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Abstract 
 

Despite the advent of novel therapeutic agents, fludarabine-based chemo-

immunotherapy still forms the backbone of modern treatment regimens for fit 

patients with CLL. Even with the high efficacy of these regimens, a significant 

proportion of patients respond poorly to therapy. Although TP53 deletion/mutation 

is strongly associated with fludarabine resistance, it does not account for all patients 

displaying this resistance phenotype. Understanding the mechanisms underlying 

fludarabine resistance in patients without TP53 defects is therefore a major priority. 

In this study, I have investigated the role of the leukemic microenvironment in 

mediating such resistance. I focussed on the cytoprotective effect of CD40 

stimulation as a result of engagement of CD40 on CLL cells by CD154 on activated 

T cells which is known to occur at sites of lymph node involvement. At a 

downstream level, I examined the changes in expression of and interaction between 

Bcl-2 family proteins given their role as master regulators of the mitochondrial death 

pathway. Using Western blotting, I showed that in-vitro treatment of resting CLL 

cells with fludarabine resulted in the consistent up-regulation of Puma and a 

concomitant increase in cell death. Knockdown of Puma expression by siRNA 

significantly reduced the amount of fludarabine-induced killing, suggesting that the 

killing of CLL cells by fludarabine requires Puma. Reciprocal imunoprecipitation 

experiments using antibodies to Puma or Bcl-2 followed by Western blotting 



  

 

  
 

  

showed that these two Bcl-2 family members form a complex in resting CLL cells. 

In contrast, when CLL cells were co-cultured with CD154-expressing mouse 

fibroblasts to mimic interaction with T cells in the lymph node microenvironment, 

fludarabine-induced cell death was inhibited even though Puma was still induced in 

these cells. Imunoprecipitation experiments showed that Puma was bound to Bcl-XL 

and Mcl-1, two other members of anti-apoptotic Bcl-2 family proteins that are 

selectively up-regulated following CD40 stimulation. Taken together, the above 

findings suggest that CD40 stimulation up-regulates Bcl-XL and Mcl-1 which bind 

to Puma, preventing its activation of mitochondrial apoptosis and subsequently 

inhibiting fludarabine-induced killing. Therefore, my study revealed a potential 

mechanism responsible for CD40-mediated resistance to fludarabine in CLL.  
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1.1 Introduction 

 

Chronic lymphocytic leukaemia (CLL) is the most common blood cancer, 

accounting for approximately 30% of all leukaemia. Considerable morbidity and 

mortality is associated with this disease, and it remains incurable by conventional 

treatments. Patients with progressive forms of CLL will typically be subjected to 

several rounds of therapy and relapse prior to succumbing to the suppression of bone 

marrow and immune organ function that accompanies this disease.  Development of 

therapy resistance by the malignant clone in CLL accounts for relapse of the disease 

and requirement for changed and more severe treatments.  Recent studies of clonal 

evolution imply development of therapy resistance through selection of clones 

bearing an appropriate mutation (Woyach & Johnson et al. 2015).  However, this is 

not the whole of story of treatment resistance. It is well known that 

microenvironment can provide protection signals to CLL cells exposed to cytotoxic 

stimuli, but the mechanism(s) involved have not been completely characterised. This 

thesis examines the role of CD40 ligation in providing CLL cells with protection 

against fludarabine (Kater et al. 2004).  

According to current estimates, CLL is the most common leukaemia, with highest 

incidence rates in Europe and North America (Dores et al. 2007). Approximately 

2,400 new cases of CLL are reported each year in the UK (Cramer & Hallek et al. 

2011) and more than 15,000 in the USA (Siegel et al. 2014). CLL is considered as a 

disease of advanced age, with median age at diagnosis between 67 and 72 years, 

although sporadically there are CLL patients diagnosed in their 30s or 40s. Males are 

nearly twice more likely to develop CLL. Inherited genetic predisposition to CLL 
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has been documented, although is not yet fully understood (Neuland et al. 1983; 

Yuille et al. 2000). 

 

1.2 Clinical presentation 

CLL is a neoplastic lymphoproliferative disease characterised by clonal 

accumulation of B lymphocytes within the blood, bone marrow, lymph nodes, liver 

and spleen (Hallek & Pflug et al 2010; Schlette et al 2010). CLL is highly 

heterogeneous when it comes to the clinical course, with some patients presenting an 

indolent and asymptomatic disease and surviving for many years without any 

treatment, and others developing an aggressive disease that requires therapy 

relatively early (Dighiero 2005). At diagnosis, most patients are asymptomatic or 

present only minimal symptoms. Diagnosis is thus established by blood count 

(presence of ≥ 5x10
3
 clonal B lymphocytes per µl of peripheral blood), microscopic 

evaluation of blood smear, and flow cytometric immunophenotyping of circulating 

lymphocytes (Hallek et al. 2008). The clinical manifestation of CLL may include 

lymph node enlargement, anaemia and/or thrombocytopenia, bone marrow failure, 

palpable hepatomegaly and/or splenomegaly, and may involve weight loss, shortness 

of breath, tiredness and repeated infections (Hallek & Pflug 2010). Despite recent 

advances in the management of CLL, it still remains an incurable disease.  
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1.3 Cellular origin of CLL 

CLL cells exhibit phenotypic features of mature, activated B lymphocytes, and co-

express the T-cell marker CD5, as well as B-cell surface markers CD19 and CD23. 

The levels of monoclonal surface immunoglobulins and CD20 are usually low (or 

even undetectable) compared to normal B lymphocytes (Chiorazzi, Rai & Ferrarini 

et al 2005; Ginaldi et al. 1998; Stevenson & Caligaris-Cappio et al  2004). Normal 

mature B cells undergo the process of activation, proliferation and differentiation 

upon encountering their antigen, a process that occurs either during the T-cell 

dependent germinal centre (GC) B-cell response or in a T-cell independent manner. 

Although the development of both memory B-cell types requires classical T-cell 

help, the generation of GC-dependent memory B cells requires TFH-cell help, while 

the generation of GC-independent memory cells does not need that(Takemori et al. 

2014) Antigen stimulation induces the process of somatic hypermutation within the 

variable regions of immunoglobulin (Ig) genes, turning naive B cells with low-

affinity surface Igs into long-lived memory B cells producing high-affinity 

antibodies. Of note, it is reported that somatic hypermutation can occur not only in 

the context of GCs, but also in a T-cell independent manner and outside classical 

GCs (Takemori et al. 2014). Thus, the presence of somatic mutations within the 

IGHV genes in at least 50% of CLL patients may suggest a clonal history of BCR 

stimulation, with mutated and un-mutated genes indicating the origin of tumour cells 

from an antigen-dependent or -independent developmental stage, respectively.  

The two molecular subtypes of CLL are differentiated based on the presence or 

absence of somatic mutations within the immunoglobulin heavy-chain variable 

region (IGHV) genes (Tobin & Rosenquist et al 2005). In fact it has been observed 
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that the repertoire of the IGHV genes harboured by CLL cells is biased towards 

particular genes leading to observations of remarkable similarity in antigen receptor 

structure between unrelated (Messmer et al. 2004). The highly homologous regions 

include the sequences of complementarity-determining region 3 (CDR3) on heavy 

and light chains of B-cell receptors that are detected regardless of the IGHV genes 

mutational status (Lin 2010). This suggests that recognition of discrete antigens or 

structurally related epitopes may contribute to the selection of tumour clones. It also 

appears that cells with un-mutated IGHV genes carry more responsive B-cell 

receptors, while in other cases, mostly with mutated IGHV genes, cells are 

unresponsive to BCR stimulation. Thus, it is hypothesised that in cases with un-

mutated IGHV genes low-affinity antigen stimulation contributes to the expansion of 

responsive leukaemic clones, whereas in cases with the mutated IGHV genes initial 

high-affinity stimulation (possibly with auto-antigen) selects a responsive clone 

which subsequently becomes desensitised and enters an anergic state (Melchers & 

Rolink et al 2006; Stevenson & Caligaris-Cappio et al  2004). In this context it has 

been observed that autoimmune diseases are quite frequent in CLL patients (Kipps & 

Carson 1993). Moreover, several reports indicate that disruption in the process of 

eliminating cellular debris and apoptotic cells, as well as pathogenic bacteria, may 

facilitate the development of CLL (Chiorazzi & Ferrarini 2003b; Rawstron et al. 

2002). These observations clearly underscore the potential role of the extrinsic or 

auto-antigen encounter in the aetiology of CLL.  

Nevertheless, the remarkable homogeneity of M and UM-CLL cells at the gene 

expression level suggests a common mechanism of oncogenic transformation 

(Caligaris-Cappio & Ghia 2007; Klein et al. 2001; Rosenwald et al. 2001). The cells 
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where this oncogenic transformation takes place are likely to be the small B cells that 

phenotypically reSDble good-prognosis CLL cells (CD5+, CD38-, low level of 

CD20 and CD79b expression) that gradually accumulate in peripheral blood of 

healthy elderly people at the incidence rate varying between 3-6% (Ghia et al. 2004; 

Ghia & Hallek 2014; Rawstron et al. 2002).  It is envisaged that further studies of 

these cells might provide important insights into the natural history of CLL. 

 

1.4 Prognostic factors in CLL 

1.4.1. IGHV mutational status 

As described above immunoglobulin heavy chain variable region (IGHV) gene 

mutation status, defined as the presence or absence of somatic hypermutation in the 

IGHV gene of CLL cells as compared with the gene sequence of the nearest germ-

line, is used to divide CLL patients into two prognostic groups. The presence of un-

mutated IGVH genes (i.e. <2% mutation) is considered to indicate significantly 

worse prognosis (Coscia et al. 2011). 

1.4.2. Cytogenetic abnormalities 

Molecular cytogenetic methods such as fluorescence in situ hybridization (FISH) 

have been used to detect  genomic aberrations in over 80% of CLL cases, with high-

risk aberrations more common in CLL cases with the un-mutated IGHV genes 

(Parikh & Shanafelt 2016).  Based on cytogenetic analysis five different categories 

of CLL can be distinguished in terms of prognosis: i) 17p13 deletion in the TP53 

gene; ii) 11q22-23 deletion in the ATM gene; iii) 12q trisomy (resulting in the 

presence of an extra copy of the MDM2 gene); iv) normal karyotype; and v) 13q14 
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deletion. Median treatment-free survival differs significantly between these groups, 

and was reported to reach 9, 13, 33, 49 and 92 months, respectively (Austen et al. 

2005; Van Bockstaele, Verhasselt & Philippé 2009). The prognostic value of loss 

and/or mutation of ATM and p53 will be discussed below. Monoallelic and/or 

biallelic deletion of 13q14 is the most frequent chromosomal aberration, detected in 

over 50% of CLL cases (Austen et al. 2005). The deleted region associated with this 

chromosomal aberration includes the first exon of the DLEU1 gene and the long 

non-coding RNA (DLEU)-2.The latter affects the expression of two microRNAs, 

miR-15a and miR-16-1(Aqeilan, Calin & Croce 2009). These two microRNAs target 

several proteins involved in regulation of cell cycle, such as cyclin D2, D3 and E, 

and cyclin-dependent kinases CDK4 and CDK6, as well as anti-apoptotic protein 

Bcl-2 (Decker et al. 2003). Thus, it is postulated that the absence or decreased levels 

of miR-15a and miR-16-1 following 13q14 deletion may contribute to 

lymphomagenesis (Aqeilan, Calin & Croce 2009).  

1.4.3. Mutations within the DNA repair pathway 

Two critical regulators of DNA damage, ATM and p53, are often mutated and/or lost 

in CLL cells. The ATM (ataxia telangiectasia mutated) gene acts upstream of p53 in 

the DNA damage pathway, by integrating cellular signalling caused by DNA double-

strand breaks. Ataxia-telangiectasia patients that either lack ATM protein or express 

mutant ATM proteins often develop haematological malignancies, including mature 

B-cell leukaemia (Stankovic et al. 2002; Steele et al. 2008).  Absent ATM expression 

or mutations in the ATM gene have been also reported in spontaneous CLL, 

including cases that harbour the un-mutated IGVH genes (Tobin & Rosenquist 
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2005).  ATM mutations are scattered throughout the gene, and are often present in 

both alleles (Stankovic et al. 2002).  

The acquisition of TP53 mutations leads to abnormal transcriptional activity of p53, 

manifesting for example by lack of p21 up-regulation in response to ionizing 

radiation (Zenz et al. 2010). While both p53 and ATM mutations may lead to 

impaired p21 up-regulation, constitutive p53 overexpression is observed only in 

cases with TP53 mutation (a phenomenon referred to as ‘type A’ p53 dysfunction) 

(Pettitt, Moran & Cawley 2001; Zenz et al. 2008).  The presence of TP53 mutations 

is frequently associated with the transformation of CLL into an aggressive diffuse 

large B-cell lymphoma. Abrogation of p53 function may also occur as a result of 

gene deletion, and CLL patients with monoallelic deletion of the TP53 gene may 

also harbour mutations within the remaining TP53 allele (Zenz et al. 2008). The 

presence of TP53 mutation in the absence of 17p deletion is also indicative of poor 

prognosis. The mutations of ATM and p53 are not concurrent in CLL patients and 

lead to somehow different biological features in CLL cells, reflective of the fact that 

ATM and p53 pathway do not fully overlap (Stankovic et al. 2002; Steele et al. 

2008).  

1.4.4. CD38 and ZAP-70 

The levels of CD38 and the T-cell associated tyrosine kinase ZAP-70 (zeta-

associated protein of 70kDa) varies between CLL cases. Both the presence of CD38-

positive cells and increased expression of ZAP-70 correlate with progressive disease 

and poor prognosis (Matrai 2005; Rassenti et al. 2004).  Importantly, recent data 

indicate that the expression of ZAP-70, long considered as being stable during the 

course of the disease, can in fact change, particularly at the time of progression or 
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relapse (Wiestner et al. 2003).  Furthermore, increased expression of the CLL up-

regulated gene 1 (CLLU1) is observed in poor prognostic groups (as determined by 

IGVH mutational status, as well as the levels of ZAP-70 and CD38) and is indicative 

of high risk CLL with shorter time from diagnosis to therapy, Nevertheless, 

expression of CD38 or ZAP-70 may not be useful for predicting the outcome of 

fludarabine-based treatments (Matrai 2005; Wiestner et al. 2003). 

Other than the prognostic factors discussed above, several other markers have been 

proposed to bear prognostic relevance in CLL patients. These have been summarised 

in (Table 1.1)   
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 Table 1.1.  Selected additional markers with suggested prognostic value in CLL.
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1.5 The role of apoptosis in the pathogenesis of CLL 

CLL is a disease characterized by defective apoptosis of the malignant cells. This 

next section of my thesis outlines the process of apoptosis, and how it is deregulated 

in CLL cells and related to disease pathogenesis. 

1.5.1  Apoptosis--general mechanisms and regulation 

The mammalian cell death network is comprised of many distinct functional 

modules, including apoptosis, autophagy and necrosis (Leist & Jäättelä 2001). Of 

these modules apoptosis (programmed cell death type I) has been studied most 

extensively, and is recognised to be of paramount importance for the health of 

multicellular organisms .It is widely known that disturbances in the apoptotic 

process within cells can lead to disease conditions such as cancer where it is 

recognised that evasion of cell death is a key hallmark (Hanahan & Weinberg 2000).  

Apoptosis is a highly complex process of removing damaged or superfluous cells, 

and is critical for tissue homeostasis. There are two main apoptotic pathways, the 

death receptor (extrinsic) pathway and the mitochondrial (intrinsic) pathway, both 

regulated by a concerted action of many pro- and anti-apoptotic proteins (Figure 

1.1). The mitochondrial pathway of apoptosis is finely controlled up-stream of 

mitochondria by a large group of proteins that belong to the Bcl-2 family (Chipuk et 

al. 2010; Czabotar et al. 2014a; Youle & Strasser 2008) (Figure 1.1). The main event 

during the intrinsic pathway of apoptosis is the mitochondrial outer membrane 

permeabilisation (MOMP), which allows the release of proteins localised between 

the outer and inner mitochondrial membranes, such as cytochrome c or Smac, into 

the cytosol. Upon release, these proteins cooperate with cytosolic factors, leading to 
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the formation of a multiprotein complex called the apoptosome, resulting in 

activation of caspases and execution of apoptosis. Control over the integrity of the 

mitochondrial outer membrane is executed by proteins of the Bcl-2 family, which 

can be further divided into three subfamilies: anti-apoptotic (e.g. Bcl-2, Bcl-XL, 

Mcl-1 and Bcl-w), pro-apoptotic effectors (Bax and Bak), and BH3-only proteins 

(e.g. Bid, Puma, Bim and Bad), which form a complex network of interactions 

(Chipuk et al. 2010; Cory & Adams 2002; Czabotar et al. 2014a; Danial 2007; 

Skommer, Wlodkowic & Deptala 2007). Briefly, Bax and Bak become activated 

upon association with the BH3 activators, which induces a conformational change in 

Bax/Bak, leading to their oligomerisation and formation of pores within the outer 

mitochondrial membrane. The BH3 activator proteins are antagonised by the anti-

apoptotic Bcl-2 family members, which are counteracted by the second group of 

BH3 proteins, referred to as sensitisers (e.g. Bad) (Figure 1.1). There is still 

controversy surrounding the process of direct activation of Bax and Bak, with reports 

showing that in some cases Bid, Bim and Puma can also interact with anti-apoptotic 

Bcl-2 proteins that have pre-formed complexes with Bax and Bak, resulting in the 

release of  Bax and Bak which then induce MOMP (Willis et al. 2007). Irrespective 

of the exact mechanism of interaction between the members of Bcl-2 family of 

proteins, the function of anti-apoptotic members is to prevent MOMP. The inhibitor 

of apoptosis protein (IAP) family also consists of several members, including IAP1, 

IAP2, XIAP and surviving (Espinosa et al. 2006). These proteins play a role in 

regulating post-mitochondrial events in the pathway of apoptosis (Figure 1.1). 

The extrinsic pathway of cell death is induced by ligation of plasma membrane-

localised death receptors such as Fas (CD95) receptor or TRAIL receptors (e.g. 
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DR5), followed by activation of the initiator caspase 8 which can activate the 

executioner caspase-3 either directly, or via cleavage of Bid and the mitochondrial 

pathway of apoptosis (Figure 1.1).  

1.5.2 Mitochondria and Apoptosis 

As previously mentioned, the process of apoptosis is driven by a network of proteins 

connected to each other in an intricate manner, forming two main signalling 

pathways (intrinsic and extrinsic). The intrinsic (mitochondrial) pathway of 

apoptosis is heavily regulated by multiple proteins acting up-stream and down-

stream of the mitochondria, determining the efficiency of apoptotic cell death. 

Mitochondria are double membrane intracellular organelles (Figure 1.1), whereby 

the intermembrane space houses a vast array of proteins, the highly convoluted inner 

membrane is a site of membrane-associated electron transport and ATP synthesis,  

while the matrix is a site of the citric acid cycle and fatty acid oxidation. The outer 

membrane of the mitochondria permits the passage of small molecules, but not 

proteins (Mohamad et al. 2005). 

As described earlier, the main event during the mitochondrial pathway of apoptosis 

is the induction of MOMP, which allows the release of proteins localised between 

the outer and inner membranes, such as cytochrome c or Smac (mitochondrial 

protein that promotes cytochrome c), into the cytosol. Upon release these proteins 

cooperate with cytosolic factors, leading to the activation of caspases and execution 

of apoptosis. In particular, the release of cytochrome c allows its association with 

Apaf-1 and pro-caspase-9, leading to formation of a large protein scaffold called the 

apoptosome on which activation of pro-caspase-9 occurs The initiator caspase-9 than 
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activates down-stream caspases, which then execute proteolytic disintegration of the 

cell (Mohamad et al. 2005) (Figure 1.1). 

 

 

 

 

Figure 1.1. Pathway of apoptosis 

 

Apoptosis can be induced by cell surface receptors, such as Fas and tumour necrosis factor 

receptor-1 (TNFR1) (extrinsic pathway, right), or by various genotoxic agents, metabolic 

insults or transcriptional cues (intrinsic pathway, left). The intrinsic pathway of apoptosis is 

regulated both up-stream and down-stream of mitochondria. Up-stream of the mitochondria 

the most important regulators are proteins from the Bcl-2 family, consisting of anti-apoptotic 

(e.g. Bcl-2 and Mcl-1), pro-apoptotic (e.g. Bax and Bak) and BH3-only proteins (Bid, Bad, 

Bim, Puma, or Noxa) Receptor ligation (the extrinsic pathway) or a wide variety of stress 

signals can also converge on mitochondria (the intrinsic pathway) (Czabotar et al. 2014b). 

 

http://www.google.com.sa/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCIzQzsyImcgCFUbaGgodM-EIOw&url=http://www.nature.com/nrm/journal/v9/n1/fig_tab/nrm2308_F2.html&psig=AFQjCNGkpoOybCrfjJy28BifLfVh1lDCEQ&ust=1443506947028977
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1.5.2.1 Bcl-2 family of proteins 

As stated earlier, control over integrity of the mitochondrial outer membrane is 

executed by the different members of the Bcl-2 family of proteins, which form a 

complex network of interactions (Cory, Huang & Adams 2003; Shimizu et al. 1999). 

These interactions are facilitated by four conserved Bcl-2 homology (BH1-BH4) 

domains, with the anti-apoptotic members equipped with all four BH domains, while 

pro-apoptotic proteins containing either multiple BH domains (Bax and Bak) or a 

single BH3 domain. The BH3-only proteins can bind to the range of different anti-

apoptotic Bcl-2 family proteins (Figure 1.2). 

 

 

 

 

Figure 1.2.  The binding profiles of selected BH3-only proteins. 

 

The binding profiles of selected BH3-only proteins to the anti-apoptotic members of the Bcl-

2 family (Chipuk et al. 2010).  
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It has been firmly established that the pro-apoptotic multi-domain Bcl-2 family 

members Bax and Bak mediate permeabilisation of the outer mitochondrial 

membrane although other proteins of the mitochondrial membrane, such as VDAC 

(the voltage-dependent anion channel), may also participate in this process (Kuwana 

et al. 2002). When cells encounter stress signals, either internal or external, Bax and 

Bak undergo conformational changes to form homo-oligomers, which then insert 

into the membrane to form pores. It has been shown that Bax has to first translocate 

from the cytosol to the mitochondrial membrane, while Bak is constitutively 

associated with the mitochondrial membrane (Chipuk et al. 2008; Kuwana et al. 

2002). The observation that cells deficient in both Bax and Bak are extremely 

resistant to a wide range of apoptotic stimuli, while Bax or Bak single-deficient cells 

are still competent in undergoing apoptosis, confirmed that these two proteins are 

crucial within the mitochondrial pathway of apoptosis and exhibit mutual functional 

redundancy (Kang & Reynolds 2009). 

Although it is widely accepted that the proteins Bax and Bak are essential for 

initiation of apoptosis at mitochondria, several mechanisms have been proposed to 

explain how these proteins are activated. The two predominant and non-mutually 

exclusive models describing the interactions between the Bcl-2 family members 

include the direct activation model and the indirect activation model (Adams & Cory 

2007) (Figure 1.3).  
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Figure 1.3. The models of Bax/Bak activation. 

 

The binding profiles of selected BH3-only proteins activation during the initiation of the 

mitochondrial pathway of apoptosis (Adams & Cory 2007). 

 

1.5.2.2  Activation of the mitochondrial pathway of apoptosis 

In a direct activation model, when inactive cytosolic Bax is in contact with a group 

of BH3-only proteins (e.g. tBid, Bim, Puma), the latter directly induces 

conformational changes in Bax and prompts it to translocate to the outer 

mitochondrial membrane (Zhu et al. 2013). This is then followed by Bax 

oligomerisation driven by the bound BH3-only proteins (also known as activators). 

In an indirect activation model, in healthy cells the BH3-only proteins are 

antagonised by the anti-apoptotic Bcl-2 family members, which are counteracted by 

the second group of BH3-only proteins (sensitizers), such as Bad, Bik, Hrk, Noxa 



 
 

P a g e  | 18 

 

  
 

  

and Bmf (Santidrián et al. 2010). Binding of the “sensitizers” liberates the 

“activators” that engage Bax and Bak. This model is strongly supported by a plethora 

of biochemical studies showing direct association of Bax/Bak with Bid, Bim and 

Puma (Adams & Cory 2007). Nevertheless, the extent of apoptosis resistance was 

somehow different from that observed in Bax/Bak double knock-out animals, with 

some lymphoid cells still dying in response to glucocorticoid treatment (Willis et al. 

2007). 

The indirect activation model is based on observations that apoptosis can proceed in 

the absence of direct activators Bim and tBid (Terrones et al. 2008), and supported 

by the observed apoptosis of Bim/Bid/Puma triple-deficient lymphoid cells in 

response to glucocorticoid treatment (Yu et al. 2001).  In this model, activation of 

Bax and Bak can occur as a default event, with a small portion of these proteins 

constitutively “primed” in an apoptosis-inducing conformation and kept in check by 

the pro-survival Bcl-2 family proteins. As soon as all the anti-apoptotic Bcl-2 family 

proteins are neutralised by the BH-3 members, apoptosis will ensue.  

The main difference between the direct and indirect models may be primarily the 

relative binding affinity of BH-3 proteins for their respective association partners 

(anti-apoptotic Bcl-2 family proteins or multi-domain pro-apoptotic Bcl-2 family 

proteins). Most of the results available in the literature, from both biochemical 

studies and animal models, can be reconciled by a model merging the direct and 

indirect activation scenario, as proposed (Chen et al. 2007) . In some situations, 

Bax/Bak may be activated by certain BH-3 protein, while in other situations other 

mechanisms of activation (e.g. phosphorylation, or spontaneous activation upon 

neutralisation of pro-survival Bcl-2 members) can occur (Hallaert et al. 2007). 
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1.5.3 p53 function in cell survival and apoptosis 

p53 (known as Tumor protein and cellular Tumor antigen p53), it is an important 

tumour suppressor gene that acts to prevent the outgrowth and survival of malignant 

cells. These activities of p53 reflect its role as a transcription factor that regulates the 

expression of numerous genes in response to various stress stimuli. Classically, upon 

DNA damage, p53 induces cell cycle arrest allowing time for DNA repair to occur 

and promoting cell survival (Mohr et al. 2011).  But p53 can also induce cell death 

programmes such as apoptosis or autophagy (Figure 1.4). The extent of DNA 

damage determines whether pro-survival or pro-apoptotic facets of p53 activity are 

induced (Bensaad et al. 2006). The apoptotic potential of p53 is also affected by 

MDM2-regulated ubiquitination, which leads to destruction of p53 protein. Some 

polymorphic variants of p53 having different binding affinity towards MDM2 

(Dumont et al. 2003) and inhibitors of p53-MDM2 association are thus being 

considered as potential anti-cancer agents in CLL (Bixby et al. 2008).  

1.5.4  Defective apoptotic signalling in CLL 

For many years CLL was considered as a disease caused by unstoppable 

accumulation of long-lived lymphocytes in the G0/early G1 phase of the cell cycle 

that fail to undergo apoptotic cell death. Currently, it is well established that CLL is 

not a static disease and an on-going proliferation of CLL cells occurs in proliferation 

niches within the lymph nodes (Herishanu et al. 2011). How the balance between 

CLL cell proliferation and death is regulated, and how it correlates with the rates of 

disease progression, is still a matter of intense investigation. Of note, impaired 
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tumour surveillance also contributes to the increased survival of leukemic cells in 

CLL patients (Pytlik et al. 2008).  

Aberrant apoptotic signalling has been widely reported in CLL. The importance of 

the Bcl-2 family of proteins in the pathogenesis of CLL has been firmly established, 

with over-expression of Bcl-2 considered as one of the hallmarks of the disease 

(Buggins et al. 2010). Another anti-apoptotic Bcl-2 protein, Mcl-1, as well as IAP 

proteins (survivin, CIAP1, CIAP2, and XIAP) are also up-regulated in CLL patients 

(Chiorazzi, Rai & Ferrarini 2005; Grzybowska-Izydorczyk et al. 2010).  Moreover, 

decreased expression of pro-apoptotic molecules such as Smac has been observed in 

CLL (Grzybowska-Izydorczyk et al. 2010). 
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Figure 1.4. The role of p53 in cell survival and death. 

 

Depending on the strength of damage, p53 may contribute to cell cycle arrest and 

activation of DNA repair processes (low or reparable damage), or to cell killing 

(more severe, irreparable or oncogenic stress). Mechanisms that contribute to 

induction of cell cycle arrest and survival include increased expression of 

p21WAF1/CIP1, as well as increased expression of genes that protect from oxidative 

stress, genes that promote the integrity of intracellular organelles, and most 

importantly genes facilitating DNA repair. Cell death processes induced by p53 

include increased expression of pro-apoptotic genes such as Puma or p53AIP1, and, 

as recently discovered, genes involved in autophagy cell death (DRAM). Moreover, 

transcription-independent activity of p53 in the cytosol has been reported. Cytosolic 
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p53 function is comparable to the pro-apoptotic BH3-only protein (Bensaad et al. 

2006). 

Another significant feature of CLL cells is loss or mutations of tumour suppressor 

p53 protein. As described above, p53 plays a dual role. One role promotes survival 

of cells that able to undergo DNA repair, while the second role promotes apoptosis 

in cells that are damaged beyond their capabilities to repair DNA. Loss or mutations 

in p53, as often detected in CLL patients, may thus promote tumourgenesis by 

leading to chromosomal instability, allowing acquisition of additional genetic 

abnormalities and survival of critically damaged cells (Steele et al. 2008). 

Importantly, even though CLL cells exhibit prolonged survival in vivo, they undergo 

spontaneous apoptosis when cultured ex vivo. The spontaneous apoptosis in vitro can 

be inhibited upon increased cell density of homotypic cell cultures, or by co-culture 

with other cell types that play a role of nurse-like cells (Burger & Kipps 2002a; 

Martinez-Lostao et al. 2004; Pettitt et al. 2001). This indicates that the survival 

advantage is not entirely autonomous to CLL cells, and can potentially be reinforced 

by homotypic cell interactions and autocrine survival factors, as well as 

microenvironmental signals (Martinez-Lostao et al. 2004; Pettitt et al. 2001). The 

microenvironmental cues that have been recognised as factors promoting the survival 

of CLL cells include interactions with stromal and nurse-like cells, as well as cells 

expressing CD40 ligand (e.g. CD4
+
 T lymphocytes). In response to 

microenvironmental signals CLL may secrete chemokines (Burger et al. 2009) and 

support the survival of CLL cells by inducing anti-apoptotic signalling (Vauzour et 

al. 2007).  Controversial data exist on the effect of triggering CD40 on CLL survival. 

Some data indicate that CD40 ligand stimulation increases sensitivity of CLL cells 
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towards apoptosis induced by CD95 ligand or fludarabine, potentially by decreasing 

the expression of Bcl-2 protein, and increasing the expression of pro-apoptotic BH3 

protein Bid, death receptors CD95 and DR5, and cytokines TNFα and IFNγ (de 

Totero et al. 2003; Dicker et al. 2005). However, according to other reports, 

triggering of CD40 may induce pro-survival NF-κB signalling and inhibit 

fludarabine-induced apoptosis in CLL cells (Romano et al. 1998). 

1.5.5 CD40 signalling in CLL 

1.5.5.1. Targeting tumour microenvironment 

It is recognised that CLL microenvironment plays an important role in the survival 

of CLL cells and that it contributes to drug resistance Understanding this role could 

lead to therapies targeting the microenvironment to result in efficient killing of CLL 

cells. For example (Burger & Gribben 2014), it is proposed that chemokine receptors 

on CLL cells are a therapeutic target because of the role they play in regulating 

trafficking of CLL cells between the blood, lymph nodes and bone marrow, and in 

facilitating interaction between CLL cells and accessory cells within the tumour 

microenvironment (Tsukada et al. 2002).  In this respect, CXCR4 is arguably one of 

the most important chemokine receptors expressed by CLL cells as it mediates the 

response to stromal cell-derived factor 1 (SDF-1) secreted by blood-derived nurse-

like cells as well as bone marrow and extramedullary stromal cells.Accordingly, 

CXCR4 antagonists are currently evaluated as a potential treatment strategy for CLL 

(Buchner et al. 2010; Burger & Kipps 2002b). 
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1.5.5.2. Role of T cells in development of CLL  

Whilst antigenic stimulation via the B cell receptor (BCR) is generally considered to 

be one of the most important pro-survival factors that help CLL clones expand in 

vivo (Chiorazzi & Ferrarini 2003a; Chiorazzi, Rai & Ferrarini 2005), interaction of 

CLL cells with T cells in the bone marrow and lymph nodes also plays a critical role 

in the expansion and extended survival of the malignant cells (Ghia et al. 2002; 

Granziero et al. 2001; Schmid & Isaacson 1994; Trentin et al. 1997). Recent studies 

have shown that within lymphoid tissue proliferation centres a significant proportion 

of CD4+ T cells expressing CD40L (CD154) are interspersed with proliferating CLL 

cells that express CD40, thus providing in vivo evidence linking activated T cells to 

CLL clonal expansion (figure 1.5).. Further direct evidence for a role of CD4+ T 

cells in supporting CLL-cell proliferation is provided by an adoptive transfer model 

of CLL which demonstrated that activated autologous T cells were absolutely 

required for CLL cells to engraft, survive, and proliferate an in-vivo model of this 

disease (Oldreive et al. 2015; Pytlik et al. 2008). 

Regarding the molecules involved in the interaction between T cells and CLL cells, 

one of the most important interactions is between CD40 - a member of the TNF 

receptor superfamily which is expressed on CLL cells - and its ligand CD154 which 

is expressed on T cells. Thus, it has been shown that in vitro activation of CLL cells 

with cross-linking antibodies to CD40 plus interleukin (IL)-4 not only promoted 

survival but also induced proliferation of CLL cells (Crawford & Catovsky 1993; 

Fluckiger et al. 1992). Further studies using primary CLL cells showed that 

engagement of CD40 by CD154 initiated a potent signalling cascade that led to 

activation of the pro-survival transcription factor NF-κB (Dugas-Bourdages et al. 
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2014; Furman et al. 2000). Meanwhile, the role of CD40 in B cell development and 

function in vivo has been further reinforced by animal studies showing that B cells 

from CD40-deficient mice failed to proliferate and undergo immunoglobulin isotype 

switching in vitro in response to stimulation by CD40 ligand and IL-4 (Castigli et al. 

1994; Kawabe et al. 1994). It is now firmly established that CD40-CD154 

interaction is one of the most important mechanisms responsible for T cell-mediated 

CLL-cell survival and proliferation. Many of these effects can thus be recapitulated 

in vitro using a co-culture system where human or mouse epithelial cells (or 

fibroblasts) stably transfected with human CD40L are used as feeder layers, in 

combination with IL-4, to mimic interaction with T cells. Such in-vitro activation of 

CD40 has been shown to associate with prolonged survival and drug resistance in 

CLL cells   (Dugas-Bourdages et al. 2014; Granziero et al. 2001; Kitada et al. 1999). 
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Figure 1.5.  The CLL microenvironment 

 

Microenvironment interactions for survival and proliferation of CLL cells,CD4+ T cells that 

express CD40 ligand along with immune and bone marrow stromal cells within CLL lymph 

nodes providing signals needed for activation of tumor clone (ten Hacken & Burger 2014). 
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1.6 Mechanisms of CD40L-mediated protection from drug-

induced cell death in CLL 

1.6.1   Multiple mechanisms involved in CD40L-mediated protection 

CD40 ligation can rescue CLL cells from apoptosis, and constitutes an important 

survival cue for CLL cells within the lymph node microenvironment. The anti-

apoptotic action is associated with enhanced expression of intracellular apoptosis-

regulating proteins such as Bcl-2, Bcl-XL, Mcl-1 and A1/Bf1-1 (Ghia et al. 2001; 

Hallek et al. 2008) and the IAP family member survivin (Granziero et al. 2001).  

Moreover, CD40 stimulation was shown to reduce the level of pro-apoptotic proteins 

Bim-EL and Noxa (Hallek et al. 2008; Kater et al. 2004).  These changes confer drug 

resistance by protecting mitochondria and thus preventing the release of cytochrome 

c into the cytosol (Chipuk et al. 2010; Youle & Strasser 2008).  In addition, CD40 

activation enhances secretion of chemoattractants, such as CCL22 and CCL17, as 

well as cytokines such as IL-6, IL-8, IL-10 and TNF-alpha, which promote tumour 

cell survival by enhancing the interaction of CLL cells with the microenvironment.  

CLL cells are clonally heterogeneous, and not all respond to CD40L stimulation. The 

lack of in vitro CLL cell response to CD40L has been shown to correlate with 

shorter time to progression (Romano et al. 2000).  It remains unknown what provides 

the subset of CD40-unresponsive CLL cells their strong proliferative and survival 

capability. The vital question remains also with regards to the strength of CD40 

receptor stimulation encountered by CLL cells in vivo, particularly as clear 

heterogeneity in CLL responses can only be observed at relatively low doses of 

CD40L. CD40 activation is often studied together with additional stimuli, e.g. 
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cytokines, and in these cases it is unknown whether the observed response can be 

attributed solely to CD40 ligation (Schattner 2000).  

1.6.2  Regulation of members of the Bcl-2 family of proteins by CD40 

stimulation 

The effect of CD40 activation on the expression of Bcl-2 family members appears to 

depend on the experimental design. Some authors have reported a decreased 

expression of Bcl-2 (Willimott et al. 2007) and an increased expression of pro-

apoptotic BH3-only proteins (e.g. Bid) following CD40 activation (Kater et al. 

2004).  Although CD40 stimulation shifts the overall profile of the Bcl-2 family to 

support cell survival, single proteins may exhibit a counter-intuitive pattern of 

expression. The different results could also be accounted for by the different culture 

systems used, namely the administration of soluble recombinant CD40L (Schattner 

2000) versus co-culture with fibroblasts expressing human CD40L with or without 

interleukins  (Willimott et al. 2007)(e.g. IL-4, IL-2, IL-10 or IL-21). 
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1.7 Management of CLL 

1.7.1 Current chemo-immunotherapy 

1.7.1.1 Background 

Chemotherapy is usually not advocated in early and stable disease, and is 

administered only to patients with more advanced or progressive CLL (Robak, 

Jamroziak & Robak 2009). For a long period, treatment with the alkylating agent 

chlorambucil was the standard regimen due to its low toxicity, low cost and 

convenience of oral delivery. Purine analogues such as fludarabine, pentostatine or 

cladribine are another widely used class of cytostatic drugs, with fludarabine 

established as a backbone improvement in the outcome of patient therapy for CLL. A 

series of clinical trials have also demonstrated the benefits of using fludarabine in 

combinational therapy for the treatment of CLL. The LRF CLL4 trail found that 

fludarabine was more effective when used in combination with the alkylating agent 

cyclophosphamide. Complete and overall response rates were better with fludarabine 

plus cyclophosphamide than with fludarabine alone (complete response rate 38%vs 

15%, respectively; overall response rate 94%vs 80%, respectively) (Catovsky et al. 

2007). Progression-free survival at 5 years was also found to be significantly better 

with fludarabine plus cyclophosphamide (36%) than with fludarabine or 

chlorambucil alone (10%). Furthermore, a more recent CLL8 trial demonstrated the 

benefits of using the CD20 monoclonal antibody rituximab in combination with 

fludarabine and cyclophosphamide (Hallek & Pflug 2011). The use of this 

chemoimmunotherapy was effective in prolonging progression-free survival and 
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overall survival of symptomatic CLL patients and helped establish a new standard of 

treatment for physically fit patients (Catovsky et al. 2007).   

1.7.1.2  Fludarabine 

Fludarabine (9-beta-D-arabinofuranosyl-2-fluoroadenine 5'-phosphate) is a water-

soluble synthetic fluorinated purine nucleoside analogue of the antiviral agent 

vidarabine (ara-A) (Figure 1.6)(Ricci et al. 2009).  On infusion into the bloodstream 

fludarabine phosphate undergoes rapid dephosphorylation to the respective 

nucleoside F-ara-A. 

 

 

 

 

Figure 1.6. Structure of fludarabine. 

Structure of fludarabine phosphate (prodrug), a fluorinated purine nucleoside analogue 

(Huang, Chubb & Plunkett 1990). 

 

In this form it is actively taken up by the cells and then phosphorylated 

intracellularly by deoxycytidine kinase (dCK), forming the active triphosphate 

derivative 2-fluoro-ara-ATP. In this form, fludarabine is an active metabolite that is 

incorporated into DNA or RNA, blocking their further synthesis (Huang, Chubb & 

Plunkett 1990; Huang & Plunkett 1991).  In addition, fludarabine exerts inhibitory 

activity against ribonucleotide reductase, leading to depletion of the deoxynucleotide 

 

http://upload.wikimedia.org/wikipedia/commons/2/2a/Fludarabine_phosphate.svg
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pool required for synthesis and repair of DNA, and potentially favouring 

incorporation of fludarabine into newly synthesised DNA strands (Tseng et al. 

1982).  Moreover, fludarabine is resistant to excision from DNA, potentially because 

it can inhibit DNA ligase and DNA primase (Catapano, Perrino & Fernandes 1993; 

Yang et al. 1992).  Fludarabine has also been shown to inhibit several DNA repair 

processes, including excision and repair of inter-strand crosslinks and nucleotide 

excision repair (NER) (Li et al. 1997; Yang et al. 1995).  The resulting DNA damage 

leads to histone H1.2 release and activation of p53-mediated transcription (Gine et 

al. 2008). A separate investigation has led to the finding that nuclear DNA damage 

can also be signalled to mitochondria which activates apoptosis (Zhivotovsky & 

Kroemer 2004). Both transcription-dependent and independent activation of 

apoptosis by p53 in CLL cells has been described (Steele et al. 2008). Despite the 

fact that fludarabine can induce apoptosis in p53-dependent and p53-independent 

manner (Pettitt, Sherrington & Cawley 2000), mutation of p53 signifies poor 

prognosis in CLL patients treated with fludarabine as TP53 mutations and 17p 

deletions are commonly found in fludarabine-refractory patients (Zenz et al. 2010; 

Zenz et al. 2008). 

1.7.2 Development of chemoresistance 

The strategies of drug resistance employed by CLL cells include intrinsic drug 

resistance, microenvironment-supported drug resistance, and acquired drug 

resistance (Figure 1.7). Following the course of chemotherapy, drug sensitive tumour 

cells may be completely eliminated, while populations of innately resistant 

peripheral blood CLL cells survive the treatment. This phenomenon was observed 
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following treatment with conventional as well as more recent chemotherapeutics, 

such as fludarabine, bendamustin, or rituximab (Gross et al. 2010). Such inherent 

drug resistance may be caused by abnormal apoptotic signalling, e.g. overexpression 

of anti-apoptotic proteins. In the absence of aberrant signalling, the survival support 

may be provided to CLL cells within the lymph nodes and bone marrow (Figure 

1.7).  Considering that CLL cells within the proliferation niches of the bone marrow 

and lymph nodes receive pro-survival cues from the microenvironment, it is not 

surprising that when cultured ex vivo, without the environmental support, they are 

more sensitive to fludarabine-induced apoptosis. (Podhorecka et al. 2010).  Finally, 

the emergence of resistant CLL cells in the process of drug-driven evolution 

(acquired drug resistance) has been observed, for example following chemotherapy 

with fludarabine (Gross et al. 2010).  
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Figure 1.7. General mechanism of drug resistance in CLL 

 

Following chemotherapy (red arrows) drug sensitive tumour cells undergo apoptosis, 

whereas cells with abnormal apoptotic signalling, e.g. Over-expression of Bcl-2, can survive 

the treatment (innate drug resistance). Additionally, the tumour microenvironment provides 

a rich source of survival and proliferative signals that can enhance the survival of drug 

sensitive CLL cells, allowing them to acquire new mutations and develop drug resistance 

(environmental drug resistance). Finally, new drug resistant clones can emerge following 

therapy (drug-driven resistance) (Burger et al. 2009).   
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1.8 New drugs – from bench to bedside 

1.8.1 Targeting apoptosis 

Current understanding of the molecular underpinnings that facilitate the development 

of CLL has a profound effect on the design of new targeted therapeutic approaches 

and management of CLL. For example, drugs that specifically target anti-apoptotic 

proteins and circumvent drug resistance are being tested as potential treatment 

strategies. Specific small molecule inhibitors of Bcl-2 and Bcl-XL, such as ABT-737 

and ABT-263, have been extensively evaluated in preclinical models of CLL (Kang 

& Reynolds 2009; Lin 2010; Vogler et al. 2010). Latest clinical study using a highly 

potent, orally bioavailable and Bcl-2-selective inhibitor, ABT-199, demonstrated 

promising anti-leukemic activity (Souers et al. 2013).  

1.8.2 Blocking BCR signalling 

Of particular interest, Suljagic and co-workers (2010) reported that fostamatinib 

disodium (R788), the inhibitor of Syk, selectively decreases proliferation and 

survival of the malignant B-cell clones in Emu-TCL1 mice. Ibrutinib is a covalent 

Bruton's tyrosine kinase inhibitor that has demonstrated a 70% response rate, 

according to a recent clinical study (Cheng et al. 2014). In treatment-naïve patients, 

ibrutinib showed 90% progression-free survival (PFS) over two years and 75% over 

two years in relapsed patients. Idelalisib is an inhibitor of the delta isoform of PI3K 

and achieved a high response rate in relapsed refractory CLL (Davids & Brown 

2013), ibrutinib and idelalisib have marketing authorisation, i.e. they are now used 

routinely. Other BTK inhibitors are also in development (Akinleye et al. 2013).  
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1.9 Questions that remain unanswered 

Although multiple mechanisms are involved in and, in many cases, required for 

CD40-mediated protection of CLL cells from drug-induced cell death, it is likely that 

Bcl-2 family proteins play an important part in determining the sensitivity/resistance 

of CLL cells to therapeutic drugs, This is largely because of their essential role in 

regulating the mitochondrial death pathway. However, many questions still remain 

unanswered. In particular, the effect of CD40 stimulation on the expression of Bcl-2 

family proteins in the presence or absence of cytotoxic drugs is unknown. Likewise, 

the effect of cytotoxic agents on the changes of expression of Bcl-2 family proteins 

induced by CD40-stimulation is unclear. Finally, CD40 ligation has sometimes 

opposite effects on the expression of Bcl-2 family proteins (e.g. Bcl-2), depending 

on the experimental conditions used in the studies, and thus better understanding on 

the interaction between the Bcl-2 family members specifically in CLL, and in 

response to various levels/scenarios of CD40 activation is needed (Buggins & 

Pepper 2010). 

1.10    The hypothesis of my PhD thesis 

Microenvironmental interactions, such as between CLL cell CD40 – and T cell 

CD40L interactions, facilitate cytotoxic drug resistance in CLL by changing the 

balance between anti-apoptotic and pro-apoptotic Bcl-2 family proteins within the 

affected malignant cells. 
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1.11  Aims of the PhD study 

There is extreme variability in the therapeutic response to CLL treatment, and most 

patients eventually develop drug resistance. The microenvironment provides 

important survival and proliferative signals to CLL cells, and such signals can be 

provided by CD40L (CD154)-expressing T-cells engaging their corresponding 

receptor (CD40) on CLL cells. These signals are thought to contribute to drug 

resistance by inducing the expression of anti-apoptotic Bcl-2 family proteins, 

culminating in resistance to apoptosis. The fate of CLL cells following drug 

exposure is likely governed by specific interactions between pro-apoptotic Bcl-2 

family proteins induced by drug treatment and anti-apoptotic Bcl-2 proteins induced 

by CD40L. 

Therefore, my research aims to address the following research questions; 

1) How do drugs that induce p53-dependent (fludarabine) or p53-independent 

(dexamethasone) apoptosis affect the levels of Bcl-2 family proteins in CLL 

cells? 

2) How does stimulation of CLL cells with CD40L affect the levels of Bcl-2 

family proteins? 

3) How do pro- and anti-apoptotic Bcl-2 family proteins interact in CLL cells, 

and how are these interactions influenced by drug treatment and CD40L? 

4) How do interactions between pro- and anti-apoptotic Bcl-2 family proteins 

influence the fate of CLL cells following drug treatment? 

5) Can this knowledge be used to overcome drug resistance? 
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2   

2.1 Materials 

2.1.1 Flow cytometry  

2.1.1.1 Principle  

Flow cytometry measures several parameters of  suspended cells according to their 

light scattering properties, which include fluorescence emission (Macey 

1988),Where is FACS sorting cells based on flow cytometry data. The cells move in 

a stream of liquid through a light beam and past a sensing area which consists of 

several detectors (Figures 2.1) cells or particles between 0.2 – 50 µm,also flow 

cytometry can be used in measure relative size,internal complexity and 

fluorescently-labelled cells (e.g. with antibodies conjugated to fluorescent dyes), the 

emission of fluorescence is also quantified using wavelength-specific detectors and 

filters (Ormerod,2006). Several measurements are recorded simultaneously for each 

cell, which combined with specific gating procedures allows identification of a 

homogenous cell population within a heterogeneous one (Macey 1988). 
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Figure 2.1 The principle of flow cytometry. 

 

Hardware set-up in a typical flow cytometer includes fluidics, laser(s), a number of detectors 

and fluorescence detectors. Cells can be analysed and quantified, or, as depicted here, sorted 

using deflection plates and collection tubes.(Macey 1988). 

 

2.1.1.2 Applications  

Flow cytometry is routinely used to assess cell viability and to determine cellular 

immunophenotyping using fluorescence-labelled monoclonal antibodies aginst 

surface marker to identify subsets of cells of interest (Craig & Foon 2008). Cell 

viability assays are based on morphological changes (FSC/SSC), identification of 

plasma membrane permeability and phosphatidylserine exposure in dying cells with 

fluorescent probes such as propidium iodide (PI) and detection of caspase activation, 

loss of mitochondrial membrane potential, or fractional DNA content (sub-G1), 
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again using fluorescent probes (Wlodkowic, Skommer & Darzynkiewicz 2009). 

Immunophenotyping is performed with the use of fluorescently-labelled antibodies 

that recognise specific cell surface proteins (lineage markers), for example CD3 for 

T lymphocytes and CD19 for B lymphocytes or CD4 and CD8 for helper and 

cytotoxic T lymphocytes, respectively. 

The BD fluorescence-activated cell sorting (FACS) Calibur™ was used for all 

experiments in my thesis. 

2.1.1.3  Strength and limitation  

The main advantages of FACS (fluorescence-activated cell sorting) are the speed of 

analysis, sensitivity and specificity, the ability to obtain multiple measurements for 

each cell within the cell population (Stacchini et al. 2012) and availability of a wide 

range of functional probes for staining of live, unfixed cells. The limitations include 

cost of equipment, a need to have single cells in suspension (problematic for 

adherent cells and cells that clump easily), inability to obtain microscopic images to 

correlate with light-scattering data (this has been overcome with the introduction of 

Image Stream technology) (Zuba-Surma & Ratajczak 2011) or to analyse tissue 

sections. 

2.1.2  Cell Culture  

2.1.2.1   Isolation of CLL cells  

Peripheral blood (PB) samples were taken from patients previously diagnosed with 

CLL after giving informed consent and with the approval from the Liverpool 

Research Ethics Committee (LREC). Heparinised blood samples were slowly 
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layered on top of Lymphoprep TM (Axis-Shield, Kimbolton, U.K) and centrifuged 

at 800 g for 30 min at room temperature. The mononuclear layer of cells were 

carefully collected prior to washing and resuspending in ice-cold RPMI-1640 

containing 10% v/v FCS, after which an equal volume of ice-cold RPMI-1640 plus 

10% v/v FCS and 20% v/v DMSO was gradually added on ice.  One mL aliquots of 

the final cell suspension were then placed in cryotubes housed in polystyrene holders 

and stored at -80˚C for one week to freeze gradually before being transferred into 

liquid nitrogen for long-term storage in the University of Liverpool Leukaemia 

Biobank. For the majority of experiments, cells were not purified further and only 

CLL cases with white blood cell counts greater than 50x10
9
/L were employed to 

ensure there was minimal contamination from non-malignant cells. 

2.1.2.2 Culture of CLL cells under standard conditions 

Cryopreserved CLL cells were taken from the University of Liverpool Leukaemia 

Biobank and thawed rapidly at 37°C before transferring to a pre-chilled 25 mL 

universal. Ice-cold RPMI-1640 (supplemented with 10% v/v FCS, 2mM L-

glutamine, 100units/mL penicillin and 100µg/mL streptomycin) was slowly added 

drop wise on ice to the 1mL CLL cell suspension until a final volume of 10 mL was 

reached. Cell suspensions were centrifuged at 500g for 5 min at 4°C and washed 

once with cold RPMI culture media to remove any remaining DMSO. Cells were 

resuspended in RPMI culture medium and recovered for 1 h in a 25 mL universal 

tube prior to culturing at 5% CO2 at 37°C for 1 h to allow them to warm and 

‘recover’ before any further treatment. Cellular viability was checked by trypan blue 

exclusion using a cellometer auto T4 slide (Peqlab Ltd, Hampshire, and U.K), and 
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only CLL samples with viability greater than 80% were used in subsequent 

experiments. Unless stated, CLL cells were seeded at 4 x 10
6
/1mL in a 24-well plate 

for all experiments. 

2.1.2.3 Fibroblasts maintained as feed layers to create co-culture conditions 

mimicking lymph node microenvironment 

Parental or stably transfected  NIH 3T3 mouse fibroblasts  expressing human CD40L  

provided by Professor Gerry Cohen in University of Liverpool were cultured in high 

glucose DMEM (supplemented with 10% v/v heat inactivated FCS, 2mM L-

glutamine, 100units/mL penicillin and 100µg/mL streptomycin) in a 37°C incubator 

with 5% CO
2
, as described (Vogler et al. 2009). Both cell lines were maintained at a 

density of 2×10
5
/mL - 2×10

6
/mL. CD40L-expression was checked monthly by 

labelling the cells with a mouse anti-human CD154-FITC or mouse IgG1κ control 

antibody prior to analysing FL1 fluorescence using a Becton Dickinson (BD) 

FACSCalibur machine. The data was analysed using BD CellQuest Pro software 

(BD Biosciences, Oxford, UK) (Figure 2.2). 
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Figure 2.2  CD40L expression on mouse NIH 3T3 mouse fibroblasts. 

 

To confirm that CD40L-expressing fibroblasts still expressed surface CD40L, every month 

parental (A) or CD40L-expressing (B) mouse fibroblast cells were labelled with either a 

FITC-conjugated control IgG1κ antibody or CD40L-FITC antibody and surface expression 

was detected using FL1 fluorescence by FACS.  

For co-culture studies, both parental and CD40L-expressing fibroblasts were γ-

irradiated (to stop them dividing) and plated on the multi-well plate to form 

monolayers before co-culture of CLL cells. 

 

2.1.2.4 CLL cells cultured under co-culture conditions  

3 × 10
6 

CLL cells were seeded on the respective monolayers prepared earlier and co-

cultured with parental or CD40L (CD154)-expressing fibroblasts in RPMI-1640 
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(supplemented with 10% v/v FCS, 2mM L-glutamine, and 100units/mL penicillin 

and 100µg/mL streptomycin) in a 37°C incubator with 5% CO
2
.  

2.1.2.5    Measuring cell death by flow cytometry 

6×10
5
 CLL cells were collected at the end of incubation and centrifuged at 550g for 

5 min at 4°C and washed once with  RPMI-1640 medium and again with phosphate 

buffered saline (PBS) comprised of 137mM NaCl, 2.7mM KCl, 4.3mM Na2HPO4, 

1.47mM KH2PO4 (pH 7.4). CLL cells were suspended in 500µL of PBS and 

incubated with 1µg/mL propidium iodide (PI) in the dark for 10 min. Cellular 

viability was assessed by measuring the number of PI bright (dead) cells in a total of 

10,000 gated events on the FACS. PI is a DNA-binding fluorochrome and commonly 

used for identifying dead cells whereas live cells with an intact plasma membrane 

exclude PI.Dead cells take up the fluorochrome as they have lost their membrane 

integrity and therefore fluoresce bright red (Figure 2.3). 
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Figure 2.3.  Propidium iodide staining mechanism. 

 

Propidium iodide (PI) is standard viability dye in flow cytometry, PI can be used in 

combination with other fluorochromes excited at 488 nm such as fluorescein 

isothiocyanate (FITC) and phycoerythrin (PE). Figure and legend from 

(https://www.rndsystems.com/resources/protocols/flow-cytometry-protocol-analysis-

cell-viability-using-propidium-iodide). 

 

2.1.3     Expression of protein detected by Western blotting  

2.1.3.1   Principle  

In principle, the term Western blotting refers specifically to the immunological 

detection of proteins that have been electrophoretically-separated by molecular size 

and transferred to a membrane (Fulton & Twine 2013).  Proteins are identified 

through the use of specific antibodies. In general, primary antibodies targeting the 

protein of interest are un-conjugated and require a second-layer conjugated detection 

antibody that recognises the source and type of primary antibody (e.g. mouse IgG). 
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The nature of the conjugation for the detection antibody is usually horse-radish 

peroxidase (HRP) where chemoluminesence reagents can be used to visualise the 

protein band of interest using either X-Ray film or imaging devices 

2.1.3.2   Applications  

Western blotting is used for detection of specific proteins, endogenous or ectopically 

expressed, in a mixture of proteins, in a qualitative and quantitative manner. For 

quantitative analysis, the expression level relative to a control sample, or a purified 

protein sample of known concentration, is used. Western blotting can be used to 

compare the level of expression of proteins of interest, monitor protein 

phosphorylation and changes in molecular weight of particular protein in cells with 

or without drug treatment. 

2.1.3.3   Strength and limitation  

The advantage of Western blotting over alternative techniques to detect protein 

expression is that it cannot only detect proteins of interest in a specific manner, but 

also measure the level of expression of proteins quantitatively. In addition, 

simultaneous determination of proteins of different sizes serves to increase the 

effectiveness of the technique. The limitations include the need to isolate protein 

samples from their native cellular environment (as compared to protein detection 

using fluorescent microscopy), inability to analyse protein expression on a single cell 

level, and thus inability to assess the heterogeneity of protein expression within a 

cell. 
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2.1.4  Protein-protein interaction detected by  

Co-Immunoprecipitation  

2.1.4.1  Principle  

Co-Immunoprecipitation is a purification procedure to determine if two different 

molecules (usually proteins) interact with each other. An antibody specific to the 

protein of interest is added to a cell lysis. Then the antibody-protein complex is 

pelleted usually using protein-G sepharose which binds most antibodies. Generally, 

an antibody specific to that concerned antigen is used for this purpose. The antibody 

usually attached to an agarose resin which act as a supporting bead. The antigen may 

arise from various sources such as tissues or cells, translated proteins and 

metabolically labelled cells. After the pre-immobilization of the specific polyclonal 

or monoclonal antibody in the insoluble solid support, incubation is done with the 

cell lysate that contains the required antigen. Sometimes mild agitation is required 

for binding of the target antigen with the specific antibody. The immune complex 

thus formed is immobilized and collected followed by elution from the insoluble 

support for subsequent analysis.  

In some special cases, immunoprecipitation can be performed using free antibody 

not bound to the insoluble support. Formation of immune complex using such 

technique is beneficial when the concentration of the target antigen is low, the 

antibody binding with the antigen has low binding affinity or the kinetics of the 

binding process are slow. Isolation of a single protein from a cell lysate is generally 

done by immunoprecipitation. The purpose of this technique is to provide a guide to 
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the analysis of such protein-protein interactions. This technique can also be used to 

evaluate how the specific protein molecule interacts with other molecules such as 

DNA (Masters 2004). 

2.1.4.2   Application   

Immunoprecipitation was used to detect protein-protein interactions in CLL cells 

cultured under standard or co-culture conditions. The two main uses were to identify 

whether two known Bcl-2 family proteins interact with one another, for example to 

investigate interactions between anti-apoptotic and pro-apoptotic proteins.  

2.1.4.3   Strengths and limitations  

The advantages of immunoprecipitation are native state of the proteins analysed, the 

relative ease of the protocol, and its cost-effectiveness (compared to e.g. 

bioluminescence resonance energy transfer). The limitations include the mixing of 

compartments during cell lysis, the need to stabilise low affinity or transient protein-

protein interactions, and the risk of high background from non-specific interactions, 

particularly when gentle buffers are used. The presence of co-eluted antibody chains 

may interfere with sample analysis, particularly if several interacting proteins are co-

precipitated with the target. Finally, immunoprecipitation does not allow analysis of 

native protein interactions in living cells in time course studies, or subcellular 

localisation of protein-protein interaction. 
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2.1.5 Knockdown of protein expression by siRNA using 

nucleofection 

2.1.5.1  Principle  

Small interfering RNA or silencing RNA is generally termed as siRNA. These are 

double-stranded molecules of RNA comprising 20 to 25 base pairs. siRNAs have 

various biological functions but most importantly they act on the RNA interference 

(RNAi) pathway (Castanotto & Rossi 2009), siRNAs have a well-defined structure: 

a short (usually 20 to 24-bp) double-stranded RNA (dsRNA) with phosphorylated 5' 

ends and hydroxylated 3' ends with two overhanging nucleotides. Synthetic siRNAs 

can be introduced into cells by transfection. Since in principle any gene can be 

knocked down by a synthetic siRNA with a complementary sequence, siRNAs are an 

important tool for validating gene function and drug targeting in the post-genomic 

era (Bernstein et al. 2001). 

The specific siRNA strand was guided by RNA Induced Silencing Complex (RISC) 

to bind to the targeted mRNA through complementary sequences (Elbashir 2001).  

At the 5'end of the siRNA strand there exist a 2 to 7 nucleotide stretch which 

conferred the mRNA specificity for siRNA which is also known as seed region. 

After annealing with the seed region of siRNA, the 10 nucleotides at the 5’end of the 

mRNA is subjected to degradation by Argonaute protein complex that contains a 

RNase H domain (Tomari & Zamore 2005). As a consequence the translation of the 

target mRNA is inhibited. 
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2.1.5.2 Applications  

siRNA is used as a method to down-regulate the expression of target genes in order 

to establish the link between gene identity and function. It can be used to test 

function of newly discovered genes. In addition, siRNA is used in pathway analysis 

whereby disrupting one gene could affect the expression and/or activities of other 

genes in the same pathway. Finally, siRNA can be used to study gene redundancy 

(Katome et al. 2003). 

2.1.5.3 Strengths and limitations  

The power of siRNA lies in its cost-effectiveness and ease of introduction into cells,  

the generation of double or triple knock downs, and an ability to perform loss-of-

function studies in organisms or cells where classical genetic analysis is laborious 

and time consuming. The main disadvantage of this approach is that often there is an 

incomplete loss of gene function whereby residual protein synthesis could be 

sufficient to maintain function of the target gene. The effects are often transient, 

particularly in rapidly dividing cells. Finally, off-target silencing of genes that 

contain partial sequence identity can occur, necessitating the comparison of several 

siRNAs corresponding to different parts of the target RNA.  

2.2 Materials 

2.2.1 Reagents and cytotoxic agents 

Cryotubes were from Nuncbrand (Fisher Scientific, Loughborough, U.K). Dimethyl 

sulfoxide (DMSO), trypsin, Dulbeccos Modified Eagles Medium (DMEM), trypan 

blue, phosphatase and protease inhibitor cocktails, propidium iodide (PI), 2-
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mercaptoethanol and bovine serum albumin (BSA) were from Sigma-Aldrich 

(Exeter, U.K). Roswell Park Memorial Institute (RPMI) 1640 and fetal calf serum 

(FCS) were from Biosera (Ringmer, U.K). ECL Western blotting kit was from 

Millipore (Watford, U.K). NIH 3T3 mouse parental and CD40L-expressing 

fibroblasts were a kind gift from Professor Gerry Cohen (University of Liverpool, 

U.K). SDS-PAGE gel stacking buffer, resolving buffer, transfer buffer, and 

tetramethylethylenediamine (TEMED) were from Geneflow (Staffordshire, U.K). 

SDS-PAGE protein bench ladder was from Invitrogen, U.K. Human B cell 

Nucleofector kit was from (Lonza, U.K). Puma/BBC3 specific siRNA and non-

specific siRNA were from Dharmacon/Thermo Scientific (via Abgene Ltd, Kent, 

UK). FITC Mouse anti-human CD40L and FITC Mouse IgG isotype control were 

from B.D. Pharmingen (Oxford, UK). 
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2.2.2 Antibodies 

Below is a list of all the antibodies (Table 2.1), used for Western blotting and 

immunoprecipitation experiments. All secondary antibodies were purchased from 

Santa Cruz Biotechnology (Heidelburg, Germany)  

  

Table 1.1  List of all antibodies used 

 

  

Primary antibody 

  

Source 

  

Secondary antibody 

  

Dilution 

Mouse anti-Bcl2 Abcam (Cambridge,U.K) Goat anti-mouse-HRP 1/2000 

Rabbit anti-Bcl2 

(IP) 

New England Biolabs 

(Herts, U.K 

  

Rabbit anti-Puma New England Biolabs 

(Herts, U.K) 

Goat anti-rabbit-HRP 1/2000 

Rabbit anti-Bcl-xl New England Biolabs 

(Herts, U.K) 

Goat anti-rabbit-HRP 1/2000 

Rabbit anti-Mcl-1 Santa Cruz (Heidelburg, 

Germany) 

Goat anti-rabbit-HRP 1/2000 

Rabbit anti-Bak Santa Cruz (Heidelburg, 

Germany) 

Goat anti-rabbit-HRP 1/2000 

Mouse anti-Bax New England Biolabs 

(Herts, U.K) 

Goat anti-mouse-HRP 1/2000 

Rabbit anti-Puma 

(IP) 

Novusbio (Cambridge 

U.K) 

  

Mouse β-actin Sigma (Exeter U.K) Goat anti-mouse-HRP 1/10000 

Rabbit anti-Bim New England Biolabs 

(Herts, U.K) 

Goat anti-rabbit-HRP 1/2000 
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2.2.3 Patients samples 

All samples were obtained with informed consent and with the approval of the 

Liverpool Research Ethics Committee. The diagnosis of CLL was based on standard 

morphological, and immunophenotypic criteria, as described elsewhere (Melarangi 

et al 2012). The clinical details of the CLL patients are shown in (Table 2.2). 

 

Table 1.2   Clinical features of the primary CLL samples used in the study. 

 
No Case 

number 

Gend

er 

 

Age 

at 

Dig 

Patient 

status 

WBC 

(109/l) 

Deletion 

in 

17p13 

Deletion 

in 

11q22 

P53 

mutati

on 

P53 

function 

IGVH 

mutation 

1 2866 M 80 A 229 N N N Normal 0 U  M 

2 2911 M 80 D 223 N N N Normal 0 U  M 

3 2968 M 81 D 87 N N N Normal 3.47 M 

4 2899 M 75 A 99 N N N Normal 8.15 M 

5 2929 M 59 A 93 N N N Normal 1.01 UM 

6 2746 M 81 D 306 N N N Normal 2.43 M 

          
IGVH status refers to somatic mutation in IGVH gene of CLL cells as compared with gene 

sequence of nearest germ-line using 2% as a cut-off. 

M=mutated 

UM=un-mutated  

        

2.3 Statistical analysis 

Statistical analysis was performed to compare the effects of fludarabine and 

dexamethasone on expression of Bcl-2 family proteins in CLL cells cultured under 

different conditions in Chapter 3, and the effects of Puma expression on fludarabine-

induced CLL-cell death in Chapter 4.  In these two chapters, all data analysed were 

of paired measurement and presented as mean ± standard deviation (SD). To 

compare the effects between any two different conditions in each experiment, the 
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paired t-test was performed using the Graph Pad Prism 5 software (GraphPad 

Software, San Diego, CA, USA). The α level of < 0.05 (P-value) in 2-sided tests was 

set to accept any difference with the statistical significance. With no statistical 

analysis applied, results were descriptively presented in Chapter 5.  

Finally in my thesis I have used paired t-test to compare the effects of multiple 

culture conditions/treatments on survival and protein expression of CLL cells in 

Chapters 3 and 4.  Compared to anova test, it gave a bigger statistical power to find 

any difference between any two groups in this paired design for a limited sample size 

(n=6).  In contrast, anova test is more suitable for comparison of means among 

multiple groups, but may not find the difference(s) existing between particular 

pair(s) of the multiple groups. Therefore, the multiple paired t-test might be more 

sensitive, but less stringent in identifying these statistical differences. 
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Chapter 3 

3 Characterisation of the effects of          

fludarabine and dexamethasone on CLL  

cells cultured under standard and co- 

culture conditions 
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3.1 Background and aims 

The fact that CLL cells are long-lived in vivo but rapidly undergo apoptosis in vitro 

(Collins et al. 1989; Coscia et al. 2011) clearly demonstrates that they retain the 

ability to execute apoptosis, and that their prolonged survival in vivo requires micro-

environmental factors at sites of tissue involvement including bone marrow and 

lymph nodes. As described earlier, interaction of CLL cells with T cells in the bone 

marrow and lymph nodes of patients plays a critical role in the expansion and 

extended survival of the malignant cells. One of the most important interactions 

mediating these effects is stimulation of CD40 on CLL cells by CD40L on T cells. 

CD40 stimulation has been shown to protect CLL cells from spontaneous and drug-

induced apoptosis in vitro (Kitada et al. 1999; Vogler et al. 2009; Zhuang et al. 

2014), implicating its involvement in mediating drug resistance in vivo. Although 

multiple mechanisms are involved in CD40-mediated protection of CLL cells from 

drug-induced cell death, it is likely that Bcl-2 family proteins play a key role. With 

respect to drugs that induce p53-dependent (fludarabine) or p53-independent 

(dexamethasone) apoptosis in CLL, these treatments may affect the level of 

expression of Bcl-2 family proteins. Therefore, to understand how drug resistance 

might be overcome by CD40 stimulation, it is important to understand how this 

process affects drug-induced alteration in the expression of Bcl-2 family proteins.  

The aim of this study was to investigate the effect of fludarabine or dexamethasone 

on CLL cells exposed to CD40 stimulation. In particular, I sought to establish the 

effects of these drugs on cell viability and expression of different anti-apoptotic and 

pro-apoptotic Bcl-2 family proteins in CLL cells that were cultured under standard 
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conditions or co-cultured with transfected fibroblasts that express human CD40L. 

The same sets of experiments were performed in parallel using parental fibroblasts 

that did not express CD40L as a control. 

3.2 Methodology 

3.2.1   Cell culture 

Cryopreserved cells used in this chapter were thawed according to the method 

described in section 2.1.2.2, and were cultured under standard conditions as listed in 

section 2.1.2.2, or were co-cultured with either parental or CD40L-expressing 

fibroblasts as described in sections 2.1.2.3 and 2.1.2.4. 

3.2.2   Flow cytometry protocol to detect apoptosis 

CLL cells were stained with propidium iodide (PI) according to the procedure 

described in section 2.1.2.5. Flow cytometry was carried out following this staining 

using a BD FACS Calibur, and percentage cell apoptosis was calculated. 

3.2.3   Sample preparation, SDS-PAGE and Western blotting 

Western blotting was used to detect Bcl-2 proteins. Whole cell lysates were prepared 

by solubilising cell pellets from CLL cell samples with lysis buffer (10 mM Tris-

HCI (pH 7.4), 5 mM MgCl2 , 100 mM NaCl, 1% Triton X-100 and a protease 

inhibitor cocktail from Sigma-Aldrich (Exeter, U.K). Cells lysates along with the 

BenchMaker ™ Pre-sained protein ladder (life technologies catalogr no: 10748-010) 

were then sonicated using a tip sonicator set to maximum, and then centrifuged at 

13,000rcf for 15min. A protein concentration of the supernatant was determined by 

Bio DC™ protein assay (Biorad) according to the manufacturer’s instructions 
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(Lowry et al ,1951,Peterson.1979). A volume containing 10g of protein was then 

mixed with an equal volume of double strength Laemelli sample buffer (10 mM 

Tris-HCI (pH 6.7), 1% sodium dodecyl sulphate (SDS), 2-mercaptoethanol and 

bromophenol blue), and then heated at 95°C for 5 min to fully denature the proteins. 

Samples were then applied to a SDS-PAGE gel made up of a 5% acrylamide 

stacking gel and 15% acrylamide resolving gel to achieve good resolution of lower 

molecular weight proteins. Separated proteins were transferred to Immobilon-PVDF 

membranes (Millipore, Fisher Scientific UK Ltd, Loughborough, U.K.) by 

electrotransfer for 1h at 400mA in chilled transfer buffer (Figure 3.1).  Membranes 

was washed in TBS-T (150mM NaCl, 25 mM Tris pH 7.5, 0.1% Tween 20) for 15 

minutes to remove any residual transfer buffer, and then blocked in blocking buffer 

(TBS-T supplemented with 5% dry milk) for 45min. Membranes were briefly 

washed in TBS-T for 15 mins, and probed with primary antibodies targeting Bcl2 

proteins diluted at 1:1000 in blocking buffer overnight at 4°C with gentle agitation. 

The membranes were washed 3 times for 15mins with TBS-T to remove unbound 

primary antibody, and then exposed to horse radish peroxidase (HRP)-conjugated 

secondary antibody diluted at 1:10,000 in blocking buffer for 1h at room 

temperature. Unbound secondary antibody was washed an additional 3 times for 15 

mins with TBS-T. Specific proteins were detected using enhanced 

chemiluminescence (ECL) reagents (Millipore), and reactive bands were visualised 

using a Fujifilm LAS-1000 chemiluminescence imaging system (Fujifilm, Tokyo, 

Japan). Quantitative analysis of signals corresponding to the protein band of interest 

was carried out by densitometry for quantification of data, the images were further 
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analysed on the same instrument using 2D densitometry AIDA image analyser 

software package (Fujifilm)  

 

\ 

 

Figure 3.1. Western blotting 

 

Western blotting Protein separation by SDS-PAGE  

 A.  Protein transfer to a membrane 

 B. Blocking and probing with primary antibody specific to target protein 

 C. Probing with a labeled secondary antibody specific to primary antibody 

 D. ECL applied and signal is then detected using CCD camera.   

 Figure and legend taken from (GE Healthcare Bio-Sciences AB Björkgatan3075184     

Uppsala Sweden www.gelifesciences.com, First published Feb 2015). 

 

 

 

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjU2pfT8pPOAhUB2xoKHU9aCsAQjRwIBw&url=http://www.biotechniques.com/BiotechniquesJournal/2012/September/Utilization-of-Peptide-Macroarrays-for-Evaluating-Specificity-of-Antibodies-to-Modified-and-Unmodified-Core-Histones/biotechniques-334928.html?service=print&bvm=bv.128153897,d.ZGg&psig=AFQjCNFh3swczZwTLDBzr5b4zYsZu2J9zA&ust=1469717398401440
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3.3 Effect of fludarabine or dexamethasone on the viability of 

CLL cells cultured under standard and co-culture conditions 

CLL cells cultured for 48h under standard conditions where no fibroblasts were 

present, or either with parental or CD40L-expressing fibroblasts exhibited different 

levels of spontaneous cell death as detected by PI (propidium iodide) uptake (Figure 

3.2 A). As expected (Vogler et al. 2009), survival of CLL cells was greatly enhanced 

under co-culture conditions, and this was statistically significant when CLL cells 

were co-cultured with CD40L-expressing fibroblasts (Figure 3.2 B). 
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Figure 3.2. Effect of co-culture on spontaneous cell death measured by PI 

staining and flow cytometry. 

 

A: Representative FSC/SSC dot-plots showing the gating used to select cells for 

fluorescence analysis and fluorescence histograms showing how PI positivity was defined. 

The population of cells in M1 region of the histogram are considered PI positive and 

therefore non-viable. B: Column charts showing difference in the % of spontaneous cell 

death (mean  SD) of CLL cells from 6 different patients under the three culture conditions. 

 

Investigation of the effects of dexamethasone (100 nM) or fludarabine (10 µM) were 

tested next. CLL cells cultured with these drugs for 48h under standard culture 

conditions showed a statistically significant increase in cell death compared to cells 

that were not treated with either compound (Figure 3.3). Both drugs were effective at 

killing CLL cells, with fludarabine having slightly greater cytotoxic effects 

compared to dexamethasone. 
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Figure 3.3 Effect of dexamethasone and fludarabine on cell death under 

standard conditions. 

 

A: Representative FSC/SSC dot-plots and PI histograms. B: Column charts showing 

difference in the % of cell death (mean  SD) of CLL cells from 6 different patients in the 

presence or absence of the drugs. Statistical significance was determined using a Student’s t-

test for paired data. 

    

Next, the effect of co-culture conditions on the cytotoxicity of dexamethasone and 

fludarabine was examined. CLL cells were cultured under standard conditions or co-

cultured with either parental or CD154-expressing fibroblasts in the presence of 

either dexamethasone (100 nM) or fludarabine (10 µM). The CLL cell death induced 

after treatment with dexamethasone under standard conditions was antagonized by 

co-culture with either parental or CD154-expressing fibroblasts (Figure 3.4). Co-

culture of CLL cells with parental fibroblasts significantly reduced dexamethasone-
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induced cell death (p=0.045) compared to standard conditions, suggesting that co-

culture with fibroblasts alone has protected CLL cells from killing by this drug. This 

protective effect of co-culture was more pronounced when CLL cells were co-

cultured with CD154-expressing fibroblasts (p=0.002), indicating that CD40 

stimulation exerts specific and additional pro-survival effects to counteract the 

cytotoxicity of dexamethasone. 

 

 

 Figure 3.4.  Effect of co-culture on dexamethasone-induced cell death. 

 
A: Representative dot-plots and histograms. B: Column charts showing difference in the % 

of dexamethasone-induced killing (mean  SD) of CLL cells from 6 different patients under 

the three culture conditions. The % of drug-induced cell death was calculated as: 100 x [(% 

cell death of drug-treated cells – % cell death of untreated cells) (100 – % cell death of 

untreated cells)].   
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Similarly, CLL cells were protected from the cytotoxic effects of fludarabine when 

they were co-cultured with either parental or CD154-expressing fibroblasts (Figure 

3.5). Statistically significant reduction of drug-induced cell death was observed when 

fludarabine-treated CLL cells were co-cultured with parental cells (p=0.023) or with 

CD154-expressing fibroblasts (p=0.007). Again, the protective effect of co-culture 

with CD154-expressing fibroblasts was greatest, but did not show statistical 

significance compared to the co-culture with parental fibroblasts (p=0.248). 

 

 

Figure 3.5.  Effect of co-culture on fludarabine-induced cell death. 

 

A: Representative dot-plots and histograms. B: Column charts showing difference in the % 

of fludarabine-induced killing (mean  SD) of CLL cells from 6 different patients under the 

three culture conditions. The % of drug-induced cell death was calculated as described in 

figure legend of Figure 3.3. 
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In summary, treatment of CLL cells with either dexamethasone or fludarabine 

induces cell death under standard culture conditions. In keeping with established 

findings (Melarangi et al. 2012), co-culture with either parental or CD154-expressing 

fibroblasts rescues CLL cells from the cytotoxic effects of these drugs (Figure 3.6, 

Table 3.1). The cytotoxic drugs used in this thesis operate through mechanisms that 

are p53-dependant fludarabine (Lin et al. 2013) and p53-independent dexamethasone 

(Melarangi et al. 2012). That CD154-expressing fibroblasts consistently offered CLL 

cells greater protection both fludarabine- and dexamethasone-induced cell death 

suggests that this protective effect supersedes these mechanisms.  

 

 

 

 

 

 

 

 

 

Figure 3.6.  Induction of cell death in CLL cells. 

 

% Cell death (mean + SD) under standard and co-culture conditions with parental cells or 

fibroblasts expressing CD40L for 6 CLL samples, in the presence or absence of 

dexamethasone or fludarabine. 
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Table 3.1.  P values in the paired t test performed to compare cell death levels 

following drug treatment under different culture conditions outlined in (Figure 3.6). 

 
 Treatment STD PAR CD154 

Treatment  Ut Dex Flu Ut Dex Flu Ut Dex Flu 

 

STD 

Ut X          

Dex 0.01 X        

Flu 0.004 0.2 X       

 

PAR 

Ut 0.10 0.01 0.007 X      

Dex 0.20 0.02 0.02 0.10 X     

Flu 0.4 0.05 0.02 0.3 0.90 X    

 

CD154 

Ut 0.01 0.001 0.002 0.03 0.02 0.09 X   

Dex 0.01 0.002 0.003 0.04 0.03 0.11 0.67 X  

Flu 0.02 0.002 0.004 0.05 0.04 0.15 0.44 0.45 X 

 

 

3.4 Effect of fludarabine and dexamethasone on the expression of 

Bcl-2 family proteins in CLL cells cultured under standard 

and co-culture conditions 

A principle mediator of the cytotoxic effects of many drugs is the process of 

apoptosis and this process is regulated by members of the Bcl-2 family of proteins.  

Previous studies have demonstrated that CD40 ligation coupled with IL-4 

stimulation of CLL cells induces expression of Bcl2-A1, Bcl-XL and Mcl-1, and 

downregulates expression Bak, together resulting in protection from the pro-

apoptotic effects of ABT-737 and staurosporine (Buggins & Pepper 2010; 

Butterworth et al. 2009). However, these studies only incompletely examined 
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expression of Bcl-2 family proteins. Moreover, previous work from this Department 

examined the mechanism of dexamethasone-induced apoptosis and found it to be 

dependent on Bim expression (Melarangi et al. 2012).  Whereas others have found 

that CLL cell resistance to fludarabine is correlated with expression of  Mcl-1 

(Kitada et al. 1998). Therefore, to understand the interplay between expression of 

Bcl-2 family proteins and sensitivity of CLL cells to fludarabine- and 

dexamethasone-induced cytotoxicity within the CD40L co-culture system, protein 

expression of Puma, Bim-EL, Bak, Bax, Mcl-1, Bcl-XL and Bcl2 was examined by 

Western blot.  

3.4.1 Comparison of Bcl-2 family protein expression in CLL cells 

exposed to fludarabine and dexamethasone cultured under 

standard conditions and co-culture conditions. 

To examine Bcl-2 family proteins 6 CLL cell samples were cultured for 24h either 

under standard culture conditions, or co-cultured with parental or CD40L-expressing 

fibroblasts. These cultures were also incubated in the presence or absence of 

dexamethasone (100nM) or fludarabine (10M). Following these cultures, CLL cells 

were analysed by flow cytometry to determine viability, and Bcl-2 family protein 

expression was determined by Western blot analysis. (Figures 3.7 - 3.18) show the 

results this analysis on each individual CLL cell sample. Variation in Bcl2 family 

protein expression was observed between each case. For example Bim-EL 

expression was induced by dexamethasone treatment regardless of culture conditions 

in 4 of the 6 CLL cases tested. In the two CLL cases were dexamethasone failed to 

induce Bim-EL expression, this was only observed when cells were cultured in the 
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presence of CD40L-expressing fibroblasts. The results of each individual case with 

respect to Puma, Bim-EL, Bak, Bax, Mcl-1, Bcl-XL and Bcl-2 are summarised in 

(Tables  3.2 – 3.7). 

Table 3.2. Effect of culture condition and drug treatment on the expression of Bcl-2 

family proteins in CLL sample 2746 (figures 3.7 and 3.8). 

 

Bcl-2 family member Effect of culture condition Effect of drug treatment 

Puma ↑ by  CD40L ↑ by flu 

Bim-EL ↓ by  CD40L ↑ by dex > flu 

Bak No effect ↓ by dex and flu in PAR co-

culture 

Bax No effect No effect 

Mcl-1 ↑ by  CD40L ↓ by dex and flu except in 

CD40L co-culture 

Bcl-XL ↑ by  CD40L > PAR ↓ by flu in PAR co-culture 

Bcl-2 ↓ by par and CD40L ↑ by dex in CD40L co-

culture 

PAR= parental 
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Figure 3.7.   Protein expression analysis on pro-apoptotic proteins of the Bcl-2 

family in CLL sample 2746. 

 

The change in the level of Bcl-2 family proteins in dexamethasone or fludarabine under 

standard condition and co-culture with parental cells or fibroblasts expressing CD40L 

(treated or untreated) was relative to that in untreated cells under standard condition (fold 

change)  also the blot was stripped and re-probed with anti-actin antibody. 
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Figure 3.8.   Protein expression analysis on anti-apoptotic proteins of the Bcl-2 

family in CLL sample 2746. 

 

The change in the level of  Bcl-2 family proteins in dexamethasone or fludarabine under 

standard condition and co-culture with parental cells or fibroblasts expressing CD40L 

(treated or untreated) was relative to that in untreated cells under standard condition (fold 

change) also the blot was stripped and re-probed with anti-actin antibody. 
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Table 3.3. Effect of culture condition and drug treatment on the expression of Bcl-2 

family proteins in CLL sample 2866 (figures 3.9 and 3.10).  

 

Bcl-2 family member Effect of culture condition Effect of drug treatment 

Puma No effect ↑ by flu 

Bim-EL ↓ by  CD40L ↑ by dex > flu 

Bak No effect ↓ by dex and flu in PAR co-

culture 

Bax No effect No effect 

Mcl-1 ↑ by  CD40L ↓ by dex and flu except in 

CD40L co-culture 

Bcl-XL ↑ by  CD40L > PAR ↓ by flu in PAR co-culture 

Bcl-2 ↓ by par and CD40L ↓by dex and flu in CD40L 

co-culture 
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Figure 3.9.   Protein expression analysis on pro-apoptotic proteins of the Bcl-2 

family in CLL sample 2866. 

 

The change in the level of Bcl-2 family proteins in dexamethasone or fludarabine under 

standard condition and co-culture with parental cells or fibroblasts expressing CD40L 

(treated or untreated) was relative to that in untreated cells under standard condition (fold 

change) also the blot was stripped and re-probed with anti-actin antibody. 
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Figure 3.10.   Protein expression analysis on anti-apoptotic proteins of the Bcl-2 

family in CLL sample 2866. 

 

The change in the level of  Bcl-2 family proteins in dexamethasone or fludarabine under 

standard condition and co-culture with parental cells or fibroblasts expressing CD40L 

(treated or untreated) was relative to that in untreated cells under standard condition (fold 

change) the actin from the same patient, also the blot was stripped and re-probed with anti-

actin antibody.  
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Table 3.4.  Effect of culture condition and drug treatment on the expression of Bcl-2 

family proteins in CLL sample 2899 (figures 3.11 and 3.12). 

 

Bcl-2 family member Effect of culture condition Effect of drug treatment 

Puma No effect ↑ by flu 

Bim-EL ↓ by  CD40L ↑ by dex > flu 

Bak No effect ↓ by dex and flu in PAR co-

culture 

Bax No effect No effect 

Mcl-1 ↑ by  CD40L ↓ by dex and flu except in 

CD40L co-culture 

Bcl-XL ↑ by  CD40L > PAR ↓ by flu in PAR co-culture 

Bcl-2 ↓ by par and CD40L ↓by dex and flu in CD40L 

co-culture 
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Figure 3.11.  Protein expression analysis on pro-apoptotic proteins of the Bcl-2 

family in CLL sample 2899. 

 

The change in the level of Bcl-2 family proteins in dexamethasone or fludarabine under 

standard condition and co-culture with parental cells or fibroblasts expressing CD40L 

(treated or untreated) was relative to that in untreated cells under standard condition(fold 

change) also the blot was stripped and re-probed with anti-actin antibody.   
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Figure 3.12.  Protein expression analysis on anti-apoptotic proteins of the Bcl-2 

family in CLL sample 2899. 

 

The change in the level of Bcl-2 family proteins in dexamethasone or fludarabine under 

standard condition and co-culture with parental cells or fibroblasts expressing CD40L 

(treated or untreated) was relative to that in untreated cells under standard condition (fold 

change) also the blot was stripped and re-probed with anti-actin antibody. 
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Table 3.5. Effect of culture condition and drug treatment on the expression of Bcl-2 

family proteins in CLL sample 2911 (figures 3.13 and 3.14). 

 

Bcl-2 family member Effect of culture condition Effect of drug treatment 

Puma No effect ↑ by flu 

Bim-EL ↓ by  CD40L ↑ by dex > flu 

Bak No effect ↓ by dex and flu in PAR co-

culture 

Bax No effect ↓ by dex and flu in PAR co-

culture 

Mcl-1 ↑ by  CD40L ↓ by dex and flu except in 

CD154 co-culture 

Bcl-XL ↑ by  CD40L > PAR ↓ by flu in PAR co-culture 

Bcl-2 ↓ by par and CD40L ↓by dex and flu in CD40L 

co-culture 
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Figure 3.13.  Protein expression analysis on pro-apoptotic proteins of the Bcl-2 

family in CLL sample 2911.  

The change in the level of  Bcl-2 family proteins in dexamethasone or fludarabine under 

standard condition and co-culture with parental cells or fibroblasts expressing CD40L 

(treated or untreated) was  relative to that in untreated cells under standard condition (fold 

change) also the actin blot was performed on a separate gel loaded with the same cell 

lysates. 
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Figure 3.14.  Protein expression analysis on anti-apoptotic proteins of the Bcl-2 

family in CLL sample 2911.  

The change in the level of Bcl-2 family proteins in dexamethasone or fludarabine under 

standard condition and co-culture with parental cells or fibroblasts expressing CD40L 

(treated or untreated) was relative to that in untreated cells under standard condition (fold 

change) also The actin blot was performed on a separate gel loaded with the same cell 

lysates 
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Table 3.6. Effect of culture condition and drug treatment on the expression of Bcl-2 

family proteins in CLL sample 2968  (figures 3.15 and 3.16). 

 

Bcl-2 family member Effect of culture condition Effect of drug treatment 

Puma No effect ↑ by flu 

Bim-EL ↓ by  CD40L ↑ by dex > flu 

Bak No effect ↓ by dex and flu in PAR co-

culture 

Bax No effect ↑ on CD40L 

Mcl-1 ↑ by  CD40L ↓ by dex and flu except in 

CD154 co-culture 

Bcl-XL ↑ by  CD40L > PAR ↓ by flu in PAR co-culture 

Bcl-2 ↓ by par and CD40L ↓by dex and flu in CD40L 

co-culture 
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Figure 3.15.  Protein expression analysis on pro-apoptotic proteins of the Bcl-2 

family in CLL sample 2968.  
 

The change in the level of  Bcl-2 family proteins in dexamethasone or fludarabine under 

standard condition and co-culture with parental cells or fibroblasts expressing CD40L 

(treated or untreated) was  relative to that in untreated cells under standard condition (fold 

change) also the blot was stripped and re-probed with anti-actin antibody. 



 
 

P a g e  | 82 

 

  
 

  

 

Figure 3.16.   Protein expression analysis on anti-apoptotic proteins of the Bcl-2 

family in CLL sample 2968.  

The change in the level of  Bcl-2 family proteins in dexamethasone or fludarabine under 

standard condition and co-culture with parental cells or fibroblasts expressing CD40L 

(treated or untreated) was relative to that in untreated cells under standard condition (fold 

change) also the blot was stripped and re-probed with anti-actin antibody. 
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Table 3.7. Effect of culture condition and drug treatment on the expression of Bcl-2 

family proteins in CLL sample 2929 (figures 3.17 and 3.18). 

 

Bcl-2 family member Effect of culture condition Effect of drug treatment 

Puma No effect ↑ by flu 

Bim-EL ↓ by  CD40L ↑ by dex > flu 

Bak No effect No effect 

Bax No effect No effect 

Mcl-1 No effect ↓ by dex and flu except in 

CD154 co-culture 

Bcl-XL ↑ by  CD40L > PAR ↓ by flu in PAR co-culture 

Bcl-2 ↓ by PAR and CD40L ↓by dex and flu in CD40L 

co-culture 
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Figure 3.17.  Protein expression analysis on pro-apoptotic proteins of the Bcl-2 

family in CLL sample 2929. 

The change in the level of Bcl-2 family proteins in dexamethasone or fludarabine under 

standard condition and co-culture with parental cells or fibroblasts expressing CD40L 

(treated or untreated) was relative to that in untreated cells under standard condition (fold 

change) also the blot was stripped and re-probed with anti-actin antibody. 
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Figure 3.18.  Protein expression analysis on anti-apoptotic proteins of the Bcl-2 

family in CLL sample 2929.  

 

The change in the level of  Bcl-2 family proteins in dexamethasone or fludarabine under 

standard condition and co-culture with parental cells or fibroblasts expressing CD40L 

(treated or untreated) was relative to that in untreated cells under standard condition (fold 

change) also the blot was stripped and re-probed with anti-actin antibody. 
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3.5 Pooled analysis of the effect of fludarabine and 

dexamethasone on the expression of individual Bcl-2 family 

proteins in CLL cells cultured under standard and co-culture 

conditions 

3.5.1 Puma 

Overall in the 6 CLL samples tested, a consistent observation was an increase in 

levels of Puma following fludarabine treatment (Figure 3.19). It was noted that Puma 

levels were significantly elevated after fludarabine treatment regardless of whether 

CLL cells were cultured under standard conditions, or co-cultured with parental- or 

CD40L-expressing fibroblasts (p<0.05, Table 3.8), and that the culture conditions 

had no effect on the ability of fludarabine to induce Puma expression. This latter 

observation is important because it suggests that the ability of CD40 ligation to 

rescue CLL cells from fludarabine cytotoxicity is not due to down regulation of 

Puma expression.   

Levels of Puma were found to be unaffected by dexamethasone treatment. 
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Figure 3.19. Puma levels in CLL cells from 6 samples under standard culture or 

co-culture condition. 

 

Puma levels in CLL cells from 6 samples under standard culture condition, or co-culture 

with parental cells or fibroblasts expressing CD40L, in the presence or absence of 

dexamethasone or fludarabine were compared using paired t test for calculating P values as 

shown in (Table 3.8). 

 

Table 3.8.   P values in the paired t test performed to compare Puma levels under 

different treatment and culture conditions outlined in Figure 3.19. 

 Treatment STD PAR CD154 

Treatment  Ut Dex Flu Ut Dex Flu Ut Dex Flu 

 

STD 

Ut X         

Dex 0.05 X        

Flu 0.03 0.01 X       

 

PAR 

Ut 0.30 0.22 0.01 X      

Dex 0.01 0.64 0.003 0.12 X     

Flu 0.02 0.05 0.52 0.04 0.02 X    

 

CD154 

Ut 0.16 0.38 0.003 0.43 0.30 0.01 X   

Dex 0.30 0.25 0.01 0.92 0.15 0.04 0.17 X  

Flu 0.22 0.09 0.85 0.07 0.06 0.96 0.04 0.08 X 

n=6 

Mean +SD 

 

p=0.16 

p=0.25 

p=0.85 
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3.5.2 Bim 

In contrast to its induction of Puma expression in CLL cells, fludarabine did not 

affect the level of Bim (measured as Bim-EL) either under standard culture 

conditions, or after co-culture with parental or CD40L-expressing fibroblasts (Figure 

3.19). Instead, elevation in the level of Bim-EL was observed after dexamethasone 

treatment (Figure 3.20).  This increase was statistically significant compared to 

untreated cells in all three culture conditions used (Table 3.9), and, like fludarabine 

induction of Puma, was not affected by the culture condition. This finding agrees 

with previous work from this Department demonstrating that dexamethasone killing 

of CLL cells is dependent on the induction of Bim (Melarangi et al. 2012). However, 

findings from the current study show that CD40 ligation on CLL cells largely 

protects them from dexamethasone cytotoxicity. This, therefore, extends the findings 

of Melarangi et al to suggest that the microenvironment can negate the pro-apoptotic 

effects of induced Bim expression. Furthermore, that CLL cell treatment with 

fludarabine had no effect on the expression of Bim-EL, suggests that the induction of 

Bim expression in CLL cells treated with dexamethasone is a specific phenomenon. 
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Figure 3.20. Bim-EL levels in CLL cells from 6 samples under standard culture 

or co-culture condition.  

Bim-EL levels in CLL cells under standard condition, or co-culture with parental cells or 

fibroblasts expressing CD40L, in the presence or absence of dexamethasone or fludarabine 

were compared using paired t test for calculating P values as shown in (Table 3.9). 

 

Table 3.9. P values of difference in the levels of expression of Bim-EL in CLL cells 

under all culture conditions, outlined in Figure 3.20. 

 Treatment STD PAR CD154 

Treatment  Ut Dex Flu Ut Dex Flu Ut Dex Flu 

 

STD 

Ut X         

Dex 0.03 X        

Flu 0.49 0.04 X       

 

PAR 

Ut 0.09 0.003 0.70 X      

Dex 0.001 0.75 0.001 0.003 X     

Flu 0.26 0.02 0.42 0.49 0.01 X    

 

CD154 

Ut 0.38 0.001 0.62 0.68 0.006 0.49 X   

Dex 0.004 0.23 0.006 0.009 0.47 0.005 0.006 X  

Flu 0.40 0.01 0.26 0.11 0.002 0.12 0.23 0.002 

 

X 

n=6 

Mean +SD 

 

p=0.38 

p=0.23 

p=0.26 
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3.5.3 Bak 

Although there were differences in the expression of Bak in individual cases of CLL 

within the three culture systems, analysis of the pooled data showed Bak expression 

to remain constant across all culture conditions (standard or co-culture with parental 

cells or fibroblasts expressing CD40L) and that it was not significantly affected by 

treatment with either dexamethasone or fludarabine (Figure 3.21, Table 3.10).  

 

 

Figure 3.21. Bak levels in CLL cells from 6 samples under standard culture or 

co-culture condition.  

 

Bak levels in CLL cells under standard condition, or co-culture with parental cells or 

fibroblasts expressing CD40L, in the presence or absence of dexamethasone or fludarabine 

were compared using paired t test for calculating P values as shown in Table 3.10. 

n=6 

Mean +SD 

 

p=0.16 

p=0.87 

p=0.20 
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Table 3.10. P values of difference in the levels of expression of Bak under all culture 

conditions, outlined in (Figure 3.21). 

 Treatment STD PAR CD154 

Treatment  Ut Dex Flu Ut Dex Flu Ut Dex Flu 

 

STD 

Ut X         

Dex 0.55 X        

Flu 0.20 0.26 X       

 

PAR 

Ut 0.15 0.03 0.41 X      

Dex 0.41 0.16 0.84 0.17 X     

Flu 0.50 0.30 0.96 0.13 0.53 X    

 

CD154 

Ut 0.16 0.15 0.15 0.004 0.02 0.03 X   

Dex 0.68 0.87 0.50 0.09 0.25 0.28 0.19 X  

Flu 0.26 0.30 0.20 0.02 0.02 0.04 0.56 0.40 X 

 

3.5.4 Bax 

Similar to Bak, analysis of the pooled data showed that Bax expression in CLL cells 

remained unaffected by the culture condition used (standard, co-culture with parental 

or CD40L-expressing fibroblasts) (Figure 3.21). Treatment of CLL cells with 

dexamethasone did not affect Bak expression under any culture condition, whereas a 

slight increase in Bax expression was observed in fludarabine-treated CLL cells 

(Figure 3.22). This increase became statistically significant when fludarabine-treated 

CLL cells were co-cultured with parental or CD40L-expressing fibroblasts (p<0.05, 

(Table 3.11).  
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 Figure 3.22. Bax levels in CLL cells from 6 samples under standard culture or 

co-culture condition. 

Bax levels in CLL cells under standard culture condition co-culture with parental cells or 

fibroblasts expressing CD40L, in the presence or absence of dexamethasone or fludarabine 

were compared using paired t test for calculating P values as shown in Table 3.11. 

 

Table 3.11. P values of difference in the levels of expression of Bax under all culture 

conditions with or without treatment of dexamathasone (Dex) or fludarabine (Flu), 

outlined in Figure 3.22. 

 Treatment STD PAR CD154 

Treatment  Ut Dex Flu Ut Dex Flu Ut Dex Flu 

 

STD 

Ut X         

Dex 0.93 X        

Flu 0.12 0.08 X       

 

PAR 

Ut 0.19 0.11 0.04 X      

Dex 0.03 0.02 0.007 0.03 X     

Flu 0.23 0.31 0.91 0.18 0.07 X    

 

CD154 

Ut 0.13 0.10 0.05 0.28 0.68 0.13 X   

Dex 0.22 0.16 0.04 0.79 0.29 0.14 0.27 X  

Flu 0.83 0.83 0.22 0.03 0.002 0.53 0.03 0.28 X 

n=6 

Mean +SD 

 

p=0.13 

p=0.16 

p=0.22 
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3.5.5 Mcl-1 

Treatment of CLL cells with either dexamethasone or fludarabine induced a 

reduction in Mcl-1 expression under standard culture condition (Figure 3.23). This 

reduction in Mcl-1 seemed in line with the induction of cell death by the drugs 

(Figure 3.3). Interestingly, Mcl-1 expression was also significantly reduced by co-

culture of the cells with parental fibroblasts, but this decrease of Mcl-1 expression 

was not associated with induction of cell death. Furthermore, Mcl-1 expression in 

CLL cells co-cultured with parental fibroblasts was not largely affected by the 

presence of either dexamethasone or fludarabine (Table 3.12). These results suggest 

that the pro-survival effect of parental fibroblasts is not due to changes in Mcl-1 

expression. In contrast, Mcl-1 expression was induced when CLL cells were co-

cultured with fibroblasts expressing CD40L. Importantly, this increased expression 

was not affected by CLL cell treatment with dexamethasone or fludarabine under 

these conditions (Figure 3.23), consistent with the inability of these drugs to induce 

cytotoxicity in this system (Figure 3.6, Table 3.1).  
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Figure 3.23. Mcl-1 levels in CLL cells from 6 samples under standard culture or 

co-culture condition.  

 

Levels of Mcl-1 in CLL cells under standard culture condition or co-culture with parental 

cells or fibroblasts expressing CD40L, in the presence or absence of dexamethasone or 

fludarabine were compared using paired t test for calculating P values as shown in Table 

3.12. 

 

Table 3.12. P values of difference in the levels of expression of Mcl-1 under all 

culture conditions and in the presence or absence of dexamethasone or fludarabine, 

outlined in Figure 3.23. 

 Treatment STD PAR CD154 

Treatment  Ut Dex Flu Ut Dex Flu Ut Dex Flu 

 

STD 

Ut X         

Dex 0.008 X        

Flu 0.006 0.21 X       

 

PAR 

Ut 0.004 0.20 0.90 X      

Dex 0.001 0.33 0.41 0.38 X     

Flu 0.01 0.25 0.81 0.87 0.16 X    

 

CD154 

Ut 0.22 0.001 0.02 0.02 0.007 0.02 X   

Dex 0.27 0.002 0.01 0.004 0.003 0.01 0.41 X  

Flu 0.43 0.005 0.04 0.02 0.006 0.02 0.25 0.86 X 

 

n=6 

Mean +SD 

 

p=0.22 

p=0.002 

p=0.04 
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3.5.6 Bcl-XL 

Co-culture of CLL cells with either parental or CD40L-expressing fibroblasts both 

induced expression of Bcl-XL compared to culture of CLL cells under standard 

conditions (Figure 3.24). Because the co-culture system significantly reduces the 

level of CLL cell death (Figure 3.6, Table 3.1), this result suggest a role for Bcl-XL 

in protecting CLL cells from spontaneous apoptosis. Treatment with either 

dexamethasone or fludarabine did not prevent the up-regulation of Bcl-XL within the 

co-culture system. In fact, for unknown reasons, treatment with either drug appeared 

to further induce increased expression of this protein. In particular, this phenomenon 

was observed in CLL cells co-cultured with CD40L-expressing fibroblasts (Figure 

3.24 and Table 3.13). Nevertheless, this increased expression of Bcl-XL by 

dexamethasone and fludarabine did not provide extra protection of CLL cells to that 

already provided by the co-culture system because there was essentially no change in 

the level of cell death (Figure 3.6, Table 3.1).  
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Figure 3.24. Bcl-XL levels in CLL cells from 6 samples under standard culture 

or co-culture condition.  

The levels of Bcl-XL in CLL cells under standard condition, or co-culture with parental cells 

or fibroblasts expressing CD40L, in the presence or absence of dexamethasone or 

fludarabine were compared using paired t test for calculating P values as shown in (Table 

3.13). 

Table 3.13. P values of difference in the levels of expression of Bcl-xl under all 

culture conditions with or without dexamethasone or fludarabine, outlined in (Figure 

3.24). 

 Treatment STD PAR CD154 

Treatment  Ut Dex Flu Ut Dex Flu Ut Dex Flu 

 

STD 

Ut X         

Dex 0.52 X        

Flu 0.99 0.52 X       

 

PAR 

Ut 0.01 0.01 0.001 X      

Dex 0.02 0.02 0.01 0.10 X     

Flu 0.02 0.02 0.02 0.10 0.23 X    

 

CD154 

Ut 0.001 0.001 0.001 0.34 0.86 0.49 X   

Dex 0.001 0.001 0.001 0.004 0.09 0.52 0.01 X  

Flu 0.001 0.001 0.001 0.005 0.09 0.32 0.003 0.14 X 

n=6 

Mean +SD 

 

p=0.001 

p=0.001 

p=0.001 
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3.5.7 Bcl-2 

Like Mcl-1 and Bcl-XL, expression of Bcl-2 in CLL cells was affected by the co-

culture system compared culture under standard condition. Thus, culture of CLL 

cells with either parental or CD40L-expressing fibroblasts reduced the levels of Bcl-

2 (Figure 3.25 and Table 3.14). Again, like Mcl-1, treatment of CLL cells with either 

dexamethasone or fludarabine had little or no effect on Bcl-2 levels within the co-

culture system. However, when CLL cells were cultured under standard conditions, 

treatment with dexamethasone or fludarabine seemed to slightly induce Bcl-2 

expression, but this did not achieve statistical significance within the current study 

(Figure 3.25, Table 3.14). 
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Figure 3.25.  Bcl-2 levels in CLL cells from 6 samples under standard culture or 

co-culture condition. 

The levels of  Bcl-2 in CLL cells under standard culture condition or co-culture with 

parental cells or fibroblasts expressing CD40L, in the presence or absence of dexamethasone 

or fludarabine were compared using paired t test for calculating P values as shown in (Table 

3.14). 

Table 3.14.  P values of difference in the levels of expression of Bcl-2 in CLL cells 

under all three culture conditions with or without dexamethasone or fludarabine, 

outlined in (Figure 3.25). 

 Treatment STD PAR CD154 

Treatment  Ut Dex Flu Ut Dex Flu Ut Dex Flu 

 

STD 

Ut X         

Dex 0.09 X        

Flu 0.07 0.36 X       

 

PAR 

Ut 0.34 0.04 0.03 X      

Dex 0.14 0.009 0.003 0.27 X     

Flu 0.49 0.001 0.06 0.63 0.27 X    

 

CD154 

Ut 0.001 0.003 0.002 0.001 0.01 0.001 X   

Dex 0.003 0.003 0.001 0.01 0.004 0.01 0.19 X  

Flu 0.003 0.003 0.002 0.001 0.01 0.01 0.37 0.37 X 

n=6 

Mean +SD 

 

p=0.001 

p=0.003 

p=0.002 
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3.6 Summary of Results  

a. Spontaneous cell death is moderately reduced in CLL cells when co-cultured 

with parental fibroblasts and significantly reduced when co-cultured with 

CD40L (CD154)-expressing fibroblasts as compared with standard culture 

conditions (p=0.01).  

b. Compared to standard culture conditions, CLL cells are  significantly 

protected from dexamethasone- or fludarabine-induced cell death when co-

cultured with parental fibroblasts (p values of 0.02 and 0.05, respectively) 

and even more protected when co-cultured with CD40L-expressing 

fibroblasts (P=0.002 in both cases). 

c. The expression of different pro-apoptotic and anti-apoptotic Bcl-2 family of 

proteins followed a characteristic overall pattern when CLL cells were 

cultured under different conditions and exposed to different cytotoxic drugs, 

although there was some variation between individual cases.  

d. Fludarabine treatment consistently resulted in the increased expression of 

Puma in CLL cells cultured under all conditions. 

e. Dexamethasone treatment consistently resulted in the increased expression of 

Bim in CLL cells cultured under all conditions. 

f. Levels of Bak and Bax were largely unaffected by different culture 

conditions and treatment with dexamethasone or fludarabine. 

g. Levels of Mcl-1 were reduced by treatment with dexamethasone or 

fludarabine under standard culture conditions and increased by co-culturing 

CLL cells with fibroblasts expressing CD40L. 
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h. Bcl-xL levels were elevated after co-culture with both parental cells and 

fibroblasts expressing CD40L and further increased under these conditions 

by dexamethasone or fludarabine treatment.  

i. Levels of Bcl-2 were reduced by co-culture of CLL cells with parental cells 

and even more so following by co-culture with CD40L-expressing 

fibroblasts. However, levels were unaffected by treatment with 

dexamethasone or fludarabine irrespective of the culture condition used. 

The overall conclusions from this Chapter are summarised in the Table below 

(Table  3-15). 

Table  3.15. Effect of culture condition and drug treatment on the expression of Bcl-2 

family of proteins in 6 CLL samples studied. 

Bcl-2 family member  Effect of culture condition Effect of drug treatment 

Puma No effect ↑ by flu 

Bim EL No effect ↑ by dex 

Bak No effect No effect 

Bax No effect Slight ↑ by flu 

Mcl-1 ↑ by CD40L ↓ by dex and flu under 

standard conditions 

Bcl-XL ↑ by CD40L > PAR ↑ by dex and flu in PAR and 

CD40L co-culture 

Bcl-2 ↓ by CD40L > PAR No effect 
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3.7 Discussion 

It is clear that microenvironment plays a key role in maintaining CLL cell survival 

and resistance to drug therapies (ten Hacken & Burger 2016).  Within this thesis the 

role of CD40 ligation on CLL cells was studied because of its known role in 

providing cytoprotection (Elgueta et al. 2009).  However, the mechanism of this 

cytoprotection is not well understood, particularly in relation to principal drug 

therapies used for CLL such as fludarabine and dexamethasone. This Chapter 

addressed the question how expression of Bcl2 family proteins are affected by co-

culturing CLL cells with parental and CD40L-expressing fibroblasts, and then 

studied how fludarabine and dexamethasone influence this expression.  

I confirmed that CD40 stimulation provides CLL cells with strong pro-survival 

signals, not only preventing their spontaneous apoptosis, but also inhibiting killing of 

CLL cells by drugs that induce cell death via p53-dependent (fludarabine) and p53-

independent (dexamethasone) mechanisms.  

Examination of this mechanism of cytoprotection was next investigated by 

measuring changes to protein expression of Bcl-2 family members. A consistent 

finding was that Puma was upregulated by treatment of CLL cells with fludarabine 

regardless of the culture conditions. Fludarabine is incorporated into DNA and 

mediates its cytotoxicity by blocking DNA synthesis. This would activate p53, 

which induce, among other p53 target genes, the expression of Puma in CLL cells 

(Mackus et al. 2005). The level of Puma induction by fludarabine was similar under 

each culture condition. However, this did not translate into similar levels of induced 

apoptosis, as there was a significant reduction in apoptosis when CLL cells were co-
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cultured with parental or CD40L-expressing fibroblasts. This suggests that co-

culture of CLL cells counteracts the pro-apoptotic effects of Puma.  

Puma is a BH3-only protein that works by interacting with anti-apoptosis proteins 

such as Mcl-1, Bcl-XL, and Bcl-2. When Puma is induced, it binds to these anti-

apoptosis proteins reducing their ability to bind Bax and Bak, subsequently resulting 

in activation of mitochondrial apoptosis.  Conceivably, increased expression of Mcl-

1 and Bcl-XL in CLL cells by the co-culture conditions should lead to rescue from 

Puma-induced apoptosis (Kater et al. 2004; Mackus et al. 2005; Romano et al. 1998). 

Indeed, experiments in this Chapter show that Bcl-XL levels are increased in CLL 

cells under both co-culture systems, whereas Mcl-1 expression is only induced when 

CLL cells are co-cultured with CD40L-expressing fibroblasts. However, although 

combined expression of Bcl-XL and Mcl-1 resulting from CLL-cell co-culture with 

CD40L-expressing fibroblasts provides protection from spontaneous apoptosis, it 

does not provide complete protection from fludarabine cytotoxicity. Clearly, this 

result suggests that the combined expression of Bcl-XL and Mcl-1 does not provide 

total cytoprotection against fludarabine in the co-culture system, challenging existing 

ideas that both of these anti-apoptosis proteins function in equivalent fashion .Puma 

is shown to bind all pro-survival Bcl-2-like proteins (Buggins & Pepper 2010; 

Chipuk et al. 2010), indicating that expression of equimolar levels of Mcl-1 and Bcl-

XL should provide additive protection. That this is not the case suggests that Bcl-

XL, because it is massively induced when CLL cells are co-cultured with parental 

and CD40L-expressing fibroblasts, must be the major protective influence from 

Puma-induced apoptosis when fludarabine is also present within these cultures. 
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The co-culture system also provided protection to p53-independent cytotoxic drugs.   

Dexamethasone primarily up-regulates Bim in CLL cells and does not affect the 

expression of Puma or Bax, which are induced by fludarabine. This result is in 

keeping with previous studies (Melarangi et al. 2012; Ren et al. 2010), and reflects 

the differential action of dexamethasone and fludarabine at a molecular level. 

Dexamethasone binds to and activates the intracellular glucocorticoid receptor which 

regulates the expression of a number of target genes including Bim (Melarangi et al. 

2012), and explains the consistent finding of Bim upregulation in CLL cells within 

all three culture conditions. Similar to the rescue effects of the co-culture system on 

fludarabine-induced cytotoxicity, co-culture of CLL cells with either parental or 

CD40L-fibroblasts also provided rescue from dexamethasone-induced apoptosis. 

The mechanism of this rescue is likely provided by increased expression of Bcl-XL 

and not Mcl-1. This is because although, like Puma, Bim also binds Bcl-2-like 

prosurvival proteins comparably (Mol Cell. 2005 Feb 4;17(3):393-403), there was no 

difference between the level of cytoprotection provided by co-culture with parental 

fibroblasts or with co-culture with CD40L-expressing fibroblasts.  

To my knowledge, this is the first study to directly compare dexamethasone and 

fludarabine for their effect on the expression of Bcl-2 family proteins and associated 

cytotoxicity. It also provides insight into how microenvironment provides rescue 

from this cytotoxicity. It would seem that increased Bcl-XL expression induced in 

CLL cells by co-culture with fibroblasts provides the major protective influence 

against fludarabine- and dexamethasone-induced apoptosis. This observation has 

impact on our understanding of the potential use of drugs targeting Bcl-2 family 

proteins, particularly with respect to anatomical location of the malignant cells. The 
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observations from this Chapter predict that the selective Bcl-2 inhibitor ABT-199 

should be more effective at killing CLL cells in the blood than in the tissues because 

Bcl-2 expression in CLL cells is downregulated within the co-culture system despite 

increased survival. In the same way, inhibitors that target Bcl-XL (e.g. ABT-263) 

should be able to kill CLL cells within tissues but not necessarily in the blood 

because Bcl-XL is expressed at very low levels in circulating CLL cells, but is 

induced in CLL cells within the co-culture system. When considering combination 

therapy, it therefore makes sense to combine fludarabine or dexamethasone with Bcl-

XL inhibitors in order to target CLL cells within tissues. 

In addition, the effect on the expression of Bcl-2 family proteins from drug treatment 

and stimulation by fibroblasts with or without CD40L was independent from each 

other. Drug treatment of CLL cells with fludarabine or dexametahsone resulted in 

up-regulation of pro-apoptotic BH3-only proteins Puma and Bim, respectively, and 

co-culture conditions did not alter drug-induced up-regulation of Puma and Bim in 

CLL cells. Vice versa, co-culture of CLL cells with CD154-expressing fibroblasts 

led to strong induction of anti-apoptotic Bcl-2 family proteins Bcl-xL and Mcl-1, 

which was not affected by the addition of either fludarabine or dexamethasone. 

However, there was one exception. The expression of Bcl-XL was increased 

following treatment with  dexamethasone or fludarabine in CLL cells co-cultured 

with CD40L-expressing or parental fibroblasts and this effect was not observed in 

CLL cells cultured under standard conditions. Presumably, the two drugs activate 

certain signalling pathways that further complement those activated following 

CD40-stimulation to enhance the expression of Bcl-XL by the transcriptional or 

post-transcriptional mechanisms. This observation provides an example of how 
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cytotoxic drugs can activate both pro- and anti-apoptotic signalling pathways and 

suggests that their effectiveness might be enhanced if the drug-induced anti-

apoptotic pathways could be inhibited, in this case by blocking Bcl-XL or the 

upstream signalling pathways that result in Bcl- XL up-regulation. 
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Chapter 4 

Functional study of Puma in fludarabine-

induced death of CLL cells under standard 

conditions 
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4.1. Background and aims 

A consistent finding within the previous chapter was that Puma is upregulated by 

fludarabine treatment of CLL cells regardless of culture condition. So far it is 

assumed that induced expression of Puma results in CLL cell apoptosis because of 

established studies on the mechanism of fludarabine-induced cytotoxicity in other 

cell systems) (Zhang, Li & Xu 2013).  In order to understand the way in which co-

culture of CLL cells with parental and CD40L-expressing fibroblasts provides 

cytoprotection, it was important to establish whether Puma is required for 

fludarabine-induced cytotoxicity of CLL cells cultured under standard conditions. 

The aim of this chapter was to employ Puma-specific siRNA to knock down Puma 

expression in primary CLL cells and investigate the effect of such knock down on 

both spontaneous and fludarabine-induced apoptosis.  

4.2. Methodology 

Pooled Puma siRNA (cat#L-004380-00-0005, Dharmacon/Thermo Scientific /GE 

Healthcare, Little Chalfont, Bucks, UK,) was transfected into CLL cells using 

nucleofection. 1 x 10
7
 CLL cells were resuspended in 100µl transfection solution V 

from the human B cell nucleofector kit (Amaxa AG/Lonza). 0.5nmol of either Puma 

siRNA duplexes or non-specific control siRNA (cat#D-001810-02-05, 

Dharmacon/Thermo Scientific/GE Healthcare,) were added, and CLL cells were 

electroporated using a Nucleofector apparatus (Amaxa AG/Lonza, Cologne, 

Germany) set to program X-01. Following electroporation, cells were mixed with 0.9 

ml of pre-warmed medium, and then cultured overnight at 37C. The cells were 

subsequently incubated at a density of 5 x 10
6 

cells/ml, and cultured with or without 
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fludarabine (10g/ml) for a further 48h before harvesting for analysis of cell death 

by flow cytometry and Puma protein expression by Western blot. 

4.3. Results 

4.3.1 Screening for transfection efficiency 

Previous work in this laboratory has shown that the transfection efficiency using the 

nucleofection method varies considerably between individual CLL samples 

(Melarangi et al. 2012). To address this variability I initially screened six patient 

samples (2911, 2929, 2746, 2866, 2899, and 2968) to determine which was suitable 

for the siRNA knockdown experiments. This screen was performed by flow 

cytometry where CLL cells 24h after being transfected with 2 µg pMaxGFP (a GFP 

plasmid supplied in the Nucleofector Kit from Amaxa AG) were analysed. As 

expected, the transfection efficiency varied among individual CLL samples (Table 

4.1), with a mean of 29.16% and standard deviation (SD) of 5.636% (n=6). Those 

samples with a transfection efficiency of ≥30% were chosen for the knock-down 

experiments. The cases selected were 2911, 2929, and 2746 which had transfection 

efficiencies of 36%, 35%, and 31%, respectively (Table 4.1). 
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Table 4.1.  Transfection efficiency of six screened CLL samples 

 

  Patients Transfection efficiency % 

1 2911 36 

2 2929 35 

3 2746 31 

4 2866 23 

5 2899 24 

6 2968 26 

 

 

4.3.1 siRNA-mediated knockdown of Puma rescues CLL cells from 

Fludarabine-induced killing 

After establishing which patient samples responded within the nucleofection 

technique, we then proceeded to knock down Puma expression in CLL cells with 

siRNA. We first used Western blot to examine the efficiency of the Puma 

knockdown. Within these experiments it is important to note that Puma is not 

normally expressed, but must be induced by cell damage that results in p53 

activation (Bender & Martinou 2013; Ren et al. 2010).  A control was prepared by 

irradiating CLL cells in order to induce p53 and Puma (Figures 4.1 – 4.3, the IR 

lane). Figures 4.1 – 4.3 also show that Puma expression is up-regulated in un-

transfected CLL cells from patient samples 2746, 2929 and 2911 following exposure 
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to fludarabine. When CLL cells were transfected with siRNA targeting Puma, 

exposure to Fludarabine failed to upregulate Puma. In contrast, CLL cells transfected 

with non-specific control siRNA acted like un-transfected CLL cells and up-

regulated Puma upon exposure to Fludarabine. When Puma expression is normalised 

to -actin in the Western blots and the data pooled together it is clear that treatment 

of CLL cells with Puma-specific siRNA significantly inhibits(control siRNA 

untreated and puma siRNA untreated by 40% wheres  control siRNA + flu  and 

puma siRNA + flu by 26 %) the induction Puma expression by Fludarabine (Figure 

4.4).  

 

Figure 4.1. Effect of Puma-specific siRNA on Puma protein levels in CLL cells 

treated (sample 2746).  

 
CLL cells (un-transfected, transfected with control siRNA or Puma specific siRNA) were 

cultured in the standard condition for 48 hours in the presence or absence of 10 µM 

fludarabine (Flu) and cell death was measured by the PI/FACS method as described 

previously. Western blot was employed to examine the levels of Puma protein expression in 

the same samples with β-actin probed as loading controls. Lysate prepared from γ-

irradiated CLL cells was loaded as a positive control for Puma (lane IR) also the blot 

was stripped and re-probed with anti-actin antibody. 
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Figure 4.2. Effect of Puma-specific siRNA on levels of Puma protein in CLL 

cells treated with fludarabine (sample 2929). 

 

CLL cells (un-transfected, transfected with control siRNA or Puma specific siRNA) were 

cultured in the standard condition for 48 hours in the presence or absence of 10 µM 

fludarabine (Flu) and cell death was measured by the PI/FACS method as described 

previously. Western blot was employed to examine the levels of Puma protein expression in 

the same samples with β-actin probed as loading control. Lysate prepared from γ-irradiated 

CLL cells was loaded as a positive control for Puma (lane IR) also the actin blot was 

performed on a separate gel loaded with the same cell lysatesactin from the same patient, 

also the blot was stripped and re-probed with anti-actin antibody. 
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Figure 4.3. Effect of Puma -specific siRNA on levels of Puma protein in CLL 

cells treated with fludarabine (sample 2911). 

 
 

CLL cells (un-transfected, transfected with control siRNA or Puma specific siRNA) were 

cultured in the standard condition for 48 hours in the presence or absence of 10 µM 

fludarabine (Flu) and cell death was measured by the PI/FACS method as described 

previously. Western blot was employed to examine the levels of Puma protein expression in 

the same samples with β-actin probed as loading control. Lysate prepared from γ-irradiated 

CLL cells was loaded as a positive control for Puma (lane IR) also the actin blot was 

performed on a separate gel loaded with the same cell lysatesactin from the same patient, 
also the blot was stripped and re-probed with anti-actin antibody. 
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n=3 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Pooled analysis of the effect of siRNA on Puma expression (n=3). 

 

The ratio of Puma to actin was  measured by densitometry in untreated (UT) or fludarabine-

treated (Flu) CLL cells that had or had not been transfected with control siRNA or Puma-

specific siRNA. Each data point in the graph represents the mean + SD of independent 

experiments using primary CLL cells from three patients. A two-tailed, paired T-test was 

performed to determine the statistical significance of the difference between the two groups 

of data. The respective P values have been shown. 

 

I next examined the effect of Puma knockdown on Fludarabine-induced killing of 

CLL cells. To do this CLL cells (un-transfected and transfected with either control or 

Puma-specific siRNA) were cultured under standard conditions for 48 hours in the 

presence or absence of 10µM fludarabine. Cell death was measured using the 

PI/FACS method as described previously, and is shown for each CLL case in 

Figures 4.5 – 4.7, and summarized in Figure 4.8. As expected, fludarabine treatment 
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increased cell death in both un-transfected CLL cells and in CLL cells transfected 

with nonspecific siRNA. This is in line with previous results generated in this thesis 

(which figures 3.3 in chapter 3), and corresponds to induction of Puma expression in 

fludarabine treated cells (Figures 4.1 – 4.4). No significant difference in drug-

induced cell death was observed between un-transfected CLL cells and CLL cells 

transfected with nonspecific siRNA (p=0.121), and this is consistent with the 

induction of Puma; the levels of Puma in fludarabine-treated cells was no different 

between un-transfected and control siRNA-transfected CLL cells (p=0.157). 

However, there was a reduction in fludarabine-induced cell death in cells that had 

previously been transfected with Puma-specific siRNA, only 30% of drug-specific 

cell death was observed in these cells. This reduction was statistically significant 

when compared with fludarabine-induced cell death in un-transfected (p=0.0384) 

and control siRNA-transfected cells (p=0.0065), and is consistent with the ability of 

fludarabine to induce Puma expression in cells transfected with Puma-specific 

siRNA which was significantly lower than in un-transfected (p=0.0292) and control 

siRNA-transfected cells (p=0.0204). Taken together, these results demonstrate that 

Fludarabine-induced upregulation of Puma is responsible for the induction of death 

in treated CLL cells. 
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n=3

 

 

Figure 4.5. Pooled analysis of the effect of siRNA on fludarabine-induced killing 

as measured by the PI/FACS method (n=3).  

 

The percentage of fludarabine-induced cell death was calculated as: 100 x [(% cell death of 

treated cells – % cell death of untreated cells)/(100 – % cell death of untreated cells)]. Each 

data point in the graph represents the mean + SD of independent experiments using primary 

CLL cells from three patients. A two-tailed, paired t-test was performed to determine the 

statistical significance of the difference between the two groups of data. 
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4.4   Summary of results 

In this Chapter I presented data using siRNA technology investigating the functional 

importance of Puma up-regulation within the mechanism of fludarabine-induced 

killing of CLL cells. Three CLL samples with high transfection efficiency by 

Nucleofector (2746, 2929, and 2911) were selected. Western blotting analysis of 

untreated and fludarabine-treated CLL cells showed that Puma-specific siRNA but 

not control siRNA prevented the up-regulation of Puma protein by fludarabine. 

Drug-specific killing was significantly reduced in the Puma siRNA-transfected cells 

compared with un-transfected cells or control siRNA-transfected cells.  

 

4.5   Discussion 

The aim of this Chapter was to clarify the functional importance of Puma concerning 

the mechanism of fludarabine-induced killing of CLL cells. Although it has been 

known for some time that fludarabine increases Puma expression in CLL cells at 

both the mRNA and protein level in a p53-dependent fashion (Mackus et al. 2005), 

the contribution of Puma to fludarabine-induced cytotoxicity has not been directly 

investigated. The data presented in this Chapter clearly show that knockdown of 

Puma by siRNA prevented fludarabine-induced Puma up-regulation and reduced 

fludarabine-induced cell death, thus demonstrating that the cytotoxicity of 

fludarabine in CLL cells is at least partly dependent on Puma. To my knowledge, 

this result provides the first direct demonstration that Puma contributes to the killing 

of CLL cells by fludarabine. 
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I attempted to measure the expression of Noxa and Bmf proteins by Western 

blotting, but for reasons yet unknown I could not detect the expression of either 

protein under the experimental conditions used. Time constraints prevented me from 

pursuing this further. However, future experiments could be designed to dissect the 

functional importance of these other pro-apoptotic Bcl-2 family proteins in the 

killing of CLL cells by fludarabine. 

The experiments described in this Chapter do not include the co-culture system. This 

is because co-culture with either parental or CD40L-expressing fibroblasts rescued 

CLL cells from fludarabine-induced cell death. It is interesting, however, that Puma 

was similarly upregulated in CLL cells cultured under all the conditions described in 

this thesis when fludarabine was present. This suggests that the co-culture system 

must induce the expression of some factor which mitigates the pro-apoptotic role of 

Puma. Potentially, this rescue could be mediated by changes in expression of anti-

apoptotic Bcl-2 family proteins in co-cultured cells as has been suggested in previous 

studies (Vogler et al. 2011; Willimott et al. 2007).  Chapter 5 therefore investigates 

the interaction between Puma and anti-apoptotic Bcl-2 family proteins with the aim 

of clarifying the mechanism of the rescue effects provided by the co-culture system 

on fludarabine-induced CLL cell death.   
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                                 Chapter 5    

Characterisation of Puma-interacting proteins 

in CLL cells treated with fludarabine  
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5.1    Background and aims 

Data in the previous Chapter show that Puma is a pivotal mediator of killing induced 

by fludarabine in CLL cells cultured under standard conditions. The data in Chapter 

3 show that Puma is up-regulated by fludarabine in CLL cells cultured under 

standard and co-culture conditions. However, data in Chapter 3 also show that co-

culture conditions, and particularly co-culture with CD40L-expressing fibroblasts, 

rescue CLL cells from drug-induced killing. Potentially, this rescue could be 

mediated by changes in expression of Bcl-2 family proteins in co-cultured cells as 

has been suggested in previous studies (Vogler et al. 2011; Willimott et al. 2007). 

Indeed, Figures 3.23 and 3.24 show that the anti-apoptotic Bcl-2 family proteins 

Mcl-1 and Bcl-XL are up-regulated in CLL cells co-cultured with CD40L-expressing 

fibroblasts. However, it is not clear from these observations how up-regulation of 

these proteins rescue CLL cells from Puma-induced apoptosis. The aim of this 

Chapter is, therefore, to investigate interactions between Puma and predominant anti-

apoptotic Bcl-2 family proteins that are expressed in primary CLL cells, comparing 

associations observed in cells cultured under standard conditions with those co-

cultured with CD40L-expressing and parental fibroblasts.  
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5.2   Methodology  

5.2.1   Immunoprecipitation  

Principle 

Immunoprecipitation is a technique that is used for the purification of an antigen 

from a mixture of antigens by using the basic precipitation principle. Generally, an 

antibody specific to that concerned antigen is used for this purpose. The antibody 

usually attached to an agarose resin which act as a supporting bead. The antigen may 

arise from various sources such as tissues or cells, translated proteins and 

metabolically labelled cells. After the pre-immobilization of the specific polyclonal 

or monoclonal antibody in the insoluble solid support, incubation is done with the 

cell lysate that contains the required antigen. Sometimes mild agitation is required 

for binding of the target antigen with the specific antibody. The immune complex 

thus formed is immobilized and collected followed by elution from the insoluble 

support for subsequent analysis.  

CLL cells were first washed in ice-cold PBS. The cell pellet from this washing step 

was lysed with 200μl IP lysis buffer (10mM HEPES (pH7.4), 150mM NaCl, 2mM 

EDTA, 1% CHAPS (Sigma, UK) and 1/100 dilutions of protease and phosphatase 

inhibitor cocktails from Sigma-Aldrich (Exeter, U.K). Cells suspended in this lysis 

were then agitated on a rotor mixer at 4°C for 1-2h. Samples were centrifuged at 

13,000rcf for 15secs at 4°C, and pellets were discarded. 30μl of both protein A 

sepharose and protein G sepharose beads that were pre-rinsed in lysis buffer were 
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added to each sample, which were then rotor-mixed for 1h at 4°C (preclearing). 

Samples were pulse centrifuged at 10,000rcf, and a protein concentration of the pre-

cleared supernatant was measured by DC protein assay (Biorad) according to the 

manufacturer’s instructions. 100μg of protein/sample was used for 

immunoprecipitation with 2μg/sample of antibody targeting either Puma, Bcl-2, 

Mcl-1, or  Bcl-XL. The antibody/cell lysate mixture was incubated overnight at 4C, 

and then with 30μl of protein A sepharose beads that were pre-rinsed in lysis buffer. 

The samples were further mixed for 1h at 4C on a rotor mixer, and then pulse 

centrifuged. Beads were washed in IP wash buffer (10mM HEPES (pH7.4), 150mM 

NaCl, 2mM EDTA, 0.2% CHAPS) 3 times, and the final pellet resuspended in 30μl 

total Laemmli sample buffer and prepared for PAGE.  

SDS-PAGE and Western blotting were performed as described in section 3.2.3, with 

the exception that Exactacruz (Santa Cruz) secondary antibodies were used rather 

than standard secondary antibodies to reduce heavy and light-chain background.  

5.3   Identification of Puma binding proteins in fludarabine-treated 

CLL cells cultured under standard conditions 

Three CLL samples (2746, 2911 and 2929) were analysed using 

immunoprecipitation and Western blotting to assess interactions between Puma and 

the anti-apoptotic Bcl-2 family members. These particular samples were chosen 

because treatment with fludarabine increased the percentage of apoptotic CLL cells 

compared to untreated (control) cells under standard culture conditions (Figure 3.3), 
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and because fludarabine induced expression of Puma regardless of the conditions the 

CLL cells were cultured under (Figure 3.19).    

Immunoprecipitation experiments were performed using CLL cells that were 

untreated or treated with fludarabine. In some experiments CLL cells were treated 

with dexamethasone as a control since this drug induces a similar level of killing but 

does not increase Puma expression.  

CLL cells from sample 2746 were treated under standard conditions with fludarabine 

or dexamethasone for 48 h and then analysed for cell death using the PI/FACS assay. 

As expected, both dexamethasone and fludarabine increased the percentage cell 

death (Figure 5.1). Cell lysates were prepared for immunoprecipitation and analysed 

by Western blot. (Figure 5.1) (lanes 1 – 3) shows that Puma was detectable in whole 

cell lysates prepared from CLL cells that had been treated with fludarabine, but was 

not detectable in cell lysates prepared from untreated or dexamethasone-treated CLL 

cells. Puma was also detected in the pull-down fraction prepared from fludarabine-

treated cells, but not from that prepared from untreated or dexamethasone-treated 

cells (Figure 5.1, lanes 4 – 6). Importantly, the post-IP fraction corresponding to 

fludarabine-treated cells showed little or no detectable Puma (Figure 5.1, lane 9), 

confirming that a high proportion of Puma had been immunoprecipitated.  

 

 

 

 

 

 



 
 

P a g e  | 123 

 

  
 

  

 

 

 

Figure 5.1. Immunoprecipitation of Puma from CLL cell lysates (sample 2746).  

 
 

CLL cells were incubated with fludarabine (Flu, 10 µM) or dexamethasone (Dex, 100 nM) 

for 48h. At the end of incubation, cells were harvested for analysis of cell death by FACS. 

Cell lysates were immunoprecipitated using an anti-Puma antibody (from Novus). The 

presence of Puma was then analysed by Western blot in un-manipulated whole cell lysates 

(Pre-IP fractions, lanes 1-3), in the pull-down protein complexes (lanes 4-6) and in post-

immunoprecipitated lysates (Post-IP fractions, lanes 7-9).  The anti-Puma antibody used for 

Western blotting was from Cell Signalling. Western blotting for the presence of β-actin was 

used as a protein loading control (bottom panel). Whole cell lysates of irradiated CLL cells 

(IR lane) was used as a positive control for Puma. A pre-stained protein mass marker was 

used to guide determination of the molecular weight associated with Puma also the blot was 

stripped and re-probed with anti-actin antibody 
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Having validated Puma immunoprecipitation I next investigated the proteins that co-

immunoprecipitate with Puma. First, Bcl-2 was chosen because of its known 

interaction with Puma in other cell types (Edwards et al. 2013). Puma pull-down 

fractions, together with pre- and post-IP cell lysates, were subjected to Western 

blotting using an anti-Bcl-2 antibody (Figure 5.2). As expected, Bcl-2 was clearly 

detected in pre-IP lysates from untreated and drug-treated cells. Consistent with data 

presented in Chapter 3, Bcl-2 expression levels seemed to be higher in lysates from 

CLL cells treated with fludarabine. Analysis of the Puma pull down complexes 

(Figure 5.2, lanes 5 – 7) showed that Bcl-2 was present in the immunoprecipitate   

derived from fludarabine-treated CLL cells but not from untreated or 

dexamethasone-treated cells. Analysis of post-IP lysates showed that Bcl-2 was 

absent from fludarabine-treated CLL cells (Figure 5.2, lane 10), suggesting that it 

had been quantitatively removed with the immunoprecipitation of Puma. No such 

absence was observed in post-IP lysates derived from untreated or dexamethasone-

treated CLL cells. These findings indicate that all available Bcl-2 was bound to up-

regulated Puma. 
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Figure 5.2. Puma interacts with Bcl-2 in fludarabine-treated CLL cells (sample 

2746).  

Un-manipulated whole cell lysates (lanes 2-4), the pull-down protein complexes associated 

with Puma immunoprecipitation (lanes 5-7) and post-IP protein lysates (lanes 8-10) from 

CLL cells prepared in Figure 5.1 were analysed by Western blot using an anti-Bcl-2 

antibody (from Cell Signalling). Western blotting for β-actin was used as a protein loading 

control (bottom panel). Pre-stained protein mass marker was used as a guide for determining 

molecular weight of the protein of interest (lane 1)  also the actin blot was performed on a 

separate gel loaded with the same cell lysates. 

 
 
 

To confirm the co-association of Puma and Bcl-2 I performed a reciprocal 

immunoprecipitation experiment where lysates were immunoprecipitated using an 

an anti-Bcl-2 antibody and pull-down samples analysed by immunoblotting with an 

anti-Puma antibody (Figure 5.3). Analysis of whole cell lysates showed, as 

expected, that Puma was up-regulated following fludarabine treatment in the pre-IP 

lysates (Figure 5.3, lanes 1 – 3). Examination of the Bcl-2 pull-down fractions 
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showed co-immunoprecipitation of Puma only in fludarabine-treated samples 

(Figure 5.3, lanes 4 – 6), confirming that up-regulated Puma binds to Bcl-2 in CLL 

cells. Importantly, Puma could be detected – albeit weakly - in the post-IP samples 

(Figure 5.3, lane 9), indicating up-regulated Puma was not completely bound to 

Bcl-2.  

 

Figure 5.3. Reciprocal experiments confirmation of Bcl-2-Puma interaction in 

fludarabine-treated CLL cells (sample 2746). ). 

 

Un-manipulated whole cell lysates (lanes 2-4), the pull-down protein complexes associated 

with Bcl2 immunoprecipitation using a  Bcl-2 antibody from Cell Signalling (lanes 5-7) and 

post-IP protein lysates (lanes 8-10) from CLL cells prepared in Figure 5.1 were analysed by 

Western blot using an anti-Puma antibody (from Cell Signalling). Western blotting for β-

actin was used as a protein loading control. Whole cell lysates of irradiated CLL cells (IR 

lane) was used as a positive control for Puma also the actin blot was performed on a separate 

gel loaded with the same cell lysates. 
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Taken together, the above results using reciprocal immunoprecipitation assays 

clearly demonstrate that Puma interacts with Bcl-2 in fludarabine-treated CLL cells. 

Importantly, whereas all of the Bcl-2 co-immunoprecipitated with Puma, not all of 

the Puma co-immunoprecipitated with Bcl-2. This observation is consistent with the 

idea that fludarabine-induced killing is triggered when levels of Puma exceed the 

neutralising capacity of Bcl-2. However, it is also important to understand the role of 

other anti-apoptotic Bcl-2 proteins as “Puma neutralisers”. Within this context I 

therefore investigated whether Puma interacted with Mcl-1 due to my own 

observation of Mcl-1 expression in CLL cells culture under standard conditions 

(Figure 3.23) and in reports of the abundant expression of this protein in un-

stimulated CLL cells (Clohessy, Zhuang & Brady 2004; Houlston & Catovsky 

2008). 

Analysis of Mcl-1 presence in Puma immunoprecipitates and in pre-IP and post-IP 

lysates derived from untreated, dexamethasone-treated and fludarabine-treated CLL 

cells cultured under standard conditions showed that Mcl-1 was up-regulated in pre-

IP lysates (Figure 5.4, lane 4) and co-immunoprecipitated with Puma (Figure 5.4. 

lane 7) of CLL cells that were exposed to fludarabine. Importantly, Mcl-1 was 

completely depleted from post-IP lysates derived from fludarabine-treated cells 

(Figure 5.4., lane 10). This suggests that all of the available Mcl-1 was bound to up-

regulated Puma. However, I was unable to confirm interaction between Puma and 

Mcl-1 in a reciprocal IP experiment involving IP for Mcl-1 and WB for Puma as the 

IP experiment did not work. 
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Figure 5.4. Detection of Puma-Mcl-1 binding in fludarabine-treated CLL cells 

(sample 2746). 

 

Pre-IP whole cell lysates (lanes 2-4), the pull-down protein complexes associated with Puma 

immunoprecipitation (lanes 5-7) and post-IP protein lysates (lanes 8-10) from CLL cells 

prepared in Figure 5.1 were analysed by Western blot using an anti-Mcl-1 antibody (from 

Santa Cruz). Western blotting for β-actin was used as a protein loading control (bottom 

panel). Pre-stained protein mass marker was used as a guide for determining molecular 

weight of protein of interest (lane 1) also the actin blot was performed on a separate gel 

loaded with the same cell lysates. 

  

These immunoprecipitation experiments were repeated twice more using CLL cases 

2929 and 2911,and the Western blots are shown in supplementary data (figures 1- 8) 

of this thesis. A summary of all the results generated is shown in (Table 5.1).  
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Table   5.1. Overall summary of the immunoprecipation data obtained from three 

fludarabine-treated CLL cells.  

 

IP WB Case WB target 

detected in pre-

IP lysate 

WB target 

detected in pull-

down fraction 

WB target 

detected in post-

IP lysate 

Puma Bcl-2 2476 + + - 

2929 + + - 

2911 + + ± 

Bcl-2 Puma 2476 + + ± 

2929 + + ± 

2911 n/a n/a n/a 

Puma Mcl-1 2476 + + - 

2929 + + + 

2911 n/a n/a n/a 

Mcl-1 Puma 2476 n/a n/a n/a 

2929 n/a n/a n/a 

2911 n/a n/a n/a 

n/a indicates where data is unavailable. 

In all three patient samples, Puma was consistently and selectively up-regulated by 

fludarabine, and Bcl-2 co-immunoprecipitated with up-regulated Puma and was not 

detectable in the corresponding post-IP lysates in two of the fludarabine-treated 

samples (2476 and 2929). Bcl-2 also co-immunoprecipitated with up-regulated Puma 

in the third sample (2911). However, the signal was weaker than in the previous two 

cases, and Bcl-2 was still detectable in the post-IP lysate of this case indicating 

incomplete depletion. Reciprocal immunoprecipitation experiments involving cases 
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2476 and 2929 showed that Puma co-immunoprecipated with Bcl-2, but that residual 

levels of Puma was still detectable in the post-IP lysates, indicating that depletion 

was incomplete. Like Bcl-2, Mcl-1 co-immunoprecipitated with up-regulated Puma 

in cases 2476 and 2929. It was undetectable in post-IP lysates from case 2476, 

indicating complete depletion, whereas it was still detectable in post-IP lysates from 

case 2911, indicating partial depletion. Similar experiments involving case 2911 

were not informative due to technical problems. A reciprocal immunoprecipitation of 

Mcl-1 and examination for co-associated Puma also did not yield information data 

due to technical problems. Overall, the data presented here show that Puma clearly 

interacts with Bcl-2 in fludarabine-treated CLL cells under standard culture 

conditions. Puma may also interact with Mcl-1 in these cells, but the evidence is not 

as strong.  

5.4   Identification of Puma binding proteins in fludarabine-treated 

CLL cells cultured with parental and CD40L-expressing 

fibroblasts.  

The previous section identified Bcl-2 and Mcl-1 as proteins which co-associate with 

Puma in fludarabine-treated CLL cells which have been cultured under standard 

conditions. It is also noted that up-regulated Puma appears to sequester most, if not 

all of Bcl-2 and Mcl-1 in these cells. This would account for the induction of cell 

death because Puma levels are likely to be in excess of Bcl-2 and Mcl-1. In contrast, 

co-culture with either parental or CD40L-expressing fibroblasts rescues CLL cells 

from fludarabine-induced killing. Considering that expression of Bcl-2 decreases in 
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CLL cells co-cultured with parental or CD40L-expressing fibroblasts (Figure 3.25), 

it seemed therefore necessary to examine expression of other Bcl-2-family proteins 

associated with Puma under these conditions.   

(Figure 5.5) shows that fludarabine treatment results in up-regulation of Puma in 

CLL cells co-cultured with parental cells (PAR) or CD40L-expressing fibroblasts. 

The level of induction appears to be equivalent in each case because β-actin 

expression is constant in untreated and fludarabine-treated samples cultured with 

parental cells (PAR) or CD40L-expressing fibroblasts. 

 

 

Figure 5.5. Detection of Puma in co-cultured CLL cells treated with fludarabine 

(sample 2929).  

                                                                            

CLL cells were co-cultured with parental (PAR) or CD40L-expressing (CD154) fibroblasts. 

Co-cultured CLL cells were incubated with or without fludarabine (10 µM) for 48 hours. At 

the end of incubation, cells were harvested for analysis of cell death by FACS and percent 

cell death is reported as indicated. Cell lysates were also prepared for Western blotting using 

anti-Puma antibody for the detection of Puma expression. Western blotting for β-actin was 

used as a protein loading control (bottom panel). Lysate prepared from γ-irradiated CLL 

cells was used as a positive control for Puma (lane IR) ,also the blot was stripped and re-

probed with anti-actin antibody 
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After ascertaining that Puma was up-regulated in co-cultured CLL cells that were 

treated with fludarabine, I next performed immunoprecipitation experiments using an 

anti-Puma antibody and initially examined for the presence of co-associated Bcl-XL. 

Western blotting showed that Bcl-XL was present in pre-IP lysates prepared from 

untreated and fludarabine-treated CLL cells co-cultured with parental or CD40L-

expressing fibroblasts (Figure 5.6, lanes 2 – 5). When Puma was immunoprecipated, 

it was found that Bcl-xl associated with the pull down protein complex from the 

lysate sample prepared from fludarabine-treated CLL cells that had been co-cultured 

with CD40L-expressing fibroblasts (Figure 5.6, lanes 6 – 9). However, 

immunoprecipitation with Puma was unable to remove all Bcl-xl from CLL cell 

lysates (Figure 5.6, lanes 10 –13), indicating that Bcl- XL is either in excess of Puma 

or that it has a lower affinity for Puma than do proteins such as Bcl-2 and Mcl-1. 

Nevertheless, this experiment indicates that Puma and Bcl- XL are able to interact 

with each other in CLL cells. 
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Figure 5.6. Puma interacts with Bcl-XL in fludarabine-treated CLL cells co-

cultured with CD40L -expressing fibroblasts (CLL sample 2929).  

Pre-IP whole cell lysates (lanes 2-5), the pull-down protein complexes associated with Puma 

immunoprecipitation (lanes 6-9) and post-IP protein lysates (lanes 10-12) from co-cultured 

CLL cells prepared in Figure 5.6 were analysed by Western blot using an anti-Bcl-XL 

antibody (from Cell Signalling). Western blotting for β-actin was used as a protein loading 

control (bottom panel). Pre-stained protein mass marker was used as a guide for determining 

molecular weight of protein of interest (lane 1) also the actin blot was performed on a 

separate gel loaded with the same cell lysates. 

 

To confirm the interaction of Puma with Bcl-XL a reciprocal immunoprecipitation 

experiment was performed. (Figure 5.7), shows that Puma protein is detectable in 

pre-IP lysates (Figure 5.7, lanes 1-4) and in samples pulled-down with Bcl-XL 

(Figure 5.7, lanes 5-8) in those CLL samples treated with fludarabine. Puma was not 

dectected within the post-IP lysates (Figure 5.7 lanes 9 – 12). Taken together with 

the results presented in (Figure 5.6), these results confirm co-association of Bcl-XL 

with Puma. Moreover, because residual Bcl-XL can be detected following Puma IP 

but residual Puma cannot be detected following Bcl-XL IP, these results further 
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suggest that Bcl-XL is in excess of Puma and is able to provide cytoprotection. This 

provides a framework for the pro-survival effect of co-culture. 

 

 

Figure 5.7. Detection of interaction of Bcl-XL with Puma in fludarabine-treated 

CLL cells on co-cultures (CLL sample 2929).  

 

 

CLL cells co-cultured with parental (PAR) or CD40L-expressing fibroblasts (CD154) were 

incubated with fludarabine (Flu, 10 µM) for 48h. At the end of incubation, cells were 

harvested for analysis of cell death by FACS as described earlier. Cell lysates were also 

prepared for immunoprecipitation assay using a Bcl-XL antibody (from Cell Signalling). 

Un-manipulated whole cell lysates (lanes 1-4), the pull-down protein complexes (lanes 5-8) 

and post-IP protein lysates (lanes 9-12) from the control cells (Ut) and fludarabine (Flu)-

treated cells were analysed using SDS-PAGE, followed by Western blotting using anti-Puma 

antibody (from Cell Signalling). β-actin was probed for as protein loading controls. Lysate 

prepared from γ-irradiated CLL cells was used as a positive control for Puma (lane IR) also 

the blot was stripped and re-probed with anti-actin antibody. 
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Next, interaction of Puma with Mcl-1 was examined by performing similar 

immunoprecipitation experiments with the same set of lysates. As shown in (Figure 

5.7) and supplementary data (Figures 9-17) equivocal results were produced. The 

Western blots produced by the anti-Mcl-1 antibody showed many reactive bands, 

and the band corresponding in Western blots to Mcl-1 did not change between 

parental- and CD40L-expressing fibroblasts (Figure 5.8).  

Reciprocal immunoprecipitation experiments using anti Mcl-1 antibody were also 

performed on these lysates, and the results shown in (Figure 5.9). Western blotting 

using anti-Puma antibodies detected Puma protein in pre-IP lysates from fludarabine-

treated CLL cells cultured either with parental or CD40L-expressing fibroblasts 

(Figure 5.9, lanes 1 - 4). Puma also seemed to co-immunoprecipitate with Mcl-1 in 

the pull-down fractions  (Figure 5.9, lanes 5 - 8), whereas no Puma was observed in 

post-IP lysates (Figure 5.9, lanes 9 – 12). These results therefore suggest that Mcl-1 

associates with Puma in co-cultured CLL cells. 
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Figure 5.8.  Detection of interaction of Puma with Mcl-1 in fludarabine-treated 

CLL cells co-cultured with CD154-expressing fibroblasts (CLL sample 2929).  

 

CLL cells were incubated with fludarabine (Flu, 10 µM) for 48h. At the end of incubation, 

cells were harvested for analysis of cell death by FACS as described earlier. Cell lysates 

were also prepared for immunoprecipitation assay using a Puma antibody (from Novus). Un-

manipulated whole cell lysates (lanes 2-5), the pull-down protein complexes (lanes 6-9) and 

post-IP protein lysates (lanes 10-13) from the control cells (Ut) and fludarabine (Flu)-treated 

cells were analysed using SDS-PAGE, followed by Western blotting using anti- Mcl-1  

antibody (from Santa Cruz). β-actin was probed for as protein loading controls. Pre-stained 

protein mass marker was used as a guide for determining molecular weight of protein of 

interest (lane 1)  also the blot was stripped and re-probed with anti-actin antibody. 
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Figure 5.9. Detection of interaction of Mcl-1 with Puma in fludarabine-treated 

CLL cells on co-cultures (CLL sample 2929). 

   

 

CLL cells co-cultured with parental (PAR) or CD40L -expressing fibroblasts (CD154) were 

incubated with fludarabine (Flu, 10 µM) for 48h. At the end of incubation, cells were 

harvested for analysis of cell death by FACS as described earlier. Cell lysates were also 

prepared for immunoprecipitation assay using a Mcl-1 antibody (from Santa Cruz). Un-

manipulated whole cell lysates (lanes 2-5), the pull-down protein complexes (lanes 6-9) and 

post-IP protein lysates (lanes 10-13) from the control cells (Ut) and fludarabine (Flu)-treated 

cells were analysed using SDS-PAGE, followed by Western blotting using anti-Puma 

antibody (from cell signalling). β-actin was probed for as protein loading controls. Pre-

stained protein mass marker was used as a guide for determining molecular weight of 

protein of interest (lane 1) also the actin blot was performed on a separate gel loaded with 

the same cell lysates 
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5.5   Summary of results  

Having shown that fludarabine treatment up-regulates Puma in CLL cells (Chapter 

3), and that Puma contributes to fludarabine-induced killing of these cells under 

standard culture conditions (Chapter 4), the present Chapter sought to identify 

interactions between up-regulated Puma and specific anti-apoptotic Bcl-2 proteins. I 

focussed my attention on Bcl-2, Bcl-XL and Mcl-1 as these are thought to be the 

most abundant anti-apoptotic Bcl-2 proteins in CLL cells. I show that Puma 

associates with Bcl-2 and Mcl-1 in fludarabine-treated CLL cells cultured under 

standard conditions. When CLL cells are subjected to co-culture conditions Puma 

co-associated also with Bcl- XL. It seemed that when CLL cells were cultured under 

standard conditions, the level of induced Puma exceeded the levels of Bcl-2 and 

Mcl-1. Conversely, when CLL cells were co-cultured with parental or CD40L-

expressing fibroblasts then the levels of Bcl- XL and perhaps also Mcl-1 exceeded 

the level of Puma. These results therefore suggest that the excess of Bcl- XL and 

Mcl-1 induced under co-culture conditions was sufficient to provide fludarabine-

treated CLL cells with protection against apoptosis.   
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5.6. Discussion  

Puma is a pro-apoptotic BH3-only protein which can be activated by cellular stresses 

including DNA damage, endoplasmic reticulum stress and growth factor deprivation 

(Wang & Kaufman 2014). Understanding how this protein functions on a molecular 

level within CLL cells gives understanding of the effectiveness of therapy using 

agents, such as fludarabine, which stimulate its expression. This understanding is 

particularly important with respect to mechanisms of drug resistance induced by 

microenvironment signals.  

In this chapter I examine proteins which co-immunoprecipitate with Puma in CLL 

cells. Under standard culture conditions Puma primarily co-associates with Bcl-2 and 

Mcl-1. However, I find that the level of expression of these proteins is insufficient to 

overcome apoptotic effect of Puma induced by fludarabine. Thus, my results show 

that immunoprecipitation of Puma results in depletion of Bcl-2 and Mcl-1 from cell 

lysates of CLL cells cultured under standard conditions (Figure 5.4). However, 

immunoprecipitation of Bcl-2 does not completely remove Puma (Figure 5.3). 

Therefore, the residual Puma present in these cells likely accounts for the induction 

of apoptosis. If Puma expression can be reduced, such as through using targeted 

siRNA as I demonstrated in the previous chapter, CLL cell viability in the presence 

of fludarabine could be maintained. Similarly, if expression of an anti-apoptotic Bcl-

2 family protein, such as Bcl- XL, can be induced so that Puma is fully sequestered, 

then rescue from fludarabine-induced death can also be achieved. This latter case is 

observed when CLL cells are co-cultured with parental and CD40L-expressing 

fibroblasts.  
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My experiments also show that Mcl-1 associates with Puma in co-cultured CLL 

cells. However, technical problems prevented me from making quantitative 

assessment of the data. The quality of Western blots of Mcl-1 was poor and bands 

corresponding to Mcl-1 in molecular weight seemed to migrate close to the Ig heavy 

chain in immunoprecipitated samples. This made interpretation difficult, particularly 

because upregulated Mcl-1 expression was not clearly observed in the CD40L-

stimulated CLL cells.  

Nevertheless, my experiments present a model of drug resistance mechanism using 

the co-culture conditions. Thus, co-culture induces the expression of Bcl-XL and 

Mcl-1 in sufficient quantity to overcome the pro-apoptotic effect of Puma induced by 

fludarabine. This then rescues the cells from fludarabine-induced apoptosis. This 

model therefore presents a potential avenue of therapeutic intervention. Specific 

targeting of either Bcl-XL or Mcl-1 in CLL cells on co-culture should release 

sequestered Puma and cause increased cell death. This notion is supported by studies 

showing that compounds such as (Bcl-XL inhibitor) and (Mcl-1 inhibitor) can 

effectively restore cell death in co-culture models (Choudhary et al. 2015; Pan et al. 

2015). How Puma activates Bax and/or Bak is still a subject of debate; some have 

suggesting a direct activating role where activation of Bax/Bak occurs through direct 

interaction with Puma, while others have suggesting a sensitisation role where Puma 

binds to anti-apoptotic Bcl-2 family proteins resulting in the release of Bax and/or 

Bak (Bender & Martinou 2013; Ren et al. 2010).  

According to the indirect model of Bax/Bak activation, even a relatively small 

increase in Puma may be sufficient to displace Bax and/or Bak from Bcl-2 and Mcl-1 

to activate the mitochondrial death pathway. In contrast, the direct model of Bak/Bak 
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activation requires that the amount of Puma exceeds that of Bcl-2 and Mcl-1 to 

neutralise the latters in order for apoptosis to occur (Ren et al. 2010). This criterion 

appears to have been reached in case 2476 since lysates that had been depleted of 

Puma were also completely depleted of Bcl-2 and Mcl-1, whereas lysates that had 

been depleted of Bcl-2 and Mcl-1 still contained detectable amounts of Puma. This 

suggests that the amount of Puma exceeded the that of Bcl-2 and Mcl-1 to neutralise 

it. The situation in case 2911 was quite different in that Bcl-2 was readily detectable 

in lysates that has been depleted of Puma. It therefore seems likely that the 

fludarabine-induced killing that occurred in this sample was triggered before the 

maximum Puma-neutralising capacity of Bcl-2 had been reached; only the indirect 

model of Bax/Bak activation can explain the induction of apoptosis under these 

circumstances.Finally, interaction of Puma with Bcl-XL and Mcl-1 was shown by 

pull down experiments using anti-Puma antibodies, which were also confirmed by 

reciprocal immunoprecipitation experiments with anti-Bcl-XL and anti-Mcl-1 

antibodies, respectively. With the exception of reciprocal immunoprecipitation 

experiments with CLL sample 2746, in which there were technical problems, results 

of interactions between Puma with Bcl-XL and Mcl-1 were consistent in the CLL 

samples studied. This suggests that the Puma protein upregulated by fludarabine in 

co-cultured CLL cells was bound to Bcl-XL and Mcl-l, two molecules specifically 

up-regulated by CD40 stimulation. Although, due to time constraints, I did not 

perform knockdown experiments in CD40-stimulated CLL cells to test if knockdown 

of Bcl-XL or Mcl-1 by their respective siRNAs will restore the sensitivity to 

fludarabine, it is most likely that the fludarabine-upregulated Puma was sequestered 
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by Bcl-XL and Mcl-1 in CD40-stimulated CLL cells, resulting in inhibition of Puma 

to activate downstream apoptotic effector molecules such as Bax and/or Bak. 
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6.1   General   Discussion    

The aim of this thesis was to gain further insight into the mechanisms of drug 

resistance in CLL. The heterogeneous response of CLL patients to therapy suggest 

that there are multiple mechanisms involved, yet it is likely that the Bcl-2 family of 

proteins play an essential role in determining the sensitivity of CLL cells to 

therapeutic agents because of the instrumental role this family of proteins plays in 

regulating the mitochondrial death pathway. CLL cells rapidly undergo apoptosis in-

vitro and this strongly suggests that these cells receive important pro-survival signals 

from their microenvironment. Within the microenvironment pro-survival and 

proliferative signals can be provided by accessory cells such as stromal cells, 

dentritic cells, nurse-like cells and T-cells. The latter express CD40L (also known as 

CD154) on their surface that engages its corresponding receptor on the surface of 

CLL cells. This stimulation has been shown to protect CLL cells from spontaneous 

and drug-induced apoptosis. Others have also shown that such stimulation can cause 

increased expression of anti-apoptotic members Bcl-2 family proteins (Hussein et al. 

2009; Vogler et al. 2011; Willimott et al. 2007).   

However, several questions still remain un-answered in this area of research.  

Therefore, this thesis sought to expand on this knowledge by addressing the specific 

research questions articulated in section 1.11, i.e.: 
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1). How do drugs that induce p53-dependent (fludarabine) or p53-independent 

(dexamethasone) apoptosis affect the levels of Bcl-2 family proteins in CLL cells 

cultured in the presence or absence of CD40 stimulation? 

 

2). How does CD40 stimulation affect the levels of Bcl-2 family proteins in CLL 

cells cultured in the presence or absence of cytotoxic drugs? 

 

3). How do pro- and anti-apoptotic Bcl-2 family proteins interact in CLL cells, and 

how are these interactions influenced by drug treatment and CD40 stimulation? 

 

4). How do interactions between pro- and anti-apoptotic Bcl-2 family proteins 

influence the fate of CLL cells following drug treatment? 

 

The purine analogue fludarabine is a widely used class of cytotoxic drugs that has 

been established as a backbone of chemotherapy for CLL. However, most patients 

eventually become resistant to the chemotherapy, a situation that is frequently 

associated with deletion/mutation of the TP53 tumour suppressor gene. In keeping 

with their p53-independent mechanism of action, glucocorticoids (GCs) such as 

dexamethasone, either alone or in combination with other agents, have emerged as a 

useful and important treatment option for patients with fludarabine-refractory or 

TP53-defective CLL (Pettitt et al. 2012; Steele et al. 2008; Zenz et al. 2010) 

However, as with chemotherapy, response to glucocorticoids is variable. 

In Chapter 3, I evaluated the effect of fludarabine and dexamethasone on CLL cells 

cultured alone or with mouse fibroblasts expressing human CD40L. Both parental 
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and CD40L-expressing fibroblasts inhibited the spontaneous apoptosis of CLL cells 

as previously reported. Under standard conditions, dexamethasone and fludarabine 

caused a significant increase in cell death following 48h incubation in primary CLL 

cells from 6 different CLL patients. However, co-culturing of CLL cells on parental, 

and to a greater extent CD40L-expressing fibroblasts markedly attenuated 

spontaneous, fludarabine- and dexamethasone-induced apoptosis, confirming 

previous reports showing that CLL cells become resistant to drug-induced apoptosis 

when they are stimulated by the microenvironmental factors (de Totero et al. 2003; 

Kater et al. 2004). 

It has already been shown that CLL cells isolated from the peripheral blood differ in 

levels of expression of Bcl-2 family of proteins to those extracted from the lymph 

node, but the effect of therapeutic agents on these levels of expression was still 

unknown. The data presented in this study demonstrated that culturing of CLL cells 

on CD40L-expressing fibroblasts increased the expression of Mcl-1 and Bcl-XL and 

this increase was associated with insensitiveness to fluadarabine or dexamethasone 

treatment. Culturing CLL cells on parental fibroblasts was sufficient enough to cause 

an increase in Bcl-XL expression suggesting its expression can also be upregulated 

by a CD40-independent mechanism. Treatment with fludarabine induced the 

expression of Puma in CLL cells under standard and co-culture conditions but failed 

to cause apoptosis in cells co-cultured with CD40L-expressing fibroblasts. This 

demonstrated that regulation of apoptosis is far more complex than at the expression 

levels of Bcl-2 family of proteins. Each anti-apoptotic member has a preference as to 

which pro-apoptotic member it binds and this can be cell-type specific (Willimott et 

al. 2007; Youle & Strasser 2008).The increase in other anti-apoptotic proteins such 
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as Mcl-1, and Bcl-XL induced by CD40 stimulation may shift the balance in favour 

of survival by changing protein-protein interaction pattern with corresponding 

binding partners (Edwards et al. 2013). 

In Chapter 4, I have established the role of Puma in fludarabine-induced cell death in 

CLL cells. Although it has been known for a while that Puma was induced at both 

messenger and protein levels by fludarabine via p53-dependent mechanism in CLL 

(Mackus et al. 2005), the exact role of Puma in fludarabine-induced cell death was 

not clearly established. The data presented in this study clearly showed that 

fludarabine up-regulated the expression of Puma and that knockdown of Puma by 

siRNA resulted in a reduction in cell death induced by fludarabine, thus 

demonstrating that Puma is required for fludarabine-induecd cell death in CLL cells. 

This result is, to my knowledge, the first demonstration that Puma is critically 

involved in mediating cell killing by fludarabine in CLL cells. 

 

In Chapter 5, I have investigated binding partners of BH3-only protein Puma up-

regulated by fludarabineas, as how it activates Bax and/or Bak is still a subject of 

debate. Thus, some studies provided experimental evidence suggesting that a direct 

activating mechanism was involved while others reported findings supporting an 

indirect activation model (Bender & Martinou 2013; Moldoveanu et al. 2014; Ren et 

al. 2010).  The undisputable importance of Puma in the regulation of cell death is 

underscored by its ability to interact with all anti-apoptotic Bcl-2 family proteins. I 

have detected two interacting partners of Puma, Bcl-2 and Mcl-1, in un-stimulated 

CLL cells. I have also detected additional Puma-interacting protein Bcl-XL in CLL 

cells co-cultured with CD40L-expressing fibroblasts. Given that the overexpression 
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of Bcl-2 is one of the hallmarks of CLL (Buggins & Pepper 2010; Kitada et al. 1998) 

and that high Mcl-1 expression is associated with a poor disease prognosis 

understanding the characteristics of these interactions is important as it may provide 

a rational basis in selecting targets for intervention in cancer. Puma expression is 

p53-inducible (Jeffers et al. 2003; Mackus et al. 2005; Ren et al. 2010), and increases 

rapidly upon treatment with chemotherapeutic agents such as fludarabine that are 

used in the first-line treatment of CLL.In the present study I confirmed that Puma 

expression increases upon fludarabine treatment in primary CLL cells. I also 

detected the interactions of Puma with both Bcl-2 and Mcl-1 in fludarabine-treated 

CLL cells, indicating that Puma may bind to these two anti-apoptotic members of 

Bcl-2 family of proteins to release Bax and/or Bak activating mitochondrial 

apoptosis pathway. Considering that fludarabine induced a similar level of CLL-cell 

death in all samples, and taking into account previous reports on the additive effect 

of Bcl-2 inhibitors to cytotoxicity by fludarabine in CLL cells ,it is likely that Bcl-2 

inhibitors will increase cytotoxic efficacy of fludarabine (Campas et al. 2006; Kang 

& Reynolds 2009). 

Although I established that Puma is required for fludarabine-induced cell death, 

other proteins such as Noxa and Bmf may also be involved because even in the 

absence of Puma as a result of siRNA knockdown, fludarabine still induced cell 

death, albeit to a lesser degree.  

Also I analysed in this chapter the binding partners of Puma in fludarabine-treated 

CLL cells co-cultured with CD40L-expressing fibroblasts and found that Bcl-XL 

and Mcl-1 were bound to Puma. There was some heterogeneity as I could not detect 

binding of Puma to Bcl-XL or Mcl-1 in one sample (2911). 
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I have shown that co-cultured CLL cells displayed increased Bcl-XL and Mcl-1 and 

that Puma binds to these two proteins. Therefore, it is possible that fludarabine 

resistance is partly due to increased expression of Bcl-XL and Mcl-1 which bind and 

inhibit Puma preventing apoptosis induction. 

Puma is a pro-apoptotic BH3-only protein which can be activated by cellular stresses 

including DNA damage, endoplasmic reticulum stress and growth factor deprivation 

(Wang & Kaufman 2014).  Understanding how this protein functions on a molecular 

level within CLL cells could provide insight into the effectiveness of therapeutic 

agents, such as fludarabine, which stimulate its expression. This understanding is 

particularly important with respect to mechanisms of drug resistance mediated by 

microenvironment-derivedpro-survival signals.  

In this chapter 1 examined proteins which interact with Puma in CLL cells. Under 

standard culture conditions Puma primarily co-associates with Bcl-2 and Mcl-1. 

However, I find that the level of expression of these proteins is insufficient to 

overcome the induction of apoptosis by Puma induced by fludarabine. If Puma 

expression can be reduced, such as through using targeted siRNA as I demonstrated 

in the previous chapter, CLL-cell viability in the presence of fludarabine is 

maintained. Similarly, if expression of an anti-apoptotic Bcl-2 family protein, such 

as Bcl-XL, can be induced so that Puma is fully sequestered, then rescue from 

fludarabine-induced death can also be achieved. This latter scenario is observed 

when CLL cells are co-cultured with parental and CD40L-expressing fibroblasts. 

Such co-culture induces expression of Bcl-XL which interacts with Puma. This is 

demonstrated by my experiments showing that immunoprecipitation of Bcl-XL 
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quantitatively removes Puma (Figure 5.7), but the converse experiment leaves 

residual Bcl-XL within lysates of fludarabine-treated CLL cells (Figure 5.6).   

My experiments also showed that Mcl-1 associates with Puma in co-cultured CLL 

cells. It is likely that induced Mcl-1 also interacts with Puma because 

immunoprecipitation of the former quantitatively removed the latter from lysates of 

fludarabine-treated CLL cells (Figure 5.9). However, technical problems render this 

conclusion inconclusive.  The quality of Western blots of Mcl-1 was poor and bands 

corresponding to Mcl-1 in molecular weight seemed to migrate close to the Ig heavy 

chain in immunoprecipitated samples. This made interpretation difficult, particularly 

because upregulated Mcl-1 expression was not clearly observed in the CD40-

stimulated CLL cells. 

Nevertheless, my experiments potentially provide an explanation for CD40-mediated 

drug resistance as mimicked by the co-culture conditions. Co-culture induces the 

expression of Bcl-XL and Mcl-1 in sufficient quantities to bind and inhibit the 

apoptotic function of the upregulated Puma. This then rescues the cells from 

fludarabine-induced apoptosis. This in turn presents a potential avenue of therapeutic 

intervention. Specific targeting of either Bcl-XL or Mcl-1 in co-cultured CLL cells 

should release sequestered Puma and cause cell death. This notion is supported by 

studies showing that compounds such as (Bcl-XL inhibitor) and (Mcl-1 inhibitor) 

can effectively restore cell death in co-culture models (Choudhary et al. 2015).  
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6.2   Conclusion 

In conclusion, this work sought to explore in greater detail the resistance mechanism 

in CD40-stimulated CLL cells in response to drug-induced, p53-dependent 

apoptosis. Microenviromental stimuli such as CD40 stimulation shift the balance of 

cellular fate in favour of survival by up-regulating anti-apoptotic members of Bcl-2 

family of proteins including Bcl-XL and Mcl-1. It is shown that these proteins can 

bind to pro-apoptotic members of the Bcl-2 family of proteins and prevent apoptosis 

induction. This study is the first to demonstrate a possible mechanism of fludarabine 

resistance in CLL cells where CD40 stimulation up-regulated expression of Mcl-1 

and Bcl-XL which sequestered and inhibited apoptotic activity of fludarabine-

induced Puma in CLL cells. This inhibition might be relevant in the survival and 

expansion of the malignant clone in these cells. Future studies would be to clarify the 

importance of the interacting partners of Puma in mediating fludarabine resistance 

using siRNAs specific to Bcl-XL and/or Mcl-l in CD40-stimulated CLL cells. 

Furthermore, it would be very interesting to examine if fludarabine-resistant CLL 

cells can be induced to undergo apoptosis when treated in combination with selective 

Bcl-XL or Mcl-1 inhibitors. The findings from these studies would be very important 

in helping design less toxic individualised therapies in CLL. 
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Supplementary data 

 

1. Figures associated with repeated Puma co-association 

experiments using different CLL cases.  

1.1. Identification of Puma binding proteins in fludarabine-treated CLL 

cells cultured under standard conditions 

 

- Case no 2929 

 

(Figure 1) Immunoprecipitation of Puma in CLL cells (sample 2929). 

CLL cells were incubated with fludarabine (Flu, 10 µM) or dexamethasone (Dex, 100 nM) 

for 48h. At the end of incubation, cells were harvested for analysis of cell death by FACS as 

described earlier. Cell lysates were also prepared for immunoprecipitation assay using an 

anti-Puma antibody (from Novus) as described in Methodology. The presence of Puma in 

the pull-down protein complexes (lanes 4-6), together with un-manipulated whole cell lysate 

(Pre-IP fractions, lanes 1-3) and post-immunoprecipitated lysates (Post-IP fractions, lanes 7-

9) was analysed using SDS-PAGE, followed by Western blotting using a second anti-Puma 

antibody (from Cell Signalling). β-actin was probed for as protein loading controls. Pre-

stained protein mass marker and a positive control for Puma (IR) were also used  actin blot 

was performed on a separate gel loaded with the same cell lysates 
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 (Figure 2)Puma interacts with Bcl-2 in fludarabine-treated CLL cells (sample 

2929). 

 

CLL cells were incubated with fludarabine (Flu, 10 µM) or dexamethasone (Dex, 100 nM) 

for 48h. At the end of incubation, cells were harvested for analysis of cell death by FACS as 

described earlier. Cell lysates were also prepared for immunoprecipitation assay using a 

Puma antibody (from Novus). Un-manipulated whole cell lysates (lanes 2-4), the pull-down 

protein complexes (lanes 5-7) and post-IP protein lysates (lanes 8-10) from the control cells 

(Ut), dexamethasone (Dex)- and fludarabine (Flu)-treated cells were analysed using SDS-

PAGE, followed by Western blotting using anti-Bcl-2 antibody (from Cell Signalling). β-

actin was probed for as protein loading controls. Pre-stained protein mass marker was used 

as a guide for determining molecular weight of protein of interest (lane 1) also the blot was 

stripped and re-probed with anti-actin antibody. 
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(Figure 3) Confirmation of Bcl-2-Puma interaction in primary CLL cells 

treated with fludarabine (sample 2929).  

 

CLL cells were incubated with fludarabine (Flu, 10 µM) or dexamethasone (Dex, 100 nM) 

for 48h. At the end of incubation, cells were harvested for analysis of cell death by FACS as 

described earlier. Cell lysates were also prepared for immunoprecipitation assay using a Bcl-

2 antibody (from Cell Signalling). Un-manipulated whole cell lysates (Pre IP samples, lanes 

1-3), the pull-down protein complexes (lanes 4-6) and post IP protein lysates (lanes 7-9) 

from the control cells (Ut), dexamethasone (Dex)- and fludarabine (Flu)-treated cells were 

analysed using SDS-PAGE, followed by Western blotting using anti-Puma antibody (from 

Cell Signalling). β-actin was probed for as protein loading controls. Pre-stained protein mass 

marker and a positive sample for Puma (IR) also the actin blot was performed on a separate 

gel loaded with the same cell lysates. 
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(Figure 4) Detection of Puma-Mcl-1 binding in primary CLL cells treated with 

fludarabine (sample 2929). 

 

CLL cells were incubated with fludarabine (Flu, 10 µM) or dexamethasone (Dex, 100 nM) 

for 48h. At the end of incubation, cells were harvested for analysis of cell death by FACS as 

described earlier. Cell lysates were also prepared for immunoprecipitation assay using a 

Puma antibody (from Novus). Un-manipulated whole cell lysates (Pre IP samples, lanes 2-

4), the pull-down protein complexes (lanes 5-7) and post IP protein lysates (lanes 8-10) from 

the control cells (Ut), dexamethasone (Dex)- and fludarabine (Flu)-treated cells were 

analysed using SDS-PAGE, followed by Western blotting using anti-Mcl-1 antibody (from 

Santa Cruz). β-actin was probed for as protein loading controls. Pre-stained protein mass 

marker was used as a guide for determining molecular weight of protein of interest (lane 1) 

also he actin blot was performed on a separate gel loaded with the same cell lysates. 
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- Case no 2911  

 

 

(Figure 5) Immunoprecipitation of Puma in CLL cells treated with fludarabine 

(CLL sample 2911).  

 

CLL cells were incubated with fludarabine (Flu, 10 µM) or dexamethasone (Dex, 100 nM) 

for 48h. At the end of incubation, cells were harvested for analysis of cell death by FACS as 

described earlier. Cell lysates were also prepared for immunoprecipitation assay using an 

anti-Puma antibody (from Novus) as described in Methodology. The presence of Puma in 

the pull-down protein complexes (lanes 4-6), together with un-manipulated whole cell lysate 

(Pre-IP fractions, lanes 1-3) and post-immunoprecipitated lysates (Post-IP fractions, lanes 7-

9) was analysed using SDS-PAGE, followed by Western blotting using a second anti-Puma 

antibody (from Cell Signalling). β-actin was probed as a loading control. Pre-stained protein 

mass marker and a positive control for Puma (IR) were also  
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(Figure 6) Interaction of Puma with Bcl-2 in fludarabine-treated CLL cells 

(sample 2911). 

 

CLL cells were incubated with fludarabine (Flu, 10 µM) or dexamethasone (Dex, 100 nM) 

for 48h. At the end of incubation, cells were harvested for analysis of cell death by FACS as 

described earlier. Cell lysates were also prepared for immunoprecipitation assay using a 

Puma antibody (from Novus). Un-manipulated whole cell lysates (lanes 2-4), the pull-down 

protein complexes (lanes 5-7) and post-IP protein lysates (lanes 8-10) from the control cells 

(Ut), dexamethasone (Dex)- and fludarabine (Flu)-treated cells were analysed using SDS-

PAGE, followed by Western blotting using anti-Bcl-2 antibody (from Cell Signalling). β-

actin was probed for as protein loading controls. Pre-stained protein mass marker was used 

as a guide for determining molecular weight of protein of interest (lane 1)also the actin blot 

was performed on a separate gel loaded with the same cell lysates. 
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(Figure 7) Detection of interaction between Bcl-2 and Puma in primary CLL 

cells treated with fludarabine (sample 2911). 

 

CLL cells were incubated with fludarabine (Flu, 10 µM) or dexamethasone (Dex, 100 nM) 

for 48h. At the end of incubation, cells were harvested for analysis of cell death by FACS as 

described earlier. Cell lysates were also prepared for immunoprecipitation assay using a Bcl-

2 antibody (from Cell Signalling). Un-manipulated whole cell lysates (Pre IP samples, lanes 

2-4), the pull-down protein complexes (lanes 5-7) and post IP protein lysates (lanes 8-10) 

from the control cells (Ut), dexamethasone (Dex)- and fludarabine (Flu)-treated cells were 

analysed using SDS-PAGE, followed by Western blotting using anti- Puma antibody (from 

Cell Signalling).β-actin was probed for as protein loading controls. Pre-stained protein mass 

marker was used as a guide for determining molecular weight of protein of interest (lane 1) 

also the actin blot was performed on a separate gel loaded with the same cell lysates. 
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(Figure 8) Detection of Puma-Mcl-1 binding in primary CLL cells treated with 

fludarabine (sample 2911). 

 

CLL cells were incubated with fludarabine (Flu, 10 µM) or dexamethasone (Dex, 100 nM) 

for 48h. At the end of incubation, cells were harvested for analysis of cell death by FACS as 

described earlier. Cell lysates were also prepared for immunoprecipitation assay using a 

Puma antibody (from Novus). Un-manipulated whole cell lysates (Pre IP samples, lanes 2-

4), the pull-down protein complexes (lanes 5-7) and post IP protein lysates (lanes 8-10) from 

the control cells (Ut), dexamethasone (Dex)- and fludarabine (Flu)-treated cells were 

analysed using SDS-PAGE, followed by Western blotting using anti-Mcl-1 antibody (from 

Santa Cruz). β-actin was probed for as protein loading controls. Pre-stained protein mass 

marker was used as a guide for determining molecular weight of protein of interest (lane 1) 

also the actin blot was performed on a separate gel loaded with the same cell lysates. 
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2. Identification of Puma binding proteins in fludarabine-

treated CLL cells cultured with parental and CD40L-

expressing fibroblasts. 

 

      - Case no 2746 

 

    

 

 

(Figure 9) Detection  of expression of Puma with or with out fludarabine 

(sample 2746). 

 

Co-cultured with parental (PAR) or CD40L-expressing (CD154) fibroblasts. Co-cultured 

CLL cells were incubated with or without fludarabine (10 µM) for 48 hours. At the end of 

incubation, cells were harvested for analysis of cell death by FACS as described earlier. For 

the detection of expression of Puma, lysates were prepared from the above cells for Western 

blotting using anti-Puma antibody. Lysate prepared from γ-irradiated CLL cells was used as 

a positive control for Puma (lane IR) also the actin blot was performed on a separate gel 

loaded with the same cell lysates. 



 
 

P a g e  | 173 

 

  
 

  

 

 

 

   

   

 

(Figure 10) Puma interacts with Bcl-XL in fludarabine-treated CLL cells co-

cultured with CD40L-expressing fibroblasts (CLL sample 2746). 

 

CLL cells were incubated with fludarabine (Flu, 10 µM) for 48h. At the end of incubation, 

cells were harvested for analysis of cell death by FACS as described earlier. Cell lysates 

were also prepared for immunoprecipitation assay using a Puma antibody (from Novus). Un-

manipulated whole cell lysates (pre-IP, lanes 1-4), the pull-down protein complexes (lanes 

5-8) and post-IP protein lysates (lanes 9-12) from the untreated cells (Ut) or fludarabine -

treated cells (Flu) were analysed by Western blotting for expression of Bcl-XL using anti-

Bcl-XL antibody (from Cell Signalling). β-actin was probed for as protein loading controls 

also  the actin blot was performed on a separate gel loaded with the same cell lysates. 
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(Figure 11) Detection of interaction of Mcl-1 with Puma in fludarabine-treated 

CLL cells on co-cultures (CLL sample 2746).  

 

Co-cultured CLL cells were incubated with fludarabine (Flu, 10 µM) for 48h. At the end of 

incubation, cells were harvested for analysis of cell death by FACS as described earlier. Cell 

lysates were also prepared for immunoprecipitation assay using a Puma antibody (from 

Novus). Un-manipulated whole cell lysates (lanes 1-4), the pull-down protein complexes 

(lanes 5-8) and post-IP protein lysates (lanes 9-12) from the control cells (Ut) and 

fludarabine (Flu)-treated cells were analysed by Western blotting for expression of Mcl-1 

using anti-Mcl-1 antibody (from Santa Cruz). β-actin was probed for as protein loading 

controls also the blot was stripped and re-probed with anti-actin antibody.  
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(Figure 12) Detection of interaction of Puma with Mcl-1 in fludarabine-treated 

CLL cells on co-cultures (sample 2746).  

 

Co-cultured CLL cells were incubated with fludarabine (Flu, 10 µM) for 48h. At the end of 

incubation, cells were harvested for analysis of cell death by FACS as described earlier. Cell 

lysates were also prepared for immunoprecipitation assay using a Mcl-1 antibody (from 

Santa Cruz). Un-manipulated whole cell lysates (lanes 1-4), the pull-down protein 

complexes (lanes 5-8) and post-IP protein lysates (lanes 9-12) from the control cells (Ut) and 

fludarabine (Flu)-treated cells were analysed by Western blotting for expression of Puma 

using anti-Puma antibody (from Cell Signalling). β-actin was probed for as protein loading 

controls. Lysate prepared from γ-irradiated CLL cells was used as a positive control for 

Puma also the blot was stripped and re-probed with anti-actin antibody. 
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(Figure 13) Detection of interaction of Bcl-XL with Puma in fludarabine-treated 

CLL cells (sample 2746) on co-cultures.  

   

Co-cultured CLL cells (sample 2746) were incubated with fludarabine (Flu, 10 µM) for 48h. 

At the end of incubation, cells were harvested for analysis of cell death by FACS as 

described earlier. Cell lysates were also prepared for immunoprecipitation assay using a Bcl-

XL antibody (Cell Signalling). Un-manipulated whole cell lysates (lanes 1-4), the pull-down 

protein complexes (lanes 5-8) and post-IP protein lysates (lanes 9-12) from the control cells 

(Ut) and fludarabine (Flu)-treated cells were analysed by Western blotting for expression of 

Puma using an anti-Puma antibody (from Cell Signalling). β-actin was probed for as protein 

loading controls. Lysate prepared from γ-irradiated CLL cells was used as a positive control 

for Puma (lane IR) also the actin blot was performed on a separate gel loaded with the same 

cell lysates. 
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(Figure 14) Detection of interaction of Puma with Bcl-XL in fludarabine-treated 

CLL cells on co-cultures (sample 2911).  

 

Co-cultured CLL cells were incubated with fludarabine (Flu, 10 µM) for 48h. At the end of 

incubation, cells were harvested for analysis of cell death by FACS as described earlier. Cell 

lysates were also prepared for immunoprecipitation assay using a Puma antibody (from 

Novus). Un-manipulated whole cell lysates (lanes 1-4), the pull-down protein complexes 

(lanes5-8) and post-IP protein lysates (lanes 9-12) from the control cells (Ut) and fludarabine 

(Flu)-treated cells were analysed by Western blotting for the expression of Bcl-XL using an 

anti-Bcl-XL antibody (from Cell Signalling). β-actin was probed for as protein loading 

controls also the actin blot was performed on a separate gel loaded with the same cell 

lysates. 
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(Figure 15) Detection of interaction of Mcl-1 with Puma in fludarabine-treated 

CLL cells on co-cultures (CLL sample 2911). 

 

Co-cultured CLL cells were incubated with fludarabine (Flu, 10 µM) for 48h. At the end of 

incubation, cells were harvested for analysis of cell death by FACS as described earlier. Cell 

lysates were also prepared for immunoprecipitation assay using a Puma antibody (from 

Novus). Un-manipulated whole cell lysates (lanes 1-4), the pull-down protein complexes 

(lanes 5-8) and post-IP protein lysates (lanes 9-12) from the control cells (Ut) and 

fludarabine (Flu)-treated cells were analysed by Western blotting for the expression of Mcl-

1 using an anti-Mcl-1 antibody (from Santa Cruz). β-actin was probed for as protein loading 

controls also the actin blot was performed on a separate gel loaded with the same cell 

lysates. 
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(Figure 16) Detection of interaction of Mcl-1 with Puma in fludarabine-treated 

CLL cells on co-cultures (from sample 2911).  

   

Co-cultured CLL cells were incubated with fludarabine (Flu, 10 µM) for 48h. At the end of 

incubation, cells were harvested for analysis of cell death by FACS as described earlier. Cell 

lysates were also prepared for immunoprecipitation assay using a Mcl-1 antibody (from 

Santa Cruz). Un-manipulated whole cell lysates (lanes 1-4), the pull-down protein 

complexes (lanes 5-8) and post-IP protein lysates (lanes 9-12) from the control cells (Ut) and 

fludarabine (Flu)-treated cells were analysed by Western blotting for expression of Puma 

using an anti-Puma antibody (from Cell Signalling). β-actin was probed for as protein 

loading controls. Lysate prepared from γ-irradiated CLL cells was used as a positive control 

for Puma (lane IR) also The actin blot was performed on a separate gel loaded with the same 

cell lysates. 
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(Figure 17) Detection of interaction of Bcl-XL with Puma in fludarabine-treated 

CLL cells on co-cultures (sample 2911).  

 

Co-cultured CLL cells were incubated with fludarabine (Flu, 10 µM) for 48h. At the end of 

incubation, cells were harvested for analysis of cell death by FACS as described earlier. Cell 

lysates were also prepared for immunoprecipitation assay using a Bcl-XL antibody (Cell 

Signalling). Un-manipulated whole cell lysates (lanes 1-4), the pull-down protein complexes 

(lanes 5-8) and post-IP protein lysates (lanes 9-12) from the control cells (Ut) and 

fludarabine (Flu)-treated cells were analysed by Western blotting for expression of Puma 

using an anti-Puma antibody (from Cell Signalling). β-actin was probed for as protein 

loading controls. Lysate prepared from γ-irradiated CLL cells was used as a positive control 

for Puma (lane IR) also the actin blot was performed on a separate gel loaded with the same 

cell lysates 
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