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Abstract

Let X be lognormal(µ, σ2) with density f(x), let θ > 0 and define L(θ) =
Ee−θX . We study properties of the exponentially tilted density (Esscher
transform) fθ(x) = e−θxf(x)/L(θ), in particular its moments, its asymp-
totic form as θ → ∞ and asymptotics for the saddlepoint θ(x) determined
by E[Xe−θX ]/L(θ) = x. The asymptotic formulas involve the Lambert W
function. The established relations are used to provide two different numer-
ical methods for evaluating the left tail probability of the sum of lognormals
Sn = X1 + · · ·+Xn: a saddlepoint approximation and an exponential tilting
importance sampling estimator. For the latter we demonstrate logarithmic
efficiency. Numerical examples for the cdf Fn(x) and the pdf fn(x) of Sn
are given in a range of values of σ2, n, x motivated by portfolio Value-at-Risk
calculations.
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1 Introduction

The lognormal distribution arises in a wide variety of disciplines such as engineer-
ing, economics, insurance, finance, and across the sciences (Aitchison and Brown,
1957; Crow and Shimizu, 1988; Dufresne, 2009; Johnson et al., 1994; Limpert et al.,
2001). Therefore, it is natural that sums of lognormals come up in a number of con-
texts. A basic example in finance is the Black–Scholes model, which assumes that
security prices can be modeled as independent lognormals, and hence the value of a
portfolio with n securities can be conveniently modeled as a sum of lognormals. An-
other example occurs in the valuation of arithmetic Asian options where the payoff
depends on the finite sum of correlated lognormals (Dufresne, 2004; Milevsky and
Posner, 1998). In insurance, individual claim sizes are often modeled as independent
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lognormals, so the total claim amount in a certain period is a random sum of lognor-
mals (Thorin and Wikstad, 1977). A further example occurs in telecommunications,
where the inverse of the signal-to-noise ratio (a measure of performance in wireless
systems) can be modeled as a sum of iid lognormals (Gubner, 2006).

However, the distribution of a sum of n lognormals Sn is not available in explicit
form, and its numerical approximation is considered to be a challenging problem.
In consequence, a number of methods for its evaluation have been developed over
several decades, but these can rarely deliver arbitrary precisions on the whole sup-
port of the distribution, particularly in the tails. The latter case is of key relevance
in certain applications which often require evaluation of tail probabilities at a very
high precision.

When considering lognormals sums, the literature has so far concentrated on
the right tail (with the exception of the recent paper by Gulisashvili and Tankov,
2014). In this paper, our object of study is rather the left tail and certain mathe-
matical problems that naturally come up in this context. To be precise, let Yi be
normal(µi, σ2

i ) (we don’t at the moment specify the dependence structure), Xi = eYi

and Sn = X1 + · · · + Xn. We then want to compute P(Sn ≤ z) in situations where
this probability is small.

A main application is VaR calculations in the finance industry that have become
mandatory following the treatise Basel II (2004). The VaR is an important measure
of market risk defined as an appropriate (1 − α)-quantile of the distribution of the
loss, and Basel II asks for calculation of the VaR for α as small as 0.03% (the
values depend on the type of business). For a careful explanation of these matters
and references, see for instance Duelman (2010), Ch. 1 of McNeil et al. (2015) and
Embrechts et al. (2014). For a specific example relevant for this paper, let a portfolio
be based on n assets with upcoming prices X1, . . . , Xn. In case of a short position,
the potential loss then corresponds to a large value of Sn so that for the VaR one
needs the right tails. With a long position, a loss is caused by a small value so that
one gets into calculations in the left tail, precisely the problem of this paper. A
second example is in wireless systems where the outage capacity is defined as the
probability that the inverse of the signal-to-noise ratio operates in a range below
certain thresholds (cf. Slimane (2001); Navidpour et al. (2004)). For relevance of
calculations of small values in the left tail, see Barakat (1976); Beaulieu et al. (1995);
Beaulieu and Xie (2004).

The problem of approximating the distribution of a sum of iid lognormals has
a long history. The classical approach is to approximate the distribution of this
sum with another lognormal distribution. This goes back at least to Fenton (1960)
and it is nowadays known as the Fenton–Wilkinson method as according to Mar-
low (1967) this approximation was already used by Wilkinson in 1934. However,
the Fenton–Wilkinson method, being a central limit type result, can deliver rather
inaccurate approximations of the distribution of the lognormal sum when the num-
ber of summands is rather small, or when the dispersion parameter is too high—in
particular in the tail regions. Another topic which has been much studied recently
is approximations and simulation algorithms for right tail probabilities P(Sn ≥ y)
under heavy-tailed assumptions and allowing for dependence, see in particular As-
mussen et al. (2011); Asmussen and Rojas-Nandayapa (2008); Blanchet and Rojas-
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Nandayapa (2011); Foss and Richards (2010); Mitra and Resnick (2009). For further
literature surveys, see Gulisashvili and Tankov (2014).

Our approach is to use saddlepoint approximations and a closely related simula-
tion algorithm based on the same exponential change of measure. This requires iid
assumptions, so we assume that µi ≡ µ, σ2

i ≡ σ2. Since µ is just a scaling factor,
we will assume µ = 0. The saddlepoint approximation occurs in various (closely re-
lated) forms, but all involve the function κ(θ) = logL(θ) and its two first derivatives
κ′(θ) and κ′′(θ), where L(θ) is the Laplace transform

L(θ) = Ee−θXi =

∫ ∞
0

e−θxf(x) dx with f(x) =
1

xσ
√

2π
e− log2 x/2σ2

(note that since the right tail of the lognormal distribution is heavy, these quantities
are only defined for θ ≥ 0). Formally, κ(θ) is the cumulant transform of the random
variable −Xi. Define the exponentially tilted density fθ(x) (Esscher transform) by

fθ(x) = e−θxf(x)/L(θ), x > 0, (1)

and let its corresponding cdf be Fθ with expectation operator Eθ. Then

κ′(θ) = Eθ[−Xi] = −EθXi , κ′′(θ) = VarθXi (2)

and one can connect the distribution of Sn (corresponding to θ = 0) to the Pθ-
distribution by means of the likelihood ratio identity

P(Sn ∈ A) = Eθ
[
exp{θSn + nκ(θ)}; Sn ∈ A

]
.

The construction of the saddlepoint approximation requires the saddlepoint θ(x)
being the solution of the equation

κ′
(
θ(x)

)
= −Eθ(x)[Xi] = −x, (3)

and the tilted measure Pθ with θ = θ(x). This choice of θ means that EθSn = nx so
that the Pθ-distribution is centered around nx and central limit expansions apply.
For a short exposition of the implementation of this program in its simplest form,
see p. 355, Asmussen (2003).

The application of saddlepoint approximations to the lognormal left tail seems
to have appeared for the first time in the third author’s 2008 Dissertation (Rojas-
Nandayapa, 2008), but in a more incomplete and preliminary form than the one
presented here. A first difficulty is that L(θ) is not explicitly available for the
lognormal distribution. However, approximations with error rates were recently
given in the companion paper Asmussen et al. (2014b) (see also Laub et al., 2016)).
The result is in terms of the Lambert W function W (a) (Corless et al., 1996), defined
as the unique solution of W (a)eW (a) = a for a > 0. The expression for the Laplace
transform L(θ) from Asmussen et al. (2014b) is the case k = 0 in Proposition 1
below, the general case being the expectation E[Xke−θX ]. Note that the Lambert
W function is convenient for numerical computations since it is implemented in
many software packages.
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The paper is organized as follows. In Section 2, we study the exponential family
(Fθ)θ≥0. We give approximations to the derivatives of the Laplace transform, an
approximation to the saddlepoint θ(x), and discuss various approximations to the
tilted density fθ. The first important application of our results, namely the saddle-
point approximation for P(Sn ≤ nx), is given in Section 3. The second is a Monte
Carlo estimator for P(Sn ≤ nx) given in Section 4.2. It follows a classical route
(VI.2, Asmussen and Glynn, 2007) by attempting importance sampling where the
importance distribution is Fθ(x). The implementation faces the difficulty that neither
θ(x) nor L

(
θ(x)

)
are explicitly known. The importance sampling algorithm requires

simulation from Fθ, and we suggest an acceptance-rejection (A-R) for this with a
Gamma proposal. The Appendix contains a proof that the importance sampling
proposed in Section 4.2 has a certain asymptotical efficiency property.

2 The exponential family generated by the
lognormal distribution

We let F be the cdf of X and adopt the notation X ∼ LN (0, σ2). For convenience,
we write fn and Fn for the pdf and cdf of Sn, respectively.

The exponential tilting scheme in the introduction is often also referred to as the
Esscher transform. Note that since κ(θ) is well-defined for all θ > 0, the saddlepoint
θ(x) exists for all 0 < x ≤ EX (the relevant case for our left tail problem) and
large deviation results can be used. The latter are based on the Legendre–Fenchel
transform defined as the convex conjugate of κ(θ).

We first consider ways of evaluating and approximating derivatives of the Laplace
transform given through

Lk(θ) = E[Xke−θX ] =

∫ ∞
−∞

1√
2πσ2

e−hk(y)dy, with hk(y) = −ky + θey +
y2

2σ2
. (4)

Define wk(θ) = W (θσ2ekσ
2
), σk(θ)2 = σ2/(1 + wk(θ)) as well as:

La(k, θ) =
σk(θ)

σ
exp

{
− 1

2σ2
wk(θ)

2 − 1

σ2
wk(θ) + 1

2
k2σ2

}
, (5)

Hk(z; θ) =
(
ezσk(θ) − 1− zσk(θ)

)
wk(θ)/σ

2 − z2σk(θ)
2/(2σ2),

Ik(θ) =

∫ ∞
−∞

1√
2π

exp{−Hk(z; θ)}dz, (6)

Jk(θ) =

∫ ∞
−∞

1√
2π

exp
{
−H0(z; θ) + kσ0(θ)z − 1

2
σ0(θ)2k2

}
dz.

The following proposition extends Proposition 2.1 of Asmussen et al. (2014b). To
understand the orders of the different terms one should keep in mind that wk(θ) is
asymptotically of order log(θ) for θ →∞. We also use the fact that wk(0) = 0.

Proposition 1. Let X ∼ LN (0, σ2), k ∈ N+ and θ ≥ 0. Then

Lk(θ) = La(k, θ)Ik(θ) and Lk(θ) = La(0, θ) exp
{
− kw0(θ) + 1

2
σ0(θ)2k2

}
Jk(θ). (7)
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Moreover, Ik(0) = Jk(0) = 1 and with λk(m; θ) = wk(θ)σk(θ)
m/(σ2m!) we have for

θ →∞ the expansions

Ik(θ) = 1− 3λk(4; θ) +
15

2
λk(3; θ)2 +O

(
σk(θ)

4
)
,

Jk(θ) = 1− 3(1 + 4k)λ0(4; θ) +
15

2
λ0(3; θ)2 +O

(
σ0(θ)4

)
.

This proposition’s proof employs Laplace’s approximation as used in the proof of
Proposition 2.1 in the companion paper Asmussen et al. (2014b). We give here only
a brief sketch of the proof. For the first result involving La(k, θ), the function hk(y)
is expanded around its minimizer yk(θ) given as the solution to θey + y/σ2 − k = 0,
that is, yk(θ) = kσ2 − wk(θ). Then the exponential part of La(k, θ) is simply
−hk

(
yk(θ)

)
, and the exponential part of the integrand in Ik(θ) is −

{
hk
(
yk(θ) +

σk(θ)z
)
−hk

(
yk(θ)

)}
. Expansion of the latter gives −1

2
z2−λk(3; θ)z3−λk(4; θ)z4 +

O
(
σk(θ)

3|z|5
)
, and expanding the exponential of the last three terms gives the result

in the proposition for Ik(θ). For the alternative formula with Jk(θ) we expand
hk(y) around y0(θ). Then the exponential part of La(0, θ) together with −kw0(θ) is
simply −h(y0(θ)), and the exponential part of the integrand in Jk(θ) is −

{
hk
(
y0(θ)+

σ0(θ)z
)
− hk

(
y0(θ)

)}
− σ0(θ)2k2/2. Expanding the latter we get −1

2

(
z− kσ0(θ)

)2−
λ0(3; θ)z3 − λ0(4; θ)z4 +O

(
σ0(θ)3|z|5

)
, which leads to the result in the proposition.

The results of Proposition 1 immediately lead to an approximation of the mean
and variance of the exponentially tilted measure. These are denoted by Eθ and Varθ,
respectively. Note that, although the results below are for θ → ∞, the approxima-
tions are actually exact for θ = 0 as well.

Corollary 2. Let X ∼ LN (0, σ2). Then as θ →∞

Eθ[X] = exp
{
−w0(θ) + 1

2
σ0(θ)2

}(
1 +O(σ0(θ)2)

)
, (8)

Varθ[X] = exp
{
−2w0(θ) + σ0(θ)2

}(
eσ0(θ)2 − 1

)(
1 +O(σ0(θ)2)

)
. (9)

Proof. Simply use Eθ[X] = L1(θ)/L0(θ) and Varθ[X] = L2(θ)/L0(θ)−(L1(θ)/L0(θ))2

together with the second part of (7).

The Laplace approximation in Proposition 1 and Corollary 2 corresponds to
replacing the distribution of Yθ = log(Xθ), Xθ ∼ Fθ, by a normal distribution, Yθ ∼
N(−w0(θ), σ0(θ)2). This is equivalent to a lognormal approximation for the tilted
measure Fθ, Fθ ≈ LN(−w0(θ), σ0(θ)2). For θ = 0 we have the correct lognormal
distribution, and Proposition 3 below shows that this is a correct interpretation in
the limit θ →∞. The proposition shows that the limiting centered and scaled tilted
density fθ is a standard normal density. It follows from this that the lognormal
approximation becomes exact as θ → ∞. We will use the result in the following
sections.

Proposition 3. Write the tilted density fθ(x) as exp
{
−m(x)− κ(θ)

}
/
√

2πσ2 with
m(x) = log(x) + (log(x))2/(2σ2) + θx. Furthermore, let w = w0(θ) and define
m0(u) = m

(
e−w(1 + σu/

√
w)
)
−m(e−w). Then, as θ →∞,

m0(u) = 1
2
u2 +O

(
(|u|+ |u|3)σ/

√
w
)

for |u|3/
√
w ≤ 1,

5



and for θ sufficiently large |m′0(u)| > (
√
w/σ)1/6/2 for |u| > (

√
w/σ)1/6 with the sign

of m′0(u) being that of u. The properties of m0 imply that the centered and scaled
density fθ converges to a standard normal density, and moments of fθ converge as
well.

Proof. We first note that the lognormal density f(x) is logconcave for x < e1−σ2

since

d2

dx2
log(f(x)) = − 1

x2σ2

(
− log(x) + σ2 − 1

)
< 0 for x < e1−σ2

. (10)

We rewrite m0(u) as

m0(u) = log
(

1 +
σ√
w
u
)

+
1

2σ2

{[
−w + log

(
1 +

σ√
w
u
)]2

− w2
}

+

√
w

σ
u.

Taylor expanding log(1+σu/
√
w) we obtain the first result of the proposition. Next,

we find the derivative of m0(u):

m′0(u) =
σ/
√
w

1 + σu/
√
w

+

√
w

σ
+

1

σ2

[
−w + log(1 + σu/

√
w)
] σ/

√
w

1 + σu/
√
w
.

For u > (
√
w/σ)1/6 we get the bound

m′0 >

√
w

σ

(
1− 1

1 + σu/
√
w

)
=

(
√
w/σ)1/6

1 + (
√
w/σ)−5/6

> 1
2
(
√
w/σ)1/6,

as long as σ/
√
w < 1, which is true for θ → ∞. For u < −(

√
w/σ)1/6 we have

from the logconcavity that m′0(u) < m′0
(
−(
√
w/σ)1/6

)
. For the latter we find

m′0
(
−(
√
w/σ)1/6

)
∼ −(

√
w/σ)1/6 as θ →∞.

2.1 The saddlepoint θ(x)

The result in Corollary 2 leads in a natural way to an approximation of the saddle-
point θ(x), the latter being the solution of the equation −κ′(θ) = L1(θ)/L0(θ) = x.
We simply let the approximation θ̃(x) be the solution of exp

{
−w0(θ)+ 1

2
σ0(θ)2

}
= x.

This gives the equation−w0(θ)+ 1
2
σ2/(1+w0(θ)) = log(x), which leads to a quadratic

equation in w0(θ). Since w0(θ) ≥ 0, and using the definition of w0(θ), we find with
γ(x) = 1

2

(
−1− log x+

√
(1− log x)2 + 2σ2

)
that

w0(θ̃(x)) = γ(x) or θ̃(x) = γ(x)eγ(x)/σ2. (11)

The following proposition states the quality of this approximation.

Proposition 4. For x→ 0 we have θ̃(x) ∼ (− log x)/(xσ2) and

Eθ̃(x)[X] = x
(

1 +O
( 1

| log(x)|

))
, θ(x) = θ̃(x)

(
1 +O

( 1

| log(x)|

))
.
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Proof. Below we write θ̄ for θ(x) and θ̃ for θ̃(x). We first note that γ(x) ∼ − log(x)+
O(1/| log(x)|) for x→ 0, which gives that θ̃ = γ(x)eγ(x)/σ2 ∼ (− log x)/(xσ2). From
the definition of θ̃ and (8) we have Eθ̃[X] = x(1+O

(
1/w0(θ̃)

)
, and the first displayed

result follows from w0(θ̃) = γ(x) ∼ − log(x). Using that Eθ̄[X] = x we rewrite the
first result as Eθ̄[X]/Eθ̃[X] = 1 + O

(
1/w0(θ̃)

)
. From a Taylor expansion of Eθ[X]

around θ̃ we find Eθ̄[X]/Eθ̃[X] to first order as

1 +
Varθ̃[X]

Eθ̃[X]
θ̃
(

1− θ̄

θ̃

)
≈ 1 +

σ2

w0(θ̃)
e−2w0(θ̃)

e−w0(θ̃)

w0(θ̃)

σ2
ew0(θ̃)

(
1− θ̄

θ̃

)
≈ 1 +

(
1− θ̄

θ̃

)
,

and comparing this with 1 + O
(
1/w0(θ̃)

)
we conclude that 1 − θ̄/θ̃ = O

(
1/w0(θ̃)

)
or θ̄ = θ̃

(
1 +O(1/| log(x)|

)
.

In Sections 3 and 4.2 we will employ the results of this section to construct a
saddlepoint approximation and a Monte Carlo estimator of the left tail probability of
a sum of lognormal random variables. In particular, the asymptotic results derived
above will be useful to show that when the approximation θ̃(x) is used as the tilting
parameter of an exponential change of measure, the Monte Carlo estimator remains
asymptotically efficient as x→ 0.

3 Saddlepoint approximation in the left tail of a
lognormal sum

Daniels’ saddlepoint method produces an approximation of the density function
of a sum of iid random variables which is valid asymptotically on the number of
summands. The first and second order approximations are embodied in the formula

fn(nx) ≈
{

2πnκ′′(θ(x))
}−1/2

exp
{
− nκ†

}(
1 + 1

n

[
ζ4/8− 5ζ2

3/24
])
,

where κ† = −{κ
(
θ(x)

)
+ xθ(x)} is the convex conjugate of κ evaluated at −x, and

ζk = κ(k)(θ(x))/κ′′(θ(x))k/2, is the standardized cumulant.
The corresponding saddlepoint approximation for the cdf (cf. Jensen, 1995,

Chapter 2) is given by

Fn(nx) =
1

λn
exp

{
nκ†
}{
B0 +

ζ3

6
√
n
B3 +

ζ4

24n
B4 +

ζ2
3

72n
B6

}
,

where λn = θ(x)
√
nκ′′(θ(x)) and

B0 = λneλ
2
n/2Φ(−λn), B3 = −

{
λ3
nB0 − (λ3

n − λn)/
√

2π
}
,

B4 = λ4
nB0 −

(
λ4
n − λ2

n

)
/
√

2π, B6 = λ6
nB0 −

(
λ6
n − λ4

n + 3λ2
n

)
/
√

2π.

General results for the saddlepoint approximation state that for a fixed x the relative
error is O(1/n) for the first order approximation and O(1/n2) for the second order
approximation. More can be said, however, for the case of a lognormal sum. It
is simple to see that the density f(x) is logconcave for x < e1−σ2 , see (10), and
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according to (Jensen, 1995, section 6.2) we have that the saddlepoint approximations
have the stated relative errors uniformly for x in a region around zero. Furthermore,
the convergence of the tilted density as θ → ∞ outlined in Proposition 3 implies
that the saddlepoint approximation become exact in the same limit.

To calculate the saddlepoint approximation we need to find the Laplace transform
and its derivatives numerically. We want to implement the integration in such a way
that the relative accuracy of the integration is of the same order irrespective of the
argument θ. For k = 0, 1, 2, 3, 4 we want to evaluate the integral Lk(θ) from (4).
This leads to the integral Ik(θ) from (6). Instead of the scale σk(θ) chosen there, we
consider another scale τ and the integral

Ik(θ) =
1√
2π

τ

σk(θ)

∫ ∞
−∞

exp
{
−h̃(z)

}
dz, h̃(z) =

wk(θ)

σ2

(
eτz − 1− τz

)
+

τ 2

2σ2
z2.

Since h̃′′(z) = τ 2
(
wk(θ)e

τz +1
)
/σ2 > 0 we see that h̃ is convex. Choosing the scale τ

such that 2h̃(−τ) = 1 we obtain that 2h̃(z) is a convex function bounded between 0
and 1 for −1 < z < 0, is above −z for z < −1 and with h̃(z) ≥ h̃(−z) for z > 0. In
this way the precision of the numerical integration of exp

{
−h̃(z)

}
will be of the same

order irrespective of the value of w and σ2. In practice we can take τ as τ = σk(θ)
as long as σk(θ) ≤ c0 and τ = {wk(θ)2 + 2wk(θ) + σ2}1/2 − wk(θ) otherwise, where
c0 is an arbitrary constant. Unless σ2 is large we can use τ = σk(θ) for all θ.

4 Simulation

In this section we discuss an optimal importance sampling estimator based on a
classical exponential change of measure. For implementing such an estimator we
require an algorithm for generating a sample from Fθ. Also, we use the previous
approximation θ̃(x) for the saddlepoint.

4.1 Random variate generation from Fθ

We first consider the problem of generating a random variable from the tilted density
fθ from (1).

The obvious naïve choice is acceptance-rejection (A-R; Asmussen and Glynn,
2007, II.2), simulating Z from f and rejecting with probaility e−θZ . This choice
produces a very simple algorithm for generating from fθ and the method is exact
even when we do not have an explicit expression for κ(θ). Ideally, we would like to
have an acceptance probability p close to 1, but in our case p = eκ(θ), so as the value
of θ increases, the probability of acceptance diminishes, and hence the expected
number of rejection steps goes to infinity. In consequence, the naïve estimator is
very inefficient for large values of θ.

As noted in Proposition 3, if Xθ is a random variable with density fθ, the variable
U = (Xθ−e−w)

√
wew/σ, w = w0(θ), has a standard normal distribution in the limit

θ →∞. However, the limiting normal distribution cannot be used as a proposal for
an A-R algorithm because the right tail is lighter than that of Xθ. Similarly, the
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lognormal approximation is not applicable because the left tail of
(
Xθ+w0(θ)

)
/σ0(θ)

is lighter.
What we know, however, is that the right tail of Xθ is trivially lighter than e−θx.

This points to the possibility of using a gamma proposal Z ∼ Gamma(λ, θ). For a
given λ > 0 we rewrite the tilted density as

fθ(x) =
e−κ(θ)+ 1

2
λ2σ2

√
2πσ2

xλ−1 exp
{
−θx− 1

2σ2
(λσ2 + log x)2

}
. (12)

We choose λ such that λσ2 + log(E[Z]) = 0. Solving for λ we obtain 0 = λσ2 +
log(λ/θ) or λ = w0(θ)/σ2. This gives the following A-R algorithm.

Algorithm 5.

1. Simulate U ∼ U(0, 1) and Z ∼ Gamma(w0(θ)/σ2, θ).

2. If U > exp
{
−
(
w0(θ) + logZ

)2
/(2σ2)

}
repeat. Else, return Xθ = Z.

Writing w = w0(θ), using (12) and θ = w0(θ)ew0(θ)/σ2, we find the acceptance
probability as

E[e−
1

2σ2
(w+logZ)2 ] = R(θ)eκ(θ) with R(θ) =

√
2πσ2

(w/σ2)w/σ
2
e

1
2
w2/σ2

Γ(w/σ2)
.

As θ → ∞ we have κ(θ) ∼ −w2/(2σ2) − w/σ2 − log(1 + w)/2, and from Γ(x) ∼
xx−1/2e−x

√
2π for large x we therefore find that the acceptance probabilityR(θ)eκ(θ) →

1. Since Γ(x) → ∞ for x → 0 we have that the factor R(θ) is below one for small
θ. Thus, it seems natural to choose between the two algorithms according to which
has the highest acceptance probability.

4.2 Efficient Monte Carlo for left tails of lognormal sums

In this section we develop an asymptotically efficient Monte Carlo estimator α̂n(x),
for the left tail probability of a lognormal sum αn(x) = P(Sn ≤ nx) which may be
small either because x is small or because n is large.

As is standard concepts in rare event simulation (VI.1 Asmussen and Glynn,
2007), we say that a Monte Carlo estimator α̂n(x) has bounded relative error as
x → ∞ if lim supx→0 Var(α̂n(x))/α2−ε

n (x) = 0, for all ε > 0, or is logarithmically
efficient if lim supx→0 Var(α̂n(x))/α2

n(x) < ∞. Bounded relative error implies that
the number of replications required to estimate αn(x) with certain fixed relative
precision remains bounded as x→ 0 and logarithmic efficiency that it grows at rate
of order at most | log(αn(x))| which is only marginally weaker in practice. This is to
be compared with the much cruder rate αn(x)−1/2 obtained using naive simulation.

The probabilty of the event (Sn ≤ x) may be small either because x is small or
because n is large, so one could alternatively study αn(x)−1/2 in the limit n → ∞
instead of x→ 0. In fact, for light right tails it is then standard to apply importance
sampling (V.1, Asmussen and Glynn, 2007). Noting that the lognormal density is
log-concave for small x (see (10)), the following analogue of Theorem 2.10, Chapter
VI in Asmussen and Glynn (2007) follows immediately from the proof in loc. cit.:
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Theorem 6. Consider X1, . . . , Xn ∼ Fθ(x), where θ(x) is the saddlepoint from (3),
and set Sn = X1 + · · · + Xn. Define βn(x) = eθ(x)Sn L(θ(x))n I{Sn < nx}. Then
βn(x) is a logarithmically efficient and unbiased estimator of αn(x) as n→∞.

Unfortunately, this algorithm requires the value of the Laplace transform L(θ)
and the saddlepoint θ(·). Instead, we consider an alternative estimator based on
the approximation (11) to the saddlepoint and an unbiased estimator of the Laplace
transform. This alternative estimator is unbiased and logarithmically efficient as
x → 0. It uses the unbiased estimator of the Laplace transform suggested in As-
mussen et al. (2014b) and given by L̂(θ) = (σ/σ0(θ))La(0, θ)V with V = exp{−(eY −
1− Y )w0(θ)/σ2} where Y ∼ N(0, σ2).

Algorithm 7.

1. Use the approximation θ̃ = θ̃(x) to the saddlepoint given in (11).

2. Obtain n independent unbiased estimates L̂i(θ̃) = (σ/σ0(θ̃))La(0, θ̃)Vi of the
Laplace transform and set L̂∗(θ̃) =

∏n
i=1 L̂i(θ̃).

3. Simulate X1, . . . , Xn ∼ Fθ̃ and set Sn = X1 + · · ·+Xn.

4. Return α̂n(x) = eθ̃SnL̂∗(θ̃) I{Sn < nx}.

The product of n independent copies of an unbiased estimate L̂(θ̃) is needed
because L̂(θ̃)n is not an unbiased estimate of L(θ̃)n. We next state the properties of
the proposed algorithm; the proof is given in Appendix A, where also the logarithmic
efficiency of an alternative estimator β̂n(x) is proved.

Proposition 8. Let α̂n(x) be defined as in Algorithm 7(4). Then α̂n(x) is an unbi-
ased and logarithmically efficient estimator of αn(x) as x→ 0.

Importance sampling can also be used to estimate the density of a lognormal sum
via simulation. Following Example V.4.3 (p. 146) of Asmussen and Glynn (2007),
slightly extended, we first note that the conditional density at nx of Sn given Sn,−i =
X1 + · · · + Xi−1 + Xi+1 + · · · + Xn = Sn −Xi is f(nx− Sn,−i). Hence an unbiased
estimator of fn(nx) is

∑n
1 f(nx − Sn,−i)/n. To avoid the problem that many Sn,−i

will exceed x so that f(nx − Sn,−i) = 0, we simulate the Xj from Fθ̃(x) and return
the estimator

f̂n(nx) =
1

n

n∑
i=1

f(nx− Sn,−i) exp{θ̃(x)Sn,−i + (n− 1)κ
(
θ̃(x)

)
} . (13)

In Gulisashvili and Tankov (2014), an importance sampling estimator for Fn(z)
is suggested and it is written that a parallel estimator for fn(z) can be constructed
in the same way. Nevertheless, we do not follow the details for the construction of
that estimator of fn(z).
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5 Numerical examples

In our numerical experiments, we have taken parameter values that we consider
realistic from the point of view of financial applications. A yearly volatility of order
0.25 is often argued to be typical. We have considered periods of lengths one year,
one quarter, one month and one week, corresponding to σ = 0.25, σ = 0.25/

√
4 =

0.125, σ = 0.25/
√

12 = 0.072, σ = 0.25/
√

52 = 0.035 resp. (note that the value
σ = 0.25 is also argued to be particularly relevant in the optical context of Barakat
(1976)) The number of assets in portfolios is often large, even in the thousands; the
values we have chosen are n = 4, 16, 64, 256.

For each combination of n and σ we have conducted several empirical analyses.
In all numerical experiments involving simulation we have employed R = 100, 000
replications. The complete set of numerical results can be found in Asmussen et al.
(2014a). Here we show a few numerical illustrations.

We present and discuss an example with n = 16 and σ = 0.125. We consider the
approximation θ̃(x) given in (11) to the saddlepoint θ(x). The overall result is given
in Proposition 4. Table 1 gives θ̃(x), θ(x). The relative error of the mean under
the tilted measure corresponding to θ̃(x) as an approximation to x is less than one
percent (numbers not shown). Furthermore, when using θ̃(x) as the initial value in
a Newton–Raphson search for θ(x), in all cases considered at most four iterations
are needed to find θ(x) to accuracy 10−10.

Next we verify the approximations for the cdf and pdf of the lognormal sum. We
have thereby considered a portfolio of n assets with next-period values Y1, . . . , Yn
assumed iid lognormal(µ, σ2), such that a loss corresponds to a small value x of
Sn = Y1 + . . .+ Yn. When choosing x, we have had in mind the recommended VaR
values 0.99%–0.997% of Basel II (2004) and have chosen P(Sn ≤ nx) to cover the
interval 0.0001–0.0100.

We have proposed two types of approximations: saddlepoint approximations and
Monte Carlo estimators. Thus, in Table 1 we included the saddlepoint approxima-
tion based on our formulas in Section 3, and Monte Carlo estimators (MC) based
on our algorithms in Section 4. The last is based on the proposed importance
sampling estimator where the importance distribution is selected from the exponen-
tial family. The general estimator for the cdf of the lognormal sum has the form
F̂n(nx) = L(θ)n eθSn I{Sn < nx}, where Sn = X1 + · · · + Xn and X1, . . . , Xn is a
sample from the exponentially tilted distribution Fθ. Similarly, the MC estimator
of the pdf of the lognormal sum has the form (13). The parameter θ defining the
distribution is selected to be equal to the saddlepoint θ(·) evaluated at x.

In Table 1, the solution θ(x) obtained by using Newton-Raphson is the one
used for obtaining the saddlepoint approximations and MC estimators. In the cases
considered, the saddlepoint approximation agrees with the results from the Monte
Carlo simulations. The column headed Lapp of Table 1 indicates the relative error
that one would introduce by replacing the Laplace transform in F̂n(nx) with its
approximation La(0, θ̃). For n = 16 the relative errors are (1 + ε)n − 1, where ε is
the entry in the table.

Acknowledgements: LRN is supported by ARC grant DE130100819.
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Table 1: Approximation of the cdf and pdf of a lognormal sum with n = 16 and σ = 0.125.
MC/Saddle is the Monte-Carlo estimator divided by the saddlepoint approximation Saddle.
The entry Lapp is the relative error L(θ̃(x))/La(0, θ̃(x))− 1.

x θ(x) θ̃(x) Saddle-cdf MC/Saddle Lapp Saddle-pdf MC/Saddle

0.70 33.13 33.33 1.761 · 10−31 0.992± 0.070 2.12 · 10−4 5.873 · 10−30 0.997± 0.009
0.80 18.36 18.48 9.807 · 10−14 1.001± 0.017 2.04 · 10−4 1.829 · 10−12 1.002± 0.009
0.85 12.74 12.83 3.031 · 10−8 0.991± 0.015 1.83 · 10−4 3.975 · 10−7 0.998± 0.009
0.90 7.99 8.05 1.632 · 10−4 0.995± 0.060 1.48 · 10−4 1.388 · 10−3 1.004± 0.009
0.91 7.13 7.18 5.956 · 10−4 0.994± 0.012 1.38 · 10−4 4.577 · 10−3 1.001± 0.009
0.92 6.30 6.34 1.912 · 10−3 1.011± 0.011 1.28 · 10−4 1.319 · 10−2 0.999± 0.008
0.93 5.49 5.53 5.424 · 10−3 1.001± 0.010 1.17 · 10−4 3.332 · 10−2 0.998± 0.009
0.94 4.71 4.74 1.368 · 10−2 0.997± 0.010 1.06 · 10−4 7.416 · 10−2 1.000± 0.009
0.95 3.95 3.98 3.081 · 10−2 0.992± 0.009 9.29 · 10−5 1.460 · 10−1 0.998± 0.009
0.98 1.82 1.83 1.901 · 10−1 1.005± 0.007 4.92 · 10−5 5.520 · 10−1 0.997± 0.009
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A Appendix: Proof of Proposition 8

Let θ̃ = θ̃(x), µ̃ = Eθ̃[X], τ̃ 2 = Varθ̃[X] and Zn = (Sn − nµ̃)/(τ̃
√
n), where Sn is

based on a random sample from Fθ̃. We want to estimate

αn(x) = Eθ̃
[
L(θ̃)neθ̃SnI{Sn < nx}

]
=

enθ̃x
√
nθ̃τ̃

L(θ̃)nEθ̃[
√
nθ̃τ̃e−

√
nθ̃τ̃(ξ−Zn)I{Zn < ξ}], ξ =

√
n(x− µ̃)/τ̃ . (14)

We know from Proposition 3 that as x → 0, corresponding to θ̃ → ∞, the dis-
tribution of Zn approaches a standard normal distribution. Furthermore, θ̃ ∼
| log x|/(σ2x), µ̃ ∼ x(1 + O

(
1/| log x|)

)
and τ̃ ∼ xσ/

√
(| log x|). Since generally

w̃ = w0(θ̃) ∼ log(θ̃), we have also w̃ ∼ | log x|. We therefore find

ξ =

√
n(x− µ̃)

τ̃
= O

(√
n/
√

(| log x|)
)
→ 0,

and

θ̃τ̃ ∼
√
| log x|
σ

∼
√
w̃

σ
, θ̃x ∼ | log x|

σ2
∼ w̃

σ2
.

These findings show that the mean value in (14) tends to 1/
√

2π as x → 0. The
same type of argument also gives that

Eθ̃
[{√

nθ̃τ̃e−
√
nθ̃τ̃(ξ−Zn)I{Zn < ξ}

}2]
= 1

2

√
nθ̃τ̃Eθ̃

[
2
√
nθ̃τ̃e−2

√
nθ̃τ̃(ξ−Zn)I{Zn < ξ}

]
∼ 1

2
√

2π

√
nθ̃τ̃ . (15)
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Consider now the unbiased estimator

β̂n(x) = L(θ̃)neθ̃SnI{Sn < nx},

where Sn is based on a sample from the tilted measure Fθ̃. The above calculations
show that

Var[β̂n(x)]

βn(x)2−ε = O
({

enθ̃xL(θ̃)n/(
√
nθ̃τ̃)

}2√
nθ̃τ̃{

enθ̃xL(θ̃)n/(
√
nθ̃τ̃)

}2−ε

)
= O

({
eθ̃xL(θ̃)

}nε(√
nθ̃τ̃

)1−ε
)

= O
({

(1 + w̃)−1/2 exp[2
w̃

σ2
− w̃2

2σ2
− w̃

σ2
]
}nε(nw̃

σ2

)(1−ε)/2
)
→ 0.

This shows the logaritmic efficiency of the estimator β̂n(x) as x→ 0.
Consider next the unbiased estimator

α̂n(x) = L̂∗(θ̃)eθ̃SnI{Sn < nx},

where L̂∗(θ̃) =
∏n

i=1 L̂i(θ̃). Here L̂i(θ̃), i = 1, . . . , n, are independent and L̂i(θ̃) =

(σ/σ0(θ̃))La(0, θ̃)Vi with E[V 2
i ] ≤ 1 by construction. Instead of (15) we have

Eθ̃
[{( n∏

i=1

Vi

)√
nθ̃τ̃e−

√
nθ̃τ̃(xi−Zn)I{Zn < ξ}

}2]
= O

(√
nθ̃τ̃

)
,

and

Var[α̂n(x)]

αn(x)2−ε = O
({

enθ̃x(σ/σ0(θ̃))nLa(0, θ̃)
n/(
√
nθ̃τ̃)

}2√
nθ̃τ̃{

enθ̃xL(θ̃)n/(
√
nθ̃τ̃)

}2−ε

)
= O

(
(1 + w̃)n/2

{
eθ̃xL(θ̃)

}nε(√
nθ̃τ̃

)1−ε
)

= O
(

(1 + w̃)n/2
{

(1 + w̃)−1/2 exp[2
w̃

σ2
− w̃2

2σ2
− w̃

σ2
]
}nε(nw̃

σ2

)(1−ε)/2
)
→ 0.

This shows the logaritmic efficiency of the estimator α̂n(x).
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