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Abstract 

The experiments reported in this thesis explore the electrophysiological response to visual 

symmetry. Symmetry is an important visual feature in object recognition and image 

segmentation that is efficiently processed by the visual system. Neuroimaging and 

electrophysiological research has provided a greater understanding of how the human brain 

processes symmetry. ERP research has identified a neural signature for symmetry processing 

termed the Sustained Posterior Negativity (SPN): Lower amplitude is observed in posterior 

electrodes for symmetrical than random patterns from around 200ms after stimulus onset. 

This thesis will address four important and novel questions: (1) Can the SPN be produced 

independently within each hemisphere? (2) Is right lateralised alpha desynchronisation during 

regularity discrimination the result of hemisphere specialisation or directed spatial attention? 

(3) Does visual crowding influence the SPN? and (4) How does figure-ground assignment 

influence the neural response to symmetry? The current studies show for the first time that the 

SPN can be produced to stimuli in the periphery with symmetry processed by independent 

symmetry sensitive networks within each hemisphere. It also offers evidence that the right 

hemisphere may be specialised for symmetry perception. Moreover, figure-ground assignment 

and visual crowding are shown to modulate the SPN. Together these experiments highlight 

that this automatic response to symmetry is processed independently in each hemisphere and 

is subject to bottom-up stimulus characteristics.  
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1. Introduction and Overview 

This thesis is concerned with the human perception of visual symmetry, its function and 
neural mechanisms. Symmetry perception has a long history dating back to the work of Mach 
(1886/1959), with it being of interest to many different fields. In respect to vision, symmetry 
has been linked to the detection of objects and image segmentation. Recently, psychophysics 
and neuroimaging studies have allowed for an improved understanding of how the human 
brain processes visual symmetry (Bertamini & Makin, 2014; Dakin & Watt 1994; Kohler et 
al., 2016; Sasaki, Vanduffel, Knutsen, Tyler & Tootell, 2005; Wagemans, 1995).  

EEG research has identified a symmetry specific ERP component: the Sustained 
Posterior Negativity (SPN). This is a late component where the amplitude is lower for 
symmetrical than random patterns from around 200ms after stimulus onset. There has been a 
growing body of research examining this ERP response to symmetry (Bertamini & Makin, 
2014). However, many questions are still to be addressed.   

The aim of this chapter is to introduce the importance of symmetry perception, and 
recent developments in the study of the neural response to visual symmetry. I will firstly 
outline why symmetry is such a significant feature to be investigated and why it is ubiquitous 
in everyday life. In section 1.1 I will provide a definition as well as highlight the different 
types of symmetry that exist. Following this I will outline a number of the symmetry 
perception models that have been proposed. In section 1.3 I will then highlight the neural 
areas that are thought to be involved in symmetry processing, before reviewing the 
electrophysiological literature. This chapter will provide only a brief introduction, as each 
individual chapter has its own introduction that will provide a more specific review of the 
literature and the experimental hypotheses. At the end of this chapter is an overview, which 
provides a summary of the hypotheses, main findings and conclusions of each chapter.  

 

 Symmetry is an important and abundant feature in the world around us. It occurs 

frequently in nature for example, it can be seen in insects and animals such as in the wings of 

a butterfly and the human body. Plants also exhibit many types of symmetry in the shape of 

their leaves and petals, the repetition of the leaves all over the plant and the cylindrical 

symmetry in their structure. Alongside this, symmetry can be observed in many man-made 

objects. The reflectional symmetry seen in Acheulean hand axes dating from 500,000 years 

ago is the earliest example of a human interest in this regularity (Hodgson, 2011). Symmetry 

is often incorporated into the design of buildings such as the Taj Mahal and in works of art; 

with it claimed to be the foundation of both science and nature (Rosen, 2009).  
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The visual system is adapted to efficiently process symmetry (Barlow & Reeves, 

1979; Carmody, Nodine, & Locher, 1977; Wagemans, Gool, & d’Ydewalle, 1991). Two 

explanations have been proposed for this adaption. Firstly, it has been linked to genetic and 

evolutionary factors; suggesting that symmetry is important in signalling reproductive fitness 

of other members of the species (Møller, 1992; Rhodes, Proffitt, Grady & Sumich, 1998). 

Human mate choice is driven by reproductive fitness, with attractiveness indicating genetic 

quality. Reflectional symmetric faces and bodies are judged as more attractive than less 

symmetrical ones (Bertamini, Byrne & Bennett, 2013; Penton-Voak et al., 2001; Tovee, 

Tasker, & Benson, 2000). Deviations from reflectional symmetry result when an individual is 

confronted with developmental stress (e.g. disease or parasites) and they are unable to resist 

these circumstances. When choosing a mate, an individual would attempt to maximise their 

chances of reproductive success by choosing a mate with good genetic fitness, which would 

be indexed by reflectional symmetric features. A preference for symmetry in other objects 

such as works of art and buildings could be explained by this mechanism overgeneralising. 

Sensitivity for reflectional symmetry is found not only cross-culturally but also throughout the 

animal kingdom such as in rhesus monkeys, dolphins, swordtail fish, bees and various bird 

species (Benard, Stach, & Giurfa, 2006; Delius & Nowak, 1982; Møller 1992; Swaddle & 

Cuthill, 1994). This genetic and evolutionary theory proposes that the adaption of the visual 

system to symmetry is driven by natural selection. Although this is a well-known example, 

the evidence for a link between a preference for symmetry and evolutionary factors is not 

particularly strong. For example, the effect size for a preference for reflectional symmetric 

faces and bodies has been reported to be small and may even be zero once corrected for 

publication bias (a negative association between effect size and sample size; van Dongen, 

2011). In addition, human facial symmetry has been found to correlate weakly with health 

(Rhodes et al., 2001; For a review see Møller & Swaddle, 1997).  
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 A second explanation suggests that symmetry is important in signalling objects 

through image segmentation and object representation (Li, Pizlo, & Steinman, 2009; 

Machilsen, Pauwels, & Wagemans, 2009). Reflection is processed quickly and efficiently, 

particularly for vertical orientation (Mach, 1886/1959; Bertamini, 2010; Bertamini, 

Friedenberg, & Argyle, 2002; Bertamini, Friedenberg & Kubovy, 1997; Friedenburg & 

Bertamini, 2000). This ease at which the visual system processes symmetry emphasizes its 

importance in perceptual organisation. Gestalt psychologists identified symmetry as a 

grouping principle due to its high level of ‘goodness’ (Koffka, 1935/1962). Reflection is said 

to be a cue to a single object, whilst repetition is easier to detect when it forms two objects 

(Corballis & Roldan, 1974; Koning & Wagemans, 2009; Bertamini 2010; Treder & van der 

Helm, 2007). The importance of symmetry in object representation is further emphasised 

through the key role it plays in figure-ground assignment: symmetrical regions tend to be 

perceived as the figure in ambiguous figure-ground displays (Driver et al., 1992; Kanizsa & 

Gerbino, 1976).   

 

1.1. Defining symmetry  

Symmetry has been studied across many fields including physics, computer vision and 

mathematics. One branch of mathematics, group theory is a mathematical method that 

describes groups of patterns (both number and geometric groups). As a result symmetry is 

closely connected with this method. Patterns can be classified in a number of ways including 

Euclidian plane isometries, the 7 frieze groups and the 17 wallpaper groups (Grünbaum & 

Shephard, 1987; Figure 1.1). In geometry, an object is classed as symmetrical if it remains 

invariant after a Euclidian transformation. When people think of symmetry they tend to think 

of mirror symmetry, but symmetry actually belongs to a group of isometries, which contains 

reflection (sometimes referred to as mirror or bilateral symmetry), translation, rotation and 
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glide reflection. Reflection consists of an object being divided by one plane so that the halves 

are mirror images. Increasing the number of planes the object is divided into will also increase 

the number of axis. Translation is the transposition of an object without reflecting or 

mirroring whilst rotation is where the pattern looks the same after being turned around an axis 

of angle. Glide reflection is a more complex symmetry, which combines reflection and 

translation along the direction of the mirror line. Throughout this thesis, the word ‘symmetry’ 

and ‘regularity’ will be used in the general sense to refer to all rigid transformations, which 

include reflection, translation and rotation. Furthermore, when stimuli are referred to as being 

‘random’, it is to indicate that they are non-symmetric in shape.  
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Figure 1.1. Classification of plane isometries, freize patterns and wallpaper groups. A) 
Reflection, translation, rotation and glide reflection symmetries. B) 7 Frieze patterns 
(Reprinted from Liu, Collins & Tsin, 2004. Used with permission from IEEE). C) 17 
wallpaper group patterns (Reprinted from Grünbaum, Grünbaum, & Shephard, 1986. Used 
with permission from Elsevier).  

B"

C

A

Reflec)on" Transla)on" Rota)on" Glide"Reflec)on"
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1.2. Models of symmetry perception 

A number of models have been developed to explain the mechanisms of human symmetry 

perception. These consist of process, spatial filtering (which can be considered as process 

models) and representational models. Despite there being a number of formal models for 

symmetry detection there is not yet one that has been fully tested and agreed upon.  

Process models attempt to describe the mechanisms of detection and how symmetry is 

extracted from visual information. Wagemans et al. (1993) proposed one such model whereby 

higher order structures are formed by joining symmetric positioned dot pairs with virtual 

lines. These virtual lines can also create virtual quadrangles and trapezoids, which can 

establish a reference frame that indicates the likely direction in which other dot pairings are to 

be found. This enhances the local pairing of elements in the whole pattern allowing for an 

efficient and rapid representation of the symmetry to be built from an initial random pairing of 

elements. This approach explains a number of the behavioural findings, for example, why 

fronto-parallel reflection is detected more easily than skewed reflection (Wagemans, Van 

Gool & d’Ydewalle, 1991).   

A number of spatial filtering models have also been proposed (Dakin & Hess, 1997; 

Julesz & Chang, 1979; Kovesi, 1997; Osorio, 1996; Poirer & Wilson, 2010; Rainville & 

Kingdom, 1999). These models suggest that symmetry detection may take place in early 

visual areas as evidence indicates that these areas contain mechanisms sensitive to spatial 

frequency. Dakin and Watt (1994) proposed symmetry detection to be achieved through a 

two-stage spatial filter-processing model. The first stage of the Dakin and Watt model 

consists of a filtering process, whereby the symmetrical pattern is horizontally filtered 

followed by thresholding (which removes values close to the mean grey level). This breaks 

down the pattern leaving just spatial frequency information as a number of black and white 
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‘blobs’ aligned across the vertical axis. The second stage involves blob alignment; a 

procedure that measures how well the centre of each blob aligns with the symmetry axis. 

Here, the spatial filtering scale that is used determines the amount that the blobs are aligned 

across the axis. The alignment of these blobs could be used to determine the presence of an 

object in the image.  

Another class of models, representational, focus on the detectability or salience of the 

symmetry. The two main models are the Holographic weight of evidence approach and the 

Transformational approach. The holographic approach by van der Helm and Leeuwenberg 

(1996) formalises regularities mathematical with the formula: W = E/N. E is the number of 

non-redundant pairings; N is the total number of elements in the stimulus whilst W is the 

perceptual goodness or saliency of the pattern. For example, for reflection E would be equal 

to the number of dot pairs in the pattern and N is the total number of dots. The holographic 

model accounts for a number of the findings in the symmetry literature. For instance, the 

salience of the symmetry decreasing as noise added to the pattern increases and that reflection 

is more salient than translation and rotation (Barlow & Reeves, 1979; Dakin & Herbert, 

1998). Alternatively, the transformational approach defines symmetry according to a block 

structure (Garner, 1974). For reflection each half of the pattern would be assigned block 

structure, whilst for translation each repeat would be identified as a block. However, this 

model cannot explain how reflection is more salient than either translation or rotation.   

 

1.3. Brain responses to symmetry 

Neuroimaging studies have identified a number of areas that are active during 

symmetry perception including the Lateral Occipital Complex (LOC), V3a, V4 and V7. 

Activations have not been reported in either V1 or V2 (Chen, Kao & Taylor 2007; Kohler et 

al., 2016; Sasaki et al., 2005; Tyler et al., 2005). This is somewhat interesting, as symmetry 
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coding has been suggested to depend on spatial filter properties, which would require 

engagement of these areas. Sasaki et al. (2005) showed that activity in these extrastriate visual 

areas correlated with the saliency of reflection symmetry, with higher activation being 

produced for vertical than horizontal as well as for 4-fold compared with one/two-fold 

reflection symmetry. More recently, Kohler et al. (2016) found similar supporting evidence 

using rotation.   

Transcranial Magnetic Stimulation (TMS) studies have also provided additional 

support for the involvement of the extrastriate areas in symmetry perception (Cattaneo et al., 

2011; Bona et al., 2014; Bona, Cattaneo & Silvanto, 2015). In an fMRI guided TMS study, 

Bona et al. (2014) applied TMS over either the left or right LOC. TMS disrupted reflection 

symmetry detection over both hemispheres with the effect being stronger in the right 

hemisphere. Cattaneo, Mattavelli, Papagno, Herbert and Silvanto (2011) also found that 

disrupting the LOC bilaterally through TMS altered symmetry discrimination. TMS applied to 

V1/V2 regions did not influence reflection symmetry detection.  

So far, it appears that higher visual areas (V3, V4, V7 and LOC) seem particularly 

involved in symmetry processing. This seems logical given that symmetry is a global feature 

and areas such as the LOC have been shown to be important in shape processing and 

perceptual organization (Grill-Spector, 2003; Malach et al., 1995). However, early visual 

areas may still be involved. For example, van der Zwan, Leo, Joung, Latimer, and Wenderoth 

(1998) found that cells in V1 coded information about the orientation of the axes of 

symmetry.  

 

1.4. Electrophysiological response to symmetry 

Event Related Potentials (ERPs) are voltage fluctuations, which can be induced by physical or 

mental activity and averaged from electroencephalogram (EEG) data. ERPs have been 
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recorded from posterior electrodes in response to the presentation of reflection and random 

patterns whilst participants judged whether the patterns were reflectional or not (Norcia et al., 

2002). It was found that ERPs were similar at P1 and N1 however at around 200ms after 

stimulus onset, the waves diverged with reflection being more negative in amplitude than 

random (Figure 1.2). Jacobsen and Höfel (2003) later referred to this component as the 

Sustained Posterior Negativity (SPN). The SPN is described as a difference between the ERP 

wave for a symmetrical pattern and the ERP wave for a random pattern from around 200ms 

after stimulus onset. Negativity is used as a relative term to simply mean that symmetry is 

lower in amplitude than random.  

 

 

Figure 1.2. The Sustained Posterior Negativity (SPN). A) Grand-average waveforms for a 
reflection pattern and a random pattern recorded from posterior brain regions. B) Grand-
average waveforms shown as a difference wave (Reflection – Random). Figure adapted from 
Bertamini & Makin (2014). 

 

The SPN has been found to be present when viewing symmetry under various 

conditions. Makin, Rampone, Pecchinenda, and Bertamini (2013) showed that reflection 

produced the largest SPN. This is consistent with psychophysical findings, which have shown 

that reflection is the most salient of the regularities (Bertamini, 2010; Koning & Wagemans, 

2009). Amplitude of the SPN in an early part of the SPN window also closely reflects 

perceptual goodness (Makin et al., 2016). When attending to symmetry, the SPN is view 

A B
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invariant (Makin Rampone, & Bertamini, 2015). The SPN is task independent with it 

observed even when participants are engaged in tasks where stimulus regularity was not 

important. For example, it is produced (although reduced) when participants are required to 

attend to the features of a reflectional pattern (e.g. colour) or to words superimposed words on 

the presented pattern (Makin, Rampone, & Bertamini, 2015). Furthermore an SPN is present 

when participants are required to deliberately misreport their actual judgments and so give 

incorrect responses about the presented stimuli (Höfel & Jacobsen, 2007b). The SPN has also 

been recorded during an oddball detection task whereby participants had to detect two squares 

amongst the presented dot pattern (Makin, Rampone, Pecchinenda, & Bertamini, 2013).  

The SPN seems to be generated by extrastriate visual areas (V3a, V4, V7, LOC). 

Makin et al. (2012) performed a source localization analysis and found posterior brain regions 

produced the SPN. More precisely the SPN is likely to be generated by the LOC, which has 

been deemed the foremost symmetry area. Palumbo, Makin and Bertamini (2015) found that 

SPN amplitude, like LOC activation, scaled with the amount of reflectional symmetry in the 

image. Although not firm evidence, this is consistent with the findings from the neuroimaging 

studies (Chen, Kao and Taylor 2007; Kohler et al., 2016; Sasaki et al., 2005; Tyler et al., 

2005). Overall, the SPN appears to be a response to visual symmetry in the image by a 

network of symmetry sensitive extrastriate visual areas in both hemispheres.  

	

1.5. Chapters’ overview  

The aim of this thesis is to examine the neural response to visual symmetry. In this 

section I will provide an outline of the main research questions and summarize the results of 

each experimental chapter.   

This thesis begins with an investigation into the neural response to patterns presented 

in the left or in the right visual hemifield (Chapter 2). To date, symmetry perception and the 
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SPN have assumed to be produced by a network spanning both hemispheres. Previous work 

had only examined the SPN in relation to symmetry presented in central vision (which 

generates bilateral hemisphere activation; e.g. Palumbo, Makin, & Bertamini, 2015). It may 

be that the SPN is only produced to symmetry in central vision, however it is possible that the 

SPN will be produced independently in each hemisphere when symmetry is presented in the 

contralateral visual field. For the first time, we present patterns in the periphery to investigate 

whether the SPN can be produced independently within each hemisphere. Participants were 

presented with different stimulus arrangements whilst fixating centrally. Following this they 

then performed a discrimination task that involved reporting whether the stimuli were light or 

dark red. In Experiment 1(2)1, a reflection and a random pattern were simultaneously 

presented either side of fixation. In Experiment 2(2), a single pattern (reflection or random) 

was presented in either the left or the right visual field. In Experiment 3(2), participants were 

presented with matching patterns either side of fixation. Across the three experiments, the 

SPN was found within each hemisphere and, surprisingly, it was unaffected by what was 

presented to the other hemisphere. This suggests that each cerebral hemisphere has its own 

independent symmetry sensitive network in the extrastriate visual areas. It can also be 

concluded that symmetry perception does not require stimulation of both hemispheres to be 

achieved.   

Another way of examining EEG is by looking at neural oscillations (Klimesch, 

Sauseng, & Hanslmayr, 2007; Pfurtscheller & Lopes da Silva, 1999). The study in Chapter 3 

provides an investigation into lateralised alpha event related desynchronization (ERD) during 

regularity discrimination. Neural oscillations are large assemblies of neurons that fire together 

in synchrony. They are ubiquitous in the brain and they play a key role in brain processes. 

Alpha oscillations (8-13Hz) occur in posterior brains regions. Oscillations are measured in 

																																																													
1 The value in the brackets reports the number of the chapter (e.g. Experiment 1(2) is 
Experiment 1, Chapter 2).  
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power with a reduction in alpha power (or alpha event related desynchronization) reflecting 

an indirect index of excitation of the visual cortex. Two previous studies that have examined 

alpha ERD during regularity discrimination have reported a right lateralised hemisphere 

response which could either be a result of directed spatial attention or hemisphere 

specialisation (Makin et al., 2012; 2014). In the experiment in Chapter 3, alpha 

desynchronization was recorded over posterior brain regions whilst participants viewed 

reflection or translation patterns on either a vertical or horizontal axis of orientation. After 

stimulus presentation, participants had to classify the patterns as either reflection or 

translation. Alpha ERD was found in both the left and right hemispheres. However, this 

response was greater in the right hemisphere than the left. These results suggest that the right 

hemisphere is more specialised for regularity discrimination. However, the role of spatial 

attention cannot be completely ruled out as participants may still have moved their attention 

to the left regardless of pattern orientation.   

Chapter 4 investigates how flanking objects influence the SPN. Both peripheral 

presentation and the presence of other objects can impair symmetry perception. Visual 

crowding is the reduced ability to perceive a target when flanked by objects. This effect is 

most prominent in peripheral vision. The strength of crowding is determined by the position 

of the flankers to the target as well as the features that these objects share. In chapter 2 it was 

demonstrated that the SPN could be produced to patterns presented in peripheral vision. 

Behaviourally it has been shown that reflection symmetry is subject to visual crowding 

(Roddy & Gurnsey, 2011). The SPN may be modulated when reflection is presented in the 

periphery amongst other objects (either reflection or random in shape). In Experiment 1(4), 

participants were presented with a target (reflection or random) that was flanked by two 

random (non-symmetric) objects. Flankers could be positioned both above and below the 

target or either side. Participants were required to judge whether the target was symmetrical or 
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not. There are two hypotheses. The first hypothesis predicts that as the SPN is a response to 

symmetry in the image, this response will be produced whenever symmetry is present. This 

response would not be influenced by the position of the flankers. Alternatively, it has been 

found that the SPN responds to symmetry in the image with saliency of the symmetry 

increasing ERP amplitude. A second hypothesis therefore would predict that how easily the 

symmetry is perceived may impact on this response. Therefore, the size of the SPN will be 

determined by the strength of crowding. It was found that the SPN response in an early time 

window (200-600ms after stimulus onset) scaled with the strength of crowding. Crowding can 

also be affected by target-flanker similarity. For example, when the target and flankers share 

dissimilar features crowding is reduced (Kooi et al., 1994). As the SPN is a response to 

symmetry, this response may scale with the amount of symmetry in the image. Conversely, 

based on the results of Experiment 1(4) the SPN may be modulated by the strength of 

crowding. In Experiment 2(4), the target and the flankers could be either all reflection, all 

random or different (e.g. a reflection target with two random flankers or vice versa) in shape. 

We found that when there was crowding the SPN was no longer present. In an attempt to 

reduce crowding and thus induce the SPN in Experiment 3(4) we varied two features (shape 

and contrast polarity) of the targets and the flankers. Black targets were presented amongst 

two white flankers. Again, the target and flankers could either be all reflection, all random or 

different in shape. It was found that, consistent with Experiment 1, the SPN response scaled 

with the strength of crowding. We conclude that the SPN is an automatic response to 

symmetry, which is present in the periphery and influenced by the presence of other objects.   

Chapter 5 examines the electrophysiological response to symmetry during figure-

ground assignment. Reflectional symmetry and convexity are both important cues in figure-

ground assignment. When participants are presented with ambiguous figure-ground displays, 

both convexity and reflectional symmetry are important factors in determining what is 
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perceived as the figure (Driver et al., 1995; Kanizsa & Gerbino, 1976; for a review see 

Bertamini & Wagemans, 2013). We examined how figure-ground assignment would affect 

the SPN. To test this, we adapted stimuli used by Kanizsa and Gerbino (1976), which 

consisted of displays containing multiple red and green regions. When regions had convex 

parts they would be perceived as the figure whilst the concave parts would be seen as the 

ground. In Experiment 1(5), we were interested in the ERP when reflection was perceived as 

being the figure and when it was perceived in the ground. Participants were presented with 

displays in which regions were either reflection with convex contours (reflection in the figure) 

or reflection with concave contours (reflection in the ground) or random. Participants had to 

judge which part of the display was the figure. The SPN was lower in amplitude when 

reflection was the figure than when reflection was the ground. There was no difference in 

ERPs between random and reflection in the ground. However, in this first study, reflection 

and convexity were confounded. Consequently the lower amplitude ERP for reflection in the 

figure could either be the result of reflection or convexity. In order to rule out the SPN was a 

response to convexity we conducted Experiment 2(5). In this experiment, we modified the 

stimuli we had used in the first experiment, so that the displays contained reflection and 

random shapes, which could be either convex or concave in shape. Participants were required 

to either judge whether the presented shapes were red or green or if they were reflection or 

random. It was expected that we would find an SPN only for regions that were made of 

reflection convex contours. We found that there was a difference in ERPs for convexity when 

the displays were collapsed by regularity (reflection and random). However, regardless of the 

task for both the convex and concave displays there was no SPN (no difference between 

reflection and random). This lack of a difference between reflection and random for either 

convex or concave shapes was puzzling. In Experiment 3(5), the same stimuli were presented 

as those from Experiment 2 except the fixation cross was moved to the axis of symmetry. 
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Previous SPN experiments had always presented symmetry with the fixation cross on the axis 

of symmetry. The lack of an SPN for Experiment 2 may have resulted from this, as attention 

may not have been centred on the symmetry. Yet for Experiment 3(5) an SPN was not found 

between reflection and random for either convex or concave. In Experiment 4(5), the stimuli 

were modified so that the background matched the colour of the rest of the screen. 

Participants were presented with either one or three convex or concave shapes. For one shape 

there was no significant differences between conditions. However, for the three shapes there 

was found to be a significant difference between reflection convex and random convex but 

not between reflection concave and random concave. Overall the results suggest that the SPN 

is dependent on figure-ground assignment.  
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2. Can the SPN be produced independently within each 

hemisphere?* 

*This chapter has been published as: Wright, D., Makin, A.D.J. & Bertamini, M. (2016). 
Electrophysiological responses to symmetry presented in the left or in right visual hemifield. 
Cortex, 87, 93-108. 
 
2.1. Abstract 

Symmetry is a highly salient feature in the visual world, abundant in both man-made and 

natural objects. In particular, humans find reflectional symmetry most salient. 

Electrophysiological work on symmetry perception has identified a difference wave known as 

the Sustained Posterior Negativity (SPN) originating from extrastriate areas. Amplitude is 

more negative for symmetrical than random patterns, from around 200ms after stimulus onset. 

For the first time, we report responses to patterns presented exclusively in one hemifield. 

Participants were presented with reflection or random dot patterns to the left and right of 

fixation (3.2º). They judged whether the patterns were light red or dark red in colour. In 

Experiment 1, the pair always included one reflection and one random pattern. In Experiments 

2 and 3 we varied the information presented contralaterally. The SPN was generated 

separately in each hemisphere in response to what was presented in the contralateral visual 

hemifield (a lateralised SPN). We conclude that a symmetry-sensitive network of extrastriate 

areas can be activated independently in each cerebral hemisphere.  

 

2.2. Introduction 

Symmetry has a central role in the study of vision. Indeed, any system engaged in extracting 

structure from a rich image will either exploit regularities or become tuned to it (Enquist & 

Arak, 1994). Symmetry is a non-accidental property of an image, linked to the presence of 

objects in the environment, and therefore it can contribute to perceptual organisation 



	 25 

(Bertamini, 2010), to image segmentation (Machilsen, Pauwels, & Wagemans, 2009), and to 

the recovery of 3D structure (Pizlo & Stevenson, 1999). This paper is concerned with the role 

of the two cortical hemispheres in perception of symmetry. How the two hemispheres interact 

to process symmetry is a question that has been central to research in the topic since early 

work by Mach (1886/1959). We will review this background next, and then introduce our 

experiments that directly compared responses to reflection presented to the left or the right 

hemifield. 

 

2.2.1. Symmetry perception 

The study of the perception of symmetry has a long history (Barlow & Reeves, 1979; Koning 

& Wagemans, 2009; Mach, 1886/1959; Tyler, Hardage, & Miller, 1995; For a recent review 

see Treder, 2010), and over the last ten years a combination of psychophysics and imaging 

studies have led to a better understanding of how the human brain responds to symmetry 

(Bertamini & Makin, 2014; Chen, Kao & Tyler, 2007; Lux et al., 2006; Kohler et al., 2016, 

Sasaki, Vanduffel, Knutsen, Tyler & Tootell, 2005).  

Mach (1886/1959) noted that what is salient in perception is not the same as what is 

regular from a formal (mathematical) sense. Moreover, he speculated that reflectional 

symmetry, especially when the axis is vertical, might be salient because of the anatomical 

symmetry of the human visual system. Julesz (1971) explored this idea further. Given that the 

left half of the image would be processed in the right hemisphere, whilst the right half of the 

image would be processed in the left hemisphere, Julesz suggested that a point-by-point 

matching process occurs for corresponding locations. Braitenberg (1986, 1990) along with 

Milner and Jeeves (1979) suggested that the loci of this point-by-point matching were the 

fibres passing through the corpus callosum. The corpus callosum is the bundle of fibres that 

allows communication between the hemispheres. Its connections are widely spread in the 



	 26 

extrastriate cortices both in humans (Clarke & Miklossy, 1990) and macaques (Van Essen, 

Newsome & Bixby, 1982), with axons projecting densely between the areas where the vertical 

meridian of the visual field is represented. The premise of this callosal hypothesis is that each 

half of a pattern is processed in one hemisphere, and then mapped across the vertical midline 

via the corpus callosum.  

Some psychophysical and neuropsychological evidence supports the callosal 

hypothesis. First, detection of reflection symmetry is worse in peripheral vision (Gurnsey, 

Herbert & Kenemy, 1998; Saarinen, 1988), where each half would not be projected 

symmetrically to the opposite cerebral hemisphere. Second, detection of vertical reflection 

patterns is more efficient than detection for other orientations, like horizontal or oblique 

(Barlow & Reeves, 1979; Bertamini, 2010; Corballis & Roldan, 1975; Koning & Wagemans, 

2009; Julesz, 1971; Palmer & Hemingway, 1978). Corballis and Roldan (1975) found fastest 

responses for vertical orientation; when participants tilted their heads, the optimal orientation 

shifted in the direction of the head tilt. They concluded that retinal rather than gravitational 

coordinates explain the vertical advantage. Third, Herbert and Humphrey (1996) tested two 

individuals born without a corpus callosum. Both patients were poorer at detecting reflection 

at fixation compared with matched healthy controls. However, other mechanisms may operate 

when symmetry is presented away from fixation, as both healthy participants and acallosal 

patients are still able to detect reflection, albeit with a reduced sensitivity. 

Recent reviews of the available evidence suggest that the strong version of the callosal 

hypothesis is unlikely to be correct. Symmetry can be detected when the axis does not match 

the anatomical midline, and even when patterns are presented entirely to one hemisphere 

(Corballis & Roldan, 1974), and salience of a reflected pattern increases with an increase in 

number of axes (Treder, 2010). Moreover, there is evidence that the vertical advantage 

depends on expectations and priming (Rock & Leaman, 1963; Wenderoth & Welsh, 1998). 
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2.2.2. Brain responses to symmetry 

Researchers have explored the neural basis of symmetry perception in humans using several 

approaches, from neuroimaging to neuropsychological fMRI. Although there is no single 

narrow area devoted to processing symmetry, an extended network has been identified, most 

sensitive to reflectional symmetry.  

Neuroimaging studies have found that symmetric stimuli activate the left and right 

extrastriate cortex including V3a, V4, V5 the Lateral Occipital Complex (LOC) (Chen, Kao & 

Tyler, 2007; Sasaki, Vanduffel, Knutsen, Tyler & Tootell, 2005; Tyler et al., 2005). 

Transcranial magnetic stimulation (TMS) studies have shown the left and right LOC to be 

causally involved in detecting vertical and horizontal symmetry, although this has not been 

consistently found (Cattaneo, Mattavelli, Papagno, Herbert & Silvanto, 2011). Recently, Bona 

et al. (2014; 2015) applied TMS over the left and right LOC, and found that this disrupted 

symmetry detection, but this disruption was greater in the right hemisphere. Interestingly, 

lateral occipital activation is also observed in haptic exploration of reflection symmetry in the 

early blind (Bauer et al., 2015). 

A connected debate in the literature relates to the functional role of dorsal regions 

(posterior parietal cortex, PPC; intraparietal sulcus, IPS) in global pattern processing and 

symmetry (Lestou et al, 2014). Contrary to strict hierarchical processing within the ventral 

visual stream, it has been proposed that the dorsal cortex contributes to formation of 

'hypotheses' about objects. In particular, impairments in perceiving global forms emerge after 

damage to the dorsal visual stream (Riddoch et al., 2008; Shalev, Humphreys, & Mevorach, 

2004).  

Electrophysiological studies have also studied the extrastriate symmetry response. 

Norcia et al. (2002) examined the visual event-related potential (ERP) produced by 



	 28 

symmetrical or random patterns. Amplitudes were comparable up until 220ms after stimulus 

onset, afterwards the wave for the reflectional pattern was more negative than for the random 

pattern. Jacobsen and Höfel (2003) found the same ERPs. They referred to the difference 

between symmetry and random as the Sustained Posterior Negativity (SPN). The SPN is 

bilateral, and is likely to originate from both cerebral hemispheres. The SPN has been found 

consistently between around 220ms and 1000ms after stimulus onset.  

We are confident that the SPN is an automatic visual response to symmetry, which is 

independent of the task participants are doing (Bertamini & Makin, 2014). We find a similar 

SPN wave when people are explicitly classifying the patterns as reflectional or random, and 

when they are attending to an orthogonal visual dimension, like colour (Makin, Rampone & 

Bertamini, 2015) or the number of blocks (Makin, Rampone, Wright, Martinovic & 

Bertamini, 2014). Furthermore, the SPN is comparable during oddball detection tasks, where 

participants are looking out for rare anomalous components (Höfel & Jacobsen, 2007a, 

Makin, Pecchinenda, Rampone & Bertamini, 2013). The SPN is found while participants 

deliberately misreported their responses (Höfel & Jacobsen, 2007b) and regardless of whether 

reflection or random required a 'yes' response in a 2AFC task (Makin, Wilton, Pecchinenda & 

Bertamini, 2012).  

Makin et al. (2013) reported that the SPN is produced by reflection, rotation and 

translation, although reflection produced the largest amplitude SPN. This is consistent with 

the original observations about the special salience of reflection by Mach (1886/1959) and 

Goldmeier (1937). It is also consistent with many psychophysical results showing that 

sensitivity to reflection is higher than sensitivity to other regularities (Makin, Pecchinenda & 

Bertamini, 2012; Royer, 1981). The difference in amplitude between the regularities was 

unrelated to properties of the configuration (a single object or a gap between two objects, 
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Makin et al., 2014). A comparable SPN is also produced regardless of whether symmetry is 

presented vertically or horizontally (Wright, Makin & Bertamini, 2015).  

 

2.2.3. A test using EEG and lateralised presentations 

Based on the psychophysical and electrophysiological evidence, it seems logical to suggest 

that a specialized network spanning both hemispheres generates the SPN. However, little is 

known about how the two hemispheres communicate during symmetry perception. A strong 

interpretation of the callosal hypothesis, discussed above, states that the optimal stimulus has 

its axis aligned with the anatomical midline and projects to both hemispheres. A completely 

opposite view is that the symmetry sensitive network is activated independently of where the 

patterns are located in the visual field. These are both strong hypotheses. A third hypothesis is 

that each network responds to information in the contralateral hemifield, but that 

communication between the hemispheres contributes, for instance because of a specific role 

of the right parietal regions in processing symmetry (Bona et al., 2015).  

We conducted three experiments to test how the SPN is affected by peripheral 

presentation. In Experiment 1, participants were presented with a pair of patterns (reflection 

and random) on either side of fixation. Reflection was confined to one visual hemifield, which 

was processed by the contralateral hemisphere. Random was simultaneously presented in the 

other hemifield, and processed by the contralateral hemisphere. On half of the trials, reflection 

was in the left hemifield and random in the right, whilst for the other trials reflection was in 

the right and random in the left. In Experiment 2, a single pattern was presented to just one 

hemisphere. Participants were presented with a reflection or a random dot pattern in one 

visual hemifield whilst the other hemifield contained no pattern. In Experiment 3, matching 

pairs of either reflectional or random dot patterns were presented to both hemispheres. In all 

experiments, participants were required to make a colour judgement about the presented 
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patterns by deciding whether the patterns were light or dark red. Regularity was therefore not 

relevant for the task. The reason for this choice is that we are interested in the automatic 

activation of these areas, and previous work has shown that attention is not necessary for SPN 

generation (e.g. Makin et al., 2013). 

If the SPN does not require co-activation of corresponding left and right anatomical 

loci, the same neural response to symmetry should be found in each hemisphere. Our 

experiments will therefore show whether each hemisphere has a symmetry sensitive network 

that can be activated independently, and whether this network can be activated even when the 

task of the observer is not actively involved in symmetry discrimination. 

 

2.3. Experiment 1 

2.3.1. Method 

2.3.1.1. Participants  

Twenty-four participants took part in the study (age 18-35, mean age 24, 8 males, 2 left 

handed). Participants had normal or corrected-to-normal vision. Some received either course 

credit or financial reimbursement upon completion of the study. The study was approved by 

the University Ethics Committee and conducted in accordance with the Declaration of 

Helsinki (revised 2008).  

 

2.3.1.2. Apparatus  

EEG activity was recorded using a BioSemi (Amsterdam, The Netherlands) Active-Two 

amplifier in an electrically shielded and darkened room. EEG data was sampled continuously 

at 512 Hz from 64 scalp electrodes embedded in an elasticised cap arranged according to the 

standard international 10-20 system. The same apparatus was used in Makin et al. (2012) and 

other ERP-symmetry studies from our lab (reviewed in Bertamini and Makin, 2014). 
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 In order to detect blinks and eye movements, vertical bipolar electrodes (VEOG) were 

positioned above and below the right eye. Horizontal bipolar electrodes (HEOG) electrodes 

were positioned on the outer canthi of both eyes. Stimuli were generated using the PsychoPy 

software (Peirce, 2007) and presented on a CRT monitor (1280x1024; 60Hz, Mitsubishi; 

Tokyo, Japan). Participants were positioned 100cm from the monitor with their head 

stabilized in a chin rest. They entered their responses by pressing either the ‘A’ or ‘L’ button 

of the computer keyboard.  

  

2.3.1.3. Design 

There was a single within-subjects factor with two levels (Arrangement [Reflection-Random, 

Random-Reflection]). There were 72 trials in each condition (144 trials in total). On each 

trial, both a reflection and a random pattern were simultaneously presented. The position of 

the patterns in the left and right visual hemifields was randomized and counterbalanced. 

Reflection-Random refers to the reflection pattern being presented in the left hemifield whilst 

random is presented in the right. Alternatively, Random-Reflection refers to the random 

pattern being presented in the left visual hemifield whilst reflection is presented in the right 

(Figure 2.1).  

 

2.3.1.4. Stimuli  

 Stimuli consisted of dot patterns (Figure 2.1), which were presented either side of a 

grey fixation cross. On each trial, a reflection dot pattern was presented one side of fixation 

whilst a random dot pattern was presented on the other. Both patterns had a diameter of 2.1º 

and were positioned 3.2º either side of fixation. The presented pair of patterns were always 

the same colour (dark or light red). Each pattern was made up of 80 separate dots, with each 



	 32 

dot having a radius of 0.008º. Symmetric stimuli had a reflection about both horizontal and 

vertical axes. Novel patterns were used on each trial to avoid any effect of familiarity.  

 

Figure 2.1. Example of the stimuli used in Experiment 1. Participants were required to make 
a judgment about whether both patterns were either dark or light red. Novel patterns were 
presented on each trial. 
 

2.3.1.5. Procedure  

Prior to the start of the experiment, participants completed a practice block, which consisted 

of 16 trials, and its design matched that of the main experiment. This allowed participants an 

opportunity to familiarise themselves with the task and to ask any questions. The experiment 

consisted of a total 144 trials. To allow participants to have a rest and break fixation, the 

experiment was divided into six blocks.   
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Participants were informed that they would be required to maintain fixation on the 

central cross and avoid blinking during the presentation of the patterns. Each trial began with 

a baseline period of between 1.5 and 2 seconds, when the screen showed the central fixation 

cross. The patterns then appeared and stayed on screen for a further 1.5 seconds. After each 

trial, participants were presented with a response screen, where they had up to ten seconds to 

report whether the patterns were light red or dark red in colour. The response screen informed 

them to press the button on the right for ‘dark red’ and on the left for ‘light red’ or vice versa. 

The position of the words on the left and right side of the screen were counterbalanced across 

trials. This approach ensured that when the patterns were shown, participants would not be 

able to prepare their lateralized motor responses. Participants were not required to respond as 

quickly as they could, but were informed to be as accurate as possible.  

 

2.3.1.6. EEG Analysis 

EEG data was processed using the EEGLAB toolbox in MATLAB (Delorme & Makeig, 

2004). Raw EEG signals from the 64 electrodes were re-referenced offline to a scalp average 

and low pass filtered at 40Hz. The data was then sampled at 128 Hz in order to reduce file 

size and segmented into -1s to 1.5s epochs with a baseline of -200ms to 0ms. Ocular, muscle 

and other artefacts were identified and removed using Independent Component Analysis 

(ICA; Jung et al., 2000). The data was then reformed as 64 independent components and an 

average of 7.6 components removed from each participant (min = 3, max = 14). Following 

ICA, trials that had amplitude greater than ± 100 μV for any electrode were removed. For 

Reflection-Random 11.5% of trials were removed whilst 11.9% of trials were removed from 

Random-Reflection.  
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 For analysis, N1 amplitude was calculated as mean amplitude between 190 and 

220ms. The SPN was broken up into two separate time windows of equal length: 200-600ms 

and 600-1000ms after stimulus onset. 

The decision to consider an early and late SPN separately is justified by recent 

research. In this early time window, amplitude has been found to correlate with a 

mathematical index of perceptual goodness (Makin et al., 2016). The strength of the 

correlation declines after an early peak, and there are more exceptions found. N1 and the SPN 

were measured from electrode clusters over the left (P1, P3, P5, P7, PO3 and PO7) and right 

hemispheres (P2, P4, P6, P8, PO4 and PO8). These electrodes were chosen due to the interest 

in the posterior response and because they were consistent with electrode selections used in 

previous research undertaken (e.g. Makin, Rampone & Bertamini, 2015). 

 

2.3.2. Results 

2.3.2.1. Behavioural  

Participants had to discriminate whether the presented patterns were either light or dark red. 

Overall, they made a correct colour discrimination on most of the trials (Reflection-Random = 

96.6%, Random-Reflection = 97.5%). Response times were uninformative as judgments were 

unspeeded, and entered after the patterns had disappeared from the screen.  

 

2.3.2.2. Event-Related Potentials 

2.3.2.2.1. N1 

Differences in N1 between regularities and random presented in the contralateral visual field 

have previously been found (Schadow et al., 2009). We thus examined N1 with a two factor 

ANOVA (Arrangement [Reflection-Random, Random-Reflection] x Hemisphere [Left, 

Right]). There were no main effects or interactions.  
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2.3.2.2.2. SPN 

Figure 2 shows ERPs for reflection and random patterns arranged differently (Reflection-

Random or Random-Reflection). When a hemisphere was processing reflection, amplitude 

was lower than when it was processing random. The SPN was apparent in each of the two 

hemispheres, but somewhat stronger in the right hemisphere.  

 

 
Figure 2.2. Experiment 1: Event Related Potentials (ERPs) from the left and the right 
hemispheres. Panels A and B show separate ERP plots for reflection and random over each 
hemisphere, with maps of the different stimulus arrangements and which hemisphere they are 

A

B D

C
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processed in. C) Difference wave for the left hemisphere. D) Difference wave for the right 
hemisphere.  
 

We analyzed the data with an Arrangement (Reflection-Random, Random-Reflection) 

x Hemisphere (Left, Right) x Time Window (200-600, 600-1000) repeated measures 

ANOVA2. There was no main effect of Arrangement (F (1, 23) = 1.312, p = 0.264, partial η2 = 

0.054) or Hemisphere (F (1, 23) = 0.979, p = 0.333, partial η2 = 0.041), but there was a main 

effect of Time (F(1, 23) = 48.889, p = 0.001, partial η2 = 0.680). The only significant 

interaction was between Arrangement and Hemisphere (F(1, 23) = 11.043, p = 0.003, partial 

η2 = 0.324).  

We performed a post-hoc analysis on the data to explore more in detail the time course 

of the ERP. For the left electrodes, there was a difference between Reflection-Random and 

Random-Reflection arrangements between 200-600ms (t(23) = 2.373, p = 0.026, d = 0.250). 

Amplitude of the waveforms was lower in the left hemisphere when processing reflection than 

when it was processing random. However, in the left electrodes, there was no significant 

difference between arrangements in the later 600-1000ms window (t(23) = 1.271, p = 0.216, d 

= 0.140). Conversely, for the right electrodes, there was a difference between the two 

arrangements in both the earlier 200-600ms time window (t(23) = -3.526, p = 0.002, d = -

0.290) and the later 600-1000ms window (t(23) = -2.563, p = 0.017, d = -0.267). 

 

2.4. Experiment 2 

Experiment 1 found that the SPN could be generated in each hemisphere independently, by 

presenting patterns (reflection and random) in the left and the right visual hemifields 

simultaneously. To examine the interaction across hemispheres we conducted two further 

																																																													
2	The same ANOVA also was performed with colour (Light, Dark) as an additional factor.  
There were no main effects or interactions with colour.  	
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experiments. First, in Experiment 2, we present patterns to a single hemisphere, with nothing 

on the opposite side (Figure 2.3). 

 

2.4.1. Method 

Twenty-four participants took part in the study (age 18-32, mean age 19.8 (SD= 3.5), 4 males, 

0 left handed). The apparatus was the same as in Experiment 1. There was a single within-

subjects factor (Arrangement [Reflection-Nothing, Random-Nothing, Nothing-Reflection, 

Nothing-Random]) with 36 trials per condition. On each trial, participants were presented 

with one pattern on one side of the fixation cross. Reflection-Nothing and Random-Nothing 

refers to the patterns being presented in the left visual hemifield whist the other hemifield 

remains empty. Nothing-Reflection and Nothing-Random refer to the patterns being presented 

in the right visual hemifield with the left hemifield containing no pattern (Figure 2.3). The 

stimuli and procedure were otherwise the same as in Experiment 1.  
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Figure 2.3. Example of the stimuli used in Experiment 2.  
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 EEG analysis was the same as in Experiment 1. An average of 8.6 components were 

removed from each participant (min = 4, max = 18). For Reflection-Nothing 6.7% of trials 

were removed, for Random-Nothing 5.7%, for Nothing-Reflection 6.2% and for Nothing-

Random 6.8%. As with Experiment 1, N1 amplitude was calculated as mean amplitude 

between 190 and 220ms. The SPN was split into time windows of 200-600ms and 600-

1000ms after stimulus onset. N1 and the SPN were measured from electrode clusters in the 

left (P1, P3, P5, P7, PO7 and PO3) and right hemispheres (P2, P4, P6, P8, PO8 and PO4). 

 

2.4.2. Results 

2.4.2.1. Behavioral 

The task was the same as in Experiment 1. Overall, participants made the correct colour 

discrimination on most of the trials. Performance was comparable in each condition 

(Reflection-Nothing was 98.3%, Random-Nothing, 98.3%, Nothing-Reflection 97.9% and 

Nothing-Random 98.1%).  

 

2.4.2.2. Event-Related Potentials 

2.4.2.2.1. N1 

To examine N1 we performed a two factor ANOVA (Arrangement [Reflection-Nothing, 

Random-Nothing, Nothing-Reflection, Nothing-Random] x Hemisphere [Left, Right]). As 

with Experiment 1, there were no main effects or interactions.  

 

2.4.2.2.2. SPN 

Figures 2.4 and 2.5 shows the ERPs from Experiment 2. An SPN was produced in the 

hemisphere contralateral to the stimulus, and there was no spill over into the ipsilateral 
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hemisphere. In other words, the contralateral hemisphere (i.e. the one which was processing 

the reflection or random patterns) generated the expected SPN response (with amplitude 

lower for reflection than random. Meanwhile, there was no SPN in the ipsilateral hemisphere 

(Figure 2.5). See Appendix 1 for analysis of the SPN as a difference between Reflection and 

Nothing.  

 The SPN was explored with a three-factor repeated-measures ANOVA (Arrangement 

[Reflection-Nothing, Random-Nothing, Nothing-Reflection, Nothing-Random] x Hemisphere 

[Left, Right] x Time Window [200-600, 600-1000])3. There was no main effect of 

Arrangement (F(3, 69) = 2.260, p = 0.089, partial η2 = 0.089), but there were significant 

effects of Hemisphere (F(1, 23) = 8.341, p = 0.008, partial η2 = 0.266) and Time Window (F 

(1,23) = 70.009, p = 0.001, partial η2 = 0.753). A significant interaction between Arrangement 

x Time was found (F(3,69) = 6.165, p = 0.001, partial η2 = 0.211) along with a three-way 

interaction for Arrangement x Hemisphere x Time (F(1.691, 38.886) = 46.751, p = 0.001, 

partial η2 = 0.670). There were no interactions between Hemisphere and Time, or between 

Hemisphere and Arrangement.  

First we consider left hemisphere electrodes for patterns presented in the right 

hemifield. For the 200-600ms time window there was a difference between Nothing-

Reflection and Nothing-Random (t(23) = -3.671, p = 0.001, d = -0.394); with amplitude lower 

for reflection than random. In contrast, there was no significant difference between 

Reflection-Nothing and Random-Nothing (because the stimuli were being processed in the 

opposite, right hemisphere). For the 600-1000ms time window there was a difference between 

Nothing-Reflection and Nothing-Random (t(23) = -2.921, p = 0.008, d = -0.396). There was a 

marginally significant difference between Reflection-Nothing and Random-Nothing (t(23) = 

1.997, p = 0.058, d = 0.329).  
																																																													
3	The same ANOVA also was performed with colour (Light, Dark) as an additional factor.  
There were no main effects or interactions with colour.  	
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Figure 2.4. Experiment 2: Event Related Potentials (ERPs) from the left and the right 
hemispheres, focusing on the contralateral hemisphere, where patterns were processed. 
Conventions are the same as Figure 2. 

 

Next, we consider right hemisphere electrodes for patterns in the left hemifield. In the 

200-600ms time window there was a difference between Reflection-Nothing and Random-

Nothing (t(23) = -3.496, p = 0.002, d = -0.420). There was no significant difference between 

Nothing-Reflection and Nothing-Random. For the 600-1000ms time window there was no 

significant difference between Reflection-Nothing and Random-Nothing or between Nothing-

Reflection and Nothing-Random. The lack of a significant difference between Reflection-
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Nothing and Random-Nothing suggests that the SPN disappears at around 800ms after 

stimulus onset (Figure 2.4).  

 

 
Figure 2.5. Experiment 2: Event Related Potentials (ERPs) from the left and right 
hemisphere, focusing on the contralateral hemisphere, opposite to the side where the patterns 
were processed. Conventions are the same as Figure 2.2. 
 

2.5. Experiment 3 

Experiment 2 found that the neural response to symmetry was present in the hemisphere 

contralateral to the pattern (although this response was diminished in the right hemisphere 
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after 600ms), and that there was no response in the ipsilateral hemisphere. Experiment 3 

further examined lateralized responses by comparing ERPs produced when the same type of 

patterns are presented on either side of the midline (Reflection-Reflection or Random-

Random). 

 

2.5.1. Method 

The same participants took part in this experiment as in Experiment 2. The apparatus was the 

same as in Experiments 1 and 2. There was a single within-subjects factor (Arrangement 

[Reflection-Reflection, Random-Random]) with 72 trials per condition. On each trial, 

participants were presented with two patterns on either side of the fixation cross (Figure 2.6). 

These patterns were both reflection or both random. The procedure was the same as in 

Experiment 1.  

EEG analysis was the same as Experiment 1. An average of 7.7 components were 

removed from each participant (min = 2, max = 13). For Reflection-Reflection 10.3% of trials 

were removed whilst 9.6% of trials were removed from Random-Random. The SPN was 

divided into two time windows: 200-600ms and 600-1000ms after stimulus onset and 

measured from electrode clusters in the left (P1, P3, P5, P7, PO3 and PO7) and right 

hemispheres (P2, P4, P6, P8, PO4 and PO8). 
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Figure 2.6. Example of the stimuli used in Experiment 3.  

 

2.5.2. Results 

2.5.2.1. Behavioural 

Participants performed the same colour discrimination task as in Experiment 1. Overall, 

participants made a correct discrimination on most of the trials. Performance was comparable 

on Reflection-Reflection and Random-Random trials (97.8% vs. 98.2%).  
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Figure 2.7. Experiment 3: Grand-Average Event Related Potentials (ERPs) from the left and 
the right hemispheres. Conventions are the same as Figure 2.2. 
 

2.5.2.2. Event-Related Potentials 

2.5.2.2.1. N1 

To examine N1, we performed a two factor ANOVA (Arrangement [Reflection-Reflection, 

Random-Random] x Hemisphere [Left, Right]). There was a main effect of Arrangement 

(F(1,23) = 5.766, p = 0.025, partial η2 = 0.200), because amplitude was lower for Reflection-

Reflection than Random-Random. There was no effect of Hemisphere or an Arrangement x 

Hemisphere interaction.  
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2.5.2.2.2. SPN 

An SPN was produced in both hemispheres, with reflection being lower in amplitude than 

random (Figure 2.7). The SPN was explored with a three-way repeated-measures ANOVA 

(Arrangement [Reflection-Reflection, Random-Random] x Hemisphere [Left, Right] x Time 

Window [200-600, 600-1000])4. There was a significant effect of Arrangement (F(1, 23) = 

10.319, p = 0.004, partial η2 = 0.310), Hemisphere (F(1, 23) = 20.400, p = 0.001, partial η2 = 

0.470) and Time (F(1, 23) = 60.300, p = 0.001, partial η2 = 0.724). There was a significant 

interaction between Arrangement x Time (F(1, 23) = 6.975, p = 0.015, partial η2 = 0.233). 

There were no Arrangement x Hemisphere interaction or Arrangement x Hemisphere x Time 

interactions.  

First we consider the left hemisphere. For the 200-600ms window there was a 

significant difference between Reflection-Reflection and Random-Random (t(23) = -3.554, p 

= 0.002, d = -0.288). This significant difference between the arrangements persisted in the 

later time window (t(23) = -2.088, p = 0.048, d = -0.281). For the right hemisphere in the 200-

600ms time window there was a significant difference between Reflection-Reflection and 

Random-Random (t(23) = -3.627, p = 0.001, d = -0.259). Due to the SPN fading out at around 

600ms there was no significant differences in the later time window.  

Figure 2.8 shows a summary of the differences in amplitude across the three 

experiments. The SPN can be visualized here as lower blue bars than red bars. The pattern 

being processed in the hemisphere is labelled below, with the pattern in the opposite 

hemisphere in brackets. We can see that the SPN generated within a hemisphere is largely 

independent of what is being processed in the opposite hemisphere. This is true when the 

opposite hemisphere is processing a pattern of the opposite type (random or reflection) as in 
																																																													
4	The same ANOVA also was performed with colour (Light, Dark) as an additional factor.  
There were no main effects or interactions with colour.			
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Experiment 1, nothing, as in Experiment 2, or a pattern of the same type, as in Experiment 3. 

This independence is of course most obvious in the 200-600 ms time window, when the 

symmetry response was present universally (left panels in Figure 2.8).  

First we consider the early response in left electrodes in Experiments 1 and 3, which 

were run on different groups of participants. This can be examined statistically with a two 

factor mixed ANOVA. The within-subjects factor was Pattern processed (Reflection, 

Random). The between-subjects factor was Pattern in other hemisphere [Opposite type 

(Experiment 1) vs. Same type (Experiment 3)]. This confirmed there was a difference 

between reflection and random responses in the left hemisphere (F(1,46) = 16.764, p < 0.001, 

partial η2 = 0.267). Crucially, there was no interaction, confirming that this response was 

independent of what the right hemisphere was doing (F(1,46) = 0.194, p = 0.662). The same 

analyses confirmed independence of the early right-sided regularity response: There was 

again a main effect of Pattern processed (F(1,46) = 24.894, p < 0.001, partial η2 = 0.351), 

which did not interact with pattern in other hemisphere (F(1,46) = 0.478, p = 0.493).  

Next we compared the early symmetry response between Experiments 1 and 2 in the 

same way. In the left hemisphere, there was a main effect of Pattern processed (F(1,46) = 

18.477, p <0.001, partial η2 = 0.287), which was independent of whether the other hemisphere 

was processing the opposite pattern or nothing (F(1,46) = 1.085, p = 0.303). The same was 

true of the right hemisphere, where there was again a main effect of Pattern processed 

(F(1,46) = 23.804, p <0.001) that was unaffected by Pattern in the other hemisphere (F(1,46) 

= 0.773, p = 0.384).  

Finally, we used within participants ANOVAs to confirm hemispheric independence 

in in Experiments 2 vs. 3. In the left electrodes at the early time point, there was a main effect 

of Pattern processed (F(1,46) = 20.595, p < 0.001, partial η2 = 0.472), which was independent 

of whether Nothing or the Same pattern was in the other hemisphere (F(1,46) = 0.662, p = 



	 48 

0.424). The same was true in the equivalent analysis of the right hemisphere (F(1,46) = 

18.055, p <0.001, partial η2 = 0.440), and no Pattern processed x Pattern in opposite 

hemisphere interaction (F(1,46) = 2.932, p =0.100).  

In summary, 6 separate analyses of the early window confirmed that amplitude was 

more negative when a hemisphere is processing reflection than random, and that this SPN 

response is independent of what is being processed in the opposite hemisphere. Analysis of 

the late window is less instructive, because here the SPN faded in some conditions but not 

others. This fading was not predicted, but it is a separate issue.  

Figure 2.8. Mean Grand-Average Event Related Potentials (ERPs) of the SPN from the left 
and the right hemispheres for each experiment in the early (200-600ms) and late time 
windows (600-1000ms). Stimuli in brackets are those that were processed in the contralateral 
hemisphere. Error bars: +/- 1 Standard Error.  
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2.6. General Discussion 

Neuroimaging studies have found a specialized symmetry sensitive network in extrastriate 

areas (Sasaki et al., 2005), which is likely to generate the SPN (Bertamini & Makin, 2014; 

Makin et al., 2012). In this new series of experiments, we introduced a novel procedure. 

Reflection and random patterns were never presented at fixation: Instead they were presented 

as pairs, one on the left and one on the right of fixation. In Experiment 1, each pair comprised 

a reflection and a random pattern (Reflection-Random or Random-Reflection), thus the total 

amount of regularity in the entire visual field was always the same in each trial. In Experiment 

2, patterns were only present on one side (Reflection-Nothing, Random-Nothing, Nothing-

Reflection or Nothing-Random). In Experiment 3, reflection or random patterns were 

presented on both sides (Reflection-Reflection or Random-Random). This set of experiments 

allowed us to examine whether the SPN could be generated separately in each hemisphere, 

and to what extent the response was influenced by the information in the other hemifield. 

The results showed that the SPN wave (Reflection < Random) could indeed be 

generated within a single cerebral hemisphere, with the information being processed in the 

opposite hemisphere having no detectable effect on this lateralized neural response to 

symmetry. This clear-cut result was unexpected, but it was consistent in all three experiments.  

In Experiment 1, lower amplitude was recorded over the hemisphere that was 

processing a reflection pattern compared to when it was processing a random pattern. In 

Experiment 2, there was an SPN in the hemisphere contralateral to the dot patterns, but no 

SPN in the ipsilateral hemisphere. In Experiment 3, there was an SPN in each hemisphere, 

even though there was no symmetry across the vertical midline. Previous studies had only 

presented symmetry at fixation, so each half of the pattern was always presented to a separate 

hemisphere. These experiments are the first to show that the neural response to symmetry can 

be generated when patterns are presented in the periphery.  
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This contralateral SPN response was produced despite the fact that participants were 

not required to respond to the presence of symmetry (just to the colour of the elements). This 

is consistent with the results of Makin, Rampone & Bertamini (2015), and adds further 

support to the claim that the SPN is an automatic response to symmetry present in the image 

(Bertamini & Makin, 2014).  

Interestingly, regularity did not consistently influence N1 amplitude in our study. It 

has previously been reported that N1 amplitude increases with gestalt like images (Brodeur et 

al., 2008; Herrmann & Bosch, 2001; Herrmann et al., 1999). The N1 component is sometimes 

sensitive to symmetry (Makin et al., 2013; Makin, Wilton et al., 2012) however this has not 

been found consistently (Höfel & Jacobsen, 2007; Jacobsen & Höfel, 2003; Norcia, Candy, 

Pettet, Vildavski, & Tyler, 2002). In another study Schadow et al. (2009) found an effect of 

regularity on N1, however, they embedded their regular target (e.g. a circle) in noise 

consisting of Gabor elements and participants had to find the target. Conversely, in our 

experiments, participants were always discriminating colour, not regularity itself. It could be 

that the N1 effect of regularity is task dependent, unlike the SPN, which is generated by 

symmetry even when people are attending to other properties of the patterns.   

 It is likely that eye movements create artifacts in EEG recordings (Dimigen et al., 

2009; Yuval-Greenberg et al., 2008). Even when participants are required to fixate, they do 

not keep their eyes perfectly still. Microsaccades produce extraocular muscle activity, which 

then disseminates to the scalp EEG. Furthermore, microsaccades produce a small 

displacement of the retinal image, which can a generate VEPs over occipital areas 100-140ms 

later (Dimigen et al., 2009; Engbert & Kliegl, 2003; Hafed & Clark, 2002). It is conceivable 

that microsaccade frequency might differ between reflection and random conditions, and that 

this could contribute to the SPN. We note that the VEP following a microsaccade would be 

bilateral, although potentially modulated by arrangement of the retinal image as well. 
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However, the fact that we get a similar SPN within a hemisphere, and for a variety of different 

stimulus arrangements, means this component is very unlikely to be generated by 

microsaccades.  

The SPN we have observed in these experiments is similar to other attention-related 

ERP waveforms, particularly the Sustained Posterior Contralateral Negativity (SPCN). It has 

been found that amplitude is negative over the contralateral hemisphere to the attended visual 

stimulus (Lefebvre, Dell’acqua, Roelfsema & Jolicoeur, 2011). In Experiment 1, participants 

might shift spatial attention to reflection patterns more consistently than random patterns. 

That might produce an SPCN, which could be misinterpreted as a lateralized SPN, generated 

by symmetry. However, this alternative ‘spatial attention’ explanation cannot account for the 

similarities between ERPs across our three experiments. In each experiment, spatial attention 

was pulled in different ways. For instance, in Experiment 2, patterns were present on one side 

and there was nothing on the other side. Here participants would presumably shift spatial 

attention to the pattern, be it reflection or random. This should produce a similar SPCN for 

reflection and random. Nevertheless, amplitude was more negative for reflection than random. 

Still, the spatial attention account could claim that deployment of spatial attention was more 

consistent in the reflection condition. However, this interpretation would be inconsistent with 

Experiment 3, where both left and right patterns were the same type. Participants may divide 

attention between left and right visual fields, or switch back and forward. The behavior of the 

attentional spotlight in Experiment 3 is likely to be different from Experiment 2, but the 

posterior negativity was similar. 

Furthermore, it is unlikely that the SPN for central stimuli is an attentional ERP 

component. For one thing, the SPN is similar when patterns are presented with either a 

horizontal or a vertical axis (Wright et al., 2015), even though axis orientation would alter the 

distribution of spatial attention. Moreover, SPN amplitude can be predicted by models that 
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quantify perceptual goodness (Makin et al., 2016). It would be difficult to explain such 

precise SPN results by differences in the deployment of spatial attention. Finally, the 

electrophysiological response to symmetry is localized to shape sensitive areas in the ventral 

stream, like the LOC (Kohler et al., 2016). We conclude that although there is some overlap 

between attention-related ERPs and the SPN in terms of latency and topography, these ERP 

are generated by different mechanisms. It is parsimonious to treat the ERPs recorded here as a 

lateralized SPN, rather than a complicated and nuanced set of SPCN recordings.  

 

2.6.1. Relationship to neuropsychological studies on symmetry perception and 

hemispheric specialization 

There have been several recent papers examining the effect of brain lesions on symmetry 

perception, as well as the neuroimaging studies mentioned above. It is worth considering how 

our current results relate to this literature, and also to the wider work on hemispheric 

specialization and communication between hemispheres. To recap, neuroimaging studies have 

consistently shown that V1 and V2 are NOT activated by symmetry, while there are 

symmetry related activations in extrastriate areas, including V3a, V4 and LOC (Sasaki et al., 

2005, Tyler et al., 2005, Kohler et al., 2016). The SPN is probably generated by this 

extrastriate network (Makin et al., 2016). The LOC is certainly important for coding visual 

structure. LOC lesions have strong effects on object perception (e.g. Ptak et al., 2014). In 

fMRI research, the LOC is functionally localizing by comparing objects and scrambled 

objects (e.g. Kim et al., 2009). TMS work has shown that the LOC is causally involved in 

symmetry perception (Bona et al., 2014, 2015).  

 Although most work has characterized the ascending local-global processing in the 

early visual stream (e.g. Kohler et al., 2016), recent neuropsychological work has shown that 

the bilateral extrastriate network is also sensitive to top down inputs. For instance, Bauer et al. 
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(2015) asked blindfolded participants to discriminate reflectional from random arrangements 

of braille-like pin matrices using touch alone. One contrast revealed that haptic exploration of 

reflectional patterns activated LO and other visual maps in congenitally blind patients, while 

this ‘visual cortex’ response to haptic reflection symmetry was not found in blindfolded 

controls. This suggests that there is an innate symmetry sensitivity ventral visual stream. This 

can be exploited in early blind people so the network becomes tuned to haptic symmetry.  

There is less evidence for dorsal stream activation in symmetry perception (e.g. 

Kohler et al., 2016). However, Lestou et al. (2015) compared perception of Glass patterns 

with global structure (concentric and radial) with perception of local-structure translational 

Glass patterns and random dipoles, and found evidence for a dorsal contribution. They 

examined a patient with dorsal stream (Intra-Parietal Sulcus) lesions, another patient with 

early ventral stream lesions (V2-V4), and healthy control participants. The dorsal patient was 

uniquely impaired at detecting global structure in the concentric and radial Glass patterns. As 

expected, control participants showed higher BOLD response for global Glass patterns in 

early ventral regions V3b and KO. However, for the dorsal patient, this V3b and KO effect 

was reversed, with a higher response to translation. This work suggests that the feedforward, 

local to global, ventral stream account of regularity perception is simplistic, and that the 

dorsal stream may also play a role.  

As well as ‘heterarchical’ and multimodal inputs to the extrastriate symmetry network 

suggested by recent neuropsychological studies, we can also consider horizontal interactions 

between left and right hemispheres during symmetry perception. In several previous studies, 

we have presented vertical reflection patterns centrally, and participants fixated in the center 

of the pattern (Makin et al., 2013). To detect vertical, central reflection, the system must 

integrate position information initially represented on opposite sides of the brain. Indeed, 

neuropsychological evidence has shown that both sides of a symmetrical figure are 
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represented in the visual system, even when there is damage to the occipito-parietal region of 

one cerebral hemisphere (Doricchi & Galati, 2000; Driver et al., 1992). In the current work, 

we show that the same symmetry response can be generated when all symmetrical structure is 

presented within a single hemifield. The anatomical bilateral symmetry of the brain only has 

something to do with the perception of symmetrical patterns in a superficial way. This refutes 

a strong version of the callosal hypothesis, but is consistent with earlier work showing that 

symmetry perception was still present in patients born without a corpus callosum (Herbert & 

Humphrey, 1996). It is also consistent with the results of Wright et al. (2015), who found a 

similar SPN for horizontal and vertical reflections, even though only vertical reflection 

requires interhemispheric integration.  

If there are separate symmetry processors in each hemisphere, as we claim, perhaps 

the one in the right hemisphere is somehow stronger, or more sensitive, than its counterpart on 

the left? Certainly there is converging evidence from TMS (Bona et al., 2014) and alpha 

desynchronization (Wright et al., 2015) that the right hemisphere is more important for 

symmetry perception. The SPN itself is sometimes larger over the right hemisphere when 

patterns are presented centrally (although this lateralization is not consistent, Bertamini & 

Makin, 2014, Makin et al., 2016). Furthermore, behavioural work has shown that reflection 

patterns are detected quicker when they are presented in the left visual hemifield, and thus 

processed in the right hemisphere (Brysbaert, 1994; Corballis & Roldan, 1974). Recently, 

Verma, Van der Haegen and Brysbaert (2013) had participants fixate centrally whilst 2-D 

reflectional symmetric and asymmetrical figures were presented to each visual hemifield. 

Participants with a left hemisphere dominance for language showed superior reflectional 

symmetry detection in the right hemisphere. Likewise, Wilkinson and Halligan (2002) found 

that symmetry detection and perceptual landmark judgments were both superior when stimuli 

were presented to the right hemisphere.  
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Several hemispheric specializations are well known: famously the left hemisphere 

being more specialized for language whilst the right is more dominant in spatial attention 

(Cai, van der Haegen, & Brysbaert, 2013). More relevant for this paper is the evidence 

suggesting that the right hemisphere is dominant for global processing whilst the left is 

dominant for local processing (van Kleeck, 1989). Neuropsychological studies have shown 

that lesions to the left or right superior temporal gyrus and the tempro-parietal junction are 

associated with these differences in global/local processing (Lamb et al., 1990; Lux et al., 

2004; Robertson et al., 1988). Symmetry perception is an excellent example of global 

processing, so we might expect right hemisphere specialization for symmetry perception.  

However, despite previous work and prior plausibility, we did not find much evidence 

in support for a strong right lateralization of the symmetry response in this series of 

experiments. Right lateralization of the symmetry response was apparent in Experiment 1, but 

not in Experiments 2 or 3. Furthermore, the duration of the SPN was often different in each 

hemisphere: In Experiment 1 the SPN faded early in the left hemisphere, in Experiments 2 

and 3 it faded earlier in the right hemisphere. Any amplitude differences between hemispheres 

were specific to later time windows. These details were not expected and will require further 

investigation before they can be usefully interpreted.   

 

2.7. Conclusions 

In the long history of the study of symmetry a key question has been why reflection symmetry 

appears special, as a type of regularity available to observers without effort (as opposed to 

other regularities such as rotational symmetry). A possibility is that this may be related to the 

reflectional symmetry of the cortex, and this is also known as the callosal hypothesis. Until 

now, electrophysiological investigations on symmetry had only presented patterns centrally at 

fixation (Jacobsen and Höfel, 2003; Norcia et al., 2002; Wright, Makin & Bertamini, 2015). 
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The contralateral hemisphere therefore processed each half of the pattern, and the network 

that was identified was spanning both hemispheres. Our results show a sustained posterior 

negativity (SPN) response to symmetry presented only within the left or the right hemifield. 

We conclude that symmetry processing does not require stimulation of both hemispheres. 

Instead, we confirm a response generated by the known symmetry-sensitive network in which 

activation was present independently within each hemisphere. This is not consistent with the 

callosal hypothesis, which postulated a special role for inter-hemispheric connections in 

symmetry perception.  
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3. Is right-lateralized alpha desynchronization during regularity 

discrimination the result of hemispheric specialization or 

directed spatial attention?* 

*This study has been published as Wright, D., Makin, A.D.J, & Bertamini, M. (2015). Right-
lateralized alpha desynchronisation during regularity discrimination: Hemispheric 
specialization or directed spatial attention? Psychophysiology, 52(5), 638-647.  
 
 
3.1. Abstract 

When actively classifying abstract patterns according to their regularity, alpha 

desynchronization (ERD) becomes right lateralized over posterior brain areas. This could 

reflect temporary enhancement of contralateral visual inputs and specifically a shift of 

attention to the left, or right hemisphere specialization for regularity discrimination. This 

study tested these competing hypotheses. Twenty-four participants discriminated between dot 

patterns containing a reflection or a translation. The direction of the transformation, which 

matched one half onto the other half, was either vertical or horizontal. The strategy of shifting 

attention to one side of the patterns would not produce lateralized ERD in the horizontal 

condition. However, right-lateralized ERD was found in all conditions, regardless of 

orientation. We conclude that right hemisphere networks that incorporate the early posterior 

regions are specialized for regularity discrimination. 

 

3.2. Introduction 

Natural processes often produce emergent symmetry, which can be seen in countless 

examples from crystals, to galaxies, to animal phenotypes (Tyler, 1995). Psychophysical 

studies have shown that reflection symmetry is more salient, and more easily detected, by the 

human visual system than other regularities, such as translation or rotation (Bertamini, 2010; 
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Julesz, 1971; Koning & Wagemans, 2009), despite the fact that these patterns all share the 

presence of a rigid transformation (Mach, 1886/1959; Makin, Pecchinenda, & Bertamini, 

2012). Reflectional symmetry is particularly salient when the axis of reflection is vertical 

(Barlow & Reeves, 1979). Sensitivity to reflection could be adaptive because reflectional 

symmetry signals reproductive fitness in potential mates (Møller, 1992; Rhodes, Proffitt, 

Grady, & Sumich, 1998), or because it is often a property of whole objects and therefore plays 

a role in image segmentation and object identification (Pizlo & Stevenson, 1999). 

 Symmetry refers to the property of a stimulus, which is defined as a geometric 

invariance under a rigid transformation such as reflection, rotation, or translation. Therefore, 

multiple symmetries can be present in a stimulus, and in the case of reflection there may be 

single or multiple axes. In this experiment, when we refer to symmetry we are concerned with 

the rigid transformations, which include reflection, translation, and rotation. When we discuss 

symmetry discrimination, we mean discrimination between two different transformations, 

here, reflection and translation. 

 The neuroimaging literature on symmetry has reported activations in a number of 

areas including the lateral occipital complex (LOC), V3a, V4, and V7, but not in the primary 

or secondary visual cortices (Chen, Kao, & Tyler, 2007; Sasaki, Vanduffel, Knutsen, Tyler, & 

Tootell, 2005; Tyler et al., 2005). Transcranial Magnetic Stimulation (TMS) studies have 

largely corroborated these results. Cattaneo, Mattavelli, Papagno, Herbert, and Silvanto 

(2011) found that adaptation to reflection symmetry was altered by disruption of either left or 

right LOC; however, no such effect was produced by V1 disruption. More recently, Bona et 

al. (2014) showed that TMS disruption of either left or right LOC impaired symmetry 

discrimination, but the effect was stronger on the right. We examine the issue of right 

lateralization with a different technique in the current work. 
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 Several studies have used Event Related Potentials (ERPs) to study symmetry 

perception. Norcia, Candy, Pettet, Vildavaski, and Tyler (2002) presented participants with 

reflection or random patterns in quick succession. Amplitude in posterior electrodes was more 

negative for symmetrical patterns after around 220 ms from stimulus onset. Jacobsen and 

Höfel (2003) measured ERPs while participants judged abstract patterns as symmetrical or 

random. Again, amplitude at posterior electrodes was relatively negative for symmetrical 

patterns for a prolonged period after the visual evoked potential. They termed this component 

the sustained posterior negativity (SPN). The SPN was recorded in subsequent experiments 

when participants were engaged in oddball detection rather than symmetry discrimination 

(Höfel & Jacobsen, 2007a) or when participants were deliberately misreporting their 

responses (Höfel & Jacobsen, 2007b). Makin, Wilton, Pecchinenda, and Bertamini (2012) 

recorded the SPN, and found that it was unaffected by whether reflection or random patterns 

were designated as targets in their two-alternative forced choice discrimination task. Makin, 

Rampone, Pecchinenda, and Bertamini (2013) reported an SPN for different regularities, 

although reflection produced the largest response. Finally, Makin, Rampone, Wright, 

Martinovic, and Bertamini (2014) found that the SPN was larger for reflection than 

translation, independently of the requirements of the discrimination task, and independently of 

whether the regularity was the property of a single object or the gap between two objects. So 

far, it seems reasonable to conclude that the SPN is generated by automatic visual symmetry 

analysis in the extrastriate visual cortex, and this activity seems to systematically map onto 

some, but not all, psychophysical findings. 

 Makin, Wilton et al. (2012) also analyzed their EEG data in another way, measuring 

event-related desynchronization (ERD) of the occipital alpha rhythm. This response is 

fundamentally different to the SPN. ERD was comparable for reflection and random trials, 

and was significantly greater over the right posterior region. Makin et al. (2014) replicated 
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this right lateralization, and found that it was only present when participants were actively 

discriminating regularity (reflection or translation) and not when they were discriminating the 

number of objects in the display (one or two), even though the visual stimuli were identical in 

both tasks. It seems that alpha ERD picks up a different aspect of visual symmetry perception 

to the SPN: The SPN is the neural response to symmetry—it is a difference wave that 

distinguishes symmetry from random, and between different types of symmetry. Regularity 

detectors generate the SPN. Conversely, posterior alpha ERD is the same for all regularities 

and for random patterns. It is right lateralized, across all conditions, but only when people are 

engaged in a symmetry discrimination task. Right lateralization of posterior alpha ERD is thus 

a correlate of engagement with a task about regularity rather than regularity detection. 

 For many years, alpha oscillations have been associated with cortical off states. For 

example, alpha power is greater with the eyes closed, or when participants are not engaging in 

a task (Pfurtscheller & Lopes da Silva, 1999). Attention has also been shown to modulate 

alpha rhythms: with a decrease in alpha and an increase in beta power during attentional tasks 

(Gómez, Vázquez, Vaquero, López-Mendoza, & Cardosa, 1998; Vázquez, Gómez, Vaquero, 

& Cardoso, 2001). According to the inhibition-timing hypothesis, synchronized alpha 

oscillations (~8‒12 Hz) reflect top down inhibition rather than purely “cortical idling.” 

Conversely, a reduction in alpha power, desynchronization, reflects neural excitation 

produced by task engagement (Klimesch, Sauseng, & Hanslmayr, 2007). The right- 

lateralized alpha response probably arises from greater activation in the posterior right 

hemisphere compared to the left during regularity discrimination tasks. However, these 

findings are inconclusive, because lateralization could arise from either transitory 

enhancement of contralateral visual inputs, or from functional differences between the 

cerebral hemispheres. 
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 In our previous work, the axis of orientation was always vertical (Makin et al., 2014; 

Makin, Wilton et al., 2012). This may have encouraged participants to explore the regularity 

by shifting attention back and forth across the midline. Although eye movements were 

suppressed in these experiments, participants may still have moved covert attention. It is 

conceivable that visual exploration begins with a systematic shift to the left after early visual 

processing, and that this manifests as right-sided alpha desynchronization. Alternatively, there 

may be genuine hemispheric differences in regularity processing, with more regularity 

sensitive systems in the right posterior regions. 

 This later hypothesis is plausible because of the differences in cognitive functions of 

the two hemispheres. The exact nature of hemispheric specialization is still debated, but 

important differences have been suggested. Beyond the well-established left specialization for 

language and right specialization for spatial processing (Cai, Van der Haegen, & Brysbaert, 

2013), it has been proposed that the left hemisphere preferentially processes high spatial 

frequencies whereas the right hemisphere preferentially processes low spatial frequencies 

(Sergent, 1983). In addition, the left hemisphere may be involved in processing local elements 

whereas the right is more involved in global element processing (Van Kleeck, 1989). Finally, 

there is strong evidence that the right frontoparietal network is specialized for mental object 

rotation (Parsons, 2003) and directing of visuospatial attention (Mesulam, 2002). 

 Most relevantly for the current study, there is some evidence for right hemisphere 

specialization for symmetry detection. First, Corballis and Roldan (1974) found that 

symmetrical patterns could be detected slightly faster when presented to the left visual 

hemifield (i.e., processed by the right hemisphere), and Brysbaert (1994) replicated this 

modest effect. Wilkinson and Halligan (2002) considered the similarities between symmetry 

perception and line bisection (where people place a mark in the center of a horizontal line, or 

attempt to identify noncentral bisections). A right hemisphere advantage was found for both 
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tasks. Stronger evidence for right hemisphere dominance in symmetry detection comes from a 

recent study by Verma, Van der Haegen, and Brysbaert (2013), who briefly presented 

reflectional symmetric or asymmetrical block shapes to either hemisphere while participants 

fixated centrally. For the neuro-typical participants who were left hemisphere dominant for 

language, reflection symmetry detection was superior when images were presented to the 

right hemisphere. For a subgroup of unusual right hemisphere language participants, this bias 

was absent or sometimes reversed. In short, it is likely symmetry detection systems are 

present in both cerebral hemispheres, but that the right hemisphere dominates in most people. 

However, the existing literature documents right hemisphere advantage when reflection 

symmetry is presented, not when random or translation patterns are presented. This is 

different from the right-lateralized ERD response found by Makin, Wilton et al. (2012), which 

was equivalent during symmetrical and random presentations. What was critical in the ERD 

work was that observers were engaged in a symmetry discrimination task. 

 In this study, participants saw reflection or translation patterns, while EEG responses 

were recorded. The orientation of the pattern was either horizontal or vertical (Figure 3.1). In 

the case of reflection, this means a vertical or horizontal axis of symmetry, but in both cases 

(reflection and translation) a rigid transformation matches elements in one half of the stimulus 

to elements in the other half. Therefore, vertical and horizontal orientation refers to the 

separation between these two halves. 

 A “look left” strategy predicts that ERD lateralization should only occur in the vertical 

condition. In the horizontal condition, the same strategy would involve moving attention up 

and down, rather than left and right, and this would not result in systematically right-

lateralized ERD. Conversely the right hemisphere specialization hypothesis predicts 

comparable lateralized ERD in horizontal and vertical conditions. There is potential for 

confusion here: To reiterate a point made above, posterior ERD is expected to be equivalent 
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on reflection and translation trials (as found by Makin et al., 2014). The novel question in this 

work was whether this ubiquitous right lateralization during regularity discrimination would 

be observed when the patterns are horizontally orientated. 

A secondary aim of this study was to investigate the role of orientation on the 

symmetry-related ERPs, which has not been studied extensively. Some psychophysical 

experiments have found that the vertical axis of reflectional symmetry is more salient than the 

horizontal axis (e.g., Friedenberg & Bertamini, 2000). It is expected that there will be a larger 

SPN in the vertical condition than the horizontal condition. This would be consistent with the 

findings of Makin et al. (2013), who found a relationship between visual salience and SPN 

amplitude. 

 

3.3. Method 

3.3.1. Participants 

Twenty-four participants took part in the study (age 18‒44, mean age 22, 6 males, 1 left- 

handed). Participants had normal or corrected-to-normal vision, and some received course 

credit upon completion of the study. The study was approved by the Ethics Committee of the 

University of Liverpool and conducted in accordance with the Declaration of Helsinki 

(revised 2008). 

 

3.3.2. Apparatus 

Participants sat 100 cm from the monitor (1,280 × 1,024; 60 Hz, Mitsubishi, Tokyo, Japan) 

with their head stabilized with a chin rest. Participants used the A and L buttons of the 

computer keyboard to enter their responses. Stimuli were presented on a CRT monitor and 

controlled with open source PsychoPy software (Peirce, 2007). EEG activity was recorded 

using a BioSemi (Amsterdam, The Netherlands) Active-Two amplifier in an electrically 



	 64 

shielded and darkened room. EEG was sampled continuously at 512 Hz from 64 scalp 

electrodes arranged according to the standard International 10-20 system. Common mode 

sense (CMS) and driven right leg (DRL) were used as reference and ground electrodes. 

Vertical bipolar electrodes (VEOG) were positioned above and below the right eye. 

Horizontal bipolar electrodes (HEOG) electrodes were positioned on the outer canthi of both 

eyes. These were used to detect blinks and eye movements. 

 

3.3.3. Design 

The study had a within-subjects design: Regularity (reflection, translation) × Orientation 

(horizontal, vertical) with 72 trials per condition. The trials were presented in a randomized 

sequence for each participant. 

 

3.3.4. Stimuli 

Stimuli consisted of filled gray circles that varied in brightness (Figure 3.1). In each half of 

the patterns there were 11 elements, which varied in radius between 0.5º and 1º. There were 

0.9º between the centers of the dots. The patterns were presented either with a vertical or a 

horizontal orientation with a line going through the center of the pattern indicating the 

orientation. A black fixation cross also appeared at the center of each pattern. The background 

consisted of a white circle, which had a diameter of 14.4º. Vertical patterns were very similar 

to those used by Makin et al. (2013). 
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Figure 3.1. Example stimuli from the four conditions (vertical reflection, horizontal 
reflection, vertical translation, and horizontal translation). Actual stimuli were generated so as 
to be different in each trial. Participants discriminated reflection from translation. 
 

3.3.5. Procedure 

Participants sat in front of a CRT monitor in a darkened and electrically shielded room. The 

experiment consisted of a total of 288 trials. Each trial began with a 1.5-s baseline period, 

when the screen showed the background circle, the central fixation cross, and the oriented 

line. The dot elements then appeared reflected or translated on either side of the midline. The 

stimuli stayed on screen for 2 s. This design ensured that axis orientation was predictable 

before presentation, and thus participants did not have to compute this while making 

reflection-translation judgments. This ensured a cleaner measure of the neural response to the 

different regularities than would have been possible if orientation was unpredictable before 

stimulus onset. With this design, it made sure that the time to perceive the orientation did not 

vary between the reflection and the translation conditions. 

A) Reflection Vertical B) Reflection Horizontal 

C) Translation Vertical D) Translation Horizontal 
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After each trial, participants were presented with a response screen, and they had to 

report whether the observed pattern was a reflection or a translation. The response screen 

informed them to press the button on the left for “reflection” and on the right for “translation” 

or vice versa. The two orders varied between the trials and were counterbalanced across 

conditions so that no motor planning was possible before the response screen appeared 

(Makin, Wilton et al., 2012). Participants had up to 10 s to log a response. The experiment 

was divided into eight blocks, which allowed participants to have breaks in which they could 

rest their eyes. Prior to the start of the main experiment, participants completed a practice 

block. This consisted of eight trials, and its design reflected that of the main experiment. 

 

3.3.6. EEG Analysis 

EEG data was processed using the EEGLAB toolbox in MATLAB (Delorme & Makeig, 

2004). The raw EEG signals from the 64 electrodes were re-referenced offline to a scalp 

average and low-pass filtered at 40 Hz. The data were then sampled at 128 Hz in order to 

reduce file size and segmented into -1-s to 2-s epochs with a baseline of -200 ms to 0 ms. 

Ocular and muscle artifacts were identified and removed using independent components 

analysis (ICA). The data were then re-formed as 64 independent components and an average 

of 11.4 components removed from each participant (min = 1, max = 18). After ICA, trials that 

had amplitude greater than ± 100 µV for any electrode were removed. The average proportion 

of excluded trials did not differ significantly between the four conditions (reflection vertical, 

18%; translation vertical, 15%; reflection horizontal, 17%; translation horizontal, 14%, 

F(3,69) = 2.475, p = .069, ηp2 = .279). 

Time frequency analysis was performed on the same cleaned data that were used for 

the ERP analysis, using the FieldTrip toolbox for MATLAB (Oostenveld, Fries, Maris, & 

Schoffelen, 2011). Frequency bands from 5 to 20 Hz were explored, with a -500 to 0 ms 
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baseline. Raw data were convolved with a Hanning-tapered wavelet comprising four cycles at 

each frequency. Relative power was then computed as a proportion change from baseline. 

Wavelets were positioned at increments separated by 50 ms through the raw data. This means 

that low frequency wavelets overlapped to a greater degree than high frequency ones. The 

preprocessing steps were matched with Makin et al. (2014). We measured desynchronization 

in the 10‒14 Hz frequency band from 400 to 1,000 ms post-stimulus onset. These parameters 

were similar, but not identical, to those used by Makin et al. (2014), that is, 400‒700 ms, 8‒13 

Hz, where right lateralized alpha ERD was also measured during reflection translations. The 

time-frequency window used by Makin et al. (2014) was not centered on the effects here, so 

the parameters were adjusted. This decision did not substantially affect the results. Secondary 

analysis reported in the online supporting information showed essentially the same ERD 

effects when the same window as Makin et al. (2014) was used. 

 

3.3.7. Electrooculogram Analysis 

Although participants were instructed to fixate and eye movement artifacts were removed, 

these measures are not perfect. Therefore, it was important to establish whether eye 

movements and blinks contaminated some conditions more than others. To do this, the 

electrooculogram (EOG) analysis techniques used in our previous studies were improved 

(e.g., Makin et al., 2013; Makin, Wilton et al., 2012) by measuring EOG activity at the time 

window of the SPN or ERD, and only for trials included in the ERP and ERD analysis. For 

the selected EOG data, we computed the difference between maximum and minimum 

amplitude, then averaged this metric over all trials in each condition. 

VEOG activity from the SPN window (250 to 1,000 ms) was analyzed with repeated 

measures analysis of variance (ANOVA): Regularity (Reflection, Translation) × Orientation 

(Vertical, Horizontal). Ideally, there would have been no effects or interactions; however, 
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there was significantly more VEOG activity in the reflection trials than the translation trials, 

F(1,23) = 10.03, p = .004, ηp2 = .304, and in the vertical trials than the horizontal trials, 

F(1,23) = 5.77, p = .025 ηp2 = .200. There was no Regularity × Orientation interaction, 

F(1,23) < 1, n.s. This pattern differs from SPN results reported below. Next, the same analysis 

was performed, but using VEOG activity from the time window used for posterior ERD (400 

to 1,000 ms). There were main effects of Regularity, F(1,23) = 11.43, p = .003, ηp2 = .332, 

and Orientation, F(1,23) = 5.46, p = .029, ηp2 = .192, and no interaction, F(1,23) < 1, n.s. 

Again, this is a different pattern from the ERD results reported below. 

To further establish that differential blinking was not responsible for posterior ERPs, 

potential correlations between the VEOG metric and amplitude at bilateral posterior electrode 

clusters were measured. There was no significant correlation in any of the four conditions 

(maximum r = .24, p = .268). Next, similar correlations between VEOG activity and bilateral 

occipital alpha ERD were examined, and there were no significant correlations here either 

(maximum r = -.34, p = .105). Finally, there were no correlations between right lateralization 

of posterior ERD and VEOG activity (maximum r = .16, p = .442). It can be concluded that 

the effects of interest recorded at posterior electrodes do not reflect differential blinking. 

Next, the same analysis of HEOG data from the SPN window (250 to 1,000 ms) was 

conducted. There were no effects or interactions, F(1,23) < 1, n.s. Furthermore, there were no 

effects when the ERD window was examined (400 to 1,000 ms; F(1,23) < 1, n.s.). This shows 

that unwanted horizontal eye movements were equally distributed across conditions, and thus 

do not explain the effects of interest. 

There were no correlations between posterior ERP amplitude and HEOG metric 

(maximum r = -.32, p = .131). There was no correlation between HEOG and the bilateral 

ERD response in any condition (maximum r = -.12, p = .592), and no correlations between 

HEOG and ERD lateralization (maximum r = -.15, p = .470). 
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In summary, there were some differences in VEOG activity between conditions, while 

unwanted HEOG activity was equally prevalent across conditions. Moreover, very little 

variance in the effects of interest was explained by individual variability of the EOG metrics. 

It can be concluded that the results reported below cannot be attributed to gross eye 

movement artifacts. Further examination of this issue is reported below. 

 

3.4. Results 

3.4.1. Behavioural Results 

Participants discriminated patterns as reflection or translation. They made a correct 

discrimination on most of the trials (mean correct = 97.04%), with no differences between 

conditions (reflection, 97%; translation, 97%; horizontal, 97% vertical; 98%). Responses were 

entered after the patterns disappeared, and were unspeeded. Response times were not 

instructive in this study. 

 

3.4.2. Event-Related Potentials 

Figure 3.2 shows topographic maps of grand-average ERPs from 250 to 1,000 ms. It can be 

seen that distribution of scalp activity was broadly comparable in the four conditions; 

however, difference maps, shown in Figure 3.2B, highlight important effects. There was an 

unexpected difference between horizontal and vertical trials, shown in the top left map. There 

was a clear SPN (i.e., amplitude was lower in reflection than the translation conditions), 

shown in the top right map. The SPN was present in both vertical and horizontal trials, as 

shown in the topographic maps below. It can be seen that SPN was larger on the right. Based 

on these difference plots, electrodes were selected for statistical analysis. These were O1, 

PO3, and PO7 and right-sided homologues, O2, PO4, and PO8. These electrodes are 

highlighted in gray in Figure 3.2B, and ERP waves from these electrodes are shown in 
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Figures 3.2C, D (see supporting information for complementary analysis of SPN using 

different electrodes). 

Figure 3.2. Event-related potentials. A: Grand-average topographic maps from the four 
conditions (vertical reflection, horizontal reflection, vertical translation, and horizontal 
translation) averaged over the 250–1,000 ms time window. B: Difference plots derived from 
this data. Electrodes used for analysis are highlighted with a gray dot. C: Grand-average ERP 
waves from left posterior electrodes (O1, PO3, and PO7) in different conditions. D: 
Equivalent data from right posterior electrodes (O2, PO4, and PO8). 
 

Amplitude in the 250 to 1,000 ms window was explored with repeated measures 

ANOVA: Hemisphere (left, right), × Regularity (reflection, translation) × Orientation 

(horizontal, vertical). As expected, there was a main effect for regularity, F(1,23) = 18.85, p < 

.001, ηp2 = .450, because amplitude was lower in reflection than translation trials. The only 

other significant effect was Regularity × Hemisphere interaction, F(1,23) = 5.26, p = .031, ηp2 

= .186. To explore this interaction, we analyzed left and right electrode clusters separately. 

The effect of regularity was significant in both clusters, but smaller on the left (left 
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electrodes, F(1,23) = 9.47, p = .005, ηp2 = .292; right electrodes, F(1,23) = 17.63, p < .001, 

ηp2 = .434. There were no significant effects involving orientation in the main analysis, 

although there was a borderline Hemisphere × Orientation interaction, F(1,23) = 3.98, p = 

.058, ηp2 = .148. As suggested by Figure 3.2, there was an effect of orientation on the right, 

F(1,23) = 7.43, p = .012, ηp2 = .244, but not on the left, F(1,23) < 1, n.s. 

 

3.4.3. Time Frequency Analysis 

Time frequency analysis is shown in Figure 3.3. The results were straightforward. At 

posterior electrodes, there was clear desynchronization in the 10‒14 Hz band from around 400 

ms onwards in all conditions (see supporting information for complementary analysis of 

different time windows and frequency bands). This ERD was more pronounced on the right 

hemisphere than the left in all conditions, and also stronger in horizontal than vertical trials. 

Baseline-relative alpha power was obtained in a set of left and right posterior electrodes where 

the effect was most pronounced (O1, PO3, and PO7 and right-sided homologues). Power was 

explored with three-factor repeated measures ANOVA: Hemisphere (left, right) × Regularity 

(reflection, translation) × Orientation (horizontal, vertical). There was a main effect of 

hemisphere, F(1,23) = 8.08, p = .009, ηp2 = .260, and orientation, F(1,23) = 12.434, p = .002, 

ηp2 = .351, but no other effects or interactions (next largest effect regularity, F(1,23) = 3.289, 

p = .083, ηp2 = .125, because posterior ERD was marginally larger for translation). 

To get a sense of whether the right lateralization was driven by a small subgroup of 

participants, we tested the presence or absence of the effect in each participant (averaged 

across all four conditions). Seventeen of the 24 participants showed more alpha ERD in the 

right posterior electrodes (71%, p = .032, one-tailed binomial test). 
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Figure 3.3. Event-related desynchronization. A‒D: Scalp distribution of 10‒14 Hz powers 
from 400 to 1,000 ms poststimulus onset. The analysis focused on posterior 
desynchronization (blue on these figures). Note that this response is bilateral, but stronger in 

A) Reflection Vertical B) Reflection Horizontal 

C) Translation Vertical D) Translation Horizontal 

E) All conditions left (PO3, PO7, O1) F) All conditions right (PO4, PO8, O2) 

Topographic plots (400 to 1000 ms, 10-14 Hz) 
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the right hemisphere in all conditions. Electrodes used for analysis are highlighted with a gray 
dot. E, F: Time frequency spectrograms from left and right posterior electrode clusters, 
respectively (collapsed across all conditions). Note that ERD is greater on the right. Power is 
shown as proportion of power in the baseline interval (-500 to 0 ms). Dashed white lines 
indicate the time and frequency bands that were used to produce the topographic plots above 
and for statistical analysis. 
 

3.5. General Discussion 

In previous work, Makin, Wilton et al. (2012) recorded posterior alpha desynchronization 

when people discriminated pattern regularity. This ubiquitous neural response to visual onsets 

indicates cortical excitation in posterior regions (Buzsáki, 2006; Klimesch et al., 2007). This 

ERD is evident over both hemispheres, but it was consistently stronger in right posterior 

electrodes (Makin et al., 2014; Makin, Wilton et al., 2012). However, this right lateralization 

in our previous work was inconclusive. It could result from either (a) a transitory shift of 

spatial attention to the left side of the patterns, enhancing contralateral inputs; or (b) a 

functional and anatomical specialization whereby the right posterior regions are more active 

during regularity discrimination. 

In the current work, equivalent right lateralization of posterior alpha ERD was found 

when patterns were either vertically or horizontally oriented. Moving attention across the 

midline axis in the horizontal condition would involve moving attention upwards or 

downwards, which would not alter the balance of activity between left and right hemispheres. 

Therefore, right lateralization in the horizontal condition may have a different explanation. It 

is proposed that the right posterior regions are specialized for regularity discrimination, and 

are thus more active than the equivalent left hemisphere regions. 

Despite the robust results, one cannot fully discard the look left hypothesis. It could be 

that participants visually explore the patterns by moving covert attention to the left hemifield, 

even in the horizontal condition. A leftward perceptual bias is commonly reported in 

judgments of magnitude, numerosity, and grayscale discrimination (Nicholls, Bradshaw, & 
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Mattingley, 1999); this has been reported to be the consequence of an attentional bias 

(Nicholls & Roberts, 2002). It remains possible that this ubiquitous shift of spatial attention to 

the left could explain our current results. However, it is unlikely that the effect that we have 

measured results from a generic scanning bias because it was not present when observers did 

not engage in a symmetry discrimination task (Makin et al., 2014). 

There may be functions of the right hemisphere that are activated during all tasks, and 

have nothing to do with the processing of reflection/translation. For example, the simple need 

to maintain fixation and generally engage attention may produce greater right hemisphere 

activation. To counter this, we refer again to Makin et al. (2014), who included a matched 

control condition where right lateralization was not apparent. Although further control 

experiments are required, there is important converging evidence from Bona et al. (2014), 

who found that TMS disruption of the right LOC had a greater effect on symmetry 

discrimination than the TMS disruption of the left LOC. We thus think it is likely that 

dedicated symmetry discrimination networks are right lateralized, and alpha ERD indexes 

this. 

The current work can be related to previous findings on hemispheric specialization. 

The two best-replicated findings on hemispheric specialization in humans are left 

lateralization for language, and right lateralization for spatial tasks. These biases may be 

causally related, and can be mutually reversed in some people (often left-handers, Cai et al., 

2013). Regularity discrimination may be one kind of right hemisphere spatial task. Wilkinson 

and Halligan (2002) note that line bisection tasks require placing a mark at the center of a 

line, thus producing a symmetrical image. This ability is dramatically disrupted by right 

hemisphere damage compared to left hemisphere damage. These authors suggest that, while 

both hemispheres are sensitive to symmetry, there is right hemisphere specialization. In their 

Experiment 2, participants were faster and more accurate to detect symmetry when stimuli 
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were flashed in the left visual field (i.e., processed by the right hemisphere). Moreover, in a 

recent study, Verma et al. (2013) found a similar left visual field advantage for reflection 

symmetry detection in participants who were left lateralized for language (irrespective of 

handedness). 

Although it is tempting to conclude that ERD lateralization is a simple manifestation 

of this apparent right brain specialization for symmetry perception, it is important to note that 

the ERD lateralization was comparable for both reflection and translation in this study, and in 

the findings of Makin et al. (2014). Moreover, in previous work right lateralization of alpha 

ERD was found for both reflection and random patterns (Makin, Wilton et al., 2012). Right- 

lateralized ERD is not a neural response to the presence of symmetry, but a signature of 

engagement with regularity discrimination tasks. The ERD in this study thus differs in an 

important way from the results of Wilkinson and Halligan (2002) and Verma et al. (2013), 

who found no hemispheric advantages when people responded to random stimuli. 

Which right-lateralized brain networks display reduced alpha rhythm during all trials 

of a regularity discrimination task? It is thought that the occipital alpha rhythm is generated 

by excitation–inhibition cycles between visual cortical regions and the thalamus (e.g., 

Buzsáki, 2006). It is likely that the current work measured changes in oscillatory activity in 

visual areas, although these are, of course, subject to influences from higher brain regions 

(Laufs et al., 2006). However, there is some ambiguity here, which should not be glossed 

over: Most classic “right hemisphere dominant” functions, such as mental object rotation and 

spatial attention, are mediated by the parietal lobes, that is, well beyond the early visual maps 

that supposedly produce the posterior alpha rhythm. It could be that this experiment recorded 

ERD in the parietal regions rather than earlier visual regions, which is not so well 

documented. Alternatively, the posterior ERD could occur in early visual areas, but this could 

have been affected by ipsilateral top-down connections from functionally asymmetrical 
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parietal areas. The current work cannot resolve such questions about the source of the scalp 

recordings. 

If regularity discrimination mechanisms are right lateralized, one might expect to see 

converging evidence from fMRI studies. Jacobsen, Schubotz, Höfel, and Crammon (2006) 

compared activations produced by a discriminate symmetry task (collapsing over symmetry 

or random trials) with all conditions of an aesthetic judgment task (beautiful or ugly) and a 

control condition where participants made a trivial visual discrimination (arrow pointing left 

or right). Our results imply that there would be right-lateralized activity in the posterior 

regions during the discriminate symmetry task; however, Jacobsen et al. (2006) did not find 

this. As well as various frontal and parietal activations, the extrastriate visual cortex was 

found to be more active in the discriminate symmetry than in the control condition, while the 

left extrastriate visual cortex was more active during the discriminate symmetry task than the 

aesthetic judgment task. However, these fMRI results depend on the nature of the comparison 

tasks as much as the nature of the symmetry discrimination task. Right lateralization of alpha 

ERD is a reliable signature of regularity discrimination, although it is currently difficult to 

relate this to existing neuroimaging work on this topic, which has not reliably shown greater 

right hemisphere activation (Chen et al., 2007; Jacobsen et al., 2006; Sasaki et al., 2005; Tyler 

et al., 2005). Previous studies that have examined EEG and fMRI activity have shown that 

decreased alpha power correlates with increase blood-oxygen-level dependent (BOLD) 

signals in occipital regions (e.g., Goldman et al., 2002), so right lateralization of the BOLD 

signal would be expected. This has not been reported, although this may reflect differences in 

the nature of the signal and the tasks used. TMS studies have also failed to find consistent 

right lateralization; with one study finding a right hemisphere lateralization (Bona et al., 2014) 

while another did not (Cattaneo et al., 2011). 
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We found that horizontal patterns resulted in more occipital alpha ERD than vertical 

patterns. This effect was bilateral, implying more activation of both left and right posterior 

regions during horizontal trials. Previous symmetry perception research has shown that 

vertical orientations are detected faster (Friedenberg & Bertamini, 2000; Julesz, 1971). 

However, it is not clear whether the vertical advantage survives when axis orientation can be 

anticipated (Wenderoth, 1994; Wenderoth & Welsh, 1998). In this study, the orientation of 

the axis was reliably cued before the stimulus appeared, so it is unlikely that regularity 

discrimination was more difficult in the horizontal condition. It is thus unlikely that task 

difficulty explains the effect of orientation on alpha ERD. Incidentally, the fact that 

behavioral discrimination performance was near perfect in all conditions is not relevant here. 

This was an unspeeded judgment: participants may be correct every time, but still find the 

discrimination more difficult in one condition than another. 

Julesz (1971) suggested that the reflectional symmetry of the visual system made 

processing vertical symmetric patterns easier than other orientations. Each half of a vertically 

presented symmetrical pattern is processed via the contralateral cortical hemisphere, with this 

activation then matched across the vertical midline. This suggests that the corpus callosum 

mediates the putative advantage of vertical symmetry detection at fixation. Herbert and 

Humphrey (1996) found support for this callosal hypothesis because two subjects born 

without a corpus callosum did not detect vertically presented symmetrical patterns quicker 

than horizontal ones. The effect of orientation on ERD is consistent with the callosal 

hypothesis in so much as it shows a different neural response when communication across the 

callosum is required. It is interesting that within-hemisphere connections activated in the 

horizontal condition produced more alpha ERD than between-hemispheric ones, because 

shorter connections lead to higher frequency coupling, and greater desynchronization at lower 

frequencies (Buzsáki, 2006). However, the effect of orientation on ERD should be treated 
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cautiously, because it was highly dependent on pre-processing stages. (There was no ERD 

difference between horizontal and vertical conditions when the analysis was run without ICA, 

see Appendix 2 Figure 2.2). 

The SPN was also present in this EEG data: Amplitude was lower in the reflection 

conditions than the translation conditions from around 250 ms until the end of the epoch. This 

is similar to what was reported in Makin et al. (2013, 2014). However, the current work 

makes the novel contribution of showing that the SPN is comparable whether patterns are 

oriented vertically or horizontally. Previous work by Beh and Latimer (1997) also compared 

ERPs for horizontal and vertical symmetry; however, they did not show a clear SPN 

component and their experiment only had a small number of participants, so it is difficult to 

relate these results to the growing SPN literature on symmetry perception (Höfel & Jacobsen, 

2007a; Jacobsen & Höfel, 2003; Makin, Wilton et al., 2012; Norcia et al., 2002). 

Another novel finding was that the SPN was more pronounced in right hemisphere 

electrode clusters. However, this result should be treated cautiously because the crucial 

Hemisphere × Regularity interaction was eliminated when we adopted different data 

preprocessing procedures (See Appendix 2). Nevertheless, the SPN and ERD are both 

potentially generated by right-lateralized networks, and these signals reflect different aspects 

of the same or overlapping systems. 

The topography and latency of the SPN may be familiar to ERP researchers. 

Specifically, there are links with the negative-deflection mask, reported by Verlerger, 

Gorgen, and Jaskowski (2005), but more generally, many ERPs are characterized by a 

sustained, late wave following the high frequency visual evoked potential (Luck, 2005). For 

instance, a sustained posterior contralateral negativity is found when people attend to the right 

or left side of space (Lefebvre, Dell'acqua, Roelfsema, & Jolicoeur, 2011), or when people 

hold multiple items in visual working memory (Vogel & Machazawa, 2004). Furthermore, 
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presentation of recognizable objects compared to scrambled objects produces a negative late 

component at posterior electrodes, beginning around 230 ms (Gruber & Müller, 2005; 

Martinovic, Mordal, & Wuerger, 2011). Of course, different neurocognitive processes 

generate these ERPs, despite some crude waveform similarity. In summary, the regularity-

related SPN is partly defined by the stimuli that produce it, not just latency and topography, 

which are partly shared with other slow negatives related to visual, motor, attentional, and 

working memory processes. 

 

3.6. Conclusions 

This study has confirmed the presence of a right-lateralized posterior alpha desynchronization 

during a regularity discrimination task. Previous work has shown that this ERD response is 

present across all trials. We tested whether the right lateralization was due to a temporary shift 

of spatial attention to the left, prioritizing contralateral inputs, or to a functional specialization 

of the right hemisphere for regularity discrimination. If ERD lateralization was produced by 

participants shifting spatial attention to one side of the pattern, it would disappear when the 

pattern was oriented horizontally (as moving attention to the right or left would serve no 

purpose in comparing the two halves). It was found that right lateralization of ERD was 

equivalent for both orientations. The right bias may therefore reflect specialization of the right 

hemisphere for regularity discrimination, possibly because the task requires the processing of 

complex spatial information. 

Let us summarize the mixed evidence for right lateralization during regularity 

discrimination: (a) Psychophysical and neuropsychological work has shown that symmetrical 

patterns presented to the right hemisphere are detected more quickly. (b) Right hemisphere 

brain damage has a more profound effect on line bisection. (c) There is no evidence for right 

lateralization from fMRI. (d) TMS work shows that the right LOC plays a greater role than 
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the left in symmetry discrimination. (e) Alpha ERD is often right lateralized, in all conditions 

(reflection, random, or translation) and independently of orientation. This response usually 

occurs when the task is to classify regularity, but not during figure-ground discrimination. (f) 

The symmetry-related SPN is sometimes weakly right lateralized. (g) There is no comparable 

evidence for left lateralization. What firm conclusions can be drawn from this mixed 

evidence? We propose that symmetry perception is bilateral, mediated by extrastriate areas 

and the LOC, but that the right LOC plays a more prominent role. Although the right 

lateralization of symmetry discrimination networks is not detected with all neuroimaging 

techniques under all circumstances, it is likely to be a real phenomenon. 
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4. Does visual crowding influence the SPN? 

	

4.1. Abstract 

The human visual system is efficient at processing symmetry in central vision. However, 

symmetry detection can be impaired when it is in the periphery and when other objects flank 

it (Roddy & Gurnsey, 2011). Electrophysiological symmetry studies have identified a 

difference wave where amplitude is lower for reflection than random patterns 200ms after 

stimulus onset. This component has been termed the Sustained Posterior Negativity (SPN). 

Previously, we have demonstrated that this response can be produced to reflection in 

peripheral vision (Wright, Makin, & Bertamini, 2016). Here, we investigated how visual 

crowding modulates this response. In Experiment 1, reflection and random patterns were 

presented in periphery (4.5° from fixation). These were either presented in isolation or 

flanked by other random patterns positioned either side or above and below the target. 

Participants had to discriminate whether the target was reflection or random. In an early time 

window (200-600ms after stimulus onset) the SPN was present. The size of the SPN in this 

time window reflected the strength of crowding, with stronger crowding producing a smaller 

SPN. Target-flanker similarity can also influence crowding strength; this was examined in 

Experiment 2 and Experiment 3. In Experiment 2, the targets and flankers could be either all 

reflection, all random or the target and flankers could be different in shape. It was found that 

crowding abolished the SPN. In Experiment 3, black targets were presented amongst white 

flankers with the target and flankers either all reflection, all random or the target and flankers 

could be different in shape. The SPN was present in the early time window with the size of 

this response scaling with the strength of crowding. We conclude that although the SPN is a 

response to symmetry in the image it is subject to interference from flanking objects.  
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4.2. Introduction 

An important function of the visual system is image segmentation and object identification. 

Symmetry is a salient visual property that may play a fundamental role in these visual 

processes (Machilsen, Pauwels, & Wagemans, 2009; Pizlo & Stevenson, 1999; See 

Wagemans, 1995 for a review). For example, the visual system processes symmetry in central 

vision efficiently and rapidly, particularly when the axis is vertical compared to other 

orientations (Bertamini, Friedenberg, & Kubovy, 1997; Mach 1886/1959; Julesz, 1971). 

Symmetrical regions are also perceived as figures when presented in ambiguous figure-

ground displays (Kanizsa & Gerbino, 1976). However, both peripheral presentation and 

flanking objects can compromise successful symmetry perception. 

 In peripheral vision, symmetry detection is still possible but it is reduced. Reflection 

symmetry is detected most accurately at fixation but as it is moved away from fixation, 

therefore increasing eccentricity, sensitivity decreases (Barrett, Whitaker, McGraw, & 

Herbert, 1999; Gurnsey, Herbert & Kenemy, 1998; Saarinen, 1988; Sally & Gurnsey, 2001). 

However, this drop in performance can be reduced with stimulus magnification so that as 

eccentricity increases so does the size of the stimuli (Tyler & Hardage, 1996).  

 Flanking objects in the periphery can also impair symmetry perception. For example, 

when random distractors flank reflection, successful discrimination of symmetry decreases 

(Roddy & Gurnsey, 2011). This impairment to detect a target among flankers in the periphery 

has been explained by visual crowding. Visual crowding has been extensively studied since it 

was first described by Korte (1923) and it has been found to apply to a range of different 

stimuli (i.e. lines, Gabor stimuli, and faces) in peripheral vision but diminished at fixation 

(See Levi, 2008 for a review). Crowding is dependent on the eccentricity of the target 

alongside the position and how densely spaced the flankers are to the target (Bouma, 1970; 
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Toet & Levi, 1992; Whitney & Levi, 2011). The ability to recognize the identity of an object 

increases as the critical spacing between target and flankers increases.  

 Currently, there is no single agreed upon model of crowding. In recent years a 

‘pooling’ explanation has received much popularity with it suggested that crowding results 

from the integration of feature information leading to the generation of an inaccurate percept 

(Greenwood, Bex, & Dakin, 2009, 2010; Parkes, Lund, Angelucci, Solomon, & Morgan, 

2001). Pooling of features can result from feature averaging (Parkes et al., 2001), positioning 

averaging (e.g. Dakin et al., 2010; Greenwood et al., 2009) or pixel averaging/blurring. 

Pooling could occur in a more complicated manner through the measuring of a set of 

summary statistics.  For example, a model proposed by Balas et al. (2009) measured a number 

of statistics from a given image including position, phase, orientation, and scale. They 

suggested that stimuli in the periphery are represented in the visual system by these. The basic 

premise of all of these models is that for each percept global statistics are preserved but access 

to local features is blocked. Alternatively, a ‘substitution’ model suggests that due to spatial 

uncertainty participants mistake or swap the features of the target with the features of the 

distractor (Ester, Klee, & Awh 2014; Ester, Zilber & Serences, 2015). Grouping may also 

play an important role, whereby crowding is increased when target and flankers group 

together (Manassi, Lonchampt, Clarke & Herzog, 2016; Pachai, Doerig, & Herzog, 2015). In 

relation to the neural basis of crowding numerous areas have been proposed including V1 

(Millin, Arman, Chung, & Tjan, 2013), V2 (Bi et al., 2009), and V4 (Motter, 2006).   

 

4.2.1. Brain responses to symmetry 

Electrophysiological work in symmetry perception has identified a symmetry specific late 

component known as the Sustained Posterior Negativity (SPN). This is exhibited as a 

difference in amplitude between reflection and random (or occasionally another regularity) 
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patterns from around 200ms after stimulus onset (Bertamini & Makin, 2014; Norcia et al., 

2002). The SPN is greatest for reflection (Makin et al., 2012), with this response scaling with 

the amount of Gestalt ‘goodness’ or symmetry in the image (Makin et al, 2015; Palumbo et al, 

2015). It can be produced to stimuli in the periphery with each hemisphere being able to 

independently produce this response (Wright, Makin & Bertamini, 2016) whilst a comparable 

response is produced regardless of whether reflection is vertically or horizontally orientated 

(Wright, Makin & Bertamini, 2015). For the SPN to be produced, participants do not need to 

actively discriminate symmetry; it has been recorded when participants misreport their 

answers, when reflection or random required a ‘yes’ response in a 2AFC task and when the 

colour of the symmetry had to be reported (Höfel & Jacobsen, 2007a; Höfel & Jacobsen, 

2007b; Makin, Wilton, Pecchinenda & Bertamini, 2012).   

Neuroimaging and TMS studies have localized the neural generators responsible for 

the SPN to the posterior visual areas (Lateral Occipital Complex (LOC), V3a, V4 and V5), 

with symmetry processing occurring in a bottom-up fashion whereby activity in V3 and V4 

takes place prior to LOC activation (Bona et al., 2014; Cattaneo, Mattavelli, Papagno, Herbert 

& Silvanto, 2011; Chen, Kao & Tyler, 2007; Kohler et al., 2016; Sasaki, Vanduffel, Knutsen, 

Tyler & Tootell, 2005; Tyler et al., 2005). In conjunction, EEG source localization has 

suggested the extrastriate visual areas are involved in the production of the SPN (Makin et al., 

2012).  

 

4.2.2. Investigation of visual crowding and the SPN 

Typically, the SPN has been examined for symmetry in central vision. The one exception, 

Wright, Makin & Bertamini (2016), demonstrated that the SPN could be produced for 

reflectional patterns in peripheral vision. However, it is still to be determined how flanking 



	 85 

objects specifically modulate the SPN. Behaviourally, reflection is subject to visual crowding 

(Roddy & Gurnsey, 2011).  

We conducted three experiments to investigate how visual crowding influences the 

SPN. In all three experiments, participants were presented with a reflection or random target 

(4.5° from fixation) flanked by other objects in the left or in the right visual field. They were 

required to judge whether the target was reflectional or random. In Experiment 1, the target 

could either be presented in isolation or with two random flankers positioned above and 

below or either side of it. There are two hypotheses. The first hypothesis would predict that as 

the SPN is a response to symmetry in the image, this response would be present when 

reflection is present as the target, regardless of the position of the flankers in relation to the 

target. However, when on a horizontal meridian, crowding is stronger when the flankers are 

arranged horizontally than vertically (Fen, Jiang, & He, 2007). Consequently, a second 

hypothesis would predict that crowding will reduce the ability to perceive the target therefore 

the SPN should be reduced when the flankers are organized horizontally compared to 

vertically. Target-flanker similarity can also influence the strength of crowding (Kooi, Toet, 

Tripathy, & Levi, 1994; Levi et al., 2002; Põder, 2007). In Experiment 2, the target and 

flankers were either all reflection, all random or different (the target could be reflection whilst 

the flankers were random or vice versa) in shape. When the target and flankers have 

dissimilar features, crowding is reduced as a result of pop out or attention. In Experiment 3, 

the target and flankers could be all reflection, all random or different (the target could be 

reflection whilst the flankers were random or vice versa), however the distractors and flankers 

had opposite contrast polarity. These experiments will firstly show whether a response to 

reflection is produced when other objects flank it, and secondly how the features and position 

of the flanking objects impact on this response. 
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4.3 Experiment 1 

4.3.1. Method 

4.3.1.1. Participants  

Twenty-four participants took part in the study (age 18-28, mean age 19.4 (SD= 2.4), 1 male, 

2 left handed) all of which had normal or corrected-to-normal vision. They received course 

credit upon completion of the study. The study was approved by the Ethics Committee of the 

University of Liverpool and conducted in accordance with the Declaration of Helsinki 

(revised 2008).  

 

4.3.1.2. Apparatus  

Participants were positioned in a chin rest 100cm from a 60Hz CRT monitor (40 x 30 cm) in 

an electronically shielded and darkened room. Electroencephalogram (EEG) data was 

recorded from 64 scalp electrodes using the BioSemi Active-Two system at 512 Hz. Common 

Mode Sense and Driven Right Leg electrodes were used as a reference and ground. Four 

external channels recorded bipolar horizontal and vertical electro-oculograph (EOG) signals. 

Apparatus are the same as those used in our previous ERP symmetry experiments and the 

other chapters of this thesis (Bertamini & Makin, 2014).   

 

4.3.1.3. Design 

The study had a single within-subjects factor (Arrangement [Reflection-NoFlankers, Random-

NoFlankers, Reflection-FlankersVertical, Random-FlankersVertical, Reflection-

FlankersHorizontal, Random-FlankersHorizontal]) with 80 trials per condition. The 

experiment consisted of 10 blocks with a total of 480 trials.   
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4.3.1.4. Stimuli  

Examples of the stimuli can be seen in Figure 4.1. Stimuli were generated using the open-

source PsychoPy software (Peirce, 2007). They consisted of a reflection or random pattern 

presented in isolation or flanked by two random flankers. Targets were positioned 4.5° either 

to the left or right of fixation. The patterns were 1.3° in diameter. The center-to-center 

distance between the target and the flanker was fixed at 1.8° which is well within the critical 

spacing required to induce crowding. Flankers were positioned above and below (Reflection-

FlankersVertical, Random-FlankersVertical) or either side (Reflection-FlankersHorizontal, 

Random-FlankersHorizontal) of the target. Reflection patterns consisted of two axis of 

symmetry (horizontal and vertical). All patterns were black in colour and presented on a grey 

background.   

 

Figure 4.1. Examples of the stimuli used in Experiment 1. Targets were presented 4.5° from 
fixation in either the left or right visual field. Targets could be presented either unflanked (left 
panels) or flanked with two random patterns. Targets could be presented with the flankers 
positioned either above and below (middle panels) or either side of the target (right panels). 
The top row the target is reflection whilst the bottom row it is random. Participants had to 

Target		
(No	Flankers)	

Reflec%on		

Random		

Target	with	flankers	
(Ver6cal)	

Target	with	flankers	
(Horizontal)	
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judge whether the target (the single pattern or the centre pattern when in a group of three) was 
reflection or random.  
 

4.3.1.5. Procedure  

Prior to the start of the experiment, participants performed a practise block in order to 

familiarise themselves with the task and to allow the electrodes to be checked. Participants 

were required to fixate centrally throughout the experiment. Each trial began with a baseline 

period of between 1.5-2 seconds, which consisted of a centrally positioned fixation cross. 

Stimuli were presented on screen for 216ms. Following stimulus presentation there was a 

blank screen for 1.5 seconds and then a response screen where they had up to 10 seconds to 

log a response. Using the ‘A’ and ‘L’ keys on a standard computer keyboard participants were 

required to discriminate whether the target pattern was reflection or random. The target 

pattern was defined as either the pattern in isolation or the centre pattern when accompanied 

by flankers.  

 

4.3.1.6. EEG Analysis 

The same EEG analysis was performed as in our previous symmetry ERP studies (Bertamini 

& Makin, 2014). EEG data was processed using the EEGLAB toolbox in MATLAB 

(Delorme & Makeig, 2004). Sixty-four electrodes recorded the raw EEG signal, which was 

re-referenced offline to a scalp average and low pass filtered at 40Hz. The data was sampled 

at 128Hz and segmented into epochs (-1s to1.5s) with a baseline of -200ms to 0ms. Ocular, 

muscle and other artefacts were identified and removed using Independent Component 

Analysis (ICA; Jung et al., 2000). The data was then reformed as 64 independent components. 

For each participant an average of 8.4 components were removed (min = 3, max = 14). 

Following ICA, trials that had amplitude greater than ± 100 μV for any electrode were 

removed. A comparable number of trials were removed from each condition (Reflection-
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NoFlankers 13.6%; Random-NoFlankers 12.8%; Reflection-FlankersHorizontal 12.7%; 

Random-FlankersHorizontal 13.8%; Reflection-FlankersVertical 14.3%; Random-

FlankersVertical 13.7%). The main analysis was conducted on the combined signal from 

electrodes P1, P3, P5, P7, PO3, PO7 from the left hemisphere and P2, P4, P6, P8, PO4, and 

PO8 from the right hemisphere in separate time windows (early: 200-600ms; late: 600-

1000ms). Previous research has highlighted that the SPN may consist of an early and late time 

window (Makin et al., 2016). Electrodes were chosen as we were interested in the response in 

posterior regions and this selection had been used in our previous research (e.g. Wright, 

Makin & Bertamini, 2016). The SPN was defined as a difference in ERP amplitude between 

reflection and random. 

 

4.3.2. Results 

4.3.2.1. Behavioural  

Participants discriminated the target pattern as either reflection or random. They correctly 

discriminated the target when it was presented without any flankers (d’ = 2.227, criterion c = -

0.013). Performance was greater in detecting the target when the flankers were above and 

below (d’ = 1.563, criterion c = 0.142) compared to when the flankers were positioned either 

side of the target (d’ = 0.932, criterion c = 0.273). These behavioural results show that the 

positioning of the flankers affected the ability of the participants to correctly identify the 

target.   

 

4.3.2.2. Event-Related Potentials 

Figure 4.2A shows the grand average amplitudes for all conditions. The SPN was present in 

only the early time window between 200-600ms after stimulus onset. This can be seen in the 

ERP plots and differences waves in Figure 4.2B, C and D. These show that the size of the 
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SPN response in this early time window reduced as the strength of crowding increased (i.e. 

the stronger the effect of crowding, the smaller the SPN).  
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Figure 4.2. Grand-average ERPs for each condition collasped across the left and right 
hemisphere in Experiment 1. A) Grand-average ERPs for all conditions over both 
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hemispheres. B) ERPs and difference wave when the targets are unflanked. C) ERPs and 
difference wave when the targets are flanked vertically. D) ERPs and difference wave when 
the targets are flanked horizontally.   
 

A repeated measures ANOVA was performed [Hemisphere (Left, Right) x Time 

Window (200-600, 600-1000) x Arrangement (Reflection-NoFlankers, Random-NoFlankers, 

Reflection-FlankersVertical, Random-FlankersVertical, Reflection-FlankersHorizontal, 

Random-FlankersHorizontal)]. ERPs were affected by the Arrangement configuration 

(F(5,115) = 4.161, p = 0.002, partial η2 = 0.153) and Time Window (F(1,33) = 67.317, p = 

0.001, partial η2 = 0.745). There was no main effect of Hemisphere. In terms of interactions, 

there was a Arrangement x Time interaction (F(5,115) = 8.342, p = 0.001, partial η2 = 0.266). 

There was other interaction.   

We then conducted a series of paired t-tests to further examine the Arrangement x 

Time interaction. When collapsed across both hemispheres for the early time window (200-

600ms) there was a significant difference between Reflection-NoFlankers and Random-

NoFlankers (t(23) = -3.164, p = 0.004, d = -0.360) as well as between Reflection-

FlankersVertical and Random-FlankersVertical (t(23) = -2.091, p = 0.048, d = -0.240). There 

was no difference between Reflection-FlankersHorizontal and Random-FlankersHorizontal. 

In the late time window there were no differences between conditions.  

  

4.3.3. Discussion 

Experiment 1 has two clear findings. Firstly, the SPN was observed in the early time window 

(200-600ms after stimulus onset). This is the first study to show that the SPN can be produced 

when other objects in the periphery flank reflection. Secondly, the size of the SPN reduced as 

the strength of crowding increased. In this early time window the SPN was least pronounced 

when the flankers were positioned either side of the target. It was slightly more pronounced 
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when the flankers were above and below the target. Moreover, this result is in-line with 

behavioural findings showing that reflection is subject to crowding, along with vertical 

flankers inducing a stronger crowding effect than horizontal ones (Fen, Jiang, & He, 2007; 

Roddy & Gurnsey, 2011).   

 

4.4. Experiment 2 

Experiment 1 showed that in an early time window (200-600ms) the strength of crowding 

reduced the size of the SPN. Crowding is also influenced by target-flanker similarity 

(Baptiste-Bernard & Chung, 2011; Kooi, Toet, Tripathy, & Levi, 1994). When target and 

flankers share a similar feature (e.g. colour or shape) crowding is increased. Alternatively, 

when the target and flankers are dissimilar from each other, crowding is reduced due to 

increased attention or pop out of the target. This has been found with various stimuli features 

including colour, shape (Kooi, Toet, Tripathy, & Levi, 1994), size (Levi & Carney, 2009; 

Saarela, Sayim, Westheimer, & Herzog, 2009) and contrast polarity (Chakravarthi & 

Cavanagh, 2007). 

We conducted a second experiment that investigated the influence of target-flanker 

similarity on the SPN. In this experiment the target and flankers could either be all reflection, 

all non-reflection or different in shape (Figure 4.3). As the SPN is a response to visual 

symmetry the SPN may scale with the number of symmetrical objects presented. It would be 

most pronounced when reflection flanks reflection, and least pronounced when the target and 

flankers are both random. Alternatively, as seen in Experiment 1 the amplitude of the SPN 

may reflect the strength of crowding. When the target and flankers are all reflection we would 

expect a greater SPN response than when the targets and flankers are different (reflection 

flanked by random or vice versa).   
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4.4.1. Method  

Twenty-four participants took part in the study (age 19-43, mean age 24 (SD = 4.4), 15 males, 

4 left handed). The apparatus were the same as in Experiment 1. There was a single within 

subjects design (Arrangement [Reflection-NoFlankers, Random-NoFlankers, Reflection-

FlankersReflection, Reflection-FlankersRandom, Random-FlankersReflection, Random-

FlankersRandom]) with 80 trials per condition. On each trial, participants were presented with 

a target (reflection or random) in either the left or right visual field. The target could be 

presented either in isolation (Reflection-NoFlankers, Random-NoFlankers) or flanked by 

either two reflection (Reflection-FlankersReflection, Random-FlankersReflection) or two 

random flankers (Reflection-FlankersRandom, Random-FlankersRandom) positioned to the 

left and right of the target. The stimuli and procedure were otherwise the same as in 

Experiment 1. 

EEG analysis was the same as in Experiment 1. An average of 4.1 components were 

removed from each participant (min = 2, max = 11). For Reflection-NoFlankers 20.7% of 

trials were removed, for Random-NoFlankers 20.2%, Reflection-FlankersReflection 20.1%, 

Reflection-FlankersRandom 21.9%, Random-FlankersReflection 21.5% and for Random-

FlankersRandom 20.7%.   
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Figure 4.3. Examples of the stimuli used in Experiment 2. Targets were presented 4.5° from 
fixation either in the left or right visual field. Targets could be presented either in isolation 
(left panels) or flanked by other objects. The targets and flankers could either be all reflection 
(middle top panel), all random (middle bottom panel) or different in shape (right panels). The 
top row the target is reflection whilst the bottom row it is random. Participants had to judge 
whether the target (the single pattern or the centre pattern when in a group of three) was 
reflection or random. 
 

4.4.2. Results 

4.4.2.1. Behavioural  

Participants discriminated the target pattern as either reflection or random. They were able to 

successfully discriminate the target (d’ = 2.310, criterion c = 0.061) when it was not flanked. 

Performance dropped when the target and flankers were either all reflection or all random 

(d’= 2.078, criterion c = -0.203) and was lowest when the target and flankers were different 

(d’= 0.706, criterion c = -0.148). These results show that the ability to discriminate the target 

was affected by crowding.  

 

Target		
(No	Flankers)	

Reflec4on		

Random		

Target	with	flankers		
(All	shapes	reflec4on	or	

all	random)	

Target	with	flankers	
(Different)	
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4.4.2.2. Event-Related Potentials 

Figure 4.4 shows the ERPs from Experiment 2. The SPN response was only present for the 

unflanked targets with reflection lower in amplitude than random between 200-600ms after 

stimulus onset. There were no differences in amplitude when the target and flankers were all 

reflection or all random (Figure 4.4C) or when they were different in shape (Figure 4.4D).  
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Figure 4.4. Grand-average ERPs for each condition collasped across the left and right 
hemisphere in Experiment 2. A) ERPs for all conditions. B) ERPs and difference wave when 
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the targets are unflanked. C) ERPs and difference wave when the targets and flankers were all 
reflection or all random. D) ERPs and difference wave when the target and flankers were 
different. 

 

A repeated measures ANOVA was performed [Hemisphere (Left, Right) x Time 

Window (200-600, 600-1000) x Arrangement (Reflection-NoFlankers, Random-NoFlankers, 

Reflection-FlankersReflection, Random-FlankersReflection, Reflection-FlankersRandom, 

Random-FlankersRandom)]. There was a main effect of Arrangement F(5, 115) = 5.411, p = 

0.001, partial η2 = 0.190 and Time F(1, 23) = 41.509, p = 0.001, partial η2 =0.643. There was a 

Arrangement x Time Window interaction F(5, 115) = 3.861, p = 0.001, partial η2  = 0.144. 

There was no main effect of Hemisphere or any interactions.   

When collapsed across hemispheres, paired samples t-tests showed there was a 

significant difference in the early time window between Reflection-NoFlankers and Random-

NoFlankers (t(23) = -4.059, p = 0.001, d = -0.355). There were no other significant 

differences between conditions in either of the time windows.  

	

4.4.3. Discussion 

Experiment 2 showed that visual crowding eliminated the SPN response. The SPN was only 

present when the targets were unflanked. This is consistent with Experiment 1. However, 

although our stimuli produced crowding, the SPN response did not scale in size with it. When 

the targets were flanked the SPN response was no longer present.   

Behavioural performance was reduced when the targets were flanked. It has been 

found that when target and flankers share similar features (e.g. colour, contrast polarity, shape 

or depth) crowding is increased (Kooi, Toet, Tripathy, & Levi, 1994). However we found the 

reverse with crowding stronger when the target and flankers differed in their shape features. 

This will be discussed later on.  
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We conducted a third experiment in which we manipulated the contrast polarity and 

shape of the flankers. For this experiment the target and flankers could either be all reflection, 

all random or different (target could be reflection whilst the flankers were random or vice 

versa) in shape whilst the target was always black and the flankers white. In Experiment 2 

crowding abolished the SPN. When a target and flankers share similar features, the target 

loses its individuality and becomes hard to distinguish from the flankers. Consequently, the 

more the target is segregated from the flanker, the more crowding is reduced. By 

manipulating both contrast polarity and shape, this should make the target stand out and its 

features more accessible compared to the flankers therefore inducing the SPN. 

 

4.5. Experiment 3 

4.5.1. Method 

Twenty-four participants took part in the study (age 18-25, mean age 19 (SD = 1.6), 5 males, 

2 left handed). The apparatus were the same as in Experiment 1. There was a single within 

subjects design (Arrangement [Reflection-NoFlankers, Random-NoFlankers, Reflection-

FlankersReflection, Reflection-FlankersRandom, Random-FlankersReflection, Random-

FlankersRandom]) with 80 trials per condition. On each trial, participants were presented with 

a black target (reflection or random) in either the left or in the right visual field. The target 

could be presented either in isolation (Reflection-NoFlankers, Random-NoFlankers) or 

flanked by either two white reflection (Reflection-FlankersReflection, Random-

FlankersReflection) or random flankers (Reflection-FlankersRandom, Random-

FlankersRandom) positioned to the left and right of the target (Figure 4.5). The stimuli and 

procedure were otherwise the same as in Experiment 1. 

EEG analysis was the same as in Experiment 1. An average of 4.9 components were 

removed from each participant (min = 2, max = 11). For Reflection-NoFlankers 18.5% of 
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trials were removed, for Random-NoFlankers 18.3%, Reflection-FlankersReflection 18.8%, 

Reflection-FlankersRandom 19.1%, Random-FlankersReflection 18.1% and for Random-

FlankersRandom 19.1%.  

Figure 4.5. Examples of the stimuli used in Experiment 3. Targets were presented 4.5° from 
fixation either in the left or right visual field. Targets could be presented either in isolation 
(left panels) or flanked by other objects. The targets and flankers could either be all reflection 
(middle top panel), all random (middle bottom panel) or different in shape (right panels). The 
top row the target is reflection whilst the bottom row is random. Participants had to judge 
whether the target (the single pattern or the centre pattern when in a group of three) was 
reflection or random. 
 

4.5.2. Results 

4.5.2.1. Behavioural 

Participants were required to judge whether the target was reflection or random. They were 

successfully able to discriminate the target when it was unflanked (d’= 1.9, criterion c = 0.05). 

Crowding was strongest when the target and flankers were different (d’= 0.8, criterion c = 

0.2) in shape compared to when the target and flankers were either all reflection or all random 

(d’= 1.5, criterion c = 0.19).   

Target		
(No	Flankers)	

Reflec1on		

Random		

Target	with	flankers		
(All	shapes	reflec1on	or	

all	random)	

Target	with	flankers	
(Different)	
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4.5.2.2. Event-Related Potentials 

Figure 4.6 shows the ERPs for Experiment 3. When the targets were unflanked reflection was 

lower in amplitude than random between 200-600ms after stimulus onset. This was also true 

when the target and flankers were all reflection or all random. There was no difference in 

amplitude between reflection and random when the target and flankers were different.  

A repeated measures ANOVA was performed [Hemisphere (Left, Right) x Time 

Window (200-600, 600-1000) x Arrangement (Reflection-NoFlankers, Random-NoFlankers, 

Reflection-FlankersReflection, Random-FlankersReflection, Reflection-FlankersRandom, 

Random-FlankersRandom)]. The between-subjects factor was Experiment (Experiment 2, 

Experiment 3).  

There was a main effect of Arrangement F(5, 230) = 5.705, p = 0.001, partial η2 

=0.110 and Time F(1,46) = 90.898, p = 0.001, partial η2 = 0.664. There was an Arrangement x 

Time Window interaction F(5,230) = 5.258, p = 0.001, partial η2  = 0.103. There were no other 

main effects or interactions.  

 When collapsed over hemispheres for the early time window paired samples t-tests 

showed that there was a significant difference between Reflection-NoFlanker and Random-

NoFlanker (t(23) = -4.695, p = 0.001, d = -0.388). There was a significant difference between 

Reflection- FlankersReflection and Random-FlankersRandom (t(23) = -2.708, p = 0.013, d = -

0.198). In the late time window there were no significant differences between conditions.  
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Figure 4.6. Grand-average ERPs for each condition collasped across the left and right 
hemisphere in Experiment 3. A) ERPs for all conditions collasped across both hemispheres. 
B) ERPs and difference wave when the targets are unflanked. C) ERPs and difference wave 
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when the targets and flankers were all reflection or all random. D) ERPs and difference wave 
when the target and flankers were different. 
 
4.6. General Discussion 

Symmetry plays a key role in object recognition. Nevertheless, object recognition can 

be hindered when targets are placed amongst other flanking objects. Electrophysiological 

research has identified a symmetry specific ERP component known as the Sustained Posterior 

Negativity where reflection is lower in amplitude compared to random from around 200ms 

after stimulus onset. However, it is not known how flanking objects modulate this response. 

Across three experiments, reflection and random were presented in the periphery either in 

isolation or flanked by other objects. In Experiment 1, flankers were positioned both above 

and below the target or either side of it. In Experiment 2 and 3, we examined target-flanker 

similarity with target and flankers either being the same or different in terms of their features. 

These experiments allowed us to examine how flanking objects in the periphery influence the 

SPN.   

The results demonstrate that visual crowding reduces the SPN response. In 

Experiment 1, the size of this response in an early time window (200-600ms after stimulus 

onset) was found to reflect the strength of crowding (i.e., the stronger the effect of crowding, 

the smaller the SPN). In Experiment 2, crowding eliminated the SPN in the early and late time 

windows both when the target was all reflection, all random and when the target and flankers 

were different. In Experiment 3, the SPN was present in the early time window when target 

and flankers were matching in shape (although they had opposite contrast polarity). This is the 

first time that visual crowding has been shown to influence the SPN response. Moreover, 

these experiments reproduce and advance the findings of Wright, Makin and Bertamini (2016) 

who showed that the SPN could be produced to patterns in the periphery. Firstly, we confirm 

that the SPN can be generated to stimuli in peripheral vision. Secondly, we show that the SPN 
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can be produced to stimuli positioned at an even greater eccentricity (4.5°) from fixation than 

Wright, Makin and Bertamini (2016) demonstrated.  

Why is there an SPN in Experiment 3 but not in Experiment 2 despite both 

demonstrating crowding? One possible explanation is that the target and flankers may group 

together. In Experiment 2 grouping may be strongest. Here the target and the flankers were 

always positioned on a horizontal orientation and had the same luminance. Experiment 1 

contained a comparable condition in terms of feature and position similarity to those in 

Experiment 2. For this condition, flankers were positioned to the left and right of the target 

and similarly to Experiment 2 no SPN was observed. For Experiment 3, the difference in 

luminance should isolate the target from the flanker, reduce crowding and produce an SPN. 

Although it could be argued that a masking mechanism is being employed here instead of 

crowding as the visibility of the target is reduced by the high luminance of the flankers. When 

the targets and flankers are all reflection, the symmetry sensitive networks may be registering 

the symmetry in the image but this is not reflected in behavioural performance that should be 

on a par with the no flanked condition. This finding was not expected and so this is only a 

post hoc explanation, which will require further investigation. 

The contextual effect of surround suppression may also operate in the stimuli used in 

these experiments, to either enhance or supress the detectability of the target. Crowding and 

surround suppression are similar phenomena that both make it difficult to perceive the target 

(Petrov & McKee, 2006). The results of Experiments 2 and 3 may in fact reflect surround 

suppression. When flankers and target are different, surround suppression may enhance the 

detectability of the target. Alternatively, surround suppression may suppress the target when 

the target and flankers are similar (all reflection or all random) in shape. This would explain 

the behavioural findings. In Experiments 2 and 3 when the target and the flankers were either 

all reflection or all random crowding was weaker than when target and flankers were different 
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in shape. Previously, it has been found that crowding is reduced when targets and flankers are 

dissimilar to one another as they likely group together (Kooi et al., 1994; Manassi et al., 2012; 

Sayim et al., 2008). However, an alternative explanation for the behavioural findings is that in 

Experiment 2 participants are utilizing a substitution mechanism whereby the flankers are 

mistaken or ‘swapped’ for the target. Likewise, in Experiment 3 despite changing the 

luminance of the flankers to make the target more individual it may have masked the target 

causing the participants to report the flankers.  

 Past experiments have found that the SPN is a response to symmetry (Bertamini & 

Makin, 2014). This response scales with the amount of symmetry in the image with it greatest 

for reflection patterns 100% symmetrical and parametrically reducing as the amount of 

symmetry decreased (Palumbo, Makin, & Bertamini, 2015). These experiments allowed us to 

examine whether the SPN also scaled with the number of symmetrical objects in the image. 

However we found that the number of objects did not influence the size of the SPN response. 

This finding is consistent with chapter 4 of this thesis, which demonstrates that the SPN 

response in central vision is not increased to an ensemble of three reflectional objects 

compared to a single reflectional object.  

The present work suggests that the size of the SPN in an early time window may 

reflect the strength of visual crowding. Still it could be argued that the response seen in these 

experiments is similar to other attention related ERPs such as the Sustained Posterior 

Contralateral Negativity (SPCN) or the N2pc. Both of these attention-related ERPs are 

recorded (around 200-350ms after stimulus onset) from posterior brain regions contralateral to 

the side of the presented stimuli (Lefebvre, Dell’acqua, Roelfsema & Jolicoeur, 2011). We 

think that it is unlikely that the response recorded in our experiments can be attributed to the 

SPCN, the N2pc or any other attention-related ERP. Firstly, the presentation of the stimuli in 

the left or right visual fields was randomized. This would prevent participants from allocating 
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their spatial attention to a single visual hemifield or switching between the left and the right. 

Secondly, the size of the SPN response in Experiments 1 and 3 scaled with crowding strength. 

The SPN was greatest for the unflanked conditions compared to the flanked conditions. As 

stimulus location was unpredictable, participants would shift attention to the pattern 

irrespective of whether it was flanked or unflanked. If the ERPs observed were due to 

attention a similar response would have been produced regardless of the stimulus 

arrangement. 

 

4.7. Conclusion 

 Crowding is ubiquitous in everyday life, as objects are rarely perceived in isolation.  

Symmetry is deemed as an important feature that enables the detection of an object, however 

its detection can be hindered by peripheral presentation and flanking objects. Across three 

experiments that used different stimulus configurations, we found that visual crowding 

modulated the SPN response. In an early time window (200-600ms after stimulus onset) this 

response scaled with the strength of crowding. In conclusion we have provided evidence that 

surrounding objects influence the neural response to symmetry.  
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5. How does figure-ground assignment influence the neural 

response to visual symmetry? 

 
5.1. Abstract 

Figure-ground assignment is important in segmenting objects from their background. Both 

convexity and reflectional symmetry are strong cues in determining which objects are 

perceived as the figure. Electrophysiological research has identified a symmetry specific 

response: the Sustained Posterior Negativity (SPN). Amplitude is lower for symmetrical than 

random patterns from around 200ms after stimulus onset. We examined how figure-ground 

assignment affected the SPN. Participants were presented with stimuli adapted from Gerbino 

and Kanisza (1976) that contained alternating foreground and background regions in which 

reflectional symmetry and convexity were placed in competition. Stimuli consisted of three 

types of configurations: Reflection in the figure (foreground regions were convex and 

reflection), reflection in ground (background regions were concave and reflection) and 

random (no reflection in foreground or background). In Experiment 1, there was a significant 

difference in ERP amplitude between reflection in the figure and reflection in the ground. 

There was no difference between reflection in the ground and random. However, in 

Experiment 1 when reflection was the figure this region was convex and when reflection was 

in the background this region was concave. Reflection and convexity were therefore 

confounded. To address this, in a control experiment we examined the response to shapes that 

were either reflection or random with contours that were either convex or concave. An SPN 

response to reflection was observed for convex shapes, thus discounting the confound from 

Experiment 1. These results demonstrate that the neural response to symmetry is dependent 

on figure–ground assignment.  

 



	 108 

5.2. Introduction 

When presented with a scene containing multiple objects the visual system effortlessly 

segments objects from their backgrounds through figure-ground assignment. Without this 

process, object recognition would not be possible. Gestalt psychologists have identified a 

number of cues that determine which regions are perceived as figures and which appear as 

ground these include reflectional symmetry, convexity, enclosure and size (Bahnsen, 1928; 

Koffka, 1935; Rubin, 1915/1958; Pomerantz & Kubovy, 1986). Regions that are reflectional 

symmetric, convex, open and small are more likely to be perceived as figures (Kubovy & 

Pomerantz, 1986; Hochberg, 1972; Palmer, 1999). Figure-ground assignment has been 

proposed to involve inhibitory competition and occurs when two regions share a border. The 

border is perceived as belonging to the region that wins this competition and is thus 

considered the figure whilst the other region becomes the ground. 

 
5.2.1. Symmetry and figure-ground assignment 

Symmetry is a prevalent object feature that plays a key role in object representation (For a 

recent review, see Treder, 2010). It has been reported that reflectional symmetric regions are 

perceived as the figure above chance (90% in Bahnsen, 1928; 80% in Driver, Baylis, & Rafel, 

1992; and 62% in Peterson & Gibson, 1994). Although reflection symmetry is deemed an 

important cue in figure-ground perception, the difference in behavioural reports suggest it 

may not always be enough to determine what is perceived as the figure, particularly when 

combined with another cue such as convexity (Arnheim, 1954). Kanizsa and Gerbino (1976) 

put reflectional symmetry and convexity into direct competition with one another. They 

presented participants with alternating regions where concave regions were reflectional whilst 

the convex regions were less reflectional. Observers were required to judge which region they 

perceived as the figure. Both convexity and symmetry affected figure-ground assignment, but 
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convexity was a more powerful factor. Vecera, Flevaris and Filapek (2004) and Peterson and 

Salvagio (2008) have both replicated these findings.  

However, the effectiveness of convexity as a figural cue varies depending on context. 

Peterson and Salvagio (2008) found that convexity was weak for displays that had just two 

regions but increased as the number of alternating black and white regions increased. In 

support of this, Mojica & Peterson (2014) found that reflectional symmetry and convexity are 

equally effective as figural cues. When presented with black-and-white displays with 

alternating symmetrical and asymmetric regions (either two or six), participants perceived the 

symmetrical regions as the figures, with this effect being as strong as for convexity.  

 

5.2.2. Brain responses to symmetry 

Neuroimaging experiments have highlighted that a number of areas are active during 

reflection symmetry perception including V3a, V4d, V7 and the Lateral Occipital Cortex 

(LOC). However, there was no activation in either V1 or V2 (Tyler et al., 2005; Chen, Kao, & 

Tyler, 2007). Recently, Kohler et al. (2016) documented parametric activations to rotational 

symmetry in V3, V4, VO1 and LOC. High density EEG showed that symmetry perception 

along the ventral stream occurred in a feed-forward fashion with responses in V3 and V4 

occurring before LOC.   

Electrophysiological symmetry research has identified a late component termed the 

Sustained Posterior Negativity (SPN). ERP amplitude is lower for symmetrical patterns than 

random patterns from around 200ms after stimulus onset. The SPN is present for reflection, 

translation, and rotation, whilst it is largest for reflection (Makin et al., 2013). The SPN 

originates from the LOC and extrastriate visual areas (Makin et al., 2012). The SPN is task 

independent with it being produced (although reduced) even when participants are not 

explicitly required to attend to it. Rampone, Makin and Bertamini (2015) showed that the 
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SPN was reduced when participants performed a colour compared to a regularity 

discrimination for slanted reflectional and random stimuli.  

 

5.2.3. Investigation of figure-ground assignment on the SPN 

We were interested in examining how figure-ground assignment influences the neural 

response to symmetry. Participants were presented with displays inspired by the stimuli used 

by Kanizsa and Gerbino (1976) that had alternating coloured regions. The displays contained 

three arrangements: reflectional figure regions that are convex (Reflection in figure), 

reflectional background regions that are concave (Reflection in ground) and random, which 

contained no reflection (Figure 5.1). Note that by design the figural regions are always convex 

and slightly smaller. By combining the factor convexity, size, and continuity with the outside 

background we assumed that there was little ambiguity in terms of which regions were 

perceived as figures. Participants were simply instructed to judge which region (red or green) 

they perceived as being in the foreground. If their responses are consistent with our 

assumption they will be able to report the colour of the region we have specified as figure 

(through convexity, size, and background colour). 

As both arrangements contain reflection and due to the SPN responding to 

symmetrical representations, we may get a similar SPN for reflectional regions that are 

convex and reflectional regions that are concave. However, the random configuration and 

reflection in ground both contain concave shapes in the background. As convexity is a 

stronger figure-ground cue than symmetry, these conditions should produce similar ERPs. 

Note, in this experiment reflection is confounded with convexity. We therefore conducted a 

series of control experiments to address this.   

In Experiment 2 we modified the stimuli by removing the black border and the half 

occluded shape. Moreover, to reduce the impression of figure-ground when presenting convex 
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shapes the ground region was black. Alternatively when presenting concave shapes the figure 

regions were black. We compared the SPN in a group of 32 participants who judged the 

patterns according to colour (red or green) while ignoring symmetry and another group of 32 

participants who judged symmetry (reflection or random) whilst ignoring colour. In 

Experiment 3, we centred the stimuli so that the fixation cross was no longer situated along a 

border. Previous SPN experiments had always presented the fixation cross on the axis of 

symmetry (e.g. Makin et al., 2013; Wright et al., 2015). In Experiment 4, the stimuli used in 

Experiments 2 and 3 were modified to further ensure that any bi-stability in figure-ground 

perception was reduced. The black figure (for the convex shapes) and the ground (for the 

concave shapes) were changed to grey so that it matched the rest of the screen. On half of the 

trials participants were presented with a single shape (reflection or random) whilst on the 

other half three shapes were presented (all reflection or all random). The shapes (the single 

shape or three shapes) were matched for curvature polarity (convex or concave).  

 

5.3. Method  

5.3.1. Participants 

Thirty-two participants took part in the study (age 16-41, mean age 24.28 (SD= 6.2), 12 

males, 0 left handed). All participants had normal or corrected to normal vision, and received 

either course credit for participating or a monetary reimbursement. The study was conducted 

in accordance with the declaration of Helsinki and had approval of the University ethics 

committee.  

 

5.3.2. Apparatus 

Participants sat in an electrically shielded and darkened room, at a distance of 100 cm from a 

60 Hz CRT monitor (1280 x 1024). EEG data was recorded from 64 scalp electrodes at 512 
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Hz using the BioSemi Active-Two system. Additional Common Mode Sense (CMS) and 

Driven Right Leg (DRL) electrodes served as reference and ground. Bipolar horizontal and 

vertical electro-oculograph (EOG) signals were recorded from four external channels. The 

apparatus were the same as used by Makin et al. (2013) and in previous chapters of this thesis.  

 

5.3.3. Stimuli 

Figure 5.1 shows examples of the stimuli used in Experiment 1. Stimuli were produced using 

the experiment generator software, PsychoPy (Peirce, 2007). The black frame was 10.7° in 

width and 7.1° in height. The shapes consisted of seven ovals on a vertical axis. These ovals 

varied in size, shape, orientation and position on each trial. There were eight alternating 

regions (4 foreground; 4 background). In half of the trials the foreground was red (RGB = 

128,0,0; cd/m2 = 4) whilst in the other half it was green (RGB = 0,128,0; cd/m2 = 11). All 

stimuli were unique on each trial thus avoiding familiarity.   

 
Figure 5.1. Examples of the stimuli used in Experiment 1. Left panels: Reflection in the 
figure – the figure regions were convex and reflectional in shape. Middle panels: Reflection in 
the ground -figure regions were convex whilst the ground contained reflectional concave 
regions. Right panels: Random - reflection was not present in either the ground or figure 
region. The top row the figure is red, whilst for the bottom row the figure is green. 
Participants had to judge whether the figure regions were red or green.   
 

Green	

Red	

Reflec*on	in	the	figure	 Reflec*on	in	the	ground	 Random	
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5.3.4. Design 

The study had a two factor within subjects design (Arrangement [Reflection in figure, 

Reflection in ground, Random] x Colour [Red, Green]) with 40 trials per condition. This gave 

a total of 240 trials.  

 

5.3.5. Procedure 

Each trial began with a baseline period of 1.5 seconds, which consisted of a centrally 

positioned fixation cross. Stimuli were present for 1.5 seconds whilst participants fixated 

centrally. They had to report whether they perceived the foreground region as either red or 

green by pressing either the ‘A’ or ‘L’ buttons on the computer keyboard. Prior to the start of 

the experiment to familiarise the participants with the task a practise block was completed. 

The experiment was divided into 10 blocks to allow the participants to have regular breaks 

and for the electrodes to be checked.  

 

5.3.6. EEG analysis 

EEG data from 64 scalp electrodes was processed using the EEGLAB toolbox in MATLAB 

(Delorme & Makeig, 2004). Data was re-referenced to a scalp average and low-pass filtered at 

40Hz. To reduce file size, this was downsampled to 128Hz. Epochs were extracted from -1 to 

2 s, with a -200 to 0ms baseline. A behavioural filter was applied to the EEG data so that only 

the correct responses that the participants gave were used in the analysis. Artifacts such as eye 

blinks and movements were removed from the epochs using Independent Components 

Analysis (ICA; Jung et al., 2000). Data was reformed as 64 independent components. After 

ICA, epochs were removed which had amplitudes exceeding ±100 µV. Trials for each 

condition were averaged for each participant and grand-average ERPs were produced.  

The SPN was defined as lower amplitude for reflecitonal than random patterns from 

350 to 1000ms, averaged across left and right posterior electrodes (O1, PO7, PO3 on the left, 
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and O2, PO8 and PO4 on the right). This time window was chosen as although it is later than 

previous SPN studies (e.g. Makin et al., 2013) it ensured that the effects shown in Figure 4.2 

were captured. N1 was defined as mean amplitude from 180 to 200ms after stimulus onset 

and was measured from the same electrodes as the SPN. 

Only correct responses were analysed. On average, 9.5 components were removed 

from each of the participants' data (minimum: 2, maximum 16). For Reflection in figure 

21.1%, Reflection in ground 20.4% and Random 20.5% trials were removed. 

 

5.4. Experiment 1 

5.4.1. Results 

5.4.1.1. Behavioural  

Participants reported whether they saw the foreground regions as red or green. Participants 

were equally accurate in reporting the convex region as the figure regardless of whether 

reflection was the figure (88%) or the ground (88%). For random, participants were correct 

for 89% of the trials.  

 Overall, performance was similar whether the figure was red (88%) or green (89%). 

There was no significant difference in accuracy when reflection in figure was red (87%) or 

green (90%). This was also true for reflection in ground (red 87%; green 88%) and random 

(red 89%; green 89%).   

 

5.4.1.2. Event-Related Potentials 

The amplitude of the SPN in posterior electrodes was sensitive as to whether reflection was 

perceived as being the figure or the ground. Figure 5.2A shows the ERPs collapsed by 

curvature (Reflection in figure, Reflection in ground and Random). There is a clear SPN 

where amplitude is lower for reflection in figure than reflection in ground and random (Figure 

5.2B and C).  
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The SPN was analysed with two within-subject factors (Curvature [Convex, Concave] 

x Colour [Red, Green]). There was a main effect of Curvature (F(2,62) = 3.733,  p = 0.029, 

partial η2 = 0.107) and Colour (F(1,31) = 10.873, p = 0.002, partial η2 = 0.260). There was no 

interaction between curvature and colour showing that these two factors produced unrelated 

neural responses. Paired samples t-tests showed that there was a significant difference 

between reflection in the figure and reflection in the ground (t(31) = -2.669, p = 0.012, d = -

0.124) and a significant difference in the SPN between reflection in the figure and random 

(t(31) = -2.124, p = 0.042, d = -1.192). There was no difference between reflection in the 

ground and random.  

 

Figure 5.2. Grand-average ERPs for Experiment 1. A) Grand-average ERPs for each 
condition collapsed by curvature. B) Difference plot for Reflection in the figure - Reflection 
in the ground. C) Difference plot for Reflection in the figure – Random. D) Difference plot 
for Reflection in the ground –Random.   
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5.4.2. Discussion 

Experiment 1 showed that when the reflection was perceived as being in the figure it 

produced lower amplitude ERP compared to when reflection was perceived as the ground. 

Reflection in the ground and random were also found to be similar in amplitude to one 

another. However, in this experiment reflection is presented as a convex shape (Reflection in 

the figure) and also as a concave shape (Reflection in the ground). The observed SPN could 

be the result of reflection or convexity. Experiment 2 set out to address this confound. In this 

experiment we modified the stimuli that were shown in Experiment 1 in three ways. Firstly, 

we removed the black border surrounding the alternating regions. Secondly, we removed the 

half occluded region. Thirdly, when convex shapes were present the ground was presented as 

black, whilst for the concave shapes the figure was presented as black. This ensured that any 

figure-ground ambiguity was reduced. If the SPN seen in Experiment 1 is a result of 

symmetry, we should find an SPN response for convex shapes in Experiment 2.  Half of the 

participants performed a colour discrimination (red or green) whilst the other half performed a 

regularity discrimination (reflection or random). In Experiment 1, participants judged which 

colour was the figure, however in Experiment 2 performing a colour discrimination could be 

completed without attending fully to the stimuli. We therefore had another group of 

participants perform a regularity discrimination.  

 

5.5. Experiment 2  

5.5.1. Method 

In Experiment 2, thirty-two participants (age 18-30, mean age 20.4 (SD = 3.4), 13 males, 5 

left handed) were required to judge whether the presented shapes were red or green in colour. 

Another thirty-two participants (age 18-49, mean age 21.3 (SD = 6.8), 7 males, 7 left handed) 

were required to judge whether the shapes were reflection or random in shape. All participants 
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had normal or corrected to normal vision, and received course credit for participating or a 

monetary reimbursement. The study was approved by the University’s ethics committee and 

adhered to the declaration of Helsinki. The apparatus were the same as in Experiment 1. There 

was a single within-subjects factor (Curvature [Reflection Convex, Reflection Concave, 

Random Convex, Random Concave]) with 80 trials per condition and a between-subjects 

factor (Task [Colour, Regularity]. The stimuli were modified from those used in Experiment 1 

in order to reduce any figure ground ambiguity, with the black border and the half-occluded 

shape being removed (Figure 4.3). This resulted in three shapes being presented on screen 

simultaneously. For reflection convex the shapes were reflection and convex, whilst for 

reflection concave the shapes were reflection and concave in their shape. For random convex 

the shapes were convex and random, whilst for random concave the shapes were concave and 

random. Each shape was individually reflection or random (non-symmetrical) in shape. These 

four conditions allowed us to examine whether the SPN observed in the first experiment was 

the result of reflection or convexity. Convex shapes were presented with the ground as black, 

whilst concave shapes were presented with the figure as black. 

EEG analysis was the same as Experiment 1, with only correct responses analysed. An 

average of 5.4 components were removed from each participant (min = 3, max = 14). For 

Reflection Convex 19.8%, Reflection Concave 19.3%, Random Convex 18.1% and Random 

Concave 18.3% of trials were removed. 
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Figure 5.3. Examples of the stimuli used in Experiment 2. The group of three shapes were 
either all individually symmetrical or all individually random. Participants had to judge 
whether the coloured shapes were reflection or random. The top row the shapes were red 
whilst the bottom row the shapes were green.  
 

5.5.2. Results 

5.5.2.1. Behavioural 

When participants had to report whether the displays contained red or green shapes 

performance was similar across the four conditions: Reflection Convex (97%), Reflection 

Concave (97%), Random Convex (97%) and Random Concave (97%). Performance was 

equivalent regardless of shape colour for Reflection Convex (red 97.3%; green 97.2%). This 

was also true for Reflection Concave (red 97.1%; green 97.4%), Random Convex (red 96.9%; 

green 97.5%), and Random Concave (red 97%; green 97.4%).  

Moreover, when participants judged whether the shapes were reflection or random 

performance was also equally accurate across the four conditions: Reflection Convex 

(89.35%), Reflection Concave (90.7%), Random Convex (93.6%) and Random Concave 

(93.3%). The colour of the shapes made no difference to performance for this task. For 

Reflection Convex there was no difference whether it was red (89.6%) or green (89.1%). This 

was also true for Reflection Concave (Red 91.7%; Green 89.6%). Likewise, there were no 

Red	

Green	

Reflec*on	Convex	 Random	Convex	 Reflec*on	Concave	 Random	Concave	
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difference for Random Convex whether it was red (93.3%) or green (93.5%) or for Random 

Concave (Red 92.8%; Green 93.9%).  

 

5.5.2.2. Event-Related Potentials 

5.5.2.2.1. N1 

Figure 5.4A and 5.4C suggest that ERP contour curvature differences exist as early as N1 

both when participants performed a regularity and when they performed a colour 

discrimination as amplitude was lower for concave than convex. N1 was examined with a 

within subjects two factor ANOVA (Curvature [Convex, Concave] x Shape [Reflection, 

Random] x Colour [Red, Green]). The between-subjects factor was Task [Colour, Regularity]. 

There was a main effect of Curvature F(1, 62) = 54.109, p = 0.001, partial η2 = 0.466 as 

concave was lower in amplitude than convex. There was a Colour x Task interaction F(1, 62) 

= 7.866, p = 0.007, partial η2 = 0.113 and a Curvature x Colour x Task F(1, 62) = 4.250, p = 

0.043, partial η2 = 0.064.  

 

5.5.2.2.2. SPN 

Figure 5.4A shows that when participants performed a colour discrimination ERPs were lower 

for the convex shapes than for the concave ones. This was also the case for the regularity 

discrimination (Figure 5.4C). Figures 5.4B and 5.4D show the difference waves for convex 

and concave for the two tasks. There was no difference between Reflection Convex and 

Random Convex or between Reflection Concave and Random Concave regardless of task.  

The SPN was examined with a three factor within subjects ANOVA (Shape 

[Reflection, Random] x Curvature [Convex, Concave] x Colour [Red, Green]). The between 

subjects factor was Task [Colour, Regularity]. There was a main effect of Curvature F(1, 62) 
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= 35.892, p = 0.001, partial η2 = 0.367 and Task F(1,62) = 11.487, p = 0.001, partial η2 = 

0.156. There were no other main effects or interactions.  

Paired samples t-tests confirmed that there were no significant differences between 

Reflection Convex and Random Convex or between Random Concave and Random Concave. 

This was the case for both the colour and regularity discrimination. 

 

Figure 5.4. Grand-average ERPs for Experiment 2. A) Grand-average ERPs for each 
condition when participants performed a colour discrimination. B) Difference plot 
(Reflection-Random) for the convex and concave shapes when participants performed a 
colour discrimination. C) Grand-average ERPs for each condition when participants 
performed a regularity discrimination. D) Difference plot (Reflection-Random) for convex 
and concave shapes when participants performed a regularity discrimination.  
 

5.5.3. Discussion 

Experiment 2 found that when collapsed over symmetry, concave was lower in amplitude 

than convex. However, there was no SPN response for either convex or concave. This was 
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regardless of whether participants judged the colour or the regularity of the shapes. The lack 

of an SPN here was unexpected.  

In Experiment 2 the fixation cross was positioned on a border between the figure and 

the ground. Previous SPN experiments had always presented the fixation cross on the axis of 

symmetry (e.g. Makin et al., 2013). The lack of an SPN response could therefore be a result of 

the position of the fixation cross. In Experiment 3, we repositioned the stimuli so that the 

fixation cross was on the axis of the central shape. The new black background may have also 

been a factor by producing figure-ground ambiguity. I will come back to this aspect later in 

section 5.6.3. 

 

5.6. Experiment 3  

5.6.1. Method 

Twenty-four participants took part in Experiment 3 (age 18-47, mean age 25.87 (SD = 7.3), 

14 males, 6 left handed). All participants had normal or corrected to normal vision, and 

received course credit for participating or a monetary reimbursement. The study had local 

ethics committee approval and was conducted in accordance with the declaration of Helsinki.  

The apparatus and procedure were the same as in Experiment 2. There was a single 

within-subjects factor Arrangement [Reflection Convex, Reflection Concave, Random 

Convex, Random Concave]) with 80 trials per condition. The fixation point was moved so 

that it was positioned on the axis of the central shape instead of being on a border between the 

figure and the ground.  

EEG analysis was the same as Experiment 1. An average of 7.9 components were 

removed from each participant (min = 3, max = 15). For Reflection Convex 24.9% of trials 

were removed, Reflection Concave 21.7%, Random Convex 26%, whilst 22.1% of trials were 

removed from Random Concave.  
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5.6.2. Results 

5.6.2.1. Behavioural 

Participants judged whether the shapes were reflection or random. Performance was better for 

random (Random Concave 94%; Random Convex 94.5%) than reflection (Reflection 

Concave 90.6%; Reflection Convex 90.6%). 

For each condition, the colour of the stimuli made no difference to performance. For 

Reflection Convex (Green 90.2%; Red 91.1%) and Reflection Concave (Green 90.3%; Red 

90.9%) performance was similar regardless of whether the shapes were red or green. This was 

also true for Random Convex (Green 94.7%; Red 94.3%) and Random Concave (Green 

93.1%; Red 95%).  

 

5.6.2.2. Event-Related Potentials 

5.6.2.2.1. N1 

Figure 5.5A suggests that ERP contour curvature differences exist as early as N1, with 

concave lower in amplitude than convex. N1 was examined with a within subjects three factor 

ANOVA (Curvature [Convex, Concave] x Shape [Reflection, Random] x Colour [Red, 

Green]). There was a main effect of Curvature (F(1,23) = 14.289, p = 0.001, partial η2 = 

0.383) because amplitude was lower for concave than convex. There was no effect of Shape 

or any interactions.  

 

5.6.2.2.2. SPN 

Figure 5.5A shows that ERPs were lower in amplitude for the concave regions than convex. 

There was no difference between Reflection Convex and Random Convex or between 

Reflection Concave and Random Concave (Figure 5.5B). 
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The SPN was examined with a three factor repeated measures ANOVA (Shape 

[Reflection, Random] x Curvature [Convex, Concave] x Colour [Red, Green]). There was a 

main effect of Curvature F(1,23) = 36.877, p = 0.001, partial η2 = 0.616. There were no other 

main effects or interactions.  

Paired-samples t-tests confirmed that there was no significant difference between 

Reflection Convex and Random Convex or between Reflection Concave and Random 

Concave. 

Figure 5.5. Grand-average ERPs for Experiment 3. A) Grand-average ERPs for each 
condition. B) Difference plot (Reflection-Random) for convex and concave shapes.  
 

5.6.3. Discussion 

For both Experiment 2 and Experiment 3 there was no difference between reflection and 

random for either contour curvature polarity. This may be due to the stimuli still having a 

degree of bi-stability with the black region not being sufficiently inhibited in order for the 

SPN to be produced. We therefore conducted Experiment 4 to address this. For this 

experiment the black region surrounding the convex or concave shapes was changed to grey 

to match the rest of the display (Figure 5.6).  

To date, research has shown that the SPN is present for single objects in central vision 

with this response modulated by the amount of reflection symmetry in the image (Bertamini 

& Makin, 2014; Palumbo et al., 2015). Experiment 4 allowed us to investigate how the 
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number of symmetrical repeating shapes modulated the SPN response. For Experiment 4, 

participants were presented with either a single shape or three shapes. The group of three 

shapes were either all individually reflection or all individually random (Figure 5.6). 

Participants were required to judge whether the shapes were reflection or random.   

 

5.7. Experiment 4  

5.7.1. Method 

Twenty-four participants took part in Experiment 4 (age 18-31, mean age 22.75 (SD = 3.8), 

14 males, 3 left handed). All participants had normal or corrected to normal vision, and 

received course credit for participating or a monetary reimbursement. The study had local 

ethics committee approval and was conducted in accordance with the declaration of Helsinki. 

The apparatus and procedure were the same as in Experiment 2. There were two within-

subjects factors (Arrangement [Reflection Convex, Reflection Concave, Random Convex, 

Random Concave] x Number [One, Three]) with 80 trials per condition. 

EEG analysis was the same as Experiment 1. An average of 5.25 components were 

removed from each participant (min = 2, max =14). For Reflection Convex 16% of trials were 

removed, Reflection Concave 16.5%, Random Convex 16.3% whilst 17.8% of trials were 

removed from Random Concave.  
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Figure 5.6. Examples of the stimuli used in Experiment 4. Participants were presented with 
either one (A) or three (B) shapes and had to judge whether they were reflection or random. 
For the three shapes, all were either uniquely reflection or random in shape. The shapes were 
either all red or all green in colour.  
 

5.7.2. Results 

5.7.2.1. Behavioural  

Participants were required to judge whether the single shape or the group of three shapes were 

reflection or random. When participants were presented with one shape performance was 
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similar across all conditions (Reflection Convex 96.8%; Reflection Concave 96.3%; Random 

Convex 95.6%; Random Concave 95.8%). This was also the case when three shapes were 

presented (Reflection Convex 96.7%; Reflection Concave 95.8%; Random Convex 95.7%; 

Random Concave 96.7%).  

Colour also made no difference to performance for either the one or the three shapes. 

For one shape performance for Reflection Convex was similar for both red (97.3%) and green 

(96.2%). This was also the case for Reflection Concave (Red 96.1%; Green 96.5%), Random 

Convex (Red 95.9% Green 95.3%) and Random Concave (Red 96.5% Green 95.1%). 

Performance for three shapes was also similar for Reflection Convex regardless of whether 

the shapes were red (97.1%) or green (96.3%). This was also true for Reflection Concave 

(Red 96%; Green 95.6%), Random Convex (Red 96.3%; Green 95.2%) and Random Concave 

(Red 97%; Green 96.3%). 

 

5.7.2.2. Event-Related Potentials 

5.7.2.2.1. N1 

Figure 5.8A suggests that ERP contour curvature differences exist as early as N1, with 

concave lower in amplitude than convex (Figure 5.7). N1 was examined with a within 

subjects four factor ANOVA (Curvature [Convex, Concave] x Shape [Reflection, Random] x 

Colour [Red, Green] x Number [One, Three]). There was a main effect of Curvature F(1,23) = 

39.070, p = 0.001, partial η2 = 0.629 and Colour F(1,23) = 12.694, p = 0.002, partial η2 = 

0.356. There were no other main effects or interactions.  

 

5.7.2.2.2. SPN 

Figure 5.7A and 5.7C shows that ERPs were sensitive to convexity for both one and three 

shapes. Reflection Concave and Random Concave were both lower in amplitude than 
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Reflection Convex and Random Convex. There was a clear SPN for the convex shapes with 

Reflection Convex being lower in amplitude than Random Convex for three shapes (Figure 

5.7B). For one shape there was no difference between reflection and random for either 

contour curvature polarity.   

The SPN was examined with a four factor repeated measures ANOVA (Shape 

[Reflection, Random] x Curvature [Convex, Concave] x Colour [Red, Green] x Number [One, 

Three]). There was a main effect of Curvature F(1,23) = 26.545, p = 0.001, partial η2 = 0.536. 

There was no main effect of Shape or Number and no interactions. This lack of an interaction 

with Number demonstrates that the SPN is not influenced by the multiple repetition of 

symmetry in central vision. 

Paired samples t-tests for three shapes showed that there was a significant difference 

between Reflection Convex and Random Convex t(23) = -2.218, p = 0.037, d = -0.17. There 

was no difference between Reflection Concave and Random Concave. For one shape, paired 

samples t-tests revealed that there were no significant differences between either reflection or 

random for either contour curvature.  
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Figure 5.7. Grand-average ERPs for Experiment 4. A) Grand-average ERPs for each 
condition for one shape. B) Difference plot (Reflection-Random) for convex and concave 
shapes for one shape. C) Grand-average ERPs for each condition for three shapes. D) 
Difference plot (Reflection-Random) for convex and concave shapes for three shapes. E) 
Grand-average ERPs collapsed by curvature for the one and three shapes. F) Grand-average 
ERPs collapsed by shape for one and three shapes.  
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5.8. General Discussion 

The visual system effortlessly organises visual scenes into coherent objects. Figure-ground 

assignment plays a key role in this process by ensuring that when two regions share a border 

one region is perceived as the figure whilst the other becomes the ground. Both convexity and 

reflectional symmetry are cues that play an important function in determining which region is 

deemed the figure (Bahnsen, 1928). We examined how figure-ground assignment influences 

the neural response to symmetry.  

In Experiment 1, ERP amplitude was lower for reflection in the figure than for both 

reflection in the ground and random; both of which produced similar ERPs. However, 

interpreting this experiment is difficult due to the deliberate confound of comparing reflection 

as convex (Reflection in the figure) and concave (Reflection in the ground). The lower 

amplitude observed for reflection in figure may be the result of either symmetry or convexity. 

Experiments 2-4 addressed this confound. For Experiment 4, an SPN response (reflection 

lower in amplitude than random) was produced for convex. This established that the SPN 

response was dependent on figure-ground assignment, with it being present when reflection is 

considered the figure.  

 To date, the SPN has been considered to be a response to symmetry in the image with 

amplitude mapping onto the saliency of the symmetry (Bertamini & Makin, 2014; Makin, 

Rampone, Pecchinenda, & Bertamini, 2013). We demonstrate, for the first time, that figure-

ground assignment plays a key role in the production of the SPN. Symmetry is an important 

cue in figure-ground assignment whilst figures are deemed more salient than grounds. It is 

therefore logical that the response of the visual system depends on whether symmetry is 

perceived as being the figure or ground.  

 Although an SPN was observed for Experiment 4 for multiple convex shapes, why 

was it not seen consistently across all the experiments? It is likely that the SPN was not 
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always observed due to how the stimuli were designed. Although reflection is a salient 

feature, in these experiments there may still have been some figure-ground ambiguity. The 

regions may have competed for border ownership causing a perceptual shift between them. 

Moreover, as mentioned above, the amplitude of the SPN maps onto the visual saliency of the 

symmetry. Reflectional symmetry with a single axis is less salient and produces a smaller 

SPN than symmetry with two axes (Makin et al., 2016). The single axis reflection in these 

experiments along with the bi-stable nature of the stimuli may have consequently reduced the 

size of the SPN. 

 

5.8.1. Contour Curvature ERP Negativity 

For Experiments 2-4 contour curvature differences were present as early as N1 with amplitude 

lower for concave than convex. N1 is sensitive to visual parameters (e.g. size, luminance). 

Both the convex and concave shapes were presented as either all red or green, so luminance 

differences between conditions were unlikely. However, the size of the shapes, although they 

randomly varied within a defined set of parameters, was always different so may have been a 

contributing factor.   

ERPs in the N1 time window have also been linked to visual attention and selective 

perceptual amplification (Luck et al., 1990). In accordance, Kanizsa figures produced 

enhanced N1 negativity compared with fragmented illusory contours suggesting that this 

component reflects attention and perceptual grouping (Herrmann & Bosch, 2001). The 

contour curvature negativity may have resulted from the concave shapes engaging more top-

down attention than the convex shapes. Thus, suggesting that concave is detected more 

rapidly. Evidence for a perceptual advantage of concavity over convexity in the shape 

perception literature is mixed. Concavities have been found to be both more salient and more 

easily detected in visual search and change detection than convexities (Barenholtz, Cohen, 
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Feldman, & Singh, 2003; Hulleman, Te Winkel, & Boselie, 2000). However, the converse is 

also true with convex shapes detected faster than concave shapes (Bertamini, 2001; Bertamini 

& Freidenberg, 2001; Gibson, 1994; Hoffman & Singh, 1997). These contradictory results 

have been suggested to be due to convexities being perceived as parts with positional 

information, whilst concave regions are boundaries between parts (Bertamini, 2001). 

Unfortunately, the responses in our experiments were unspeeded so it is difficult to offer 

much support as to whether concave is inherently more salient.  

Concave was also lower in amplitude than convex from around 350ms after stimulus 

onset. This is the first time that this convexity negativity has been documented. Previously, 

Mathes, Trenner and Fahle (2006) documented that concave produced higher N2 (190-330ms 

after stimulus onset) amplitude than convex. The discrepancy in latencies between our sets of 

experiments may be due to methodological differences. Mathes, Trenner and Fahle (2006) 

presented participants with open and closed contours defined by Gabor elements embedded in 

a background of randomly orientated distractors. Despite these differences it is logical that the 

visual system has convexity sensitive networks; with this network likely to involve the LOC, 

a region that has been implicated in object perception (Haushofer, Baker, Livingstone & 

Kanwisher, 2008). 

 

5.8.2. Repetition of multiple symmetries 

Past ERP research has found an SPN for single patterns in central vision (Bertamini & Makin, 

2014; Höfel & Jacobsen, 2007; Makin, Wilton et al., 2012). Importantly, SPN amplitude has 

been found to increase as the proportion of reflection symmetry in the image increases 

(Palumbo, Makin & Bertamini, 2015). However, no previous work has explored the neural 

correlates of the differences between the number of symmetrical patterns presented in central 

vision. Experiment 4 allowed us to examine this. We found that ERPs did not differ between 
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single and multiple reflectional patterns. This result suggests that the neural generators of the 

SPN are not sensitive to the number of symmetrical objects. This is perhaps surprising given 

that the LOC, which has been suggested to be the major symmetry area, has been found to be 

sensitive to the total number of visual elements (Sasaki et al., 2005; Tyler et al., 2005; Xu & 

Chun, 2006). It may be that in Experiment 4 as all three patterns were the same regularity 

(despite individual local differences between the shapes) participants might have simply 

deployed attention to just one of the shapes instead of all three. 

Previous work has argued that there are two distinctive stages of visual processing 

when multiple objects are encoded: individuation and identification. The LOC has been 

proposed to be involved with object identification, whereby multiple identical objects are 

processed as a single unique object (Xu, 2009). It is interesting to note that if the three objects 

had been processed by the LOC as a single object, reflection would have been lost. This was 

not the case so the three objects were processed separately.  

 

5.9. Conclusion 

In conclusion, figure-ground assignment is fundamental in visual perception in order for 

objects to be separated from the background. We placed reflection and convexity in direct 

competition to examine the influence of figure-ground assignment on the neural response to 

symmetry. Here, we show that the visual cortex processes reflectional symmetry efficiently 

and automatically with this response reliant on figure-ground assignment.   
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6. General Discussion 

6.1. Introduction 

Symmetry is an important feature in object recognition and image segmentation. Although 

human symmetry perception has a long history, it has only been in recent years that 

neuroimaging and electrophysiological research has provided a greater understanding of the 

brain processes that are involved. Electrophysiological research has identified a symmetry 

specific component (the Sustained Posterior Negativity; SPN) where ERP amplitude is lower 

for symmetrical than random shapes from around 200ms after stimulus onset (Bertamini & 

Makin, 2014; Norcia et al., 2002). The SPN has been reliably replicated across a number of 

experiments and several questions have already been addressed in the literature, however 

many still remain. Each chapter of this thesis has addressed one question: (1) Can the SPN be 

produced independently within each hemisphere? (2) Is right lateralised alpha 

desynchronisation during regularity discrimination the result of directed spatial attention or 

hemisphere specialisation? (3) Does crowding influence the SPN? and (4) How does figure-

ground assignment influence the neural response to symmetry? In this final chapter, the main 

findings of this body of work will be outlined and discussed. Lastly, I will highlight directions 

for future research based on the findings of this thesis. 

 

6.2. Review of the main findings 

6.2.1. Chapter 2: Can the SPN be produced independently within each hemisphere? 

To date, the SPN has only been examined for single objects in central vision. By presenting 

reflection in the left and right visual fields Chapter 1 demonstrated that the SPN could be 

produced to stimuli presented in the periphery. This provides confirming evidence that the 

SPN is a response to symmetry in the image. Moreover, the SPN was produced independently 

within each hemisphere, suggesting that symmetry perception could be achieved by just one 
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hemisphere. Consequently, inter-hemispheric connections do not play much of a role in this 

process. This finding was supported by the results from Chapter 3.This highlighted that a 

similar SPN was produced regardless of whether the symmetry was on a vertical or horizontal 

orientation, despite interhemispheric integration being required for vertical symmetry. It is 

also consistent with work showing that patients born without a corpus callosum are still able 

to perceive reflection symmetry (Herbert & Humphreys, 1996). As the neural response to 

symmetry can be produced within each hemisphere, with little interaction between 

hemispheres it led on to whether one hemisphere plays a greater role in symmetry perception. 

Previously, evidence has suggested that reflection symmetry perception may be right 

lateralised (Verma et al., 2013; Wilkinson & Halligan, 2002; See also Chapter 3). However, 

this chapter did not offer much evidence for this. A right lateralised symmetry response was 

only observed in Experiment 1, but not in Experiments 2 and 3.  

 

6.2.2. Chapter 3: Is right lateralised alpha desynchronisation during regularity 

discrimination the result of directed spatial attention or hemisphere specialisation? 

Chapter 3 examined whether right lateralised alpha desynchronisation observed in previous 

experiments indicated hemisphere specialisation or directed spatial attention. Past EEG 

studies have found that during regularity discrimination greater alpha desynchronisation was 

present in the right hemisphere (Makin et al., 2013). Alpha desynchronisation was exhibited 

in both the left and right hemispheres regardless of whether symmetry was on a vertical or 

horizontal orientation. However, alpha desynchronisation was more pronounced in the right 

hemisphere. We concluded that right lateralisation alpha desynchronisation resulted from 

hemisphere specialisation. This was consistent with previous work on hemisphere 

specialisation, which also indicated that although both hemispheres are sensitive to reflection 

symmetry the right hemisphere is specialised (Verma et al., 2013; Wilkinson & Halligan, 
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2002). Nevertheless, the hypothesis that this lateralisation was the result of directed spatial 

attention cannot be completely ruled out as participants may still shift their attention to the left 

when presented with a pattern in central vision. Thus, generating a right lateralised alpha 

desynchronisation response.  

 

6.2.3. Chapter 4: Does visual crowding influence the SPN? 

As a result of the findings of Chapter 2, which demonstrated that the SPN could be produced 

to stimuli in periphery, Chapter 4 presented reflection in the peripheral but flanked by other 

objects. Behaviourally, reflection symmetry perception is not only reduced when in the 

periphery but also when flanked by other objects (Roddy & Gurnsey, 2011). This chapter had 

two key findings. First, across three experiments it was demonstrated that the SPN is 

produced to objects presented in the periphery. This finding is consistent with the results of 

Chapter 2. Second, it was found that crowding strength modulated the detectability of 

reflection symmetry along with activity in symmetry-sensitive networks (as the strength of 

crowding increased, the size of the SPN response reduced).  

 

6.2.4. Chapter 5: How does figure-ground assignment influence the neural response to 

symmetry? 

Figure-ground assignment is important in visual perception in order to separate objects from 

their backgrounds. Both symmetry and convexity have been highlighted to be figural cues that 

determine this process. Chapter 5 presented participants with displays that had alternating 

coloured regions, which directly placed reflection and convexity in competition with one 

another. The SPN response was found to be dependent on figure-ground assignment. It was 

present when reflection was perceived as being the figure, but was absent when reflection was 

in the ground. This seems logical given the importance of symmetry in figure-ground 
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assignment and object recognition; an object does not matter as an object unless it is also 

figural.  

Moreover, the number of reflection patterns in central vision did not influence the 

SPN response. Experiment 4 allowed for a comparison of the SPN when there were either one 

or three reflectional patterns presented. It was found that the SPN was similar for both one 

and three reflectional patterns. This was consistent with the findings from Chapter 4, which 

demonstrated that the SPN response did not scale with the number of presented reflectional 

objects in the periphery.  

 

6.3. Hemisphere lateralisation of the neural response to visual symmetry  

Previous symmetry experiments have highlighted a lateralised response to symmetry (Verma 

et al., 2013; Wilkinson & Halligan, 2002). For example, Verma et al. (2013) found that 

behaviourally reflection symmetry detection was facilitated by left visual field (thus processed 

in the right hemisphere) presentation for participants who were left lateralised for language. 

TMS work has also found converging evidence of a right hemisphere specialisation for 

symmetry (Bona et al., 2014). However a lateralised response has not been observed for fMRI 

studies. This body of work offers some evidence for a right hemisphere specialisation for 

symmetry perception in chapter 2 and 3, although the support offered in chapter 2 is not 

particularly strong. Chapter 4 found no evidence for a lateralisation of the symmetry response. 

A right hemisphere specialisation is consistent with global processing being dominant in the 

right hemisphere (Van Kleeck, 1989). Symmetry can be considered a type of global 

processing and therefore right hemisphere dominance would be appropriate. The lack of 

strong evidence for a dominant hemisphere in symmetry processing in this body of work may 

result from each hemisphere being able to process symmetry independently as demonstrated 

for the first time in Chapter 2.  
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6.4. Neural responses to symmetry in visual clutter 

The SPN is considered to be a response to symmetry in the image (Bertamini & Makin, 

2014). To recap, the SPN is produced by reflection, rotation and translation whilst reflection 

produces the largest amplitude SPN (Makin, Rampone, Pecchinenda & Bertamini, 2013).  

These differences in amplitude reflect the saliency of symmetry with sensitivity to reflection 

highest compared to other regularities (Makin, Pecchinenda & Bertamini, 2012; Royer, 1981). 

Moreover, SPN amplitude scales with the amount of reflection symmetry in the image 

(Palumbo, Makin & Bertamini, 2016). The SPN is present when participants are engaged in 

tasks other than regularity discriminations (Höfel & Jacobsen, 2007; Makin, Rampone, & 

Bertamini, 2014). The current experiments are in agreement with those previously reported 

with the SPN found to be a robust response to symmetry in the image. This response was 

modulated by factors, which varied the salience of reflection symmetry such as other objects 

(Chapter 4) and figure-ground assignment (Chapter 5). In conclusion, the SPN is an automatic 

response to symmetry that is sensitive to bottom-up stimulus features.  

	
6.5. Directions for future research 

This work has further expanded our knowledge and deepened our understanding of the 

electrophysiological response to visual symmetry; in conjunction it has raised additional 

avenues for future research to explore. While Chapter 5 examined how figure-ground 

assignment modulated the SPN by presenting stimuli that were perceived to differ in depth 

despite being on a 2D plane, future studies could examine symmetry presented in 3D. With 

the exception of Makin, Rampone & Bertamini (2014) who demonstrated that an SPN could 

be produced for slanted reflection in depth, neural responses to 3D symmetry have been 

currently understudied. The world is a rich 3D environment and investigating how the brain 

responds to these stimuli would provide a more complete understanding of symmetry 
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perception. A 2D retinal image can be the infinite projection of a number of 3D objects. 

Symmetry is a prevalent object feature by assuming the object is symmetric can help recover 

the 3D shape from the 2D retinal image. It is therefore likely that mechanisms exist for 

processing 3D symmetry, which are similar to the areas used to process 2D symmetry. 

Moreover, there are a number of salient properties (e.g. shading and texture gradients) that 

provide information about 3D shape that could also be examined in relation to the neural 

response to symmetry.   

Chapter 3 examined alpha oscillations but future studies could also examine 

synchronous oscillatory neural activity in the gamma range (30-80Hz). A growing body of 

evidence has suggested that synchronised gamma oscillatory activity plays an active role in 

bottom-up visual feature binding (Fries, 2005; Singer & Gray, 1995). However, to date high 

frequency oscillations have not been examined extensively for symmetry perception.   
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7. Appendix 1: Investigating whether the SPN is a neural response 

to symmetry  

The SPN has always been analysed as a relative difference between reflection and either 

random or another regularity (Norcia et al., 2002; Wright, Makin, & Bertamini, 2015), with it 

being claimed that the difference observed is a neural response to symmetry. However, it 

could be fairly argued that the difference we see is the result of a neural response to random 

and not symmetry. Due to the novel paradigm used in Experiment 2 we are able to tease apart 

these competing arguments.  

Firstly, we are able to compare reflection against nothing (no processed pattern). This 

comparison is important, as if we are able to show a difference between reflection and nothing 

it will allow us to make a second comparison between nothing and random. If we find that 

reflection and nothing are significantly different from one another but random and nothing do 

not differ from one another then it helps to strengthen the claim that the SPN is a neural 

response to symmetry.   

The same electrodes (P1, P3, P5, P7, PO3 and PO7 and right side homologues) and 

time windows (early: 200-600ms; late 600-1000ms) were used as in Experiment 2. We 

performed a 2 x 2 Time Window (Early, Late) x Regularity (Reflection, Random, Nothing) 

ANOVA.  Both Regularity (F(2,,46) = 4.973, p = 0.011, partial η2 = 0.178) and Time Window 

(F(1,23) = 82.256, p = 0.001, partial η2 = 0.781) affected amplitude. An interaction confirmed 

that the amplitude of the regularities varied across the time windows (F(2,46) = 50.491, p = 

0.001, partial η2 = 0.687).   
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Supplementary Figure 1.1. Grand-Average Event Related Potentials (ERPs) collapsed over 
the left and right hemisphere. Panel A shows the ERP waves for reflection, random and 
nothing.  Panel B shows the difference plots for reflection, random and nothing.   

 

We further explored this interaction with a series of paired t-tests. We first examined 

the early time window (200-600ms).  As expected, amplitude was lower for reflection than 

random, t(23)= -4.173, p= 0.001, d=-0.429.  There was however a significant difference 

between random and nothing (t(23) = 4.649, p= 0.001, d=-0.575).  

Next, we looked at the late time window (600-1000ms). Again, reflection produced a 

lower amplitude wave compared with random (t(23)= -2.162, p=0.041, d=-0.298). 

Importantly, a SPN was produced for reflection and nothing (t(23) = -4.360, p = 0.001, d= -

0.720) with reflection producing a lower amplitude ERP waveform. Although nothing 

produced a lower amplitude compared with random wave these were not significantly 

different (t(23) = -1.985, p= 0.059, d=-0.350).   

A. ERPs collapsed across hemispheres!

B. Difference plots !
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For the first time we show that the SPN can be produced as a relative difference 

between reflection and no pattern (although only in the later time window). We also show that 

the neural response to random does not differ from when no pattern was presented in the later 

time window. These comparisons allow us to conclude that the SPN is likely a neural 

response to symmetry.   

An interesting feature was an early positive peak at around 180ms that was greater in 

amplitude (though slightly later in latency) for nothing compared to reflection or random 

(Supplementary Figure 1.1). Interhemispheric information transfer can account for the 

difference in latency. Amplitudes for the early components tend to be larger over contralateral 

than ipsilateral hemispheres (Gonzalez et al., 1994; Heinze et al., 1990). However the neural 

responses recorded were always from the contralateral hemisphere. The fact that this 

component is larger in the contralateral hemisphere in response to nothing than either 

reflection or random is puzzling.   
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8. Appendix 2: Consequences of different data selection 

procedures 

In EEG research there is a potential problem with post hoc selection of channels, time 

windows and frequency bands. This can make statistical procedures invalid, or demand 

excessively strict multiple comparison correction procedures which would increase the chance 

of making a Type 2 error. To avoid this, it is advisable to choose parameters a-priori, and this 

approach is plausible when previous work provides clear effects that can be re examined.  

 This work replicated the findings of Makin et al. (2014), who also reported ERPs and 

ERD during a task where participants discriminated reflection from translation patterns. 

However, the parameters used in that analysis were not quite appropriate for the current data 

set. There is a tension between the desirability of a priori data selection criteria on the one 

hand, and capturing effects of interest on the other. This was resolved as follows: In the main 

manuscript, data was selected to capture the effects that were apparent in the Figures. 

However, to ensure that the results were not too dependent on these decisions, we re- ran the 

analysis using the same parameters as Makin et al. (2014).  

 The SPN results were very similar when PO7 and PO8 electrodes were used, as in 

Makin et al. (2014). Amplitude was explored in the 250 to 1000 ms window with repeated 

measures ANOVA (Regularity [Reflection, Translation] X Orientation [Horizontal, Vertical]). 

There was a main effect for Regularity (F (1,23) = 27.50, p < 0.001, partial η2  = 0.545). There 

was no effect of Orientation (F (1,23) = 1.64, p = 0.213, partial η2  = 0.066) or Regularity x 

Orientation interaction (F (1,23) = 2.69, p = 0.114, partial η2  = 0.105). This replicates the 

main analysis, and confirms that the SPN was not too dependent on the choice of electrodes 

for analysis. 

 Next, the ERD analysis was re-run using the same time and frequency bands as Makin 

et al. (2014), that is, 400-700 ms, 8-13 Hz. There was main effect of Hemisphere (F (1,23) = 
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9.10, p = 0.006, partial η2  = 0.284) and Orientation (F (1,23) = 4.96, p = 0.036, partial η2  = 

0.177). There were no other effects or interactions (next largest = Hemisphere X Regularity, F 

(1,23) = 1.44, p = 0.243, partial η2  = 0.059). We note, however, that if the electrode clusters 

used here are different to those used by Makin et al. (2014). If the same electrodes were used, 

the main effect of Hemisphere was no longer significant.  

 

8.1 Analysis without ICA 

This study was designed to re-examine the electrophysiological responses during 

reflection/translation discrimination reported by Makin et al., (2014) and the ERPs reported 

by Makin et al. (2013). The pre-processing steps were designed to be as similar as possible to 

our previous work, to allow the most valid comparison. Nevertheless, it is important to 

examine potential distortions introduced by the ICA data cleaning procedures. ICA can be 

used to remove large, unwanted blink and eye movement artifacts, while retaining the cortical 

responses produced by the resulting visual field changes. To examine this issue, all analyses 

were rerun without the ICA cleaning stage. For SPN, trials were excluded when amplitude 

exceeded +/- 100 µV during the -200 to 1000 ms window (where all interesting effects were 

situated). Unsurprising, the mean number of excluded trials increased, from 16% to 30% in 

this case. For ERD analysis, the exclusion window was -500 to 1000, and 35% of trials were 

excluded.  

 SPN amplitude was highly correlated between with and without-ICA versions of the 

data in every condition (r = 0.82 to 0.96). For SPN, there was still a main effect of regularity 

(F (1,23) = 35.14, p < .001, partial η2  = 0.604), however the original Regularity X 

Hemisphere interaction was no longer significant (F (1,23) = 3.28, p = 0.083, partial η2  = 

0.125). Supplementary Figure 2.1 shows the results of the without-ICA analysis in the same 

format as Figure 3.2.  
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Supplementary Figure 2.1. Event-related potentials without ICA analysis. A: Grand-average 
topographic maps from the four conditions (vertical reflection, horizontal reflection, vertical 
translation, and horizontal translation) averaged over the 250–1,000 ms time window. B: 
Difference plots derived from this data. Electrodes used for analysis are highlighted with a 
gray dot. C: Grand-average ERP waves from left posterior electrodes (O1, PO3, and PO7) in 
different conditions. D: Equivalent data from right posterior electrodes (O2, PO4, and PO8). 
  

For the ERD, there were again correlations between with and without-ICA versions of 

the data (r = 0.86 to 0.96). The original main effect of Hemisphere was still apparent in the 

no-ICA analysis (F (1,23) = 5.93, p = 0.023, partial η2  = 0.205), however the main effect of 

orientation was considerably reduced (F (1,23) = 2.24, p = 0.148, partial η2  = 0.089). This 

effect can thus be considered less robust than the other findings of this work. Supplementary 

Figure 2.2 parallels original Figure 3.3.  
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Supplementary Figure 2.2. Event-related desynchronization without ICA analysis. A‒D: 
Scalp distribution of 10‒14 Hz powers from 400 to 1,000 ms poststimulus onset. The analysis 
focused on posterior desynchronization (blue on these figures). Electrodes used for analysis 
are highlighted with a gray dot. E, F: Time frequency spectrograms from left and right 
posterior electrode clusters.  
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