using the algorithm in Figure 4.1.

Input: Ontology O, signature Σ, depleting module extraction procedures

for O x and y

Output: Depleting Σ-moduleM of O

1 M ::= x-mod(O,Σ)

2 repeat

3 Mprev ::=M

4 M ::= y-mod(Mprev,Σ)

5 if |M| < |Mprev| then

6 Mprev ::=M

7 M ::= x-mod(Mprev,Σ)

8 end

9 until |M| = |Mprev|

10 returnM

Figure 4.1: Hybrid extraction algorithm

Lemma 4.1.1. Given an ontology O and signature Σ, the output of the algorithm

in Figure 4.1 is a depleting Σ-module of O.

Proof. We prove that the output of the algorithm is depleting Σ-module by

showing that on each iteration of the repeat loop of the algorithm the invariant

thatM (extracted on Line 4 and Line 7) is a depleting Σ-module of O, so when

the fixpoint is reached and the algorithm terminates theM produced as output

must also be depleting Σ-module of O.

For a proof by induction on the iterations of the repeat loop of the algorithm.

Base case: On iteration 1. Since M is a depleting Σ-module extracted by

x from O on Line 1, the moduleMprev on Line 3 is a depleting Σ-module of O,

92

CHAPTER 4. Hybrid Module Extraction

and since theM on Line 4 extracted by y is a depleting Σ-module ofMprev,M

is a depleting Σ-module of O by Theorem 4.1.1.

If the condition on line Line 5 applies, sinceM on line Line 4 is a depleting

Σ-module ofO, it follow thatMprev on Line 6 is also one, and sinceM on Line 7

is depleting Σ-module ofMprev extracted by x it follows thatM is a depleting

Σ-module of O by Theorem 4.1.1.

Inductive step: Assume for all iterations m < l that the M produced by

the algorithm is a depleting Σ-module of O. Consider iteration l. The proof is

the same as in the base case, except the proof that the initial Mprev on Line 3

is a depleting Σ-module of O, comes from previous iteration by means of the

induction hypothesis instead of Line 1.

Similarly to the definition of STAR modules in [SSZ09], the module pro-

duced by the hybrid procedure is the least fixpoint in the sequence {Mi}i≥1

whereM1 is x-mod(O,Σ) and for i ≥ 2

Mi =

 x-mod(Mi−1,Σ) if i is even;

y-mod(Mi−1,Σ) otherwise.

The output of the algorithm is Mn, where n is the smallest n > 0 with Mn =

Mn+1. Observe that the sequence of modules is strictly decreasing in size as

otherwise we have reached the fixpoint. This means the algorithm will even-

tually terminate, the value for n being bounded by the number of axioms in

O.

The condition on Line 5 ensures we only do the computation necessary to

reach the fixpoint. If we do find that |M| = |Mprev| then the extraction of

the y-module on Line 4 must have left the previously extracted x-module un-

changed, so extracting another x-module for the same signature won’t make

any difference to the result.

Definition 4.1.3 (Hybrid module). For an ontology O and signature Σ. A run of

93

CHAPTER 4. Hybrid Module Extraction

the algorithm in Figure 4.1 starting by extracting a x-module then an y-module

until a fixpoint is reached we call the hybrid yx-module of O written M =

Hyb[y,x]-mod(O,Σ).

It is easy to see, for a run of the algorithm with an ontology O, signa-

ture Σ, and using the >-locality ⊥-locality procedures, by definition we have

a Hyb[⊥,>]-mod(O,Σ) = STAR-mod(O,Σ).

Lemma 4.1.2. Let O1 ⊆ O2 be SROIQ ontologies and Σ a signature, then

M1 ⊆M2 whereMi is the minimal depleting Σ-module for Oi for i = 1, 2.

Proof. This proof follows directly from the monotonicity of the model-

inseparability relation (Proposition 2.3.3) and underlying logic.

Notice thatM′
2 = M2 ∩ O1 is a depleting module of O1. Indeed, sinceM2

is depleting Σ-module of O2, by definition we have O2 \ M2 ≡Σ∪sig(M2) ∅ and

since O1 \ M
′
2 ⊆ O2 \ M2 it holds that O1 \ M

′
2 ≡Σ∪sig(M2) ∅ and then, since

(Σ ∪ sig(M′
2)) ⊆ (Σ ∪ sig(M2)) by monotonicity of the model inseparability

relation we have O1 \M
′
2 ≡Σ∪sig(M′2) ∅ andM′

2 is a depleting Σ-module of O1

as claimed. Now since M1 is the minimal depleting Σ-module of O1 we have

M1 ⊆M
′
2 but then by definitionM′

2 ⊆M2 so we can conclude thatM1 ⊆M2

as required.

Definition 4.1.4 (Subset preserving). Let x and be a module extraction pro-

cedure for an ontology O2. It is called subset preserving if O1 ⊆ O2 implies

x-mod(O1,Σ) ⊆ x-mod(O2,Σ).

The STAR extraction procedure is known to be subset preserving from

[SSZ09] and the following lemma shows that AMEX is also subset preserving

over ontologies for which it is an extraction procedure.

Lemma 4.1.3 (AMEX subset preservation). Let T1 ⊆ T2 be acyclic ALCQI

terminologies with RCIs and Σ a signature. Let M1 = AMEX-mod(T1,Σ) and

M2 = AMEX-mod(T2,Σ). ThenM1 ⊆M2.

94

CHAPTER 4. Hybrid Module Extraction

Proof. Let T1 ⊆ T2 be acyclic ALCQI terminologies and Σ a signature and

assumeM1 = AMEX-mod(T1,Σ) andM2 = AMEX-mod(T2,Σ).

Since by Theorem 3.4.4Mi is the unique minimal dependency-free deplet-

ing Σ-module of Ti, for i = 1, 2, we can prove the claim using a similar argu-

ment to the one used in Lemma 4.1.2, namely to show thatM′
2 =M2 ∩ T1 is a

dependency-free depleting Σ-module of T1 and thereforeM1 ⊆M2.

To this end, we must show thatM′
2 is both a depleting Σ-module of T1 and

that it contains no axiom Σ∪sig(M′
2)-dependency. By definition ofM2 we have

T2 \M2 ≡Σ∪sig(M2) ∅ and since T1 \M
′
2 ⊆ T2 \M2 it follows by the monotonicity

of model inseparability that T1 \ M2 ≡Σ∪sig(M′2) ∅, that is M′
2 is a depleting

Σ-module of T1. What remains to be shown is that T1 \M
′
2 contains no axiom

Σ ∪ sig(M′
2)-dependency.

For a proof by contradiction assume T1 \ M
′
2 does contain an axiom Σ ∪

sig(M′
2)-dependency, that there is an axiom α ∈ T1 \M

′
2 such that there exists a

symbol A ∈ Σ ∪ sig(M′
2) with a symbol X ∈ dependT1\M′2(α) ∩Σ ∪ sig(M′

2). But

then immediately since T1 \M
′
2 ⊆ T2 \M2 and Σ∪ sig(M′

2) ⊆ Σ∪ sig(M2) that

T2 \M2 also contains an axiom Σ∪ sig(M2)-dependency, which is contradiction

to the original assumption.

Now sinceM1 is the unique minimal dependency-free depleting Σ-module

of T1 and M′
2 is a dependency-free depleting Σ-module of T1 it follows that

M1 ⊆ M
′
2 and since M′

2 ⊆ M2 by definition it follows that M1 ⊆ M2 as

required.

Also notice by the transitivity of the subset relation if we have two extraction

procedures x and y which are both subset preserving it follows that the hybrid

procedure is also subset preserving.

We can also show, generalising the same result for STAR-modules in

[SSZ09], that the order in which subset preserving module extraction proced-

ures are combined makes no difference to the module which is produced.

95

CHAPTER 4. Hybrid Module Extraction

Lemma 4.1.4. Let x and y be subset preserving depleting module extraction

procedures, O an ontology, and Σ a signature. Then Hyb[x,y]-mod(O,Σ) =

Hyb[y,x]-mod(O,Σ).

Proof. This proof is a generalisation of the same result for locality modules by

Kazakov, which was published in [Ves13].

Since by definition a hybrid xy-module starts by extracting a y-module from

O, then an x-module, and so on until a fixpoint is reached, we have:

Hyb[x,y]-mod(O,Σ) = (Hyb[y,x])y-mod(O,Σ) = Hyb[y,x]-mod(y-mod(O,Σ),Σ)

But then since by y-mod(O,Σ) ⊆ O and the fact that Hyb[y,x]-mod is a subset

preserving procedure we can conclude that:

Hyb[y,x]-mod(y-mod(O,Σ),Σ) ⊆ Hyb[y,x]-mod(O,Σ)

=

Hyb[x,y]-mod(O,Σ)

This proves that Hyb[x,y]-mod(O,Σ) ⊆ Hyb[y,x]-mod(O,Σ). The converse dir-

ection can be proven in the same way.

The following lemma also follows immediately from the property of subset

preservation by extraction procedures. It is guaranteed the module produced

by the hybrid procedure is no smaller than the module produced by either of

the input extraction procedures.

Lemma 4.1.5. Let x and y be subset preserving depleting module extrac-

tion procedures for an ontology O, and Σ a signature. Then x-mod(O,Σ) ⊆

Hyb[x,y]-mod(O,Σ) and y-mod(O,Σ) ⊆ Hyb[x,y]-mod(O,Σ).

96

CHAPTER 4. Hybrid Module Extraction

4.2. Combining STAR and AMEX

Part of our motivation for combining extraction procedures together is to be

able to use the AMEX procedure along with a more general procedure such as

STAR to hopefully produce a more successful approximation for a given input

signature.

However, if we combine AMEX and STAR naïvely using the algorithm Fig-

ure 4.1 we are still limited to extracting modules from acyclic ALCQI ontolo-

gies with RCIs. Although the STAR is an extraction procedure for ontologies up

to SROIQ in expressivity, there is no guarantee AMEX is an extraction proced-

ure for the output of the STAR approach, so we must limit our input ontologies

to the less expressive ontologies AMEX supports in order for the hybrid ap-

proach to work. To tackle this limitation, we observe that in principle, there is a

way for AMEX to extract modules from general ontologies.

Lemma 4.2.1. Let O be an ontology, let O1 ⊆ O and O2 := O \ O1. If M is a

depleting Σ ∪ sig(O2)-module of O1, thenM∪O2 is a depleting Σ-module of O.

Proof. Since M is a depleting Σ ∪ sig(O2)-module of O1 we have O1 \

M ≡(Σ∪sig(O2))∪sig(M) ∅. Notice that O \ (M ∪ O2) = O1 \ M so we have

O \ (M∪O2) ≡(Σ∪sig(O2))∪sig(M) ∅, soM∪O2 is a depleting Σ-module of O as

required.

An immediate consequence of Lemma 4.2.1 enables us to to extract a mod-

ule using AMEX from a general ontology O. We can split O into two parts

OALCQI and Orest, where OALCQI is an acyclic ALCQI terminology which is a

subset of O (ideally as large as possible) and Orest := O \OALCQI . Then we can

extract an AMEX-moduleM fromOALCQI for Σ∪sig(Orest) to produce a module

M∪Orest which is a depleting module of O. Extracting an AMEX-module from

a general ontology using this methodology directly is unlikely to compute small

modules, especially if the size of Orest is unavoidably large, but does enable us

to combine AMEX with STAR in a specialised version of the hybrid algorithm

97

CHAPTER 4. Hybrid Module Extraction

from Figure 4.1.

Input: SROIQ Ontology O, signature Σ
Output: Depleting moduleM of O w.r.t Σ

1 M ::= STAR(O,Σ)
2 repeat
3 Mprev ::=M
4 MALCQI ::= get_acyclic_alcqi_subset(Mprev)
5 Mrest ::=Mprev \MALCQI
6 M ::= AMEX(MALCQI ,Σ ∪ sig(Mrest)) ∪Mrest
7 if |M| < |Mprev| then
8 Mprev ::=M
9 M ::= STAR(Mprev,Σ)

10 end
11 until |M| = |Mprev|
12 returnM

Figure 4.2: STAR-AMEX extraction algorithm

In the algorithm in Figure 4.2 we assume the function get_acyclic_alcqi_subset

takes an ontology O as a parameter and returns a subset of O which is an

ALCQI acyclic terminology with RCIs (the empty ontology being a valid

acyclic ALCQI terminology with RCIs) — exactly how this might be achieved

we consider in Section 4.3.

Definition 4.2.1 (Hybrid STAR-AMEX module). Let O be a SROIQ ontology,

Σ a signature. If the algorithm in Figure 4.2 takes O and Σ as input and outputs

a module M. We call M the hybrid STAR-AMEX-module O w.r.t Σ, written

M = STAR
AMEX -mod(O,Σ).

Theorem 4.2.1. Let O be a SROIQ ontology, Σ a signature. The moduleM =
STAR
AMEX -mod(O,Σ) is a depleting Σ-module of O.

Proof. We can use a modified version of the inductive proof of the general hy-

brid algorithm (Figure 4.1) to show that on every iteration we maintain the

invariant thatM is a depleting Σ-module of O.

For a proof by induction on the iterations of the repeat loop of the algorithm.

98

CHAPTER 4. Hybrid Module Extraction

Base case: On iteration 1, for M on Line 1, since O is a SROIQ onto-

logy and STAR is a depleting module procedure for O, it follows that M is a

depleting Σ-module of O.

For M on Line 6, since M on Line 1 is a depleting Σ-module of O it fol-

lows that Mprev = MALCQI ∪ Mrest on Line 3 is a depleting Σ-module of

O. Then by Theorem 3.4.3 AMEX(MALCQI ,Σ ∪ sig(Mrest)) extracts a deplet-

ing Σ ∪ sig(Mrest)-module of MALCQI , it follows by Lemma 4.2.1 that M =

AMEX(MALCQI ,Σ∪ sig(Mrest))∪Mrest is a Σ-module ofMrest, but then by The-

orem 4.1.1 since Mrest is a depleting Σ-module of O, it follows that M is a

depleting Σ-module of O as required.

Finally,M on Line 9, sinceM on Line 6 is a depleting Σ-module of O,Mprev

on Line 8 is also one, and sinceM extracted by STAR is depleting Σ-module of

Mprev, it is a depleting Σ-module of O by Theorem 4.1.1.

Inductive step: Assume for all iterations m < l that theM produced by the

algorithm is a depleting module of O w.r.t Σ. Consider iteration l. The proof

again is the same as in the base case, except the proof that the intital Mprev

on Line 3 is a depleting module of O w.r.t Σ, comes from previous iteration by

means of the induction hypothesis instead of Line 1.

As an example we examine a run of the algorithm in Figure 4.2 in which the

produced hybrid STAR-AMEX-module is smaller than corresponding the STAR-

module on its own.

Example 4.2.1. Consider the general ALCN ontology Food, consisting of the

axioms {F1 − F6}, which is a subset of an example OWL-DL ontology from the

99

CHAPTER 4. Hybrid Module Extraction

World Wide Web Consortium’s (W3C) website [Gro04].

DessertCourse ≡ MealCourse u (∀hasFood.Dessert) (F1)

SeafoodCourse ≡ MealCourse u (∀hasFood.Seafood) (F2)

MealCourse v ∀hasFood.EdibleThing (F3)

∃hasFood.> v MealCourse (F4)

EdibleThing uMealCourse v ⊥ (F5)

Dessert u Seafood v ⊥ (F6)

For the signature Σ = {hasFood} we extract the moduleM = STAR
AMEX -mod(Food,Σ)

To begin with (on Line 1 of the algorithm) we extract the module M =

STAR(Food,Σ) which can be verified to contain the entire ontologyM = Food.

• Iteration 1:

– AMEX (Line 6):

We splitMprev = Food (Line 3) to obtainMALCQI = {F1,F2,F3} and

Mrest = {F4,F5,F6} and extract the moduleM′ = AMEX(MALCQI ,Σ∪

sig(Mrest)) to obtain the moduleM =M′ ∪Mrest.

To do this we begin with M′ = ∅ and find that R1 of AMEX ap-

plies, that F3 causes a direct Σ ∪ sig(M′) ∪ sig(Mrest)-dependency in

MALCQI \ M
′, we have MealCourse ∈ Σ ∪ sig(M′) ∪ sig(Mrest) and

hasFood ∈ dependMALCQI\M′ (F3) ∩ (Σ ∪ sig(M′) ∪ sig(Mrest)) so we

locate the dependency chain {F3} ∈ chainhasFood
MALCQI\M′ (F3) and setM′ =

M′ ∪ {F3}. At this point we find neither R1 or R2 are applicable and

thereforeM′ is a depleting Σ ∪ sig(Mrest) module ofMALCQI .

Rejoining the result with Mrest we obtain the module M = M′ ∪

Mrest = {F3,F4,F5,F6}.

– STAR (Line 9):

Beginning with the module Mprev = {F3,F4,F5,F6} (Line 8) we ex-

tract the module M = STAR(Mprev,Σ) beginning by extracting a ⊥-

100

CHAPTER 4. Hybrid Module Extraction

module.

∗ M⊥ = ⊥-mod(Mprev,Σ) initially the only non-local axiom w.r.t

Σ ∪ sig(M⊥) is F3 so we set M⊥ = {F3}. Now Σ ∪ sig(M⊥) =

{hasFood,MealCourse,EdibleThing} which results in first F4 then

F5 becoming non-local for Σ ∪ sig(M⊥) so we setM⊥ ∪ {F4,F5}.

Σ∪ sig(M⊥) is unchanged and no more axioms inMprev \M⊥ are

detected as being non-local w.r.t Σ ∪ sig(M⊥) and we obtain the

moduleM⊥ = {F3,F4,F5}

∗ M> = >-mod(M⊥,Σ) - does not improve any further onM⊥, one

can verify thatM> =M⊥.

Since the STAR procedure has reached a fixpoint we obtain the module

M = {F3,F4,F5}.

• Iteration 2:

– AMEX (Line 6): We begin withMprev = {F3,F4,F5}, but cannot reduce

the size ofM any further by using AMEX. We find splittingMprev into

MALCQI andMrest thatMALCQI only contains a single axiom F3 and

extractingM = AMEX(MALCQI ,Σ ∪ sig(Mrest)) we immediately find

F3 has Σ∪ sig(M′)∪ sig(Mrest)-dependency so must belong toM′, and

so obtain the moduleMAMEX =M′ ∪Mrest = {F3,F4,F5}.

The hybrid STAR-AMEX procedure has then reached a fixpoint, so we are

done, and obtain the depleting Σ-module of Food: M = STAR
AMEX -mod(O,Σ) =

{F3,F4,F6}, which in this case coincides with the minimal depleting Σ-

module of Food. Notice that the corresponding STAR-module for the is equi-

valent to initial STAR-module extracted on Line 1 and contains the entire

ontology: STAR(Food,Σ) = Food.

4.3. Splitting ontologies for AMEX

For the hybrid STAR-AMEX procedure to work in practice we must be able

to split a STAR-moduleM, which is an ontology up to SROIQ in expressivity,

101

CHAPTER 4. Hybrid Module Extraction

into two parts M = MALCQI ∪ Mrest where MALCQI is an acyclic ALCQI

terminology with RCIs, as only then are we able to apply the AMEX procedure.

The approach we take to split the module is to begin with Mrest = ∅ then

move axioms toMrest untilMALCQI =M\Mrest is an acyclic ALCQI termin-

ology with RCIs. To achieve this we use the following heuristic:

Definition 4.3.1. Move axioms fromM toMrest in the following order:

(M1) Move axioms to Mrest until every axiom in MALCQI is expressed in a logic

L ⊆ ALCQI and of the form A ./ C where A a concept name

(M2) Move axioms toMrest untilMALCQI is a terminology with RCIs

(M3) Move axioms toMrest untilMALCQI is acyclic

Clearly if each of these points are achieved,MALCQI =M\Mrest will be an

acyclic ALCQI terminology with RCIs. To achieve (M1) it is always necessary

to move axioms more expressive than ALCQI toMrest, which can be achieved

trivially by simply inspecting the structure and constructors an axiom utilises.

(M2) and (M3) however require a bit more thought, as often we will be faced

with a choice of axiom(s) to move which will affect how we split the original

module.

For the AMEX procedure to be most effective, the size ofMALCQI should be

as large as possible: firstly giving the specialised procedure a greater chance at

identify axioms which do not belong to the minimal depleting module, secondly,

as AMEX-modules must be depleting modules for the extended signature Σ ∪

sig(Mrest), ifMrest is particularly large it becomes less likely for AMEX to discard

axioms as being semantically irrelevant.

4.3.1 Moving non-terminological axioms

After (M1) is achieved, all axioms inMALCQI must be of the form A ./ C with

A a concept name, however MALCQI may still not be logically equivalent to

102

CHAPTER 4. Hybrid Module Extraction

terminology (a terminology with RCIs) which at most can contain one equival-

ence per concept name which unlike concept inclusions are not allowed to be

repeated. An ontology which violates this condition is said to contain at least

one shared name.

Definition 4.3.2 (Shared name). Let O be an ontology where every axiom is of

the form A ./ C with A a concept name A ∈ NC ∩ sig(O) . If there exists an

equivalence B ≡ D ∈ O and also a distinct axiom B ./ D′ ∈ O for some concept

name B, B is called a shared name.

If M contains shared names we have potentially two options of which ax-

ioms to move to Mrest to ensure MALCQI = M \Mrest is a terminology with

RCIs. For each shared name A in M, our first option is leave a single equi-

valence A ≡ C in MALCQI and move every other equivalence and concept

inclusion sharing the same name toMrest, second option is to leave every (pos-

sibly repeated) concept inclusion A ./ C1, A ./ C2, . . . , A ./ Cn inMALCQI and

move every equivalence sharing the same name toMrest.

With the aim of keeping Mrest as small as possible, our decision is to take

the latter option, which is likely to be much more preferable in general. This

decision follows from an analysis of the corpus of real-world ontologies we use

in our experimental evaluation in Chapter 6, 82 of which contain at least one

shared name after (M1) has been achieved. What we revealed is in 97.38%

of cases where a concept name is shared, there exists just a single equivalence

which shares a name with several concept inclusions. As a result, retaining the

concept inclusions would in most cases moving just one equivalence toMrest for

each shared name. The alternative, retaining the single equivalence, we found

on average would consist of moving 23.5 concept inclusions to Mrest for each

shared name, but up to 368 in the worst case.

An exception we make to this decision is when we have an M in which

a shared name is only shared between concept equivalences, then it is unne-

cessary to move every equivalence to Mrest and we can retain one of these

equivalences whilst still maintaining that MALCQI as an ALCQI terminology

103

CHAPTER 4. Hybrid Module Extraction

with RCIs.

It is of course possible to find an example where by retaining a single equi-

valence rather than multiple concept inclusions for a shared name leads to

smaller modules produced by AMEX (depending on the signatures of the ax-

ioms involved) but generally speaking, our choice of retaining the inclusions

over that of the equivalences will help keep the size ofMrest to a minimum.

4.3.2 Breaking terminological cycles

Once (M1) and (M2) are achievedMALCQI =M\Mrest must be a terminology

with RCIs which is at most ALCQI in expressitivity but still may contain cycles.

There are in principle several ways to go about removing axioms to break cycles

in a terminology, one such as applying the heuristic from [Ves+13]. However,

under the scope of hybrid module extraction, we observe that regardless of how

we break cycles within the terminology, every axiom which contributes to that

cycle still ends up in the module we extract using AMEX.

To see why, consider this example of breaking a cycle in STAR-module for

use with AMEX in the hybrid STAR-AMEX extraction procedure:

Example 4.3.1. Given a STAR-moduleM = {C1 − C4}

D v A (C1)

A v B (C2)

B v C (C3)

C v D (C4)

Observe that M is cyclic, in this case for each axiom X ./ Y ∈ TRCI, we

have X ∈ dependTRCI
(X ./ Y). Now we can break this cycle, makingMALCQI =

M\Mrest acyclic, by moving at least one axiom involved in the cycle toMrest.

If we do this, as an example by moving C3 toMrest, and then extract the module

M′ = AMEX-mod(MALCQI ,Σ∪ sig(Mrest)). Starting withM′ = ∅, immediately

104

CHAPTER 4. Hybrid Module Extraction

R1 of AMEX applies since C ∈ (Σ∪sig(Mrest)) and B ∈ dependMALCQI(C4)∩(Σ∪

sig(Mrest)), and then we can identify the dependency chain γ = {C4, C1, C2} ∈

chainBMALCQI(C4) (the remaining axioms of the cycle), and so we setM′ =M′ ∪

{γ}. Now to produce depleting Σ-moduleM of the original ontology we rejoin

our module withMrest,M =M′ ∪Mrest, which now contains the entire cycle.

It can be verified that whichever combination of axioms are taken to break

the cycle in this example, every axioms of the cycle will eventually end up in

the extracted AMEX-module. This can also be observed in the general case,

the relationship between the signature of axioms involved in a cycle, as well

as the fact that we extract a module using AMEX for Σ ∪ sig(Mrest) means that

however a cycle is broken we cannot avoid every axiom involved being pulled

into our extracted module.

Identify cycle causing axioms

Rather than attempting to break cycles, we shift our task towards locating all

axioms which belong to a cycle within a terminology so we can move them dir-

ectly toMrest. The most natural way of achieving this is to use the field of graph

theory for which the presence and detection of cycles is a well understood.

We use the standard graph theoretical terminology, such as that which de-

scribed in [BM07; GY05]. A directed graph is G = (V,E) is a finite set of

V vertices, and finite set of ordered pairs E ⊆ V × V of edges. A loop is

an edge in a directed graph that joins a vertex to itself. A path is a finite

sequence 〈v0, e1, v1, e2, v2, . . . , vk−1, ek−1, vk〉 whose terms alternate vertices and

edges such that for 1 ≤ i ≤ k the edge ei = (vi−1, vi), and where each internal

vertex vj, 1 ≤ j ≤ k − 1 is distinct. A vertex v has a cycle if there exists a non-

trivial path (has at least one edge) from a v to itself. A directed graph which

contains no cycles is called a directed acyclic graph (DAG). A vertex x is said to

be reachable from a vertex y if there exists a path from x to y. A directed graph

is called strongly connected if every vertex is reachable from every other vertex.

The strongly connected components of a graph is the partition of a graph into

105

CHAPTER 4. Hybrid Module Extraction

its subgraphs induced by the equivalence relation of being strongly connected.

Input: Terminology with RCIs TRCI

Output: Dependency graph G

1 G = (V,E)

// Map each concept name to a vertex

2 foreach A ∈ (sig(TRCI) ∩ NC) do

3 V ::= V ∪ {vA}

4 end

// Directed edge between corresponding vertices if A ≺TRCI B

5 foreach A ./ C ∈ TRCI do

6 foreach B ∈ sig(C) do

7 if {(vA, vB)} 6∈ E then

8 E ::= E ∪ {(vA, vB)}

9 end

10 end

11 end

12 return G

Figure 4.3: Computing dependency graph

The relationship between the cycles of a terminology and the cycles of a

graph can be observed by the inspection of the graph induced by ≺TRCI (de-

pends) relation between symbols of the terminology. The dependency graph of

a terminology with RCIs is computed by associating each concept name in with

a vertex, add adding an edge between vertices if ≺TRCI relates their associated

concept names together. Based on this definition we can compute a dependency

graph using the algorithm in Figure 4.3.

Now given the dependency graph GTRCI of a terminology TRCI, notice that

since the set dependTRCI
is given by the transitive closure of the ≺TRCI relation, for

an axiom A ./ C ∈ TRCI it holds that A ∈ dependTRCI
(A ./ C) if and only if the

vertex vA associated with A has a cycle in GTRCI. So towards being able to locate

106

CHAPTER 4. Hybrid Module Extraction

the axioms which cause a cycle in TRCI we first locate those vertices which have

a cycle in GTRCI.

We can achieve this by observing a graph G only has a cycle if: 1. G contains

a strongly connected component consisting of more than one vertex. 2. G

contains a loop. If this is the case then there exists two distinct vertices which

are mutually reachable from each other, and/or a vertex v with an edge, and

therefore a path, which joins v to itself. It is also not hard to see the converse

is also true, if neither of these conditions hold then G cannot contain a cycle.

The axioms belonging to cycles in TRCI are then those axioms which introduce

concepts for which the corresponding vertices in GTRCI leads to either of these

conditions holding.

In practice, the strongly connected components of a graph can be computed

in linear time by one of several algorithms [Sha81; Tar72; Dij+76], and if we

compute the strongly connected components ofGTRCI and consider each strongly

connected component SCC ∈ GTRCI which contains more than one vertex, then

by considering each vertex vA ∈ SCC it is those axioms A ./ C ∈ TRCI with

B ∈ sig(C) such that A 6= B and vB ∈ SCC which belong to a cycle in TRCI.

Why it is necessary to establish if we have vB ∈ SCC in addition to vA is that

TRCI may contain RCIs, and it is possible that some inclusions for a shared name

contribute to a cycle whilst others do not, and in the latter case these axioms

should not be identified as belonging a cycle. Those axioms which lead to

vertices with loops in the induced dependency graph are more trivial to find,

one simply needs to locate those axioms A ./ C ∈ TRCI for which we have

A ∈ sig(C).

As an example, consider a cyclic terminology and its induced dependency

graph GTRCI both of which are shown in Figure 4.4. On the dependency graph

we have also highlighted all strongly connected components with more than

one vertex, and those vertices which have loops i.e. those vertices which have

cycles in GTRCI.

107

CHAPTER 4. Hybrid Module Extraction

A v B (D1)

A v ∃r.E (D2)

B v C u E (D3)

C ≡ F uD (D4)

D v ∀r.A (D5)

E v G (D6)

G v H u I (D7)

H v ∃r.G (D8)

X v Y t Z (D9)

W ≡ Z u ∀r.W (D10)

vA vB

vCvD

vE

vF

vG

vH

vI

vW

vX

vY vZ

Figure 4.4: Detecting cycles of a terminology using a dependency graph

Now to identify those axioms with a cycle in TRCI we can examine high-

lighted vertices. From the strongly connected component consisting of the ver-

tices C1 = {vA, vB, vC , vD}, we can locate the axioms D1,D3,D4 and D5 as be-

longing to a cycle in TRCI, that is for each axiom A′ ./ C ′ ∈ {D1,D3,D4,D5},

there is a vertex vA′ ∈ C1 and a distinct symbol B′ ∈ sig(C ′) such that vB′ ∈ C1.

Notice this is not the case for D2, although it is an RCI for the repeated name A

it does not belong to a cycle.

In a similar way to the first component, we find a second C2 = {vG, vH} and

then can identify the two axioms D7 and D8 as belonging to a cycle. Finally,

the vertex vW has a loop in GTRCI, so we identify the axiom D10 as belonging

to a cycle, which should be clear as we have D10 = W ≡ Z u ∀r.W and W ∈

sig(Z u ∀r.W). We have now considered all vertices with a cycle in GTRCI, and

identified all axioms in TRCI which are responsible for them occurring, and can

then verify this is all of the axioms which contribute to a cycle in TRCI, indeed,

108

CHAPTER 4. Hybrid Module Extraction

the axioms {D2,D6,D10} constitute an acyclic terminology.

Going back to the context of hybrid module extraction, we can verify

whether or not MALCQI = M \ Mrest is cyclic by inspecting its associated

dependency graph, and if we do find it is cyclic we can use the described

methodology to locate all axioms involved in a cycle to move to Mrest, which

in turn ensures thatMALCQI is acyclic for use with the AMEX procedure.

4.4. Conclusion

In this chapter we introduced a hybrid module extraction algorithm which

exploits the methodologies different module depleting Σ-module extraction al-

gorithms use, with the aim of minimising the size of our approximations. The

hybrid algorithm extracts a depleting Σ-module from an ontology by general-

ising the approach the locality-based STAR approach uses, facilitating the it-

erative nested extraction of two input procedures until a fixpoint is reached,

which results in those axioms which either input procedure deem semantically

irrelevant over the input signature being discarded. The module produced us-

ing this method, under mild conditions, is at least as small as the corresponding

module produced independently by either of the input procedures, but may be

be even smaller.

Next we considered a modification of the hybrid algorithm to enable the

combination of AMEX and STAR extraction algorithms without losing the gen-

erality that the STAR procedure provides in terms of ontologies it accepts as

input. This still amounted to iterative nested extraction, but with an additional

step which involved filtering axioms, allowing AMEX to work, and then rejoin-

ing the filtered axioms back on afterwards. This resulted in the production of

the STAR-AMEX hybrid extraction procedure which is guaranteed to extract a

module at least as small as the corresponding STAR module, but with the aim

of using the specialised nature of the AMEX procedure to further reduce the

size of the extracted modules. We will go on to evaluate modules produced by

the hybrid STAR-AMEX extraction algorithm in Chapter 6.

109

CHAPTER 4. Hybrid Module Extraction

In the next chapter, to estimate the success of a given approximation, we

will be considering a methodology which allows us to estimate the difference

in size between an approximation and the minimal module it approximates.

110

CHAPTER 5

How Good is an Approximation?

Driven by the undecidability of computing minimal modules in moderately ex-

pressive logics, we have introduced two new approximation procedures to com-

pete with the already successful locality based modules: AMEX which can ex-

tract a depleting module from acyclic ALCQI terminologies with RCIs, and

the hybrid STAR-AMEX procedure, introduce the previous chapter, and able to

extract depleting modules from general cyclic SROIQ ontologies (the most ex-

pressive logic STAR itself supports). Each of these were developed with the aim

of minimising the size of the module which is extracted, to better approximate

minimal modules, and how successful an approximation is can be considered

how close in size it comes to the corresponding minimal module.

The success of any approximation is currently an open problem; although

the size of locality based modules, especially STAR modules, have been system-

atically analysed in great detail [Ves+12; Ves+13], and the size of extracted

modules may be improved upon by utilising AMEX or the hybrid STAR-AMEX

procedure, nothing is yet known about how large and significant the difference

between a given approximation and a minimal depleting module actually is, so

it is not known how well one can approximate minimal modules.

In this chapter we introduce a methodology which can help close this gap,

so that for the first time we are able to evaluate how well one can approximate

minimal modules. Those modules which are guaranteed to be depleting mod-

ules we can consider an upper approximation, the unique minimal depleting

module is always contained within each of these modules. In the sections that

follow, we also introduce a lower approximation, a module that is always con-

111

CHAPTER 5. How Good is an Approximation?

tained in the minimal depleting module but is not guaranteed to be a depleting

module itself. As minimal modules lie between the upper and lower approxim-

ations, we know that if the upper and lower approximation coincide (or come

very close together) the upper approximation coincides (or comes close to) the

minimal depleting module. We go on to consider how we might compute lower

approximations which we achieve using a reduction to QBF.

5.1. Upper and lower approximations

Upper approximation

Any of the modules produced by the STAR, AMEX or hybrid STAR-AMEX pro-

cedures can be used as an upper approximation, each of which is guaranteed

to extract a depleting Σ-module by Theorem 2.4.1, Theorem 3.4.3 and The-

orem 4.2.1 respectively.

Lower approximation

For the lower approximation, we introduce a new depleting module notion

based on a weakening of the model inseparability relation, where two ontolo-

gies are considered inseparable for a signature Σ if their models coincide on Σ

for models constructed using only a chosen number of domain elements rather

than requiring them to coincide on all models.

Definition 5.1.1 (n-inseparability). Assume T1 and T2 are TBoxes. Then T1 and

T2 are n-inseparable in symbols T1 ≡6n
Σ T2 if:

{I|Σ |]∆I = 1 . . . n and I |= T1} = {I|Σ |]∆I = 1 . . . n and I |= T2}.

Recall we have already visited the specific case of 1-inseparability in

Chapter 3 which by Theorem 3.3.1 gives Πp
2 upper bound of deciding if

TRCI ≡Σ ∅ where TRCI is an acyclic terminology with RCIs which is free of direct

Σ-dependencies, which in turn enables the second rule of the AMEX procedure

112

CHAPTER 5. How Good is an Approximation?

to decide if a subset of such a terminology is a depleting Σ-module.

Intuitively, two ontologies are inseparable over Σ, then they are n-

inseparable over Σ. The following example shows the converse does not

hold:

Example 5.1.1. Given the signature Σ = {PleuralTissue, hasLocation} and

the TBox T = {PleuralTissue v ∀hasLocation.ThoracicCavity,ThoracicCavity v

∃hasLocation.Thorax} then T ≡61
Σ ∅ but T 6≡Σ ∅.

• Claim: T ≡61
Σ ∅.

Let I be any interpretation with ∆I = {d1}. We need to show there exists a

model J of T such that I|Σ = J |Σ. To construct such a model J , let ∆J =

∆I and PleuralTissueJ = PleuralTissueI and hasLocationJ = hasLocationI

to ensure I|Σ = J |Σ. For the remaining symbols if PleuralTissueJ = ∅

then let ThoracicCavityJ = ThoraxJ = ∅. If PleuralTissueJ = {d} and

hasLocationJ = {(d, d)} set ThoracicCavityJ = ThoraxJ = {d}, otherwise

set ThoracicCavityJ = ThoraxJ = ∅. One can verify J is a model of T and

hence T ≡1
Σ ∅

• Claim: T 6≡Σ ∅.

Let I be the following 2 element interpretation: ∆I = {d1, d2}, PleuralTissueI =

{d1}, hasLocationI = (d1, d2), ThoracicCavityI = {d2}. We show there is

no model J of T such that I|Σ = J |Σ. To try and construct J . Let

PleuralTissueJ = PleuralTissueI and hasLocationJ = hasLocationI to ensure

I|Σ = J |Σ. For the remaining symbols, as d1 ∈ PleuralTissueJ for J

to be a model of T we must have d1 ∈ (∀hasLocation.ThoracicCavity)J

to achieve this let ThoracicCavityJ = {d2}. But then we must have

d2 ∈ (∃hasLocation.Thorax)J but since hasLocationJ = {(d1, d2)} there is

no interpretation of ThoraxJ which makes this possible with reinterpreting

hasLocation. It should now be clear there is no model J of T such that

I|Σ = J |Σ and so T 6≡Σ ∅.

Definition 5.1.2 (n-depleting Σ-module). Let M≤n ⊆ O be ontologies,

113

CHAPTER 5. How Good is an Approximation?

and n a positive integer. Then M≤n is an n-depleting Σ-module of O if

O \M≤n ≡6n
Σ∪sig(M≤n) ∅.

The following theorem proves the unique minimal n-depleting Σ-module is

always contained in the minimal depleting Σ-module and therefore can be used

as a lower approximation. The existence of an unique minimal n-depleting

module itself is proven later by means of Lemma 5.2.4.

Theorem 5.1.1. Let O be an ontology, Σ a signature, and n a positive integer. Let

M be the unique minimal depleting Σ-module of T , and let M≤n be the unique

minimal n-depleting Σ-module of O. ThenM≤n ⊆M.

Proof. Notice since M is a depleting Σ-module of O, it is also an n-depleting

Σ-module of O. Indeed, since O \M ≡Σ∪sig(M) ∅, for all interpretations I there

exists a model J of O \ M such that I|Σ∪sig(M) = J |Σ∪sig(M) which includes

each I of size 1 through n. Now sinceM≤n is the unique minimal n-depleting

Σ-module,M≤n ⊆M immediately follows.

Ideally one wants to compute an n-depleting module which is an accur-

ate approximation, coinciding or being very close in size to the minimal de-

pleting module. This means one must select an appropriate value for n for

which to compute an n-depleting module. Increasing the value for n may in-

crease the size of an n-depleting module, as M≤n may need to contain more

axioms in order for O \M≤n to be inseparable from the empty ontology over

an increased number of interpretations. For example take the TBox and sig-

nature from Example 5.1.1, the minimal 1-depleting module is empty, whereas

the minimal 2-depleting module contains the entire TBox and therefore coin-

cides with the minimal depleting Σ-module. We also note that increasing the

value for n cannot result in the lower approximation becoming smaller, as by

definition each minimal n-depleting module is also an m-depleting module for

1 ≤ m < n, so minimal n-depleting modules for increasing values of n is a

sequence M ⊇ Mn ⊇ Mn−1 ⊇ · · · ⊇ M2 ⊇ M1, where M is the minimal

depleting Σ-module.

114

CHAPTER 5. How Good is an Approximation?

Even for increasingly large values for n there is no guarantee an n-depleting

module will eventually coincide with the minimal Σ-module M, as there may

exist a larger finite or even infinite interpretation for which there is no model of

O\M which coincides on Σ∪sig(M). Moreover, we cannot even decide if an n-

depleting module coincides with the minimal. For logics where approximations

are required, this would amount to checking if some subset of an ontology is

a minimal depleting Σ-module which is of course undecidable. Indeed, the

only time we can know for certain if an n-depleting module coincides with the

minimal depleting Σ-module — apart from checking “by hand” – is when the

upper and lower approximations coincide. Even this considered, the size of the

gap between the lower and upper approximations is still a strong indication to

the success of an upper approximation.

5.2. Computing the lower approximation

Rather than choosing a fixed value for n, we can compute the lower ap-

proximation incrementally, by first computing a 1-depleting module then a 2-

depleting module and so on until we have considered interpretations up to

a certain size or the lower and upper approximations come sufficiently close

together to give a good estimation of the success of the upper approximation.

This also makes sense algorithmically, and can avoid wasted computation. If we

compute a minimal n-depleting module incrementally and find some value of n

where the upper and lower approximations coincide, it would be unnecessary

to considering any subsequent values of n.

Definition 5.2.1 (Exactly n-inseparability). AssumeO1 andO2 are TBoxes. Then

O1 and O2 are exactly n-Σ-inseparable in symbols O1 ≡nΣ O2 if:

{I|Σ |]∆I = n and I |= O1} = {I|Σ |]∆I = n and I |= O2}.

Exactly n-inseparability represents a further weakening of model inseparab-

ility relation in which the conditions for two ontologies to be inseparable only

115

CHAPTER 5. How Good is an Approximation?

requires their n-element models to coincide on Σ, rather than models up to n in

size as is the case for n-inseparability. As a result of this weakening we find that,

unlike n-inseparability, when two ontologies are exactly n-inseparable they are

not necessarily exactly m-inseparable for 1 ≤ m < n. To see this consider the

following example:

Example 5.2.1. Given the TBox T = {Human v ∃eats.Meat,Human v

∃eats.¬Meat} and the signature Σ = {Human} we have T ≡2
Σ ∅ but T 6≡1

Σ ∅

• Claim: T ≡2
Σ ∅.

To see this let I be an arbitrary interpretation with ∆I = {d1, d2} and

construct a interpretation J of T as follows: To ensure I|Σ = J |Σ
let ∆J = ∆I and HumanJ = HumanI . For the remaining symbols

let eatsJ = {(d1, d1), (d2, d1), (d1, d2), (d2, d2)} and MeatJ = {d1} then

∆J = (∃eats.Meat)J = (∃eats.¬Meat)J . One can now verify J is a model

of T and so T ≡2
Σ ∅.

• Claim: T 6≡1
Σ ∅.

To see this let I be the following 1 element interpretation: ∆I = {d1},

HumanI = {d1}, eatsI = {(d1, d1)} and MeatI = {d1}. We show there is

no model J of T such that I|Σ = J |Σ. To try and construct J , let ∆J = ∆I

and HumanJ = HumanJ to ensure I|Σ = J |Σ, but for J to be a model of T

we must have d1 ∈ (∃eats.Meat)J so let eatsJ = {(d1, d1)} and Meat = {d1}

but now we must also have d1 ∈ ¬Meat which is impossible. It should now

be obvious that there is no 1-element model J of T such that I|Σ = J |Σ and

so T 6≡1
Σ ∅.

Lemma 5.2.1. Exactly n-inseparability is a monotone separability relation

Proof. By Definition 2.3.5 it suffices to show the following:

• (MΣ) If O1 ≡nΣ O2 then O1 ≡nΣ′ O2 for all Σ′ ⊆ Σ

• (MO) If O1 ⊆ O2 ⊆ O3 and O1 ≡nΣ O3 then O1 ≡nΣ O2

116

CHAPTER 5. How Good is an Approximation?

1. (MΣ). Let O1 and O2 be ontologies and Σ′ ⊆ Σ be signatures and assume

O1 ≡nΣ O2 for a positive integer n. To show O1 ≡nΣ′ O2 let I be an n-

element model of O1, we have to show there is an n-element model J of

O2 such that I|Σ′ = J |Σ′. Since O1 ≡nΣ O2 there is an n-element model

J of O2 such that I|Σ = J |Σ, and since Σ′ ⊆ Σ, J is an also n-element

model of O2 that coincides with I on Σ′.

2. (MO). Let O1 ⊆ O2 ⊆ O3 be ontologies and Σ a signature. Assume

that O1 ≡nΣ O3. To show that O1 ≡nΣ O2, let I be an n-element model of

O1 we need to show there exists an n-element model J of O2 such that

I|Σ = J |Σ. By O1 ≡nΣ O3 there exists an n-element model J of O3 such

that I|Σ = J |Σ but since O2 ⊆ O3 it holds that J is model of O2 with

I|Σ = J |Σ.

Lemma 5.2.2. Exactly n-inseparability is robust under replacements.

Proof. Let O, O1 and O2 be ontologies and Σ a signature, and n a positive

integer. By Definition 2.3.6 it suffices to show the following: If O1 ≡nΣ O2 and

sig(O) ∩ sig(O1 ∪ O2) ⊆ Σ then O1 ∪ O ≡nΣ O2 ∪ O

Assume thatO1 ≡nΣ O2 and sig(O)∩sig(O1∪O2) ⊆ Σ. To show thatO1∪O ≡nΣ
O2 ∪ O, let I be a model of O1 ∪ O with |∆I | = n. We need to show there is

a model J of O2 ∪ O such that I|Σ = J |Σ. Since by the original assumption

O1 ≡nΣ O2 there exists a model J of O2 with |∆J | = n such that I|Σ = J |Σ.

Now we can assume w.l.o.g that additionally J coincides with I on all symbols

that are not in sig(O2), and since sig(O) ∩ sig(O2) ⊆ Σ, J coincides on with

I on all symbols in sig(O). It then follows that J is also a model of O, as

required.

Lemma 5.2.3. There exists a unique minimal exactly n-depleting Σ-module.

117

CHAPTER 5. How Good is an Approximation?

Proof. Since by Lemma 5.2.2 and Lemma 5.2.1 exactly n-inseparability is a

monotone relation which is robust under replacements the proof immediately

follows from Proposition 2.3.2.

Definition 5.2.2 (exactly n-depleting Σ-module). Let Mn ⊆ O be ontologies

thenMn is an exactly n-depleting Σ-module of O if O \Mn ≡nΣ∪sig(M) ∅.

Exactly n-depleting Σ-modules are simply depleting modules defined over

the exactly n-inseparability relation. Unlike minimal n-depleting modules, min-

imal exactly n-depleting modules are not guaranteed to be subsets of each other,

following exactly n-inseparability does not guaranteed m-inseparability where

m 6= n. For example take the TBox and signature from Example 5.2.1, one can

verify the minimal exactly 2-depleting module is empty, whereas the minimal

exactly 1-depleting module contains the entire TBox.

Lemma 5.2.4. Let O be an ontology and Σ a signature. ThenM≤n =
n⋃
i
Mi is the

unique minimal n-depleting module of O whereMi is the unique minimal exactly

i-depleting module of O.

Proof. By definitionM≤n is comprised of unique and minimal exactly depleting

modules so it follow thatM≤n itself is minimal and uniquely determined.

It remains to be shown thatM≤n is an n-depleting module. For a proof by

contradiction assume M≤n is not an n-depleting Σ-module. Then there must

exist an α ∈ O\M≤n such that (O\M≤n)∪{α} 6≡6n
Σ∪sig(M) ∅, which by definition

means there exists a j for 1 ≤ j ≤ n for which (O\M≤n)∪{α} 6≡jΣ∪sig(M) ∅. Now

considerMj the minimal exactly j-depleting Σ-module of O, which by defini-

tion ofM≤n we have α 6∈ Mj but then by monotonicity (O\Mj)∪{α} ≡jΣ∪sig(M)

∅ and then sinceMj ⊆M≤n it follows that (O \M≤n)∪ {α} ≡jΣ∪sig(M) ∅ which

is a contradiction.

Lemma 5.2.4 gives us a way of achieving the incremental computation of

the lower approximation. Beginning by computing the minimal 1-depleting

118

CHAPTER 5. How Good is an Approximation?

module (equivalently minimal exactly 1-depleting module) we can compute

the minimal 2-depleting module by combining this result with the minimal 2-

depleting module, and can continue in this fashion for successive values of n

for as long as desired to produce the minimal n-depleting module.

5.3. Deciding exactly n-inseparability from the

empty ontology

In order to compute exactly n-depleting Σ-modules, towards being able to

compute the lower approximation, we must be able to decide if for an ontology

O, signature Σ, and positive integer n if O ≡nΣ ∅. In contrast to deciding Σ-

inseparability, in logics where approximations are required, checking if O ≡nΣ ∅

for a fixed n is decidable, as one can enumerate every interpretation which has

a finite domain. Our approach is to generalise the reduction to QBF for deciding

if T ≡1
Σ ∅ from [Kon+13] where T is an acyclic ALCI terminology, extended

to acyclic ALCQI with RCIs in Lemma 3.3.1, which in both cases gave a Πp
2

upper bound of deciding 1-inseparability from the empty ontology.

The reduction covers ontologies up to SRIQ in expressitivity and entails

constructing a closed QBF formula which is logically true iff O ≡nΣ ∅. To be-

gin, we construct a propositional formula from the axioms of O so that the

formula’s possible truth assignments mirror the possible interpretations of O in

an n-element interpretation. We will make a number of claims about how the

construction of this propositional formula mirrors the possible assignments of

an n-element interpretation, all of which are proven through Theorem 5.3.1.

Let O be a SRIQ ontology, Σ a signature, and consider an arbitrary n-

element interpretation In = {d1, d2, . . . , dn} and a truth assignment v. Pro-

positional atoms are used to represent when a domain element is interpreted

as belonging to a concept or role name under In. For every domain element

d ∈ ∆In we introduce a fresh propositional variable PAd
where v(PAd

) = true

exactly when d ∈ AIn for every A ∈ Σ ∩ NC, and a distinct fresh variable QAd

119

CHAPTER 5. How Good is an Approximation?

for those concept names A ∈ (sig(O) \Σ) ∩ NC. Similarly for role names, for all

(d, e) ∈ ∆In ×∆In we use a fresh variable Pr(d,e) where v(Pr(d,e)) = true exactly

when (d, e) ∈ rIn for r ∈ Σ ∩ NR and for those role names r ∈ (sig(T) \ Σ) ∩ NR

a distinct variable Qr(d,e) is used.

[r](d,e) = Pr(d,e) for all r ∈ Σ ∩ NR

[r](d,e) = Qr(d,e) for all r ∈ (sig(T) \ Σ) ∩ NR

[r−](d,e) = [r](e,d)

[r ◦ s](d,e) =
∨

f∈∆Jn

[r](d,f) ∧ [s](f,e)

Figure 5.1: Translation of roles to propositional formulas

[A]d = PAd
for all A ∈ NC ∩ Σ

[A]d = QAd
for all A ∈ (sig(T) \ Σ) ∩ NC

[>]d = true

[⊥]d = false

[C1 u C2]d = [C1]d ∧ [C2]d
[¬C]d = ¬([C]d)

[(≥ m r.C)]d =

m = 0 true
n ≥ m > 0 ∨

s∈Rsets(m)

∧
e∈s

[r](d,e) ∧ [C]e

m > n false

Where Rsets(m) is the set of all subset size m taken from elements of ∆Jn

Example for ∆3 the set

Rsets(2) = {{d1, d2}{d1, d3}{d2, d3}}

Figure 5.2: Translation of concepts to propositional formulas

We inductively extend this notion in order to represent complex role ex-

pressions R by propositional formulas. We use the notation [R](d,e) to rep-

resent the evaluation of R under domain elements (d, e) ∈ ∆In × ∆In where

v([R](d,e)) = true exactly when (d, e) ∈ RIn. For evaluating an arbitrary SRIQ

role expression R under arbitrary domain elements (d, e) ∈ ∆In × ∆In we use

the translation shown in Figure 5.1.

120

CHAPTER 5. How Good is an Approximation?

By utilising the translation of role expressions we further extend this notion

to translation arbitrary concept expressions C. We use the notation [C]d to

represent the evaluation of C under an arbitrary domain element d ∈ ∆In,

where v([C]d) = true exactly when d ∈ CIn. The translation for evaluating

arbitrary SRIQ concept expressions under arbitrary domain elements d ∈ ∆In

is shown in Figure 5.2.

With this in place, we can reduce satisfiability of arbitrary SRIQ axioms

under In to the validity of propositional formulas. We define a mapping:

† : SRIQ axiom→ propositional formula

Where given In and an axiom α ∈ O it holds that v(α†) = true iff In |= α.

The proposed translation of axioms for a SRIQ TBox and RBox can be found

in Figure 5.3 and Figure 5.4 respectively.

(C v D)† =
∧

d∈∆Jn

[C]d → [D]d

(C ≡ D)† = (C v D)† ∧ (D v C)†

Figure 5.3: Translation of TBox axioms into propositional formulas

We can now establish satisfiability of an axiom under an arbitrary n-element

interpretation by checking if its propositional translation is valid under some

valuation assignment v. But to be able to decide if for an SRIQ ontology O

and signature Σ if O ≡nΣ ∅, by definition we must be able to decide if for all

n-element interpretations In there exists an interpretation Jn such that In|Σ =

Jn|Σ where Jn |= O. To do this construct a QBF formula

ψO := ∀~p∃~q
∧
α∈O

α†

where ~p = {[P]d | d ∈ ∆In and P ∈ Σ} and ~q = {[Q]d | d ∈ ∆In and

Q ∈ sig(O) \ Σ}. Intuitively, we construct ~p to consist of atomic formulas that

121

CHAPTER 5. How Good is an Approximation?

(r v s)† =
∧

(d,e)∈∆Jn×∆Jn

[r](d,e) → [s](d,e)

(r ≡ s)† = (r v s)† ∧ (s v r)†

(r1 ◦ r2 ◦ · · · ◦ rn v r) =
∧

(d,e)∈∆Jn×∆Jn

[r1 ◦ r2 ◦ · · · ◦ rn](d,e) → [r](d,e)

Disj(r, s)† =
∧

(d,e)∈∆Jn×∆Jn

[r](d,e) → ¬[s](d,e)

Symm(r)† =
∧

(d,e)∈∆Jn×∆Jn

d6=e

[r](d,e) ↔ [r−](d,e)

Asymm(r)† =
∧

(d,e)∈∆Jn×∆Jn

{
d = e ¬[r](d,e)
d 6= e [r](d,e) ↔ ¬[r−](d,e)

Refl(r)† =
∧

d∈∆Jn

[r](d,d)

Irrefl(r)† =
∧

d∈∆Jn

¬[r](d,d)

Trans(r)† =
∧

(d,e)∈∆J×∆J
(e,e′)∈∆J×∆J

d6=e,e 6=e′

[r](d,e) ∧ [r](e,e′) → [r](d,e′)

Figure 5.4: Translation of RBox axioms into propositional formulas

represent all possible ways of interpreting a symbol from Σ under an n-element

interpretation, and similarly for ~q but for those symbols which do not belong

to Σ. Notice that by quantifying over all signature and non-signature symbols

that ψO a closed formula and has precisely one truth assignment and it is true

if satisfiable under this assignment and false if it is not.

Theorem 5.3.1. Let O be a SRIQ ontology and Σ a signature. Then O ≡nΣ ∅ iff

the QBF formula ψO := ∀~p∃~q ∧
α∈O

α† is true.

Proof. Suppose that O ≡nΣ ∅. We now show that ψO is true. Consider an ar-

bitrary assignment I of truth values to propositions in ~p. We now must show

there exists an assignment J to the truth values in ~q such that the propositional

formula O† is true under the assignment I ∪ J .

Define a n-element interpretation In as follows:

• ∆In = {d1 . . . dn}

122

CHAPTER 5. How Good is an Approximation?

• AIn = {d | I assigns PAd
to true }

• rIn = {(d, e) | I assigns Pr(d,e) to true }

Since O ≡nΣ ∅ there exists an interpretation Jn such that In|Σ = Jn|Σ and

Jn |= O. We define the assignment J by setting:

• J assigns true to PAd
if d ∈ AJn otherwise assigns false to PAd

for all

A ∈ sig(O) \ Σ

• J assigns true to Pr(d,e) if (d, e) ∈ rJn otherwise assigns false to Pr(d,e) for

all r ∈ sig(O) \ Σ

Now what remains to be shown is the proof of the following claim which is

proven by means of Lemma 5.3.4.

Claim 5.3.1. ψO is true under the assignment I ∪ J .

Conversely assume that ψO is true. We now show that O ≡nΣ ∅. Given an

arbitrary interpretation with domain ∆In = {d1 . . . dn} we have to show there

exists a model Jn of O such that In|Σ = Jn|Σ.

Define a truth assignment I for the propositions of ~p as follows:

• For A ∈ Σ, I assigns true to PAd
if d ∈ AIn otherwise assigns false to PAd

.

• For r ∈ Σ, I assigns true to Pr(d,e) if (d, e) ∈ rIn otherwise assigns false to

Pr(d,e)

Since ψO is true, there exists a truth assignment J for the propositions in ~q

such that O† is true under I ∪ J .

Now define Jn as an extension of In as follows:

• For A ∈ sig(O) \ Σ set AJn = {d | J assigns true to qAd
}

• For r ∈ sig(O) \ Σ set rJn = {(d, e) | J assigns true to qr(d,e)}

123

CHAPTER 5. How Good is an Approximation?

Now since Jn interprets the symbols from Σ in the same way as In we have

In|Σ = Jn|Σ. What remains to be shown is the following claim which is proven

by means of Lemma 5.3.3.

Claim 5.3.2. Jn |= O.

Towards the proof of these claims we need some intermediate lemmas.

Lemma 5.3.1. Let O be the ontology, ψO the QBF formula, Jn the interpretation

and I ∪J the valuation from Theorem 5.3.1. For an arbitrary role expression R in

O and its translation ([R](d,e)) in ψO under arbitrary domain elements d, e ∈ ∆Jn

using the translation in Figure 5.1. It holds that (d, e) ∈ RJn ⇔ v([R](d,e)) = true

under I ∪ J .

Proof. For a proof by structural induction on role expressions R:

• Base case: For an atomic role r, (d, e) ∈ rJn ⇔ v([r](d,e)) = true follows

from the construction of I ∪ J and Jn.

• Induction: Complex role expression r

– Let R = r− where r is atomic.

Now (d, e) ∈ (r−)Jn ⇔ (e, d) ∈ rJn. By the induction hypothesis for

arbitrary domain elements d, e we have (e, d) ∈ rJn ⇔ v([r](e,d)) =

true and therefore (d, e) ∈ (r−)Jn ⇔ v([r](e,d)) = true

– Let R = r ◦ s for atomic roles r, s

Now (d, e) ∈ (r ◦ s)Jn ⇔ ∃f ∈ ∆Jn such that (d, f) ∈ rJn and (f, e) ∈

sJn. By the induction hypothesis (d, f) ∈ rJn ⇔ v([r](d,f)) = true

and (f, e) ∈ sJn ⇔ v([s](f,e)) = true. Since the domain is finite, the

existence of any f ∈ ∆Jn can be expressed as a disjunction, and so,

(d, e) ∈ (r ◦ s)Jn ⇔ v(∨
f∈∆Jn

[r](d,f) ∧ [s](f,e)) = true

124

CHAPTER 5. How Good is an Approximation?

Lemma 5.3.2. Let O be the ontology, ψO the QBF formula, Jn the interpretation

and I ∪J the valuation from Theorem 5.3.1. For an arbitrary concept C in O and

its translation ([C]d) in ψO under an arbitrary domain element d ∈ ∆Jn using the

translation in Figure 5.2. It holds that d ∈ CJn ⇔ v([C]d) = true under I ∪ J .

Proof. For a proof by structural induction on concepts C.

• Base case: d ∈ AJn ⇔ v([A]d) = true follows immediately from the

construction of I ∪ J and Jn.

• Induction: Complex concept C

– Let C = C1 u C2

By the induction hypothesis d ∈ CiJn ⇔ v([Ci]d) = true for i ∈ {1, 2}

Now d ∈ CJn ⇔ d ∈ C1
Jn and d ∈ C2

Jn ⇔ v([C1]d) =

true and v([C2]d) = true and therefore d ∈ CJn ⇔ v([C1]d ∧ [C2]d) =

true

– Let C = ¬D

By the induction hypothesis d 6∈ DI ⇔ v([D]) = false

Now d ∈ CJn ⇔ d ∈ ∆Jn \DJn ⇔ d 6∈ DJn and therefore d ∈ CJn ⇔

v(¬[D]d) = true

– Let C = (≥ m r.D) where r is atomic or r−

Now d ∈ CJn ⇔ |{(d, e) ∈ rJn ∧ e ∈ DJn}| ≥ m i.e. there are at least

m r-successors in D. Distinguish three cases to match those in the

given translation:

1. m = 0

Such a cardinality restriction it is trivial to satisfy as a negative

number of r-successors are not possible, and so d ∈ C ⇔ true

2. |∆Jn| ≥ m > 0

By Lemma 5.3.1 for arbitrary domain elements d, e ∈ ∆Jn

(d, e) ∈ rJn ⇔ v([r](d,e)) = true and by the induction hypothesis

e ∈ DJn ⇔ v([D]e) = true

125

CHAPTER 5. How Good is an Approximation?

Then r has m successors in D iff for some e1, . . . em ∈ ∆Jn

v(∧
ei

[r](d,e) ∧ [C]e) = true for m ≥ i > 0. Therefore this holds for

any combination size m iff v(∨
s∈Rsets(m)

∧
e∈s

[r](d,e) ∧ [C]e) = true

3. m > |∆Jn|

Given a domain size n it is not possible for a role r to have m

r-successors. Therefore d ∈ CJn ⇔ false

Lemma 5.3.3. Proof of Claim 5.3.2. Jn |= O

Proof. Distinguish different axiom types α ∈ O. We use the notation ψα to refer

to the part of the formula ψO due to α ∈ O.

1. α = C v D

For an arbitrary d ∈ ∆Jn assume d ∈ CJn. We need to show that d ∈ DJn.

By Lemma 5.3.2 v([C]d) = true under I ∪ J . Now the translated formula

ψα = ∧
d∈∆Jn

[C]d → [D]d is part of the true formula ψO and so v([D]d) =

true but then by Lemma 5.3.2 it holds that d ∈ DJn.

2. α = r v s

Proof uses the same argument as the previous but Lemma 5.3.1 applies

instead of Lemma 5.3.2.

3. α = r1 ◦ r2 ◦ · · · ◦ rn v r

Assume for some arbitrary domain elements (d, e) ∈ ∆Jn ×∆Jn we have

(d, e) ∈ (r1 ◦ r2 ◦ · · · ◦ rn)Jn. We need to show that (d, e) ∈ rJn. From

Lemma 5.3.1 it holds that v([r1 ◦ r2 ◦ · · · ◦ rn](d,e)) = true under I ∪J . Now

as the subformula ψα = ∧
(d,e)∈∆Jn×∆Jn

[r1◦r2◦· · ·◦rn](d,e) → [r](d,e) considers

all combinations of domain elements and is part of the true formula ψO if

follows that v([r](d,e)) = true it follows from Lemma 5.3.1 that (d, e) ∈ rJn.

4. α = Disj(r, s)

126

CHAPTER 5. How Good is an Approximation?

Assume that for arbitrary elements (d, e) ∈ ∆Jn×∆Jn that (d, e) ∈ rJn. We

need to show (d, e) 6∈ sJn. By Lemma 5.3.1 v([r](d,e)) = true under I ∪ J .

Since the translated formula ψα = ∧
(d,e)∈∆Jn×∆Jn

[r](d,e) → ¬[s](d,e) is part of

the true formula ψO and hence v(¬[s](d,e)) = true and so v([s](d,e)) = 0 and

by Lemma 5.3.1 (d, e) 6∈ sJn

5. α = Symm(r)

Assume for arbitrary elements d, e ∈ ∆Jn that (d, e) ∈ rJn. We need this

show this assumption holds iff (d, e) ∈ (r−)Jn. The case where d = e holds

trivially. For the remaining cases by Lemma 5.3.1 v([r](d,e)) = true under

I ∪ J . Now translated formula ψα = ∧
(d,e)∈∆Jn×∆Jn

d6=e

[r](d,e) ↔ [r−](d,e) which

considers the translation under all other domain elements, is part of the

true formula ψO. So v([r](d,e))) = true iff v([r−](d,e)) = true and therefore

by Lemma 5.3.1 (d, e) ∈ rJn iff (d, e) ∈ (r−)Jn.

6. α = Asymm(r)

Assume for arbitrary elements (d, e) ∈ ∆Jn × ∆Jn we have (d, e) ∈ rJn.

We prove this assumption holds iff (d, e) ∈ ¬(r−)Jn. Distinguish two cases

to match those in the given translation:

ψα =
∧

(d,e)∈∆Jn×∆Jn

 d = e ¬[r](d,e)
d 6= e [r](d,e) ↔ ¬[r−](d,e)

(a) d = e

Now since the sub-formula ¬[r](d,e) is part of the true formula ψα. By

Lemma 5.3.1 v(¬[r](d,e)) = 1⇔ (d, e) ∈ ¬rJn. But then (d, e) 6∈ rJn in

contradiction to the original assumption.

(b) d 6= e

By Lemma 5.3.1 v([r](d,e)) = true under I ∪ J . Now since the sub-

formula [r](d,e) ↔ ¬[r−](d,e) is part of the true formula ψ it holds that

v([r](d,e)) = true iff v(¬[r−](d,e)) = true. Then by Lemma 5.3.1 it holds

127

CHAPTER 5. How Good is an Approximation?

that (d, e) ∈ ¬(r−)Jn and therefore (d, e) ∈ rJn iff (d, e) ∈ ¬(r−)Jn as

required.

7. α = Refl(r)

We show for an arbitrary element d ∈ ∆Jn we have (d, d) ∈ rJn. As ψα =∧
d∈∆Jn

[r](d,d) is part of the true formula ψO. It holds that v([r](d,d)) = true

for all d ∈ ∆Jn under I ∪ J . Therefore, by Lemma 5.3.1 it holds that

(d, d) ∈ rJn.

8. α = Irrefl(r)

We show for an arbitrary element d ∈ ∆Jn we have (d, d) 6∈ rJn. As ψα =∧
d∈∆Jn

¬[r](d,d) is part of the true formula ψO. It holds that v(¬[r](d,d)) =

true under I ∪ J for all d ∈ ∆Jn and so v([r](d,d)) = false. Therefore by

Lemma 5.3.1 it holds that (d, d) 6∈ rJn.

9. α = Trans(r)

First assume for some arbitrary domain elements d, e, e′ ∈ ∆Jn we have

both (d, e) ∈ rJn and (e, e′) ∈ rJn we show that we also have (d, e′) ∈ rJn

and thus satisfying the transitive relation. The case in which d = e or

e = e′ holds trivially. For the remaining cases by Lemma 5.3.1 it follows

that v([r](d,e)) = true and v([r](e,e′)) = true and so v([r](d,e) ∧ [r](e,e′)) = 1.

Now the subformula ψα = ∧
(d,e)∈∆Jn×∆Jn

(e,e′)∈∆Jn×∆Jn

d6=e,e 6=e′

[r](d,e) ∧ [r](e,e′) → [r](d,e′) which

considers the translation under all other domain elements, is part of the

true formula ψO. It follows that v([r](d,e′)) = true and so by Lemma 5.3.1

it follows that (d, e′) ∈ rJn.

Lemma 5.3.4. Proof of Claim 5.3.1. ψO is true under the assignment I ∪ J .

1. ψα = ∧
d∈∆Jn

[C]d → [D]d

For an arbitrary d ∈ ∆Jn assume v([C]d) = true. We need to show that

v([D]d) = true. Since v([C]d) = true it holds by Lemma 5.3.2 that d ∈

128

CHAPTER 5. How Good is an Approximation?

CJn. Now as ψα = C v D† and Jn |= C v D we have d ∈ DJn so by

Lemma 5.3.2 it follows that v([D])d) = true.

2.
∧

(d,e)∈∆Jn×∆Jn

[r](d,e) → [s](d,e)

Proof uses the same argument as the previous case but Lemma 5.3.1 ap-

plies instead of Lemma 5.3.2.

3.
∧

(d,e)∈∆Jn×∆Jn

[r1 ◦ r2 ◦ · · · ◦ rn](d,e) → [r](d,e)

Assume the formula v([r1 ◦ r2 ◦ · · · ◦ rn](d,e)) = true for an arbitrary ele-

ments (d, e) ∈ ∆Jn ×∆Jn. We show v([r](d,e)) = true. Under the original

assumption, by Lemma 5.3.1 it follows that (d, e) ∈ (r1 ◦ r2 ◦ · · · ◦ rn)Jn.

Now as ψα = (r1 ◦ r2 ◦ · · · ◦ rn v r)† and Jn |= (r1 ◦ r2 ◦ · · · ◦ rn v r) it

follows that (d, e) ∈ rJn and therefore, by Lemma 5.3.1 v([r](d,e)) = true.

4. ψα = ∧
(d,e)∈∆Jn×∆Jn

[r](d,e) → ¬[s](d,e)

For an arbitrary (d, e) ∈ ∆Jn ×∆Jn assume v([r](d,e)) = true. We need to

show that v(¬[s](d,e)) = true. By Lemma 5.3.1 we have (d, e) ∈ rJn. Now

since ψα = Disj(r, s)† and Jn |= Disj(r, s) it follows that (d, e) 6∈ sJn and so

by Lemma 5.3.1 v([s](d,e)) = false and therefore v(¬[s](d,e)) = true.

5. ψα = ∧
(d,e)∈∆Jn×∆Jn

d6=e

[r](d,e) ↔ [r−](d,e)

For an arbitrary d, e ∈ ∆Jn assume v([r](d,e)) = true we show that this

holds iff v([r−](d,e)) = true. The case where d = e holds trivially as [r](d,e) =

[r−](d,e). For the remaining cases by Lemma 5.3.1 we have (d, e) ∈ rJn.

Now since ψα = Symm(r)† and Jn |= Symm(r) it follows that (d, e) ∈ rJn

iff (d, e) ∈ (r−)Jn. Then by Lemma 5.3.1 v([r](d,e)) = true iff v([r−](d,e)) =

true as required.

6. ψα = ∧
(d,e)∈∆Jn×∆Jn

 d = e ¬[r](d,e)
d 6= e [r](d,e) ↔ ¬[r−](d,e)

For arbitrary elements d, e ∈ ∆Jn. Distinguish two cases to match the

given translation:

129

CHAPTER 5. How Good is an Approximation?

• d = e

Since ψα = Asymm(r)† and Jn |= Asymm(r) we must have (d, e) 6∈

rJn, and then by Lemma 5.3.1 it holds that v(¬[r](d,e)) = true

• d 6= e

Assume that v([r](d,e)) = true. We have to show that v([r])(d,e)) =

true. Since v([r](d,e)) = true, by Lemma 5.3.1 we have (d, e) ∈ rJn,

and since α = Asymm(r)† and Jn |= Asymm(r) it holds that (d, e) ∈

rJn iff (d, e) ∈ ¬(r−)Jn then by Lemma 5.3.1 v([r](d,e)) = true iff

v([¬r−](d,e)) = true as required.

7. ψα = ∧
d∈∆Jn

[r](d,d)

For an arbitrary d ∈ ∆Jn we have to show that v([r](d,d)) = true. As

α = Refl(r)† and Jn |= Refl(r). It follows that for all d ∈ ∆Jn we have

(d, d) ∈ rJn and then, by Lemma 5.3.1 v([r](d,d)) = true as required.

8. ψα = ∧
d∈∆Jn

¬[r](d,d)

For an arbitrary d ∈ ∆Jn we need to show that v(¬[r](d,d)) = true. As

ψα = Irrefl(r)† and Jn |= Irrefl(r). It follows that for all d ∈ ∆Jn we have

(d, d) 6∈ rJn and then, by Lemma 5.3.1 v([r](d,d)) = false and therefore

v(¬[r](d,d)) = true as required.

9. ψα = ∧
(d,e)∈∆Jn×∆Jn

(e,e′)∈∆Jn×∆Jn

d6=e,e 6=e′

[r](d,e) ∧ [r](e,e′) → [r](d,e′)

First assume for arbitrary domain elements d, e, e′ ∈ ∆Jn it holds that

v([r](d,e)) = true and v([r](e,e′)) = true. We need to show it also holds that

v([r](d,e′) = true. From the initial assumption it holds by Lemma 5.3.1

that (d, e) ∈ rJn and (e, e′) ∈ rJn Now ψα = Trans(r)† and Jn |= Trans(r) it

holds that (d, e′) ∈ rJn. Therefore, by Lemma 5.3.1 v([r](d,e′)) as required.

Theorem 5.3.2. Let O be a SRIQ ontology, Σ as signature, and n a positive

integer. Then it is in Πp
2 to decide if O ≡nΣ ∅.

130

CHAPTER 5. How Good is an Approximation?

Proof. The proof is an immediate consequence of Theorem 5.3.1 which deciding

if O ≡nΣ ∅ is reduced the satisfiability of a ∀∃-QBF formula, a problem which is

well known to be in Πp
2 [Bie+09].

This result also gives a proof of the Πp
2 upper bound for deciding Σ-

inseparability the empty ontology for SHIQ ontologies and concept signatures.

Lemma 5.3.5. For a SHIQ ontology O and a concept signature Σ, it is in Πp
2 to

decide whether O ≡Σ ∅.

Proof. Since SHIQ is preserved under disjoint unions and Σ is a concept sig-

nature, it follows that O ≡Σ ∅ iff O ≡1
Σ ∅ by Lemma 3.2.1 (One-point criterion)

and since SHIQ is a sub-language of SRIQ deciding if O ≡1
Σ ∅ can be reduced

to the satisfiability of a ∀∃-QBF formula by Theorem 5.3.1 so is in Πp
2.

5.3.1 Nominals

Although our reduction of exactly n-inseparability does not permit nominals, in

theory they can be supported. This is only possible if unique name assumption

(UNA) is not made — a standard assumption for most Description Logics. The

UNA is the assumption that for an interpretation I of an ontology O the inter-

pretation function maps different individual names to different elements of the

domain (i.e, aI 6= bI for all a, b ∈ sig(O) such that a 6= b) [HT02].

In the context of deciding n-inseparability, it may not be possible to interpret

an ontology under an n-element interpretation without violating the UNA. For

example, if an ontologyO contains the axiom A v {a}u{b} and we consider the

case of 1-inseparability, we clearly cannot interpret O under an interpretation

I with]∆I = 1 and still maintain the individuals aI and bI are mapped to

different domain elements. In the general case, if the UNA is made and O is an

ontology with nominals that uses more than n distinct individual names, it is not

131

CHAPTER 5. How Good is an Approximation?

possible to decide n-inseparability whilst still preserving the UNA, an arbitrary

n-element interpretation is not a valid interpretation of such an ontology.

Assuming the UNA is not made, there is a way of deciding n-inseparability

for ontologies containing nominals. First we would need to extend our no-

tion of signatures to include individual names e.g. sig(Liverpool_Student v

∃studiesAt.{liverpool}) = {Liverpool_Student, studiesAt, liverpool}. Then if we

want to decide if for a SROIQ ontology O if O ≡nΣ ∅ can extend the QBF

reduction as used in the SRIQ case.

Then we need to extend the translation of concepts (Figure 5.2) to include

nominals which is shown in Figure 5.5 we do this in order to evaluate the

possible ways ontologies containing nominals can be evaluated under some n-

element interpretation In. For every element d ∈ ∆I we introduce a fresh

propositional atom Pid for those individuals i ∈ Σ ∩ NI where v(Pid) = true

exactly when iJn = {d}, similarly a fresh and distinct variable Qid is used for

those individuals not in the signature.

[i]d = Pid for all i ∈ Σ ∩ NI

[i]d = Qid for all i ∈ (sig(O) \ Σ) ∩ NI

Figure 5.5: Translation of nominals to propositional atoms

In addition, we need to introduce a global constraint to ensure that we

can only interpret nominals in a valid way. A constraint for an individual i

can be constructed by interpreting i under the domain elements taken from

∆In = {d1, d2, . . . , dn} as follows:

const(i) = ([i]d1 ∨ [i]d2 ∨ · · · ∨ [i]dn) ∧
n−1∧
j=1

n∧
k=j+1

(¬[i]dj
∨ ¬[i]dk

)

The first half of the constraint ensures that a nominal is always assigned

to an element of ∆In, the second half ensures that an individual cannot be

132

CHAPTER 5. How Good is an Approximation?

interpreted as two distinct domain elements at the same time e.g. we can never

have both iIn = {d1} and iIn = {d2} in a given interpretation.

Then for a SROIQ ontology and signature Σ and positive integer n it can

be verified that O ≡nΣ ∅ iff the formula

ψO := ∀~p∃~q
∧

i∈Σ∩NI

const(i)→
∧

j∈(sig(O)\Σ)∩NI

const(j)
∧
α∈O

α†

is logically true.

The construction of ψO is very similar to the SRIQ case, the sequences

~p and ~q are the same as in the original reduction containing all atoms which

correspond to signature and non-signature symbols respectively (now including

individuals), and the axioms of O are translated by the original translation but

now including the translation of nominals from Figure 5.5. The additional parts

of ψO are simply to ensure the constraints for individuals hold as described, so

that the possible truth valuations in which ψO is interpreted always corresponds

to a valid n-element interpretation of O.

5.3.2 Extracting exactly n-depleting modules

As it is decidable to verify if O ≡nΣ∪sig(M) ∅ by Theorem 5.3.2, and that exactly

n-inseparability is both monotone and robust under replacements, the general

depleting Σ-module extraction algorithm (Figure 2.6) can be used to extract

the unique minimal exactly n-depleting Σ-module from a SRIQ ontology.

We can do some optimisations from the general algorithm by defining n-

separability causing axioms which are analogous to separability causing axioms

which we defined for the AMEX procedure, but defined instead over exactly

n-inseparability.

Definition 5.3.1 (Exactly n-separability causing axiom). LetM⊆ O be TBoxes

then an axiom α ∈ O \M is called exactly n-separability causing if for a subset

W ⊆ O \M:

133

CHAPTER 5. How Good is an Approximation?

α ∈ W ; (W \ {α}) ≡nΣ∪sig(M) ∅; W 6≡nΣ∪sig(M) ∅.

Then one can show, similarly to how the rule based AMEX produces the

same module as the iterative extraction algorithm, that the algorithm in Fig-

ure 5.6 computes the same unique minimal module as the general algorithm.

Input: SRIQ Ontology O, Signature Σ, positive integer n
Initialise: M := ∅
Output: Minimal exactly n-depleting moduleM of O

Apply rule Rn-sep exhaustively.

(Rn-sep) If O \M 6≡nΣ∪sig(M) ∅, then locate the first exactly n-separability
causing axiom A ./ C ∈ O \M and setM :=M∪ {A ./ C}

Figure 5.6: Exactly n-depleting module extraction algorithm

This allows the optimisation of locating exactly n-separability causing ax-

ioms using a binary search procedure, similar to the one used for locating separ-

ability causing axioms in AMEX (Figure 3.4). This improves on the general al-

gorithm which requires |O\M| exactly n-inseparability checks to locate a single

exactly n-inseparability causing axiom, in comparison to just log2(|O\M|) if us-

ing the binary search procedure.

Now we can compute the lower approximation, and extract an n-depleting

module from an arbitrary SRIQ ontology using the algorithm in Figure 5.6 by

taking the union of all exactly n-depleting modules up from exactly 1-depleting

to exactly n-depleting which is then the minimal n-depleting module as a result

of Lemma 5.2.4.

5.4. Conclusion

In this chapter we have introduced a methodology which allows for the first

time to estimate the success of an approximation of the minimal depleting Σ-

module. This was achieved by treating each sound approximation procedure,

those that are guaranteed to extract a depleting Σ-module, as an upper approx-

134

CHAPTER 5. How Good is an Approximation?

imation. We then introduced a lower approximation by means of n-depleting

modules, which are not necessarily depleting Σ-modules themselves but are

always contained in the minimal depleting Σ-module. The difference in size

between the upper and lower approximations then giving an estimation into

the success of an upper approximation.

We saw that n-depleting modules are depleting modules defined over the

n-inseparability relation in which inseparability is decided over interpretations

whose domain contains at most n domain elements. We went on to prove that

minimal n-depleting modules were the union of all minimal exactly n-depleting

modules from exactly 1-depleting up to exactly n-depleting where exactly n-

inseparability is inseparability decided over interpretations that have exactly n

domain elements.

We then proved that exactly n-inseparability was a monotone relation that

is robust under replacements and that deciding exactly n-inseparability from

empty ontology for a SRIQ ontology was decidable (in Πp
2) by a reduction to

∀∃ QBF. This meant we could use an optimisation of the general depleting mod-

ule extraction algorithm to compute the unique minimal exactly n-depleting

module and in turn the unique minimal n-depleting module.

In the next chapter we will be bringing the results from the previous chapters

together in an extensive experimental evaluation in which we evaluate relative

sizes of the STAR, AMEX and hybrid STAR-AMEX approximations and also the

success of these approximations by the computation of minimal n-depleting

modules.

135

CHAPTER 6

Experimental Evaluation

For approximations of minimal depleting Σ-modules in expressive logics only

locality-based modules such STAR have been systematically analysed in great

detail, both in terms of module sizes and performance [Ves+12; Ves+13]. What

is not currently known is how large and significant the difference between

STAR-modules and the minimal modules they approximate, and how far one

can improve on the approximations produced by the STAR extraction proced-

ure.

In this chapter we present an empirical investigation into the approxima-

tion of minimal depleting Σ-modules in expressive logics. Particularly we are

interested in seeing how far we can improve on the STAR approximation with

both AMEX for terminologies up to acyclic ALCQI in expressivity, and with the

hybrid STAR-AMEX extraction procedure for general SROIQ ontologies.

This investigation involves comparing the sizes of the upper approximations

produced by the STAR, AMEX and hybrid STAR-AMEX procedures across a cor-

pus of real-world ontologies to evaluate if there is any significant difference

in the size of modules extracted for the same signature. Alongside, we also

consider the computation n-depleting modules (up to 2-depleting), for use as a

lower approximation, in order to evaluate how successful each upper approx-

imation is — exactly how well they approximate their minimal modules.

137

CHAPTER 6. Experimental Evaluation

6.1. Research questions

To investigate how we have improved the approximation of minimal mod-

ules, we look to the research questions that we proposed in Section 1.3 and aim

to answer these questions over the course of the experimental investigation

that follows. As we have introduced several different types of approximations,

we restate specific versions of each research question so that we can consider

answering research questions about different notations of approximation inde-

pendently.

Difference in module size

As the STAR, AMEX, and hybrid STAR-AMEX procedures each produce an ap-

proximation which contains the unique minimal depleting Σ-module, the com-

parative size of modules extracted for the same signature is the main metric in

evaluating different approximations.

The AMEX procedure alone has limited applications, restricted by the onto-

logies for which it is an extraction procedure which motivated the development

of the hybrid procedure, an extraction procedure for very expressive ontolo-

gies which is at least as small as a corresponding STAR-module. This opens

the question on how well they can compete with the already successful STAR

procedure over different types of ontology, and our specific research questions

over the size of modules can be formulated as follows:

• How often and how significant is the difference in size between STAR-

modules and the corresponding AMEX approximations?

• How often and significant is the difference in size between STAR-modules

and the corresponding hybrid STAR-AMEX approximations?

138

CHAPTER 6. Experimental Evaluation

Minimality

The size of extracted modules gives a hint to the success of an approximation

— how well they approximate the minimal depleting Σ-module. An approx-

imation which is comparatively smaller than another must be closer in size to

the ideal minimal, but may still be significantly larger. With the introduction

of n-depleting modules in the previous chapter we have a way of estimating

the difference in size between an approximation and the minimal module it

approximates, leading to the specific research question:

• How close in size are the STAR, AMEX and hybrid STAR-AMEX approx-

imations to the minimal modules they approximate?

Performance

The STAR extraction procedure is achieved by purely syntactic means and

is known to be incredibly efficient at extracting modules from a wide range

of ontologies [Ves+13]. In addition to how well the AMEX and the hybrid

STAR-AMEX procedures compete with STAR over module in size, we also

want to know how well they compete in terms of performance, an extraction

procedure is most useful if it does not come with significant overhead.

In addition, we want to explore how feasible it is to extract an n-depleting

module to compute the lower approximation. The specific research questions

surrounding performance:

• How long does it take on average, and in the worst case, to extract an

AMEX-module, hybrid STAR-AMEX-module compared to a STAR-module

• How long does it take on average, and in the worst case, to extract a

n-depleting module?

139

CHAPTER 6. Experimental Evaluation

6.2. Experimental Setting

We outline here the implementation details of our extraction algorithms

along with our ontology and signature selection over which our research ques-

tions will be evaluated. We start with with the details of our algorithm imple-

mentations which we used to perform the evaluation.

Extraction procedures

We implemented the AMEX (Figure 3.5) procedure in the Java programming

language aided by the OWL-API library for ontology manipulation [HB11]. R1

of AMEX for detecting and removing axiom dependency chains is implemen-

ted in pure Java, and the application of R2 for deciding Σ-inseparability and

subsequently locating separability causing axioms is achieved by the reduction

to QBF using off-the-shelf QBF solvers, the specifics of which we will come

on to in a moment. For comparative purposes we use the implementation of

the STAR extraction algorithm as implemented in the OWL-API library ver-

sion 3.2.4.1806. The hybrid STAR-AMEX extraction procedure (Figure 4.2)

was then easily implemented, also in Java, by combining the AMEX and STAR

procedures together.

Extracting a minimal n-depleting Σ module was achieved by taking the

union of minimal exactly n-depleting Σ-modules from 1-depleting up to n-

depleting which is the minimal n-depleting module by Lemma 5.2.4. Before

we extracted an n-depleting module from an ontology we first performed a pre-

processing step by extracting a hybrid STAR-AMEX module. This optimisation is

possible as each hybrid STAR-AMEX-module is a depleting Σ-module which by

Theorem 5.1.1 the minimal n-depleting Σ-module is always contained. For the

extraction of minimal exactly n-depleting Σ-modules (Figure 5.6) we have also

produced an implementation which is assisted by the OWL-API. However, the

majority of the workload involves deciding exactly n-inseparability and locating

exactly n-separability causing axioms, so for this we have also used off-the-shelf

140

CHAPTER 6. Experimental Evaluation

QBF solvers to perform the reduction we discussed in the previous chapter.

Solving QBF instances

To solve particular instances of QBF reductions we used 3 different QBF solvers:

quantor [EB05] , sKizzo [Ben04], and depQBF [LB10b]. Each of these solvers re-

quired the input formula to be converted into CNF (Conjunctive Normal Form)

which can cause exponential growth of the original formula [BL99b]. To com-

bat this, for our reductions we used the translation described in [Tse68] which

allows, by the introduction of fresh propositional variables, a linear encoding of

an arbitrary propositional formula into conjunctive normal form whilst main-

taining equisatisfiablity.

Some preliminary experiments in which we tested solving QBF reductions

for deciding inseparability showed that performance of specific QBF solvers

varied considerably depending on the input ontologies and signatures we con-

sidered, and as a result there was no one solver which performed optimally

over all QBF instances we tested. For this reason, to do the actual solving we

fed each QBF instance generated by one of our algorithms to each QBF solver

in turn with a timeout of 10 seconds. If one QBF solver could not solve the

problem in the given 10 seconds we simply moved onto the next one, and then

if no solver could solve the problem without timing out we simply went back to

first solver and waited until a result was returned. The order each QBF solver

was considered was the same as when we listed them above: quantor, sKizzo,

then depQBF.

Hardware

For all our experiments were carried out on PC with an Intel Intel i7-2600 CPU

@ 3.40GHz with 4GB of heap space allocated for use by our Java programs.

141

CHAPTER 6. Experimental Evaluation

6.2.1 Ontology selection

For our experiments to be meaningful it is important to use ontologies which

are desirable for modularisation and reuse. For this reason we have selected

our ontologies from well known and publicly accessible corpora from across

the web. Each ontology was obtained in the form of a source .owl, a file which

specifies each ontology according to the OWL standard, which means it may

contain many non-logical constructs such as annotations and labels which do

convey any semantic meaning. For our purposes we only consider the logical

axioms of the each ontology — those which correspond to description logic

axioms which we described in Section 2.1.

NCI

We put particular focus on the National Cancer Institute (NCI) ontology 1 due to

its importance, size, expressivity, and the fact that it is high-quality ontology, all

of which make it ideal for applications surrounding module extraction. The NCI

ontology itself is actively maintained by a team of ontology engineers and do-

main experts, covering the domain of cancer and general health care research,

a new version is released at a rate of once a month [Gol+11].

For our experimental evaluation we use the NCI Thesaurus version 08.09d

which is a ALCH ontology containing 98,752 axioms. The majority of the

axioms which make up the ontology form an acyclic terminology with RCIs,

87,934 axioms are concept inclusions of the form A v C and 10,366 are equi-

valences of the form A ≡ C. Most of these axioms (all but 4588) are EL

inclusions, the non-EL axioms contain a total of 7806 occurrences of the uni-

versal restriction constructor (∀). The remaining 452 axioms are a combination

of role inclusions, of the form r v s, and domain and range restrictions, non-

terminological axioms of the form > v ∀r.C or ∃r.> v C. The signature of this

version of NCI contains 68,862 concept names and 88 role names.

1https://ncit.nci.nih.gov/

142

CHAPTER 6. Experimental Evaluation

Experimental Corpus

In addition to NCI, in order to give a more comprehensive experimental evalu-

ation, we also consider a large corpus of ontologies which varies considerably

in both size and expressivity. To build this corpus we began by taking all on-

tologies from the Tones 2 and the NCBO Bioportal 3 ontology repositories, both

of which include ontologies covering a variety of domains, the latter focussing

mainly on the biomedical sector. With this initial corpus of ontologies in place,

we removed any ontologies which were unable to parse with the OWL-API. In

addition, under consideration that the AMEX and hybrid STAR-AMEX proced-

ures as well as the lower approximation all use reductions to QBF (with a Πp
2

worst case) which may take a considerable amount of time compute, we also

removed any ontology that contained over 10, 000 axioms, which enables us to

evaluate a broader range of ontologies over a reasonable time frame.

We next removed any ontology where over 95% of axioms corresponded to

an acyclic ELI terminology which consists of only of concept inclusions. This

is motivated by Proposition 38 from [Kon+13] where it is shown that if T

is an acyclic ELI terminology containing no concept equivalences, both the

STAR-module and module produced by the original acyclic ALCI extraction al-

gorithm (for which AMEX produces an identical module) coincide with the min-

imal Σ-module of T , for every signature Σ. For this reason comparing the sizes

of modules produced by the STAR, AMEX or Hybrid STAR-AMEX procedures is

unlikely to produce any significant differences in module size. Moreover, as the

modules produced by these procedures are likely to coincide with the minimal

depleting Σ-modules, computing a lower approximation for these ontologies is

unlikely to reveal any meaningful results.

After filtering ontologies from the original corpus as described we obtain 172

ontologies, which notably includes several ontologies which have previously

been studied in work surrounding modularity [Ves+13; Ves+10; Gra+08]: uni-

2http://owl.cs.manchester.ac.uk/repository
3https://bioportal.bioontology.org/

143

CHAPTER 6. Experimental Evaluation

versity, People, miniTambis, Tambis and Galen. One final step was performed, as

we are particularly interested in evaluating the success of our upper approxim-

ations by computing a lower approximation — which only supports ontologies

up to SRIQ in expressivity — we modified 36 of the ontologies to remove any

axioms containing nominals.

The 172 ontologies in our experimental corpus represent a diverse range

over both size and expressivity. The size of our ontologies, measured in total

number of axioms each ontology contains, ranges from 50 to 9645 axioms. To

give an idea of the distribution of expressivity over all ontologies we can divide

them into bins based on the family of description logics each ontology belongs.

This is similar to the approach described in [WPH06; Ves13]. A natural way

to do this is to consider which of the three OWL profiles (as described in Sec-

tion 2.1) each ontology fits into. As a natural starting point we have three bins:

EL which forms the basis for OWL EL, SHIF which forms the basis of OWL

QL, and finally SROIQ which forms the basis of OWL DL.

Further refining this idea, we use a SRIQ bin instead of a SROIQ bin, as

all axioms containing nominals have already been removed from our ontologies,

so SRIQ is the most expressive logic in which any ontology can be formulated.

Additionally, as both SHIF and SRIQ have a large range of sub-languages

we introduce two additional bins S and SHIN to give a greater idea of the

granularity of expressiveness of our selected ontologies. This gives us 5 bins

of increasing expressivity, from EL to SRIQ. Observe that the bins are strictly

increasing in expressivity — the logics to which the bins correspond form a total

order EL (S (SHIF (SHIN (SRIQ. The result from dividing the 173

ontologies into the described bins can be seen in Figure 6.1.

Bin EL S SHIF SHIN SRIQ
Count 9 17 75 35 36

Figure 6.1: Expressivity distribution for experimental corpus

We observe that to produce the corpus, we are left with only a few very in-

144

CHAPTER 6. Experimental Evaluation

expressive ontologies with the majority (146 out of 173) being at least SHIF

in expressivity. We also observe that there is a fairly even split of ontologies

which contain terminological cycles. We evaluated this using the heuristic from

Section 4.3.2, which is used for detecting cycles in the hybrid STAR-AMEX ex-

traction procedure, and found 92 of the ontologies in the corpus contain ter-

minological cycles and 81 did not.

In addition to this summary we also provide a more comprehensive break-

down of the expressivity and size for each ontology of the experimental corpus

which be found in Appendix A. In the presentation of the results we use ab-

breviations for ontology names to provide a compact representation. The full

ontology name to which each abbreviation corresponds can be also found in

this appendix.

6.2.2 Signature selection

There is no well defined way of selecting signatures for modularisation, neither

is it feasible to consider all possible signatures of an ontology, for which there

are exponentially many. Furthermore, the number of possible depleting Σ-

modules of an ontology is, in general, exponential in the size of the onto-

logy, and often different signatures can lead to the same module being ex-

tracted, which makes it hard to even extract different modules from an onto-

logy [Ves+10]. With this in mind we consider two different types of signature:

Axiom Signatures – All depleting Σ-modules of an ontology are known to be

composed from a set of disjoint modules which cannot be further decom-

posed themselves, so called “genuine modules” [Ves+10]. For an ontology

O there are linearly many genuine modules in the size of O, which corres-

pond to the depleting Σ-module extracted using the signature sig(α) for

each axiom α ∈ O.

Random signatures – The signatures of all of our experimental ontologies typ-

ically contain very few role names in comparison to the amount of concept

145

CHAPTER 6. Experimental Evaluation

names, so taking a signature size n at random from the signature of an

ontology is not likely to represent many role names. To combat this, we

consider a random concept signature plus a percentage of role names e.g

a random signature size 200 of concepts from sig(O) ∩ NC and 50% of the

role names chosen at random from sig(O) ∩ NR.

Only linearly many axioms signatures makes computing all genuine mod-

ules for an ontology feasible in most cases. An axiom signature is typically

small in size compared to the signature of the whole ontology, but extracting

modules using them gives a lot of insight to the composition of all modules of

an ontology. We also note axiom signatures have been extensively considered

when comparing semantic and syntactic locality [Ves+13].

6.3. Experiments on NCI

In this chapter we perform experiments on the NCI ontology version 08.09d

which we previously described. As this is the only version we are considering

we refer to it as simply NCI.

6.3.1 Fragments of NCI

As AMEX is an extraction procedure for acyclic terminologies with RCIs up to

ALCQI in expressivity, it cannot be used to extract modules from NCI ontology.

However, as previously mentioned the majority of NCI (all but 452 axioms)

corresponds to an acyclic terminology with RCIs. So for the evaluation the

AMEX extraction procedure we consider three fragments of the NCI ontology

all of which are acyclic ALC terminologies (with RCIs) which makes them all

suitable for use with AMEX:

• NCI?, consisting of all 87,934 concept inclusions, and all 10,366 equival-

ences — 98,300 axioms in total

• NCI?(v), consisting of all 87,934 concept inclusions

146

CHAPTER 6. Experimental Evaluation

• NCI?(≡), consisting of all 10,366 equivalences

AMEX and STAR: Random Signatures

Our first experiment concerns extracting modules from each NCI fragment using

random signatures. For each fragment we considered random signatures of

sizes: 100, 250, 500, 750 and 1000 concepts, and role percentages 0%, 25%,

50%, 75% and 100% and took 1000 random signatures for each concept/role

combination — a total of 25,000 signatures considered for each ontology —

and extracted both an AMEX and a STAR module for each of these signatures.

The table in Figure 6.3 summarises the result of these experiments, show-

ing the average size of the modules produced by the AMEX and STAR proced-

ures for each separate concept/role percentage combination, and an additional

column showing the percentage change (either increase or decrease) between

the average sizes of the AMEX modules in comparison to the corresponding

STAR modules. It can be seen that:

• in NCI?(≡), AMEX-modules are significantly smaller than STAR-modules

(between 73% and 82% smaller);

• in NCI?(v), AMEX-modules are, on average, slightly larger than STAR

modules (between 3% and 21% larger);

• in NCI?, AMEX-modules are still significantly smaller than STAR-modules,

but less so than in NCI?(≡) (between 51% and 72% smaller).

Moreover, for NCI? and NCI?(≡) where AMEX-modules are considerably

smaller, the difference in terms of relative module sizes is much more signi-

ficant. Across all signatures we found for both NCI? and NCI?(≡) the AMEX-

module can be up to 5,595 and 4,624 axioms smaller than the corresponding

STAR modules respectively, whereas for NCI?(v) the AMEX-modules are only

up to 321 axioms larger.

147

CHAPTER 6. Experimental Evaluation

The huge difference between modules for NCI?(v) and NCI?(≡) can be ex-

plained if we recall that for acyclic ELI terminologies consisting of only concept

inclusions, that STAR and AMEX modules are known to coincide [Kon+13].

This is not the case for acyclic ALCQI terminologies with RCIs (there can be

axioms in STAR-modules that are not AMEX-modules and vice versa), but since

the vast majority of axioms in NCI?(v) are EL concept inclusions one should

not expect any significant difference between the two types of modules. So it is

exactly those acyclic terminologies that contain many concept equalities, such

as both NCI?(≡) and NCI?, where a difference in module sizes can be observed.

The reason why a difference is realised in the presence of concept equi-

valences comes down to how the two approximations handle these axioms, the

nature of the STAR approximation means even simple concept equivalences can

be needlessly included in the extracted modules: take the very simple acyclic

EL terminology T = {A ≡ B} and the signature Σ = {B} clearly T ≡Σ ∅,

for every interpretation I there always exists a J model of T with I|Σ = J |Σ
achieved by taking AJ = BJ = BI . Yet, the axiom A ≡ B is neither >-local nor

⊥-local, for every interpretation of BI one cannot find a model J of T where

BJ = ∅ or BJ = ∆J whilst still maintaining that I|Σ = J |Σ, so the axiom

A ≡ B would end up in the STAR-module extracted from O for Σ. If we then

consider how the AMEX procedure behaves in this case: Starting with M = ∅

we find T \ M contains no direct axiom Σ ∪ sig(M)-dependencies and so we

can check with R2 of AMEX that T \M ≡Σ∪sig(M) ∅, so the axiom A ≡ B isn’t

considered as belong to the AMEX-module. It is differences of this nature which

can lead to large differences in the sizes of modules between the two extraction

procedures. As the STAR procedure adds such equivalences to its moduleM it

must consider inseparability over a larger signature — as depleting Σ-modules

are decided over Σ ∪ sig(M)— which in turn pulls in more axioms, further

increasing the size of the module.

148

CHAPTER 6. Experimental Evaluation

AMEX and STAR: Axiom signatures

We next consider comparing the STAR and AMEX procedures by extracting

modules for axiom signatures from each of the NCI fragments. This involved

extracting both a STAR and AMEX-module for signatures based on 20,000 ran-

domly selected axioms from both NCI? and NCI?(v) and each of 10,366 axioms

from NCI?(≡). Figure 6.2 summarises the results of this experiment. The figure

shows the frequency of AMEX and STAR-modules of a given size within NCI?

and NCI?(≡) for the cases when the modules differ — which is in 13% and 68%

of cases, respectively. For NCI?(≡) in the cases in which we find a difference the

STAR module is always larger than the corresponding AMEX module with an

average difference of 865.6 axioms. For NCI? in a few (87 cases) the STAR mod-

ules are smaller than the corresponding AMEX ones by an average difference of

6.9 axioms whereas in the rest of the cases the STAR modules are much larger

with an average difference of 1427 axioms. Over both ontologies we generally

find AMEX-modules are consistently small whereas the size of STAR-modules

vary considerably. We do not show the results for NCI?(v) since, as we ex-

plained above for the experiments with random signatures, there is essentially

no difference between the AMEX and STAR-modules.

149

CHAPTER 6. Experimental Evaluation

0−
20

0

20
0−

40
0

40
0−

60
0

60
0−

80
0

80
0−

10
00

10
00

−
12

00

12
00

−
14

00

14
00

−
16

00

16
00

−
18

00

18
00

−
20

00

20
00

−
22

00

22
00

−
24

00

24
00

−
26

00

26
00

−
28

00

28
00

−
30

00

30
00

−
32

00

32
00

−
34

00

F
re

qu
en

cy

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400

Module size (#Axioms)

STAR
AMEX

(a) NCI?

0−
10

0

10
0−

20
0

20
0−

30
0

30
0−

40
0

40
0−

50
0

50
0−

60
0

60
0−

70
0

70
0−

80
0

80
0−

90
0

90
0−

10
00

10
00

−
11

00

11
00

−
12

00

12
00

−
13

00

13
00

−
14

00

14
00

−
15

00

15
00

−
16

00

16
00

−
17

00

F
re

qu
en

cy

0

1000

2000

3000

4000

5000

6000

7000

Module size (#Axioms)

STAR
AMEX

(b) NCI?(≡)

Figure 6.2: Frequency of genuine module sizes for NCI? and NCI?(≡)

150

C
H

A
P

T
E

R
6

.
Experim

entalEvaluation

Role% 0% 25% 50% 75% 100%

|Σ| St
ar

A
M

EX

C
ha

ng
e

%

St
ar

A
M

EX

C
ha

ng
e

%

St
ar

A
M

EX

C
ha

ng
e

%

St
ar

A
M

EX

C
ha

ng
e

%

St
ar

A
M

EX

C
ha

ng
e

%

NCI?
100 3835.7 676.6 -82% 3848.6 943.7 -75% 3891.7 984.0 -75% 3929.4 1014.7 -74% 3929.8 1016.5 -74%
250 5310.2 1725.9 -67% 5365.6 1795.2 -67% 5463.1 1871.5 -66% 5506.3 1919.3 -65% 5505.4 1918.0 -65%
500 6985.9 2735.9 -61% 7109.6 2844.9 -60% 7165.5 2930.3 -59% 7252.8 3002.1 -59% 7245.9 2990.1 -59%
750 8223.3 3572.7 -57% 8355.2 3698.8 -56% 8464.4 3806.1 -55% 8538.5 3878.7 -55% 8526.1 3872.0 -55%
1000 9276.7 4333.6 -53% 9397.2 4458.4 -53% 9492.8 4573.9 -52% 9564.9 4627.1 -52% 9565.3 4642.7 -51%

NCI? (v)
100 55.5 65.0 +17% 232.8 281.9 +21% 286.1 318.8 +11% 312.6 333.7 +7% 339.8 351.7 +3%
250 328.3 390.8 +19% 559.6 657.4 +17% 651.1 718.6 +10% 712.9 759.1 +6% 765.3 796.5 +4%
500 852.9 1007.3 +18% 1046.4 1190.4 +14% 1193.8 1301.8 +9% 1278.5 1355.1 +6% 1378.3 1436.0 +4%
750 1326.0 1541.3 +16% 1517.7 1692.2 +12% 1675.4 1808.4 +8% 1802.6 1905.3 +6% 1921.1 1993.6 +4%
1000 1786.3 2039.7 +14% 1973.8 2174.0 +10% 2157.3 2314.2 +7% 2299.0 2416.3 +5% 2440.8 2527.3 +4%

NCI? (≡)
100 2784.3 316.3 -89% 2793.0 319.7 -89% 2785.5 318.5 -89% 2770.3 318.6 -88% 2779.0 318.4 -89%
250 3982.2 622.7 -84% 3988.5 626.2 -84% 3984.8 624.0 -84% 3989.9 624.6 -84% 3982.6 625.9 -84%
500 4976.0 1001.2 -80% 4988.1 1003.8 -80% 4984.7 1002.1 -80% 4983.2 1004.1 -80% 4988.7 1004.0 -80%
750 5529.9 1310.0 -76% 5540.6 1315.3 -76% 5533.7 1309.2 -76% 5532.0 1310.8 -76% 5531.0 1311.7 -76%
1000 5899.9 1577.4 -73% 5897.4 1576.9 -73% 5891.8 1576.7 -73% 5894.1 1574.6 -73% 5900.4 1578.1 -73%

Figure 6.3: Comparing AMEX and STAR across NCI fragments

151

CHAPTER 6. Experimental Evaluation

Hybrid modules and minimality

We also evaluated the sizes of modules produced by the hybrid STAR-AMEX

extraction procedure, which — as both AMEX and STAR are extraction proced-

ures for each of the NCI fragments — produces a module no larger than the

one extracted by either AMEX or STAR independently. This may help improve

on the particular cases where STAR is slightly smaller than AMEX. So in a sim-

ilar experiment we considered random signatures of 100 to 1000 concepts, and

role percentages of 0%, 50% and 100%, and for each of the NCI fragments we

extracted a STAR, AMEX and hybrid STAR-AMEX-module over 200 signatures

for each concept/role percentage combination. In addition, we also were inter-

ested to know how close each of our approximations came in size to the minimal

depleting Σ-module, so for every signature we considered we also extracted the

minimal 1-depleting module.

The table in Figure 6.4 shows a summary of the results of these experiments,

showing the average sizes of each of the 3 upper approximations and the lower

approximation over each of the NCI fragments and for each combination of

different signatures sizes. In addition in each case we give the number of signa-

tures (out of 200) in which there was a difference between the hybrid module

and the minimal 1-depleting module. It can be seen that:

• in NCI? and NCI?(v) the hybrid module almost always coincides with the

minimal 1-depleting module. Thus the hybrid module almost always co-

incides with the minimal depleting module.

• in NCI?(≡), the hybrid module coincides with the minimal 1-depleting

module for approximately 50% of all signatures. Moreover, on average

the minimal 1-depleting module is less than 0.3% smaller than the hybrid

module.

• in all three ontologies, hybrid modules are only slightly smaller than

AMEX-modules.

152

CHAPTER 6. Experimental Evaluation

What we can take from this is that both AMEX and the hybrid STAR-AMEX

procedures produce a successful approximation for minimal depleting Σ-

modules over fragments of the NCI ontology, coinciding or coming very in size

to the ideal minimal module. When the hybrid module and 1-depleting module

do not coincide, we cannot say with certainty whether it is the hybrid module

which over-approximates the minimal module or the 1-depleting module which

under-approximates it (for acyclic ALC it is of course undecidable to tell if

a module coincide with the minimal depleting Σ-module). The only way to

establish this is to check “by hand”, and we did find a few examples where

the 1-depleting module was not a depleting module (Example 5.1.1 from the

previous chapter is based on such a module) but the task is currently too labour

intensive to establish a general pattern.

6.3.2 Full NCI

Unlike AMEX the hybrid STAR-AMEX procedure facilitates extraction from the

whole NCI ontology without splitting it into fragments. The experiments shown

in Figure 6.5 are based on 200 signatures, again over sizes 100 to 1000 concepts

and 0%, 50% and 100% percent of all role names and compare the average

size of modules extracted using STAR-extraction, hybrid extraction, and also

1-depleting module extraction.

The results are very similar to the results for NCI?. Hybrid modules are on

average significantly smaller than STAR modules and are often identical to the

minimal 1-depleting module (and so the minimal depleting module). In fact,

over this small sample of signatures, we found no hybrid module that does not

coincide with the corresponding minimal 1-depleting module.

153

C
H

A
P

T
E

R
6

.
Experim

entalEvaluation

Role% 0% 50% 100%

|Σ| St
ar

(S
)

A
M

EX
(A

)

H
yb

ri
d

(H
)

1-
de

p
(D

)

D
if

f/
20

0

St
ar

(S
)

A
M

EX
(A

)

H
yb

ri
d

(H
)

1-
de

p
(D

)

D
if

f/
20

0

St
ar

(S
)

A
M

EX
(A

)

H
yb

ri
d

(H
)

1-
de

p
(D

)

D
if

f/
20

0

NCI?
100 3834.21 722.21 710.65 671.68 10 3887.17 972.68 960.44 960.39 3 3915.18 1013.23 1000.79 1000.70 4
250 5310.96 1721.28 1705.71 1705.61 4 5452.52 1882.65 1870.87 1870.83 4 5539.39 1924.77 1912.95 1912.89 5
500 6977.33 2725.74 2700.00 2699.96 2 7186.09 2933.90 2919.23 2919.15 3 7237.22 2987.75 2977.62 2977.58 2
750 8235.36 3573.97 3542.57 3542.49 2 8437.07 3801.24 3786.05 3786.01 2 8579.98 3902.12 3892.36 3892.26 4
1000 9273.62 4341.25 4305.41 4305.38 1 9525.81 4570.55 4553.91 4553.81 4 9542.00 4621.42 4612.19 4606.46 3

NCI? (v)
100 58.74 69.53 58.74 58.74 0 291.91 326.68 291.91 291.89 2 345.01 357.58 345.01 344.89 5
250 330.79 386.45 330.79 330.78 1 652.09 716.64 652.09 652.09 0 775.00 808.03 775.00 775.00 0
500 852.14 1007.20 852.14 852.14 0 1173.34 1274.27 1173.34 1173.34 0 1387.67 1444.68 1387.67 1387.67 0
750 1352.47 1571.46 1352.47 1352.47 0 1681.12 1816.79 1681.12 1681.12 0 1935.47 2009.62 1935.47 1935.47 0
1000 1788.02 2046.62 1788.02 1788.02 0 2152.83 2315.19 2152.83 2152.83 0 2434.06 2519.63 2434.06 2434.06 0

NCI? (≡)
100 2760.96 310.25 310.25 309.21 122 2759.11 319.08 319.11 318.23 114 2782.54 318.79 318.79 317.73 130
250 3989.74 622.65 622.63 621.89 110 4000.93 623.38 623.25 622.50 104 3973.78 624.51 624.23 623.47 102
500 4994.77 1003.76 1003.75 1002.95 108 4983.10 1002.14 1002.04 1001.32 101 4986.77 999.87 999.87 999.08 101
750 5539.78 1310.33 1310.31 1309.38 124 5531.60 1313.51 1311.54 1310.67 90 5525.28 1307.71 1307.71 1306.85 106
1000 5886.91 1573.06 1573.14 1572.11 122 5901.34 1577.34 1572.14 1571.10 102 5903.37 1576.95 1571.18 1570.08 103

Figure 6.4: Comparing upper and lower approximations across NCI fragments

154

CHAPTER 6. Experimental Evaluation

Role% 0% 50% 100%

|Σ| St
ar

(S
)

H
yb

ri
d

(H
)

1-
de

pl
(D

)

D
if

f/
20

0

St
ar

(S
)

H
yb

ri
d

(H
)

1-
de

pl
(D

)

D
if

f/
20

0

St
ar

(S
)

H
yb

ri
d

(H
)

1-
de

pl
(D

)

D
if

f/
20

0

100 5274.7 1905.8 1905.8 0 5409.9 2010.5 2010.5 0 5452.8 2079.8 2079.8 0
250 7306.6 3269.6 3269.6 0 7329.9 3329.1 3329.1 0 7360.4 3365.4 3365.4 0
500 9477.8 4833.9 4833.9 0 9575.1 4880.0 4880.0 0 9572.7 4920.8 4920.8 0
750 11044.9 6050.5 6050.5 0 11132.7 6105.7 6105.7 0 11121.4 6133.9 6133.9 0

1000 12393.1 7117.7 7117.7 0 12440.6 7165.5 7165.5 0 12455.4 7215.3 7215.3 0

Figure 6.5: Modules of NCI

In a similar vein we also extracted modules for axiom signatures. The results

of this can be seen in Figure 6.6 which is based on the signatures of 20,000

axioms randomly selected from the whole of NCI for which 13.2% of axioms

showed a difference in size between the extracted hybrid and STAR-modules.

The average difference, for those cases when there was a difference, was 2264.5

axioms.

Performance

We found AMEX to be incredibly efficient, over all experiments performed over

the NCI fragments, a single extraction took just under 3 seconds and the max-

imum time taken was 15 seconds. This can be attributed to the distribution

of the workload over each of AMEX’s rules; interestingly in 97% of all experi-

ments only R1 of AMEX located any axioms to add to the module, so in those

cases the module was computed purely syntactically with a single call to the

QBF solver to verify that R2 was not applicable and that the extracted module

was indeed depleting. Over the remaining 3% of experiments, where R2 was

applicable and separability causing axioms were identified, the maximal num-

ber of separability axioms located for a single extraction was 4, with 73 being

the maximum number of calls to the QBF solvers.

The hybrid STAR-AMEX procedure we also found to be very efficient. For

any one extraction (which begins with the extraction of a STAR-module) we

found the additional time needed to extract a module compared to STAR ex-

traction alone was at most only 2.2 seconds. Over the fragments of NCI, for

155

CHAPTER 6. Experimental Evaluation

1−
20

0

20
0−

40
0

40
0−

60
0

60
0−

80
0

80
0−

10
00

27
00

−
29

00

29
00

−
31

00

31
00

−
33

00

33
00

−
36

00

36
00

−
39

00

39
00

−
42

00

42
00

−
44

00

F
re

qu
en

cy

0

200

400

600

800

1000

1200

1400

1600

Module size (#Axioms)

STAR size
Hybrid Size

Figure 6.6: Frequency of genuine module sizes for NCI

extractions using the hybrid procedure, we saw exactly 2 alternations of STAR

module extraction whereas the AMEX extractions varied between 1 and 2 times.

For full NCI it was much the same pattern except for a single extraction that

involved 3 alternations of the STAR procedure with 2 from AMEX. Over all ex-

periments we found AMEX tended towards a single alternation as the signature

sizes grew and the differences between the respective modules became smaller.

The computation of 1-depleting modules were also reasonably efficient over

such a large ontology but still significantly slower than any of the upper ap-

proximations, even with the additional preprocessing step. The time taken to

compute a 1-depleting module varied considerably over each of the NCI frag-

ments: for NCI?(v) a single 1-depleting extraction took no more than 2 minutes,

for NCI? and NCI?(≡) however it took up to 30 minutes. The increased amount

of time can be attributed to the number of calls to the QBF solver required

to locate the 1-separability causing axioms within each of the ontologies: for

NCI?(v) the maximum number of QBF calls was 5,052, for NCI? 193,993 and

for NCI?(≡) 433,546 calls were necessary.

We also attempted to extract the minimal 2-depleting module across the NCI

fragments for those cases where the hybrid-module and the corresponding 1-

156

CHAPTER 6. Experimental Evaluation

depleting module did not coincide in order to try and reduce the gap between

the lower and upper approximations. This turned out to be infeasible in prac-

tice, where for some signatures a 2-depleting module was not computed after

several hours of computation. That considered, even when our upper approxim-

ations did not coincide with the lower approximation they were still sufficiently

close in size to be considered successful approximations even if we could not

show that they were minimal.

6.4. Experiments over the experimental corpus

Of the 172 ontologies in the experimental corpus a large percentage are

neither acyclic ALCQI nor terminologies which limits those to which we can

apply the AMEX procedure. For this reason we focus on comparing STAR-

modules to hybrid STAR-AMEX-modules across the ontologies of the corpus.

For the small number ontologies to which AMEX can be applied, since both

AMEX and STAR are subset preserving procedures, it follows from Lemma 4.1.5

that a module extracted using the hybrid STAR-AMEX procedure will be at least

as small as the corresponding module extracted by AMEX procedure alone.

We decided to focus on axiom signatures only across the experimental cor-

pus for a number of reasons. Due the both the sheer quantity and size of the

ontologies in the corpus we would need to consider an huge variety of sig-

natures of different sizes to give a meaningful result, coupled with the poor

performance of extracting the lower approximation from NCI which could also

be apparent over the ontologies in the corpus, such experiments would not

be feasible in a reasonable amount of time. Moreover, axiom signatures give

the most meaningful result as they correspond to genuine modules which are

representative of all modules, and differences between approximations over ax-

ioms signatures can translate into large differences over random signatures as

we observed in our experiments over NCI.

Our experiments involved taking each ontology of the experimental corpus

in turn and extracting a STAR and hybrid STAR-AMEX-module for each axiom

157

CHAPTER 6. Experimental Evaluation

signature taken from that ontology. We also wanted to investigate the difference

in size between an upper approximation and its corresponding minimal mod-

ule, ideally increasing the lower approximation beyond 1-depleting modules to

see if that would give a better estimation into to which of our upper approx-

imations coincide with the ideal minimal. We conjecture that although it was

not possible to compute a 2-depleting module for NCI in a reasonable amount

of time, the ontologies of the experimental corpus are comparatively smaller, so

although 2-depleting modules might take long time to compute, since we are

only considering axiom signatures it should be feasible within a decent time

bound.

So, in addition, to evaluate the success of the both upper approximations,

for each signature considered we also extracted the corresponding minimal 2-

depleting module.

6.4.1 Differences in upper approximations

We found that 66 of the 172 ontologies (~38%) of the corpus contained axioms

whose signature revealed some difference in size between the STAR and corres-

ponding hybrid modules. Figure 6.7 shows for each of the 66 ontologies which

percentage of the total axiom signatures taken from the ontology was there a

difference observed between the STAR and corresponding hybrid modules. For

example take the Galen (GAL) ontology which contains 4,735 axioms, out of

these we observed a difference in module sizes over 2,644 of them ~56%, so

this ontology contributes to the bar for 50-60% in the figure.

Exploring these results in more detail we can see that at the lower end

of the scale 28 out of 66 (~42%) of all ontologies only showed a difference

between 1% and 10% of their total axiom signatures, the worse of these being

the Terminological and Ontological Knowledge Resources Ontology (TOK) where

a difference was observed on just 1 of its 370 axioms (~0.27%), at the other

end of the scale we found 5 ontologies where between 90% and 100% of all

axiom signatures revealed a difference in module sizes, the best of these being

158

CHAPTER 6. Experimental Evaluation

0−
10

10
−

20

20
−

30

30
−

40

40
−

50

50
−

60

60
−

70

70
−

80

80
−

90

90
−

10
0

O
nt

ol
og

y
C

ou
nt

Observed % of axiom showing difference

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

Figure 6.7: Axiom signatures showing differences between STAR and Hybrid
STAR-AMEX modules

the Atom Complex (ATC) ontology where each of its 119 signatures (100%)

revealed a difference in comparative module sizes.

Over the signatures where a difference was observed the hybrid modules

were on average ~35% smaller than the corresponding STAR modules. The

table in Figure 6.8 shows the 38 ontologies for which the difference, when

there was a difference, was more than 2 axioms. The first column is the ab-

breviation which is used for the ontology, the next two columns of the table

show the number of axioms of each ontology and which percentage of those

axioms corresponded to a signature where a difference was observed, the last

four show both the average size of STAR and hybrid modules when a difference

was observed and the absolute difference in size between the averages, and

finally the percentage change in size the hybrid is compared to the correspond-

ing STAR module. The results for the other 28 ontologies where a difference

smaller than 2 axioms was observed are deferred to Appendix B.

It can be seen that for certain ontologies the hybrid-module is considerably

159

CHAPTER 6. Experimental Evaluation

Ont Axs Diff Star Hybrid Size Diff. %Change
ATC 119 100.00% 119.00 1.99 117.01 -98.33%

SitBAC 464 11.42% 210.91 140.66 70.25 -33.31%
TAM 595 50.59% 129.48 75.51 53.97 -41.68%
GALO 9645 44.84% 659.54 613.86 45.68 -6.93%
ATM 89 59.55% 33.62 1.19 32.43 -96.46%
PIZ 694 95.97% 99.18 67.14 32.03 -32.30%

CHMC 103 47.57% 28.14 1.04 27.10 -96.30%
GEOS 653 93.87% 25.99 3.49 22.50 -86.58%
GAL 4735 55.84% 100.54 82.21 18.33 -18.23%

ProPreO 598 92.64% 20.97 5.95 15.02 -71.64%
PER 58 62.07% 18.64 4.83 13.81 -74.07%
EDAS 576 8.33% 37.92 27.83 10.08 -26.59%
GRO 933 50.80% 98.24 88.72 9.53 -9.70%
GRI 901 26.86% 41.61 32.46 9.15 -22.00%
AER 120 71.67% 11.98 3.22 8.76 -73.11%
PEO 70 61.43% 10.09 3.56 6.53 -64.75%
SUB2 458 73.36% 37.10 30.68 6.42 -17.31%
PAR 270 45.19% 23.31 17.48 5.83 -25.00%
SPO 678 27.73% 175.82 170.01 5.81 -3.31%
TBM 173 31.79% 11.64 5.84 5.80 -49.84%
PHOT 523 5.16% 44.48 39.63 4.85 -10.91%
OPB 1254 24.80% 9.29 4.77 4.52 -48.69%
BHO 2393 0.17% 34.00 29.75 4.25 -12.50%
BT 1152 96.79% 213.22 209.21 4.01 -1.88%

CMTC 195 1.54% 5.00 1.00 4.00 -80.00%
HRT 343 71.43% 308.94 304.96 3.98 -1.29%
SDO 2664 21.51% 301.25 297.36 3.88 -1.29%
YBC 162 17.90% 6.31 2.45 3.86 -61.20%
UNIB 89 8.99% 5.88 2.25 3.63 -61.70%
FHHO 926 6.80% 4.29 1.00 3.29 -76.67%
UNI 162 3.70% 7.00 4.17 2.83 -40.48%
CNR 168 11.90% 36.55 33.75 2.80 -7.66%
KBCF 665 13.98% 9.92 7.19 2.73 -27.52%
LiPrO 2375 3.20% 20.21 17.64 2.57 -12.70%
NUM 264 8.33% 4.91 2.45 2.45 -50.00%
DCCL 313 34.50% 26.93 24.48 2.44 -9.08%
SIO 2205 9.57% 153.84 151.50 2.35 -1.52%
MHC 287 51.22% 30.30 28.01 2.29 -7.57%

Figure 6.8: Differences between STAR and hybrid STAR-AMEX modules over
axiom signatures

160

CHAPTER 6. Experimental Evaluation

smaller than the STAR-module, the best result coming again from the Atom

Complex (ATC) ontology, which not only showed a difference for each of its ax-

iom signatures but the difference was both largest in terms of relative module

sizes and percentage change. We looked into exactly why this was the case and

it came down to again how the STAR procedure handles equivalences as previ-

ously discussed. The ATC ontology describes the periodic table of of elements

and contains a single axiom of the form Atom v ∃hasPart.Proton and an axiom

of the form

Element ≡ Atom u (= 〈atomic_number〉 hasPart.Proton)

for each of the 118 elements of periodic table, where the concept Element

each and 〈atomic_number〉 are distinct values corresponding to the name of

an element and its associated atomic number e.g. α = Iron ≡ Atom u (=

26 hasPart.Proton).

To see why there is such a large difference in module sizes, suppose we take

Σ = sig(α), then we have {α} 6≡Σ ∅, for any interpretation I where IronI 6=

(Atom u (= 26 hasPart.Proton))I there is clearly no corresponding model of α

that coincides on Σ. But if we consider another axiom of this form for the same

signature, say β = Zinc ≡ Atom u (= 30 hasPart.Proton), since Zinc 6∈ Σ, for

any interpretation I we can find a model J of β by w.r.t ZincJ = (Atom u (=

30 hasPart.Proton))I whilst still ensuring I|Σ = J |Σ. The problem in the module

extraction setting, if sig(α) is chosen, then β is neither > or ⊥-local w.r.t Σ, nor

are any of the other axioms whose signature was not considered for extraction.

It’s for this reason the whole ontology is extracted into a STAR-module over

each of the axiom signatures.

Other particularly notable results from this table include the People (PEO)

and Galen (GAL) ontologies which are well known for having disproportionally

large locality-based modules [Gra+08; Del+11] for which we found on average

the hybrid modules were 18.23% and 64.75% smaller than the corresponding

161

CHAPTER 6. Experimental Evaluation

STAR modules respectively. We also saw smaller modules on average over the

signatures of Tambis (TAM), miniTambis (TMB) and University (UNI) some of the

other ontologies which have previously been studied in research surrounding

modularity.

6.4.2 Minimality

We have established which cases the hybrid modules are smaller than the cor-

responding STAR modules, but we also investigated into how often our upper

approximations coincided with the corresponding 2-depleting modules to es-

timate if they are a successful approximation. Figure 6.9 shows a summary of

the results from extracting 2-depleting modules.

The figures the show the frequency of ontologies where we found the upper

approximations (STAR and hybrid-modules) coinciding with the lower approx-

imation (2-depleting modules) on at least X% of their total axiom signatures.

The top chart shows those 66 ontologies where a difference in size was observed

between hybrid and STAR-modules, and where potentially hybrid modules can

coincide more often with the lower approximation. The bottom chart shows the

other 106 ontologies where the hybrid and STAR-modules always coincide.

It can be seen that for the cases where the hybrid and STAR-modules

differed, there were significantly more axioms signatures where their cor-

responding hybrid-modules coincided with the lower approximation, and

therefore the minimal depleting Σ-module. Over all axiom signatures of these

ontologies the hybrid-module coincided with 2-depleting module on 6,800

more signatures than the STAR-module, and there were 36 ontologies for

which over 70% of all axioms signatures taken from that ontology produced a

hybrid module which coincide with the 2-depleting module, compared to just

21 in the case of STAR-modules. Moreover, there were 25 ontologies where

between 90% and 100% of all axiom signatures coincided with the lower

approximation, this included 7 for which the hybrid module coincided over

all axiom signatures taken from that ontology, namely: Atom Common (ATM),

162

CHAPTER 6. Experimental Evaluation

1−
10

10
−

20

20
−

30

30
−

40

40
−

50

50
−

60

60
−

70

70
−

80

80
−

90

90
−

10
0

O
nt

ol
og

y
C

ou
nt

Observed % of signatures that coincide with minimal

0

10

20

30

40

50

60 STAR
Hybrid

(a) Difference Observed

1−
10

10
−

20

20
−

30

30
−

40

40
−

50

50
−

60

60
−

70

70
−

80

80
−

90

90
−

10
0

O
nt

ol
og

y
C

ou
nt

Observed % of axiom signature that coincide with minimal

0

10

20

30

40

50

60

70

80

90 Hybrid = STAR

(b) No difference observed

Figure 6.9: Observed modules that coincide with minimal

163

CHAPTER 6. Experimental Evaluation

Atom Complex (ATC), CMT conf (CMTC), Family Health (FHHO), GeoSkills

(GEOS), Particle (PAR) and Worm Phenotype (WORM). Comparatively, out of

these 66 ontologies, there were only 12 ontologies for which the STAR and

2-depleting modules coincided on over 90% of signatures, and we did not find

any ontology where the STAR-modules and 2-depleting modules coincide over

all axiom signatures.

Over the other ontologies, where there was no difference in the sizes of

STAR and corresponding hybrid modules, it can be seen that over half (56)

of ontologies saw each of the upper approximations coincide with the lower

approximation on between 90% and 100% of their total axiom signatures, 39

of these coinciding on all axiom signatures. In these cases where the STAR

modules are already minimal one will never see an improvement by extracting

the corresponding hybrid module.

If we look at the results across all ontologies there are still a number of sig-

natures where the upper and lower approximations were not found to coincide,

again it is either the lower approximation under-approximating the minimal

module and/or an upper approximation over-approximating it. In these cases

where the upper and lower approximations do not coincide there is on average

an 18.5 axiom difference between the hybrid-module and the corresponding

2-depleting module, but this can be as many as 237 axioms in which case we

found the 2-depleting module to be over 99% smaller than the corresponding

hybrid module. As we mention in our experiments over NCI, establishing why

there is a difference between the upper and lower approximations can only be

done by hand and is incredibly labour intensive. Further investigation may help

establish exactly what is happening in these cases, and it may be the case that

computing n-depleting modules for larger values of n will help close the gap

between the upper and lower approximations, although extracting such mod-

ules may take a significant amount of time.

164

CHAPTER 6. Experimental Evaluation

6.4.3 Performance

Over all ontologies and axiom signatures we found the STAR procedure to be

efficient as expected, since all computation is done syntactically, and for any

one extraction it took less than 1 second, and it most cases it was a matter

of milliseconds. The additional time need to compute a hybrid module, in

addition to the initial STAR extraction, was also on average very efficient over

all ontologies the average time taken was well under a second. We did find a

few cases where the maximum time needed for a single hybrid extraction was

above average, the Inverterbrata (INV) ontology saw a single extraction taking

up to 8 seconds and the Data mining (DMK) ontology saw one which took up to

53 seconds.

The encouraging performance of the hybrid procedure can again be attrib-

uted to the majority of the workload being done by the syntactic rule R1 of the

AMEX procedure. In fact, in only 49 of the 172 ontologies saw R2 of AMEX

being applicable, where a separability causing axiom needed locating after R1

was exhaustively applied. The ontology for which R2 was applicable the most

and subsequently the most calls to the QBF solvers were used, was the myGrid

(GRI) ontology for which a single extraction located up to 11 separability caus-

ing axioms using 48 calls to the QBF solvers in the process. For all signatures

over the other 123 remaining ontologies the modules were computed purely

syntactically with a single call to the QBF solver to ensure a depleting module

was extracted.

Within the hybrid procedure those 106 ontologies where the STAR and

hybrid-modules always coincided in size only saw 1 alternation of the STAR

extraction procedure and 1 alternation of the AMEX extraction procedure as

expected, since extracting an AMEX module from a STAR module saw no re-

duction in size, the fixpoint was reached and the algorithm terminated. For

those 66 ontologies where there was a difference, 61 of them saw at most 2

STAR alternation and 1 AMEX alternation, the remaining 5 saw up to 3 STAR

165

CHAPTER 6. Experimental Evaluation

alternations and 2 AMEX alternations.

For the lower approximation, for all but 22 ontologies there was at least one

signature where it was necessary to take the union of both the minimal exactly

1 and exactly 2-depleting modules to produce the lower approximation, that

is where we found the exactly 1-depleting module and corresponding hybrid

module did not coincide. On average the time needed to extract a 2-depleting

Σ-module over all ontologies and signatures was just under 2 seconds, but for

some ontologies in the worst case took significantly more time. The worst of

these was Open Galen (GALO) for which a single 2-depleting module extraction

took on average 21 seconds but in one case took more than 3 hours!

6.5. Conclusion

This chapter looked at answering several research questions about the com-

parative size, success and time to extract AMEX, hybrid STAR-AMEX modules

in comparison to STAR modules.

In results we presented for NCI and its fragments, we saw that AMEX and

the hybrid STAR-AMEX-procedure can offer significant reductions in the size of

the depleting Σ-modules they produce in comparison to corresponding STAR

modules. We also saw that these improved approximations came very close to,

and often coincided with, the lower approximation we computed and therefore

the minimal depleting Σ-module.

For experiments over the experimental corpus we found 66 ontologies for

which the hybrid extraction procedure produced modules that were often smal-

ler than corresponding STAR-modules over axiom signatures. In the cases

where we did see a difference in size between the two module notions we

found that the hybrid-modules coincided more frequently with the correspond-

ing lower approximation. Conversely, there were some signatures for which

there was no difference recorded between STAR and hybrid-module notions.

This lack of difference was explainable in some cases in that the STAR ap-

166

CHAPTER 6. Experimental Evaluation

proximations already coincided with the ideal minimal and were already as

a successful approximation as possible, for others there was still a difference

between our upper and lower approximations and would need further evalu-

ation in order to fully understand the reason why these cases occur.

167

CHAPTER 7

Conclusions

7.1. Conclusions

The focus of this thesis was the development, improvement, and evaluation

of algorithms which approximate minimal depleting Σ-modules.

In Chapter 3 we introduced the AMEX extraction algorithm which was

developed by extending existing notions of model-theoretic Σ-inseparability

to produce an approximation of the minimal depleting Σ-module for acyclic

ALCQI terminologies which may additionally contain repeated concept in-

clusions. Due to the restrictive family of ontologies to which AMEX can be

applied, in Chapter 4 we introduced a hybrid module extraction algorithm

which generalises the already successful STAR approximation, combining two

module extraction procedure together by iteratively extracting their modules

from one another until a fixpoint is reached. This in turn spawned the hybrid

STAR-AMEX procedure which was designed specifically to help minimise the

size of the STAR approximations using AMEX but without losing the inclusive

nature of the STAR procedure, so that approximations could still be extracted

from general SROIQ ontologies. In Chapter 5 we introduced a way of evalu-

ating how well one can approximate minimal modules, by treating each sound

approximation procedure as an upper approximation we then introduced a

lower approximation by the means of n-depleting Σ-modules which we proved

are always contained in the minimal depleting Σ-module. The difference

between an upper and lower approximation then giving an estimate to how

close the upper approximation is to the ideal minimal and therefore how

169

CHAPTER 7. Conclusions

successful the approximation is. Finally we brought all of these results together

over a large empirical investigation in chapter

Chapter 6 which was evaluated over a corpus of real-world ontologies. What

was revealed is that both AMEX and hybrid STAR-AMEX modules were not only

often significantly smaller than the corresponding STAR modules but also co-

incided with the corresponding minimal depleting Σ-modules much more fre-

quently. In addition we found both our AMEX and hybrid extraction procedures

to work very efficiently over the real-world ontologies we examined, certainly

all modules we extracted were computed within a matter of seconds. Gen-

erally n-depleting modules up to 2-depleting were also computed reasonably

efficiently with a few anomalous cases taking considerably longer. Such cases

could become problematic if considering computing the lower approximation

for higher values for n, the exponential growth of the QBF reduction may see

computing the lower approximation becoming unfeasible. In summary, con-

sidering that hybrid modules are at least as small as the corresponding STAR

modules, but can be significantly smaller (and often minimal) and also the fact

that they can computed very efficiently we have presented strong empirical

evidence to prefer hybrid STAR-AMEX modules to just STAR modules on their

own.

In summary, we have developed several new algorithms for approximat-

ing minimal depleting Σ-modules in expressive description logics, and also a

methodology for evaluating how successful these resulting approximations are.

What was found our new approximations were very successful, that they could

be computed very efficiently in practice, were often significantly smaller than

the most popular rival approximation, and often coincided with the minimal

depleting Σ-module.

7.2. Future Work

Comparison to datalog modules. In Section 2.4.3 we described a notion

of modularity based on datalog reasoning. These modules are not depleting

170

CHAPTER 7. Conclusions

Σ-modules by default but theoretically such modules can be produced using

this method. When an implementation becomes available, and we are able

to compute depleting Σ-module via datalog reasoning, it would be interesting

to see how this approximation compares to approximations we have considered

across this thesis. In addition to a direct comparison, it would also be interesting

to know how far we can improve on existing approximations by using datalog

modules in a hybrid approximation algorithm with either STAR or AMEX or a

combination of both.

Improving approximations. By the introduction of the lower approxima-

tion we have a means of estimating how close our approximations are to the

ideal minimal. Then by investigating those cases for which there is a large gap

between the upper and lower approximations we could hope to gain insight into

why such approximations are unsuccessful, and in turn this could help improve

our approximations so that we are able to approximate minimal modules more

accurately. In addition, it would also be useful to optimise the computation of

the lower approximation itself, even for small values of n it often took a long

time to compute an n-depleting module.

Extending experimental evaluation. Over the experimental evaluation in

Chapter 6 we saw a number of ontologies from the experimental corpus for

which the hybrid approximation was smaller than corresponding STAR approx-

imation, but this difference was not always large, and the modules were only

compared over axiom signatures. With more time we would seek to carry out a

more extensive investigation on these ontologies, considering a larger and more

varied selection of input signatures to fully understand the difference between

these two approximation notions.

171

APPENDIX A

Experimental Ontologies

This appendix shows statistics for the ontologies from Chapter 6 which are used

in the experimental evaluation.

The columns of the table below give the ontology’s name (Name) and the

abbreviation (Abbrev.) we use in the experimental evaluation, the description

logic the ontology is formulated in (DL) and the number of axioms it contains

(Axioms), whether or not it contains terminological cycles (Cyclic) where Y =

Yes and N = No, and finally the NC and NR columns are a count of the concept

and role names in the ontology’s signature.

Name Abbrev. DL Axioms Cyclic NC NR

Adolena ADO SRIQ 230 Y 141 16

Adverse Events AER ALCHQ 120 Y 42 4

Alignment Initiative IASTD ALCIN 348 Y 139 38

Allen Brain Atlas ABA ALCI 3441 N 913 2

Amino Acid AMI ALCF 464 Y 46 5

Animal Natural History ANH ALUF 385 N 361 14

Atom Common ATM ALCHI 89 N 14 5

Atom Complex ATC ALEQ 119 N 120 1

Atom Primitive ATP ALH 136 N 124 5

Basic Formal BFO ALC 95 Y 39 0

Bilaterian BIL ALEHI+ 139 N 113 5

Biochemistry BIC ALC 136 N 64 0

Biocode BOC ALC 84 Y 41 6

Continued on next page..

173

APPENDIX A. Experimental Ontologies

...Continued from previous page

Name Abbrev. DL Axioms Cyclic NC NR

Bioinformatics Web Service OBIws SRIQ 511 Y 228 24

Biological Imaging FBbi S 550 N 517 1

Biological Processes BPO SHIN 267 Y 69 55

Biomedical Resource BRO ALHI+ 80 N 0 52

biopax-level2 BOP ALCHN 224 Y 41 33

BioTop BT SRI 1152 Y 389 82

Bleeding History BHO ALCIF 2393 Y 544 33

Bone Dysplasia BDO SIF 3970 Y 3663 12

Cancer CNR ALCHF 168 N 88 13

Cancer Chemoprevention CanCO ALEH 171 N 94 39

Cancer Research CRM SRIQ 5261 Y 1755 232

Cell Behaviour CBO SR 654 N 241 20

Chemical CHM ALCH 90 N 48 9

Chemical Biology CHB SHIF 337 N 104 33

Chemical Information CHEMINF ALCRI 305 Y 220 40

Chemistry complex CHMC ALCHQ 103 Y 84 14

Chemistry-primitive CHMP ALHI+ 171 N 158 8

Cluster Analysis CAO SHIQ 438 Y 204 35

CMT conf CMTC ALCIN 195 N 30 49

CMT tool CMTT SIN 354 Y 68 62

Cocus COC ALCIQ 161 Y 54 33

Comparative Data Anaylsis CDAO SRIQ 391 Y 132 68

Conference CONF ALCHIF 234 Y 59 46

Conference Management EDAS ALCIN 576 N 104 30

Confious COFI SHIN 262 Y 57 52

confOf confOf SIF 123 Y 39 13

Cooking COOK ALCF 50 Y 23 5

Costal Observation OBOE ALCQ 63 Y 23 9

Continued on next page..

174

APPENDIX A. Experimental Ontologies

...Continued from previous page

Name Abbrev. DL Axioms Cyclic NC NR

Countries CNT ALCIN 77 N 11 12

CRS CMT CRS-CMT ALCIN 268 Y 44 64

CRS Conf1 CRS1 SIF 192 Y 53 28

CRS Conf2 CRS2 SIF 196 Y 53 28

CRS Dr CRSDR ALCIF 59 N 14 15

CRS EKAW CRSE SHIN 308 Y 88 48

CRS PCS PCS ALCIF 177 Y 38 39

Cystic Fibrosis KBCF ALCHIF 665 Y 408 34

Data DAT ALHN 255 N 174 32

Data Mining DMC SHIQ 1067 Y 468 30

Data Mining KDD DMK SHI 1999 Y 263 30

Datatypes DTO SHI 354 N 143 7

Dendric Cells DCCL ALC 313 N 148 9

Descriptive DOLCE SHIF 351 Y 37 70

Detection Mechanisms DET ALC 124 N 35 2

Diagnostic DIA ALCF 234 Y 96 4

Digital Assets DAM ALUH 184 N 90 51

DIKB Evidence DEVI ALCI 304 Y 93 37

DUL DUL SHIN 568 Y 72 103

Eagle-I Research ERO SHIF 4237 Y 3451 112

Earthrealm EART ALCH 873 Y 557 85

Economy ECON ALCH 563 N 332 38

Ekaw2 EKAW2 SHIN 390 Y 112 46

Evidence and Conclusion ECO ALE 363 N 283 1

Expression EXP ALCHI 176 Y 38 34

Family Health FHHO ALCHIF 930 N 238 431

Family Tree FLT SRIF 157 N 12 52

Galen GAL ALEHIF+ 4735 Y 2748 413

Continued on next page..

175

APPENDIX A. Experimental Ontologies

...Continued from previous page

Name Abbrev. DL Axioms Cyclic NC NR

Gene GO AL 158 N 161 0

Gene Regulation GRO ALCHIQ 823 Y 420 18

GeoSkills GEOS ALCHIN 654 N 589 19

Heart HRT SHI 343 Y 75 29

Homology HOM ALC 83 N 65 0

Hospital Equiptment HOSP ALC 50 N 29 0

Human Activities HUM AL 163 N 157 7

Image Quality IDQA ALRIF 220 N 179 16

Immunogenetics IMGT ALCIN 2260 Y 286 4

Information Artifact IAO ALRIF+ 374 N 174 50

Information Exchange IEDM ALUN 655 N 195 222

Inverterbrata INV ALCRIF 2096 N 557 32

ISO ISO ALIN 124 N 41 22

JERM Systems JERM SHI 443 Y 263 20

Knowledge Acquisition 1 KA1 AL 166 Y 96 60

Knowledge Acquisition 2 KA2 AL 166 Y 96 60

Lipid LiPrO ALCHIN 2375 Y 716 46

Major Histocompatability

Complex

MHC ALCIQ 287 Y 118 7

Medically Related OMRSE ALCHIQ 86 N 74 6

Menelas Top MTOP ALCH 1381 N 524 298

Micro MIC ALCIN 92 Y 32 17

MicroRNA Targetting OMIT ALCHIQ 808 Y 376 27

miniTAMBIS TBM ALCN 173 Y 178 35

Smoking Behaviour Risk SBRO ALEI+ 185 N 121 12

Molecular Function MOLF ALE 315 N 632 3

Movie MOV ALCN 140 N 57 21

myGrid GRI SHIN 902 Y 543 66

Continued on next page..

176

APPENDIX A. Experimental Ontologies

...Continued from previous page

Name Abbrev. DL Axioms Cyclic NC NR

myGrid Simple GRIS ALCHIF 1959 Y 475 8

myReview REV ALCIN 324 Y 39 49

Neomark NEO ALCHQ 1212 Y 55 105

Neural ElectroMagnetic NEMO SHIQ 2468 Y 1674 89

New Upper Level NULO AL 100 N 11 50

NIF Cell NIFC S 399 N 374 1

Nif Subcell NIFS ALC 890 N 408 3

Normal NORM SHI 137 Y 68 22

Numerics NUM SI 264 N 130 38

OpenGalen GALO ALEHIF 9645 Y 4699 922

Oral Cancer (NEO) ORO SHIQ 399 Y 325 26

Paperdyne PAP ALCHIN 338 Y 48 58

Parasite Lifecycle OPL SHIF 860 N 360 12

Particle PAR ALCQ 270 N 73 5

PCS PCS ALCIF 106 N 24 24

PCS Conf PCSC SIF 243 Y 62 37

PCS EKAW PCSE SHIN 361 Y 97 57

People PEO ALCHIN 70 Y 60 13

Periodic Table PER ALU 58 N 165 0

Phama Primitive PHARP ALHI+ 50 N 31 15

Pharma Complex PHARC ALC 256 Y 145 3

Pharmacogenomic Rel. PHARE ALCHI 450 Y 228 73

phenomena PHEN ALUH 395 Y 317 35

Phenotype RPO ALF 2029 N 1544 157

Phenotypic PATO SH 1989 N 1480 17

photography PHOT SRIQ 527 Y 170 25

Phylogenetic Ontology PhylOnt ALCH 224 Y 148 17

Continued on next page..

177

APPENDIX A. Experimental Ontologies

...Continued from previous page

Name Abbrev. DL Axioms Cyclic NC NR

Physical Medicine and Re-

habilitation

PMR ALU 163 N 137 14

Physics for Biology OPB ALCHIQ 1254 Y 679 33

Pipeline Infrastructure CPTAC ALC 855 N 19 342

Pizza PIZ SHIN 694 N 99 7

Plant PO SHIF 157 N 50 43

Pol POL ALCIF 75 Y 21 10

Process1 PRO1 ALCH 2054 Y 1514 98

Process2 PRO2 ALUH 160 N 152 4

Property PRO AL 375 N 343 20

Property Complex PROC ALE 156 N 155 2

Proteomics Data ProPreO SHIN 598 Y 399 32

Protein PROT ALCF 306 Y 45 50

Quantitative Imaging QIBO ALUIF 788 N 619 54

Reaction REA ALCHIQ 96 N 40 22

Relative Places REL SHIF 79 Y 7 16

RNA RNAO SRIQ 585 Y 203 106

Semantic Integration SIO SRIQ 2206 Y 1336 201

Sequence SEQ SHI 1943 N 1576 19

SIGKDD SIGKDD ALCIF 167 Y 64 32

SIGKDD-EKAW SIGK SHIN 345 Y 123 50

SIGKDD2 sigkdd2 ALEI 94 N 50 17

Situation Based Access SitBAC ALCN 464 Y 178 40

Skin Physiology SPO ALERIF+ 678 Y 339 34

Sleep Domain SDO SHIQ 2666 Y 1374 75

Software1 SOF1 ALHN 61 N 18 25

Software2 SOF2 ALCHIQ 2095 Y 735 15

Spatial BSPO ALEHI+ 262 Y 128 32

Continued on next page..

178

APPENDIX A. Experimental Ontologies

...Continued from previous page

Name Abbrev. DL Axioms Cyclic NC NR

Spatial SPA ALEH+ 190 N 106 13

Statistics STAT ALCHIN 171 N 123 7

Student Health SHR ALH 414 N 344 36

Study Design STUD ALC 132 Y 86 1

Subatomic Particle SUBA ALC 75 N 52 1

Subcelular Anatomy1 SAO1 SHIF 2524 Y 736 36

Subcelular Anatomy2 SAO2 SHIF 2659 Y 795 40

Substance1 SUB1 ALUH 491 N 351 11

Substance2 SUB2 ALCF 458 N 81 3

Syndromic Surveillance SSO ALIF 197 N 171 11

Tambis TAM SHIN 595 Y 395 100

Terminological and Ontolo-

gical Knowledge Resources

TOK SRIQ 370 Y 193 85

Time Entry TIME SHIN 86 Y 18 28

Time Modification TIMM ALUHIF 80 N 48 14

Transportation TRAN ALCH 923 Y 429 77

University UNI ALEI+ 184 N 161 9

University Bench UNIB ALEHI+ 89 N 43 25

Variables and Values OoEVV ALU 76 N 34 28

Vertebrate Skeletal Ana-

tomy

VSAO ALERI+ 457 Y 273 12

VIVO VIVO ALEHIN+ 638 N 165 190

Worm Phenotype WORM ALE 1173 N 1841 30

Yeas Biology Primitive YBP ALCI 147 N 140 10

Yeast Biology Complex YBC ALCH 162 N 106 17

179

APPENDIX B

Experimental Results : Comparing Upper

Approximations

This appendix shows the full experimental result which were presented in Sec-

tion 6.4.1 in which the size of STAR and corresponding hybrid STAR-AMEX-

modules were compared over every axiom signature for each ontology in the

experimental corpus.

This table is the extended version of Figure 6.8 which shows the relative

sizes of the two module extraction procedures for signatures when difference

in size was observed. The columns have the same meaning as those in the

original figure.

Ont Axs Diff Star Hybrid Size Diff. %Change

AER 120 71.67% 11.98 3.22 8.76 -73.11%

ATM 89 59.55% 33.62 1.19 32.43 -96.46%

ATC 119 100.00% 119.00 1.99 117.01 -98.33%

BT 1152 96.79% 213.22 209.21 4.01 -1.88%

BHO 2393 0.17% 34.00 29.75 4.25 -12.50%

BDO 3970 0.03% 2.00 1.00 1.00 -50.00%

CNR 168 11.90% 36.55 33.75 2.80 -7.66%

CRM 5255 1.58% 83.01 82.01 1.00 -1.20%

CHEMINF 305 3.93% 6.92 5.50 1.42 -20.48%

CHMC 103 47.57% 28.14 1.04 27.10 -96.30%

Continued on next page..

181

APPENDIX B. Experimental Results : Comparing Upper Approximations

...Continued from previous page

Ont Axs Diff Star Hybrid Size Diff. %Change

CMTC 195 1.54% 5.00 1.00 4.00 -80.00%

CDAO 390 36.15% 56.24 55.24 1.00 -1.78%

CONF 234 1.71% 21.00 20.00 1.00 -4.76%

EDAS 576 8.33% 37.92 27.83 10.08 -26.59%

KBCF 665 13.98% 9.92 7.19 2.73 -27.52%

DCCL 313 34.50% 26.93 24.48 2.44 -9.08%

DEVI 304 5.92% 18.17 16.94 1.22 -6.73%

EART 873 18.79% 3.12 1.93 1.20 -38.28%

FHHO 926 6.80% 4.29 1.00 3.29 -76.67%

FLT 157 4.46% 18.29 17.29 1.00 -5.47%

GAL 4735 55.84% 100.54 82.21 18.33 -18.23%

GOSLIM 158 48.10% 3.00 2.00 1.00 -33.33%

GRO 933 50.80% 98.24 88.72 9.53 -9.70%

GEOS 653 93.87% 25.99 3.49 22.50 -86.58%

HRT 343 71.43% 308.94 304.96 3.98 -1.29%

LiPrO 2375 3.20% 20.21 17.64 2.57 -12.70%

MHC 287 51.22% 30.30 28.01 2.29 -7.57%

TBM 173 31.79% 11.64 5.84 5.80 -49.84%

GRI 901 26.86% 41.61 32.46 9.15 -22.00%

NEMO 2468 2.19% 285.00 284.00 1.00 -0.35%

NUM 264 8.33% 4.91 2.45 2.45 -50.00%

GALO 9645 44.84% 659.54 613.86 45.68 -6.93%

PAR 270 45.19% 23.31 17.48 5.83 -25.00%

PEO 70 61.43% 10.09 3.56 6.53 -64.75%

PER 58 62.07% 18.64 4.83 13.81 -74.07%

PHARE 448 6.70% 2.00 1.00 1.00 -50.00%

PHEN 395 4.05% 2.13 1.13 1.00 -47.06%

PHOT 523 5.16% 44.48 39.63 4.85 -10.91%

Continued on next page..

182

...Continued from previous page

Ont Axs Diff Star Hybrid Size Diff. %Change

OPB 1254 24.80% 9.29 4.77 4.52 -48.69%

PIZ 694 95.97% 99.18 67.14 32.03 -32.30%

PO 157 1.27% 2.00 1.00 1.00 -50.00%

PRO1 2048 9.42% 2.98 1.64 1.34 -45.04%

PRO2 160 16.25% 2.81 1.38 1.42 -50.68%

PRO 375 4.27% 2.00 1.00 1.00 -50.00%

ProPreO 598 92.64% 20.97 5.95 15.02 -71.64%

REA 96 32.29% 24.81 23.45 1.35 -5.46%

RNAO 585 5.81% 84.94 82.94 2.00 -2.35%

SIO 2205 9.57% 153.84 151.50 2.35 -1.52%

SEQ 1943 2.62% 21.22 19.61 1.61 -7.58%

SIGKKD2 94 9.57% 7.33 6.33 1.00 -13.64%

SitBAC 464 11.42% 210.91 140.66 70.25 -33.31%

SPO 678 27.73% 175.82 170.01 5.81 -3.31%

SDO 2664 21.51% 301.25 297.36 3.88 -1.29%

SOF2 2095 18.47% 2.70 1.31 1.39 -51.39%

STAT 171 34.50% 23.32 21.95 1.37 -5.89%

SUBA 75 6.67% 3.40 1.60 1.80 -52.94%

SUB1 491 46.84% 2.75 1.58 1.17 -42.56%

SUB2 458 73.36% 37.10 30.68 6.42 -17.31%

TAM 595 50.59% 129.48 75.51 53.97 -41.68%

TOK 370 0.27% 3.00 1.00 2.00 -66.67%

UNI 162 3.70% 7.00 4.17 2.83 -40.48%

UNIB 89 8.99% 5.88 2.25 3.63 -61.70%

VIVO 638 0.63% 3.50 2.00 1.50 -42.86%

WORM 1173 33.50% 2.52 1.09 1.42 -56.57%

YBC 162 17.90% 6.31 2.45 3.86 -61.20%

183

Bibliography

[AHV95] Serge Abiteboul, Richard Hull and Victor Vianu, eds. Foundations

of Databases: The Logical Level. 1st. Boston, MA, USA: Addison-

Wesley Longman Publishing Co., Inc., 1995. ISBN: 0201537710.

[Baa+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele

Nardi and Peter F. Patel-Schneider, eds. The Description Logic

Handbook: Theory, Implementation, and Applications. New York,

NY, USA: Cambridge University Press, 2003. ISBN: 0521781760.

[BBL05] Franz Baader, Sebastian Brandt and Carsten Lutz. “Pushing the EL

Envelope”. In: Proceedings of the 19th International Joint Confer-

ence on Artificial Intelligence. IJCAI’05. Edinburgh, Scotland: Mor-

gan Kaufmann Publishers Inc., 2005, pp. 364–369.

[BCH06a] Jie Bao, Doina Caragea and Vasant G. Honavar. “Modular Onto-

logies – a Formal Investigation of Semantics and Expressivity”.

In: Proceedings of the First Asian Conference on The Semantic Web.

ASWC’06. Beijing, China: Springer-Verlag, 2006, pp. 616–631.

ISBN: 3-540-38329-8, 978-3-540-38329-1.

[BCH06b] Jie Bao, Doina Caragea and Vasant G Honavar. “On the semantics

of linking and importing in modular ontologies”. In: In Interna-

tional Semantic Web Conference (ISWC. Springer, 2006, pp. 72–

86.

[Ben04] M. Benedetti. sKizzo: a QBF Decision Procedure based on Proposi-

tional Skolemization and Symbolic Reasoning. Tech. rep. 04-11-03.

ITC-irst, 2004.

185

BIBLIOGRAPHY

[Bie+09] A. Biere, A. Biere, M. Heule, H. van Maaren and T. Walsh. Hand-

book of Satisfiability: Volume 185 Frontiers in Artificial Intelligence

and Applications. Amsterdam, The Netherlands, The Netherlands:

IOS Press, 2009. ISBN: 1586039296, 9781586039295.

[BL99a] Hans K. Buning and T. Letterman. Propositional Logic: Deduction

and Algorithms. New York, NY, USA: Cambridge University Press,

1999. ISBN: 0521630177.

[BL99b] Hans Kleine Büning and Theodor Lettmann. Propositional Lo-

gic: Deduction and Algorithms (Cambridge Tracts in Theoretical

Computer Science). Cambridge University Press, 1999. ISBN:

0521630177.

[BM07] John-Adrian Bondy and U. S. R. Murty. Graph theory. Graduate

texts in mathematics. OHX. New York, London: Springer, 2007.

ISBN: 9781846289699.

[BS03] Alex Borgida and Luciano Serafini. Distributed Description Logics:

Assimilating Information from Peer Sources. 2003.

[BS08] Franz Baader and Boontawee Suntisrivaraporn. “Debugging

SNOMED CT using axiom pinpointing in the description logic

EL + +”. In: Proceedings of the International Conference on Rep-

resenting and Sharing Knowledge Using SNOMED (KR-MED 2008),

Phoenix, Arizona. 2008.

[Cal+07] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maur-

izio Lenzerini and Riccardo Rosati. “Tractable Reasoning and Effi-

cient Query Answering in Description Logics: The DL-Lite Family”.

In: J. Autom. Reasoning 39.3 (2007), pp. 385–429.

[Cla10] Optimising Ontology Classification. “Birte Glimm and Ian Hor-

rocks and Boris Motik and Giorgos Stoilos”. In: Proc. of the 9th Int.

Semantic Web Conf. (ISWC 2010). Ed. by Peter F. Patel-Schneider,

Yue Pan, Pascal Hitzler, Peter Mika, Lei Zhang, Jeff Z. Pan, Ian

BIBLIOGRAPHY 186

BIBLIOGRAPHY

Horrocks and Birte Glimm. Vol. 6496. LNCS. Shanghai, China:

Springer, Nov. 2010, pp. 225–240.

[CPS06] Bernardo Cuenca Grau, Bijan Parsia and Evren Sirin. “Combin-

ing OWL Ontologies Using E-Connections”. In: Web Semantics 4.1

(Jan. 2006), pp. 40–59. ISSN: 1570-8268.

[Dan+01] Evgeny Dantsin, Thomas Eiter, Georg Gottlob and Andrei

Voronkov. “Complexity and Expressive Power of Logic Pro-

gramming”. In: ACM Comput. Surv. 33.3 (2001), pp. 374–425.

ISSN: 0360-0300.

[Deg+08] Kirill Degtyarenko, Paula de Matos, Marcus Ennis, Janna Hast-

ings, Martin Zbinden, Alan McNaught, Rafael Alcántara, Michael

Darsow, Mickaël Guedj and Michael Ashburner. “ChEBI: a data-

base and ontology for chemical entities of biological interest”. In:

Nucleic Acids Research 36.suppl 1 (2008), pp. D344–D350.

[Del+11] Chiara Del Vescovo, Bijan Parsia, Ulrike Sattler and Thomas

Schneider. “The Modular Structure of an Ontology: Atomic

Decomposition and Module Count.” In: WoMO. 2011, pp. 25–39.

[Del+12] Chiara Del Vescovo, Pavel Klinov, Bijan Parsia, Uli Sattler, Thomas

Schneider and Dmitry Tsarkov. “Syntactic vs. Semantic Locality:

How Good Is a Cheap Approximation?” In: CoRR abs/1207.1641

(2012).

[Dij+76] Edsger Wybe Dijkstra, Edsger Wybe Dijkstra, Edsger Wybe Dijk-

stra and Edsger Wybe Dijkstra. A discipline of programming. Vol. 1.

prentice-hall Englewood Cliffs, 1976.

[EB05] Niklas Eén and Armin Biere. “Effective Preprocessing in SAT

Through Variable and Clause Elimination”. In: Proceedings of

the 8th International Conference on Theory and Applications of

Satisfiability Testing. SAT’05. St Andrews, UK: Springer-Verlag,

2005, pp. 61–75. ISBN: 3-540-26276-8, 978-3-540-26276-3.

BIBLIOGRAPHY 187

BIBLIOGRAPHY

[Gan+02] Aldo Gangemi, Nicola Guarino, Claudio Masolo, Alessandro

Oltramari and Luc Schneider. “Sweetening Ontologies with

DOLCE”. In: Proceedings of the 13th International Conference on

Knowledge Engineering and Knowledge Management. Ontologies

and the Semantic Web. EKAW ’02. London, UK, UK: Springer-

Verlag, 2002, pp. 166–181. ISBN: 3540442685.

[GF95] M. Grüninger and M. Fox. “Methodology for the Design and Eval-

uation of Ontologies”. In: IJCAI’95, Workshop on Basic Ontological

Issues in Knowledge Sharing, April 13, 1995. 1995.

[GKW13] William Gatens, Boris Konev and Frank Wolter. “Module Extrac-

tion for Acyclic Ontologies”. In: WoMO. Vol. 1081. CEUR Work-

shop Proceedings. CEUR-WS.org, 2013.

[GKW14] William Gatens, Boris Konev and Frank Wolter. “Lower and Up-

per Approximations for Depleting Modules of Description Logic

Ontologies.” In: ECAI. 2014, pp. 345–350.

[GLW06] S. Ghilardi, C. Lutz and F. Wolter. “Did I Damage my Ontology?

A Case for Conservative Extensions in Description Logics”. In:

Proceedings of the Tenth International Conference on Principles of

Knowledge Representation and Reasoning (KR’06). Ed. by Patrick

Doherty, John Mylopoulos and Christopher Welty. AAAI Press,

2006, pp. 187–197.

[Gol+11] J. Golbeck, G. Fragoso, F. Hartel, J. Hendler, J. Oberthaler and B.

Parsia. “The National Cancer Institute’s Thesaurus and Ontology”.

In: Web Semantics: Science, Services and Agents on the World Wide

Web 1.1 (2011), pp. 75–80.

[GPS12a] Rafael S. Gonçalves, Bijan Parsia and Ulrike Sattler. “Concept-

Based Semantic Difference in Expressive Description Logics”. In:

Proceedings of the 2012 International Workshop on Description Lo-

gics, DL-2012, Rome, Italy, June 7-10, 2012. 2012.

BIBLIOGRAPHY 188

BIBLIOGRAPHY

[GPS12b] Rafael S. Gonçalves, Bijan Parsia and Ulrike Sattler. “Perform-

ance Heterogeneity and Approximate Reasoning in Description

Logic Ontologies.” In: ed. by Philippe Cudré-Mauroux, Jeff

Heflin, Evren Sirin, Tania Tudorache, Jérôme Euzenat, Manfred

Hauswirth, Josiane Xavier Parreira, Jim Hendler, Guus Schreiber,

Abraham Bernstein and Eva Blomqvist. Lecture Notes in Com-

puter Science. Springer, 2012, pp. 82–98.

[Gra+07] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov and Ul-

rike Sattler. “Just the right amount: extracting modules from on-

tologies”. In: Proceedings of the 16th International Conference on

World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12,

2007. 2007, pp. 717–726.

[Gra+08] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov and Ul-

rike Sattler. “Modular Reuse of Ontologies: Theory and Practice”.

In: J. Artif. Intell. Res. (JAIR) 31 (2008), pp. 273–318.

[Gra+10] Bernardo Cuenca Grau, Christian Halaschek-Wiener, Yevgeny

Kazakov and Boontawee Suntisrivaraporn. “Incremental Classi-

fication of Description Logics Ontologies”. In: JAR 44.4 (2010),

pp. 337–369.

[Gro04] OWL Working Group. OWL Web Ontology Language Guide. https:

//www.w3.org/TR/owl-guide/. Accessed: 2016-05-06. 2004.

[GSG04] Pierre Grenon, Barry Smith and Louis Goldberg. “Biodynamic On-

tology: Applying BFO in the Biomedical Domain”. In: IOS Press,

2004, pp. 20–38.

[GY05] Jonathan L. Gross and Jay Yellen. Graph Theory and Its Applica-

tions, Second Edition (Discrete Mathematics and Its Applications).

Chapman & Hall/CRC, 2005. ISBN: 158488505X.

[Haa+12] Volker Haarslev, Kay Hidde, Ralf Möller and Michael Wessel. “The

RacerPro knowledge representation and reasoning system”. In:

Semantic Web Journal 3.3 (2012), pp. 267–277.

BIBLIOGRAPHY 189

https://www.w3.org/TR/owl-guide/
https://www.w3.org/TR/owl-guide/

BIBLIOGRAPHY

[HB11] M. Horridge and S. Bechhofer. “The OWL API: A Java API for

OWL ontologies”. In: Semantic Web 2.1 (2011), pp. 11–21.

[Hit+09] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-

Schneider and Sebastian Rudolph, eds. OWL 2 Web Ontology

Language: Primer. Available at http://www.w3.org/TR/owl2-

primer/. W3C Recommendation, 27 October 2009.

[HKH08] Riikka Henriksson, Tomi Kauppinen and Eero Hyvönen. “Core

Geographical Concepts: Case Finnish Geo-Ontology”. In: Apr.

2008.

[HKS06] Ian Horrocks, Oliver Kutz and Ulrike Sattler. “The Even More Ir-

resistible SROIQ”. In: Proc. of the 10th Int. Conf. on Principles of

Knowledge Representation and Reasoning (KR 2006). AAAI Press,

2006, pp. 57–67. ISBN: 9781577352716.

[Hoe+07] Rinke Hoekstra, Joost Breuker, Marcello Di Bello and Er Boer.

“The LKIF Core ontology of basic legal concepts”. In: In Pompeu

Casanovas, Maria Angela Biasiotti, Enrico Francesconi, and Maria

Teresa Sagri, editors, Proceedings of the Workshop on Legal Ontolo-

gies and Artificial Intelligence Techniques (LOAIT 2007. 2007.

[HT02] Ian Horrocks and Sergio Tessaris. “Querying the Semantic Web:

a Formal Approach”. In: Proc. of the 13th Int. Semantic Web Conf.

(ISWC 2002), number 2342 in Lecture Notes in Computer Science.

Springer-Verlag, 2002, pp. 177–191.

[Jim+08] Ernesto Jimenez-Ruiz, Bernardo Cuenca Grau, Thomas Schneider,

Ulrike Sattler and Rafael Berlanga. “Safe and Economic re-use

of ontologies: a logic-based methodology and tool support”. In:

OWLEd 2008, Proceedings of the 4th International Workshop: OWL

Experiences and Directions, April 1-2, 2008. Another version of

this paper will also appear in Procedings of the 21st Description

Logics Workshop (DL-2008). 2008.

BIBLIOGRAPHY 190

http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-primer/

BIBLIOGRAPHY

[Kal+06a] Aditya Kalyanpur, Bijan Parsia, Evren Sirin and Bernardo Cuenca-

Grau. “Repairing Unsatisfiable Concepts in OWL Ontologies”.

In: Proceedings of the 3rd European Conference on The Semantic

Web: Research and Applications. ESWC’06. Budva, Montenegro:

Springer-Verlag, 2006, pp. 170–184. ISBN: 3-540-34544-2, 978-

3-540-34544-2.

[Kal+06b] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca

Grau and James Hendler. “Swoop: A Web Ontology Editing

Browser”. In: Web Semant. 4.2 (June 2006), pp. 144–153. ISSN:

1570-8268.

[Kaz08] Yevgeny Kazakov. “RIQ and SROIQ Are Harder than SHOIQ”.

In: KR. AAAI Press, 2008, pp. 274–284.

[Kon+08a] Boris Konev, Carsten Lutz, Dirk Walther and Frank Wolter. “Se-

mantic Modularity and Module Extraction in Description Logics”.

In: ECAI 2008 - 18th European Conference on Artificial Intelligence,

Patras, Greece, July 21-25, 2008, Proceedings. 2008, pp. 55–59.

[Kon+08b] Boris Konev, Carsten Lutz, Dirk Walther and Frank Wolter. “Se-

mantic Modularity and Module Extraction in Description Logics”.

In: ECAI. 2008, pp. 55–59.

[Kon+09a] Boris Konev, Carsten Lutz, Dirk Walther and Frank Wolter.

“Formal Properties of Modularisation”. In: Modular Ontologies:

Concepts, Theories and Techniques for Knowledge Modularization.

2009, pp. 25–66.

[Kon+09b] R. Kontchakov, L. Pulina, U. Sattler, T. Schneider, P. Selmer, F.

Wolter and M. Zakharyaschev. “Minimal Module Extraction from

DL-lite Ontologies Using QBF Solvers”. In: Proceedings of the 21st

International Jont Conference on Artifical Intelligence. IJCAI’09.

Pasadena, California, USA: Morgan Kaufmann Publishers Inc.,

2009, pp. 836–841.

BIBLIOGRAPHY 191

BIBLIOGRAPHY

[Kon+13] Boris Konev, Carsten Lutz, Dirk Walther and Frank Wolter.

“Model-theoretic inseparability and modularity of description

logic ontologies”. In: Artif. Intell. 203 (2013), pp. 66–103.

[KS13] Patrick Koopmann and Renate Schmidt. “Forgetting Concept and

Role Symbols in ALCH-Ontologies”. In: Logic in Programming, Ar-

tificial Intelligence and Reasoning (LPAR). Springer, 2013.

[Kut04] Oliver Kutz. “E-Connections and Logics of Distance”. PhD thesis.

The University of Liverpool, 2004.

[KWZ10] Roman Kontchakov, Frank Wolter and Michael Zakharyaschev.

“Logic-based ontology comparison and module extraction, with

an application to DL-Lite”. In: Artif. Intell. 174.15 (2010),

pp. 1093–1141.

[LB10a] Jens Lehmann and Lorenz Bühmann. “ORE - A Tool for Repairing

and Enriching Knowledge Bases”. In: Proceedings of the 9th Inter-

national Semantic Web Conference (ISWC2010). Lecture Notes in

Computer Science. Springer, 2010, pp. 177–193.

[LB10b] Florian Lonsing and Armin Biere. “DepQBF: A Dependency-Aware

QBF Solver.” In: JSAT 7.2-3 (2010), pp. 71–76.

[LK13] Michel Ludwig and Boris Konev. “Towards Practical Uniform In-

terpolation and Forgetting for ALC TBoxes”. In: Proceedings of

the 26th International Workshop on Description Logics (DL-2013).

(Ulm, Germany). Vol. 1014. CEUR-WS. 2013, pp. 377–389.

[LK14] Michel Ludwig and Boris Konev. “Practical Uniform Interpolation

and Forgetting for ALC TBoxes with Applications to Logical Dif-

ference”. In: Proceedings of the 14th International Conference on

Principles of Knowledge Representation and Reasoning (KR’14). Ed.

by Chitta Baral, Giuseppe De Giacomo and Thomas Eiter. AAAI

Press, 2014.

BIBLIOGRAPHY 192

BIBLIOGRAPHY

[LPW11] Carsten Lutz, Robert Piro and Frank Wolter. “Description Logic

TBoxes: Model-theoretic Characterizations and Rewritability”. In:

CoRR (2011).

[LST13] Birger Lantow, Kurt Sandkuhl and Vladimir Tarasov. “Selecting

Content Ontology Design Patterns for Ontology Quality Im-

provement”. In: Proceedings of the 6th International Workshop

on Information Logistics, Knowledge Supply and Ontologies in In-

formation Systems, Warzaw, Poland, September 23rd, 2013. 2013,

pp. 68–79.

[LW10] Carsten Lutz and Frank Wolter. “Deciding inseparability and con-

servative extensions in the description logic EL”. In: J. Symb. Com-

put. 45.2 (2010), pp. 194–228.

[LWW07] Carsten Lutz, Dirk Walther and Frank Wolter. “Conservative Ex-

tensions in Expressive Description Logics”. In: IJCAI 2007, Pro-

ceedings of the 20th International Joint Conference on Artificial In-

telligence, Hyderabad, India, January 6-12, 2007. 2007, pp. 453–

458.

[NBM13] Riku Nortje, Katarina Britz and Thomas Meyer. “Reachability

Modules for the Description Logic SRIQ.” In: LPAR. Ed. by

Kenneth L. McMillan, Aart Middeldorp and Andrei Voronkov.

Vol. 8312. Lecture Notes in Computer Science. Springer, 2013,

pp. 636–652. ISBN: 9783642452208.

[NK10] Immanuel Normann and Oliver Kutz. “Ontology Reuse and Ex-

ploration via Interactive Graph Manipulation”. In: Proceedings of

the 1st Workshop On Semantic Repositories For The Web, SERES-

2010. 2010.

[NM03] Natalya F. Noy and Mark A. Musen. “The PROMPT Suite: Inter-

active Tools for Ontology Merging and Mapping”. In: Int. J. Hum.-

Comput. Stud. 59.6 (Dec. 2003), pp. 983–1024. ISSN: 1071-5819.

BIBLIOGRAPHY 193

BIBLIOGRAPHY

[RGH12] Ana Armas Romero, Bernardo Cuenca Grau and Ian Horrocks.

“MORe: Modular Combination of OWL Reasoners for Ontology

Classification”. In: Proceedings of the 11th International Semantic

Web Conference (ISWC 2012). LNCS. Springer, 2012.

[Ric+14] Mariela Rico, María Laura Caliusco, Omar Chiotti and María Rosa

Galli. “OntoQualitas: A framework for ontology quality assess-

ment in information interchanges between heterogeneous sys-

tems.” In: Computers in Industry 65.9 (2014), pp. 1291–1300.

[Rom+14] Ana Armas Romero, Mark Kaminski, Bernardo Cuenca Grau and

Ian Horrocks. “Ontology Module Extraction via Datalog Reason-

ing”. In: CoRR (2014).

[Sha81] Micha Sharir. “A strong-connectivity algorithm and its applica-

tions in data flow analysis”. In: Computers & Mathematics with

Applications 7.1 (1981), pp. 67–72.

[Sir+07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyan-

pur and Yarden Katz. “Pellet: A Practical OWL-DL Reasoner”. In:

Web Semant. 5.2 (June 2007), pp. 51–53. ISSN: 1570-8268.

[Spa00] K.A. Spackman. “Managing clinical terminology hierarchies us-

ing algorithmic calculation of subsumption: Experience with

SNOMED-RT”. In: J. of the American Medical Informatics Associ-

ation (Fall Symposium Special Issue) (2000).

[SS09] Heiner Stuckenschmidt and Anne Schlicht. “Structure-Based

Partitioning of Large Ontologies.” In: Modular Ontologies. Ed. by

Heiner Stuckenschmidt, Christine Parent and Stefano Spaccapi-

etra. Vol. 5445. Lecture Notes in Computer Science. Springer,

15th June 2009, pp. 187–210. ISBN: 9783642019067.

[SSZ09] Ulrike Sattler, Thomas Schneider and Michael Zakharyaschev.

“Which Kind of Module Should I Extract?” In: Proceedings of the

22nd International Workshop on Description Logics (DL 2009),

Oxford, UK, July 27-30, 2009. 2009.

BIBLIOGRAPHY 194

BIBLIOGRAPHY

[Sun+08] Boontawee Suntisrivaraporn, Guilin Qi, Qiu Ji and Peter Haase.

“A Modularization-Based Approach to Finding All Justifications

for OWL DL Entailments”. In: The Semantic Web, 3rd Asian Se-

mantic Web Conference, ASWC 2008, Bangkok, Thailand, December

8-11, 2008. Proceedings. 2008, pp. 1–15.

[Tar72] Robert Tarjan. “Depth-first search and linear graph algorithms”.

In: SIAM journal on computing 1.2 (1972), pp. 146–160.

[TH06] Dmitry Tsarkov and Ian Horrocks. “FaCT++ Description Logic

Reasoner: System Description”. In: Proceedings of the Third In-

ternational Joint Conference on Automated Reasoning. IJCAR’06.

Seattle, WA: Springer-Verlag, 2006, pp. 292–297. ISBN: 3-540-

37187-7, 978-3-540-37187-8.

[The12] The Gene Ontology Consortium. “The Gene Ontology: en-

hancements for 2011”. In: Nucleic Acids Research 40.D1 (2012),

pp. D559–D564.

[TNM08] Tania Tudorache, Natalya Fridman Noy and Mark A. Musen. “Col-

laborative Protege: Enabling Community-based Authoring of On-

tologies”. In: International Semantic Web Conference (Posters &

Demos). 2008.

[TP12a] Dmitry Tsarkov and Ignazio Palmisano. Chainsaw: A Metareasoner

for Large Ontologies. 2012.

[TP12b] Dmitry Tsarkov and Ignazio Palmisano. “Chainsaw: a Metareasoner

for Large Ontologies.” In: ed. by Ian Horrocks, Mikalai Yatskevich

and Ernesto Jiménez-Ruiz. Vol. 858. CEUR Workshop Proceed-

ings. 2012.

[Tsa12] Dmitry Tsarkov. “Improved Algorithms for Module Extraction and

Atomic Decomposition”. In: Proceedings of the 2012 International

Workshop on Description Logics, DL-2012, Rome, Italy, June 7-10,

2012. 2012.

BIBLIOGRAPHY 195

BIBLIOGRAPHY

[Tse68] G.S Tseitin. “On the complexity of derivation in propositional cal-

culus”. In: Studies in Constructive Mathematics and Mathematical

Logic (1968), pp. 115–125.

[Ves+10] Chiara del Vescovo, Bijan Parsia, Uli Sattler and Thomas

Schneider. “The Modular Structure of an Ontology: An Em-

pirical Study”. In: Proceedings of the 2010 Conference on Modular

Ontologies: Proceedings of the Fourth International Workshop

(WoMO 2010). Amsterdam, The Netherlands, The Netherlands:

IOS Press, 2010, pp. 11–24. ISBN: 9781607505433.

[Ves+12] Chiara Del Vescovo, Pavel Klinov, Bijan Parsia, Ulrike Sattler,

Thomas Schneider and Dmitry Tsarkov. “Syntactic vs. Semantic

Locality: How Good Is a Cheap Approximation?” In: Proceedings

of the 6th International Workshop on Modular Ontologies, Graz,

Austria, July 24, 2012. 2012.

[Ves+13] Chiara Del Vescovo, Pavel Klinov, Bijan Parsia, Ulrike Sattler,

Thomas Schneider and Dmitry Tsarkov. “Empirical Study of

Logic-Based Modules: Cheap Is Cheerful”. In: Informal Proceed-

ings of the 26th International Workshop on Description Logics, Ulm,

Germany, July 23 - 26, 2013. 2013, pp. 144–155.

[Ves13] Chiara Del Vescovo. “The Modular Structure of an Ontology:

Atomic Decomposition and its Applications”. PhD thesis. The

University of Manchester, 2013.

[Whe+11] P. Whetzel, N. Fridam Noy, N. Shah, P. Alexander, C. Nyulas, T.

Tudorache and M. Musen. “BioPortal”. In: Nucleic Acids Research

Web-Server-Issue (2011), pp. 541–545.

[WPH06] Taowei David Wang, Bijan Parsia and James Hendler. “A Survey

of the Web Ontology Landscape”. In: Proceedings of the 5th Inter-

national Conference on The Semantic Web. ISWC’06. Athens, GA,

2006, pp. 682–694. ISBN: 3-540-49029-9, 978-3-540-49029-6.

BIBLIOGRAPHY 196

	Introduction
	Producing high quality ontologies
	Reuse of ontologies
	Modules

	Contributions
	Contributions of this Thesis
	Structure of this Thesis

	Background
	Description Logics
	Signatures
	Acyclic Terminologies

	Quantified Boolean Formulas
	Inseparability-based modules
	Robustness properties
	Safety
	Complexity and computability

	Modules for inseparability relations
	Model inseparability modules for ELI and ALCI
	Concept and Query Inseparability for DL-Lite
	Datalog Modules
	Locality based modules

	Success of approximations
	Summary

	Approximations for Acyclic Terminologies
	Model-inseparable modules
	Acyclic ALCI Approximation
	One-point criterion
	Unrestricted signatures
	Approximation Extraction Algorithm

	Logical extensions
	Terminologies with repeated concept inclusions
	Deciding inseparability for acyclic ALCQI with RCIs

	Improving practical performance
	Detecting axiom dependencies
	Deciding inseparability
	Introducing AMEX

	Comparing performance
	Conclusion

	Hybrid Module Extraction
	Combining depleting modules
	Combining STAR and AMEX
	Splitting ontologies for AMEX
	Moving non-terminological axioms
	Breaking terminological cycles

	Conclusion

	How Good is an Approximation?
	Upper and lower approximations
	Computing the lower approximation
	Deciding exactly n-inseparability from the empty ontology
	Nominals
	Extracting exactly n-depleting modules

	Conclusion

	Experimental Evaluation
	Research questions
	Experimental Setting
	Ontology selection
	Signature selection

	Experiments on NCI
	Fragments of NCI
	Full NCI

	Experiments over the experimental corpus
	Differences in upper approximations
	Minimality
	Performance

	Conclusion

	Conclusions
	Conclusions
	Future Work

	Experimental Ontologies
	Experimental Results : Comparing Upper Approximations
	Bibliography

