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ABSTRACT
Analytical expressions for the velocity and temperature profiles in a fully-developed laminar Poiseuille flow through a concentric annular duct of a Bingham fluid with constant wall heat flux at the inner and outer wall, in the presence of viscous dissipation are deduced and presented. It is found that the proportion of the heat generated by viscous dissipation near the outer wall increases with an increase of the dimensionless flow parameter, and a decrease of the duct radius ratio. The Nusselt numbers are first calculated based on a single bulk temperature for the entire duct cross section. The possibility of performing calculations of the relevant parameters discussed in this work is available via the Supplementary Material as an Excel file. Also in this work a new approach is employed, where two different bulk temperatures are used, one for each side of the radial location in the temperature profile whose derivative is zero. With this new approach the Nusselt number behaviour is free of either unphysical discontinuities or negative values. As a consequence, the Nusselt number values better reflect the actual heat transfer coefficient at the walls and are more comparable with the heat transfer inside ducts when the temperature profile is symmetric. 
INTRODUCTION
The heat transfer in a fully-developed laminar flow of a Bingham fluid in concentric annular ducts with constant wall heat fluxes, positive when entering to the fluid, and in the presence of viscous dissipation, is studied here using analytical means. To date there are few previous works on this subject, for example in the seminal review paper by Bird et al. in 1982 [
] no heat transfer studies in this geometry are listed. Apparently, the paper of Michiyoshi and Nakajima [
] was the first paper where this subject was studied, viscous dissipation is accounted for but the heat thus generated is treated as being constant and uniform throughout the duct cross-section, something that, as it will be seen in the present work, is far from reality. On the other hand, in the current study the generalised Brinkman number definition, Br*, was used, whose value, for the constant wall heat flux case, quantifies accurately the ratio between the heat generated by viscous effects and the heat exchanged at the duct walls, 
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], and this definition also allows an easier understanding of the plots where the Nusselt number curves are presented [
].

Of more recent vintage are the works of Nascimento et al. [
], where the thermal entry region in the absence of viscous dissipation was numerically investigated, and the work of Farias et al. [
]. This latter work was an experimental study of heat transfer in an annular duct with a fluid well fitted by the Herschel-Bulkley model, and, for the conditions studied, i.e., insulated exterior wall and viscous diffusion effects negligible, the authors concluded that the effect of rheological parameters upon the Nusselt number are rather weak, thus their results can be compared with those of the present work for the Bingham fluid, which is a particular case of the Herschel-Bulkley fluid (when the power-law index is equal to unity).

Other analytical studies have also tackled the subject of fully-developed heat transfer in annular ducts but with viscoelastic fluids, for example in the work of Hashemabadi et al. [
] where the hydrodynamic and heat transfer aspects are both studied for the simplified Phan-Thien-Tanner (PTT) model with constant, and equal, wall heat fluxes in the absence of viscous dissipation. In the work of Mohseni et al. [
], the Giesekus fluid is studied and the heat transfer results for both constant wall temperature and heat fluxes are presented, the viscous dissipation effect is also accounted for.

Heat transfer in concentric annuli with simple Newtonian fluids are still subject to study, as for example the recent works of Kumar and Satyamurty [
], Shiniyan et al. [
], Shah [
] and Gonzalez et al. [
].Numerical results for laminar heat transfer are presented in the work of Kumar and Satyamurty [9], where the thermal entrance region, with constant wall temperatures in the presence of viscous dissipation was studied, and in the work of Shiniyan et al. [10], where laminar upward mixed convection in an inclined concentric straight annulus was studied. In the work of Shah [11] a general correlation for critical heat flux in uniformly heated vertical annuli with upflow and any combination of heated surfaces is presented and in the work of Gonzalez et al. [12] an experimental evaluation of heat transfer and pressure drop in a water flow inside of a double pipe heat exchanger with spiral wire inserts was carried out.

Hydrodynamic studies about the fully-developed annular flow of non-Newtonian fluids with wall slip have emerged in the literature. The work of Ferrás et al. [
] provides analytical and numerical solutions for all three PTT viscoelastic models for axial and helical flows under no slip and slip boundary conditions, and the work of Avila et al. [
] presents an experimental study for a viscoplastic microgel exhibiting wall slip.

In obtaining the present Nusselt number (Nu) results, the bulk temperature is first calculated following a “classical” approach, i.e., a single bulk temperature for the entire duct section. It was found, however, that the behaviour of this apparent Nusselt number, and the corresponding convection coefficients, calculated following this approach, do not always exhibit behaviours in accordance with that of the expected real heat transfer coefficient inferred from the analysis of different temperature profiles, as will be seen in due course, with the former taking negative or infinite values, something that is clearly physically unrealistic. For this reason, it was also decided to complement the present work by calculating additional Nusselt numbers, 
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, at the inner and outer walls respectively, with distinct bulk temperatures, 
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, one for each side of the radial location of the temperature profile where the derivative 
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 as shown in Figure 1. The underlying idea is that this radial location with zero derivative is also the boundary of two independent regions, the heat transfer is zero on that boundary, thus suggesting a possible new perspective on how to analyze the heat transfer more generally in ducts where the temperature profile is not symmetric.

Figure 1 also shows schematically an annular duct, with inner radius R1 and outer radius R2, together with the cylindrical coordinate system, r and x, the radial and axial coordinates, respectively. The flow cross section is divided into three regions, a plug region, delimited by 
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Although derived in the context of fully-developed concentric annular flow, we believe this new approach is entirely general and may be useful to analyse the actual heat transfer coefficients in other situations where asymmetry is present for example in annular flow of nanofluids [
, 
] and even in pipe flow of yield-stress and shear-thinning fluids where a marked asymmetry develops above a critical Reynolds number [
, 
]. Even in simple Newtonian fluid flows where asymmetric temperature profiles are present, e.g. different wall heat fluxes in a flow between parallel plates in the absence of viscous dissipation, this approach might be useful. By "splitting" the duct cross section into two independent regions it is possible to observe a Nu' behavior, and the corresponding convection coefficient, more in line with that expected of the actual heat transfer coefficient, i.e., without discontinuities or negative values. This approach also enables direct comparisons between Nusselt numbers from either asymmetrical or symmetrical temperature profiles, since in its construction the same calculation procedure is implicitly inherent, i.e., the bulk temperature is calculated for the region spanning from the wall to the point in the temperature profile where 
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. In addition to presenting our analytical solution, which is new to the literature, a major objective of this paper is to show that, with this approach, the behavior of a Nusselt number calculated in this manner better reflects the actual heat transfer coefficient.
This paper is organized as follows, the next section presents the hydrodynamic and thermal analysis, the former was performed in order to obtain the mathematical expressions for the nondimensional velocity profile and radial coordinates of the points that demarcate the plug-flow region. These expressions will allow the correct quantification of viscous effects and the subsequent integration of the energy equation. In the thermal analysis, the differential form of the energy conservation equation and the temperature profile equations are derived and presented. As a consequence of their unwieldy length, the expressions for the bulk temperature and Nusselt numbers are only available as Supplementary Material (as an Excel file downloadable from the following link https://feupload.fe.up.pt/get/hNBzufuAPWQQBBG . In the Results and Discussion section, the hydrodynamics and heat transfer results are presented and discussed followed by an outline of the major conclusions.

ANALYSIS: HYDRODYNAMICS AND THERMAL
The simplifying assumptions underlying the analytical model are as follows: laminar Poiseuille flow of a Bingham fluid through a concentric annular duct with nonzero velocity gradients, and no slip, at both walls; fully-developed flow, i.e., both hydrodynamically and thermally; constant, and distinct, wall heat fluxes, positive if transferred to the fluid; fluid properties independent of temperature; and finally the viscous dissipation is taken into consideration.

HYDRODYNAMIC ANALYSIS
The need to properly account for the heat generated by viscous dissipation, and also to obtain compact expressions for the temperature profiles, requires a hydrodynamic analysis which is therefore presented in this section. Besides obtaining compact expressions for the velocity profiles, the objective was also to find the nondimensional variables that naturally arise from a dimensionless hydrodynamic analysis. In the hydrodynamics results and discussion section, a straightforward approach for calculating the pressure drop or flow rate, through the nondimensional variable 
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and Bingham number, Bn, respectively, is proposed and the behaviour of the viscous dissipation in a concentric annular flow of a Bingham fluid is presented. 

Shear stress and velocity profiles

For a Bingham fluid the rheological model is given in one-dimensional form by, 
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where (0 is the yield stress, (( is the Newtonian viscosity plateau (at very high shear rate) and 
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 is the shear rate that can be replaced by the derivative 
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, u being the local velocity.

Shear stress and velocity profiles, and their deduction, for the Poiseuille flow of Bingham fluids through concentric annuli can be found in the literature, [
, 
]. Here the same procedure was used to obtained the referred profiles, although using a different set of dimensionless variables as will become clear below. In the present work it is assumed that the shear stress at the walls, 
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, is always higher than (0, i.e., nonzero velocity gradients at the walls.

Equations (2) and (3) relate, in a nondimensional form, the shear stress distribution, 
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, with the radial coordinate 
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, and equation (3) is valid for the region between 
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, where the shear stress,
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, is positive when material at smaller r exerts a shear in the positive x-direction on material at greater r, cf. Figure 1,
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with 
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 being the following nondimensional radial coordinate, 
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and thus 
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 being the annular duct radius ratio.

The mathematical expression for the nondimensional radial location where the shear stress is zero, 
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the ratio 
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Equations (2) and (3) can be used to calculate the limits of the plug-flow region, i.e., the radial coordinates of the closest location to the inner wall and the nearest location to the outer wall with 
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with 
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Also from the expressions for the shear stress across the duct section, equations (2) and (3), which are valid for any fluid with yield stress, and knowing that, in the rheological model equation, the fluid shear rate can be replaced by the absolute value of the flow velocity gradient, it is thus possible to obtain the following dimensionless expressions related to the velocity profile:

Inner region, 
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Outer region, 
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In these expressions the bulk flow velocity, 
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, was used to render the local velocity dimensionless, 
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with Bn being the Bingham number, i.e., 
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. The nondimensional pressure gradient, 
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, in a laminar flow of a generic fluid with yield stress is given by the following expressions,
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where 
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Ultimately, we may consider that the velocity profile is a function of both ( and 
[image: image66.wmf]k

, and the parameters 
[image: image67.wmf]1

c

 and 
[image: image68.wmf]2

c

,which are also present in the velocity profile equations, depend only on the independent variables ( , through 
[image: image69.wmf]**

dPdx

, and 
[image: image70.wmf]k

 although, unfortunately, not in an explicit form. 

Hydrodynamic calculation procedure

In order to obtain numerical values, the approach used in this study was as follows, 
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 and finally the corresponding value of (, equation (12), is obtained knowing that the integration of the dimensionless velocity profile, u*, along the entire duct cross section must be equal to one, i.e., 
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A transcendental equation, equation (15) below, relates c1, ( and c2 and arises from the fact that in the plug region, the velocity is constant and equal to 
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Knowing the values of c1 and (, c2 can be determine through equation (15) and the value of ( is explicitly obtained from equation (16) resulting from the integral shown in equation (14) 

(16)
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THERMAL ANALYSIS 
Energy equation

Through an energy balance to an infinitesimal duct length, dx, where the heat entering to the fluid at the walls plus the heat generated by viscous dissipation leads to an increase in the bulk temperature, 
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where ( and c are the fluid density and specific heat, respectively, and 
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. The dimensionless form of equation (17) is the following,
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In this equation x* is the nondimensional stream-wise coordinate, x*=x/Dh, and 
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 is the dimensionless bulk temperature, based on a bulk reference temperature, 
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Pe is the Péclet number, equivalent to the product of the Reynolds number, Re, and Prandtl number, Pr, Pe=Re(Pr=
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Equation (21) below is the differential form of the energy conservation equation, for fully-developed flow with constant wall heat fluxes in the presence of viscous dissipation,

(21)
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where T is the local fluid temperature. Since the wall heat fluxes are constant the following equalities hold, 
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 being the local temperatures at the inner and outer walls respectively.

By combining equations (21) and (18), and noting that 
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with 
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 being the local dimensionless temperature, i.e., 
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[image: image109.wmf]*

u

, and shear stress, 
[image: image110.wmf]*

t

, profiles, already presented in the hydrodynamic analysis section, subject to the following boundary conditions in dimensionless form.
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Although the local temperature of the outer wall, 
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, is unknown, it will emerge as an isolated term in all three temperature profile equations and will cancel out when the Nusselt numbers are calculated.

Plug region:
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Inner region:
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The remaining boundary condition at 
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 was used to validate the obtained gradient temperature profiles.

The Nusselt number expressions shown in equations (23) and (24) for the inner and outer walls, Nu1 and Nu2, respectively, are the dimensionless form of Newton’s law of cooling, i.e., 
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 where hi is the apparent convective heat transfer coefficient at each wall:
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The bulk temperature, 
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, is obtained from the temperature and velocity profile equations, through the following integral,
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Temperature profiles equations

Integrating equation (22) in the outer, plug flow and inner regions, the following expressions for the temperature profiles are obtained.

Inner region,

(26) 
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Plug-flow region,

(28)

[image: image133.wmf](

)

***

*

0

3

**

8Br1

2

ru

ic

dT

drr

b

+

=+


(28)
(29)

[image: image134.wmf](

)

(

)

*2**

0

**

34

8Br1

ln

4

ru

Ticric

b

+

=++


(29)
Outer region,

(30) 
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In the above equations the constants used have the following values, 
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As for the integration constants, ici, determined from the boundary conditions, they have the following values,
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The expression for the temperature at the inner wall, 
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, is obtained by setting 
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As can be seen, the outer wall temperature term, 
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, as an isolated term, through the integration constants ic6, ic4 and ic2. Accordingly, the same will inevitably occur in the expression of the bulk temperature, 
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 present in Nusselt equations (23) and (24) are also independent of 
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Also included in the Supplementary Material, apart from the bulk temperature, is the possibility that the Nusselt numbers values and other relevant parameters can be calculated in a straightforward manner. The extent of the mathematical expressions of the Nusselt numbers prevents their presentation in this work.

Implementation of the new approach, two bulk temperatures

As will be shown in the two bulk temperatures results section, the use of different bulk temperatures in the determination of Nu1 and Nu2, one for each side of the radial location where 
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The Nusselt numbers at the inner and outer walls, 
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 respectively, may now be calculated in the following manner:
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Depending on the region where the temperature profile with zero derivative is located, there is an equation to calculate its radial coordinate 
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in the plug region, 
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Finally, in the outer region, 
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 is also obtained as the root of a transcendental equation, in this case,
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Based on the velocity and temperature profile equations, and on the two distinct bulk temperatures for the regions near the inner and outer walls, equation (33), it was possible to calculate new values of Nusselt number, equations (34) and (35), whose convection coefficients reflect the actual convection heat transfer phenomenon on these surfaces, contrary to what sometimes happens in the traditional approach described in the single bulk temperature results section. These new values are presented and discussed in the two bulk temperatures results section.

RESULTS AND DISCUSSION
Hydrodynamics

Once the values of c1, c2, ( and ( are known it is also possible to calculate the dimensionless pressure gradient, 
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, Bn and c2, for different values of ( and c1, a more complete version of this table is available in the Supplementary Material. Note that the relationship between ( and ( on one hand and c1 and c2 on the other is unequivocal, i.e., for two given values ((, ( ) there is only one pair of values (c1, c2). With these parameters tabulated, obtaining the pressure drop for a given bulk velocity, or vice versa, in a laminar flow of a Bingham fluid through an annular duct is now straightforward because all the data needed is combined in one single table. Using a trial-and-error method, it is also possible to deduce the Bingham rheological constants,
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Table 1 also shows that, for a given value of 
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, an increase in the value of (, linked to an increase in the Bingham number, Bn, will increase the ratio 
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, i.e., higher values of c1 and c2, meaning an enlargement of the plug zone in the duct, equations (6) and (7). The first rows in Table 1, for c1 equal to 10-6, correspond closely to the case of a Newtonian fluid, i.e., ( reaches a minimum value for each (, 
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The results obtained in this study are consistent with the results of Fredrickson and Bird, [
]. For instance variables, 
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In Figure 2, the dimensionless velocity profiles, 
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, are shown, for the following three ( values, 0.1, 0.4 and 0.9, as a function of 
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(( =20, only for (=0.1 and (=0.4, ( =150 and ( =6500). With increasing values of ( the plug region increases. There is also a significant asymmetry of the velocity profile for the lowest value of (, a much smaller thickness of the inner region being noticeable in this case. This fact will have repercussions for heat transfer, as will be discussed in the following section. 
In an integral approach, the heat generated by viscous dissipation per unit length in a fully-developed flow, can be calculated by the product of the pressure gradient times the flow rate, 
[image: image193.wmf]V

&

, or by the following equalities,

(41) 

[image: image194.wmf](

)

2

12

w,11w,220

12

222

RR

dP

VURRUU

dxcc

pttptpmY

¥

æö

-=+=+=

ç÷

èø

&


(41)
The same heat can also be calculated by integrating along the r coordinate the locally generated heat, i.e., 
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by combining equations (41) and (42), that represent the same amount, and knowing that in the plug region the viscous dissipation is identically zero as du*/dr*=0, it follows that

(43) 

[image: image197.wmf]***

20,12

***

110,2

***

*********

***

1

RrR

RRr

AB

dududu

rdrrdrrdr

drdrdr

ttt

=+=

òòò

14424431442443


(43)
The fractions of the total heat generated by viscous dissipation in the inner and outer regions, integrals A and B of equation (43) respectively, versus (, for three values of ( are shown in Figure 3. With the increase of ( the weight of the viscous dissipation decreases in the inner region and increases in the outer region, the same behaviour occurs when ( decreases.

As Figure 3 shows, it becomes clear that the assumption adopted in reference [2], of a uniform heat generated by viscous dissipation in the whole duct cross section, is far from reality.

Single Bulk Temperature

In order to validate the Nusselt number expressions, the Newtonian results here obtained for Nu1 and Nu2, i.e., c1 and c2 approaching zero, first row of ( values in Table 1, were successfully compared with the results from the literature [
]. In this comparison the different Brinkman number definitions should be considered, in reference [24] the definition used was 
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 which is related to the current definition, Br*, through the relationship 
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 [3]. As stated previously, the product 
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 depends only on ( and some representative values can be found for example in reference [22]. In addition, in the present section, whenever appropriate, other comparisons with existing literature results will be discussed.

Regarding the temperature profiles, Figure 4 shows the temperature difference, 
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 when (=1, for two values of (, 0.1 and 0.4, and two different values of the Brinkman number, a low value, Br*=0.01, and a high value, Br*=1, the effect of the dimensionless group ( is also shown.

For low values of Br*, viscous dissipation effects are negligible, Figure 4a, the higher velocities near the walls with increasing (, cf. Figure 2, promotes heat transfer. This fact is noted by the lower values of the temperature variation along the duct radius, for example the difference 
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, decreases with an increase of (. This effect should be associated with a greater homogenization of the temperature and consequently a higher actual convection coefficient, however, for (=0.1, the corresponding absolute value of Nu1, equation (23), reduces from 29 to 23 when ( increases from 20 to 6500.

With an increase of the Brinkman number, Figure 4b, the heat generated by the high shear near the walls promotes greater temperature variations along the duct radius which is usually associated with lower heat transfer coefficients. The fact that 
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 shifts closer to the inner wall with higher values of ( is related with the increase of heat generated by viscous dissipation near the outer wall and its decrease near the inner wall as shown in Figure 3 (itself related to the asymmetry of the velocity profile). This shift of 
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 decreases with increasing ( since, for higher values of this radius ratio, the heat generated by viscous dissipation tends to be the same near both walls. Again for (=0.1, shown in Figure 4b, 
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 decreases when ( increases from 20 to 6500, linked with a higher convection coefficient, in agreement with the fact that near the inner wall the velocity increases and the heat generated by viscous dissipation decreases, but the corresponding absolute value of Nu1 decreases from 4.3 to 3.0.

In the temperature profiles of Figure 4 the locations whose temperature is equal to the bulk temperature, equation (25), are also shown. It is based on this temperature that the Nusselt numbers were calculated, equations (23) and (24), since in practice it is this temperature that can be calculated or experimentally determined. However, as seen in the preceding paragraphs, in the cases where the temperature profile is not symmetric, the behaviour of the apparent Nusselt numbers, and of the corresponding convection coefficients, may not reflect the actual behaviour of the heat transfer coefficient when defined in this way. This happens because, for a given wall, this classical bulk temperature depends strongly on factors that are outside the wall's region of influence (e.g. the heat flux and, if present, the viscous dissipation on the opposite wall).

In the next section not one, but two, bulk temperatures are used, one for each Nusselt, Nu', i.e., a different 
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, so the behaviour of Nu', and of the corresponding convection coefficient, reflects more reliably the effective heat transfer at the walls. In such a manner their values are more comparable with the corresponding values within ducts in which the temperature profile is symmetric. In the present section, only the Nusselt number values based on a single bulk temperature of the entire section, the apparent Nusselt numbers following a classical approach, equation (25), are presented.

Figure 5 shows the values of the heat flux ratios leading to identical wall temperatures, 
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, versus the dimensionless parameter ( for different values of Br* and the following values of (, 0.1, 0.4 and 0.9. The equation of 
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, due to its size, is only available in the Supplementary Material. As can be seen in Figure 5, according to the precise value of the Brinkman number, an increase of (  leads to an increase of 
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, for low values of Br*, or to a decrease of 
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, for higher values of Br*. The increase of the total viscous dissipation heat fraction at the outer region with increasing (, cf. Figure 3, is responsible for the decrease of 
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 with ( at higher Brinkman numbers.

Similarly to what was found in reference [24], for the same geometry for Newtonian fluids, where ( is minimum for each value of ( , cf. Table 1, the heat flux ratio 
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 is independent of the Brinkman number. The Newtonian data shown in Figure 5 was taken from reference [24] (their equation (21)), once again it is possible to find a good agreement between the present results and those of the literature for this limiting case.

For the Nusselt numbers, only the results for three representative values of ( (0.1, 0.4 and 0.9) are shown. Figure 6 presents the variation of Nu1 and Nu2 with ( for different values of the Brinkman number, Nu1 and (=0, Figure 6a, and Nu2 and 1/(=0, Figure 6b. The change in the Nu1 variation shown in Figure 6a is related with the temperature difference 
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, equation (23), which is positive for low values of (, becoming negative with an increase of (, cf. Figure 4b (=0.1. When 
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 there is a discontinuity in the Nu1 curve. When Nu1 is negative, 
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 is also always negative, equation (23), and vice versa. For the Nu2 cases shown in Figure 6b, 
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 and therefore the Nusselt number, equation (24), is always positive, higher Brinkman numbers promotes an increase in the wall temperature, 
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In the experimental work of Farias et al. [6] these authors showed that for (=0 and negligible viscous dissipation, the effect of the rheological parameters upon Nu1 is rather small, with the latter being expressed as a unique function of (, their equation (8). The same is noticed in this work, Nu1 varies only slightly with (, cf. Figure 6a, and the average values of Nu1 for ( =Br*=0 are 11.6, 6.6 and 5.7 for the ( values of 0.1, 0.4 and 0.9, respectively, with the equivalent experimental values of Nu1 according to [6] being very similar, i.e., of 11.3, 6.6 and 6.0.
Another validation of the present analytical results can be made by comparing the values of Nu1, for (=0, Figure 6a, and Nu2, for 1/(=0, Figure 6b, with the numerical data shown graphically in reference [5] for (=0.1 and (=0.9. The relation between their yield number, 
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 rendering (=15.3 for Y=10 and (=0.1 and (=250 for Y=10 and (=0.9. As can be seen both results from reference [5] are in good agreement with the current results. 

Figure 7 present the behaviours of Nu1, versus 
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 for different values of Br*. Figure 7a shows the usual behaviour of Nusselt number Nu1, when using only one bulk temperature, with increasing (, Nu1 goes from positive to negative values and Nu2, not shown for conciseness, shows the opposite behaviour except for high values of Br*where Nu2 and Nu1 always remain positive, 
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. For low values of (, where (=0.1 is the example shown here, and values of ( slightly higher than 20, the Nu1 behaviour is, however, different from the others and is shown in Figure 7b, i.e., for high Brinkman number values, Nu1 remains negative (
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) even for (=0 (not shown). This fact is due to the higher difference between heats generated by viscous dissipation along the inner region ((15% of the total) and outer region ((85% of the total) occurring for lower values of (, cf. Figure 3.

Figure 8 shows how Nu1 changes with the Brinkman number. Typically Nu1, and Nu2, exhibit a similar behaviour as shown in Figure 8a for Nu1, i.e., the Nusselt number decreases with increasing Brinkman number and always tends to a positive value for higher values of Br*. As mentioned previously, for low values of (, in this case 0.1, and values of ( slightly higher than 20, the Nu1 behaviour deviates from this trend, i.e., for higher Br* Nu1 is negative even for low values of (.

In Figure 8, for Br*(0.5, but also in Figure 6a for ( ( 70, singular points arise where the intersection of multiple lines occurs. Such effects only occur when the traditional approach is used. The singular point of Figure 6a, highlight that for each value of ( there exists a value of ( for which the temperature difference 
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 is only a function of ( and is independent of the Brinkman number, i.e., 
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 are affected in the same way by Br* and in the difference the effect cancels out. In the case presented in Figure 6a for ( = 0.1 the singular value of ( is approximately 70, and Nu1 = 11.6 and 
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= 0.95 regardless of the Br* value, but for example for ( = 0.1 and (= 1 (not shown) the singular value of ( remains the same although now Nu1 = -26 and 
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= -0.38 regardless of the Br* value.

The singular point present in Figure 8, indicates that for each pair of values of ( and ( there is a Brinkman number that makes the Nusselt number constant and independent of (. For this to happen, taking into consideration equation (23), it is necessary that for a given Br*, in this case (0.5, renders the temperature difference 
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Two Bulk Temperatures
Figure 9 shows the Nusselt numbers values, 
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, for a wall heat flux ratio, (, of 0.01 for three distinct radius ratios, (, namely 0.1, 0.4 and 0.9, and four Brinkman number values, 0, 0.0125, 0.125 and 1.25, as a function of the dimensionless flow parameter 
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 increases with ( as expected. As seen in the hydrodynamics results and discussion section, near the inner wall the velocity increases and the heat generated by viscous dissipation decreases with increasing values of ( which promotes the heat transfer. The exception to this behaviour appears to occur for low values of (, (, and Br* where 
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 decreases slightly with increasing (, cf. Figure 9a for ( =0.1 and Br* ( 0.0125. Eventually, the already greater proximity of the plug region to the inner wall for low values of ( makes the Nusselt number more sensitive to the decrease of the ratio 
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 with increasing (, c.f. Figure 2, in turn tending to reduce the Nusselt number.

For ( =0.9 and Br* =1.25 there is also a slight decrease of the Nusselt number, 
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, with increasing (, cf. Figure 9a, but here for a different reason. For this radius ratio there is no significant reduction of the heat generated by viscous dissipation with increasing values of (, c.f. Figure 3, and so, for higher Brinkman numbers, the beneficial effect of larger velocities near the interior wall with (, which for ( =0.9 are already further away from the wall than in the other lower values of (, is surpassed by the increase in viscous dissipation thus reducing 
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Also worthy of note is the increase in 
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 when the Brinkman number increases from 0 to 0.125 for the particular case of ( =0.1 and (=0.01, and at a much lower level for ( =0.4, Figure 9a. The fact that the velocity profile, for this value of (, is strongly asymmetric and inclined towards the inner wall, c.f. Figure 2, together with the low value of ( is responsible for promoting the heat transfer from the inner wall when the viscous dissipation increases.

For low values of the Brinkman number, Br*, the Nusselt number on the outer wall, 
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, increases with (, due to the increase of the velocity near the wall with (, i.e., the plug flow region extends to the walls. For higher values of Br*, 
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 decreases with increasing values of ( because the heat generated by viscous dissipation near the outer wall also increases with (, c.f. Figure 3, and this effect is dominant for higher Br*. It should also be noted that very high values, certainly for a laminar flow, of the Nusselt numbers can be obtained, 
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 values around 200 for (=0.01, Figure 9b and 
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 reaching values close to 600 for (=100 (not shown).

It should be emphasized that with this new approach there is now always a relationship between the temperature difference 
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 at a wall and the corresponding convection coefficient, the smaller the former the greater the latter. For example, for (=0.1, (=0.01 and (=6500, a case shown in Figure 9, when the Brinkman number takes values of 0, 0.125 and 1.25, the temperature differences 
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 have the following values, (0.859, 0.00114), (0.785, 0.0580) and (0.940, 1.018) respectively, and the corresponding Nusselt numbers (
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) are, (11.6, 87.5), (12.7, 1.72) and (10.6, 0.098) respectively. Note that this is not always the case when using a single bulk temperature in the traditional approach as seen in the previous section.
Figure 10 shows the Nusselt numbers on the inner wall versus 
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 for two extreme values of (, 20 and 6500, and a radius ratio ( of 0.1. For other values of ( the behaviour is qualitatively similar. In this figure the extremely sensitive response of 
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 to the effects of viscous dissipation for very high values of (, is evident, although not shown for conciseness the same happens to 
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 for very low values of (, something that the traditional approach of using only one bulk temperature does not show. In fact, in the traditional approach Nu1, for example, rapidly tends to zero for ( >10 c.f. Figure 7, making it essentially impossible to observe the profound effect of Br* upon Nu in these limiting cases.
Figure 11 shows, for the case of (=0.1, how ( affects the dimensionless radial location where the derivative of the temperature profile, 
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, the dimensionless radial coordinates that delimit the plug region, 
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 (not shown) indicate that when the coordinate 
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 is closer to a given wall than 
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, large variations of Nu', at that same wall, with both Br* and ( occur.

Finally in Figure 12, for (=0.1 and different Brinkman numbers, a direct comparison is made between Nusselt numbers Nu1 and Nu2, lines in gray, and 
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, using black lines, the variable on the abscissa axis is the dimensionless group (. As expected with the new approach, the Nu curves always have positive values and do not exhibit discontinuities. Sometimes the two approaches give similar results, as is the case of Nu2 and 
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, for (=1, in Figure 12b. The further the radial coordinate 
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 is from the wall, the closer are the Nusselt number values given by the two approaches on that same wall.

Although the equalities 
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 are precisely defined, the values of 
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 are more reflective of the “real” heat transfer coefficients. In practice however, as the main objective is usually to find the wall temperatures and for that both approaches are valid, the classical method may still be preferable due to the ease with which the bulk temperature can be calculated.

In order to present and discuss the heat transfer data it is, nonetheless, preferable to use the results obtained using the new approach, because they are the ones that better reflect the actual heat transfer behaviour. Through the new approach there is a logical consistency and coherence in the behavior of the various Nusselt numbers for different values of (. In contrast, such consistency is not present when using the traditional approach. An example in which the presentation of data obtained through the traditional approach is not very enlightening is the case shown in Figure 7 compared to the equivalent data present in Figure 10, the latter obtained with the new approach. While from Figure 7 it can be concluded that, for example for (= 10, Nu1 is not greatly affected by the Brinkman number, the data present in Figure 10, shows a strong dependence of Nu1( of the Brinkmam Number. In fact, for ( = 20, ( = 10 and ( = 0.1 for example, the difference between the average walls temperature, 
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 calculated for Br*= 0 and Br*= 0.125, are 0.171 and 0.259, respectively, an increase of 51% which is consistent with the large reduction in the values of Nu1( with Br* shown in Figure 10, a reduction that is almost absent in Figure 7a. Actually, Nu1 goes from -0.88, for Br*=0, to -1.20, for Br*=0.125, while Nu2, or Nu2(, which have very similar values for ( = 20, ( = 10 and ( = 0.1 c.f. Figure 12b for ( = 1, are both reduced by only 30%, from around 5.4 to approximately 3.8.
CONCLUSIONS
This paper has presented for the first time in the literature the analytical solution for the temperature profile of a fully-developed laminar flow of a Bingham fluid in an annular duct with constant heat flux at the walls and in the presence of viscous dissipation. The expressions for the Nusselt numbers and for the wall heat flux ratio, 
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, that renders the two wall temperatures equal, given their size, are only provided as Supplementary Material in an Excel file.

Mathematical expressions for the velocity profiles, necessary for integrating the energy equation and to quantify the heat generated by viscous dissipation, are also presented. In addition a table is presented with the values of (, 
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 and Bn for different values of (, c1, and c2 making pressure drop and flow rate calculations straightforward.

The relative weight of the heat produced by viscous dissipation in the outer region is always more than 50% and increases with an increase of the dimensionless variable (, and a decrease of the radius ratio 
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. It was also found that the use of a bulk temperature, for the whole duct cross section, to calculate the Nusselt numbers at the two walls, what we refer to as the “classical” approach, although useful from a practical point of view, since this temperature is easy to determine, is responsible for the awkward behaviour of the Nusselt numbers. Nu1 and Nu2 sometimes take infinite or negative values, thus clashing with the behavior of the corresponding real heat transfer coefficient that they are supposed to represent, and therefore we refer to these in this work as “apparent” Nusselt numbers. In this traditional approach, the analysis of the effect upon the heat transfer coefficient of variables such as (, 
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 or Br*, is hampered and so is the comparison between the apparent Nu values thus obtained with many other literature values where the temperature profile is symmetric and where this problem does not arise. 

Also in this work, a heat transfer analysis is carried out using not one but two bulk temperatures, one for each side of the radial location of the temperature profile whose derivative is zero, i.e., 
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, so the behaviour of this modified Nusselt number Nu', and of the corresponding convection coefficient, better reflects the effective heat transfer at the walls.

Even though, from a practical point of view, finding the two bulk temperatures is not straightforward, which may hinder the experimental implementation of this methodology, this approach produces Nusselt numbers, and convection coefficients, that reflect more closely the actual heat transfer coefficient and are also in line with the Nu values of the literature regarding flows inside ducts where the temperature profile is symmetric. Thus this approach allows a more meaningful presentation of data, and their discussion, and also comparisons between Nusselt numbers of annular cross section ducts, or of other situations with non-symmetrical temperature profiles, with any other Nu of different duct geometries or even different fluids.

When the radial coordinate where the temperature derivative is zero, 
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, approaches one of the walls of the annular duct, the values of Nu' on that wall, and consequently the respective convection coefficients, can reach very high values for what is usual in a laminar flow, due to the unusually high velocity gradients near the walls. This new approach also highlights the great sensitivity of the effects of viscous dissipation on 
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, for high and low values of (, respectively, something that in the traditional approach, where only a single bulk temperature is utilized, is not apparent.

In this work it was clear that the traditional approach of using only one bulk temperature for the whole duct cross section yields Nusselt numbers which do not always reflect the anticipated value or the behaviour of the actual heat transfer coefficient at the walls. Given this anomalous behaviour the apparent Nusselt numbers and heat transfer coefficients thus determined, should be confined to relate a wall temperature with the traditional bulk temperature, however, in practice, as this is usually the main objective in heat transfer studies, the traditional methodology is clearly still useful and will continue to be used. From a didactic point of view, however, it is also important to show, as done in the present work, that negative values of Nusselt numbers and discontinuities in the curves that reflect their behavior are not inevitable and that this apparently unrealistic behavior can be avoided by using bulk temperatures calculated in a more physically coherent way.
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Bn
Bingham number, 
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generalized Brinkman number, equation (20)
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c
fluid specific heat, J/(kg(K)
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nondimensional flow parameters, 
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hydraulic diameter, 
[image: image287.wmf](

)

h21

2

DRR

=-

, m
f
Darcy friction factor

h
convective heat transfer coefficient, W/(m2(K)
ici
dimensionless integrations constants
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thermal conductivity of the fluid, W/(m(K)
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Nusselt number, 
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P
static pressure in the duct, Pa
P*
nondimensional static pressure in the duct, 
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Prandtl number
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heat on walls or generated, W
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wall heat flux, (positive if transferred to the fluid), W/m2
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average wall heat flux, 
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, W/m2
r
radial coordinate, m
R
radius of concentric annulus walls, m
r*
nondimensional radial coordinate, equation (4)

R*
nondimensional radius of concentric annulus walls
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inner limit of the plug region, m
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outer limit of the plug region, m
Re
Reynolds number
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bulk temperature, equation (25), K

T
local temperature, K
T*
nondimensional temperature, 
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T0
reference bulk temperature (a constant value such as an inlet bulk temperature), K
To
dimensionless limiting shear stress for Bingham flow, [23]
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bulk velocity, m/s

u
local velocity, m/s
u*
nondimensional local velocity, 
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velocity of the plug region, 
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volumetric  flow rate, m3/s

x
stream-wise coordinate, m
x*
nondimensional stream-wise coordinate, 
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Greek Symbols
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nondimensional parameter, 
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(i
dimensionless compaction constants
(i
dimensionless compaction constants
(
ratio of outer and inner wall heat fluxes, 
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heat flux ratios leading to identical wall temperatures

(0
dimensionless maximum velocity for Bingham plastic, [23]
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shear rate, s-1
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nondimensional parameter, 
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(
fluid Viscosity, [24], Pa(s 
(
radius ratio, 
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thermal conductivity of the fluid, W/(m(K)
(+
dimensionless limit of plug flow region in Bingham flow, [23]
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newtonian viscosity plateau (at very high shear rate), Pa(s
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plastic viscosity of the fluid, [5], Pa(s

(
fluid density, kg/m3
(
shear stress, Pa

(*
nondimensional shear stress, 
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(0
yield stress, Pa

(rx
shear stress, Pa

(w
wall shear stress, Pa
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average wall shear stress, 
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yield number, [5], dimensionless

(B
dimensionless flow rate for Bingham model, [23]

(
dimensionless group, equation (12)

Subscripts
(=0
radial location in the duct cross section where (rx=0, equation (5)

1
inner wall

2
outer wall

w
wall

Superscripts 
*
nondimensional variables

'
value obtained using the two bulk temperatures approach

+
approaches the number from the right

-
approaches the number from the left
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Figure 1 Schematic representation of the annular geometry (inner radius R1 and outer radius R2) and of the coordinate system, the inner, plug and outer regions of the velocity profile are also shown. The radial coordinates r0,1 and r0,2 delimit the plug region.
Figure 2 Velocity profiles for distinct values of ( in ducts with different radius ratio, (.  Lines: ———— (= 20; ((((((( (= 150 ; —— ( —— (=6500.
Figure 3 Distribution of the heat generated by viscous dissipation between the inner and outer walls, integrals A and B of equation (43), respectively, versus (, in ducts with different radius ratio, (. Lines: ———— outer wall, 
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Figure 7 Nusselt number at the inner wall, Nu1, versus ( for different values of the Brinkman numbers, Br*, and a radius ratio value of (=0.1, a) (=20, b) (=150.
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Figure 1 Schematic representation of the annular geometry (inner radius R1 and outer radius R2) and of the coordinate system, the inner, plug and outer regions of the velocity profile are also shown. The radial coordinates r0,1 and r0,2 delimit the plug region. 
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Figure 2 Velocity profiles for distinct values of ( in ducts with different radius ratio, (.  Lines: ———— (= 20; ((((((( (= 150 ; —— ( —— (=6500. 
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Figure 3 Distribution of the heat generated by viscous dissipation between the inner and outer walls, integrals A and B of equation (43), respectively, versus (, in ducts with different radius ratio, (. Lines: ———— outer wall, 
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Figure 5 Values of the heat flux ratio 
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Figure 6 Nusselt number versus ( for different values of radius the ratio, (, and Brinkman numbers Br*. a) Nu1, for 
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Figure 7 Nusselt number at the inner wall, Nu1, versus ( for different values of the Brinkman numbers, Br*, and a radius ratio value of (=0.1, a) (=20, b) (=150.
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Figure 8 Nusselt number at the inner wall, Nu1, versus the Brinkman number, Br*, for different values of 
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Figure 9 Nusselt number at the inner and outer walls, 
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Figure 10 Nusselt number at the inner wall, 
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Figure 11 Nondimensional radial coordinate of the location where the temperature profile equals 
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Figure 12 Nusselt number at the inner and outer walls, Nu1 and Nu2, respectively, versus ( for 
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 and different values of the Brinkman number, Br*. Grey lines - classical approach, black lines - new approach.
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