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Abstract

The heterotic string-derived models in the free fermionic formulation give rise to

some of the most realistic string models to date, which possess N = 1 space-time

supersymmetry (SUSY). The characteristics of the required spectrum are well

motivated in heterotic string constructions that allow for a light Z ′. Anomaly

cancellation of the U(1)Z′ symmetry requires the existence of the Standard Model

(SM) singlet and vector-like states in the vicinity of the U(1)Z′ breaking scale.

We show that the agreement with the gauge coupling data at one-loop is identical

to the case of the Minimal Supersymmetric Standard Model (MSSM), owing to

cancellations between the additional states. It is also shown that effects arising

from heavy thresholds may push the supersymmetric spectrum beyond the reach

of the LHC, while maintaining the agreement with the gauge coupling data.

On the other hand, lack of evidence for SUSY at the LHC has led to the recent

interest in non-supersymmetric heterotic string vacua. We explore what may be

learned in this context from the quasi–realistic free fermionic models. We show

that constructions with a low number of families give rise to proliferation of a

priori tachyon producing sectors, compared to the non–realistic examples which

typically may contain only one such sector, followed by a concrete example of

a non–supersymmetric, non–tachyonic, heterotic string vacuum where we com-

pare the structure of its massless spectrum to the corresponding supersymmetric
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vacuum. While in some sectors SUSY is broken explicitly, i.e. the bosonic and

fermionic sectors produce massless and massive states, other sectors, and in par-

ticular those leading to the chiral families, continue to exhibit Fermi-Bose degen-

eracy. In these sectors the massless spectrum, as compared to the supersymmetric

cases, will only differ in some local or global U(1) charges. Our example model

contains an anomalous U(1) symmetry, the cancellation mechanism for which

generates a tadpole diagram at one loop–order in string perturbation theory. We

entertain the possibility of the cancellation of this tadpole diagram against the

corresponding diagram generated at one–loop by the non–vanishing vacuum en-

ergy and that in this respect the supersymmetric and non–supersymmetric vacua

should be regarded on equal footing.
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1

Introduction

From time immemorial, man

has desired to comprehend the

complexity of nature in terms of

as few elementary concepts as

possible.

Abdus Salam

Quantum field theory (QFT) results from the marriage of quantum mechanics

with Einstein’s special relativity. A central concept that lies at the heart of these

ideas is that of symmetry. And indeed quantum field theories are thought of and

classified according to their symmetries.

The most important symmetry is of course the Poincaré group of special

relativity. To say that the Poincaré algebra is fundamental in particle physics

amounts to assuming that everything falls into some representation of this algebra

that is

Poincaré = Translation o Lorentz Transformation.

The principle of relativity then asserts that the laws of physics are covariant with
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respect to this algebra. Other quantum field theories and especially the Standard

Model (SM) also have other important symmetries. These symmetries imply that

there is an additional algebra, called the Lie algebra, with a commutation relation

of the form

[Tr, Ts] = if t
rs Tt

where the Tr are Hermitian generators and f t
rs are the structure constants.1 This

means that every field in the SM Lagrangian also carries a representation of this

algebra. If this is a non-trivial representation then there is another ‘internal’

index on the field. For example the quarks are in the fundamental (i.e. three-

dimensional) representation of SU(3) and hence, as they are space-time spinors,

the field carries the indices ψaα(x).

Finally, we recall the well-known Noether’s theorem which asserts that for ev-

ery continuous symmetry of the Lagrangian there is a conserved quantity namely

the conserved current and therefore one can construct a conserved charge. Con-

sequently, one can think of symmetries and conservation laws as being more or

less the same thing. So the SM has several symmetries built into it for example

SU(3)×SU(2)×U(1) and this means that the various fields carry representations

of various algebras. These algebras split up into those associated to space-time

(Poincaré) and those which one might call internal (such as the gauge symmetry

algebra). In fact the split is a direct product in that

[Pµ, Ta] = [Mµν , Ta] = 0

where Ta refers to any internal generator. Physically this means the conserved

charges of these symmetries are Lorentz scalars.

1see Appendix A for a brief review of Lie algebras.
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1.1 The Standard Model of Particle Physics

The SM is a theory striving to describe all the known forces of nature apart

from gravity, that is the electromagnetic, the weak and the strong interactions,

using the tools of quantum field theory especially gauge theories. The model,

experimentally, has stood the test of time extremely well, up to energies of a

few hundreds of GeV. All carriers of the weak interactions, namely the massive

gauge bosons2, W±, Z, have been discovered experimentally, and their masses, of

order O(100) GeV, have been measured with great accuracy. Moreover, evidence

for gluons is very strong, and many precision measurements have been performed

that confirm the model as a physically correct up to the energy scales of the

electroweak symmetry breaking. The following table captures the particle content

of the SM:

spin 0 Higgs

spin 1
2

Leptons:

νe
e−

,

νµ
µ−

,

ντ
τ−



Quarks:

u
d

,

c
s

,

t
b


spin 1 Gluons Strong Interactions

Photon Electromagnetic Interactions

W±, Z Weak Interactions

Table 1.1: The particle content of SM.

In spite of the remarkable success enjoyed by the SM it remains only an

2see Appendix B for an instance of electroweak symmetry breaking.
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effective field theory, addressing more questions than answers like why the local

gauge interactions SU(3)C × SU(2)L × U(1)Y and why only 3 families of quarks

and leptons? It is worth noting that the SM gauge interactions of the quarks and

leptons are completely fixed by their gauge charges. Finally, we would also like

to know the origin of CP violation, the solution to the strong CP problem, the

origin of the cosmological matter-antimatter asymmetry.

1.2 Some Unsolved Problems: A Brief Look

In this section, unsolved problems that render the SM as only an effective field

theory are considered which closely match the interests of the author.

1.2.1 Gravity

The missing piece of the jigsaw puzzle in the SM are the gravitational interactions.

Gravity is by far the weakest of the four fundamental forces of nature, but unlike

the other three fundamental forces that are related to gauge symmetries, gravity

a universal force. Gravity has its own force-carrier, a spin-2 particle known as the

‘graviton’, which has not been observed till date. QFT is not consistent with the

framework needed to describe the gravitational interactions. The biggest hurdle

in the attempt to incorporate gravity in the SM is the fact that it is non-linear

with a non-terminating Einstein-Hilbert action due to the presence of
√
−g and

therefore notoriously non-renormalizable. Any attempt for renormalizing gravity

leads to an infinite scattering cross-section for interactions. This requires a very

fine tuning at each order in the interaction so as to yield a finite result [11]. At

the microscopic scale, the gravitational effects are almost negligible, in contrast

to the macroscopic scale where they dominate.
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1.2.2 Dark Matter

Dark matter appears to make up about five times more mass than ordinary

matter. Astrophysical and observational constraints indicate that dark matter

is non-baryonic, cold and collisionless in nature. A picture that has come to

be known as Cold Dark Matter (CDM). One of the major challenges is to un-

derstand the very nature of dark matter where ample evidence is provided by

astrophysical observations. Dark matter could be made of a completely new, as

yet undiscovered particle.

1.2.3 The Cosmic Coincidence Problem

In Einstein’s original formulation, the gravitational field is a symmetric tensor

field gµν . The dynamics is encoded in the Einstein’s equations which follow from

the Einstein-Hilbert action

S =
1

16πG

∫
d4x
√
−g(R− 2Λ),

where g is the determinant of the metric gµν , R is the Ricci scalar and Λ is the

cosmological constant. Whilst theorists were busy in finding a concrete argument

that Λ = 0, refined observations led to the problem of dark energy which is

distributed evenly throughout space-time and is associated with the vacuum in

space. The even distribution of dark energy causes global gravitational effects

resulting in a repulsive force which is believed to drive the accelerating expansion

of the universe.

The cleanest argument is that the dark energy represents the cosmological

constant. The cosmological constant, however, can not be held responsible for

5



inflation in the early universe because otherwise the accelerated expansion would

not end since the cosmological constant, Λ, happens to be of the same order as

that of the present matter density of the universe, ρM . Nevertheless, it is possible

that the cosmological constant is responsible for dark energy because the current

cosmic acceleration might indeed continue without end.

1.2.4 The Strong CP Problem

Quantum chromodynamics (QCD) is a wonderful theory of the strong interac-

tions. Having said that, however, it suffers from one serious problem: the strong

CP problem. There are three known viable solutions to tackle the strong CP

problem of which axions are the most plausible solution as they help to keep the

strong CP problem in check.

The strong CP problem emerges as a consequence of adding the CP violating

term to the QCD Lagrangian

LCP =
θαs
32π2

G̃µνG
µν

which is a renormalizable and gauge invariant term that violates CP and is

allowed in any gauge theory in four dimensions. In the SM it contributes to the

CP -odd observables such as the neutron electric dipole moment (nEDM). The

very smallness of θ despite large amounts of CP violation in the weak sector of

the SM is called the strong CP problem.

1.2.5 Baryon Asymmetry

The observed lack of antimatter is in direct contrast with the abundance of ordi-

nary matter in the universe. It is unknown exactly why this is the case, especially
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since the Big Bang should have created an equal amount of each, but the answer

for this asymmetry is believed to lie with CP violation [8].

1.3 GUTs

Grand unified theories (GUTs), as the name suggests, focuses on the problem of

unification in the SM [13]. Ever since the development of the theories of special

and general relativity, symmetries have played an essential role in the construc-

tion of physical theories. The main symmetry of the SM and the foundation of

its success is the gauge symmetry SU(3)C×SU(2)L×U(1)Y . The central idea of

GUTs is to assume that SU(3)C , SU(2)L and U(1)Y are distinct subgroups of a

larger gauge symmetry group in which formerly disconnected fermions of a fam-

ily, or bosons of different gauge groups, transform in larger fermionic or bosonic

multiplets. This larger symmetry is unbroken above a yet-to-be-determined mass

scale MG, that must be broken at presently accessible energies, as it is not ob-

served.

The main requirements which must be satisfied by the GUT, say G, in order

to be a viable candidate for a grand unified model are:

• G must embed SU(3)× SU(2)× U(1).

• G must be simple or else the product of identical simple factors whose

coupling constants can be set equal by a discrete symmetry.

• G must contain complex representations.

The initial work of Georgi and Glashow in 1973 was the much needed drive

behind the idea of obtaining a Grand Unified Theory (GUT) influencing much of

the research at the time [1].
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1.3.1 The Georgi-Glashow SU(5)

This is the only compact simple Lie group of rank four admitting complex repre-

sentations. The three low-energy gauge couplings of the SM are still independent

arbitrary parameters. This issue is tackled by embedding the SM gauge group

into the simple unified gauge group, Georgi-Glashow SU(5), with one universal

gauge coupling αG defined at the grand unification scale MG where quarks and

leptons sit in two irreducible representations with

10 =


Q

uc

ec

 , 5 =

 dc

L

.



Nevertheless, the three low-energy gauge couplings are now determined in terms

of two independent parameters: the universal gauge coupling αG and the grand

unification scale MG.

The gauge bosons transform globally under the 24 adjoint representation of

the SU(5) which decomposes under the SU(3)C × SU(2)L × U(1)Y as

24 = (8,1)0 ⊕ (1,3)0 ⊕ (1,1)0 ⊕ (3,2)−5
3
⊕ (3,2)+5

3

since the SU(5) gauge group is 24 dimensional. Thus, there are 24 gauge bosons:

12 of which are the familiar SM gauge bosons, denoted by the first three multi-

plets, whilst the last two multiplets are new to GUTs and are referred to as lepto-

quarks. They have non-trivial quantum numbers under both the SU(3)C and

SU(2)L gauge groups. Therefore, they can mediate transitions between quarks

and leptons as well as between quarks and anti-quarks.
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In order to accomplish the spontaneous symmetry breaking Higgs doublets

are required which can either be in 24 or 5: Φ24 and Φ5 respectively. The Φ24

can break the SU(5) gauge group to SU(3)× SU(2)×U(1) symmetry at a scale

Mχ ∼ 〈Φ24〉. This also splits Φ5 into a SU(3) triplet H3,1, and SU(2) doublet

h(1,2). The later is the Higgs doublet of the SM which spontaneously breaks the

electroweak theory. In this way, the SM is obtained at low energies.

However, it should be noticed that the success of SU(5) GUT was short lived

as it was ruled out initially due to the increased accuracy in the measurement

of sin2 θW and then by early bounds on the longevity of the proton decay is

what prompted the theoretical physicists to attempt the construction of other

four-dimensional GUTs in pursuit of a desirable theory.

1.3.2 The Flipped SU(5)

A central prediction of all GUTs is the decay of the proton via the lepto-quark

gauge bosons. Experimentally the lifetime of the proton τp [14] is known to be

τp ≥ 1034 years.

The minimal SU(5) models predict τp ∼ O(1031) years and is therefore ruled out

experimentally. For this very reason, there is an interest in the Flipped SU(5)

models. The Flipped SU(5) models differ from the Georgi-Glashow SU(5) GUT

as the right-handed neutrino is embedded in the 10 representation of the Flipped

SU(5) instead of the adjoint representation.
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1.3.3 The SO(10) GUT

There are two compact simple Lie groups of rank five admitting complex repre-

sentations of which SU(6) does not yield any new features distinct from those of

SU(5). Complete unification is possible with the symmetry group SO(10) with

one universal gauge coupling αG and one family of quarks and leptons sitting in

the 16-dimensional spinor representation which can be seen to be composed of

the fields q, uc, dc, l, ec and N which under the SU(3) × SU(2) × U(1) has the

following decomposition:

SU(3) SU(2) U(1)

q � � +1
6

uc � 1 −2
3

dc � 1 +1
3

l 1 � −1
2

ec 1 1 +1

N 1 1 0

The SO(10) GUT has two inequivalent maximal breaking patterns

SO(10)→ SU(5)× U(1)χ

and

SO(10)→ SU(4)× SU(2)L × SU(2)R.

In the first case we obtain Georgi-Glashow SU(5) if Qem is given in terms of SU(5)

generators completely or so-called Flipped SU(5) if Qem is in part contained in

U(1)χ. In the latter, we have the Pati-Salam symmetry. If SO(10) breaks directly
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to the SM at MG, then we retain the prediction for gauge coupling unification.

1.3.4 Larger Symmetry Groups

Lastly, larger symmetry groups can be and have been considered in the literature.

For example, E6 which admits a fundamental representation 27 which transforms

as [16+10+1] under SO(10). The problem with exploring such large symmetry

groups is that there are many states that as of yet have not been observed in

nature and as a result must not appear in the low-energy effective field theory.

We briefly review E6 as it will underlie the analysis of the string-derived Z ′ model

presented in Chapter 3.

1.3.5 E6 As GUT

There are two compact simple Lie groups of rank six admitting complex repre-

sentations of which SU(7) does not yield any new features whereas E6 admits

SO(10)× U(1), SU(6)× SU(2), SU(3)× SU3)× SU(3)

introducing some novelties. All the various E6 breaking patterns

(1a) E6 → SO(10)× U(1)→ SU(5)× U(1)2 (1.1)

(1b) E6 → SO(10)× U(1)→ SU(4)× SU(2)× SU(2)× U(1) (1.2)

(2a) E6 → SU(6)× SU(2)→ SU(5)× SU(2)× U(1) (1.3)

(2b) E6 → SU(6)× SU(2)→ SU(4)× SU(2)× SU(2)× U(1) (1.4)

(2c) E6 → SU(6)× SU(2)→ SU(3)× SU(3)× SU(2)× U(1) (1.5)

(3) E6 → SU(3)× SU(3)× SU(3) (1.6)
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reduce to one of the two extended MSSM models of rank 6

E6 → SU(3)× SU(2)× [U(1)3]

E6 → SU(3)× SU(2)× [SU(2)× U(1)2]

which are equivalent up to linear transformations. As will be shown later in

Chapter 3, the SM representations are accommodated in the 27 of E6 as

27 =



16+ 1
2

FL + FR = (q, uc, dc, l, ec,N )

10−1 D + h

1+2 S

.

1.4 Going Supersymmetric

Despite the many promising finds, there is a plague of questions which can not be

cured in the setting of the four-dimensional theories [2]. Among these issues are

the gauge hierarchy problem - the immense ambiguity in stabilising the quantum

effects of the GUT scale at the level of the electroweak scale, which take the form

of ultraviolet divergences and the fact that the unification of Higgs or other gauge

bosons with leptons and quarks seems to be an insuperable obstacle. Throughout

the years, various developments in the field altered the face of GUTs. The most

fruitful development was that of supersymmetry (SUSY).3 This is the only exist-

ing symmetry which successfully places bosons and fermions on an equal footing.

Initially, SUSY was proposed independently and much earlier than string theory,

3refer to Appendix C for details.
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so indeed the symmetry may be there without strings. Since the breaking scale

of SUSY cannot be constrained theoretically, apart from obvious phenomenolog-

ical lower bounds for the masses of the super-partners, that have to be more

massive than the energy scale accessible experimentally to date. But the idea of

SUSY gained prominence in the early construction of string theories. There were

two approaches of which the celebrated model of Ramond and Neveu-Schwarz [3],

proposed SUSY to be a substantial symmetry of the two-dimensional world-sheet.

Even though no signs of space-time SUSY in nature have been observed to

date, there is no denying that the four-dimensional world we reside in is non-

supersymmetric. Nevertheless, the primary goal of space-time SUSY is to amend

one of the greatest flaws in the SM, which is none other than the gauge hierar-

chy problem [4]. What makes SUSY a superb candidate for this achievement is

the fact that it guards the effective field theory (EFT), such as the SM, against

unwanted UV completions of any kind. As a result, supersymmetric extensions

of the SM have been constructed. A well-known example of such a theory is

the simplest extension of the SM, the Minimal Supersymmetric Standard Model

(MSSM). This model demands that for every SM particle there exists a super-

symmetric counterpart, differing by a half-integer spin. For the MSSM to serve

its theoretical purposes, the masses of the superpartners need to be at the TeV

scale. The following table highlights the particle content of the MSSM:
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Non-SUSY Sector SUSY Partners

2 Higgs (required) Higgsinos

Leptons sLeptons

Quarks sQuarks

Gluons Gluinos

Photon Photino

W± Winos: W̃±

Z Zino: Z̃

Table 1.2: The particle content of the MSSM.

In fact, SUSY is a global symmetry of space-time, if gravity is not taken into

account. Embedding it in a consistent dynamical field theory of gravity, SUSY

is elevated into a local space-time symmetry, called supergravity. The latter has

far fewer parameters than the supersymmetric models in flat space-times. For

instance the non-supersymmetric SM has 28 parameters if one includes neutrino

masses, which is a slight extension of the SM, while in its minimal supersymmetric

extension there are more than a 100 parameters, 105 to be exact.

1.5 The Gauge Coupling Unification

One of the occurrence with respect to the foundations of the SM is that each of the

gauge interactions is accompanied by a different coupling constant or coupling

strength, with all three of them being independent and seemingly unrelated.

In this scenario the crucial idea which arises due to the effect of higher-order

quantum corrections in the gauge boson propagators is that of running coupling
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constants - a terminology used to describe the variation of the coupling strength

as a function of a typical energy scale µ̃. A mathematical account of the running

of the gauge couplings is provided by the specification of the renormalization

scheme. Variation of the coupling strengths is then solely determined by the

particle content and their couplings inside the higher-order loops of the gauge

bosons. The value of this variation is expressed in terms of a set of renormalization

group equations (RGEs).

Figure 1.1: Gauge coupling unification in non-SUSY GUTs on the left against SUSY
GUTs on the right where the evolution is calculated according to the formulae in [6],
p.199 assuming that the masses of the super-partners are in the range of the TeV scale.
The red, green and blue lines correspond to the running of the electromagnetic, weak
and strong couplings respectively.

Based on experimental data, a graphical representation of this result was

originally presented in the well-known paper [5]. A modified form of the original

graph is adopted by [7] and is shown in Figure 1.1 demonstrating that within the

SM the unification of gauge couplings is an unachievable task.
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1.5.1 In The SM

The set of RGEs at one-loop for the SM gauge couplings, as computed in the MS

is

dαi
dt

=
1

4π
biα

2
i , t = log

(
µ̃

µ̃0

)
, i = 1, 2, 3

where αi ≡ 1
4π
g2
i and µ̃0 is a very high energy scale which is chosen arbitrarily.

For the SM the coefficients, as can be found in [5], are

bi =


b1

b2

b3

 =


0

−22
3

−11

+NFAM


4
3

4
3

4
3

+NHIGGS


1
10

1
6

0

 =


41
10

−19
6

−7


with NFAM = 3 being the number of chiral matter families and NHIGGS = 1

being the number of Higgs doublets.

1.5.2 In The MSSM

In a simplest supersymmetric generalisation of the SM, the MSSM, the calculation

of the gauge coupling unification is very similar to that in the non-supersymmetric

counterpart. First, it is assumed that the threshold for the supersymmetric par-

ticles is somewhere around 1 TeV so that up to this scale, the renormalization

group equations run just as they do in the SM. Above the 1 TeV, there are new

contributions to be found from the super-partners of the SM particles and the

RG evolution of the three gauge couplings is modified and is now based on a new

set of coefficients
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bi =


b1

b2

b3

 =


0

−6

−9

+NFAM


2

2

2

+NHIGGS


3
10

1
2

0

 =


33
5

1

−3


with NFAM = 3 being the number of chiral matter families and NHIGGS = 2

being the number of Higgs doublets. It is notable that the running of the strong

coupling is much weaker in the case of the MSSM. This occurrence is mainly due

to the dominating one-loop bi contributions. Similarly, the running of the weak

coupling has opposite direction while the running of the electromagnetic coupling

is faster than in the SM case. Finally, there is a contribution from all the Higgs

fields and their supersymmetric counterparts.

1.6 Thesis Outline

The chapters of this thesis are organised as follows:

Chapter 2: The set up of the free fermionic formulation of the heterotic

string is shown. The one-loop partition function is defined at an arbitrary point

in the moduli space. This enables the derivation of specific constraints deduced

from modular invariance. These constraints lead to the ABK rules, where phe-

nomenologically realistic model building from string theory can be achieved.

Chapter 3: The heterotic string models in the free fermionic formulation

give rise to some of the most realistic string models to date, which possess N = 1

space-time supersymmetry. The characteristics of the required spectrum are well

motivated in heterotic string constructions that allow for a light Z ′. Anomaly

cancellation of the U(1)Z′ symmetry requires the existence of the SM singlet
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and vector-like states in the vicinity of the U(1)Z′ breaking scale. This chapter

contains material that has appeared in publication [80] presented by the author.

Chapter 4: A concrete example of a non–supersymmetric, non–tachyonic,

heterotic string vacuum will be presented motivated by the lack of evidence in

support of supersymmetry at the LHC. We explore what may be learned in this

context from the quasi–realistic free fermionic models. This chapter contains

material that has appeared in publication [81] presented by the author.

Appendix: Various elements are covered in this section primarily to help

avoid any unnecessary digression as the goal of the thesis is to essentially fulfil

the arduous task of bringing together two different worlds that is presenting two

different string-derived models in the free fermionic formulation one with and the

other without supersymmetry.
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2

The Free Fermionic Formalism

Those who dream by day are

cognizant of many things which

escape those who dream only by

night.

Edgar Allan Poe

In this chapter, the framework of the free fermionic construction [38] of the

four-dimensional heterotic string is shown. The partition function at an arbitrary

point in the moduli space is derived with the description of the self-dual point

under T-duality which is then followed by the rewriting of the partition function in

the most general way and thence enabling the derivation of the constraints on the

form of the partition function. This is further followed by the derivation of all the

necessary constraints for the construction of the free fermionic models. Having

derived these tools for the construction, a summary of the ABK rules is given.

The chapter closes with the discussion of the NAHE model as a prototypical

example and the NAHE-based phenomenologically viable models.

19



2.1 The Road to Heterotic Strings

String theory, though initially unpopular, gained prominence due to the works

of Green and Schwarz that it was a consistent theory. The theory then followed

two revolutionary stages due to its problematic nature. The first one is the “first

revolution of string theory” in which string theory was transformed into a realistic

theory called superstring theory. The second is called the “second revolution

of string theory” where Witten’s work identified the five different superstring

theories as the different limits of a single theory call M-theory.

Superstring theory generalizes the classical bosonic string theory by incorpo-

rating SUSY allowing for successful inclusion of the fermions and eliminating the

tachyonic state. There are 5 different superstrings. It also includes ghost states

which when removed leads to 10 space-time dimensions for the superstrings. Su-

perstrings are also characterized by open and closed strings, oriented and unori-

ented strings as well as the number of supercharges in the theory. All superstrings

eliminate the tachyonic state from the physical spectrum and include a graviton

so superstrings describe gravity in a natural way. In short, a relativistic string

theory is necessarily

• a theory of general relativity;

• a theory of gauge interactions;

• finite. That is to say that the world-sheet (the area swept out by the string

at it moves in space-time) is smooth. This is exactly the reason why in

perturbation theory the usual UV divergences of the quantum field theories

of relativistic particles do not crop up.

There are two heterotic string theories [9–12] both of which describe closed
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oriented strings and in both the N = 1 SUSY results from the decoupling of the

left-moving and right-moving modes. One of these heterotic string theories comes

with the SO(32)4 as the gauge group and the other with E8 × E8. Such string

theories can be regarded as the fusion between the classical bosonic string theory

and the superstring theory. The 16 extra dimensions of the bosonic theory are

regarded as abstract, mathematical entities, not as space-time dimensions but

rather as internal-shift symmetries.

The idea of heterotic strings is a theory of closed superstrings with decoupled

left-moving and right-moving modes that preserve the best of both worlds: strings

and superstrings. The resulting theory is large enough to incorporate the desired

features of the SM. By allowing the left-moving modes to be supersymmetric,

fermions can be included in the theory and the tachyons can be projected out.

On the other hand, non-Abelian gauge theory is allowed for the right-moving

modes by way of adding Majorana-Weyl fermions λA in the absence of SUSY.

As will be seen, in the free fermionic construction of the heterotic string in

four dimensions, all the extra degrees of freedom needed to cancel the conformal

anomaly are represented as free fermions propagating on the string world-sheet.

In the light cone-gauge the supersymmetric left-moving sector includes the two

transverse space-time fermionic coordinates ψµ and 18 internal world-sheet real

fermions χI , yI and ωI whereas the right right-moving bosonic sector contains

the 44 real world-sheet fermions λa.

4see Appendix D for analysis of the SO(32) gauge group. The analysis for E8×E8 is similar.
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2.2 The Free Fermionic Construction

Our aim is to construct a model with N = 1 world-sheet SUSY on the left-movers

and no SUSY on the right-movers, which will at the end generate a N = 1 space-

time SUSY. This could seem quite weird at first glance because cancelling the

conformal anomaly requires that the space-time dimension for right-movers is 26

and 10 for the left-movers, although one would expect to have the same space-time

dimension.

The critical dimension of the space-time is D = 26 for the bosonic string due

to no-ghost theorem which simply states that there are no ghosts (negative norm

states) if and only if the dimension of space-time is no greater than 26. However,

the bosonic string suffers from two main problems. First of all, a tachyon exists in

the ground state of the spectrum of the bosonic string which renders the spectrum

unphysical. The other problem is that there are no fermions. Introducing SUSY,

which is the symmetry that interchanges bosons and fermions where all particles

have the same mass and also have the same gauge charge in the supermultiplet.

Since SUSY is a gauge symmetry, this allows the writing of the conformal anomaly

as

Canomaly = Cbosonic ghosts + Cfermionic ghosts + Cbosonic + Cfermionic

where Cbosonic ghosts = −26 for the bosonic string, Cfermionic ghosts = 11 which is

achieved by introducing fermions in string action, Cbosonic = D in D-dimensions

which results from the fact that the central charge of the free boson is c = 1

and Cfermionic = D
2

in D-dimensions which results from the fact that the central

charge of the free fermion is c = 1
2
. It can be clearly seen that for Canomaly = 0 if

D = 10 which is the critical dimension of the superstring.
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As the left-movers and right-movers decouple for the heterotic string, the

model can have more fermions added which would be either right-moving or left-

moving. The thought is that they would contribute to cancel the central charges

CL = −26 + 11 +DL +
DL

2
+
NfL

2
= 0 (Superstring)

CR = −26 +DR +
NfR

2
= 0 (Bosonic String)

where DL and DR are the left and right space-time dimensions respectively and

thus reduce the space-time critical dimension. So if 44 right-moving fermions and

18 left-moving fermions are added, the conformal anomaly would become

CL = −26 + 11 +DL +
DL

2
+

18

2
= 0 (2.1)

CR = −26 +DR +
44

2
= 0 (2.2)

which for DL = DR = 4 means that the theory is conformally invariant. These

left-moving and right-moving fermions propagate the world-sheet. Moreover, we

have the following set of fields

Xµ
+, ψ

µ
+, λ

j
+

in the left-moving sector whilst

Xµ
−, λ

j
−

in the right-moving sector where µ = 0, ..., 3, i = 1, ..., 44 and j = 1, ..., 18.

Adopting complex coordinates defined by

z = τ + iσ and z = τ − iσ
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the world-sheet fields can now be defined as functions of z and z given by the

following:

Xµ(z, z) , µ = 1, 2

ψµ(z) , µ = 1, 2

λi(z) , i = 1, ..., 18

λ
j
(z) , j = 1, ..., 44.

In the light-cone gauge the space-time bosons and fermions have only two

degrees of freedom, namely the transverse coordinates, where the heterotic action

can now take the form

S =
1

π

∫
d2z

(
∂zXµ∂zX

µ − 2iψµ∂zψµ − 2i
18∑
i=1

λi∂zλ
i − 2i

44∑
i=1

λ
j
∂zλ

j
)
.

where ψµ = ψµ(z) and ψ
µ

= ψ
µ
(z) corresponds to the left-moving and right-

moving fermionic fields respectively.

The world-sheet field content, which forms the basis of the free fermionic

construction of the heterotic string in four dimensions, is given in Table 2.1 below.
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Sector Label Details

Supersymmetric ψµ, χi Real superpartners of the bosonic coordinate Xµ and

the six compactified directions in the bosonic formulation.

Left-Moving

yi, ωi Real fermions that correspond to the bosons describing

Holomorphic the six compactified directions in the bosonic formulation.

Bosonic ȳi, ω̄i Real fermions that correspond to the bosons describing

the six compactified dimensions in the orbifold formulation.

Right-Moving ψ̄1,...,5,η̄1,2,3 Complex fermions that describe the visible gauge sector

which correspond to the eight internal shifts in T 16.

Anti-Holomorphic

φ̄1,...,8 Complex fermions that describe the hidden gauge sector

which correspond to the other eight internal shifts in T 16.

Table 2.1: States that describe the world-sheet, where the internal freely propagating
fermions have been separated from those of the space-time coordinates. As can be
seen, there are 18 in the left-moving, supersymmetric sector and 44 in the right-moving,
bosonic sector in the light-cone gauge.

In the Polyakov picture, string theory is formulated as a perturbative sum over

a path integral on the world-sheet, a genus g Riemann surface. The free fermions

propagate around the non-contractible loops of this surface. As a result, the

boundary conditions need to be specified for each world-sheet fermion. Moreover,

the world-sheet SUSY needs to be preserved, which means that the supercurrent

TF must be uniquely defined up to a sign, under the transformation of the world-
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sheet fermions. The world-sheet supercharge is defined as

TF = ψµ∂Xµ + i
6∑
I=1

χIyIωI

where χI(z), yI(z) and ωI(z) for i = 1, ..., 6 transform as the adjoint represen-

tation of SU(2)6. The transport properties of the left-moving and right-moving

fermions around a non-contractible loop of the torus show that any configuration

of the boundary conditions in some basis consisting of 64 fermions is realized

which can either be real or complex where two real fermions in each basis vector

can pair to form a single complex fermion

λij =
1√
2

(λi + iλj),

λ∗ij =
1√
2

(λi − iλj).

given that they share the same boundary condition.

The free fermionic construction is based on the use of the one-loop partition

function defined by a set of boundary condition vectors and a set of projection

coefficients associated to each pair of these vectors. Our assumption is that

for each set of basis vectors and a set of associated coefficients, referred to as

the one-loop phases, there is a consistent model of free fermionic 4D-heterotic

superstring.

2.2.1 The Torus and Modular Invariance

At tree level, all reparametrizations are local and quantum corrections are not

taken into account, but at higher loops further constraints will arise. Therefore,

it is instructive to to look at the one-loop vacuum to vacuum amplitude with no
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external states. This is precisely the one-loop partition function.

The one-loop partition function includes all the physical states and is sufficient

to derive some constraints on the model. It is an integration over all the possible

world-sheets, in the case of the one-loop partition function, the world-sheets are

all the inequivalent tori. On the world-sheets, two boundary conditions need to

be specified for the two non-contractible loops of the torus (poloidal and toroidal),

as depicted in Figure 2.1, for each of the free fermionic fields.

Figure 2.1: A diagram displaying the poloidal direction, represented by the red arrow,
and the toroidal direction represented by the blue arrow, the two non-contractible loops
of the torus.

The torus can be mapped to the complex plane by cutting it along its two

non-contractible loops. It can then be characterized by specifying two finite and

non-zero periods in the complex plane λ1 and λ2 with a non-real ratio

z ∼ z + λ1, z ∼ z + λ2.

The torus can then be identified with the complex plane modulo a two-dimensional

lattice Λλ1,λ2 where Λλ1,λ2 = {mλ1 + nλ2, m, n ∈ Z}. Using the reparametriza-

tion z → z/λ2 the torus s equivalent to one whose periods are 1 and τ = λ1
λ2

. In
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other words, the torus is left invariant by the following transformations:

T : τ → τ + 1, redefines the same torus,

S : τ → −1

τ
, swaps the two coordinates and reorients the torus.

These transformations span a group of transformations known as the modular

group

τ → aτ + b

cτ + d
, a, b, c, d ∈ Z, ad− bc = 1

where any function invariant under these transformations is called modular in-

variant. The modular group is PSL(2,Z) = SL(2,Z)/Z2 where the division by

Z2 takes the equivalence of an SL(2,Z) matrix and its negative into account. The

moduli space M of the torus is

M' H/PSL(2,Z).

The fundamental domain, as illustrated in Figure 2.2, can be taken as

F = {τ
∣∣|τ | ≥ 1, |Re τ | ≤ 1/2, Im τ > 0}.

Figure 2.2: The shaded region displays the fundamental domain of the modular group
of the torus.
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Thus the partition function is a sum over this domain in order to integrate

over all conformally inequivalent tori. Consequently, the modular transforma-

tions spanned by T and S are invariant. One additional requirement is that the

partition function does not depend on the parametrization of the tori.

2.2.2 The Boundary Conditions

The boundary conditions express the shifts in the integer phase of the fermionic

fields under parallel transport around these non-contractible loops

f → −e iπα(f)f (2.3)

where f is the fermionic field α(f) = 0 or 1 for Neveu-Schwarz (NS) and Ramond

(R) real fermions respectively and α(f) ∈ (−1,+1] for the complex fermions. In

other words, the fermions which propagate around the string have a boundary

condition around the string in the direction of the σ coordinate and they also

can pick up a phase by propagating along the τ dimension. As there are two

non-contractible loops of the torus, the complete phase assignment for a fermion

can be expressed as a set of two phases

 α(f)

β(f)

 .
A set of specified phases for all the fermions for one non-contractible loop is called

a spin-structure written as a 64-dimensional vector

α = {α(ψ1), ..., α(φ
8
)}.
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Then to complete the spin-structure assignment for all the fermions on the torus,

two vectors can then be defined by

 α

β

 .
The partition function is given by

Z =
∑
α,β∈Ξ

C

(
α

β

)
Tr

(
α

β

)
(2.4)

which is a sum over all spin structures where C
(
α
β

)
are Generalized GSO (GGSO)

projection coefficients and Tr
(
α
β

)
≡ Tr(eiπβFαeiπτHα) with Hα being the hamilto-

nian, is the trace over the mode excitations of the world-sheet fields in the sector

α, subject to the GSO projections induced by the sector β. Requiring invari-

ance under modular transformations results in a set of constraints on the allowed

spin structures and the GGSO projection coefficients. Furthermore, the partition

function has 68 fields in total made of 64 internal fermions and two each for Xµ
L,

Xµ
R and ψµ. The bosonic fields have no choice of boundary conditions, they are

only periodic. However the fermionic field ψµ can be periodic or anti-periodic,

so the partition function must include all possible combinations of 64 boundary

conditions of the fermions, and this is integrated over all the inequivalent tori.

Thus, the boundary conditions take the values α, β = 1, ..., 64.

In the models considered in this thesis, the following notations for the real

and complex fermions, see Table 2.1 for details, will be used

• Real Left Fermions

{ψ1, ψ2, χ1, y1, ω1, χ2, y2, ω2, χ3, y3, ω3, χ4, y4, ω4, χ5, y5, ω5, χ6, y6, ω6}
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• Real Right Fermions

{ȳ1, ω̄1, ȳ2, ω̄2, ȳ3, ω̄3, ȳ4, ω̄4, ȳ5, ω̄5, ȳ6, ω̄6}

• Complex Left Fermions

{ψµ, χ12, χ34, χ56}

• Complex Right Fermions

{ψ̄1, ψ̄2, ψ̄3, ψ̄4, ψ̄5, η̄1, η̄2, η̄3, φ̄1, φ̄2, φ̄3, φ̄4, φ̄5, φ̄6, φ̄7, φ̄8}

Here, the first 4 complex left and the last 16 complex right fermions are given in

complex form and the remaining fermions y and ω are not paired. This is due to

the fact that their boundary conditions do not always allow a pairing.

2.2.3 The One-Loop Partition Function

Looking at the partition function and thinking of the path integral on a torus

of parameter τ = τ1 + iτ2 as formed by a field on a circle that been evolved for

Euclidean time 2πτ2, translated by 2πτ1 and identified with the initial circle. The

generator of the translations in time is the Hamiltonian H = L0 +L0 + 1
24

whereas

the generator of translation in space is the momentum operator P = L0 − L0.

The identification of the ends of the cylinder thus formed is realized by taking

the trace over the Hilbert space of states

Z(τ1, τ2) =
∑
s∈H

〈s|e2πiτ1P e−2πiτ2H |s〉

= TrHe
2πiτ1P e−2πiτ2H
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which can be rewritten using q ≡ e2πiτ as

Z(τ) = q−1/48q−1/48TrHq
L0qL0 . (2.5)

This can be calculated for each fermion as we know how L0 acts on the states

space. If the time boundary condition is anti-periodic (NS), then the partition

function is just given by the trace with L0 acting on the appropriate R or NS

Fock space:

ZNS
NS (τ) = TrNS q

L0−1/48, (2.6)

ZNS
R (τ) = Tr R qL0−1/48.

When the time boundary condition is periodic (R) the definition of the trace is

modified:

ZR
NS(τ) = TrNS (−1)F qL0−1/48, (2.7)

ZR
R (τ) = Tr R (−1)F qL0−1/48

where F is the fermion number operator, defined by the relations

F (f) = +1, if f is a fermionic oscillator,

F (f) = −1, if f is the complex conjuate of a fermionic oscillator,

F |+〉R = 0,

F |−〉R = −1,
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where |+〉R = |0〉 is the state of a degenerated vacuum without an oscillator

and |−〉R = f †0 |0〉 is the state of a degenerated vacuum with zero mode oscillator.

The partition function must include all the possible combinations of the boundary

conditions and therefore it is a sum over all spin-structures. All the previous work

nicely leads to the complete partition function

Z =

∫
F

dτdτ

(Imτ)2
Z2
B

∑
spin

structure

C

(
a

b

) 64∏
f=1

ZF

 α(f)

β(f)

 ,
where

• dτdτ
(Imτ)2

is the invariant measure under the modular transformations of the

torus.

• ZB is the bosonic contribution

ZB =
1√

|Imτ |η(τ)

where

η(τ) = q
1
12

∏
n

(1− q2n), with q = e2πiτ

is the Dedekind eta function.

• C
(
α
β

)
are coefficients on the spin-structures that are yet to be determined.

• ZF

 α(f)

β(f)

 is the contribution of the fermion f which depends solely on

its boundary conditions α(f) and β(f). It can be calculated by the use of
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Equation (2.5) to obtain the following results:

ZF

 0

0

 =

√
ϑ3

η

ZF

 0

1

 =

√
ϑ4

η

ZF

 1

0

 =

√
ϑ2

η

ZF

 1

1

 =

√
ϑ1

η

where ϑi are defined as

ϑ1 = ϑ

 1

1

 , ϑ2 = ϑ

 1

0

 , ϑ3 = ϑ

 0

0

 , ϑ4 = ϑ

 0

1


and

ϑ

 a

b

 =
∑
n∈Z

q
(n−a/2)2

2 e2πi(n−b/2)(n−a/2).

is the Jacobi theta function.

These formulae should be complex conjugated for the right-moving fermions.

2.2.4 The Modular Invariance Constraints

The invariance of the partition function under the modular transformations give

further constraints for model building. Since the measure element and the bosonic

contribution are modular invariant, imposing modular invariance on the remain-
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ing terms in the partition function results in additional constraints. Under

τ → τ + 1, the following transformations are given:

η −→ eiπ/12η,

ϑ1 −→ eiπ/4ϑ1

ϑ2 −→ eiπ/4ϑ2

ϑ3 ←→ ϑ4

and under τ → − 1
τ
:

η −→ (−iτ)1/2η

ϑ1

η
−→ e−iπ/2

ϑ1

η
ϑ2

η
←→ ϑ4

η
ϑ3

η
−→ ϑ3

η
.

Since the partition function is a product of the spin-structures of 64 fermions, the

modular transformations will take the spin-structure from one to another. Modu-

lar invariance requires that both spin-structures related by these transformations

need to be present in the partition function with equal weight. This gives the

following constraints:

C

(
α

β

)
= ei

π
4

(α·α+1·1)C

(
α

β − α + 1

)
, (2.8)

C

(
α

β

)
= ei

π
2
α·βC

(
β

α

)∗
, (2.9)
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where 1 is the vector corresponding to periodic boundary conditions for all

fermions and the product α · β is defined as

α · β =

{
1

2

∑
real left

+
∑

complex left

−1

2

∑
real right

−
∑

complex right

}
α(f)β(f).

Another constraint arises when considering higher order loops

C

(
α

β

)
C

(
α′

β′

)
= δαδα′e

−iπ
2
α·α′C

(
α

β + α′

)
C

(
α′

β′ + α

)
(2.10)

where δα is the space-time spin statistics index defined as

δα = eiπα(ψµ1,2) =


+1, if α(ψµ1,2) = 0,

−1, if α(ψµ1,2) = 1.

These constraints can be used to derive the rules for constructing the model.

Making use of Equation (2.9) and Equation (2.10) with α′ = α and β = 0,

implies that

C

(
α

0

)2

= δαC

(
α

0

)
C

(
0

0

)
,

which means that either C
(
α
0

)
= 0 or C

(
α
0

)
= δαwhere C

(
0
0

)
= 1 is normalized. A

set of vectors Ξ is then defined to be

Ξ =

{
α

∣∣∣∣C(α0
)

= δα

}
.

Using Equation (2.9) and Equation (2.10), Ξ is taken to be an Abelian additive

group and the spin-structures contributing to the partition function are pairs of

elements in Ξ. Furthermore, if Ξ is taken to be finite and therefore the boundary
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conditions to be rational, we find the isomorphism

Ξ ∼=
k⊕
i=1

ZNi

which means that Ξ is generated by a set of basis vectors {b1, ..., bk}, such that

k∑
i=1

mibi = 0⇔ mi = 0 mod Ni ∀i

where Ni is the smallest possible integer where Nibi = 0. Taking the three vectors

α, β, γ ∈ Ξ, Equation (2.10) can be expressed as

C

(
α

β + γ

)
= δαC

(
α

β

)
C

(
α

γ

)
. (2.11)

Equation (2.8) with α = β gives

C

(
α

α

)
= e−i

π
4
α·αC

(
α

1

)
.

Manipulating Equation (2.9), Equation (2.10), Equation (2.11) and using the fact

that β generates a finite group of order Nβ, if Nij is the least common multiple

of Ni and Nj, it must satisfy

Nijbi · bj = 0 mod 4.

For i = j, this constraint holds for odd Ni. However, if Ni is even, then there is

an even stronger constraint in place

Nib
2
i = 0 mod 8.
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When all the constraints that we have derived in this section are satisfied rest

assured that the modular invariance condition is satisfied and there are no further

obstacles to be faced while assigning coefficients to pairs of elements of Ξ.

2.2.5 The Hilbert Space

Equation (2.7) and Equation (2.8) can be recast in the general case as

ZF

 α(f)

β(f)

 = Tr α
[
qHαeiπβ·Fα

]

where Hα is the Hamiltonian and Fα is the fermion number operator in the

Hilbert space sector Hα defined by the vector α. The partition function can

then be written as a sum over sectors using the fact that the basis vectors bi are

generators of the discrete group ZNi and applying Equation (2.11)

Z =

∫
F

dτdτ

(Imτ)2
Z2
B

∑
α∈Ξ

δαTr

{∏
bi

(
δαC

(
α

bi

)
eiπbi·Fα + ...

...+

{
δαC

(
α

bi

)
eiπbi·Fα

}Ni−1

+ 1

)
eiπτHα

}
.

The only states that appear in the partition function are those that realize

the GGSO projection

eiπbi·Fα|S〉α = δαC

(
α

bi

)∗
|S〉α.

The full Hilbert space is therefore given as

H =
⊕
α∈Ξ

k∏
i=1

{
eiπbi·Fα = δαC

(
α

bi

)∗}
Hα.
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2.3 The Methodology

It was shown earlier, that for each consistent heterotic string model, there exists

a partition function defined by a set of vectors with boundary conditions and a

set of coefficients associated to each pair of these vectors. Now that we have all

the constraints at hand for model building, using the free fermionic formalism,

it will now be shown that for each set of boundary conditions basis vectors and

the set of associated coefficients, a set of general rules can be summarized for any

model realized in the free fermionic formalism. These rules, originally derived by

Antoniadis, Bachas, Kounnas in [38], are known as the ABK rules5 First, these

rules are presented followed by an example model. This will also be the working

tool set for all the models carried out in this thesis and any understanding of

the derivations presented earlier are not necessary here onwards for what follows.

For further convenience, the vectors containing the boundary conditions used to

define a model are called the basis vectors and the associated coefficients are

called the one-loop phases that appear in the partition function.

2.3.1 The ABK Rules

One of the key elements is the set of basis vectors that defines Ξ, the space of

all the sectors. For each sector β ∈ Ξ there is a corresponding Hilbert space

of states. Each basis vector bi consists of a set of boundary conditions for each

fermion denoted by

bi = {α(ψµ1,2), ..., α(ω6)|α(y1), ..., α(φ
8
)}

5These rules were also developed with a different formalism by Kawai, Lewellen and Tye
in [39].
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where α(f) is defined by

f → −e iπα(f)f.

The bi have to form an additive Abelian group and satisfy the constraints. If Ni

is the smallest positive integer for which Nibi = 0 and Nij is the least common

multiple of Ni and Nj then the rules for the basis vectors, known popularly as

the ABK rules, are given as

(1)
∑

mi · bi = 0 ⇐⇒ mi = 0 mod Ni ∀i (2.12)

(2) Nij · bi · bj = 0 mod 4 (2.13)

(3) Ni · bi · bi = 0 mod 8 (2.14)

(5) b1 = 1 ⇐⇒ 1 ∈ Ξ (2.15)

(4) Even number of real fermions (2.16)

where

bi · bj =

1

2

∑
left real

+
∑

left complex

−1

2

∑
right real

−
∑

right complex

 bi(f)× bj(f).

2.3.2 Rules for the One-Loop Phases

The rules for the one-loop phases are

C

(
bi
bj

)
= δbje

2iπ
Nj

n
= δbie

2iπ
Ni

m
e
iπ
bi·bj
Nj

n
(2.17)

C

(
bi
bi

)
= −e

iπ
4
bi·bjC

(
bi
1

)
(2.18)

C

(
bi
bj

)
= e

iπ
2
bi·bjC

(
bi
1

)∗
(2.19)

C

(
bi

bj + bk

)
= δbiC

(
bi
bj

)
C

(
bi
bk

)
(2.20)
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where the spin-statistics index is defined as

δα = eiα(ψµ)π =


1, α(ψ1,2) = 0

−1, α(ψ1,2) = 1

.

2.3.3 The GGSO Projections

To complete this construction, we have to impose another set of constraints on

the physical states called the GGSO projections. The GGSO projection selects

the states |S〉α belonging to the α sector satisfying

eiπbi·Fα|S〉α = δαC

(
α

bi

)∗
|S〉α ∀ bi (2.21)

where

bi ·Fα =

1

2

∑
left real

+
∑

left complex

−1

2

∑
right real

−
∑

right complex

 bi(f)×Fα(f)

(2.22)

where Fα(f) is the fermion number operator given by

Fα(f) =


+1, if f is a fermionic oscillator,

−1, if f is the complex conjugate.

2.3.4 The Massless String Spectrum

As we are interested in low-energy physics, we are only interested in the massless

states. The physical states in the string spectrum satisfy the level matching

41



condition

M2
L = −1

2
+
αL · αL

8
+NL = −1 +

αR · αR
8

+NR = M2
R (2.23)

where α = (αL;αR) ∈ Ξ is a sector in the additive group, and

NL =
∑
f

(νL); NR =
∑
f

(νR); (2.24)

The frequencies of the fermionic oscillators depending on their boundary condi-

tions is taken to be

f → −e iπα(f)f, f ∗ → −e−iπα(f)f ∗.

The frequency for the fermions is given by

νf,f∗ =
1± α(f)

2
.

Each complex fermion f generates a U(1) current with a charge with respect to

the unbroken Cartan generators of the four dimensional gauge group given by

Qν(f) = ν − 1

2

=
α(f)

2
+ F

for each complex right–moving fermion f .
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2.4 The NAHE Set: A Toy Model

The free fermionic construction is based on the heterotic strings and from here

on, we will fix the left-moving sector to be supersymmetric and right-moving

sector to be bosonic. In what follows, it will be seen that ψ̄1,...,5 are complex

fermions which produce the observable SO(10) symmetry whilst φ̄1,...,8 are com-

plex fermions which produce the hidden E8 gauge group.

The NAHE set [41] is a set of five boundary condition basis vectors {1,S,b1,b2,b3}.

With ‘1’ indicating Ramond boundary conditions and ‘0’ indicating Neveu–Schwarz

boundary conditions. The NAHE–set basis vectors are given by:

ψµ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 φ̄1,...,8

1 1 1 1 1 1,...,1 1 1 1 1,...,1

S 1 1 1 1 0,...,0 0 0 0 0,...,0

b1 1 1 0 0 1,...,1 1 0 0 0,...,0

b2 1 0 1 0 1,...,1 0 1 0 0,...,0

b3 1 0 0 1 1,...,1 0 0 1 0,...,0

y3,...,6 ȳ3,...,6 y1,2, ω5,6 ȳ1,2, ω̄5,6 ω1,...,4 ω̄1,...,4

1 1,...,1 1,...,1 1,...,1 1,...,1 1,...,1 1,...,1

S 0,...,0 0,...,0 0,...,0 0,...,0 0,...,0 0,...,0

b1 1,...,1 1,...,1 0,...,0 0,...,0 0,...,0 0,...,0

b2 0,...,0 0,...,0 1,...,1 1,...,1 0,...,0 0,...,0

b3 0,...,0 0,...,0 0,...,0 0,...,0 1,...,1 1,...,1

(2.25)

with the set of GGSO phases given by
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1 S b1 b2 b3

1 1 1 −1 −1 −1

S 1 1 1 1 1

b1 −1 −1 −1 −1 −1

b2 −1 −1 −1 −1 −1

b3 −1 −1 −1 −1 −1


.

2.4.1 The Non-Supersymmetric Scenario

To understand how the free fermionic construction works, consider the basis vec-

tor 1 where all the boundary conditions are periodic as it is required to be in Ξ.

Then there are two sectors: Ξ = {1, 2 · 1 = 0}. Here, the notation NS for the

sector 0 is used which is the Neveu-Schwarz sector. Given 2 · 1 mod 2 = 0 then

N1 = 2 and 1 · 1 = −12 therefore the rules on the basis vectors are satisfied.

To fully specify a model, we need to define the generalized GSO coefficients

which in this case are

C

(
NS

NS

)
= −C

(
NS

1

)
= 1

C

(
NS

1

)
= −1

C

(
1

NS

)
= −1

C

(
1

1

)
= −1

where we needed to set C
(
1
1

)
by hand while the rest were fixed by modular

invariance or hold by definition.

As the states with a mass at Mstring would have a mass of the order of the
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Planck mass, these states are not phenomenologically acceptable and only the

massless spectrum is considered where the condition M = 0 must be satisfied.

Furthermore, all the particle content of the SM should exist in the massless

spectrum.

For sector 1

M2
L = −1

2
+

10

8
+NL > 0.

Thus this sector contains no massless states and should be excluded. For the

NS-sector

M2
L = −1

2
+

0

8
+NL

M2
R = −1 +

0

8
+NR

where for the fermions the frequency is given by

νf,f∗ =
1± 0

2
=

1

2
.

Recall that the Virasoro level-matching condition M2
L = M2

R must be satisfied.

In this case, either a tachyonic negative mass −1
2

is obtained by acting on the NS

vacuum with 1 fermionic right-moving oscillator such that

λ
j|0〉NS with M2

L = M2
R = −1

2

or the following massless states are obtained by acting on the NS vacuum with 1

left-moving fermionic oscillator and either 2 right-moving fermionic oscillators or

1 right-moving bosonic oscillator:

• ψI∂X|0〉NS : These states correspond to the graviton, the dilaton and the

antisymmetric tensor.
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• ψIλiλj|0〉NS, i, j ∈ {1, ..., 44} : Gauge bosons in the adjoint representation

of SO(44).

• λk∂X|0〉NS, k ∈ {1, ..., 18} : Gauge bosons in the adjoint representation of

SU(2)6.

• λkλiλj|0〉NS, i ∈ {1, ..., 6} : Scalars in the adjoint representation of SU(2)6×

SO(44).

Now the GGSO projection for each state is performed:

State eiπ1·FNS δNSC
(
NS
1

)
Projected

ψI∂X|0〉NS eiπ(−1) -1 In

ψIλ
i
λ
j|0〉NS eiπ(−1−1−1) -1 In

λk∂X|0〉NS eiπ(−1) -1 In

λkλ
i
λ
j|0〉NS eiπ(−1−1−1) -1 In

λ
j|0〉NS eiπ(−1) -1 In

As can be seen, all the states survive the GGSO projection including the tachyonic

states. To eliminate the tachyons in order to obtain a physical massless spectrum

an additional basis vector with appropriate phases needs to be added. We also

desire to include the particle content of the SM and reduce gauge group which

leads to further addition of basis vectors. This will be discussed in what follows.

2.4.2 Understanding The SUSY Background

Now we turn our attention to the basis

{1,S}
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giving 22 = 4 sectors, the additive group given by

Ξ = {NS, 1 + S, 1, S}

with space-time spin statistics index

δS = −1

due to the presence of ψ1,2
µ . Here, we note that in a supersymmetric model

where SUSY is generated by the vector S all the superpartners of a particular

sector α are generated by α + S. The tachyonic states arising in this model are

obtained by acting on the non–degenerate vacuum with a right–moving fermionic

oscillator, which satisfy the level matching condition with M2
L = M2

R = −1/2.

These tachyonic states are, however, projected out by the S projection, which is

given by

eiπS·FNS |S〉NS = δS|S〉NS. (2.26)

As there are no oscillators acting on the left–moving vacuum in the tachyonic

untwisted state, and the basis vector S is blind to the right–moving oscillators,

the left–hand side of Equation (2.26) is positive. On the other hand δS = −1

because the space-time fermions ψµ are periodic in S. The mismatch between the

two sides of Equation (2.26) entails that the untwisted NS tachyons are projected

out. This argument extends to any free fermionic model that contains the basis

vector S which can be seen as follows:
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State eiπS·FNS δNSC
(
NS
S

)
Projected

ψI∂X|0〉NS eiπ(−1) -1 In

ψIλ
i
λ
j|0〉NS eiπ(−1) -1 In

{χ1,...,6, y1,...,6, ω1,...,6}∂X|0〉NS eiπ(−1) -1 In

{χ1,...,6, y1,...,6, ω1,...,6}λiλj|0〉NS eiπ(−1) -1 In

λ
j|0〉NS eiπ(0) -1 Out

where

λk = {χ1,...,6, y1,...,6, ω1,...,6}.

If we were to stop here, we have 1) SO(44) gauge group which is too large, 2)

N = 4 SUSY and 3) no matter content but what we are interested in is obtaining

• SU(3)× SU(2)× U(1) embedding

• N = 1 SUSY

• matter

for which we consider adding the basis vectors bi for i = 1, 2, 3 corresponding to

Z2 × Z2 twists.

2.4.3 From SO(44) To SO(10): Step By Step

The NAHE set consists of five basis vectors. The basis vectors 1 and S, generate

a model with the SO(44) gauge symmetry and N = 4 space–time SUSY. The

vectors bi for i = 1, 2, 3 correspond to the Z2×Z2 orbifold twists. The vector b1

breaks the SO(44) gauge group to SO(28)× SO(16) and the N = 4 space–time

SUSY to N = 2. The vector b2 then reduces the group to SO(10) × SO(22) ×

SO(6)2 gauge group and the N = 2 SUSY is further reduced to N = 1. Further-

more, the basis vector b3 gives the decomposition SO(10) × SO(16)1 × SO(6)3
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where we fix the GGSO projection coefficient in order to preserve the N = 1

space–time SUSY. Moreover, the sector, ξ, given by the linear combination

ξ = 1 + b1 + b2 + b3 ≡ {φ
1,...,8}

together with the NS–sector form the adjoint representation of E8 thereby en-

hancing the SO(16)1. As a result, we obtain

SO(10)× E8 × SO(6)3

as the gauge group with N = 1 space–time SUSY at the NAHE level.

2.5 The Phenomenological Models

The phenomenological free fermionic heterotic string models were constructed

following two main routes, the first are the so called NAHE–based models. This

set of models utilise a set of eight or nine boundary condition basis vectors. The

first five consist of the so–called NAHE set [41] and are common in all these

models. The basis vectors underlying the NAHE–based models therefore differ

by the additional three or four basis vectors that extend the NAHE set.

The second route follows from the classification methodology that was devel-

oped in [42] for the classification of type II free fermionic superstrings and adopted

in [25–27, 40] for the classification of free fermionic heterotic string vacua with

SO(10) GUT symmetry and its Pati–Salam [26] and Flipped SU(5) [27] sub-

groups. The main difference between the two classes of models is that while

the NAHE–based models allow for asymmetric boundary conditions with respect

to the set of internal fermions {y, ω|ȳ, ω̄}, the classification method only utilises
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symmetric boundary conditions. This distinction affects the moduli spaces of the

models [45], which can be entirely fixed in the former case [46] but not in the

later. On the other hand the classification method enables the systematic scan

of spaces of the order of 1012 vacua, and led to the discovery of spinor–vector

duality [40,47] and exophobic heterotic string vacua [26].

2.5.1 The Various SO(10) Subgroups

The SO(10) GUT models generated can be broken to one of its subgroups by

the boundary condition assignment on the complex fermion ψ
1,...,5

. For the Pati-

Salam and the Flipped SU(5) case, one additional basis vector is required to

break the SO(10) GUT symmetry. However, in order to construct the SU(4) ×

SU(2)× U(1), the Standard-Like models and the Left-Right Symmetric models,

the Pati-Salam breaking is required along with an additional SO(10) breaking

basis vector. The following boundary condition basis vectors can be used to

construct the necessary gauge groups:

The Pati-Salam Subgroup

v13 = α = {ψ4,5
, φ

1,2}

The Flipped SU(5) Subgroup

v13 = α = {η1,2,3 =
1

2
, ψ

1,...,5
=

1

2
, φ

1,...,4
=

1

2
, φ

5}

The SU(4)× SU(2)× U(1) Subgroup

v13 = α = {ψ4,5
, φ

1,2}

v14 = β = {ψ4,5
=

1

2
, φ

1,...,6
=

1

2
}
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The Left-Right Symmetric Subgroup

v13 = α = {ψ4,5
, φ

1,2},

v14 = β = {η1,2,3 = 1
2
, ψ

1,...,3
= 1

2
, φ

1,2
= 1

2
, φ

3,4}

The Standard-Like Model Subgroup

v13 = α = {ψ4,5
, φ

1,2}

v14 = β = {η1,2,3 =
1

2
, ψ

1,...,5
=

1

2
, φ

1,...,4
=

1

2
, φ

5}

2.5.2 The NAHE-Based Models

The construction of the semi–realistic free fermionic models proceeds by adding

three or four additional basis vectors to the NAHE–set. The function of the

additional basis vectors is to reduce the forty eight spinorial 16 multiplets to three

chiral generations, and at the same time to reduce the SO(10) GUT symmetry

to one of its subgroups:

1. SU(5)× U(1) (FSU5) [17];

2. SU(3)× SU(2)× U(1)2 (SLM) [15,18,23,24];

3. SO(6)× SO(4) (PS) [19];

4. SU(3)× U(1)× SU(2)2 (LRS) [20];

5. SU(4)× SU(2)× U(1) (SU421) [21].
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The first four cases produced viable three generation models, whereas in the

last case it was shown that phenomenologically viable models cannot be con-

structed [21, 28]. The additional basis vectors may each preserve or break the

SO(10) symmetry. Basis vectors that preserve the SO(10) symmetry are typ-

ically denoted by bi with (i = 4, 5, . . . ), whereas those that break the SO(10)

symmetry are denoted by {α, β, γ}. The overlap of the additional basis vectors

with the SUSY generator basis vector S determine the type of possible SUSY

breaking. In Chapter 4, we will focus on the NAHE-based construction of an

explicit tachyon-free model.

2.5.3 The Classification Methodology

The free fermionic formalism provides an elegant approach to studying the phe-

nomenologically viable properties of the string vacua. The matter content arises

from the fundamental representation, 27 of E6 decomposing under the 16 spino-

rial and 10 vectorial representations of the SO(10) symmetry achieved by break-

ing the E6 at the string scale. The 16 consists of all the left and right-handed

fermions, both the known and the predicted, whereas the 10 houses the Higgs

states. The SO(10) gauge group is further broken at the string scale to one of its

many subgroups.

In Chapter 3, we will turn our focus on free fermionic models where the

classification methodology has been used whereby the set of basis vectors is fixed

and a large number of string models, of the order of 1012 vacua, is explored by

enumerating the independent GGSO projection coefficients. In this manner large

spaces of string models with SO(10) [25], SO(6)×SO(4) [26], SU(5)×U(1) [27],

and SU(4) × SU(2) × U(1) [28], have been explored. A subset of basis vectors

that respect the SO(10) symmetry is given by the set of 12 boundary condition
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basis vectors V = {v1, v2, . . . , v12}, where

v1 = 1 = {ψ1,2
µ , χ1,...,6, y1,...,6, ω1,...,6|ȳ1,...,6, ω̄1,...,6, ψ̄1,...,5, η̄1,2,3, φ̄1,...,8},

v2 = S = {ψµ, χ12, χ34, χ56},

v2+i = ei = {yi, ωi|yi, ωi}, i = 1, . . . , 6,

v9 = b1 = {χ34, χ56, y34, y56|ȳ34, y56, η1, ψ
1,...,5},

v10 = b2 = {χ12, χ56, y12, y56|y12, y56, η2, ψ
1,...,5},

v11 = z1 = {φ1,...,4},

v12 = z2 = {φ5,...,8}.

As before, the basis vectors 1 and S, generate a model with the SO(44) gauge

symmetry and N = 4 space–time SUSY with the tachyons being projected out

of the massless spectrum. The next six basis vectors: e1, ..., e6 all correspond

to the possible symmetric shifts of the six internal coordinates thus breaking the

SO(44) gauge group to SO(32)×U(1)6 but keeping the N = 4 SUSY intact. The

vectors bi for i = 1, 2 correspond to the Z2 × Z2 orbifold twists. The vectors b1

and b2 play the role of breaking the N = 4 down to N = 1 whilst reducing the

gauge group to SO(10) × U(1)2 × SO(18). The states coming from the hidden

sector are produced by z1 and z2 left untouched by the action of previous basis

vectors. These vectors together with the others generate the following adjoint

representation of the gauge symmetry: SO(10)× U(1)3 × SO(8)× SO(8) where

SO(10) × U(1)3 is the observable gauge group which gives rise to matter states

from the twisted sectors charged under the U(1)s while SO(8) × SO(8) is the

hidden gauge group gives rise to matter states which are neutral under the U(1)s.
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2.6 The U(1) Relations

Here, the definitions and identifications of the observable U(1)s are listed which

play an important role in constructing viable string inspired models and will be

relied upon for the remainder of the thesis.

2.6.1 Identifications

U(1)C =
3

2
U(1)B−L

U(1)L = 2U(1)T3R

U(1)e.m. = T3L + U(1)Y

2.6.2 With E6 Embedding

 U(1)Y

U(1)Z′

 =

 1
3

1
2

0

1
5
−1

5
−1




U(1)C

U(1)L

U(1)ζ
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3

The String-Derived Z ′ Model

They can because they think

they can.

Virgil

In this chapter, we are going to consider a heterotic string-derived Z ′ model.

The characteristics of the required spectrum are well motivated in heterotic string

constructions that allow for a light Z ′ where the anomaly cancellation of the

U(1)Z′ symmetry requires the existence of the SM singlet and vector-like states

in the vicinity of the U(1)Z′ breaking scale.

We found, quite remarkably, that in the Z ′ models the compatibility of gauge

coupling unification with the data at the electroweak scale is identical to that of

the MSSM and present our findings. We further show that effects arising from

heavy thresholds may push the supersymmetric spectrum beyond the reach of

the LHC, while maintaining the agreement with the gauge coupling data.

As further data did not substantiate the observation of the diphoton excess

[77, 78] indicating that the initial observation was a statistical fluctuation the

discussion has been relegated to Appendix E. However, it is still worth noting
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that all the key ingredients that form the basis of the discussion are readily

available in the string-derived Z ′ model.

3.1 The Extra Z ′ Stringy Model

We begin by noting that the construction of heterotic string models that allow for

a light Z ′ is highly non–trivial [55,72,73] . The reason being that the extra family

universal U(1) symmetries that are typically discussed in the string–inspired lit-

erature tend to be anomalous and are therefore broken near the string scale [74].

The relevant symmetries tend to be anomalous due to the symmetry breaking

pattern E6 → SO(10)×U(1)ζ , induced at the string level by the Gliozzi–Scherk–

Olive (GSO) projection [75]. In [55], th spinor–vector duality property of Z2×Z2

orbifolds [69, 70] was utilized to construct a string-derived model with anomaly

free U(1)ζ , thus enabling it to remain unbroken down to low scales.

The difficulty in constructing heterotic string models with light Z ′ symmetries

arises due to the breaking of the observable E6 symmetry in the string construc-

tions by discrete Wilson lines to SO(10) × U(1)ζ . Application of the symmetry

breaking at the string level results in the projection of some states from the phys-

ical spectrum. The consequence is that U(1)ζ is in general anomalous in the

string vacua, and cannot remain unbroken to low scales. The extra U(1) sym-

metry which is embedded in SO(10), and is orthogonal to the Standard Model

weak hypercharge, is typically broken at the high scale to generate sufficiently

light neutrino masses.

The string-derived model of [55] was constructed in the free fermionic formula-

tion [38] of the four-dimensional heterotic string. The details of the construction,

the massless spectrum of the model and its superpotential are given in [55] and
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will not be repeated here. We review here the properties of the model that are

relevant for the anomaly free extra Z ′ symmetry.

The model utilises the spinor–vector duality symmetry that was observed in

the space of fermionic Z2 × Z2 orbifold compactifications [69, 70]. The spinor

vector duality operates under exchange of the total number of spinorial (16⊕16)

representations of SO(10) with the total number of vectorial 10 representations.

For every string vacuum with a #1 of (16 ⊕ 16) representations and #2 of 10

representations there is a dual vacuum in which #1 ↔ #2. The understanding of

this duality is facilitated by considering the vacua in which the SO(10) × U(1)ζ

symmetry is enhanced to E6. The chiral representations of E6 are the 27 and 27

and their decomposition under SU(10)× U(1)ζ is

27 = 16+1/2 + 10−1 + 1+2,

27 = 16−1/2 + 10+1 + 1−2,

where the subscript denotes the U(1)ζ charge. Thus, the string vacua with E6

symmetry are self–dual with respect to the spinor–vector duality, i.e. in these

vacua #1(16⊕ 16) = #2(10). In this case U(1)ζ is anomaly free by virtue of its

embedding in E6. There exist a discrete Wilson line that reduce E6 symmetry

to SO(10) × U(1)ζ with #1(16 ⊕ 16) & #2(10), and a corresponding discrete

Wilson line with #2(16⊕ 16) & #1(10) [70].

The string vacua with enhanced E6 symmetry correspond to heterotic string

vacua with (2, 2) world-sheet SUSY. We can realise the E6 symmetry by breaking

the ten dimensional untwisted gauge symmetry to SO(8)4 [69]. One of the SO(8)

factors is reduced further to SO(2)4 and the E6 symmetry is generated from

additional sectors in the string vacua. In parallel to the spectral flow operator on
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the supersymmetric side of the heterotic string that maps between different space-

time spin representations, there exists a spectral flow operator on the bosonic side.

In the vacua with enhanced E6 symmetry the spectral flow operator exchanges

between the spinorial and vectorial components in the E6 representations. The

spectral flow operator is the U(1) generator of the N = 2 world-sheet SUSY on

the bosonic side of the heterotic string. In the vacua with broken E6 symmetry,

the N = 2 world-sheet SUSY on the bosonic side is broken and the spectral flow

operator induces the map between the spinor–vector dual vacua.

The construction of [55] utilises the classification methods developed in [42]

for type IIB string and in [25] for heterotic string vacua with unbroken SO(10)

gauge group. The heterotic string classification was extended to vacua with the

Pati–Salam and Flipped SU(5) subgroups of SO(10) in [43] and [44], respec-

tively. In this method a space of the order of 1012 is spanned and models with

specific phenomenological characteristics can be extracted. The string vacuum

with anomaly free U(1)Z′ is obtained by first trawling a self–dual SO(10) model

with six chiral families and subsequently breaking the SO(10) symmetry to the

Pati–Salam subgroup [55]. The chiral spectrum of the models forms complete E6

representations, whereas the additional vector–like multiplets may reside in in-

complete multiplets. This is in fact an additional important property of the string,

which affects compatibility with the gauge coupling data. The complete massless

spectrum of the model was presented in [55]. The Z ′ model under consideration

here was obtained in the class of Pati-Salam heterotic string models which are

generated by a set of thirteen boundary condition basis vectors B = {v1, ..., v13}.

To recapitulate, a subset of basis vectors that respect the SO(10) symmetry is
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given by the set of 12 boundary condition basis vectors V = {v1, v2, . . . , v12}

v1 = 1 = {ψ1,2
µ , χ1,...,6, y1,...,6, ω1,...,6|ȳ1,...,6, ω̄1,...,6, ψ̄1,...,5, η̄1,2,3, φ̄1,...,8},

v2 = S = {ψµ, χ12, χ34, χ56},

v2+i = ei = {yi, ωi|yi, ωi}, i = 1, . . . , 6,

v9 = b1 = {χ34, χ56, y34, y56|ȳ34, y56, η1, ψ
1,...,5},

v10 = b2 = {χ12, χ56, y12, y56|y12, y56, η2, ψ
1,...,5},

v11 = z1 = {φ1,...,4},

v12 = z2 = {φ5,...,8}

where the basis vectors 1 and S, generate a model with the SO(44) gauge sym-

metry and N = 4 space–time SUSY with the tachyons being projected out of

the massless spectrum. The next six basis vectors: e1, ..., e6 all correspond to the

possible symmetric shifts of the six internal coordinates thus breaking the SO(44)

gauge group to SO(32)×U(1)6 but keeping the N = 4 SUSY intact. The vectors

bi for i = 1, 2 correspond to the Z2×Z2 orbifold twists. The vectors b1 and b2 play

the role of breaking the N = 4 down to N = 1 whilst reducing the gauge group

to SO(10)×U(1)2× SO(18). The states coming from the hidden sector are pro-

duced by z1 and z2 left untouched by the action of previous basis vectors. These

vectors together with the others generate the following adjoint representation of

the gauge symmetry: SO(10) × U(1)3 × SO(8) × SO(8) where SO(10) × U(1)3

is the observable gauge group which gives rise to matter states from the twisted

sectors charged under the U(1)s while SO(8)× SO(8) is the hidden gauge group

gives rise to matter states which are neutral under the U(1)s. With the addition
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of an additional basis vector

v13 = α = {ψ4,5
, φ

1,2}

yields the Pati-Salam subgroup of the SO(10) at the string scale with the set of

GGSO phases given by



1 S e1 e2 e3 e4 e5 e6 b1 b2 z1 z2 α

1 1 1 1 1 1 1 1 1 1 1 1 1 1

S 1 1 1 1 1 1 1 1 1 1 1 1 1

e1 1 1 0 0 0 0 0 0 0 0 0 0 1

e2 1 1 0 0 0 0 0 1 0 0 0 1 0

e3 1 1 0 0 0 1 0 0 0 0 0 1 1

e4 1 1 0 0 1 0 0 0 0 0 1 0 0

e5 1 1 0 0 0 0 0 1 0 0 0 1 1

e6 1 1 0 1 0 0 1 0 0 0 1 0 0

b1 1 0 0 0 0 0 0 0 1 1 0 0 0

b2 1 0 0 0 0 0 0 0 1 1 0 0 1

z1 1 1 0 0 0 1 0 1 0 0 1 1 0

z2 1 1 0 1 1 0 1 0 0 0 1 1 0

α 1 1 1 0 1 0 1 0 1 0 1 0 1



.

The space-time vector bosons are obtained solely from the untwisted sector and

generate the observable and hidden gauge symmetries, given by:

observable :

Pati−Salam︷ ︸︸ ︷
SO(6)× SO(4)×U(1)1 × U(1)2 × U(1)3

hidden : SO(4)2 × SO(8) .
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The additional space-time vector bosons may arise from

 z1, z2, α, x, z1 + z2

α + z1, α + z2, α + x, α + z1 + z2, α + x+ z1


and enhance the four dimensional gauge group where

x = 1 + S +
6∑
i=1

ei +
2∑
i=1

zi

may enhance the SO(16) to E8. The E6 combination,

U(1)ζ =
3∑
i=1

U(1)i (3.1)

is anomaly free whereas the orthogonal combinations of U(1)1,2,3 are anomalous.

The matter states in the Pati-Salam string-derived models are embedded in the

SU(4)× SU(2)L × SU(2)R representations as follows:

FL(4,2,1) → q

(
3,2,−1

6

)
+ l

(
1,2,

1

2

)
FR(4,1,2) → uc

(
3,1,

2

3

)
+ dc

(
3,1,−1

3

)
+ ec

(
1,1,−1

)
+N

(
1,1, 0

)
h(1,2,2) → hu

(
1,2,−1

2

)
+ hd

(
1,2,

1

2

)
D(6,1,1) → d3

(
3,1,

1

3

)
+ d3

(
3,1,−1

3

)
(3.2)

where FL and FR contain the SM generation; hu and hd are the electroweak Higgs

doublets; and D contains the vector-like triplets with the following electric charge

definition

Qe.m. =
1√
6
T15 +

1

2
T3L +

1

2
T3R
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where T15 = diag (1, 1, 1,−3) is the diagonal generator of SU(4) and T3L , T3R are

the diagonal generators of SU(2)L and SU(2)R respectively. The complete mass-

less spectrum of the string model and the charges under the gauge symmetries

are given in [55]. Table 3.1 and Table 3.2 show a glossary of the states in the

model and their charges under the SU(4)× SO(4)× U(1)ζ group factors, where

we adopt the notation of [71]. The sextet states are in vector–like representations

with respect to the Standard Model, but are chiral under U(1)ζ . Thus, if U(1)ζ

is part of an unbroken U(1)Z′ combination down to low scales, it protects the

sextets, and corresponding bi–doublets, from acquiring a mass above the U(1)Z′

breaking scale. The model also contains vector–like states that transform under

the hidden SU(2)4 × SO(8) group factors, with charges Qζ = ±1 or Qζ = 0.
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Symbol Fields in [55] SU(4)× SU(2)L × SU(2)R U(1)ζ

FL F1L, F2L, F3L (4,2,1) +1
2

FR F1R (4,1,2) −1
2

F̄R F̄1R, F̄2R, F̄3R, F̄4R (4̄,1,2) +1
2

h h1, h2, h3 (1,2,2) −1

∆ D1, . . . , D7 (6,1,1) −1

∆̄ D̄1, D̄2, D̄3, D̄6 (6,1,1) +1

S Φ12,Φ13,Φ23, χ
+
1 , χ

+
2 , χ

+
3 , χ

+
5 (1,1,1) +2

S̄ Φ̄12, Φ̄13, Φ̄23, χ̄
+
4 (1,1,1) −2

φ φ1, φ2 (1,1,1) +1

φ̄ φ̄1, φ̄2 (1,1,1) −1

ζ Φ−12,Φ
−
13,Φ

−
23, Φ̄

−
12, Φ̄

−
13, Φ̄

−
23 (1,1,1) 0

χ−1 , χ
−
2 , χ

−
3 , χ̄

−
4 , χ

−
5

ζi, ζ̄i, i = 1, . . . , 9

Φi, i = 1, . . . , 6

Table 3.1: Observable sector field notation and associated states in [55].
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Symbol Fields in [55] SU(2)4 × SO(8) U(1)ζ

H+ H3
12 (2,2,1,1,1) +1

H2
34 (1,1,2,2,1) +1

H− H2
12 (2,2,1,1,1) −1

H3
34 (1,1,2,2,1) −1

H H1
12 (2,2,1,1,1) 0

H i
13, i = 1, 2, 3 (2,1,2,1,1) 0

H i
14, i = 1, 2, 3 (2,1,1,2,1) 0

H1
23 (1,2,2,1,1) 0

H1
24 (1,2,1,2,1) 0

H i
34, i = 1, 4, 5 (1,1,2,2,1) 0

Z Zi, i = 1, . . . , (1,1,8) 0

Table 3.2: Hidden sector field notation and associated states in [55].

As noted from Table 3.1 the string model contains the Higgs representations

required to break the non–Abelian Pati–Salam gauge symmetry [56]. These are

H = FR and H̄, being a linear combination of the four F̄R fields. The decompo-

sition of these fields under the SM group is given by:

H̄(4̄,1,2)→ ucH

(
3̄,1,

2

3

)
+ dcH

(
3̄,1,−1

3

)
+ N̄ (1,1, 0) + ecH (1,1,−1)

H (4,1,2)→ uH

(
3,1,−2

3

)
+ dH

(
3,1,

1

3

)
+N (1,1, 0) + eH (1,1, 1)

The suppression of the left–handed neutrino masses favours the breaking of the

Pati–Salam (PS) gauge symmetry at the high scale [57, 58]. The possibility of

breaking the PS symmetry at a low scale was considered in refs. [59,64]. Here we
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will take the PS breaking scale to be in the vicinity of the string scale or slightly

below. The VEVs of the heavy Higgs fields that break the PS gauge group leave

an unbroken U(1)Z′ symmetry given by

U(1)Z′ =
1

2
U(1)B−L −

2

3
U(1)T3R −

5

3
U(1)ζ /∈ SO(10), (3.3)

that may remain unbroken down to low scales provided that U(1)ζ is anomaly

free. Cancellation of the anomalies requires that the additional vector–like quarks

and leptons, that arise from the 10 representation of SO(10), as well as the

SO(10) singlet in the 27 of E6, remain in the light spectrum. The three right–

handed neutrino states are neutral under the low scale gauge symmetry and

receive mass of the order of Pati–Salam breaking scale. The spectrum below the

PS breaking scale is displayed schematically in Table 3.3. The spectrum is taken

to be supersymmetric down to the TeV scale. As in the MSSM, compatibility of

gauge coupling unification with the experimental data requires the existence of

one vector–like pair of Higgs doublets, beyond the number of vector–like triplets.
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Field SU(3)C ×SU(2)L U(1)Y U(1)Z′

Qi
L 3 2 +1

6
−2

3

uiL 3̄ 1 −2
3

−2
3

diL 3̄ 1 +1
3

−4
3

eiL 1 1 +1 −2
3

LiL 1 2 −1
2

−4
3

Di 3 1 −1
3

+4
3

D̄i 3̄ 1 +1
3

2

H i 1 2 −1
2

2

H̄ i 1 2 +1
2

+4
3

Si 1 1 0 −10
3

h 1 2 −1
2

−4
3

h̄ 1 2 +1
2

+4
3

φ 1 1 0 −5
3

φ̄ 1 1 0 +5
3

ζ i 1 1 0 0

Table 3.3: Spectrum and SU(3)C×SU(2)L×U(1)Y ×U(1)Z′ quantum numbers, with
i = 1, 2, 3 for the three light generations. The charges are displayed in the normalisation
used in free fermionic heterotic string models.

3.2 The Gauge Coupling Unification

In this section, analysis of the compatibility of gauge coupling unification in the

string inspired model with the low energy gauge coupling data, where we may

assume that the unification scale is either at the GUT or string scales [65]. We

examine the case in which the PS symmetry is broken at the string scale as well
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as the case in which is broken at an intermediate scale. We take the following

values for the input parameters at the Z–mass scale [66]:

MZ = 91.1876± 0.0021 GeV

α−1 ≡ α−1
e.m. (MZ) = 127.944± 0.014

sin2 θW (MZ)
∣∣
MS

= 0.23116± 0.00012

α3 (MZ) = 0.1184± 0.0007.

(3.4)

We also include the top quark mass of Mt ∼ 173.5 GeV [66] and the Higgs boson

mass of MH ∼ 125 GeV [67] in our analysis. String unification implies that the

Standard Model gauge couplings are unified at the heterotic string scale where

the tree level relation between the Planck and string scales is given by

M2
S =

ki
16
αiM

2
Pl

where αi are the corresponding gauge interactions and ki = {1, 1, 5/3} for i =

3, 2, 1 are the corresponding Kac-Moody level. The one–loop renormalisation

group equations (RGEs) for the gauge couplings are given by

1

α (MX)
=

1

kiαi (µ)
− bi

2π
log

MX

µ2
+ ∆

(total)
i , (3.5)

where bi are the one–loop beta–function coefficients, ∆
(total)
i represents corrections

two–loop and mixing effects, and ki = {1, 1, 5/3} for i = 3, 2, 1. The analysis

is most revealing at the one–loop level. Therefore, for the most part we limit

our exposition to the one–loop investigation and give an estimate of the higher

order corrections, which do not affect the overall picture. We obtain algebraic

expressions for sin2 θW (MZ) and α3 (MZ) by solving the one–loop RGEs. In

our analysis, we initially assume the full spectrum of the Z ′ model between the
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unification scale, MX , and the Z–boson scale, MZ , and treat all perturbations as

effective threshold terms. At the unification scale we have

αS ≡ α3(MX) = α2(MX) = k1αY (MX), (3.6)

where k1 = 5/3 is the canonical SO(10) normalisation. We initially study the

case in which the PS symmetry is broken at the string scale. In this case the

expression for sin2 θW (MZ)
∣∣
MS

takes the general form

sin2 θW (MZ)
∣∣
MS

= ∆sin2 θW
Z′ + ∆sin2 θW

L.T. + ∆sin2 θW
T.C. (3.7)

with α3 (MZ)|MS having a similar form with corresponding ∆α3 corrections. Here

∆Z′ is the one–loop contribution from the states of the Z ′ model between the

unification scale and the Z–boson mass scale. ∆L.T. are corrections from the light

thresholds, which consist of the light supersymmetric thresholds; the Higgs and

the top mass thresholds; and the mass thresholds of the heavy vector–like matter

states in the Z ′ model. The last term,

∆sin2 θW
T.C. = ∆sin2 θW

Yuk. + ∆sin2 θW
2-loop + ∆sin2 θW

Conv. , (3.8)

includes the two–loop; kinetic mixing; Yukawa couplings and scheme conversion

corrections. These corrections are found to be small and do not affect the overall

picture. These effects can be absorbed into modifications of the light thresholds,
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which in any case are not fixed and can be varied. For sin2 θW (MZ) we obtain

∆sin2 θW
Z′ =

3

8
+

5α

16π

(
bZ

′

2 − bZ
′

1

)
log

MX

MZ

;

∆sin2 θW
L.T. =

5α

16π

∑
i

(
bL.T.

1i
− bL.T.

2i

)
log

Mi

MZ

,
(3.9)

where Mi are the light mass thresholds and α = αe.m. (MZ). Similarly for α3 (MZ),

we have:

∆α3
Z′ =

3

8α
+

1

2π

(
bZ

′

3 −
3

8
bZ

′

2 −
5

8
bZ

′

1

)
log

MS

MZ

;

∆α3
L.T. =

1

2π

∑
i

(
5

8
bL.T.

1i
+

3

8
bL.T.

2i
− bL.T.

3i

)
log

Mi

MZ

.
(3.10)

The predictions for gauge coupling observables at the Z–scale can therefore be

seen to correspond to 0th order predictions consisting of the first lines of Equation

(3.9) and Equation (3.10) plus the threshold corrections due to the decoupling of

the different particles at their mass thresholds. The values of the beta function

coefficients of these light thresholds are shown in Table 3.4. The zeroth order

coefficients are given by

bZ
′

3 = 0 = bMSSM

3 + 3,

bZ
′

2 = 4 = bMSSM

2 + 3,

bZ
′

1 = 48
5

= bMSSM

1 + 3.

Hence, the bZ
′

i are identical to the bMSSM
i , see Section 1.5.2, up to a common shift

by 3 arising from the vector–like colour triplets and electroweak doublets. As the

0th order predictions for sin θ(MZ) and α3(MZ) only depend on the differences of

the beta function coefficients, the zeroes order predictions are identical to those

that are obtained in the MSSM.
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R b1(R) b2(R) b3(R) b1 − b2
5
8
b1 + 3

8
b2 − b3 factor

g̃ 0 0 2 0 −2 2
3

w̃ 0 4
3

0 −4
3

1
2

2
3

˜̀̀ 1
10

1
6

0 − 1
15

1
8

1
3

˜̀
r

1
5

0 0 1
5

1
8

1
3

Q̃ 1
30

1
2

1
3

− 7
15

−1
8

1
3

d̃r
1
15

0 1
6

1
15

−1
8

1
3

ũr
4
15

0 1
6

4
15

0 1
3

h̃ 1
5

1
3

0 − 2
15

1
4

2
3

h 1
10

1
6

0 − 1
15

1
8

1
3

t 17
30

1
2

2
3

1
15

−1
8

2
3

D + D̃ 1
5

0 1
2

1
5

−3
8

1

D̄ + ˜̄D 1
5

0 1
2

1
5

−3
8

1

H + H̃ 3
10

1
2

0 −1
5

3
8

1

H̄ + ˜̄H 3
10

1
2

0 −1
5

3
8

1

Table 3.4: Beta function coefficients of the light thresholds in the string inspired Z ′

model. The factor in the last column indicates the spin degeneracy factor.
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The corrections due to the light thresholds are given by

δ sin2
(
θW
)
light

=
5α

16π

(
− 4

3
log

Mw̃

MZ

− 1

5
log

M ˜̀̀

MZ

+
3

5
log

M˜̀
r

MZ

+
1

5
log

Md̃r

MZ

−7

5
log

MQ̃r

MZ

+
4

5
log

Mũr

MZ

− 4

15
log

Mh̃

MZ

− 2

15
log

Mh

MZ

+
1

15
log

Mt

MZ

+
6

5
log

MD

MZ

− 6

5
log

MH

MZ

)
, (3.11)

δ
(
α−1

3

)
light

=
1

2π

(
− 2 log

Mg̃

MZ

+
1

2
log

Mw̃

MZ

− 3

8
log

M ˜̀̀

MZ

+
3

8
log

M˜̀
r

MZ

−3

8
log

Md̃r

MZ

− 3

8
log

MQ̃r

MZ

+
1

2
log

Mh̃

MZ

+
1

4
log

Mh

MZ

−1

8
log

Mt

MZ

− 9

4
log

MD

MZ

+
9

4
log

MH

MZ

)
. (3.12)

It is noted from Equation (3.11) and Equation (3.12) that if the vector–like

colour triplets are degenerate in mass with the vector–like electroweak doublets,

then their threshold corrections exactly cancel. In that case the predictions for

sin2 θW (MZ) and α3(MZ) coincide exactly with those of the MSSM. The exact

masses of these states depend of course on the details of their couplings to the

Z ′ breaking VEV. Allowing for mass splitting of the order of a few TeV may

be compensated by contributions from the supersymmetric states. Imposing the

experimental limits on the supersymmetric particles and allowing for such mass

differences Figure 3.1 shows a scatter plot of sin2 θW (MZ) and α3(MZ), where the

masses of the supersymmetric particles are varied independently.
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α
S
(M

Z
)

sin2 θW (MZ)

Figure 3.1: Gauge coupling data at the electroweak scale in the presence of a light Z ′

and assuming unification at the heterotic string scale.

Next we study the predictions for the gauge coupling parameters with Pati–

Salam breaking at an intermediate energy scale MPS. The gauge symmetry is

SU(4)C × SU(2)L × SU(2)R × U(1)ζ , and SU(3)C × SU(2)L × U(1)Y × U(1)Z′ ,

above and below the intermediate Pati–Salam breaking scale, respectively. The

weak hypercharge is given by6

U(1)Y =
1

3
U(1)C + T3R (3.13)

with kC = 6. When solving the RGEs for the low scale predictions we have to

6 U(1)C = 3U(1)B−L/2; U(1)Ĉ = U(1)C/
√

3.
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distinguish the running above and below the intermediate breaking scale. The

RGEs and beta function coefficients below the symmetry breaking scale coincide

with those of the Z ′ model discussed above. Above the symmetry breaking scale

the spectrum differs from the standard Pati–Salam model due to the anomaly

cancellation requirement of U(1)ζ . To ensure that U(1)ζ is anomaly free, all the

additional states above the intermediate breaking scale have to be vector–like

with respect to U(1)ζ . The Pati–Salam model contains an additional sextet field

required for the missing–partner–like mechanism that gives heavy mass to the

heavy Higgs states [68]. Hence, anomaly cancellation with respect to U(1)ζ de-

mands another sextet in the spectrum with opposite U(1)ζ charge. Similarly,

the spectrum above the intermediate symmetry breaking scale contains two bi–

doublet states with opposite U(1)ζ charges, whereas only one pair of Higgs dou-

blets remain below the intermediate scale. The beta function coefficients above

the intermediate breaking scale are therefore

bPS

4 = 1 , bPS

2 = 5 , bPS

R = 9 , (3.14)

which also takes into account the contribution of the heavy Higgs states, and

bPS
2 , b

PS
R are the beta function coefficients of SU(2)L , SU(2)R, respectively. The

effect of the intermediate symmetry breaking scale is to add correction terms to

Equation (3.9) and Equation (3.10), given by

∆sin2 θW
I.S. =

5α

16π

(
bZ

′

1 −
3

5
bPS

R −
2

5
bPS

4 − bZ
′

2 + bPS

2

)
log

MX

MPS

, (3.15)

∆α3
I.S. =

1

2π

(
3

4
bPS

4 − bZ
′

3 −
3

8
bPS

R +
5

8
bZ

′

1 +
3

8
bZ

′

2 −
3

8
bPS

2

)
log

MX

MPS

.(3.16)

We may also consider the case of the LRS model in which the SO(10) sym-
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metry is broken to SU(3) × U(1)C × SU(2)L × SU(2)R. We assume that U(1)ζ

charges admit the E6 embedding. In this case the heavy Higgs states consists of

the pair N
(
1, 3

2
,1,2, 1

2

)
, N̄

(
1,−3

2
,1,2,−1

2

)
. The VEV along the electrically

neutral component leaves unbroken the SM gauge group and the U(1)Z′ combi-

nation in Equation (3.3). We remark, however, that in the free fermionic LRS

models [20] the U(1)ζ charges do not admit the E6 embedding. Here, we consider

such models as purely field theory models and study the effect on the low scale

gauge coupling parameters. Above the symmetry breaking scale the spectrum

coincides with that of Table 3.3 with the right–handed fields arranged into dou-

blet representations of SU(2)R. Additionally, the spectrum contains the heavy

Higgs states and a pair of Higgs bi–doublets with opposite U(1)ζ charges. Cru-

cially, here, the intermediate symmetry breaking does not require the existence of

coloured states in the interval between MR and MX , which may be incorporated

in non–minimal extensions. Consequently, the beta function coefficients above

the intermediate symmetry breaking scale MR are

bR3 = 0 , bR2 = 5 , bRR = 6 , bRĈ =
21

2
, (3.17)

whereas the bZ
′

i below the intermediate breaking scale coincide with those given

above. Here, bR2 is the beta function coefficient of SU(2)L; bRR is that of SU(2)R;

and bR
Ĉ

is that of the normalised U(1)C generator. The effect of the intermediate

scale symmetry breaking is to add correction terms for sin2 θW (MZ) and α3(MZ)

given by

∆sin2 θW
I.S. =

5α

16π

(
bZ

′

1 −
3

5
bRR −

2

5
bRĈ − bZ

′

2 + bR2

)
log

MX

MR

, (3.18)

∆α3
I.S. =

1

2π

(
3

8

(
bZ

′

2 − bR2 − bRR −
2

3
bRĈ

)
+

5

8
bZ

′

1

)
log

MX

MR

. (3.19)
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3.3 The Impact Of D-Terms

The presence of an extra Abelian factor together with the dynamical generation

of a µ-term supply our model with the minimal set of tools to relieve the tree-level

MSSM hierarchy between the Z and Higgs masses. In the low-energy regime the

superpotential [55] provides different interaction terms of the singlet fields Si and

ζi which can be extracted from Table 3.3, among them we have

λijkD SiDjD̄k + λijkH SiHjH̄k + λijh SiHjh̄+ ηiDζiDD̄ + ηihζihh̄ . (3.20)

To explore the low-energy scalar spectrum that can be naturally covered by the

parameter space, we focus on the simple scenario involving only the fields interact-

ing through the coupling λijkH in Equation (3.20). The neutral scalar components

will then include 9 supermultiplets; 6 from H, H̄ plus other 3 from the SM singlet

S. Among different possible settings a viable one is achievable from

〈H1,2〉 = 〈H̄1,2〉 = 〈S1,2〉 = 0, (3.21)

with non–zero VEVs concerning only the third generation

〈H3〉 =
1√
2

 vd

0

 , 〈H̄3〉 =
1√
2

 0

vu

 , 〈S3〉 =
vS√

2
, (3.22)

where vu = v sin β and vd = v cos β. The setting in Equations (3.21-3.22) is not

the only one capable to minimise the scalar potential and break the symmetry

down to SU(3)× U(1)e.m.. It is nevertheless the one with the simplest and more

MSSM-like structure. Given the illustrative purpose of this section, we take λijkH
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and the soft-SUSY masses to be flavour-diagonal and real parameters. The part

of the potential relevant to the spontaneous breaking analysis contains only the

(scalar component of the) fields H3, H̄3, and S3

VHiggs = Vcharged + Vneutral (3.23)

= Vsoft + VF + VD

=

Vsoft︷ ︸︸ ︷
m̃2
H |H|2 + m̃2

H̄ |H̄|
2 + m̃2

S|S|2 −
(
λH AλH H̄ S + h.c.

)
+

VF︷ ︸︸ ︷
λ2
H

(
|HH̄|2 + |H|2|S|2 + |H̄|2|S|2

)
+

VD︷ ︸︸ ︷
1

2
g2

2

(
H†

σµ

2
H + H̄†

σµ

2
H̄

)2

+
1

2
g2

1

(
1

2
|H̄|2 − 1

2
|H|2

)2

+

VD︷ ︸︸ ︷
1

2
g′1

2 (
Q′H̄ |H̄|

2 +Q′H |H|2 +Q′S|S|2
)2

(3.24)

where at the charge-breaking minimum 〈Vcharged〉 = 0 and

〈VHiggs〉 = 〈Vcharged〉+ 〈Vneutral〉 = λ2
H(v2

S(v2
1 + v2

2) + v2
1v

2
2)

+m2
H1
v2

1 +m2
H2
v2

2 +m2
Sv

2
S − 2λHAλv1v2vS

+
g2 + g′2

8

(
v2

1 − v2
2

)2

+ 2g′′2
[
v2

1 +
2

3
v2

2 −
5

3
v2
S

]2

As is customary, the trilinear coefficient has been written in the form λH Aλ. The

three soft-masses m̃2
H 3,3, m̃

2
H̄ 3,3

, m̃2
S 3,3 non–trivially solve the tadpole–conditions

to accommodate for the VEVs structure of Equations (3.21-3.22). Putting such

values in the neutral-boson mass matrices and considering the large vS limit we
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obtain

m2
Z =

v2

4

(
g2

1 + g2
2

)
, m2

Z′ = (Q′S g
′
1 vS)

2
= (Y ′S g

′
1 vS)

2
. (3.25)

By requiring

m̃2
H 1,1 = m̃2

H 2,2 , m̃
2
H̄ 1,1 = m̃2

H̄ 2,2 , m̃
2
S 1,1 = m̃2

S 2,2 , (3.26)

the 9 × 9 CP -odd mass matrix can be analytically diagonalised. In the Landau

gauge the two massless Goldstone bosons are promptly found and the remaining

7 masses are a degenerate ensemble of the independent set:

(
m2

1,m
2
2,m

2
3,m

2
Aλ

)
. (3.27)

The eigenvalues m2
1−3 are uniquely linked to the three independent soft masses

of Equation (3.26) and consequently are all double degenerate. The eigenvalue

dubbed as m2
Aλ

is connected to the trilinear soft term. In the limit of large vS we

find

m2
Aλ

=
√

2 vS λH
Aλ

sin(2β)
, (3.28)

where tan β = vu/vd. The correspondence with the MSSM is clear once we identify

the effective µ-term µeff = vS λH /
√

2. All the soft-masses in Equation (3.23) can

thus be traded for the CP -odd eigenvalues and, via tadpole conditions, for the

non-zero VEVs. The mass matrix for the charged Higgs scalars7 can similarly be

analytically diagonalised. The eigenvalues are simply linked to the W mass and

7We are always considering only the supermultiplets H, H̄ and S.
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the CP -odd masses. In the Landau gauge we find one massless Goldstone while

the remaining independent masses are given by (for vS � v)

(
m2

1 +M2
W cos(2β), m2

2 −M2
W cos(2β),m2

Aλ
+M2

W −
λ2v2

2

)
, (3.29)

with degeneracy inherited from the CP -odd structure. The CP -even mass matrix

is mostly diagonal with mixing involving only the third generations of H, H̄, and

S. The remaining 3× 3 block to be diagonalised includes the matrix elements

m2
1,1 = M2

Z cos2 β + 4M2
Z

(
g′1Q

′
H

ḡ

)2

cos2 β + ∆ sin2 β,

m2
2,2 = M2

Z sin2 β + 4M2
Z

(
g′1Q

′
H̄

ḡ

)2

sin2 β + ∆ cos2 β,

m2
3,3 = M ′

Z
2

+ ∆

(
MZ sin(2β)

ḡ vS

)2

,

m2
1,2 = cos β sin β

(
−M2

Z −∆ +
4M2

Z

ḡ2

(
λ2 + g′1

2
Q′H Q

′
H̄

))
,

m2
1,3 = cos β

(
2
MZ vS
ḡ

) (
−∆

v2
S

sin2 β + λ2 + g′1
2
Q′H Q

′
S

)
,

m2
2,3 = sin β

(
2
MZ vS
ḡ

) (
−∆

v2
S

cos2 β + λ2 + g′1
2
Q′S Q

′
H̄

)
(3.30)

where

ḡ2 = g2
1 + g2

2 , ∆ =
ḡ2M2

Aλ
v2
S

M2
Z sin2(2β) + ḡ2 v2

S

. (3.31)

The numerical diagonalisation of the previous mass matrices easily reveals large

branches of the parameter space with tree-level eigenvalues that elude the MSSM

hierarchy between the lightest scalar (LS) and MZ (Figure 3.2). To obtain an

analytical estimation of the impact of the D–terms we minimise the expectation
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value of the CP-even mass matrix with the vector (cos β, sin β, 0) [62]. The result

represents an upper limit for its smallest eigenvalue

M2
h ≤M2

Z cos2(2 β) +
v2

2
λ2 sin2(2 β) + g′1

2
v2
(
Q′H cos2 β +Q′H̄ sin2 β

)2
.(3.32)

In the formal limit g′1, g̃ → 0 we recover the upper bound of the NMSSM [62]-
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Figure 3.2: Contour plot of lightest scalar eigenvalue of matrix (3.30). vS = 2.5
TeV MAλ = 500 GeV.

[63] and a further limit, λH → 0, we obtain the MSSM one. As known, the

singlet extension of the MSSM is a first step to increase the tree-level value of the

LS. The positive contribution of the U(1)Z′-related D–terms in Equation (3.32)

allows even larger upper bounds (Figure 3.3).
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4

No Sign of SUSY...Thus Far

A smooth sea never made a

skilled sailor.

Franklin D. Roosevelt

In this chapter, recent interest in the non-supersymmetric heterotic string

vacua is presented, which has led to several formal developments [76], ignited

primarily by the lack of evidence in favour of SUSY at the LHC. We show that

phenomenologically viable free fermionic models with a low number of families

give rise to proliferation of a priori tachyon producing sectors, compared to the

nonrealistic examples, which typically may contain only one such sector. An

example of a quasirealistic, nonsupersymmetric, nontachyonic, heterotic string

vacuum is then presented and the structure of its massless spectrum is then

compared to the corresponding supersymmetric vacuum. While in some sectors

we observed that SUSY is broken explicitly, i.e. the bosonic and fermionic sectors

produce massless and massive states, other sectors, and in particular those leading

to the chiral families, continue to exhibit Fermi-Bose degeneracy.

A brief discussion on string models with a split SUSY structure, has been

relegated to Appendix F, which did not prove to be fruitful where the basic idea
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there was to use two basis vectors to generate space-time SUSY. By recalling

that in the semi-realistic free fermionic models the SUSY generators arise from

the basis vector S. The aim was then to construct two basis vectors that generate

SUSY with the focus to construct models in which the gaugini are obtained from

one generator, whereas those of the second generator are projected out, as well

as the the scalar superpartners of the twisted matter fermionic states.

4.1 Why The Non-Supersymmetric Vacua?

String theory provides the most developed contemporary approach to study how

the SM parameters may arise from a unified theory of the gauge and gravitational

interactions. For this purpose several models that reproduce the spectrum of the

MSSM have been produced [15, 16]. Amongst them the free fermionic models

[15, 17–22, 25–27] are the most studied examples. The majority of semi–realistic

heterotic string models constructed to date possess N = 1 space-time SUSY,

while non–supersymmetric vacua were investigated sporadically [29–32].

The lack of experimental evidence in favour of SUSY at the LHC has led to

the recent interest in non–supersymmetric heterotic string vacua [33–37, 76]. It

is therefore prudent to examine what may be learned in this context from the

quasi–realistic free fermionic models and the different avenues that may be used

to break SUSY directly at the string scale in light of the recent analysis [34].
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4.2 The Classification Set

Once again, to reiterate, additional basis vectors are added to the set

v1 = 1 = {ψ1,2
µ , χ1,...,6, y1,...,6, ω1,...,6|ȳ1,...,6, ω̄1,...,6, ψ̄1,...,5, η̄1,2,3, φ̄1,...,8},

v2 = S = {ψµ, χ12, χ34, χ56},

v2+i = ei = {yi, ωi|yi, ωi}, i = 1, . . . , 6,

v9 = b1 = {χ34, χ56, y34, y56|ȳ34, y56, η1, ψ
1,...,5},

v10 = b2 = {χ12, χ56, y12, y56|y12, y56, η2, ψ
1,...,5},

v11 = z1 = {φ1,...,4},

v12 = z2 = {φ5,...,8}

to construct vacua with SO(10) subgroups [26, 27]. In this notation, the world-

sheet fermions appearing in the curly brackets have periodic boundary condi-

tions, whereas all other world-sheet fermions are anti–periodic. The entries in

the matrix of GGSO phases c
[
vi
vj

]
with i > j then span the space of string vacua.

Additional constraints that are imposed on the string vacua, like the existence

of space-time SUSY leave 40 independent phases of the original 66. One can

then resort to a complete [40] or statistical sampling8 of the total space [25],

and classify the models by their twisted matter spectrum. The classification is

facilitated by expressing the GGSO projections in algebraic form [25, 40]. The

analysis of the entire spectrum of the string models is computerised and vacua

with specific phenomenological characteristics can be fished our from the larger

8We note that analysis of large sets of string vacua has also been carried out by other
groups [48].
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space of models.

In terms of space-time SUSY breaking, as with the NAHE–set based models

the space-time SUSY generator is the basis vector S. The subset {1, S} gives

rise to N = 4 space-time SUSY, which is broken by b1 and b2 to N = 2 space-

time SUSY and their combined action breaks N = 4 → N = 1. As with the

NAHE–based models imposing c
[
S
vi

]
= −δvi ensures the preservation of N = 1

SUSY. Projecting the remaining SUSY in this model is obtained by relaxing

this condition. Furthermore, the basis vectors {ei, z1, z2} satisfy S · ei = 0 and

S · zi = 0. These basis vectors therefore act as projectors on the S–sector. These

basis vectors can be used to project all the states from the S–sector and hence

induce the breaking N = 4→ N = 0 space-time SUSY.

4.3 Tachyons In The Free Fermionic Models

String models, heterotic string models in particular, generally give rise to tachy-

onic states in their spectra. Any sector that satisfies

M2
L < − 1

2
and M2

R < − 1 (4.1)

may produce tachyonic physical states. Tachyonic states can be obtained by

acting on the vacuum with fermionic oscillators. They satisfy the level matching

condition and survive all the GGSO projections. Their presence in the physical

spectrum indicates the instability of the string vacuum. The existence of space-

time SUSY guarantees that all tachyonic states are projected out. The situation

is altered if SUSY is broken to N = 0 space-time SUSY by projecting all the states

from the S–sector. One then has to check in each model whether tachyonic states
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exist.

The existence of non–supersymmetric non–tachyonic string vacua has been

known since the mid–eighties [29]. The gauge symmetry of this model is SO(16)×

SO(16), and its non–perturbative extension was considered in [32]. In the free

fermionic formalism the model is constructed by the set of boundary condition

basis vectors {1, S,X, I} where X = {ψ̄1,··· ,5, η̄1,2,3} and I = {φ̄1,··· ,8} with the

set of GGSO phases given by



1 S X I

1 +1 −1 +1 +1

S −1 −1 −1 −1

X +1 −1 +1 ±1

I +1 −1 ±1 +1


. (4.2)

In ten dimensions the choice of the GGSO phase c
[
X
I

]
= ±1 yields either the

supersymmetric E8×E8, or the non–supersymmetric SO(16)×SO(16), heterotic

string. This is necessarily the case in ten dimensions because the SUSY generator

is given by S = 1 + X + I and therefore the projections on the three sectors

are correlated. In the four dimensional models the same phase can be used to

reduce the gauge symmetry from E8×E8 to SO(16)× SO(16) without breaking

SUSY. The same vacua can be constructed in the orbifold representation and

can be connected by interpolations [30]. Hence, the supersymmetric and non-

supersymmetric vacua exist on the boundary of the same moduli space.

It is instructive to examine the case of the non-supersymmetric SO(16) ×

SO(16) model first. In the four dimensional model SUSY may be broken from

N = 4 → N = 0 by the I or X projections. The only sector that may pro-
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duce tachyons in this model is the NS sector. We are lead to conclude that in

any non–supersymmetric free fermionic model that includes the S–sector the un-

twisted tachyons are always projected out, irrespective of the choice of the SUSY

projecting phases.

The best case scenario would be a model in which the only tachyon producing

sector is the NS–sector. In this case we are guaranteed that tachyons do not exist

in the physical spectrum. However, a model with this property has not been

found to date. The next best case scenario is a model that gives rise only to one

type of tachyon producing sectors. Existence of a model with this characteristic

may depend on further detailed phenomenological properties of the string vacua.

For example, we were not able to find such a model in the class of NAHE–based

free fermionic models with reduced Higgs spectrum [46], whereas the class of left–

right symmetric models [20] did produce a model with the desired property. The

set of boundary condition basis vectors, beyond the NAHE–set, generating the

string vacuum is given by

ψµ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 φ̄1,...,8

α 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0

β 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0

γ 0 0 0 0 1
2

1
2

1
2

0 0 1
2

1
2

1
2

0 1
2

1
2

1
2

1
2

1
2

1
2

0
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y3y6 y4ȳ4 y5ȳ5 ȳ3ȳ6 y1ω5 y2ȳ2 ω6ω̄6 ȳ1ω̄5 ω2ω4 ω1ω̄1 ω3ω̄3 ω̄2ω̄4

α 1 1 1 0 1 1 1 0 1 1 1 0

β 0 1 0 1 0 1 0 1 1 0 0 0

γ 0 0 1 1 1 0 0 0 0 1 0 1

(4.3)

This model gives rise only to one type of tachyon producing sectors with

α2
L = 2 & α2

R = 6 ⇒ NR = 0 (4.4)

The supersymmetric version of this model was presented in [20] with the set of

GGSO phases given by



1 S b1 b2 b3 α β γ

1 1 1 −1 −1 −1 1 1 i

S 1 1 1 1 1 −1 −1 −1

b1 −1 −1 −1 −1 −1 −1 −1 i

b2 −1 −1 −1 −1 −1 −1 −1 i

b3 −1 −1 −1 −1 −1 −1 1 i

α 1 −1 1 1 1 1 1 1

β 1 −1 −1 −1 1 −1 −1 −1

γ 1 −1 1 −1 1 −1 −1 1



. (4.5)

The full mass spectrum of this model together with the cubic level superpotential
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was presented in [20]. The modification

c

[
S

α

]
= −1→ +1 and c

[
S

β

]
= −1→ +1 (4.6)

projects the remaining gravitino and induces N = 1→ N = 0. It can be checked

that all the tachyonic states are projected out in this model. Furthermore, it can

be verified that making the modification

c

[
S

α

]
= −1→ +1 and c

[
S

β

]
= −1→ −1 (4.7)

i.e. modifying only c
[
S
α

]
but not c

[
S
β

]
results in a model that contains tachyonic

states. The reason is that in this model all the sectors that may produce tachyons

appear with the combination m(α+ β), where m = 0, 1. Hence, with the modifi-

cation given by Equation (4.6). the S–projection on the tachyonic sectors is the

same as in the corresponding SUSY preserving choice given in Equation (4.5),

whereas with the modification given by Equation (4.7), the S–projection in some

sectors is modified in comparison to the supersymmetric model and some tachy-

onic states are not projected out. We note that the construction of tachyonic

free semi–realistic vacua is highly nontrivial. In the next section we present an

explicit example of the tachyon-free model.
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4.4 An Explicit Tachyon-Free Model

We consider the model defined by the set of basis vectors

1 = {ψµ, χ1,...,6, y1,...,6, ω1,...,6|ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, φ̄1,...,8},

S = {ψµ, χ1,..,6}

b1 = {ψµ, χ1,2, y3,...,6|y3,...,6, ψ
1,...,5

, η1}

b2 = {ψµ, χ3,4, y1,2, ω5,6|y1,2, ω5,6, ψ
1,...,5

, η2}

b3 = {ψµ, χ5,6, ω1,...,4|ω1,...,4, ψ
1,...,5

, η3}

b4 = α

= {y1,...,6, ω1,...,6|ω1, y2, ω3, y4,5, ω6, ψ
1,2,3

, φ
1,...,4}

b5 = β

= {y2, ω2, y4, ω4|y1,...,4, ω5, y6, ψ
1,2,3

, φ
1,...,4}

b6 = γ

= {y1, ω1, y5, ω5|ω1,2, y3, ω4, y5,6, ψ
1,2,3

=
1

2
, η1,2,3 =

1

2
, φ

2,...,7
=

1

2
}

with the set of GGSO phases given by

89





1 S b1 b2 b3 α β γ

1 1 1 −1 −1 −1 1 1 i

S 1 1 1 1 1 1 1 −1

b1 −1 −1 −1 −1 −1 −1 −1 i

b2 −1 −1 −1 −1 −1 −1 −1 i

b3 −1 −1 −1 −1 −1 −1 1 i

α 1 1 1 1 1 1 1 1

β 1 1 −1 −1 −1 −1 −1 −1

γ 1 −1 1 −1 1 −1 −1 1



.

This is a 3 generation model, with one generation appearing in each of the

twisted sectors b1, b2 and b3. The full spectrum can be found in the table of

appendix G, with the exception of the gauge bosons which have been omitted in

the interest of space. It is sufficient to state that the gauge group is

SU(3)C × U(1)C × SU(2)L × SU(2)R ×
6∏
i=1

Ui︸ ︷︷ ︸
observable sector

×SU(3)H1 × SU(3)H2 ×
10∏
j=7

Uj︸ ︷︷ ︸
hidden sector

.

This model exhibits many interesting features regarding SUSY. Firstly, we ob-

serve that the model is manifestly non-supersymmetric. The gravitino and the

gaugini are projected out and there is a clear mismatch between the number

of states in the NS and S sectors. Furthermore, there are eight sectors with

only scalars and the sectors that contain the would-be superpartners are massive.

These are
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β + γ, β + 3γ,

α + γ, α + 3γ,

1 + b1 + b2 + b3 + β + γ, 1 + b1 + b2 + b3 + β + 3γ,

1 + b1 + b2 + b3 + α + γ, 1 + b1 + b2 + b3 + α + 3γ.

(4.8)

Such sectors would not remain in the spectrum in the supersymmetric choice of

phases. The reason is that the space-time SUSY generator in the supersymmetric

model is the basis vector S, i.e. for a given sector ρ ∈ Ξ, the supersymmetric

superpartners are obtained from the sector S + ρ. All the sectors in Equation

(4.8) have (ρ)2
L = 4, whereas (S + ρ)2

L = 8, i.e. in these sectors the would-be su-

perpartners are massive. In the supersymmetric vacua the states from the sectors

in Equation (4.8) are necessarily projected out, as they break SUSY explicitly.

However, once SUSY is broken they may appear in the spectrum, as is seen in

our model. It is a highly non-trivial task to find a model with 3 generations in

which sectors of these type, that only appear when SUSY is broken, contain no

tachyons, with this model being such an example.

On the other hand, there are (pairs of) sectors that are completely supersym-

metric. This is due to the modification, Equation (4.6), not affecting the GGSO

projections in any sectors where none of the vectors S, α or β appear. Therefore

such sectors will be identical to the corresponding sectors of the supersymmet-

ric model. Nonetheless, for some of these sectors to remain supersymmetric as

claimed above, the superpartners should be unchanged as well, or at least the

effect must be (at most) a change in the R–charges of the superpartners. Sectors

bi and 1 + bi + bj + 2γ are of this type.

Finally, there are sectors that do not fit any of the above categories. In these
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sectors the number of bosons and fermions is the same, but on the other hand

some of the gauge charges of these states are different which in principle prevents

us from grouping them together into supermultiplets. Most of the sectors are

of this type. We use the term sectors in which SUSY is “nicely broken” when

referring to this case.

Thus, while SUSY is broken, some segments of the string vacuum still re-

spect the underlying supersymmetric degeneracy. This is in accordance with the

findings in [34], which showed that the partition function of string vacua with

spontaneously broken SUSY can be divided into several orbits, some of which

preserve the original SUSY.

Furthermore, we would like to comment in our model the fermionic states from

the sectors b1, b2 and b3, as well as the bosonic states from the NS–sector, are

not affected by the GGSO phases that project the gravitino and gaugini from the

S–sector, and therefore break space-time SUSY. Therefore, the untwisted scalar

states of our non–supersymmetric model as well as the fermionic states from the

sectors b1, b2 and b3 are identical to those in the corresponding supersymmetric

model. Consequently, the leading twisted–twisted–untwisted couplings in the

non–supersymmetric model, which are obtained by using the methods developed

in [49], are identical to those of the supersymmetric model. The model generated

by the Equations (4.3,4.5) contains electroweak doublet scalar representations

from the twisted sectors that may be used as Higgs doublets. However, in this

model the untwisted Higgs bi–doublets, which couple at leading order to the

twisted sector states, are projected out and consequently the leading mass term

which is identified with the top mass is absent. Other LRS models [20], as well as

the FSU5 [17], PS [19] and SLM [15,18] models, do contain the untwisted Higgs

doublets and in those cases a leading top mass term is obtained.
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It is also worth noting that even for non-supersymmetric models the cosmo-

logical constant can be exponentially suppressed. As discussed in [35], this can

be achieved if the massless spectrum has an equal number of bosons and fermions

(irrespectively of their charges). Even though our model is not of this type and

will therefore have an unsuppressed vacuum energy, our construction hints at how

one might go about achieving such a goal. It is clear for example, that we do not

have to worry about sectors that either respect SUSY or in which SUSY is nicely

broken.

On the other hand, sectors that badly break SUSY will have to be carefully

engineered. There are a few ways one might go about such a task. For exam-

ple, one might entertain the idea that the addition of further basis vectors could

project such sectors out of the spectrum. The biggest problem with this approach

is that the removal of the gaugini from the S sector, even if some fermions trans-

forming in a different than the adjoint representation are preserved, will create a

mismatch of states in the S and NS sectors turning them into sectors that break

SUSY badly; and it is impossible to project out the NS sector no matter what

basis vectors are added. It is a priori possible that further basis vectors will

remove exactly the correct number of bosons from the NS sector to match the

remaining fermionic states in the S sector, but this method seems unnecessarily

restricting.

4.5 The Anomalous U(1)

Another interesting point to note is the existence of an anomalous U(1) symme-

try in this model. The anomalous U(1) is cancelled by the Green–Schwarz–Dine–

Seiberg–Witten mechanism [50,51], in which a potentially large Fayet-Iliopoulos

93



D-term is generated by the VEV of the dilaton field giving rise to a tadpole

diagram at one–loop order in string perturbation theory [52], which reflects the

instability of the string vacuum. The mismatch between the fermionic and bosonic

states at different mass levels gives rise to a non–vanishing vacuum energy, which

similarly gives rise to a tadpole diagram, indicating the instability of the string

vacuum. We may therefore entertain the possibility of employing one against the

other so that they conspire to cancel. The anomalous U(1) contribution is propor-

tional to the trace over the massless fermionic states and the sign can be altered

by the GGSO projections [52, 53]. It is proportional to the gauge coupling and

consequently only depends on the dilaton moduli. On the other hand, the vacuum

amplitude contribution depends on other moduli [35], and may be tuned to obtain

cancellation of the two contributions. In general, other background fields will be

affected by the shift of the vacuum, and to demonstrate the existence of a stable

vacuum one would need to solve the set of equations affecting those fields in the

shifted vacuum. However, in this regard the same constraints would apply in the

case of the supersymmetric vacua, where the Fayet–Iliopoulos term [51,54], which

is generated from the anomalous U(1) tadpole diagram [51, 52], is cancelled by

assigning VEVs to some massless scalar fields, along flat supersymmetric direc-

tions. As a result, we suggest that the non–supersymmetric non–tachyonic string

vacua should be considered on equal footing to the supersymmetric examples.

Another approach providing more freedom is to aim for an equality in the

number of bosons and fermions not in each sector, but among different sectors.

To cancel the surplus of bosons from the NS sector this would imply the existence

of surviving fermionic states in different sectors, the bosonic counterpart of which

has been projected out. It is now easy to see that since the model presented does

not have any sectors α with more fermions than bosons in the sector S + α, it
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does not have a suppressed cosmological constant. Finding a semi-realistic model

with suppressed cosmological constant appears to be very challenging, but still is

of great interest.
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5

Conclusion and Outlook

Thou seest not, in the creation

of the All-merciful any

imperfection, Return thy gaze,

seest thou any fissure? Then

Return thy gaze, again and

again. Thy gaze, Comes back to

thee dazzled, aweary.

The Noble Qur’an, 67:3-4

Hitherto SM continues to reign supreme in providing viable parametrization

for subatomic observational data. Incorporating gravitational phenomena man-

dates the extension of the SM with string theory providing for the minimal de-

parture from the point particle hypothesis underlying the SM; mathematically

self–consistent framework for perturbative quantum gravity and develop a phe-

nomenological approach to explore the synthesis of the gauge and gravitational

interactions. Detailed phenomenological models that incorporate the key features

of the SM have been constructed. These detailed phenomenological constructions

contain a new symmetry, i.e. N = 1 space-time SUSY.
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The heterotic string models in the free fermionic formulation give rise to some

of the most realistic string models to date, which possess N = 1 space-time

SUSY. The characteristics of the required spectrum are well motivated in het-

erotic string constructions that allow for a light Z ′. Anomaly cancellation of the

U(1)Z′ symmetry requires the existence of the SM singlet and vector-like states

in the vicinity of the U(1)Z′ breaking scale. We showed that the agreement with

the gauge coupling data at one-loop is identical to the case of the MSSM, owing

to cancellations between the additional states. Above the intermediate breaking

scale the weak hypercharge is embedded in a non–Abelian group and kinetic mix-

ing cannot arise. Below the intermediate breaking scale kinetic mixing arises due

to the extra pair of electroweak doublets, but it is found to be small and does not

affect the results.

On the other hand, very recently, formal developments [76] have emerged as

SUSY has not been observed experimentally to date at the LHC, with such mod-

els having a sound theoretical background as well as fascinating phenomenological

prospects and it is therefore crucial to explore the consequences of breaking space-

time SUSY directly at the string scale. Pursuing this direction, we see that the

generic feature of non–supersymmetric string vacua is the existence of tachyonic

states in the physical spectrum. Non–supersymmetric string vacua, such as the

SO(16) × SO(16) heterotic string in ten dimensions, do not contain tachyonic

states, but are typically connected in the moduli space to supersymmetric vacua,

and tend to have large moduli states and group factors. More realistic construc-

tions on the other hand, typically have reduced moduli spaces and contain more

sectors that may a priori give rise to tachyons.

It is therefore important to examine the structure of non–supersymmetric

string vacua in a more realistic setting. We have shown that while generically
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the quasi–realistic non–supersymmetric vacua do contain tachyons, there also

exist examples in which all the tachyonic states are projected out by the GGSO

projections. Furthermore, given that the moduli spaces of the quasi–realistic

constructions may be much reduced [45,46], one may entertain the possibility that

the tachyon free non–supersymmetric quasi–realistic vacua may not be connected

to supersymmetric solutions. We have shown with a concrete example that the

non–supersymmetric quasi–realistic vacuum may retain some of the structure of

the corresponding supersymmetric solution. Finally, we suggested the possibility

of entertaining the cancellation between the tadpole diagram generated at one-

loop order in string perturbation theory due to a potentially large Fayet-Iliopoulos

D-term being generated by the VEV of the dilaton field, associated with the

cancellation of the anomalous U(1), against the tadpole diagram generated at

one-loop associated to the non-vanishing vacuum energy. The model presented

did not have a suppressed cosmological constant as finding a semi-realistic model

with suppressed cosmological constant is a challenging task but still is of great

interest.

To conclude, the current status of the unification of gravity and the gauge in-

teractions are heavily motivated by string-derived models which continue to pro-

vide a feasible contemporary framework. Consequently, three generation models

need to be obtained for phenomenological reasons, however, a detailed example

is still not in sight. Nevertheless, string theory provides a sea of well estab-

lished models which promising phenomenological prospects and therefore can be

considered as acceptable candidates for providing a good description of nature,

especially at the low energies where our four-dimensional, observable world hand-

somely resides.
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A

Lie Algebras

Let G denote a simple Lie group and g its corresponding Lie algebra with gen-

erators Ta for a = 1, ..., dim(G). Then the nature of the algebra is defined by

structure constants f cab as [
Ta, Tb

]
= f cabTc.

Now define the rank of the Lie algebra g as the number of simultaneously

diagonalisable generators which is also the dimension of the associated maximal

Cartan subalgebra h ⊂ g, that is the algebra of all generators Hi with i = 1, ..., r

satisfying [
Hi, Hj

]
= 0.

The remaining generators are then defined to be the eigenfunctions of the Cartan

generators Hi denoted by E~a which satisfy the relation

[
Hi, E~a

]
= αiE~a

where r-component vectors ~a are known as roots living in an r-dimensional Eu-

clidean space.
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For an n-dimensional representation ρ of the rank r Lie algebra g, the gener-

ators Hi of the Cartan subalgebra, can be represented in terms of n×n diagonal

matrices with elements νai for a = 1, ..., n. These matrices act naturally on n-

vectors and we fix the basis to be the canonical basis: {e1, ..., en}. We can now

define the Cartan generators as

Hi = νai ea.

Then the rank r vector |λa〉 simply gives

Hi|λa〉 = νai |λa〉.

Given a set of roots λ, we define a positive root to be such that its first

non-zero element in the specified basis is positive.

We define simple roots as positive roots that cannot be expressed as a sum of

other roots with positive coefficients. There is a theorem which states that the

number of simple roots is equal to the rank of the Lie algebra. In particular, the

simple roots form a basis of the Cartan subalgebra.

Note A.0.1 . The rank of the Lie algebra su(n) is n− 1.

The Lie algebra su(3) has rank 2, so there are two Cartan generators which

we can define as two traceless matrices given by


1 0 0

0 1 0

0 0 −2

 ,


1 0 0

0 0 0

0 0 −1
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Then the states are given by {(1, 1), (1, 0), (−2,−1)}. It can be seen that

(1, 1) and (1, 0) are simple, positive roots.

Remark A.0.2 . A standard choice of generators in this case is Ta = 1
2
λa where

λa are the traceless 3× 3 Gell-Mann matrices.

A.1 Examples of Lie Algebras

Example 1. The Lie algebra sl(2), the set of 2 × 2 traceless matrices, has the

basis

e =

 0 1

0 0

 , f =

 0 0

1 0

 , h =

 1 0

0 −1


with relations [

h, e] = 2e,
[
h, f ] = −2f,

[
e, f ] = h.

Example 2. The Heisenberg Lie algebra H of matrices


0 ∗ ∗

0 0 ∗

0 0 0


has the basis

i =


0 0 0

0 0 1

0 0 0

 , j =


0 1 0

0 0 0

0 0 0

 , k =


0 0 1

0 0 0

0 0 0


with relations [

j, i] = k,
[
i, k] =

[
j, k] = 0.
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B

An Instance of Electroweak Symmetry

Breaking

The Glashow-Salam-Weinberg model is a minimal model which uses quarks to

build the hadrons and the hadrons constructed from each generation participate in

both the weak and the strong interactions in effect realizing the universality of the

weak Fermi coupling GF . In order to construct hadron with their known electric

charges, the quarks must carry fractional charges. For example, suppressing their

color index, the two quarks u and d form the first generation and can be expressed

as a doublet

q =

(
u

d

)
.

The u quark possesses electric charge

2

3
e

while the d quark has

−1

3
e.
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The composite state ud̄ has charge e and constitute a charged π meson. The

baryon number of the composite is derived by associating baryon number

1

3

to each quark and

−1

3

to each anti-quark. So ud̄ has baryon number 0.

There are also leptons in the model. Leptons participate only in the electro-

magnetic and weak interactions. The first generation is composed of the electron

and its neutrino so that

l =

(
νe
e−

)
.

This at first might seem questionable as the neutrino is only left-handed and has

negligible mass whereas the electron is observed with both chiralities and carries

mass. Moreover, the neutrino is electrically neutral but the electron carries a

charge e.

The gauge theory approach to uniting the weak interactions with the electro-

magnetic interactions requires that the left-handed constituents of the fields be

treated differently from the right-handed ones. Due to the doublet nature of the

generations the simplest non-Abelian gauge group is SU(2) in its fundamental

representation.

Note B.0.1 . As the weak interactions only involve the left-handed constituents,

the gauge group will act only on the left-handed quarks and leptons and therefore

it is denoted

SU(2)L.
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Using SU(2) introduces 3 gauge bosons. The presence of these intermediate

vector bosons in the weak interactions require that at least two of these carry

an electric charge. To meet the experimental observation of the neutral current

events, introduce a U(1) gauge field that interacts with both the left and right

sectors in order to obtain the desired electromagnetic coupling. The strength of

the U(1) coupling to the various left and right sectors can then be varied to make

contact with the observed electromagnetic charges of each field.

Form the left-handed constituents of the quark and lepton doublets

LL =
1

2
(1− γ5)L, QL =

1

2
(1− γ5)Q

which will transform under SU(2)L. The left-handed sector is therefore described

by the action

LL = iQ̄Lγ
µ

(
∂µ+

1

2
igW j

µσj+
1

2
ig′YQBµ

)
QL+iL̄Lγ

µ

(
∂µ+

1

2
igW j

µσj+
1

2
ig′YLBµ

)
LL.

The factor of 1
2

is used for convenience.

The right-handed sector is formed from the three SU(2) singlets

eR =
1

2
(1 + γ5)e, uR =

1

2
(1 + γ5)u, dR =

1

2
(1 + γ5)d

and the action consistent with their electric charges is given by

LR = iēRγ
µ

(
∂µ + ig′Bµ

)
eR + iūRγ

µ

(
∂µ −

2

3
g′Bµ

)
uR + id̄Rγ

µ

(
∂µ +

1

3
g′Bµ

)
dR.

The gauge fields in addition to possessing the standard free actions are coupled
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to a doublet of complex scalar fields

φ =

(
φ+

φ0

)
.

Since the Goldstone modes G0 and G± must be combined with the gauge fields

to form the massive bosons, two of the degrees of freedom for φ must carry an

electric charge while the other two must be neutral. This is achieved by choosing

the action for the gauge-scalar coupling to be

Ls =

(
∂µ −

1

2
igW j

µσj −
1

2
ig′Bµ

)
φ†
(
∂µ +

1

2
igW j

µσj +
1

2
ig′Bµ

)
φ.

All that is left to do is to break the symmetry by assuming that the effective

potential at the tree level is given by

V = −µ2φ†φ+ λ(φ†φ)2.

The vacuum expectation of φ is assumed to be real in order that the vacuum

carry no electric charge so that the VEV must take the form

〈φ〉 =
1√
2

(
0

v

)

where

v =

√
µ2

λ
, µ2 > 0.

Translating the scalar field by the VEV generates mass terms for the vector

fields. It is easily seen that

[(
1

2
gW j

µσj +
1

2
g′Bµ

)
〈φ〉
]2

=
1

4
g2v2W+

µ W
−µ +

1

8
(g2 + g′2)v2ZµZ

µ
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where

W±
µ =

1√
2

(
W (1)
µ ± iW (2)

µ

)
and

Zµ =
1√

g2 + g′2

(
g′W (3)

µ − gBµ

)
.

It follows that the fourth gauge boson must be a combination of W
(3)
µ and Bµ

that is orthonormal to Zµ in isospin space given by

Aµ =
1√

g2 + g′2

(
gW (3)

µ + g′Bµ

)
.

The field Aµ is massless and therefore corresponds to the photon field, the gen-

erator that remains unbroken and which is associated with the U(1)e.m. gauge

symmetry. Equivalently, this can be simply expressed as

SU(2)× U(1)

U(1)e.m.
.

The masses of the gauge fields are given by

MW =
1

2
gv, MZ =

1

2
v
√
g2 + g′2

where v = 246.22 GeV is the VEV. Setting

g′ cos θW = e, gsinθW = e,
g′

g
= tan θW

the following relation holds

MW

MZ

= cos θW

which is known as the weak-mixing angle. The inequality MZ 6= MW is due to
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th mixing between W 3
µ and Bµ fields.

The unphysical Goldstone bosons can be removed by a transformation to the

unitary gauge. In this gauge, their degrees of freedom become the longitudinal

components of the Z0 and W± physical gauge bosons respectively. At the same

time degrees of freedom of the Higgs field are absorbed by the W± and one by

the Z0 gauge bosons which now become massive.

The final degree of freedom of the Higgs field becomes the new fundamental

scalar particle, namely the Higgs boson, that appears in the SM since all other

scalars are quark composites.

Note B.0.2 . The parameter ρ, known as the Veltmann parameter, specifies the

relative strength of the neutral and charged current interactions which is given

by

ρ =
M2

W

M2
Z cos2 θW

.

In the Glashow-Salam-Weinberg minimal model fixes this parameter to be

ρ ≡ M2
W

M2
Z cos2 θW

= 1.
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C

Why SUSY?

The Poincaré algebra is so central to our understanding of space-time it is natural

to ask if the direct product

[Pµ, Ta] = [Mµν , Ta] = 0

where Ta refers to any internal generator, is necessarily the case or if there is some

deeper underlying symmetry that has a non-trivial commutation relation with the

Poincaré algebra. This question was answered by Coleman and Mandula:

In any space-time dimension, D > 2, interacting quantum field theories have

Lie algebra symmetries that are

g× Poincaré

where g is the Lie algebra generated by Ta. This is to say that there is no Lie

algebra that is a symmetry of interacting quantum field theories that is not a

Lorentz scalar.

One key assumption of the Coleman-Mandula No-Go theorem is that the
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additional symmetry is a Lie algebra symmetry. This theorem can be avoided

by relaxing this assumption and Lie-algebras are inevitable whenever you have

continuous symmetries. The way to proceed is to note that quantum field theories

such as the SM contain two types of fields: bosons and fermions. These are

distinguished by the representation of the field under the Lorentz group. In

particular a fundamental theorem in quantum field theory: the spin-statistics

theorem which asserts that bosons must carry representations of the Lorentz

group with integer spins and their field operators must commute whereas fermions

carry half-integer spins and their field operators are anti-commuting. This means

that the fields associated to fermions must be Grassmann variables that satisfy

ψ1(x)ψ2(x) = −ψ2(x)ψ1(x).

The idea is now to consider a Grassmann generator which also carries a spinor

index and which requires a Grassmann valued spinorial parameter. One then is

lead to something called a Z2-graded Lie-algebra. This means that the generators

can be labelled as either even and odd. The even generators behave just as the

generators of a Lie-algebra and obey commutation relations. An even and an odd

generator will also obey a commutator relation. However two odd generators will

obey an anti-commutation relation. The even-ness or odd-ness of this general-

ized Lie-bracket is additive modulo two: the commutator of two even generators

is even, the anti-commutator of two odd generators is also even, whereas the

commutator of an even and an odd generator is odd.

Schematically, let g be a Lie algebra. Then g decomposes as

g = g0 ⊕ g1
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where g0 represents even part and g1 represents the odd part.

For the linear map

[ , ] : g× g→ g

we have

g0 × g0 → g0

g0 × g1 → g1

g1 × g0 → g1

g1 × g1 → g0

where it can be seen that the linear map on g0 acts as a commutator but on g1

acts as as an anti-commutator.

110



D

The SO(32) Heterotic String Action

For the left-moving sector, we consider the superstring fields Xµ
+ and ψµ+ with

µ = 0, ..., 9. The critical dimension is D = 10. Then for the right-moving sector

we have the ten bosonic fields Xµ
−. Since a space-time boson contributes a unit

to the central charge and a free fermion contributes half a unit, 32 Majorana-

Weyl right-moving free fermions λi− are needed to cancel the conformal anomaly

c = −26 in the bosonic string. The theory is still ten-dimensional because the

space-time indices µ = 0, ..., 9 are carried by the coordinates Xµ in both the right-

and left-moving sectors whilst the internal fermions λi− do not carry space-time

indices.

To summarize, in such a construction, we have considered Xµ
+ and ψµ+ fields

in the left-moving sector and Xµ
− and λi− fields in the right-moving sector where

µ = 0, ..., 9 and i = 1, ..., 32.

The action for the heterotic string is therefore

S =
1

π

∫
d2ξ

(
2∂−Xµ∂+X

µ + iψµ∂−ψµ + i
32∑
i=1

λi∂+λ
i

)
.
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E

An Event No More

The observation of di–photon excess at the LHC reported both by the ATLAS [77]

and CMS [78] collaborations could have been understood through the production

and the subsequent decay of a SM singlet via heavy vector–like colour triplets and

electroweak doublets in one–loop diagrams had sparked significant interest [79].

The excess, and the absence of any other observed signatures are well under-

stood as a resonance of a SM singlet scalar field, which is produced and subse-

quently decays via triangular loops incorporating heavy vector–like states can be

seen in Figure E.1.

D D, H
S

g

g

γ 

γ 

Figure E.1: Production and di–photon decay of the Standard Model singlet scalar
state.

All the crucial elements that form the basis of the schematic diagram in Figure

E.1 are readily found in the string-derived Z ′ model [55, 71].

In the low-energy regime the superpotential [55] provides different interaction
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terms of the singlet fields Si and ζi which can be extracted from Table 3.3, among

them we have

λijkD SiDjD̄k + λijkH SiHjH̄k + λijh SiHjh̄+ ηiDζiDD̄ + ηihζihh̄ . (E.1)

All these terms may comply with the di–photon excess reported by both the

ATLAS and CMS experiments with a resonance around 750 GeV described by

either the singlets Si or ζi. Indeed, the presence of vector-like quarks, which is

natural in heterotic string models, facilitates the production of these states at the

LHC. In the following discussion we will consider the most simple and economic

scenario in order to highlight the effects of the vector-like coloured statesD, D̄ and

their role in the explanation of the di–photon excess. For this reason we assume

that the resonance is reproduced by exchange of one of the singlet Si and we

ignore the contribution of the ζi fields and of the coupling SHH̄. The real scalar

component of one of the Si superfields acquires a VEV vS and breaks the extra

U(1)Z′ symmetry thus providing the mass of the Z ′ gauge boson and of the D, D̄

field through the coupling λD in the superpotential, Equation (E.1). Provided vS

around the TeV scale, the mass of the singlet Si, of the vector-like states D, D̄ and

of the Z ′ lay in the TeV ballpark thus establishing a intimate relationship between

the 750 GeV di–photon resonance and the presence of an additional spontaneously

broken U(1)Z′ gauge symmetry. Interestingly this can also be probed at the LHC

in the lepto-production channel [61, 64]. Moreover, as we have already stated,

in order to reproduce the di–photon excess it is enough to consider the impact

of the vector-like coloured superfields D, D̄ only. Therefore we assume λ ≡ λ3ii
D

and we neglect all the other couplings. The fermionic components of Di and D̄i

can be rearranged into three Dirac spinors ψDi , while the scalar components will
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Figure E.2: σ(pp → S) × BR(S → γγ) at 13 TeV LHC in (a) the (MD, µ) plane
for two values of the Yukawa coupling YD and (b) in the (MD, YD) plane for two
values of the scalar coupling µ. The coloured regions corresponds to a 2σ region
of the measured cross section 4.5± 1.9 fb.

provide six complex scalars D̃j. The corresponding interaction Lagrangian can

be parameterised as

L = −YD Sψ̄DiψDi − µS|D̃j|2 , (E.2)

where S is the real scalar component of one of the Si singlet whose mass MS is

identified with the 750 GeV resonance, YD = λ/
√

2 and µ is the corresponding

soft-breaking term.

The LHC cross section of the di–photon production through the exchange of

a scalar resonance in the s–channel is, in the narrow width approximation,

σ(pp→ S → γγ) =
1

MS s
CggΓ(S → gg)Br(S→ γγ) (E.3)

where MS is the resonance mass, Cgg the luminosity factor in the gluon–gluon
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channel and
√
s the centre-of-mass energy. We assume that the main production

mechanism occurs via gluon fusion with the corresponding luminosity factor at

13 TeV given by

Cgg =
π8

8

∫ 1

M2
S/s

dx

x
g(x)g

(
M2

S

sx

)
' 2137 , (E.4)

where g(x) is the gluon distribution function and the value has been computed

for
√
s = 13 TeV and for MS = 750 GeV using MSTW2008NLO [60].

The partial decay widths of S into gluons and photons are

Γ(S → gg) =
α2
S

128π3
M3

S

∣∣∣∣∑
f

yf
mf

A1/2(τf ) +
∑
s

µs
2m2

s

A0(τs)

∣∣∣∣2 , (E.5)

Γ(S → γγ) =
α2

256π3
M3

S

∣∣∣∣∑
f

N f
c q

2
f

yf
mf

A1/2(τf ) +
∑
s

N s
c q

2
s

µs
2m2

s

A0(τs)

∣∣∣∣2 ,(E.6)

where mf and ms are the masses of a generic fermion and scalar running in the

loops, yf and µs the corresponding couplings to S and Nc the colour factor. As

D, D̄ are singlets of SU(2)L, their electric charge q coincides with the hypercharge

Y . The fermionic and scalar loop functions are given by

A1/2(τ) = 2[τ + (τ − 1)f(τ)]/τ 2, A0(τ) = −[τ − f(τ)]/τ 2 (E.7)

with τi = M2
S/(4m

2
i ) and

f(τ) =


arcsin2√τ , if τ ≤ 1

−1
4

[
log 1+

√
1−τ−1

1−
√

1−τ−1 − i π
]2

, if τ > 1

. (E.8)

Assuming Γtot = Γ(S → gg) + Γ(S → γγ), we show in Figure E.2 the portion of
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the parameters space in which the di–photon excess can be reproduced in a 2σ

region around the measured value σ = 4.5 ± 1.9 fb reported by the ATLAS and

CMS collaborations at 13 TeV. For simplicity we assume MψDi
'MD̃i

'MD and

we present our results in the (MD, µ) and (MD, YD) planes. The cross section

is dominated by the complex scalar loops while the fermionic components of

the supermultiplets D, D̄ only provide a small contribution. Therefore, a huge

Yukawa coupling is not strictly necessary as is usually required in the literature,

since its effect is compensated by a large soft–breaking term and relatively light

squark–like states. We stress again that this analysis is far from being exhaustive,

while its only purpose is to show how the di–photon excess can be naturally

accommodated in heterotic string scenarios where the U(1)Z′ gauge symmetry is

broken around the TeV scale. We have neglected, for instance, the impact of the

SHH̄ interaction which would increase, in general, the partial decay width into

photons and thus broaden the preferred parameter space and will provide more

involved decay patterns through the mixing with the H and H̄ fields.
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F

The Split SUSY models

In this section, we present a rather brief discussion on string models with a split

SUSY structure. The basic idea is to use two basis vectors to generate space-

time SUSY. We recall that in the semi-realistic free fermionic models the SUSY

generators arise from the basis vector S. Here, the aim is to construct two basis

vectors that generate SUSY with the focus to construct models in which the

gaugini are obtained from one generator, whereas those of the second generator

are projected out, as well as the the scalar superpartners of the twisted matter

fermionic states. Our construction proceeds by keeping our previous basis vector

S = {ψ1,2, χ1,...,6} ≡ S1. The second generator is given by

S2 = {ψ1,2, χ1,2, ω3,4, ω5,6}. (F.1)

The basis vectors b1 and b2 of the NAHE–set are added as well as the basis

vectors 1 and X, which is used to project the supersymmetric generators from

S1, as discussed in section 4.3. Shift basis vectors similar to the ei basis vectors

can be added, and variations that include the basis vector I. We consider the set

117



of six basis vectors given by

v1 = 1 = {ψµ, χ1,...,6, y1,...,6, ω1,...,6|

ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, φ̄1,...,8},

v2 = S1 = {ψµ, χ1,...,6},

v3 = S2 = {ψµ, χ1,2, ω3,...,6}, (F.2)

v4 = b1 = {χ34, χ56, y34, y56|ȳ34, ȳ56, η̄1, ψ̄1,...,5},

v5 = X = {η̄1,2,3, ψ̄1,...,5},

v6 = I = {φ̄1,...,8}.

with the set of GGSO phases given by



1 S1 S2 b1 X I

1 −1 −1 −1 −1 −1 −1

S1 −1 −1 −1 1 1 1

S2 −1 1 −1 1 −1 −1

b1 −1 −1 −1 −1 1 −1

X −1 1 −1 −1 1 −1

I −1 1 −1 −1 −1 1


. (F.3)

In this model the NS–sector is the only sector that produces space-time vector

bosons. Hence the gauge symmetry in four dimensions is SO(8) × SO(4) ×

SO(4)×SO(12)×SO(16). The sector b1 gives rise to space-time fermions in the

spinor and anti–spinor representations of SO(12). The SUSY generators of S1 are

projected out, whereas the gaugini from S2 are retained. The model retains the

scalar superpartners from the sector S2 + b1, and projects those from the sector
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S1 + b1. Our general aim in the construction of models with split SUSY is to

construct models that retain the gaugini and space-time fermions from S2 and

b1, while projecting the gaugini (and hence the gravitini) from S1, as well as the

superpartners from the sectors S1 + b1 and S2 + b1. However, variations of the

model in Equations (F.2,F.3), including adding the ei projectors did not yield the

desired result. The models in which SUSY is entirely broken that is those models

in which the SUSY generators from S1 as well as S2 are projected out, typically

contain tachyons.

119



G

The Massless Spectrum

Recall that the gauge group of the model is

SU(3)C × U(1)C × SU(2)L × SU(2)R ×
6∏
i=1

Ui︸ ︷︷ ︸
observable sector

×SU(3)H1 × SU(3)H2 ×
10∏
j=7

Uj︸ ︷︷ ︸
hidden sector

.

The notation for the table is the following: The first column describes if the states

correspond to space-time bosons or space-time fermions. The second column is

the name of the sector. The third column gives the dimensionality of the states

under SU(3)C × SU(2)L × SU(2)R and the fourth the charges of the observable

U(1)s: Qη̄1 , Qη̄2 , Qη̄3 , Qȳ3,6 , Qȳ1w̄5 , Qw̄2,4 . Columns 5 and 6 describe the hidden

sector. The only charges appearing in the table that do not have a self–evident

name are:

QC = Q
ψ
1 +Q

ψ
2 +Q

ψ
3 ,

Q8 = Q
φ
2 +Q

φ
3 +Q

φ
4 ,

Q9 = Q
φ
5 +Q

φ
6 +Q

φ
7 . (G.1)
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To avoid writing fractional numbers all the charges in the table have been multi-

plied by 4. Finally, for every state the CPT conjugate is also understood to be in

the spectrum and has not be written explicitly. The massless spectrum is given

below:

F SEC (C;L;R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU(3)H1,2 QΦ̄1 Q8 Q9 QΦ̄8

b NS (1, 1, 1) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 -4 4 0 0 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 4 -4 0 0 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 0 -4 4 0 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 0 4 -4 0 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 -4 0 4 0 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 4 0 -4 0 0 0 (1, 1) 0 0 0 0

Table G.1: The untwisted Neveu-Schwarz sector matter states and
charges.
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F SEC (C;L;R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU(3)H1,2
QΦ̄1 Q8 Q9 QΦ̄8

f S (1, 1, 1) 0 0 0 0 0 0 0 (3, 3) 0 -4 4 0
(1, 1, 1) 0 0 0 0 0 0 0 (3, 3) 0 4 -4 0
(1, 1, 1) 0 0 0 0 0 0 0 (1, 1) 4 0 0 4
(1, 1, 1) 0 0 0 0 0 0 0 (1, 1) 4 0 0 -4
(1, 1, 1) 0 0 0 0 0 0 0 (1, 1) -4 0 0 4
(1, 1, 1) 0 0 0 0 0 0 0 (1, 1) -4 0 0 -4
(3, 1, 1) -4 4 0 0 0 0 0 (1, 1) 0 0 0 0
(3̄, 1, 1) 4 -4 0 0 0 0 0 (1, 1) 0 0 0 0
(3, 1, 1) -4 0 4 0 0 0 0 (1, 1) 0 0 0 0
(3̄, 1, 1) 4 0 -4 0 0 0 0 (1, 1) 0 0 0 0
(3, 1, 1) -4 0 0 4 0 0 0 (1, 1) 0 0 0 0
(3̄, 1, 1) 4 0 0 -4 0 0 0 (1, 1) 0 0 0 0
(1, 2, 2) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0
(1, 2, 2) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 0 0 0 4 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 0 0 0 -4 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 0 0 0 0 4 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 0 0 0 0 -4 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 0 0 0 4 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 0 0 0 -4 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 0 0 0 0 4 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 0 0 0 0 -4 0 (1, 1) 0 0 0 0

Table G.2: The untwisted S matter states and charges.

F SEC (C;L;R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU(3)H1,2 QΦ̄1 Q8 Q9 QΦ̄8

QL1 b1 (3, 2, 1) 2 2 0 0 -2 0 0 (1, 1) 0 0 0 0
QR1 (3, 1, 2) -2 -2 0 0 -2 0 0 (1, 1) 0 0 0 0
LL1 (1, 2, 1) -6 2 0 0 -2 0 0 (1, 1) 0 0 0 0
LR1 (1, 1, 2) 6 -2 0 0 -2 0 0 (1, 1) 0 0 0 0
b S + b1 (3, 1, 2) 2 2 0 0 -2 0 0 (1, 1) 0 0 0 0

(3, 2, 1) -2 -2 0 0 -2 0 0 (1, 1) 0 0 0 0
(1, 2, 1) 6 -2 0 0 -2 0 0 (1, 1) 0 0 0 0
(1, 1, 2) -6 2 0 0 -2 0 0 (1, 1) 0 0 0 0

QL2 b2 (3, 2, 1) 2 0 2 0 0 -2 0 (1, 1) 0 0 0 0
QR2 (3, 1, 2) -2 0 -2 0 0 -2 0 (1, 1) 0 0 0 0
LL2 (1, 2, 1) -6 0 2 0 0 -2 0 (1, 1) 0 0 0 0
LR2 (1, 1, 2) 6 0 -2 0 0 -2 0 (1, 1) 0 0 0 0
b S + b2 (3, 1, 2) 2 0 2 0 0 -2 0 (1, 1) 0 0 0 0

(3, 2, 1) -2 0 -2 0 0 -2 0 (1, 1) 0 0 0 0
(1, 2, 1) 6 0 -2 0 0 -2 0 (1, 1) 0 0 0 0
(1, 1, 2) -6 0 2 0 0 -2 0 (1, 1) 0 0 0 0

QL3 b3 (3, 2, 1) 2 0 0 2 0 0 -2 (1, 1) 0 0 0 0
QR3 (3, 1, 2) -2 0 0 -2 0 0 -2 (1, 1) 0 0 0 0
LL3 (1, 2, 1) -6 0 0 2 0 0 -2 (1, 1) 0 0 0 0
LR3 (1, 1, 2) 6 0 0 -2 0 0 -2 (1, 1) 0 0 0 0
b S + b3 (3, 1, 2) 2 0 0 2 0 0 -2 (1, 1) 0 0 0 0

(3, 2, 1) -2 0 0 -2 0 0 -2 (1, 1) 0 0 0 0
(1, 2, 1) 6 0 0 -2 0 0 -2 (1, 1) 0 0 0 0
(1, 1, 2) -6 0 0 2 0 0 -2 (1, 1) 0 0 0 0

Table G.3: The observable matter sectors. All sectors, fermionic and
bosonic, have CPT conjugates which are not displayed.
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F SEC (C;L;R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU(3)H1,2
QΦ̄1 Q8 Q9 QΦ̄8

f S+ (1, 1, 1) 0 2 -2 0 0 0 0 (1, 1) 0 0 0 4
b1 + b2 (1, 1, 1) 0 2 -2 0 0 0 0 (1, 1) 0 0 0 -4
+α+ β (1, 1, 1) 0 -2 2 0 0 0 0 (1, 1) 0 0 0 4

(1, 1, 1) 0 -2 2 0 0 0 0 (1, 1) 0 0 0 -4
(1, 1, 1) 0 2 2 0 0 0 0 (3, 1) 0 4 0 0
(1, 1, 1) 0 -2 -2 0 0 0 0 (3, 1) 0 4 0 0
(1, 1, 1) 0 2 2 0 0 0 0 (3, 1) 0 -4 0 0
(1, 1, 1) 0 -2 -2 0 0 0 0 (3, 1) 0 -4 0 0

b b1 + b2 (1, 1, 1) 0 2 -2 0 0 0 0 (1, 1) 4 0 0 0
+α+ β (1, 1, 1) 0 2 -2 0 0 0 0 (1, 1) -4 0 0 0

(1, 1, 1) 0 -2 2 0 0 0 0 (1, 1) 4 0 0 0
(1, 1, 1) 0 -2 2 0 0 0 0 (1, 1) -4 0 0 0
(1, 1, 1) 0 2 2 0 0 0 0 (1, 3) 0 0 4 0
(1, 1, 1) 0 -2 -2 0 0 0 0 (1, 3) 0 0 4 0
(1, 1, 1) 0 2 2 0 0 0 0 (1, 3) 0 0 -4 0
(1, 1, 1) 0 -2 -2 0 0 0 0 (1, 3) 0 0 -4 0

Table G.4: The vector-like SO(10) singlet states. All sectors,
fermionic and bosonic, have CPT conjugates which are not displayed.

F SEC (C;L;R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU(3)H1,2
QΦ̄1 Q8 Q9 QΦ̄8

f S+ (1, 1, 1) 0 -2 0 0 0 -2 -2 (1, 1) 0 6 0 2
1 + b1 (1, 1, 1) 0 2 0 0 0 -2 -2 (1, 1) 0 -6 0 -2

+α+ 2γ (1, 1, 1) 0 2 0 0 0 -2 -2 (3, 1) 0 2 0 -2
(1, 1, 1) 0 -2 0 0 0 -2 -2 (3, 1) 0 -2 0 2

b 1 + b1 (1, 1, 1) 0 -2 0 0 0 2 -2 (1, 1) 0 6 0 2
+α+ 2γ (1, 1, 1) 0 2 0 0 0 2 -2 (1, 1) 0 -6 0 -2

(1, 1, 1) 0 2 0 0 0 2 -2 (3, 1) 0 2 0 -2
(1, 1, 1) 0 -2 0 0 0 2 -2 (3, 1) 0 -2 0 2

f S+ (1, 1, 1) 0 0 -2 0 -2 0 -2 (1, 1) 0 6 0 2
1 + b2 (1, 1, 1) 0 0 2 0 -2 0 -2 (1, 1) 0 -6 0 -2

+α+ 2γ (1, 1, 1) 0 0 2 0 -2 0 -2 (3, 1) 0 2 0 -2
(1, 1, 1) 0 0 -2 0 -2 0 -2 (3, 1) 0 -2 0 2

b 1 + b2 (1, 1, 1) 0 0 -2 0 2 0 -2 (1, 1) 0 6 0 2
+α+ 2γ (1, 1, 1) 0 0 2 0 2 0 -2 (1, 1) 0 -6 0 -2

(1, 1, 1) 0 0 2 0 2 0 -2 (3, 1) 0 2 0 -2
(1, 1, 1) 0 0 -2 0 2 0 -2 (3, 1) 0 -2 0 2

f S+ (1, 1, 1) 0 0 -2 0 -2 0 -2 (1, 1) -2 0 6 0
b1 + b3 (1, 1, 1) 0 0 2 0 -2 0 -2 (1, 1) 2 0 -6 0

+α+ 2γ (1, 1, 1) 0 0 2 0 -2 0 -2 (1, 3) 2 0 2 0
(1, 1, 1) 0 0 -2 0 -2 0 -2 (1, 3) -2 0 -2 0

b b1 + b3 (1, 1, 1) 0 0 -2 0 2 0 -2 (1, 1) -2 0 6 0
+α+ 2γ (1, 1, 1) 0 0 2 0 2 0 -2 (1, 1) 2 0 -6 0

(1, 1, 1) 0 0 2 0 2 0 -2 (1, 3) 2 0 2 0
(1, 1, 1) 0 0 -2 0 2 0 -2 (1, 3) -2 0 -2 0

f S+ (1, 1, 1) 0 0 0 -2 -2 -2 0 (1, 1) -2 0 6 0
b1 + b2 (1, 1, 1) 0 0 0 2 -2 -2 0 (1, 1) 2 0 -6 0

+α+ 2γ (1, 1, 1) 0 0 0 2 -2 -2 0 (1, 3) 2 0 2 0
(1, 1, 1) 0 0 0 -2 -2 -2 0 (1, 3) -2 0 -2 0

b b1 + b2 (1, 1, 1) 0 0 0 -2 2 -2 0 (1, 1) -2 0 6 0
+α+ 2γ (1, 1, 1) 0 0 0 2 2 -2 0 (1, 1) 2 0 -6 0

(1, 1, 1) 0 0 0 2 2 -2 0 (1, 3) 2 0 2 0
(1, 1, 1) 0 0 0 -2 2 -2 0 (1, 3) -2 0 -2 0

Table G.5: The vector-like SO(10) singlet states. All sectors,
fermionic and bosonic, have CPT conjugates which are not displayed.
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F SEC (C;L;R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU(3)H1,2
QΦ̄1 Q8 Q9 QΦ̄8

f S+ (1, 1, 1) 0 -2 0 0 0 -2 -2 (1, 1) -2 0 6 0
b2 + b3 (1, 1, 1) 0 2 0 0 0 -2 -2 (1, 1) 2 0 -6 0

+α+ 2γ (1, 1, 1) 0 2 0 0 0 -2 -2 (1, 3) 2 0 2 0
(1, 1, 1) 0 -2 0 0 0 -2 -2 (1, 3) -2 0 -2 0

b b2 + b3 (1, 1, 1) 0 -2 0 0 0 2 -2 (1, 1) -2 0 6 0
+α+ 2γ (1, 1, 1) 0 2 0 0 0 2 -2 (1, 1) 2 0 -6 0

(1, 1, 1) 0 2 0 0 0 2 -2 (1, 3) 2 0 2 0
(1, 1, 1) 0 -2 0 0 0 2 -2 (1, 3) -2 0 -2 0

f S+ (1, 1, 1) 0 0 0 -2 -2 -2 0 (1, 1) 0 6 0 2
1 + b3 (1, 1, 1) 0 0 0 2 -2 -2 0 (1, 1) 0 -6 0 -2

+α+ 2γ (1, 1, 1) 0 0 0 2 -2 -2 0 (3, 1) 0 2 0 -2
(1, 1, 1) 0 0 0 -2 -2 -2 0 (3, 1) 0 -2 0 2

b 1 + b3 (1, 1, 1) 0 0 0 -2 2 -2 0 (1, 1) 0 6 0 2
+α+ 2γ (1, 1, 1) 0 0 0 2 2 -2 0 (1, 1) 0 -6 0 -2

(1, 1, 1) 0 0 0 2 2 -2 0 (3, 1) 0 2 0 -2
(1, 1, 1) 0 0 0 -2 2 -2 0 (3, 1) 0 -2 0 2

Table G.6: Table 5 continued.

F SEC (C;L;R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU(3)H1,2
QΦ̄1 Q8 Q9 QΦ̄8

b α± γ (1, 1, 1) -3 1 1 1 -2 0 -2 (1, 1) 2 -3 3 0
(1, 1, 1) -3 1 1 1 2 0 2 (1, 1) 2 -3 3 0
(1, 1, 1) -3 1 1 1 2 0 2 (1, 1) 2 -3 3 0
(1, 1, 1) -3 1 1 1 -2 0 -2 (1, 1) 2 -3 3 0
(1, 1, 1) 3 -1 -1 -1 -2 0 -2 (1, 1) -2 3 -3 0
(1, 1, 1) 3 -1 -1 -1 2 0 2 (1, 1) -2 3 -3 0
(1, 1, 1) 3 -1 -1 -1 2 0 2 (1, 1) -2 3 -3 0
(1, 1, 1) 3 -1 -1 -1 -2 0 -2 (1, 1) -2 3 -3 0

b β ± γ (1, 1, 1) -3 1 1 1 0 2 2 (1, 1) -2 -3 3 0
(1, 1, 1) -3 1 1 1 0 -2 -2 (1, 1) -2 -3 3 0
(1, 1, 1) -3 1 1 1 0 -2 -2 (1, 1) -2 -3 3 0
(1, 1, 1) -3 1 1 1 0 2 2 (1, 1) -2 -3 3 0
(1, 1, 1) 3 -1 -1 -1 0 2 2 (1, 1) 2 3 -3 0
(1, 1, 1) 3 -1 -1 -1 0 -2 -2 (1, 1) 2 3 -3 0
(1, 1, 1) 3 -1 -1 -1 0 -2 -2 (1, 1) 2 3 -3 0
(1, 1, 1) 3 -1 -1 -1 0 2 2 (1, 1) 2 3 -3 0

b 1 + b1 (1, 1, 1) -3 1 1 1 0 2 2 (1, 1) 0 3 -3 2
+b2 + b3 (1, 1, 1) -3 1 1 1 0 -2 -2 (1, 1) 0 3 -3 2
+β ± γ (1, 1, 1) -3 1 1 1 0 -2 -2 (1, 1) 0 3 -3 2

(1, 1, 1) -3 1 1 1 0 2 2 (1, 1) 0 3 -3 2
(1, 1, 1) 3 -1 -1 -1 0 2 2 (1, 1) 0 -3 3 -2
(1, 1, 1) 3 -1 -1 -1 0 -2 -2 (1, 1) 0 -3 3 -2
(1, 1, 1) 3 -1 -1 -1 0 -2 -2 (1, 1) 0 -3 3 -2
(1, 1, 1) 3 -1 -1 -1 0 2 2 (1, 1) 0 -3 3 -2

b 1 + b1 (1, 1, 1) -3 1 1 1 2 0 -2 (1, 1) 0 3 -3 -2
+b2 + b3 (1, 1, 1) -3 1 1 1 -2 0 2 (1, 1) 0 3 -3 -2
+α± γ (1, 1, 1) -3 1 1 1 2 0 -2 (1, 1) 0 3 -3 -2

(1, 1, 1) -3 1 1 1 -2 0 2 (1, 1) 0 3 -3 -2
(1, 1, 1) 3 -1 -1 -1 2 0 -2 (1, 1) 0 -3 3 2
(1, 1, 1) 3 -1 -1 -1 -2 0 2 (1, 1) 0 -3 3 2
(1, 1, 1) 3 -1 -1 -1 2 0 -2 (1, 1) 0 -3 3 2
(1, 1, 1) 3 -1 -1 -1 -2 0 2 (1, 1) 0 -3 3 2

Table G.7: The table displays all the massless sectors for which the
“would-be superpartners” are massive and do not form part of the
massless spectrum. The “would-be superpartners” arise from the sec-
tors that are obtained by adding the basis vector S to a given sector
and are the fermionic counterparts.
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F SEC (C;L;R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU(3)H1,2
QΦ̄1 Q8 Q9 QΦ̄8

f S+ (1, 1, 1) -3 -3 -1 -1 0 0 0 (1, 1) -2 -3 3 0
b2 + b3 (1, 1, 1) -3 1 3 -1 0 0 0 (1, 1) -2 -3 3 0
+β ± γ (1, 1, 1) -3 1 -1 3 0 0 0 (1, 1) -2 -3 3 0

(1, 1, 1) 3 -1 1 1 0 0 0 (1, 3) -2 3 1 0
(1, 1, 1) 3 3 1 1 0 0 0 (1, 1) 2 3 -3 0
(1, 1, 1) 3 -1 -3 1 0 0 0 (1, 1) 2 3 -3 0
(1, 1, 1) 3 -1 1 -3 0 0 0 (1, 1) 2 3 -3 0
(1, 1, 1) -3 1 -1 -1 0 0 0 (1, 3) 2 -3 -1 0

b b2 + b3 (3, 1, 1) 1 1 -1 -1 0 0 0 (1, 1) -2 -3 3 0
+β ± γ (1, 1, 1) -3 1 -1 -1 0 0 0 (3, 1) 2 1 3 0

(3, 1, 1) -1 -1 1 1 0 0 0 (1, 1) 2 3 -3 0
(1, 1, 1) 3 -1 1 1 0 0 0 (3, 1) -2 -1 -3 0

f S+ (1, 1, 1) -3 3 1 -1 0 0 0 (1, 1) 2 -3 3 0
b1 + b3 (1, 1, 1) -3 -1 -3 -1 0 0 0 (1, 1) 2 -3 3 0
+α± γ (1, 1, 1) -3 -1 1 3 0 0 0 (1, 1) 2 -3 3 0

(1, 1, 1) 3 1 -1 1 0 0 0 (1, 3) 2 3 1 0
(1, 1, 1) 3 -3 -1 1 0 0 0 (1, 1) -2 3 -3 0
(1, 1, 1) 3 1 3 1 0 0 0 (1, 1) -2 3 -3 0
(1, 1, 1) 3 1 -1 -3 0 0 0 (1, 1) -2 3 -3 0
(1, 1, 1) -3 -1 1 -1 0 0 0 (1, 3) -2 -3 -1 0

b b1 + b3 (3, 1, 1) 1 -1 1 -1 0 0 0 (1, 1) 2 -3 3 0
+α± γ (1, 1, 1) -3 -1 1 -1 0 0 0 (3, 1) -2 1 3 0

(3, 1, 1) -1 1 -1 1 0 0 0 (1, 1) -2 3 -3 0
(1, 1, 1) 3 1 -1 1 0 0 0 (3, 1) 2 -1 -3 0

Table G.8: The vector-like exotic states. All sectors, fermionic and
bosonic, have CPT conjugates which are not displayed.

F SEC (C;L;R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU(3)H1,2
QΦ̄1 Q8 Q9 QΦ̄8

f S+ (3, 1, 1) -3 -1 1 -1 0 0 0 (1, 1) 0 3 -3 -2
1 + b2 (1, 1, 1) 3 -1 1 -1 0 0 0 (1, 3) 0 3 3 2

+α± γ (3, 1, 1) 3 1 -1 1 0 0 0 (1, 1) 0 -3 3 2
(1, 1, 1) -3 1 -1 1 0 0 0 (1, 3) 0 -3 -3 -2

b 1 + b2 (1, 1, 1) -3 3 1 -1 0 0 0 (1, 1) 0 3 -3 -2
+α± γ (1, 1, 1) -3 -1 -3 -1 0 0 0 (1, 1) 0 3 -3 -2

(1, 1, 1) -3 -1 1 3 0 0 0 (1, 1) 0 3 -3 -2
(1, 1, 1) -3 -1 1 -1 0 0 0 (3, 1) 0 -3 -3 2
(1, 1, 1) 3 -3 -1 1 0 0 0 (1, 1) 0 -3 3 2
(1, 1, 1) 3 1 3 1 0 0 0 (1, 1) 0 -3 3 2
(1, 1, 1) 3 1 -1 -3 0 0 0 (1, 1) 0 -3 3 2
(1, 1, 1) 3 1 -1 1 0 0 0 (3, 1) 0 3 3 -2

f S+ (1, 1, 1) -3 -3 -1 -1 0 0 0 (1, 1) 0 3 -3 2
1 + b1 (1, 1, 1) -3 1 3 -1 0 0 0 (1, 1) 0 3 -3 2

+β ± γ (1, 1, 1) -3 1 -1 3 0 0 0 (1, 1) 0 3 -3 2
(1, 1, 1) -3 1 -1 -1 0 0 0 (3, 1) 0 -3 -3 -2
(1, 1, 1) 3 3 1 1 0 0 0 (1, 1) 0 -3 3 -2
(1, 1, 1) 3 -1 -3 1 0 0 0 (1, 1) 0 -3 3 -2
(1, 1, 1) 3 -1 1 -3 0 0 0 (1, 1) 0 -3 3 -2
(1, 1, 1) 3 -1 1 1 0 0 0 (3, 1) 0 3 3 2

b 1 + b1 (3, 1, 1) 3 1 -1 -1 0 0 0 (1, 1) 0 3 -3 2
+β ± γ (1, 1, 1) -3 1 -1 -1 0 0 0 (1, 3) 0 3 3 -2

(3, 1, 1) -3 -1 1 1 0 0 0 (1, 1) 0 -3 3 -2
(1, 1, 1) 3 -1 1 1 0 0 0 (1, 3) 0 -3 -3 2

Table G.9: The vector-like exotic states. All sectors, fermionic and
bosonic, have CPT conjugates which are not displayed.
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F SEC (C;L;R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU(3)H1,2
QΦ̄1 Q8 Q9 QΦ̄8

f 1 + b2 (1, 2, 1) 0 0 -2 -2 2 0 0 (1, 1) -2 0 0 2
+b3 + 2γ (1, 2, 1) 0 0 -2 -2 -2 0 0 (1, 1) 2 0 0 -2

(1, 1, 2) 0 0 2 2 2 0 0 (1, 1) 2 0 0 -2
(1, 1, 2) 0 0 2 2 -2 0 0 (1, 1) -2 0 0 2

b S+ (1, 2, 1) 0 0 2 2 -2 0 0 (1, 1) -2 0 0 2
1 + b2 (1, 2, 1) 0 0 2 2 2 0 0 (1, 1) 2 0 0 -2

+b3 + 2γ (1, 1, 2) 0 0 -2 -2 -2 0 0 (1, 1) 2 0 0 -2
(1, 1, 2) 0 0 -2 -2 2 0 0 (1, 1) -2 0 0 2

f 1 + b1 (1, 2, 1) 0 -2 0 -2 0 2 0 (1, 1) -2 0 0 2
+b3 + 2γ (1, 2, 1) 0 -2 0 -2 0 -2 0 (1, 1) 2 0 0 -2

(1, 1, 2) 0 2 0 2 0 2 0 (1, 1) 2 0 0 -2
(1, 1, 2) 0 2 0 2 0 -2 0 (1, 1) -2 0 0 2

b S+ (1, 2, 1) 0 2 0 2 0 -2 0 (1, 1) -2 0 0 2
1 + b1 (1, 2, 1) 0 2 0 2 0 2 0 (1, 1) 2 0 0 -2

+b3 + 2γ (1, 1, 2) 0 -2 0 -2 0 -2 0 (1, 1) 2 0 0 -2
(1, 1, 2) 0 -2 0 -2 0 2 0 (1, 1) -2 0 0 2

f 1 + b1 (1, 2, 1) 0 -2 -2 0 0 0 2 (1, 1) -2 0 0 2
+b2 + 2γ (1, 2, 1) 0 -2 -2 0 0 0 -2 (1, 1) 2 0 0 -2

(1, 1, 2) 0 2 2 0 0 0 2 (1, 1) 2 0 0 -2
(1, 1, 2) 0 2 2 0 0 0 -2 (1, 1) -2 0 0 2

b S+ (1, 2, 1) 0 2 2 0 0 0 -2 (1, 1) -2 0 0 2
1 + b1 (1, 2, 1) 0 2 2 0 0 0 2 (1, 1) 2 0 0 -2

+b2 + 2γ (1, 1, 2) 0 -2 -2 0 0 0 -2 (1, 1) 2 0 0 -2
(1, 1, 2) 0 -2 -2 0 0 0 2 (1, 1) -2 0 0 2

f S+ (1, 1, 1) -6 0 0 -2 0 0 0 (1, 1) 2 0 0 2
1 + b3 (3, 1, 1) -2 0 0 2 0 0 0 (1, 1) -2 0 0 -2

+α+ β (1, 1, 1) 6 0 0 2 0 0 0 (1, 1) -2 0 0 -2
+2γ (3, 1, 1) 2 0 0 -2 0 0 0 (1, 1) 2 0 0 2

b 1 + b3 (1, 1, 1) 6 0 0 2 0 0 0 (1, 1) -2 0 0 -2
+α+ β (1, 1, 1) -6 0 0 -2 0 0 0 (1, 1) 2 0 0 2

+2γ (3, 1, 1) 2 0 0 -2 0 0 0 (1, 1) 2 0 0 2
(3, 1, 1) -2 0 0 2 0 0 0 (1, 1) -2 0 0 -2

Table G.10: The vector-like exotic states. All sectors, fermionic and
bosonic, have CPT conjugates which are not displayed.
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