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Abstract

The notional defined contribution model combines pay-as-you-go financing and a defined
contribution pension formula. This paper aims to demonstrate the extent to which liquidity
and solvency indicators are affected by fluctuations in economic and demographic conditions and
to explore the introduction of an automatic balancing mechanism into the pension system. We
demonstrate that the introduction of an automatic balancing mechanism reduces the volatility
of the buffer fund and that, in most cases, the automatic mechanism that re-establishes solvency
produces the lowest variance of the notional factor with the lowest expected value.
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1 Introduction

The introduction of Notional (non-financial) Defined Contribution (NDC) pension accounts as com-
ponents of modern, multi-pillar pension systems in some countries has been a major innovation of
the last two decades of pension reform. NDCs have been established in Italy (1995), Latvia (1996),
Poland (1999) and Sweden (1999).1 Kyrgyzstan (1997), Mongolia (2000) and Russia (2002) have
adopted some NDC features, such as life expectancy factors, while Egypt combines both a notional
and financial defined contribution schemes for new entrants after 2013. According to Holzmann et al.
(2012), countries such as China and Greece are also seriously considering introducing notional defined
contribution pension schemes. Holzmann (2006) argues that notional accounts should provide the
foundation for a unified pension system in the European Union.

A notional model is a pay-as-you-go (PAYG) system in which the amount of the pension depends
on both contributions and returns, that is, the accumulated capital over the course of the participant’s
employment. The returns on contributions are calculated using a notional rate that reflects the
financial health of the system, which is linked to an external index set by law, such as the growth
rate of GDP, average salarys, or contribution payments. The account balance is called notional
because it is used only for record keeping, that is, the system does not invest funds in financial
markets as the system is based on PAYG financing. When an individual reaches retirement age,
the fictitious balance is converted into an annuity based on the indexation of benefits and technical
interest rate as well as the life expectancy of the cohort.

When designing a pension system, a legislator can obtain two types of equilibria (Bommier and
Lee 2003). The first equilibrium is cross-sectional, while the other is longitudinal. A cross-sectional
equilibrium implies that all that is received is given. For example, in a pure PAYG pension system,
pensions for retirees are paid for by the contributions of the working-age population. In our framework
this is referred to as liquidity. Under a longitudinal equilibrium (also known as actuarial fairness) a
cohort cannot receive more than their own contribution, that is, at any moment, the present value

1See Ch lón-Domińczak et al. (2012) and Holzmann et al. (2012) for updated particularities of NDC countries.
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of lifetime contributions equals the present value of lifetime benefits. In this sense, NDCs can be
considered actuarially fair at some extent (see Palmer (2006) and Queisser and Whitehouse (2006)).
Nevertheless, the underlying design does not produce an automatic cross-sectional equilibrium.

Valdés-Prieto (2000) shows that NDC cannot generally provide financial equilibrium in the short
run unless in the unrealistic steady state and with a notional rate equal to the covered salary bill.
Therefore, it is also necessary to have other adjustment mechanisms just as in the traditional defined
benefit PAYG schemes. Vidal-Meliá et al. (2009) and Vidal-Meliá et al. (2010) define Automatic
Balance Mechanisms (ABMs) as a set of pre-determined measures established by law to be applied
immediately as required according to an indicator of the financial health of the system, that is defined
as the ratio between the contribution asset and the liabilities (solvency ratio) in the Swedish case
(Settergren and Mikula 2005). Sweden has also implemented an adjustment mechanism that will be
triggered if the solvency indicator that emerges from an actuarial balance sheet reveals insolvency in
the system. Some countries with classical Defined Benefit (DB)2 pension systems, such as Germany,
Austria, France, Finland, and Portugal, have also incorporated adjustment mechanisms to assist in
calculating or indexing the initial pension payment to mitigate demographic changes, though these
adjustment are not usually linked to any solvency indicator.3

In this respect, Auerbach and Lee (2006), using U.S demography and economic data under a
stochastic macro model, examine the stability of eight NDCs pension systems involving different
assumptions of the notional rate and particularities of the Swedish adjustment mechanism. However,
their design does not guarantee liquidity or financial equilibrium.

This paper contributes to fill a gap in the literature investigating how different ABMs, that re-
establish liquidity or solvency, react to economic and demographic changes in NDC pension schemes
in terms of expected value and volatility of the notional rate and the buffer fund The ABMs considered
affect to both the notional rate (in our case linked to the growth of the economy) and indexation
of pension benefits in actuarially fair schemes. This paper also aims to shed some light on how the
system adapts to one-time exogenous economic and demographic shocks.

Following this introduction, this paper is structured as follows. The subsequent section 2 presents
NDCs in a framework with four OLG that allows a dynamic evolution of the main variables that
affect the liquidity and solvency indicators of the system. The next section 3, provides two different
methods of assessing the financial health of a pension system. The section 4 focuses on the design
of an automatic balancing mechanism to restore the liquidity or solvency of the system while the
numerical illustration is presented in section 5. The final section of this paper provides the main
conclusions and the four appendices provide additional details for the adjustment factor, the accrual
and forecasted liabilities, the theoretical framework used and the numerical results for the volatility
of the notional compounding rate.

2 A dynamic four OLG model

NDCs have been studied in 2 and 3-period OLG4 in Valdés-Prieto (2000) and for multiple coexisting
generations in Vidal-Meliá and Boado-Penas (2013), Boado-Penas and Vidal-Meliá (2014) and Vidal-
Meliá et al. (2015). However, these papers consider that changes in the demographic and economic
variables are constant which make their results only valid when the system is in steady state. There

2For instance, Germany’s ABM aims to adapt the benefits to ensure a balanced budget at every period for a given
increase of the contribution rate (Börsch-Supan et al. 2004). While varying the contribution rate may be a way of
seeking sustainability in DB schemes, it is not the case for NDCs as their contribution rate is fixed per construction.

3See D’Addio and Whitehouse (2012) for a detailed explanation of current PAYG pension schemes. The paper by
Knell (2010) also analyses automatic adjustment factors that can be used to keep the PAYG scheme balanced in the
case of fluctuations in cohort sizes.

4Defined benefit pension systems have been extensively studied in the existing literature mostly in 2-OLG models in
order to derive stylized results (Diamond 1977). However, these results tend to depend strongly on the 2-generations
assumption. 3-OLG models seem to incorporate enough complexity to mimic reality more accurately (Samuelson
1958). Also, the paper by Auerbach et al. (2013) provides a general equilibrium setting with multiple generations and
evaluates how deterministic shocks are efficiently spread across cohorts of three PAYG pension systems based on the
actual US and German systems, though it did not include the Swedish NDC model.
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are also some papers studying different features of NDC systems in a multiple OLG setting when
the variables are in stochastic steady state. In particular, Auerbach and Lee (2006) study the
fiscal sustainability of NDCs with calibrated US data while Auerbach and Lee (2011) analyse the
performance of different NDC designs with regard to risk-spreading among generations.

This section examines NDCs using a four OLG model, that includes dynamics of population and
salarys, where two generations of contributors, aged 1 and 2, and two generations of pensioners aged
3 and 4 coexist (see Figure 1 for details). At age 5 there are no survivors remaining.

The choice of four generations is not arbitrary; it introduces heterogeneity among contributors
because these two generations are characterized by different demographic and salary histories as well
as contributions to the system. It also introduces mortality and indexation during the retirement
period. This is not possible in a 2 or 3-period model. A minimum of two retirement periods is needed
to study explicitly the effect of mortality assumptions on the pension expenditures and to derive
results on the ‘indexation’ that renders the system actuarially fair. Furthermore, it allows us to study
different demographic scenarios without relying heavily on computational methods (Bhattacharya
and Russell 2003).

2.1 Population and salary dynamics

The demographic-economic structure at any time t is represented as follows:

Age:
x = 1, 2, 3, 4
Population at time t:

Nx
t = N1

t−x+1p
x
t = N1

0

t−x+1∏
i=1

(1 + ni) p
x
t (2.1)

where
Nx
t denotes individuals aged x for x =1, 2, 3 and 4 who are alive at time t > 0 and entered the

labour market at time t − x + 1. New entrants at time t are denoted as N1
t . At time t = 0, the

population structure is given at all ages x.
pxt is the time-dependent survival probability, that is, the probability that an individual will reach

age x by time t. It is assumed that no mortality occurs prior to retirement; therefore, pxt = 1 for
x = 1, 2, and 3. For simplicity, the probability that one individual is alive at the age of 4, p4

t , is
denoted by pt.

5 Furthermore, the survival probability p5
t is zero, that is, individuals cannot attain

age 5.
ni is the rate of population variation from period i − 1 to period i and is a stochastic process

defined in the probability space (Ω,F , P ).
Table 1 illustrates how the population evolves over three periods by year of birth.
Individual salarys at time t

Sxt = Sx0

t∏
i=1

(1 + gi) (2.2)

where
Sxt denotes the individual salarys for x =1 and 2 at time t > 0 which are earned by the active

population and are assumed to be paid at the beginning of the calendar year. salarys are dependent
on time t and age x. Furthermore, Sx0 is the observed salary at time 0 for each active age x =1, 2.
In our model, the salarys coincide with the contribution bases.

5We ignore the mortality before retirement because it simplifies the notional rate paid to the contributions, based
on the rate of increase of the income from contributions. It also highlights the effect of the survival probability on the
annuity paid during retirement.
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gi is the rate of salary variation from the period i − 1 to period i and is a stochastic process
defined in the probability space (Ω,F , P ).

3 Liquidity and solvency indicators

There are various methods of assessing the financial health of an unfunded pension system. This
paper focuses on two methods. The first method assesses the liquidity ratio, which indicates the
relationship between the income from contributions and the pension expenditures at a specific date.

A second method assesses the solvency of the pension system by compiling an actuarial balance.
There are typically two ways for Social Security departments to compile an actuarial balance, namely
the ‘Aggregate accounting projection’ and the ‘Swedish’ method. The aggregate accounting projec-
tion method compares the net present value of the expenditure on pensions and the income from
contribution in a long time horizon. This balance uses a forecasted demographic scenario while the
macroeconomic scenario is exogenous. In practice, this kind of balance is compiled, on a regular
bases, in countries such as U.S (Boards of Trustees of the Federal Old-Age and Survivors Insur-
ance and Disability Insurance Trust Funds 2015), Japan (Sakamoto 2005) or Canada (Office of the
Superintendent of Financial Institutions Canada (OSFIC) (2007, 2008)), amongst others.

In Sweden, compiling an official actuarial balance sheet has been normal practice since 2001.
This actuarial balance sheet is a traditional accounting balance sheet that lists assets6 and liabilities
over a definite horizon (see Boado-Penas et al. (2008) and Swedish Pension Agency (2015)). The
actuarial balance sheet is a financial statement listing the pension system obligations to contributors
and pensioners at a particular time and the various assets (financial and contributions) that back
these obligations. The solvency ratio, defined as the ratio of assets to liabilities, calculated from the
actuarial balance sheet serves the following two purposes in Sweden: to measure whether the system
can fulfil its obligations to participants and to decide whether an ABM should be applied. This
paper follows the Swedish method, based on cross-sectional verifiable facts, that does not need any
projections.

The following subsections provide the calculations of the liquidity and solvency ratios.

3.1 Liquidity ratio

As previously noted, NDCs are financed on a PAYG basis, that is, retiree pensions are paid for by
the contributions of the working age population. The liquidity ratio indicates whether the current
contributions and financial assets are sufficient to pay current retiree pensions. Formally, the ratio
at time t, LRt is represented as follows:

LRt =
Ct + F−t

Pt
(3.1)

where
Ct represents the income from contributions at time t.
Pt represents the total pension expenditures at time t.
F−t represents the value of the (buffer) fund at time t, also called reserve fund, before new

contributions and benefits payments are considered. F−t can be expressed as follows:

F−t = F+
t−1(1 + it) = F−0

t∏
j=1

(1 + ij) +
t−1∑
j=0

(Cj − Pj)
t∏

k=j+1

(1 + ik) (3.2)

6First pillar pension systems, generally based on PAYG, are not backed by financial assets. Although, some
countries, such as Chile, apply a funding framework to their first pillar pension systems (Fajnzylber and Robalino
2012). Also, in some former British colonies, such as Singapore or Malaysia, the key pillar of the pension system
is based on the Central Provident Fund (CPF) is a compulsory defined-contribution savings plan designed to fund
mainly retirement and healthcare.
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where
it represents the financial rate of return of the fund from period t − 1 to t and is a stochastic

process defined in the probability space (Ω,F , P ).
The value of the fund at time t after contributions and payments is given by F+

t = F−t +Ct−Pt.

3.1.1 Income from contributions

The income from contributions received by the pension system at time t, Ct, is represented as follows:

Ct = π ·N1
t · S1

t + π ·N2
t · S2

t

= π ·N1
0

t−1∏
i=1

(1 + ni)
t∏
i=1

(1 + gi)
(
S1

0(1 + nt) + S2
0

)︸ ︷︷ ︸
KC
t

(3.3)

where
π is the fixed contribution rate of the NDC pension scheme.
KC
t is a factor that takes into account the heterogeneity of salarys and births changes.

The notional compounding factor at time t, 1 + rt, is chosen such that it reflects the financial
health of the system through changes in the total contribution base of the system7 and is represented
as follows:

1 + rt =
Ct
Ct−1

= (1 + nt−1)(1 + gt)
KC
t

KC
t−1

(3.4)

where
rt is the notional rate for the period t − 1 to t. Note that the notional rate is affected by both

salary and population processes, such as new active individuals or salary trends.
The rate, rt, is usually known as the ‘natural rate’ (Valdés-Prieto (2000) and Börsch-Supan

(2006)) or ‘canonical rate’ of the NDC scheme (Gronchi and Nisticò 2006). It is also known as the
‘biological rate’ of the economy (Samuelson 1958). In practice, only Latvia and Poland apply this
notional rate during the accumulation phase while Sweden applies the growth of the contribution
base per capita8 and Italy the three-year GDP growth average rate.

Note that if the population is in a steady state, the notional factor reduces to 1+rt=(1+n)(1+g)
which means that the notional rate, rt equals (1 + n)(1 + g) − 1. In our framework, steady state
holds if nt=n and gt=g ∀ t and if the survival probabilities are constant over time.

3.1.2 Pension expenditures

At retirement, the accumulated notional capital for each individual is converted into an annuity
for the next two periods. In this model, all individuals in the same birth cohort have the same
contribution history and mortality. Therefore, the accumulated notional capital or notional pension
wealth, NPSxt for x = 1, 2, 3, 4, will be calculated for each generation.9

To calculate the accumulated notional capital for each cohort we consider their past contributions
and assign them a return that corresponds to the notional rate (3.4) until retirement. The total
notional accumulated capital for the cohort aged 3 retiring at time t, NPS3

t , is represented as
follows:

7Given a contribution rate, π, the growth of the total contribution base of the system coincides with the growth of
the income from contributions

8The notional rate in Sweden is, equivalent to the rate of increase of the salaries 1 + gt, when salarys are age-
independent.

9Note that this calculation method allows surviving contributors to receive eventual inheritance gains from the
deceased (Boado-Penas and Vidal-Meliá 2014). In our setting, however, there are no inheritance gains because there
is no mortality prior to retirement.
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NPS3
t = πS1

t−2N
1
t−2 (1 + rt−1) (1 + rt) + πS2

t−1N
2
t−1 (1 + rt) (3.5)

The notional capital for the retiring cohort can be also rewritten as follows:

NPS3
t = CtK

N
t (3.6)

where
KN
t =

S1
0(1+nt−2)

S1
0(1+nt−2)+S2

0
+

S2
0

S1
0(1+nt−1)+S2

0
is a function that depends on the notional rate during con-

tributors’ career.
The time-dependent factor KN

t equals 1 when nt−2 = nt−1, that is, the notional capital for the
retiring cohort - pensioners who have just retired- is equal to the system’s income from contributions
at t. It is remarkable that, in steady state, the income from contributions, which is a cross-sectional
measure, is equivalent to the commitments the system takes on with pensioners who are just retired,
which is a longitudinal measure.10

The individual pension P 3
t to be paid at time t to the new retirees aged 3 is represented as follows:

P 3
t =

NPS3
t

at N3
t

(3.7)

with

at = Et
[
1 + p∗t+1

1 + λ∗t+1

1 + r∗t+1

]
(3.8)

where
at represents the annuity that transforms the accumulated notional capital into a pension consid-

ering indexation, λ∗t+1, probability of survival, p∗t+1, and discount (or notional rate), r∗t+1, processes.
Calculating the annuity at time t requires assumptions about future processes, which are made

in accordance with known information at time of calculation. The pension system is exposed to
risk in so far as we cannot know accurately the evolution of the survival rates. The systemic or
undiversifiable risk has therefore an impact on the financial health of pension systems.

Therefore, the ex-ante or theoretical mortality p∗t+1 does not necessarily coincide with the ex-
post or observed mortality pt+1, presented in the previous section. The first is the choice of the
government, while the latter represents the observed survival probability. In practice, Italy uses
period tables with a revision every three years (Belloni and Maccheroni 2013), Poland use annual
period tables (Ch lón-Domińczak et al. 2012), while Latvia uses projected tables (Vanovska 2006).
Sweden uses life span statistics for the five-year period preceding the year when the individual reached
age 60, if the pension is withdrawn before age 65, and age 64 if the pension is withdrawn after 65
(Swedish Pension Agency 2015), which do not necessarily coincide with the mortality observed during
retirement.

The pension for the second generation of retirees aged 4, P 4
t , corresponds to the indexed first

period pension, that is:

P 4
t = P 3

t−1 (1 + λt)At︸ ︷︷ ︸
adjusted indexation

(3.9)

The first component of the adjusted indexation, λt, is the observed value at time t of the gov-
ernment’s indexation process, λ∗t , used in the annuity calculation. This value may differ from the

10Valdés-Prieto (2000) shows that the notional capital for the retiring cohort is proportional to the income from
contributions in a continuous setting. Vidal-Meliá et al. (2015) show that the income from contributions coincides
with both the accrued and forecasted debt in a discrete setting when the system is in steady state.
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expected value Et−1 [1 + λ∗t ] considered when the annuity is calculated at time t− 1, disturbing the
effective longitudinal cohort equilibrium. The same reasoning holds for the theoretical discounting
rate r∗t and observed notional rate rt.

The second component, At, corresponds to the actuarial adjustment applied to the observed
indexation which ensures actuarial fairness or longitudinal equilibrium. We add this adjustment to
the observed indexation here to later show that an actuarially fair system is not necessarily liquid
or solvent.11 The adjustment, At, is derived in Appendix A and is represented by the following
expression:

At =
Et−1

[
p∗t

1+λ∗t
1+r∗t

]
pt

1+λt
1+rt

(3.10)

As can be seen, this adjustment factor At, which captures the differences between the theoretical
and the observed values, is a combination of an economic and a longevity factor. The economic
adjustment arises due to the difference between the observed notional rate and observed indexation
rate, i.e., rt and λt respectively, with the theoretical discount and indexation rates, i.e., r∗t and λ∗t
respectively. This adjustment is used in practice in Sweden. The annuity, as calculated by the
Swedish Pension Agency, assumes a discounting rate of 1.6% (Swedish Pension Agency 2015). This
front-loading decreases the value of the annuity and provides a higher initial pension at the expense
of a potential lower indexation during retirement. It benefits the younger-than-average pensioner and
creates a risk of relative poverty for the older elderly (Ch lón-Domińczak et al. 2012). The indexation
of pensions is therefore adjusted to the deviation of the actual notional rate from the 1.6% per year
factored in the annuity divisor.

The longevity adjustment compares the observed survival probability pt with the theoretical
survival probability p∗t . So far, this adjustment is not found in any of the countries which have
implemented NDCs. However Alho et al. (2013) argue that this kind of adjustment would be one of
the solutions to the systematic miscalculation of the life expectancy in practice.

Finally, the pension expenditures, denoted by Pt, is described by the following expression:

Pt = P 3
t N

3
t + P 3

t−1 (1 + λt)AtN
4
t =

NPS3
t

at
+ pt

NPS3
t−1

at−1

(1 + λt)At

= Ct

KN
t

at
+
KN
t−1

at−1

pt (1 + λt)At
1 + rt︸ ︷︷ ︸
at−1−1


︸ ︷︷ ︸

KP
t

(3.11)

The pension expenditures, Pt, is also proportional to the total contribution Ct paid during the
same period.

The following proposition shows that the NDC scheme may not be liquid even when the indexation
ensures actuarial fairness and/or the notional rate incorporates demographic and salarys changes.
Our result extends Valdés-Prieto (2000) when the notional capital is converted to a payment stream
paid during retirement.

Proposition 1. In general, contributions are not equal to pension expenditures in this 4-period OLG
unfunded dynamic model, that is Ct 6= Pt ∀t.

11Note that this adjustment would be unnecessary if the notional capital at retirement was paid as a lump sum as
done in Valdés-Prieto (2000). Furthermore, the adjustment At, allows us to develop expressions which are independent
of the government’s assumptions regarding the annuity.

7



Proof. This result is proven by counterexample. Let us assume that nt = n=cte and gt = g=cte ∀t
and deterministic. Let us assume further that p∗t 6= p∗s for s 6= t and that the theoretical indexation
and discount interest rate coincide, that is, λ∗s = r∗s ∀s. Then the notional capital of the retiring
cohort is represented as follows:

NPS3
t = CtK

N
t = Ct

S1
0 · (1 + n)

S1
0 · (1 + n) + S2

0

+
S2

0

S1
0 · (1 + n) + S2

0

= Ct

Under this setting the expression of the annuities are:

at = 1 + p∗t+1

at−1 = 1 + p∗t

The pension expenditures are then represented as follows:

Pt = Ct

(
1

at
+
at−1 − 1

at−1

)
= Ct

(
1 + 2p∗t + p∗tp

∗
t+1

1 + p∗t + p∗t+1 + p∗tp
∗
t+1

)
6= Ct

The income from contributions does not equal the pension expenditures when the parameters are
chosen as above.

3.2 Solvency ratio

The solvency ratio (also called balance ratio), that emerges from the actuarial balance sheet (“Swedish
method”) is defined as the relationship between assets and liabilities as follows:

SRt =
CAt + F−t

Vt
(3.12)

where
CAt corresponds to the contribution asset at time t.
Vt represents the liabilities to all participants in the pension system at time t.
F−t is given by (3.2).
Assets are calculated using an accounting measure known as the Contribution Asset. This method

of valuing assets was derived for a steady state population. In Sweden, both assets and liabilities are
valued based on verifiable cross-sectional facts, meaning that no projections are made. This should
not be interpreted as a belief that all the basic parameters determining the items on the balance
sheet will remain constant but as a conscious policy to prefer cross-sectional data. Changes are not
included until they occur and can be verified. Then, these changes are incorporated into the balance
sheet on an annual basis. Swedish authorities note that system solvency does not depend on either
assets or liabilities but on the relationship between these two via the solvency ratio. Therefore,
valuing assets and liabilities with cross-sectional data is adequate if applied consistently.12

3.2.1 The Contribution Asset

The contribution asset was firstly defined by Settergren and Mikula (2005) as the product of the
current income from contributions Ct and a function called the ‘turnover duration’. The contribution
asset, CAt is represented as follows:

CAt = Ct × TDt (3.13)

12See Settergren and Mikula (2005) for the notional model, Boado-Penas et al. (2008) and Boado-Penas and Vidal-
Meliá (2013) for the defined benefit PAYG system and Bommier and Lee (2003) for a general transfer model under
the golden rule.
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where

TDt = ARt − ACt =
3 · P 3

t N
3
t + 4 · P 3

t−1 (1 + λt)AtN
4
t

P 3
t N

3
t + P 3

t−1 (1 + λt)AtN4
t

− 1 · πS1
tN

1
t + 2 · πS2

tN
2
t

πS1
tN

1
t + πS2

tN
2
t

= 2 +
KN
t−1

KP
t

at−1 − 1

at−1

− S2
0

KC
t

The first component of the turnover duration, ARt , is the weighted average age of pensioners
and ACt is the weighted average age of contributors. The turnover duration represents the ‘the
average time a unit of money is in the system’ as stated in Palmer (2006) assuming that economic,
demographic and legal conditions remain constant.13 In other words, it is the time in years that is
expected to elapse before all system liabilities are renewed or rotated.

3.2.2 The Liabilities

Under a NDC framework, liabilities are calculated using the accrual method, also known as retrospec-
tive, whose value coincides with the current cohort’s notional capital. The value of the liabilities using
the forecasted method produces the same results only if the adjustment At is used. See Appendix B
to see how the adjustment ensures actuarial fairness for all cohorts.

The sum of the liabilities of all participants at time t, Vt, can be split into the liabilities to
contributors, V 1

t and V 2
t , and the liabilities towards the retirees, V 3

t and V 4
t , that is:

V 1
t = NPS1

t = 0

V 2
t = NPS2

t = πS1
t−1N

1
t−1 (1 + rt) = Ct

S1
0(1 + nt−1)

KC
t−1

V 3
t = NPS3

t = CtK
N
t

V 4
t = NPS4

t = (NPS3
t−1 − P 3

t−1) (1 + rt) = CtK
N
t−1

at−1 − 1

at−1

Then the total liabilities, Vt, are:

Vt = Ct

(
S1

0(1 + nt−1)

KC
t−1

+KN
t +KN

t−1

at−1 − 1

at−1

)
= Ct

(
2 +

S1
0(1 + nt−3)

KC
t−3

−
KN
t−1

at−1

)
︸ ︷︷ ︸

KV
t

(3.14)

The liabilities are proportional to the current contributions of the active population.
The following result demonstrates that the pension scheme is not generally solvent in absence of

a buffer fund.

Proposition 2. In general, the contribution asset does not equal liabilities in this four-period OLG
unfunded dynamic model, that is CAt 6= Vt ∀t.

Proof. This result is proven by counterexample. Let us assume that nt = n=cte and gt = g=cte ∀t
and deterministic. The working population and salarys are then not time dependent and are denoted
by (1 + n) and Si0 for i = 1, 2. Let us assume further that p∗t 6= p∗s for t 6= s and that the theoretical
indexation and discount rate coincide, that is, λ∗s = r∗s ∀s. The notional capital of the retiring cohort
at time t is then equal to Ct as shown in Proposition 1.

13For more details, see Boado-Penas et al. (2008) and Settergren and Mikula (2005).
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The liabilities and contribution asset at time t can be respectively represented as follows:

Vt = Ct

(
2 +

S1
0 · (1 + n)

S1
0 · (1 + n) + S2

0

− 1

at−1

)
CAt = Ct

(
2 +

1

KP
t

at−1 − 1

at−1

− S2
0

S1
0 · (1 + n) + S2

0

)
The liabilities at time t, Vt, are equal to the contribution asset, CAt, when the following expression
holds:

1− 1

at−1

=
1

KP
t

at−1 − 1

at−1

Rearranging and replacing the annuities by their explicit expression we obtain:

1− 1

1 + p∗t
=

(1 + p∗t+1)(1 + p∗t )

(1 + p∗t ) + p∗t (1 + p∗t+1)

p∗t
1 + p∗t

(3.15)

which only holds when p∗t+1 = p∗t .

4 Design of automatic balancing mechanisms

As demonstrated in the previous section, a notional defined contribution pension system does not
guarantee liquidity or solvency by design in a dynamic environment. The desired liquidity and sol-
vency objectives can be reached through automatic balancing mechanisms (ABMs). The purpose of
successive application of ABMs is to provide automatic financial stability, which can be defined as
‘the capacity of a pension system to adapt to financial turbulence without legislative intervention’
(Settergren 2013). It is understood that turbulence can be caused by economic, financial or demo-
graphic shocks that affect the system’s financial equilibrium. These ABMs are used to depoliticize
the management of PAYG systems by adopting measures suited to long-term planning.

The following questions arise when designing an ABM:

• Which type of ABM should be applied?

• Should an ABM be symmetric or asymmetric?

This section will focus on two types of ABMs. The first mechanism re-establishes liquidity to the
system, whereas the second mechanism restores solvency as defined in the previous section. Both
mechanisms will be considered for symmetric and asymmetric designs, although symmetric cases
are rarely applied in practice. Palmer (2013) states that under a symmetric ABM any surplus that
might arise would be automatically distributed. Alho et al. (2013) state that the mechanism can be
symmetric in the sense that these adjust for both positive and negative deviations according to the
financial health indicator.

Only Sweden, among the four NDC countries has put in place an ABM to restore the health of
the system (Ch lón-Domińczak et al. 2012). The ABM is asymmetric, as it is only triggered when
the solvency ratio is lower than 1. However, the Swedish ABM allows for recovery. After a period
of low returns as a consequence of the mechanism, a period of higher-than-normal returns follows.14

Auerbach and Lee (2006) examine the stability of eight pension systems with a particular attention
to the differences between asymmetric and symmetric cases in the Swedish context. In this sense,
the asymmetric Swedish balance mechanism, applied only when the system is underfunded, could
lead to the accumulation of surpluses when the system is overfunded.

14For more detailed explanations, see Barr and Diamond (2011).
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ABMs adjust the notional factor with a time-dependent variable to obtain liquidity or solvency
ratios of at least unity at all times, depending on whether it is symmetric or asymmetric. The adjusted
notional factor applied to the system to attain the desired equilibrium will be Izt = (1 + rt)B

z
t , where

z = LR when the ABM for liquidity equilibrium is used and z = SR when the ABM for solvency
equilibrium is used. ABMs affect contributors by adapting the notional factor by which their notional
capital is accumulated and retirees through changes in pension indexation.

At time t formulas for the notional capital NPS3
t (3.6), pension expenditures Pt (3.11), buffer

fund F−t (3.2), contribution asset CAt (3.13), liabilities Vt (3.14) and adjustment factor At (3.10)
as well as their related factors KN

t , KP
t , TDz

t , and KV
t correspond to formulas NPS3,z

t (C.1), P z
t

(C.2), F−,zt (C.3), CAzt (C.4), V z
t (C.5), Azt (C.6)15, KN,z

t (C.7), KP,z
t (C.8), TDz

t (C.9), and KV,z
t

(C.10) in the presence of an ABM with z = LR, SR. Formula (3.3) corresponding to the income from
contributions Ct remains the same as it is not affected by the notional rate. The detailed formulae
are presented in Appendix C.

4.1 The ABM for the liquidity ratio

This ABM is designed to attain a liquidity ratio of 1. The notional factor is therefore affected by
BLR
t ; therefore, ILRt = (1 + rt)B

LR
t . The automatic mechanism, taking into account expression 13,

can be written as follows:

BLR
t =

Ct + F−,LRt

CtK
P,LR
t

(4.1)

If the ABM is symmetric the pension scheme behaves as a pure defined contribution system,
providing participants with available funds in both good and bad times.

If the ABM is asymmetric, participants do not benefit from positive economic shocks and funds
can accumulate according to formula (C.3) for z=LR.

4.2 The ABM for the solvency ratio

This ABM is designed to restore the system’s solvency by reducing the growth of the pension lia-
bilities, that is, pension payments and contributor’s notional capital. The adjusted notional factor
is then ISRt = (1 + rt)B

SR
t . The contribution asset at time t, CASRt does not depend on the ABM

BSR
t at time t, but depend on those applied before t, as noted in formula (C.4) and (C.9). Only the

liabilities, V SR
t , depend on the ABM factor at time t. The automatic mechanism in this case can be

represented as follows:

BSR
t =

CASRt + F−,SRt

V SR
t

(4.2)

This ABM might accumulate some funds because a solvency ratio equal to or greater than 1 does
not imply a liquidity equal to or greater than 1 (Alonso-Garćıa 2015).

5 Numerical illustration

This section presents a numerical example and analyses the behaviour of the notional factor under
both ABMs in a stochastic environment. The effects of these ABMs are evaluated in terms of the
expected value and variance of the notional factor and the expected value of the ratio of the buffer
fund to contributions.16

15Note that the results presented in B still hold in presence of an automatic balancing mechanism.
16The ratio provides more insights than examining the nominal value of the fund because we can easily compare to

values of contributions.
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The salary and population processes are given by the following expression:

1 + ns = en−
σ2
P
2

+σP (WP
s −WP

s−1) (5.1)

1 + gs = eg−
σ2
W
2

+σW (WS
s −WS

s−1) (5.2)

The stochastic process 1 + ns (resp. 1 + gs) is distributed log-normally with mean n− σ2
P/2 and

standard deviation σP (resp. with mean g − σ2
W/2 and standard deviation σW ) ∀t. The processes

W P and W S are correlated Wiener processes, that is, the expected value of W P (s)W S(s) is equal to
ρ · s.

The demographic and the salary processes, 1+ns and 1+gs, respectively, are stationary stochastic
processes, which means that their distributions do not depend on time. This holds in the absence
of exogenous shocks, such as a drop in fertility or a baby boom. For instance, if the demographic
process at time t is affected by a one-time exogenous shock δ, the demographic process at time t is
represented by 1 + n∗t = (1 + nt) (1 + δ). This special case will be studied in Subsection 5.2.

The ABM is applied at time t for the first time. Before this moment t, no funds have accumulated.
The details of the theoretical framework and recurring formulas used for the calculations as well as
further details concerning the joint distribution of the random vectors are presented in Appendix C.

To calculate the expected value and variance of the notional factor and the expected value of the
ratio of the buffer fund to the contributions, we use the closed-form expressions developed above in
Section 2 and the tools described in Appendix C.

We explore these results under symmetric and asymmetric designs. In the symmetric case, the
notional factor increases when the system is liquid and/or solvent and decreases during periods of
deficit and/or insolvency. In the asymmetric design, changes in the notional factor occur only during
deficit and/or insolvency.

The following are the main assumptions of our numerical model:

• Two generations of contributors and two generations of pensioners coexist at each moment in
time.17

• At time t=0, the salary is 30,000 for individuals aged y, and 45,000 for those aged y+1.

• The entry population process is log-normally distributed, where the percentage drift and volatil-
ity R and σP equal 0.25 percent and 5 percent, respectively.

• The salary process follows a log-normal distribution, where the percentage drift and volatility
γ and σW equal 1.5 percent and 10 percent, respectively.

• The Wiener processes for salarys and population are correlated with ρ = −0.25. The negative
correlation reflects the fact that cohort size negatively affects earnings (see Brunello (2009)).

• The return of the buffer fund it is 0 percent for all periods.

• The probability of dying equals 0.5 for the first generation of pensioners and 1 for the second
generation. There is no mortality before retirement. Three different scenarios (base, up and
down) for mortality are considered. First, we consider constant mortality rates (base scenario).
Second, the survival probability is assumed to increase 0.005 per period (up scenario). Third,
the survival probability is assumed to decrease 0.005 over time (down scenario).

• The theoretical indexation rate λ∗t is equal to the theoretical discounting rate r∗t .

17Unemployment is not considered in our analysis, therefore the number of contributors at ages 1 and 2 coincides
with the number of individuals in the general population at those ages.
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In this section two different life tables are studied. First, we study the system when the future
longevity patterns are known and incorporated in the annuity calculation (Case 1). This corresponds
to p∗t=pt in the annuity formula. The Case 2 addresses the mortality risk when the government uses
current mortality data in the annuity and does not allow for the longevity adjustment in the pension
indexation, which makes the system no longer actuarially fair. This corresponds to p∗t=pt−1 in the
annuity formula. Mathematically, the annuity for the Case 1 is a1

t = Et [1 + pt+1], whereas the
annuity for the Case 2 is a2

t = Et [1 + pt].
The results are obtained through Monte Carlo simulations for 1 million randomly generated paths.

The analysis is conducted for 8 periods, which represents two full population renewals.
In the first column of Figure 2, we observe that the value of the expected notional factor under

the liquidity ratio ABM is higher than under the solvency ratio ABM. The solvency ratio ABM is
not triggered in this scenario; therefore, the notional factor under a non-ABM provides the same
results.

However, in a scenario of increasing longevity, the second column of Figure 2, the expected
notional factor is higher in the presence of either ABM. This result is expected because the longevity
trend is known in advance and the initial pension is reduced to adapt to the new mortality pattern.
Consequently, the expected value of the buffer fund with ABMs, Figure 4, is always lower than
the non-ABM case due to the increase in the notional factor after applying an ABM. The opposite
pattern is observed with the decreasing longevity trend, where the ABMs decrease the expected
notional factor while maintaining the value of the buffer fund near zero.

Under an asymmetric design (Figure 3), it is not surprising that the activation of an ABM reduces
the expected value of the notional factor in all longevity scenarios because the asymmetric ABMs
are designed to be capped at 1. When we calculate the average value of the million scenarios, values
less than 1 will have higher relative weights, which significantly decrease the expected value of the
notional factor. This reduction is greater for the solvency ratio ABM. In the symmetric design, this
ABM also has the lowest notional factor variance (Figure 8 and Table 2).

In all scenarios, the expected value of the notional factor under the liquidity ratio ABM and
variance is higher than under a solvency ratio ABM (Figure 8 and 9). In all scenarios, the solvency
ratio ABM produces the lowest values of the expected notional factor and its variance, which are
depicted in Table 2.

The average, 75, 95 and 99 percentiles over the entire study period indicate that the preferred
ABM is the liquidity ratio when the mechanism is symmetric and no ABM when the mechanism is
asymmetric.18 This result is consistent with the expected values provided Figure 2 and 3. In the
asymmetric case, the highest expected value occurs with the absence of an ABM.

5.1 Mortality risk

The system is exposed to mortality risk to the extent that we do not know the survival probability
of individuals. It is well understood that this risk has an impact on the financial health of pension
systems. Hence, Case 2, in which the current historical values of mortality are used, is examined to
evaluate to what extent mortality risk affects our results. In this case, mortality rates are based on
verifiable facts; therefore, current longevity is used even though it is expected to change. Note that
in Case 2 we no longer have a fair pension system.

As indicated in Figures 2, 8 and 4 the results vary if current mortality rates are used (Case 2)
rather than prospective mortality rates (Case 1). In both symmetric and non-symmetric designs,
under increasing longevity, the value of the expected notional factor is lower after applying an ABM
because the ABMs correct errors introduced by using current mortality rates, which resulted in
higher initial pensions. Note that the notional factor decreases further using a non-symmetric ABM.
The contrary occurs in Figure 2 under decreasing longevity for a symmetric mechanism. For the
asymmetric case, Figures 3, 9 and 5, the explanation is the same as that for Case 1 for the up
scenario. The ABMs are capped at 1, which produces a lower global average by assigning lower

18The numerical results associated with the percentiles are not depicted to limit the length of the paper.
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values higher relative weights. As in case 1, the expected value of the notional factor and its variance
under the liquidity ratio ABM is higher than under the solvency ratio ABM for both symmetric and
asymmetric designs (Table 2).

The effect of mortality on the expected value of the fund is straightforward for the symmetric
case without ABMs, depicted in Figure 4. The expected value in the Up (Down) scenario enters a
state of systematic debt (surplus), whereas with the introduction of an ABM, the expected value
of the fund approaches zero. In Case 1, the opposite pattern can be clearly observed through the
expected value of the buffer fund depicted in Figure 4.

In the asymmetric case, Figure 5, ABMs increase the expected value of the fund. If longevity
increases but current mortality rates are used in the pension calculation, the amount of the initial
pension increases. This results in higher pension expenditures and a corresponding decrease in the
value of the fund. The ABMs consequently decrease the notional factor to establish liquidity or
solvency. Finally, we observe that asymmetric mechanisms for Cases 1 and 2, the expected value
of the fund increases more than that of its symmetric counterpart because the much lower average
notional factor systematically increases the size of the buffer fund. Note that the final values of the
expected value of the fund in the asymmetric design approach 2, which means that the value of the
fund is two times greater than the value of contributions at the same time. This value implies that
asymmetric ABM may be too conservative and lead to excessive capital accumulation under our
assumptions.

5.2 Baby boom

To evaluate a demographic shock, we examine the impact of one-time positive exogenous shock that
affects the entrant population at time t. This shock is denoted by δ and is assumed to have a value
of 10.5 percent. The effects of this shock are illustrated by a so-called baby boom case.

This model is based on a stationary stochastic process, which means that one-time shocks can
only occur exogenously. We included a positive shock, which replicates the effect of a fertility boost
as indicated by the phenomenon’s name, baby boom. We evaluate the financial health of the pension
system after a baby boom and observe the ABM reaction. Figure 6 indicates the expected value
of the notional factor and Figure 7 indicates the ratio of the fund to the contribution level for the
symmetric design.19

We observe that the notional factor increases substantially from the average value of approxi-
mately 1.018 due to the sudden entrant population increase, which increases the total covered salary
bill substantially. Once the baby boom generation retires, there is no longer an effect on the notional
factor because the entry population returns to the relative stationary level after the exogenous shock.
Note that the notional factor in absence of ABM does not depend on the retired population but on
the contributors, which explains that the level of the notional factor goes back to the pre-shock level
once that the shocked generation retires.

The liquidity ratio balance mechanism increases the notional rate during the first two periods
due to the surplus created by the higher relative contribution level. However, once the baby boom
generation retires, this factor decreases significantly to avoid debt.

The solvency ratio balance mechanism responds differently to this shock due to its construction.
When the baby boom generation enters the pension system, turnover duration increases because
it assumes that the future population will have the same composition, that is, it behaves as if the
current shock is permanent. This anticipation increases the level of the notional factor affected by the
solvency ratio during the first period, which affects both contributors and retirees. This first leads
to debt as the expenditures increase above its sustainable levels. This increase affects the solvency
balance mechanism during the second period, which decreases the notional factor. The decrease is
sufficient to restore a surplus level, which will positively affect the notional factor. The notional rate
affected by both balance mechanisms approaches the level in absence of adjustments once the shock
generation exits the pension system.

19The asymmetric case results are omitted because the explanation is similar to the non-baby boom case.
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In absence of ABMs, the system only partially regulates itself after the shock population exits the
system, as indicated by the triangle in Figure 7. For instance, in Case 1 of the longevity base scenario,
we observe that the triangle occurs because pension expenditures equal contributions as observed
in the expression (3.11). The pre-contribution fund equals 0 during the second period because we
assume an initial fund of 0. The level of the notional rate, although higher than its normal levels,
is insufficient to attain fund neutrality. Therefore, a surplus occurs. However, this surplus will be
used to pay the pensions to the higher number of baby boom pensioners until they leave the pension
system, decreasing the fund to a level approaching but not reaching zero. This interpretation is
independent of the market interest rate and is due to the simple nature of the shock.

Finally, our results are robust to alternative assumptions.20 For simplicity, we provide only some
of the representative results.

6 Conclusion

This paper describes how liquidity and solvency indicators in notional defined contribution accounts
are affected by fluctuations in economic and demographic conditions in a stochastic environment.
The analysis uses a four-generation model in which two generations are contributors and two gen-
erations are pensioners. The consideration of four cohorts introduces heterogeneity to the pension
system while maintaining a tractable dependence structure. Furthermore, we can draw interesting
conclusions without the drawback of heavier computation.

Under this scenario, the notional rate, defined as the rate of increase of the covered salary bill
(Börsch-Supan 2006), that indexes the accumulated notional capital is affected by both salary and
population processes. The pension is revalued by an adjusted indexation process that guarantees
longitudinal equilibrium among the cohorts inspired by Alho et al. (2013). However, this equilibrium,
also referred as actuarial fairness, does not guarantee liquidity or solvency of the pension system in
a dynamic framework. Consequently, some ABMs should be triggered.

An ABM is a predetermined measure established by law to be applied immediately according to
an indicator, such as solvency or liquidity (Vidal-Meliá et al. 2010). The purpose of an ABM is to
allow the pension system to adapt to financial turbulence without legislative intervention. This paper
considers two ABMs. The first mechanism makes income from contributions equal pension expendi-
tures (liquidity ratio ABM), and the second mechanism, based on the current Swedish adjustment,
makes the assets of the pension system equal to liabilities (solvency ratio ABM). The results are
evaluated in terms of the expected values and variances of the notional factor and buffer fund and
are calculated under both symmetric and asymmetric designs. In most of cases, the introduction of
an ABM reduces the volatility of the fund. The solvency ratio ABM yields the lowest value of the
notional factor’s variance and the lowest expected value.

The paper also indicates how longevity risk affects our analysis. It might be beneficial to consider
longevity trends to calculate annuities. We find that there are clear advantages of introducing a
symmetric ABM in the case of unanticipated longevity increase. This adjustment would avoid debt
accumulation in absence of ABMs. Furthermore, note that asymmetric ABMs can lead to significant
capital accumulation after two population renewals. This is consistent with the fact that an ‘NDC
scheme does little to prevent significant asset accumulation (...) on average’ as argued by Auerbach
and Lee (2006).

These conclusions are robust to a one-time exogenous demographic shock. Additionally, the
notional system that uses the rate of increase of the contribution base as the compounding factor
can regulate itself almost completely in presence of such a shock, that is, once the shock generation
exists the pension system, the level of debt or surplus approaches the level in absence of a shock. The
choice of automatic mechanism depends on the preferences of the government in terms of expected
value, variance of the notional rate and level of the buffer fund.

20We also addressed the possibility that contributors aged 2 earn less than contributors aged 1 do. Furthermore,
we considered the possibility of a negative notional rate with a negative sum of g and n. Finally, we examined a case
with negative parameter R as well as a case with a negative exogenous shock δ.
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Finally, based on the two ABMs presented in this paper, at least three important directions for
future research can be identified:

• To identify the ABM preferences of pension system participants and legislators as well as
of contributors and pensioners. According to Barr & Diamond (2011), the current Swedish
balancing mechanism has the undesirable consequence of favouring workers over retirees.

• To present an ABM that smooths volatility over the period and partially transfers to future
system participants, and to compare participant and legislator preferences towards this ABM.

• To extend the four OLG model to a real society and assess the impact of economic, financial
and demographic conditions on the ABM.
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Table 1: Population evolution in terms of the entry age x =1

Agea\ Time t t+ 1 t+ 2 t+ 3

1 N1
t N1

t (1 + nt+1) N1
t+1(1 + nt+2) N1

t+2(1 + nt+3)
2 N1

t−1 N1
t N1

t (1 + nt+1) N1
t+1(1 + nt+2)

3 N1
t−2 N1

t−1 N1
t N1

t (1 + nt+1)
4 ptN

1
t−3 pt+1N

1
t−2 pt+2N

1
t−1 pt+3N

1
t

aSource: the authors.

1 2 3 4

Contributors Retirees

Figure 1: A four OLG framework at time t. The figure illustrates the four-period OLG dynamics at
time t when two generations of contributors and two generations of pensioners coexist.

Figure 2: The expected value of the notional factor after the introduction of an ABM for the
symmetric case: without ABM (dotted black line), liquidity ratio ABM (dark gray squares) and
solvency ratio ABM (light gray rhombuses). Note: The first row of the graphic corresponds to Case
1 and the second row to Case 2. Source: the authors.
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Figure 3: The expected value of the notional factor after the introduction of an ABM for the non-
symmetric case: without ABM (dotted black line), liquidity ratio ABM (dark gray squares) and
solvency ratio ABM (light gray rhombuses). Note: The first row of the graphic corresponds to Case
1 and the second row to Case 2. Source: the authors.

Base Up Down

Figure 4: Expected value of the ratio between the fund and contributions after the introduction
of an ABM for the symmetric case: without ABM (dotted black line), liquidity ratio ABM (dark
gray squares) and solvency ratio ABM (light gray rhombuses). Note: The first row of the graphic
corresponds to Case 1 and the second row to Case 2. Source: the authors.
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Figure 5: Expected value of the ratio between the fund and contributions after the introduction of
an ABM for the non-symmetric case: without ABM (dotted black line), liquidity ratio ABM (dark
gray squares) and solvency ratio ABM (light gray rhombuses). Note: The first row of the graphic
corresponds to Case 1 and the second row to Case 2. Source: the authors.
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Figure 6: Expected Value of the notional factor after a baby boom with an ABM: no ABM (dotted
black line), liquidity ratio ABM (dark gray squares) and solvency ratio ABM (light gray rhombuses).
Note: The first row of the graphic corresponds to Case 1 and the second row to Case 2. Source: the
authors.
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Figure 7: Expected Value the ratio between the fund and contributions after a baby boom with an
ABM: no ABM (dotted black line), liquidity ratio ABM (dark gray squares) and solvency ratio ABM
(light gray rhombuses). Note: The first row of the graphic corresponds to Case 1 and the second
row to Case 2. Source: the authors.
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A Derivation of the longitudinal adjustment factor

The notional capital is transformed into an annuity at retirement. Therefore, some assumptions
regarding the future must be made to calculate annuities. However, observed values rarely coincide
with the expected values. In this case, longitudinal equilibrium is not reached in general, that is,
individuals receive less or more than what they contributed. Forecasted liabilities (calculated by
considering the present value of future cash flows) are then not equal to accrual liabilities (calculated
by considering the compounded value of past cash flows).

This appendix shows that adjustments to the pension indexation can be made in order to attain
this longitudinal equilibrium. However, it implies that indexation of pensions in practice differs
among retired cohorts, which may not be desirable when various generations coexist. The processes
r∗t , p

∗
t and λ∗t represent respectively the theoretical notional rate, mortality rate and indexation of

pensions for period t. The processes rt, pt and λt denote, respectively, the observed notional factor,
which could be affected by some ABM Bz

t , mortality rate and indexation rate at time t. In this
framework, the annuity is given by (3.8).

The aim is to produce equivalence between accrual and forecasted liabilities for all cohorts, in
particular, for the cohort aged 3 at time t. The accrual liability V 3,A

t is denoted by (A.1) and
the forecasted liability V 3,F

t is denoted by (A.2). The adjustment factor at time t + 1 by At+1 is
represented as follows:

V 3,A
t = NPS3

t (A.1)

V 3,F
t = P 3

t N
3
t + P 3

t N
4
t+1

1 + λt+1

1 + rt+1

At+1

= NPS3
t

1

at

(
1 + pt+1

1 + λt+1

1 + rt+1

At+1

)
(A.2)

The following adjustment factor makes both liabilities equivalent:

At+1 =

(
1 + rt+1

1 + λt+1

)
1

pt+1

Et
[
p∗t+1

(
1 + λ∗t+1

1 + r∗t+1

)]
(A.3)

When the mortality, demographic and economic processes are independent, the adjustment factor
At+1 (A.3) can be rewritten as follows:

At+1 =
Et
[

1+λ∗t+1

1+r∗t+1

]
1+λt+1

1+rt+1︸ ︷︷ ︸
Economic adjustment

Et
[
p∗t+1

]
pt+1︸ ︷︷ ︸

Longevity adjustment

(A.4)

The economic adjustment affects all retirees because the calculation only considers the difference
between the theoretical and the observed notional and indexation rates. However, the second part,
which corresponds to the longevity adjustment, would differ by retired cohort because it depends
on the theoretical mortality at the time of annuity calculation and the experienced mortality of the
same cohort during retirement.

B Derivation of the accrual and forecasted liabilities

In this section, the accrual and forecasted liabilities are calculated for each cohort at time t. The
accrual (forecasted) liabilities for the cohort aged x at time t will be denoted by V x,A

t (V x,F
t ). These

liabilities are calculated before any payment is made.
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The following are the liabilities for the contributing cohort aged 1:

V 1,A
t = 0×N1

t = 0 (B.1)

V 1,F
t =

P 3
t+2N

3
t+2

(1 + rt+1) (1 + rt+2)
+

P 3
t+2pt+3N

3
t+2(1 + λt+3)At+3

(1 + rt+1) (1 + rt+2) (1 + rt+3)

− πS1
tN

1
t −

πS2
t+1N

2
t+1

1 + rt+1

=
NPS3

t+2

(1 + rt+1) (1 + rt+2)

1 + pt+3
1+λt+3

1+rt+3
At+3

at+2

−
NPS3

t+2

(1 + rt+1) (1 + rt+2)
= 0 (B.2)

The following are liabilities for the contributing cohort aged 2:

V 2,A
t = πS1

t−1N
1
t−1 (1 + rt) (B.3)

V 2,F
t =

P 3
t+1N

3
t+1

1 + rt+1

+
P 3
t+1pt+2N

3
t+1(1 + λt+2)At+2

(1 + rt+1) (1 + rt+2)
− πS2

tN
2
t

=
NPS3

t+1

1 + rt+1

1 + pt+2
1+λt+2

1+rt+2
At+2

at+1

− πS2
tN

2
t

= πS1
t−1N

1
t−1 (1 + rt) (B.4)

The following are liabilities for the retired cohort aged 3:

V 3,A
t = NPS3

t (B.5)

V 3,F
t = P 3

t N
3
t + P 3

t (1 + λt+1)At+1N
4
t+1

1

1 + rt+1

= NPS3
t

1 + pt+1
1+λt+1

1+rt+1
At+1

at
= NPS3

t (B.6)

Finally, the following are the liabilities for the retired cohort aged 4:

V 4,A
t =

(
NPS3

t−1 − P 3
t−1N

3
t−1

)
(1 + rt) = NPS3

t−1

at−1 − 1

at−1

(B.7)

V 4,F
t = P 4

t N
4
t = P 3

t−1ptN
3
t−1 (1 + λt)At = NPS3

t−1

at−1 − 1

at−1

(B.8)

C Theoretical framework

Introducing ABM in the pension scheme changes the formulae presented in Section 3. The superscript
z denotes the kind of ABM that is implemented, with z = LR representing the liquidity ratio
and z = SR representing the solvency ratio. Note that the notional factor and the income from
contributions are not affected by the ABMs.
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NPS3,z
t = CtB

z
tK

N,z
t (C.1)

P z
t = CtB

z
tK

P,z
t (C.2)

F−,zt = F+,z
t−1 (1 + it) = F−0

t∏
j=1

(1 + ij) +
t−1∑
j=0

(Cj − P z
j )

t∏
k=j+1

(1 + ik) (C.3)

CAzt = CtTD
z
t (C.4)

V z
t = CtB

z
tK

V,z
t (C.5)

Azt =
Et−1

[
p∗t

1+λ∗t
1+r∗t

]
pt

1+λt
1+rt

Bz
t (C.6)

where

KN,z
t =

S1
0(1 + nt−2)

KC
t−2

Bz
t−1 +

S2
0

KC
t−1

(C.7)

KP,z
t =

KN,z
t

at
+Bz

t−1K
N,z
t−1

at−1 − 1

at−1

(C.8)

TDz
t = 2 +Bz

t−1

KN,z
t−1

KP,z
t

at−1 − 1

at−1

− S2
0

KC
t

(C.9)

KV,z
t = 1 +Bz

t−1

{
S1

0(1 + nt−2)

KC
t−2

+KN,z
t−1

at−1 − 1

at−1

}
(C.10)

Due to the structure of the ABMs BLR
t (4.1) and BSR

t (4.2), it is not possible to specify their
probability distributions. Therefore, the expected value and variance can’t be calculated through
analytical formulas. However, given two random variables X and Y and a function h(X, Y ), the
expected value of this function can be expressed directly in terms of the transformation function
h(X, Y ) and the joint density fX,Y (x, y) of X and Y : E[h(X, Y )] =

∫∞
−∞

∫∞
−∞ h(x, y)fX,Y (x, y)dxdy

(see Papoulis (1991)). Furthermore, if the two random variables X and Y are independent, the joint
density is fX,Y (x, y) = fX(x)fY (y). This property can be applied to our problem. In the remainder
of the appendix we will present the recursive formulas used in our framework.

Denote the transformation of the multivariate random vector Xs at time s > t for the ABM
z = LR, SR as hzt,s(xs). Note that t indicates the time when the ABM is first implemented. The
entries’ and salarys’ rate of increase, 1+ns and 1+gs respectively, will be rewritten in the remainder
of this section in terms of Ds and Gs respectively in order to shorten the lengthy notation. The
following formulae presents the explicit dependence of (C.7-C.9) to the different demographic and
salary processes Ds and Gs:

KC
s = fKC

s
(Ds) (C.11)

KN,z
s = fKN,z

s
(Ds−1, Ds−2, h

z
t,s−1(xs−1)) (C.12)

KP,z
s = fKP,z

s
(Ds−1, Ds−2, Ds−3, h

z
t,s−1(xs−1), hzt,s−2(xs−2)) (C.13)

TDz
s = fTDzs (Ds, Ds−1, Ds−2, Ds−3, h

z
t,s−1(xs−1), hzt,s−2(xs−2)) (C.14)

KV,z
s = fKV,z

s
(Ds−2, Ds−3, h

z
t,s−1(xs−1), hzt,s−2(xs−2)) (C.15)

Izs = fIzs (Ds, Ds−1, Gs) (C.16)

F−,zs

Cs
= f zt,s = ffzt,s(Dt−1, .., Ds, Gt+1, .., Gs) (C.17)
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Furthermore, the δ affecting the demographic process at time t represents a one-time exogenous
shock affecting the population, as presented in Section 5. This shock will vary the notation of the
notional factor during the first two periods t, t+ 1 as follows:

1 + rt = GtDt−1
S1

0Dt (1 + δ) + S2
0

S1
0Dt−1 + S2

0

(C.18)

1 + rt+1 = Gt+1Dt (1 + δ)
S1

0Dt+1 + S2
0

S1
0Dt + S2

0

(C.19)

The notional factor for j ≥ t+ 2 will be given by:

1 + rj = GjDj−1
S1

0Dj + S2
0

S1
0Dj−1 + S2

0

(C.20)

Furthermore, we assume that the individual increments have zero expected value, i.e., E[Bx(j)−
Bx(k)] = 0 for for x = P,W and j 6= k, and, finally, that the increments of both processes are
independent, that is:

E[(W P (j)−W P (k))(W S(j)−W S(k))] = 0for j 6= k.

These assumptions lead to Cov(Dj, Dk) = 0 and Cov(Dj, Gk) = 0 for j 6= k and to a non-zero co-

variance when the processes interact during the same period Cov(Gs, Ds) = eR+γ+
σ2
P+σ2

W
2 (eρσP σW − 1).

The ABM at time s = t depends on the random variable vector Xt = (Dt−3, Dt−2, Dt−1) for
z = LR and Xt = (Dt−3, Dt−2, Dt−1, Dt) for z = SR, and on the random variable vector Xs =
(Dt−3, ..., Dt, Gt, ..., Gs) for s ≥ t+ 1 for both z = LR, SR with n = 2(s− t) + 4 length of the vector.

The following represents the joint distribution of a random vector Xs:

fXs(x) =
t∏

j=t−3

fDj(dj)
s∏

j=t+1

fGj ,Dj(gj, dj) (C.21)

for s ≥ t + 1 where the distribution of the product of the demographic process Ds and salary

process Gs ∀s is denoted by GsDs ∼ logN(R + γ − σ2
P+σ2

W

2
, σ2

P,W ) with σ2
P,W = σ2

P + σ2
W + 2ρσPσW .

Then the joint density function of (Gs, Ds) is represented as follows:

fGs,Ds(x, y) =
1

xy
√
|Σ|

e
− 1

2|Σ|

(
(log z−µ)

′
Σ−1(log z−µ)

)
for xy > 0 (C.22)

with:

log z =

(
log x
log y

)
, µ =

(
R− σ2

P

2

γ − σ2
W

2

)
(C.23)

Σ =

(
σW ρσWσP

ρσWσP σP

)
(C.24)

|Σ| = determinant of variance-covariance matrix Σ (C.25)

Finally, the kth raw moment of the the ABM for z = LR, SR is given by the following:

E[(Bz
s )
k] = E[

(
hzt,s(xs)

)k
]

=

∫ ∞
0

...

∫ ∞
0

(
hzt,s(x1, ..., xn)

)k
fX(x1, ..., xn)dx1...dxn (C.26)
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The transformation hzt,s(xs) when the ABM sought is symmetric is given by the following expres-
sions:

hLRt,s (xs) =
1 + fLRt,s

KP,LR
s

(C.27)

hSRt,s (xs) =
TDSR

s + fSRt,s

KV,LR
s

(C.28)

However, if the ABM is asymmetric, the transformation is given by the following:

hLRt,s (xs) = Min

[
1 + fLRt,s

KP,LR
s

, 1

]
(C.29)

hSRt,s (xs) = Min

[
TDSR

s + fSRt,s

KV,LR
s

, 1

]
(C.30)

As denoted in the section 2, the formulas were developed for cases in which longitudinal equilib-
rium, also known as actuarial fairness, is a constraint. This constraint implies that indexation differs
between retired cohorts according to the realized mortality and economic outcomes. Nevertheless,
in practice, this solution is not politically viable. Therefore, we consider a second case without the
actuarial fairness constraint by using current mortality data rather than projected mortality values.
Throughout the paper, this is called Case 2. In this case, the expressions representing the outcome
P z
t (C.2), turnover duration TDz

t (C.9) and liabilities V z
t (C.5) slightly change as follows:

KP,z
t =

KN,z
t

at
+Bz

t−1K
N,z
t−1

at − 1

at−1

(C.31)

TDz
t = 2 +Bz

t−1

KN,z
t−1

KP,z
t

at − 1

at−1

− S2
0

KC
t

(C.32)

KV,z
t = 1 +Bz

t−1

{
S1

0(1 + nt−2)

KC
t−2

+KN,z
t−1

at − 1

at−1

}
(C.33)

where KN,z
t is the same as in (C.7). Note that the main difference between the Case 1 and

Case 2 is that the ratio at−1−1
at−1

becomes at−1
at−1

. The calculation of the variances and expected values
participants parallels Case 1.

D Numerical results for the variance

This appendix provides the graphics representing the variance of the notional factor after the in-
troduction of a symmetric ABM (Figure 8) and an asymmetric ABM (Figure 9) for Cases 1 and 2.
The tables presenting the aggregate variance values for the notional factor (Table 2) and the ratio
between the fund and income from contributions (Figure 3) are also presented.
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Figure 8: Variance of the notional factor after the introduction of an ABM for the symmetric case:
without ABM (dotted black line), liquidity ratio ABM (dark gray squares) and solvency ratio ABM
(light gray rhombuses). Note: The first row of the graphic corresponds to Case 1 and the second
row to Case 2. Source: the authors.

Base Up Down

Figure 9: Variance of the notional factor after the introduction of an ABM for the non-symmetric
case: without ABM (dotted black line), liquidity ratio ABM (dark gray squares) and solvency ratio
ABM (light gray rhombuses). Note: The first row of the graphic corresponds to Case 1 and the
second row to Case 2. Source: the authors.
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Table 2: The variance of the Notional Factor: Aggregated Values

Case 1 Case 2
Base Up Down Base Up Down

Symmetric - No baby boom
No ABM 0.08578 0.08578 0.08578 0.08578 0.08578 0.08578

LR 0.09102 0.09113 0.09089 0.09102 0.09078 0.09126
BR 0.08408 0.08411 0.08404 0.08408 0.08404 0.08410

Symmetric- Baby boom
No ABM 0.08843 0.08843 0.08843 0.08843 0.08843 0.08843

LR 0.09391 0.09403 0.09378 0.09391 0.09367 0.09416
BR 0.08674 0.08678 0.08670 0.08674 0.08670 0.08677

No Symmetric - No baby boom
No ABM 0.08578 0.08578 0.08578 0.08578 0.08578 0.08578

LR 0.08630 0.08609 0.08661 0.08630 0.08644 0.08619
BR 0.08529 0.08545 0.08509 0.08529 0.08521 0.08536

No Symmetric - Baby boom
No ABM 0.08843 0.08843 0.08843 0.08843 0.08843 0.08843

LR 0.08890 0.08869 0.08920 0.08890 0.08903 0.08879
BR 0.08776 0.08792 0.08757 0.08776 0.08768 0.08784



Table 3: The variance of the ratio between the fund and contributions: Aggregated Values

Case 1 Case 2
Base Up Down Base Up Down

Symmetric - No baby boom
No ABM 0.00106 0.00104 0.00111 0.00106 0.00107 0.00105

LR 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
BR 0.00057 0.00057 0.00057 0.00057 0.00057 0.00057

Symmetric- Baby boom
No ABM 0.00106 0.00104 0.00111 0.00106 0.00107 0.00105

LR 0.00065 0.00076 0.00052 0.00065 0.00058 0.00072
BR 0.00059 0.00068 0.00052 0.00059 0.00057 0.00063

No Symmetric - No baby boom
No ABM 0.00102 0.00101 0.00106 0.00102 0.00103 0.00102

LR 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
BR 0.00056 0.00057 0.00056 0.00056 0.00056 0.00056

No Symmetric - Baby boom
No ABM 0.00102 0.00101 0.00106 0.00102 0.00103 0.00102

LR 0.00070 0.00083 0.00058 0.00070 0.00063 0.00078
BR 0.00073 0.00080 0.00066 0.00073 0.00068 0.00077


