
Computing Approximate Nash Equilibria in
Polymatrix Games ?

Argyrios Deligkas1, John Fearnley1, Rahul Savani1, and Paul Spirakis1,2

1 Department of Computer Science, University of Liverpool, UK
2 Research Academic Computer Technology Institute (CTI), Greece

Abstract. In an ε-Nash equilibrium, a player can gain at most ε by
unilaterally changing his behavior. For two-player (bimatrix) games with
payoffs in [0, 1], the best-known ε achievable in polynomial time is 0.3393 [28].
In general, for n-player games an ε-Nash equilibrium can be computed in
polynomial time for an ε that is an increasing function of n but does not
depend on the number of strategies of the players. For three-player and
four-player games the corresponding values of ε are 0.6022 and 0.7153, re-
spectively. Polymatrix games are a restriction of general n-player games
where a player’s payoff is the sum of payoffs from a number of bimatrix
games. There exists a very small but constant ε such that computing an
ε-Nash equilibrium of a polymatrix game is PPAD-hard. Our main result
is that a (0.5 + δ)-Nash equilibrium of an n-player polymatrix game can
be computed in time polynomial in the input size and 1

δ
. Inspired by the

algorithm of Tsaknakis and Spirakis [28], our algorithm uses gradient
descent style approach on the maximum regret of the players. We also
show that this algorithm can be applied to efficiently find a (0.5+δ)-Nash
equilibrium in a two-player Bayesian game.

Keywords: Approximate Nash equilibria, gradient descent, polymatrix
games, Bayesian games.

1 Introduction

Approximate Nash equilibria. Nash equilibria are the central solution con-
cept in game theory. Since it is known that computing an exact Nash equilib-
rium [11, 6] is unlikely to be achievable in polynomial time, a line of work has
arisen that studies the computational aspects of approximate Nash equilibria.
The most widely studied notion is of an ε-approximate Nash equilibrium (ε-
Nash), which requires that all players have an expected payoff that is within ε
of a best response. This is an additive notion of approximate equilibrium; the
problem of computing approximate equilibria of bimatrix games using a relative

? The first author was supported by the Microsoft Research PhD sponsorship program.
The second and third authors were supported by EPSRC grant EP/L011018/1, and
the third author was also supported by ESRC grant ESRC/BSB/09. The work of
the fourth author was supported partially by the EU ERC Project ALGAME and
by the Greek THALIS action “Algorithmic Game Theory.”

notion of approximation is known to be PPAD-hard even for constant approxima-
tions [10].

So far, ε-Nash equilibria have mainly been studied in the context of two-
player bimatrix games. A line of work [13, 12, 3] has investigated the best ε that
can be guaranteed in polynomial time for bimatrix games. The current best
result, due to Tsaknakis and Spirakis [28], is a polynomial-time algorithm that
finds a 0.3393-Nash equilibrium of a bimatrix game with all payoffs in [0, 1].

In this paper, we study ε-Nash equilibria in the context of many-player
games, a topic that has received much less attention. A simple approximation
algorithm for many-player games can be obtained by generalising the algorithm
of Daskalakis, Mehta and Papadimitriou [13] from the two-player setting to
the n-player setting, which provides a guarantee of ε = 1 − 1

n . This has since
been improved independently by three sets of authors [4, 22, 3]. They provide a
method that converts a polynomial-time algorithm for finding ε-Nash equilibria
in (n− 1)-player games into an algorithm that finds a 1

2−ε -Nash equilibrium in
n-player games. Using the polynomial-time 0.3393 algorithm of Tsaknakis and
Spirakis [28] for 2-player games as the base case for this recursion, this allows us
to provide polynomial-time algorithms with approximation guarantees of 0.6022
in 3-player games, and 0.7153 in 4-player games. These guarantees tend to 1 as
n increases, and so far, no constant ε < 1 is known such that, for all n, an ε-Nash
equilibrium of an n-player game can be computed in polynomial time.

For n-player games, we have lower bounds for ε-Nash equilibria. More pre-
cisely, Rubinstein has shown that when n is not a constant there exists a constant
but very small ε such that it is PPAD-hard to compute an ε-Nash equilibrium [27].
This is quite different from the bimatrix game setting, where the existence of
a quasi-polynomial time approximation scheme rules out such a lower bound,
unless all of PPAD can be solved in quasi-polynomial time [26]. can be solved in
quasi-polynomial time [26].

Polymatrix games. In this paper, we focus on a particular class of many-
player games called polymatrix games. In a polymatrix game, the interaction
between the players is specified by an n vertex graph, where each vertex repre-
sents one of the players. Each edge of the graph specifies a bimatrix game that
will be played by the two respective players, and thus a player with degree d
will plays d bimatrix games simultaneously. More precisely, each player picks a
strategy, and then plays this strategy in all of the bimatrix games that he is
involved in. His payoff is then the sum of the payoffs that he obtains in each of
the games.

Polymatrix games are a class of succinctly represented n-player games: a
polymatrix game is specified by at most n2 bimatrix games, each of which can
be written down in quadratic space with respect to the number of strategies. This
is unlike general n-player strategic form games, which require a representation
that is exponential in the number of players.

The problem of computing exact Nash equilibria in polymatrix games can be
tackled in exponential time by Lemke’s algorithm [24]. For the special subclass of
generalized zero sum games on networks it was proved by Cai and Daskalakis [5]

that this problem can be solved in polynomial time. On the other hand, there has
been relatively little work on approximation algorithms for polymatrix games.
The approximation algorithms for general games can be applied in this setting
in an obvious way, but to the best of our knowledge there have been no upper
bounds that are specific to polymatrix games. On the other hand, the lower
bound of Rubinstein mentioned above is actually proved by constructing poly-
matrix games. Thus, there is a constant but very small ε such that it is PPAD-hard
to compute an ε-Nash equilibrium [27], and this again indicates that approximat-
ing equilibria in polymatrix games is quite different to approximating equilibria
in bimatrix games.

Our contribution. Our main result is an algorithm that, for every δ in the
range 0 < δ ≤ 0.5, finds a (0.5 + δ)-Nash equilibrium of a polymatrix game in
time polynomial in the input size and 1

δ . Note that our approximation guarantee
does not depend on the number of players, which is a property that was not
previously known to be achievable for polymatrix games, and still cannot be
achieved for general strategic form games.

We prove this result by adapting the algorithm of Tsaknakis and Spirakis [28]
(henceforth referred to as the TS algorithm). They give a gradient descent algo-
rithm for finding a 0.3393-Nash equilibrium in a bimatrix game. We generalise
their gradient descent techniques to the polymatrix setting, and show that it
always arrives at a (0.5 + δ)-Nash equilibrium after a polynomial number of
iterations.

In order to generalise the TS algorithm, we had to overcome several issues.
Firstly, the TS algorithm makes the regrets of the two players equal in every
iteration, but there is no obvious way to achieve this in the polymatrix setting.
Instead, we show how gradient descent can be applied to a strategy profile where
the regrets are not necessarily equal. Secondly, the output of the TS algorithm
is either a point found by gradient descent, or a point obtained by modifying the
result of gradient descent. In the polymatrix game setting, it is not immediately
obvious how such a modification can be derived with a non-constant number
of players (without an exponential blowup). Thus we apply a different analy-
sis, which proves that the point resulting from gradient descent always has our
approximation guarantee. It is an interesting open question whether a better
approximation guarantee can be achieved when there is a constant number of
players.

An interesting feature of our algorithm is that it can be applied even when
players have differing degrees. Originally, polymatrix games were defined only for
complete graphs [24]. Since previous work has only considered lower bounds for
polymatrix games, it has been sufficient to restrict attention to regular graphs,
as in work Rubinstein [27]. However, since this paper is proving an upper bound,
we must be more careful. As it turns out, our algorithm will efficiently find a
(0.5 + δ)-Nash equilibrium for all δ > 0, no matter what graph structure the
polymatrix game has.

Finally, we show that our algorithm can be applied to two-player Bayesian
games. In a two-player Bayesian game, each player is assigned a type according

to a publicly known probability distribution. Each player knows their own type,
but does not know the type of their opponent. Rosenthal and Howson showed
that the problem of finding an exact equilibrium in a two-player Bayesian game
is equivalent to finding an exact equilibrium in a polymatrix game [23]. We show
that this correspondence also holds for approximate equilibria: finding an ε-Nash
equilibrium in these games can be reduced to the problem of finding an ε-Nash
equilibrium in a polymatrix game, and therefore, our algorithm can be used to
efficiently find a (0.5 + δ)-Nash equilibrium of a two-player Bayesian game.

Related work. An FPTAS for the problem of computing an ε-Nash equilib-
rium of a bimatrix game does not exist unless every problem in PPAD can be
solved in polynomial time [6]. Arguably, the biggest open question in equilib-
rium computation is whether there exists a PTAS for this problem. As we have
mentioned, for any constant ε > 0, there does exist a quasi-polynomial -time al-
gorithm for computing an ε-Nash equilibrium of a bimatrix game, or any game
with a constant number of players [26, 2], with running time kO(log k) for a k× k
bimatrix game. Consequently, in contrast to the many-player case, it is not be-
lieved that there exists a constant ε such that the problem of computing an
ε-Nash equilibrium of a bimatrix game (or any game with a constant number
of players) is PPAD-hard, since it seems unlikely that all problems in PPAD have
quasi-polynomial-time algorithms. On the other hand, for multi-player games,
as mentioned above, there is a small constant ε such that it is PPAD-hard to
compute an ε-Nash equilibrium of an n-player game when n is not constant.
One positive result we do have for multi-player games is that there is a PTAS
for anonymous games (where the identity of players does not matter) when the
number of strategies is constant [14].

Polymatrix games have played a central role in the reductions that have been
used to show PPAD-hardness of games and other equilibrium problems [11, 6, 16,
19, 7]. Computing an exact Nash equilibrium in a polymatrix game is PPAD-hard
even when all the bimatrix games played are either zero-sum games or coordi-
nation games [5]. Polymatrix games have been used in other contexts too. For
example, Govindan and Wilson proposed a (non-polynomial-time) algorithm for
computing Nash equilibria of an n-player game, by approximating the game with
a sequence of polymatrix games [20]. Later, they presented a (non-polynomial)
reduction that reduces n-player games to polymatrix games while preserving ap-
proximate Nash equilibria [21]. Their reduction introduces a central coordinator
player, who interacts bilaterally with every player.

For Bayesian two player games, Conitzer and Sandholm [8] proved that deter-
mining whether a given two-player game has a pure Bayesian Nash Equilibrium
(BNE) is NP-complete. Austrin, Braverman and Chlamtac [1] extended this
hardness result to approximate pure BNE. More specifically, they proved that
given that a Bayesian game admits a pure BNE it is NP-hard to compute a pure
ε-BNE for ε = 0.004. Moreover, for the special case where the distribution over
the types of the players is uniform they provided a quasi polynomial algorithm
for computing an ε pure BNE, for any ε > 0. Finally, Rubinstein [27] proved
that there is a (very small) constant ε such that it is PPAD-hard to compute any

ε-BNE of a Bayesian two player game. Our main result is the first non-trivial up-
per bound on the approximation guarantee for this problem that can be achieved
in polynomial time.

2 Preliminaries

We start by fixing some notation. We use [k] to denote the set of integers
{1, 2, . . . , k}, and when a universe [k] is clear, we will use S̄ = {i ∈ [k], i /∈ S} to
denote the complement of S ⊆ [k]. For a k-dimensional vector x, we use x−S to
denote the elements of x with indices S̄, and in the case where S = {i} has only
one element, we simply write x−i for x−S .

Polymatrix games. An n-player polymatrix game is defined by an undirected
graph (V,E) with n vertices, where every vertex corresponds to a player. The
edges of the graph specify which players interact with each other. For each i ∈ [n],
we use N(i) = {j : (i, j) ∈ E} to denote the neighbors of player i.

Each edge (i, j) ∈ E specifies that a bimatrix game will be played between
players i and j. Each player i ∈ [n] has a fixed number of pure strategies mi, and
the bimatrix game on edge (i, j) ∈ E will therefore be specified by an mi ×mj

matrix Aij , which gives the payoffs for player i, and an mj × mi matrix Aji,
which gives the payoffs for player j. We allow the individual payoffs in each
matrix to be an arbitrary (even negative) rational number. As we describe in
the next subsection, we will rescale these payoffs so that the overall payoff to
each player lies in the range [0, 1].

2.1 Payoff Normalisation

Before we continue, we must first discuss how the payoffs in the game are
rescaled. It is common, when proving results about additive notions of approx-
imate equilibria, to rescale the payoffs of the game. This is necessary in order
for different results to be comparable. For example, all results about additive
approximate equilibria in bimatrix games assume that the payoff matrices have
entries in the range [0, 1], and therefore an ε-Nash equilibrium always has a con-
sistent meaning. For the same reason, we must rescale the payoffs in a polymatrix
in order to give a consistent meaning to an ε-approximation.

An initial, naive, approach would be to specify that each of the individual
bimatrix games has entries in the range [0, 1]. This would be sufficient if we were
only interested in polymatrix games played on either complete graphs or regular
graphs. However, in this model, if the players have differing degrees, then they
also have differing maximum payoffs. This means that an additive approximate
equilibrium must pay more attention to high degree players, as they can have
larger regrets.

One solution to this problem, which was adopted in the conference version of
this paper [15], is to rescale according to the degree. That is, given a polymatrix
game where each bimatrix game has payoffs in the range [0, 1], if a player has

degree d, then each of his payoff matrices is divided by d. This transformation
ensures that every player has regret in the range [0, 1], and therefore low degree
players are not treated unfairly by additive approximations.

However, rescaling according to the degree assumes that each bimatrix game
actually uses the full range of payoffs in[0, 1]. In particular, some bimatrix games
may have minimum payoff strictly greater than 0, or maximum payoff strictly less
than 1. This issue arises, in particular, in our application of two-player Bayesian
games. Note that, unlike the case of a single bimatrix game, we cannot fix this
by rescaling individual bimatrix games in a polymatrix game, because we must
preserve the relationship between the payoffs in all of the bimatrix games that
a player is involved in.

To address this, we will rescale the games so that, for each player, the mini-
mum possible payoff is 0, and the maximum possible payoff is 1. For each player i,
we denote by Ui the maximum payoff he can obtain, and by Li the minimum
payoff he can obtain. Formally:

Ui := max
p∈[mi]

 ∑
j∈N(i)

max
q∈[mj]

(
Aij(p, q)

) ,

Li := min
p∈[mi]

 ∑
j∈N(i)

min
q∈[mj]

(
Aij(p, q)

) .

Then, for all i and all j ∈ N(i) we will apply the following transformation, which
we call T (·), to all the entries z of payoff matrices Aij :

Ti(z) =
1

Ui − Li
·
(
z − Li

d(i)

)
.

Observe that, since player i’s payoff is the sum of d(i) many bimatrix games, it
must be the case that after transforming the payoff matrices in this way, player
i’s maximum possible payoff is 1, and player i’s minimum possible payoff is 0.
For the rest of this paper, we will assume that the payoff matrices given by Aij
are rescaled in this way.

2.2 Approximate Nash Equilibria

Strategies. A mixed strategy for player i is a probability distribution over player
i’s pure strategies. Formally, for each positive integer k, we denote the (k − 1)-

dimensional simplex by ∆k := {x : x ∈ Rk, x ≥ 0,
∑k
i=1 xi = 1}, and therefore

the set of strategies for player i is ∆mi . For each mixed strategy x ∈ ∆m, the
support of x is defined as supp(x) := {i ∈ [m] : xi 6= 0}, which is the set of
strategies played with positive probability by x.

A strategy profile specifies a mixed strategy for every player. We denote the
set of mixed strategy profiles as ∆ := ∆m1

× . . .×∆mn . Given a strategy profile

x = (x1, . . . , xn) ∈ ∆, the payoff of player i under x is the sum of the payoffs
that he obtains in each of the bimatrix games that he plays. Formally, we define:

ui(x) := xTi
∑

j∈N(i)

Aijxj . (1)

We denote by ui(x
′
i,x) the payoff for player i when he plays x′i and the other

players play according to the strategy profile x. In some cases the first argument
will be xi − x′i which may not correspond to a valid strategy for player i but we
still apply the equation as follows:

ui(xi − x′i,x) := xTi
∑

j∈N(i)

Aijxj − x′Ti
∑

j∈N(i)

Aijxj = ui(xi,x)− ui(x′i,x).

Best responses. Let vi(x) be the vector of payoffs for each pure strategy of
player i when the rest of players play strategy profile x. Formally:

vi(x) =
∑

j∈N(i)

Aijxj .

For each vector x ∈ Rm, we define suppmax(x) to be the set of indices that
achieve the maximum of x, that is, we define suppmax(x) = {i ∈ [m] : xi ≥
xj ,∀j ∈ [m]}. Then the pure best responses of player i against a strategy profile
x (where only x−i is relevant) is given by:

Bri(x) = suppmax

 ∑
j∈N(i)

Aijxj

 = suppmax(vi(x)). (2)

The corresponding best response payoff is given by:

u∗i (x) = max
k

(∑
j∈N(i)

Aijxj
)
k

 = max
k

{(
vi(x)

)
k

}
. (3)

Equilibria. In order to define the exact and approximate equilibria of a poly-
matrix game, we first define the regret that is suffered by each player under a
given strategy profile. The regret function fi : ∆ → [0, 1] is defined, for each
player i, as follows:

fi(x) := u∗i (x)− ui(x). (4)

The maximum regret under a strategy profile x is given by the function f(x)
where:

f(x) := max{f1(x), . . . , fn(x)}. (5)

We say that x is an ε-approximate Nash equilibrium (ε-NE) if we have:

f(x) ≤ ε,

and x is an exact Nash equilibrium if we have f(x) = 0.

3 The gradient

Our goal is to apply gradient descent to the regret function f . In this section,
we formally define the gradient of f in Definition 1, and give a combinatorial
version of that definition in Lemma 2. In order to show that our gradient descent
method terminates after a polynomial number of iterations, we actually need to
use a slightly modified version, which we describe at the end of this section in
Definition 4.

Given a point x ∈ ∆, a feasible direction from x is defined by any other
point x′ ∈ ∆. This defines a line between x and x′, and formally speaking, the
direction of this line is x′ − x. In order to define the gradient of this direction,
we consider the function f((1 − ε) · x + ε · x′) − f(x) where ε lies in the range
0 ≤ ε ≤ 1. The gradient of this direction is given in the following definition.

Definition 1. Given profiles x,x′ ∈ ∆ and ε ∈ [0, 1], we define:

Df(x,x′, ε) := f((1− ε) · x + ε · x′)− f(x).

Then, we define the gradient of f at x in the direction x′ − x as:

Df(x,x′) = lim
ε→0

1

ε
Df(x,x′, ε). (6)

The gradient of f at any point x ∈ ∆ along a feasible direction specified by
another point x′ ∈ ∆ provides the rate of decrease, or increase, of the value of f
along that direction. At any point x we wish to find the direction such that f de-
creases with the highest rate, that is, we want to find the point x′ that minimizes
Df(x,x′), and move along the direction x′ − x, or to find that x is a stationary
point, i.e. Df(x,x′) ≥ 0 for all x′ ∈ ∆. Unfortunately, Equation (6) cannot be
used directly in an algorithm. Instead, in Definition 2 we provide a combinatorial
version of the gradient that allows us to compute the steepest descent direction,
with respect to the combinatorial gradient, via a linear program.

The intuition for the combinatorial version comes from Equation (6). Let us
define x̄ := (1− ε) · x + ε · x′. From the natural gradient defined in Definition 1,
we get that:

Df(x,x′) = lim
ε→0

1

ε

(
f(x̄)− f(x)

)
= lim
ε→0

1

ε

(
max
i∈[n]

fi(x̄)− f(x)

)
= max

i∈[n]

(
lim
ε→0

1

ε

(
fi(x̄)− f(x)

))
. (7)

In Appendix A we study the limit limε→0
1
ε

(
fi(x̄)−f(x)

)
, and we prove that

it is equal to the following combinatorial version. Before we state the result we
introduce some useful notation. Given profiles x and x′ let us denote:

Dfi(x,x
′) = max

k∈Bri(x)

{(
vi(x

′)
)
k

}
− ui(xi,x′) + ui(xi − x′i,x). (8)

The above expression arises from expanding fi(x̄)− f(x). The terms above are
all multiplied by ε in the expansion, whereas the remaining terms all tend to
zero when the limit is taken. The following lemma is proved in Appendix A.

Lemma 1. Let x be strategy profile and i ∈ [n]. If fi(x) = f(x), then:

lim
ε→0

1

ε

(
fi(x̄)− f(x)

)
= Dfi(x,x

′)− f(x).

otherwise limε→0
1
ε

(
fi(x̄)− f(x)

)
= −∞.

Combining Equation (7) with Lemma 1 gives the following combinatorial
version of the gradient that we will use throughout the rest of the paper.

Definition 2 (Combinatorial gradient). The gradient of f at point x along
direction x′ − x is:

Df(x,x′) = max
i∈[n]

Dfi(x,x
′)− f(x).

In order to show that our gradient descent algorithm terminates after a poly-
nomial number of steps, we have to use a slight modification of the formula given
in Definition 2. More precisely, in Dfi(x,x

′), we need to take the maximum over
the δ-best responses, rather than the best responses.

We begin by providing the definition of the δ-best responses.

Definition 3 (δ-best response). Let x ∈ ∆, and let δ ∈ (0, 0.5]. The δ-best
response set Brδi (x) for player i ∈ [n] is defined as:

Brδi (x) :=
{
j ∈ [mi] :

(
vi(x)

)
j
≥ u∗i (x)− δ

}
.

We now define the function Dfδi (x,x′).

Definition 4. Let x,x′ ∈ ∆, let ε ∈ [0, 1], and let δ ∈ (0, 0.5]. We define
Dfδi (x,x′) as:

Dfδi (x,x′) := max
k∈Brδi (x)

{(
vi(x

′)
)
k

}
− ui(xi,x′)− ui(x′i,x) + ui(xi,x). (9)

Furthermore, we define Dfδ(x,x′) as:

Dfδ(x,x′) = max
i∈[n]

Dfδi (x,x′)− f(x). (10)

Our algorithm works by performing gradient descent using the function Dfδ

as the gradient. Obviously, this is a different function to Df , and so we are not
actually performing gradient descent on the gradient of f . It is important to
note that all of our proofs are in terms of Dfδ, and so this does not affect the
correctness of our algorithm. We proved Lemma 1 in order to explain where our
definition of the combinatorial gradient comes from, but the correctness of our
algorithm does not depend on the correctness of Lemma 1.

4 The algorithm

In this section, we describe our algorithm for finding a (0.5+δ)-Nash equilibrium
in a polymatrix game by gradient descent. In each iteration of the algorithm, we
must find the direction of steepest descent with respect to Dfδ. We show that
this task can be achieved by solving a linear program, and we then use this LP
to formally specify our algorithm.

The direction of steepest descent. We show that the direction of steepest
descent can be found by solving a linear program. Our goal is, for a given strategy
profile x, to find another strategy profile x′ so as to minimize the gradient
Dfδ(x,x′). Recall that Dfδ is defined in Equation (10) to be:

Dfδ(x,x′) = max
i∈[n]

Dfδi (x,x′)− f(x).

Note that the term f(x) is a constant in this expression, because it is the same
for all directions x′. Thus, it is sufficient to formulate a linear program in order
to find the x′ that minimizes maxi∈[n]Df

δ
i (x,x′). Using the definition of Dfδi

in Equation (9), we can do this as follows.

Definition 5 (Steepest descent linear program). Given a strategy pro-
file x, the steepest descent linear program is defined as follows. Find x′ ∈ ∆,
l1, l2, . . . , ln, and w such that:

minimize w

subject to
(
vi(x

′)
)
k
≤ li ∀k ∈ Brδi (x), ∀i ∈ [n]

li − ui(xi,x′)− ui(x′i,x) + ui(x) ≤ w ∀i ∈ [n]

x′ ∈ ∆.

The li variables deal with the maximum in the term maxk∈Brδi (x)

{(
vi(x

′)
)
k

}
,

while the variable w is used to deal with the maximum over the functions Dfδi .
Since the constraints of the linear program correspond precisely to the definition
of Dfδ, it is clear that, when we minimize w, the resulting x′ specifies the direc-
tion of steepest descent. For each profile x, we define Q(x) to be the direction
x′ found by the steepest descent LP for x.

Once we have found the direction of steepest descent, we then need to move
in that direction. More precisely, we fix a parameter ε = δ

δ+2 which is used to
determine how far we move in the steepest descent direction. We derive this value
for ε in Lemma 11 in Appendix B. The choice of this value for ε ensures that in
every iteration of our algorithm the value of f is decreasing and moreover, as we
will show in Section 6, leads to a polynomial bound on the running time of our
algorithm.

The algorithm. We can now formally describe our algorithm. The algorithm
takes a parameter δ ∈ (0, 0.5], which will be used as a tradeoff between running
time and the quality of approximation.

Algorithm 1

1. Choose an arbitrary strategy profile x ∈ ∆.

2. Solve the steepest descent linear program with input x to obtain x′ =
Q(x).

3. Set x := x + ε(x′ − x), where ε = δ
δ+2 .

4. If f(x) ≤ 0.5 + δ then stop, otherwise go to step 2.

A single iteration of this algorithm corresponds to executing steps 2, 3, and
4. Since this only involves solving a single linear program, it is clear that each
iteration can be completed in polynomial time.

The rest of this paper is dedicated to showing the following theorem, which
is our main result.

Theorem 1. Algorithm 1 finds a (0.5 + δ)-NE after at most O(1
δ2) iterations.

To prove Theorem 1, we will show two properties. Firstly, in Section 5, we show
that our gradient descent algorithm never gets stuck in a stationary point before
it finds a (0.5 + δ)-NE. To do so, we define the notion of a δ-stationary point,
and we show that every δ-stationary point is at least a (0.5 + δ)-NE, which then
directly implies that the gradient descent algorithm will not get stuck before it
finds a (0.5 + δ)-NE.

Secondly, in Section 6, we prove the upper bound on the number of iterations.
To do this we show that, if an iteration of the algorithm starts at a point that
is not a δ-stationary point, then that iteration will make a large enough amount
of progress. This then allows us to show that the algorithm will find a (0.5 + δ)-
NE after O(1

δ2) many iterations, and therefore the overall running time of the
algorithm is polynomial.

5 Stationary points

Recall that Definition 5 gives a linear program for finding the direction x′ that
minimises Dfδ(x,x′). Our steepest descent procedure is able to make progress
whenever this gradient is negative, and so a stationary point is any point x for
which Dfδ(x,x′) ≥ 0. In fact, our analysis requires us to consider δ-stationary
points, which we now define.

Definition 6 (δ-stationary point). Let x∗ be a mixed strategy profile, and let
δ > 0. We have that x∗ is a δ-stationary point if for all x′ ∈ ∆:

Dfδ(x∗,x′) ≥ −δ.

We now show that every δ-stationary point of f(x) is a (0.5 + δ)-NE. Recall
from Definition 4 that:

Dfδ(x,x′) = max
i∈[n]

Dfδi (x,x′)− f(x).

Therefore, if x∗ is a δ-stationary point, we must have, for every direction x′:

f(x∗) ≤ max
i∈[n]

Dfδi (x∗,x′) + δ. (11)

Since f(x∗) is the maximum regret under the strategy profile x∗, in order to
show that x∗ is a (0.5 + δ)-NE, we only have to find some direction x′ such that
maxi∈[n]Df

δ
i (x∗,x′) ≤ 0.5. We do this in the following lemma.

Lemma 2. For every point x, there exists a direction x′ such that:

max
i∈[n]

Dfδi (x,x′) ≤ 0.5.

Proof. First, define x̄ to be a strategy profile in which each player i ∈ [n] plays
a best response against x. We will set x′ = x̄+x

2 . Then for each i ∈ [n], we have
that Dfδi (x,x′), is less than or equal to:

max
k∈Brδi (x)

{(
vi(

x̄ + x

2
)
)
k

}
− ui(xi,

x̄ + x

2
)− ui(

x̄i + xi
2

,x) + ui(xi,x)

=
1

2
· max
k∈Brδi (x)

{(
vi(x̄ + x)

)
k

}
− 1

2
· ui(xi, x̄)− 1

2
· ui(x̄i,x)

≤ 1

2
·

(
max

k∈Brδi (x)

{(
vi(x̄)

)
k

}
+ max
k∈Brδi (x)

{(
vi(x)

)
k

}
− ui(xi, x̄)− ui(x̄i,x)

)

=
1

2
·

(
max

k∈Brδi (x)

{(
vi(x̄)

)
k

}
− ui(xi, x̄)

)
because x̄i is a b.r. to x

≤ 1

2
· max
k∈Brδi (x)

{(
vi(x̄)

)
k

}
≤ 1

2
.

Thus, the point x′ satisfies maxi∈[n]Df
δ
i (x,x′) ≤ 0.5. ut

We can sum up the results of the section in the following lemma.

Lemma 3. Every δ-stationary point x∗ is a (0.5 + δ)-Nash equilibrium.

6 The time complexity of the algorithm

In this section, we show that Algorithm 1 terminates after a polynomial number
of iterations. Let x be a strategy profile that is considered by Algorithm 1, and
let x′ = Q(x) be the solution of the steepest descent LP for x. These two profiles
will be fixed throughout this section.

We begin by proving a technical lemma that will be crucial for showing our
bound on the number of iterations. To simplify our notation, throughout this
section we define fnew := f(x+ε(x′−x)) and f := f(x). Furthermore, we define
D = maxi∈[n]Df

δ
i (x,x′). The following lemma, which is proved in Appendix B,

gives a relationship between f and fnew.

Lemma 4. In every iteration of Algorithm 1 we have:

fnew − f ≤ ε(D − f) + ε2(1−D). (12)

In the next lemma we prove that, if we are not in a δ-stationary point, then
we have a bound on the amount of progress made in each iteration. We use this
in order to bound the number of iterations needed before we reach a point x
where f(x) ≤ 0.5 + δ.

Lemma 5. Fix ε = δ
δ+2 , where 0 < δ ≤ 0.5. Either x is a δ-stationary point or:

fnew ≤

(
1−

(
δ

δ + 2

)2
)
f. (13)

Proof. Recall that by Lemma 4 the gain in every iteration of the steepest descent
is:

fnew − f ≤ ε(D − f) + ε2(1−D). (14)

We consider the following two cases:

a) D − f > −δ. Then, by definition, we are in a δ-stationary point.
b) D − f ≤ −δ. We have set ε = δ

δ+2 . If we solve for δ we get that δ = 2ε
1−ε .

Since D − f ≤ −δ, we have that (D − f)(1− ε) ≤ −2ε. Thus we have:

(D − f)(ε− 1) ≥ 2ε

0 ≥ (D − f)(1− ε) + 2ε

0 ≥ (D − f) + ε(2−D + f)

−εf − ε ≥ (D − f) + ε(1−D) (ε ≥ 0)

−ε2f − ε2 ≥ ε(D − f) + ε2(1−D).

Thus, since ε2 ≥ 0 we get:

−ε2f ≥ ε(D − f) + ε2(1−D)

≥ fnew − f According to (14).

Thus we have shown that:

fnew − f ≤− ε2f
fnew ≤(1− ε2)f.

Finally, using the fact that ε = δ
δ+2 , we get that

fnew ≤

(
1−

(
δ

δ + 2

)2
)
f.

ut

So, when the algorithm has not reached yet a δ-stationary point, there is a
decrease on the value of f that is at least as large as the bound specified in (13)
in every iteration of the gradient descent procedure. In the following lemma we
prove that after O(1

δ2) iterations of the steepest descent procedure the algorithm
finds a point x where f(x) ≤ 0.5 + δ.

Lemma 6. After O(1
δ2) iterations of the steepest descent procedure the algo-

rithm finds a point x where f(x) ≤ 0.5 + δ.

Proof. Let x1, x2, . . . , xk be the sequence of strategy profiles that are considered
by Algorithm 1. Since the algorithm terminates as soon as it finds a (0.5+δ)-NE,
we have f(xi) > 0.5 + δ for every i < k. Therefore, for each i < k we we can
apply Lemma 3 to argue that xi is not a δ-stationary point, which then allows
us to apply Lemma 5 to obtain:

f(xi+1) ≤

(
1−

(
δ

δ + 2

)2
)
f(xi).

So, the amount of progress made by the algorithm in iteration i is:

f(xi)− f(xi+1) ≥ f(xi)−

(
1−

(
δ

δ + 2

)2
)
f(xi)

=

(
δ

δ + 2

)2

f(xi)

≥
(

δ

δ + 2

)2

· 0.5.

Thus, each iteration of the algorithm decreases the regret by at least (δ
δ+2)2 ·0.5.

The algorithm starts at a point x1 with f(x1) ≤ 1, and terminates when it
reaches a point xk with f(xk) ≤ 0.5 + δ. Thus the total amount of progress
made over all iterations of the algorithm can be at most 1− (0.5 + δ). Therefore,
the number of iterations used by the algorithm can be at most:

1− (0.5 + δ)(
δ
δ+2

)2

· 0.5
≤ 1− 0.5(

δ
δ+2

)2

· 0.5

=
(δ + 2)2

δ2
=
δ2

δ2
+

4δ

δ2
+

4

δ2
.

Since δ < 1, we have that the algorithm terminates after at most O(1
δ2) itera-

tions. ut

Lemma 6 implies that that after polynomially many iterations the algorithm
finds a point such that f(x) ≤ 0.5 + δ, and by definition such a point is a
(0.5 + δ)-NE. Thus we have completed the proof of Theorem 1.

7 Application: Two-player Bayesian games

In this section, we define two-player Bayesian games, and show how our algorithm
can be applied in order to efficiently find a (0.5 + δ)-Bayesian Nash equilibrium.
A two-player Bayesian game is played between a row player and a column player.
Each player has a set of possible types, and at the start of the game, each player
is assigned a type by drawing from a known joint probability distribution. Each
player learns his type, but not the type of his opponent. Our task is to find an
approximate Bayesian Nash equilibrium (BNE).

We show that this can be reduced to the problem of finding an ε-NE in a
polymatrix game, and therefore our algorithm can be used to efficiently find a
(0.5+δ)-BNE of a two-player Bayesian game. This section is split into two parts.
In the first part we formally define two-player Bayesian games, and approximate
Bayesian Nash equilibria. In the second part, we give the reduction from two-
player Bayesian games to polymatrix games.

7.1 Definitions

Payoff matrices. We will use k1 to denote the number of pure strategies of the
row player and k2 to denote the number of pure strategies of the column player.
Furthermore, we will use m to denote the number of types of the row player,
and n to denote the number of types of the column player.

For each pair of types i ∈ [m] and j ∈ [n], there is a k1 × k2 bimatrix game
(R,C)ij := (Rij , Cij) that is played when the row player has type i and the
column player has type j. We assume that all payoffs in every matrix Rij and
every matrix Cij lie in the range [0, 1].

Types. The distribution over types is specified by a joint probability distribu-
tion: for each pair of types i ∈ [m] and j ∈ [n], the probability that the row
player is assigned type i and the column player is assigned type j is given by
pij . Obviously, we have that:

m∑
i=1

n∑
j=1

pij = 1.

We also define some useful shorthands: for all i ∈ [m] we denote by pRi (pCj) the
probability that row (column) player has type i ∈ [m] (j ∈ [n]). Formally:

pRi =

n∑
j=1

pij for all i ∈ [m],

pCj =

m∑
i=1

pij for all j ∈ [n].

Note that
∑m
i=1 p

R
i =

∑n
j=1 p

C
j = 1. Furthermore, we denote by pRi (j) the con-

ditional probability that type j ∈ [n] will be chosen for column player given that

type i is chosen for row player. Similarly, we define pCj (i) for the column player.
Formally:

pRi (j) =
pij
pRi

for all i ∈ [m],

pCj (i) =
pij
pCj

for all j ∈ [n].

We can see that for given type t = (i, j) we have that pij = pRi ·pRi (j) = pCj ·pCj (i).

Strategies. In order to play a Bayesian game, each player must specify a
strategy for each of their types. Thus, a strategy profile is a pair (x,y), where
x = (x1, x2, . . . , xm) such that each xi ∈ ∆k1 , and where y = (y1, y2, . . . , yn)
such that each yi ∈ ∆k2 . This means that, when the row player gets type i ∈ [m]
and the column player gets type j ∈ [n], then the game (Rij , Cij) will be played,
and the row player will use strategy xi while the column player will use strat-
egy yj .

Given a strategy profile (x,y), we can define the expected payoff to both
players (recall that the players are not told their opponent’s type).

Definition 7 (Expected payoff). Given a strategy profile (x,y) and a type
t = (i, j), the expected payoff for the row player is given by:

uR(xi,y) =

n∑
j=1

pRi (j) · xTi Rijyj ,

= xTi

n∑
j=1

pRi (j) ·Rijyj .

Similarly, for the column player the expected payoff is:

uC(x, yj) = yTj

m∑
i=1

pCj (i) · CTijxi.

Rescaling. Before we define approximate equilibria for two-player Bayesian
games, we first rescale the payoffs. Much like for polymatrix games, rescaling is
needed to ensure that an ε-approximate equilibrium has a consistent meaning.
Our rescaling will ensure that, for every possible pair of types, both player’s
expected payoff uses the entire range [0, 1].

For each type i of the row player, we use U iR to denote the maximum expected
payoff for the row player when he has type i, and we use LiR to denote the
minimum expected payoff for the row player when he has type i. Formally, these
are defined to be:

U iR = max
a∈[k1]

n∑
j=1

max
b∈[k2]

(
pRi (j) ·Rij

)
a,b
,

LiR = min
a∈[k1]

n∑
j=1

min
b∈[k2]

(
pRi (j) ·Rij

)
a,b
.

Then we apply the transformation T iR(·) to every element z of Rij , for all types
j of the column player, where:

T iR(z) :=
1

U iR − LiR
·
(
z − LiR

n

)
. (15)

Similarly, we transform all payoff matrices for the column player using:

T jC(z) :=
1

U jC − L
j
C

·

(
z −

LjC
m

)
, (16)

where U jC and LjC are defined symmetrically. Note that, after this transformation
has been applied, both player’s expected payoffs lie in the range [0, 1]. Moreover,
the full range is used: there exists a strategy for the column player against
which one of the row player’s strategies has expected payoff 1, and there exists
a strategy for the column player against which one of the row player’s strategies
has expected payoff 0. From now on we will assume that the payoff matrices
have been rescaled in this way.

We can now define approximate Bayesian Nash equilibria for a two-player
Bayesian game.

Definition 8 (Approximate Bayes Nash Equilibrium (ε-BNE)). Let (x,y)
be a strategy profile. The profile (x,y) is an ε-BNE iff the following conditions
hold:

uR(xi,y) ≥ uR(x′i,y)− ε for all x′i ∈ ∆k1 for all i ∈ [m], (17)

uC(x, yj) ≥ uC(x, y′j)− ε for all y′j ∈ ∆k2 for all j ∈ [n]. (18)

7.2 The reduction

In this section we reduce in polynomial time the problem of computing an ε-
BNE for a two-player Bayesian game B to the problem of computing an ε-NE of
a polymatrix game P(B). We describe the construction of P(B) and prove that
every ε-NE for P(B) maps to an ε-BNE of B.

Construction. Let B be a two-player Bayesian game where the row player has
m types and k1 pure strategies and the column player has n types and k2 pure
strategies. We will construct a polymatrix game P(B) as follows.

The game has m + n players. We partition the set of players [m + n] into
two sets: the set K = {1, 2, . . . ,m} will represent the types of the row player in
B, while the set L = {m + 1,m + 2, . . . ,m + n} will represent the types of the
column player in B. The underlying graph that shows the interactions between
the players is a complete bipartite graph G = (K ∪L,E), where every player in
K (respectively L) plays a bimatrix game with every player in L (respectively

K). The bimatrix game played between vertices vi ∈ K and vj ∈ L is defined to
be (R∗ij , C

∗
ij), where:

R∗ij := pRi (j) ·Rij , (19)

C∗ij := pCj (i) · Cij . (20)

for all i ∈ [m] and j ∈ [n].
Observe that, for each player i in the K, the matrices R∗ij all have the same

number of rows, and for each player j ∈ L, the matrices C∗ij all have the same
number of columns. Thus, P(B) is a valid polymatrix game. Moreover, we clearly
have that P(B) has the same size as the original game B. Note that, since we
have assumed that the Bayesian game has been rescaled, we have that for every
player in P(B) the minimum (maximum) payoff achievable under pure strategy
profiles is 0 (1), so no further scaling is needed in order to apply our algorithm.

We can now prove that every ε-NE of the polymatrix game is also an ε-BNE
of the original two-player Bayesian game, which is the main result of this section.

Theorem 2. Every ε-NE of P(B) is a ε-BNE for B.

Proof. Let z = (x1, . . . , xm, y1, . . . , yn) be an ε-NE for P(B). This means that
no player can gain more than ε by unilaterally changing his strategy. We define
the strategy profile (x,y) for B where x = (x1, . . . , xm) and y = (y1, . . . , yn),
and we will show that (x,y) is an ε-BNE for B.

Let i ∈ K be a player. Since, z is an ε-NE of P(B), we have:

ui(xi, z) ≥ ui(x′i, z)− ε for all x′i ∈ ∆k1 .

By construction, we can see that player i only interacts with the players from
L. Hence his payoff can be written as:

ui(xi, z) = xTi

n∑
j=1

R∗ijyj = uR(xi,y).

and since we are in an ε-NE, we have:

uR(xi,y) ≥ uR(x′i,y)− ε for all x′i ∈ ∆k1 . (21)

This is true for all i ∈ K, thus it is true for all i ∈ [m].
Similarly, every player j ∈ L interacts only with players form K, thus:

uC(x, yj) = yTj

m∑
i=1

(C∗ij)
Txi.

Since we are in an ε-NE we have:

uC(x, yj) ≥ uC(x, y′j)− ε for all y′j ∈ ∆k2 , (22)

and this is true for all j ∈ K, thus it is true for all j ∈ [n].
Combining now the fact that Equation (21) is true for all i ∈ [n] and that

Equation (22) is true for all j ∈ [m], it is easy to see that the strategy profile
(x,y) is an ε-BNE for B. ut

Applying Algorithm 1 to P(B) thus gives us the following.

Theorem 3. A (0.5 + δ)-Bayesian Nash equilibrium of a two-player Bayesian
game B can be found in time polynomial in the input size of B and 1/δ.

8 Conclusions and open questions

We have presented a polynomial-time algorithm that finds a (0.5 + δ)-Nash
equilibrium of a polymatrix game for any δ > 0. Recently it was shown [18]
that the performance guarantee that Tsaknakis and Spirakis proved for their
algorithm [28] is almost tight. Though we do not have examples that show that
the approximation guarantee is tight for our algorithm, we do not see an obvious
approach to prove a better guarantee. The initial choice of strategy profile affects
our algorithm, and it is conceivable that one may be able to start the algorithm
from an efficiently computable profile with certain properties that allow a better
approximation guarantee. One natural special case is when there is a constant
number of players, which may allow one to derive new strategy profiles from a
stationary point as done by Tsaknakis and Sprirakis [28]. It may also be possible
to develop new techniques when the number of pure strategies available to the
players is constant, or when the structure of the graph is restricted in some way.
For example, in the games arising from two-player Bayesian games, the graph is
always bipartite.

This paper has considered ε-Nash equilibria, which are the most well-studied
type of approximate equilibria. However, ε-Nash equilibria have a drawback:
since they only require that the expected payoff is within ε of a pure best re-
sponse, it is possible that a player could be required to place probability on
a strategy that is arbitrarily far from being a best response. An alternative,
stronger, notion is an ε-well supported approximate Nash equilibrium (ε-WSNE).
It requires that players only place probability on strategies that have payoff
within ε of a pure best response. Every ε-WSNE is an ε-Nash, but the converse
is not true. For bimatrix games, the best-known additive approximation that
is achievable in polynomial time gives a

(
2
3 − 0.0047

)
-WSNE [17]. It builds on

the algorithm given by Kontogiannis and Spirakis that achieves a 2
3 -WSNE in

polynomial time [25]. Recently a polynomial-time algorithm with a better ap-
proximation guarantee have been given for symmetric bimatrix games [9]. Note,
it has been shown that there is a PTAS for finding ε-WSNE of bimatrix games
if and only if there is a PTAS for ε-Nash [11, 6]. For n-player games with n > 2
there has been very little work on developing algorithms for finding ε-WSNE.
This is a very interesting direction, both in general and when n > 2 is a constant.

Acknowledgements

We thank Aviad Rubinstein for alerting us to the two-player Baysesian games
application, and Haralampos Tsaknakis for feedback on earlier versions of this
paper.

References

1. Austrin, P., Braverman, M., Chlamtac, E.: Inapproximability of NP-complete vari-
ants of Nash equilibrium. Theory of Computing 9, 117–142 (2013)

2. Babichenko, Y., Barman, S., Peretz, R.: Simple approximate equilibria in large
games. In: ACM Conference on Economics and Computation, EC ’14, Stanford ,
CA, USA, June 8-12, 2014, pp. 753–770 (2014)

3. Bosse, H., Byrka, J., Markakis, E.: New algorithms for approximate Nash equilibria
in bimatrix games. Theoretical Computer Science 411(1), 164–173 (2010)

4. Briest, P., Goldberg, P.W., Röglin, H.: Approximate equilibria in games with few
players. CoRR abs/0804.4524 (2008)

5. Cai, Y., Daskalakis, C.: On minmax theorems for multiplayer games. In: Pro-
ceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, pp.
217–234 (2011)

6. Chen, X., Deng, X., Teng, S.H.: Settling the complexity of computing two-player
Nash equilibria. Journal of the ACM 56(3), 14:1–14:57 (2009)

7. Chen, X., Paparas, D., Yannakakis, M.: The complexity of non-monotone markets.
In: Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA,
USA, June 1-4, 2013, pp. 181–190 (2013)

8. Conitzer, V., Sandholm, T.: New complexity results about Nash equilibria. Games
and Economic Behavior 63(2), 621–641 (2008)

9. Czumaj, A., Fasoulakis, M., Jurdzinski, M.: Approximate well-supported Nash
equilibria in symmetric bimatrix games. In: Algorithmic Game Theory - 7th Inter-
national Symposium, SAGT 2014, Haifa, Israel, September 30 - October 2, 2014.
Proceedings, pp. 244–254 (2014)

10. Daskalakis, C.: On the complexity of approximating a Nash equilibrium. ACM
Transactions on Algorithms 9(3), 23 (2013)

11. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a Nash equilibrium. SIAM Journal on Computing 39(1), 195–259 (2009)

12. Daskalakis, C., Mehta, A., Papadimitriou, C.H.: Progress in approximate Nash
equilibria. In: Proceedings 8th ACM Conference on Electronic Commerce (EC-
2007), San Diego, California, USA, June 11-15, 2007, pp. 355–358 (2007)

13. Daskalakis, C., Mehta, A., Papadimitriou, C.H.: A note on approximate Nash
equilibria. Theoretical Computer Science 410(17), 1581–1588 (2009)

14. Daskalakis, C., Papadimitriou, C.H.: Approximate Nash equilibria in anonymous
games. J. Economic Theory 156, 207–245 (2015)

15. Deligkas, A., Fearnley, J., Savani, R., Spirakis, P.G.: Computing approximate Nash
equilibria in polymatrix games. In: Web and Internet Economics - 10th Interna-
tional Conference, WINE 2014, Beijing, China, December 14-17, 2014. Proceedings,
pp. 58–71 (2014)

16. Etessami, K., Yannakakis, M.: On the complexity of Nash equilibria and other
fixed points. SIAM J. Comput. 39(6), 2531–2597 (2010)

17. Fearnley, J., Goldberg, P.W., Savani, R., Sørensen, T.B.: Approximate well-
supported Nash equilibria below two-thirds. In: Algorithmic Game Theory - 5th
International Symposium, SAGT 2012, Barcelona, Spain, October 22-23, 2012.
Proceedings, pp. 108–119 (2012)

18. Fearnley, J., Igwe, T.P., Savani, R.: An empirical study of finding approximate
equilibria in bimatrix games. In: Experimental Algorithms - 14th International
Symposium, SEA 2015, Paris, France, June 29 - July 1, 2015, Proceedings, pp.
339–351 (2015)

19. Feige, U., Talgam-Cohen, I.: A direct reduction from k -player to 2-player approxi-
mate Nash equilibrium. In: Algorithmic Game Theory - Third International Sym-
posium, SAGT 2010, Athens, Greece, October 18-20, 2010. Proceedings, pp. 138–
149 (2010)

20. Govindan, S., Wilson, R.: Computing Nash equilibria by iterated polymatrix ap-
proximation. Journal of Economic Dynamics and Control 28(7), 1229–1241 (2004)

21. Govindan, S., Wilson, R.: A decomposition algorithm for n-player games. Economic
Theory 42(1), 97–117 (2010)

22. Hémon, S., de Rougemont, M., Santha, M.: Approximate Nash equilibria for multi-
player games. In: Algorithmic Game Theory, First International Symposium,
SAGT 2008, Paderborn, Germany, April 30-May 2, 2008. Proceedings, pp. 267–278
(2008)

23. Howson Joseph T., J., Rosenthal, R.W.: Bayesian equilibria of finite two-person
games with incomplete information. Management Science 21(3), pp. 313–315
(1974)

24. Howson, J.T.: Equilibria of polymatrix games. Management Science 18(5), pp.
312–318 (1972)

25. Kontogiannis, S.C., Spirakis, P.G.: Well supported approximate equilibria in bi-
matrix games. Algorithmica 57(4), 653–667 (2010)

26. Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies.
In: Proceedings 4th ACM Conference on Electronic Commerce (EC-2003), San
Diego, California, USA, June 9-12, 2003, pp. 36–41 (2003)

27. Rubinstein, A.: Inapproximability of Nash equilibrium. In: Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015, pp. 409–418 (2015)

28. Tsaknakis, H., Spirakis, P.G.: An optimization approach for approximate Nash
equilibria. Internet Mathematics 5(4), 365–382 (2008)

A Proof of Lemma 2

Before we begin with the proof, we introduce the following notation. For a player
i ∈ [n], given a strategy profile x and a subset of i’s pure strategies S ⊆ [mi], we
use Mi(x, S) for taking the maximum of the payoffs of i when the others play
according to x, and player i is restricted to pick elements from S:

Mi(x, S) := max
k∈S

(
vi(x)

)
k
.

In order to find the gradient, we have to calculate the variation of fi along
the direction x′ − x, by evaluating f(x̄) for points x̄ of the form

x̄ := x + ε(x′ − x) = (1− ε) · x + ε · x′.

Recall from (4), that for x̄ ∈ ∆ we have that fi(x̄) := u∗i (x̄)− ui(x̄). In order to
rewrite u∗i (x̄) we introduce notation Λi(x,x

′, ε) as follows.

Definition 9. Given (x,x′, ε) and S = Bri(x) we define Λi(x,x
′, ε) as:

Λi(x,x
′, ε) := max

{
0,max

k∈S̄
{(vi(x̄))k} −max

l∈S
{(vi(x̄))l}

}
. (23)

In the following technical lemma we provide an expression for u∗i (x̄). In order
to rewrite u∗i (x̄), we use the following simple observation. Consider a multiset of
numbers {a1, . . . , an}, and the index sets S ⊆ [n] and S̄ = [n] \ S. We have the
following identity:

max{a1, . . . , an} ≡ max
j∈S
{aj}+ max

{
0, max

k∈S̄
{ak} −max

j∈S
{aj}

}
. (24)

In the following lemma, we use this identity with S = Bri(x) to rewrite u∗i (x̄).
We use this particular expression for u∗i (x̄)) because it helps us to compute the
limit when ε tends to zero. Moreover, the values Λi(x,x

′, ε) will be used in order
to derive the value of ε that it is used in our algorithm.

Lemma 7. Given profiles x and x′ in ∆ and a player i ∈ [n], let S = Bri(x).
We have:

u∗i ((1− ε) · x + ε · x′)) = (1− ε) ·Mi(x, S) + ε ·Mi(x
′, S) + Λi(x,x

′, ε). (25)

Proof.

u∗i (x̄) = u∗i ((1− ε) · x + ε · x′))
= max
k∈[mi]

{(
vi(x + ε(x′ − x))

)
k

}
By (3)

= max
k∈S

{(
vi(x + ε(x′ − x))

)
k

}
+ Λi(x,x

′, ε) By (24) and (23)

= max
k∈S

{(
(1− ε) · vi(x) + ε · vi(x′)

)
k

}
+ Λi(x,x

′, ε).

Since S = Bri(x), we know that for all k ∈ S we have that (vi(x))k are equal,
so we have the following:

max
k∈S

{(
(1− ε) · vi(x) + ε · vi(x′)

)
k

}
= max

k∈S

{(
(1− ε) · vi(x)

)
k

}
+ max

k∈S

{(
ε · vi(x′)

)
k

}
= (1− ε) ·Mi(x, S) + ε ·Mi(x

′, S),

and we get the claimed result. ut

We will use the expression (25) for u∗i (x̄), along with the following reformu-
lation of ui(x̄):

ui(x̄) = ui(x + ε(x′ − x))

= ui(xi + ε(x′i − xi),x + ε(x′ − x))

= ui(xi,x) + ε · ui(xi,x′ − x) + ε · ui(x′i − xi,x) + ε2 · ui(x′i − xi,x′ − x)

= ui(x) + ε · ui(xi,x′)− ε · ui(xi,x) + ε · ui(x′i,x) + ε · ui(xi,x)− ε2 · ui(x′ − x)

= (1− ε) · ui(x) + ε
(
ui(xi,x

′) + ui(x
′
i,x)− ui(x)

)
+ ε2 · ui(x′ − x). (26)

We now use these reformulations to prove the following lemma.

Lemma 8. We have that fi(x̄)− f(x) is equal to:

ε
(
Dfi(x,x

′)− f(x)
)

+ Λi(x,x
′, ε)− ε2ui(x′ − x)− (1− ε) max

j∈[n]

{
fj(x)− fi(x)

}
.

Proof. Recall that S = Bri(x). For a given i ∈ [n], using Lemma 7 and the
reformulation for ui(x̄), we have:

fi(x̄)− f(x) = u∗i (x̄)− ui(x̄)− f(x)

= (1− ε) ·Mi(x, S) + ε ·Mi(x
′, S) + Λi(x,x

′, ε)

− (1− ε)ui(x) + ε
(
−ui(xi,x′)− ui(x′i,x) + ui(x)

)
− ε2ui(x′ − x)− f(x).

Recall from (4) that fi(x) = Mi(x, S)− ui(x), so the formula above is equal to:

ε
(
Mi(x

′, S)−ui(xi,x′)−ui(x′i,x)+ui(x)
)
+Λi(x,x

′, ε)−ε2ui(x′−x)+(1−ε)fi(x)−f(x).

Now we can use (8) for Dfi(x,x
′) so that the above formula becomes:

ε ·Dfi(x,x′) + Λi(x,x
′, ε)− ε2ui(x′ − x) + (1− ε)fi(x)− f(x) =

ε ·Dfi(x,x′) + Λi(x,x
′, ε)− ε2ui(x′ − x) + (1− ε)fi(x)− (1− ε)f(x)− εf(x) =

ε
(
Dfi(x,x

′)− f(x)
)

+ Λi(x,x
′, ε)− ε2ui(x′ − x)− (1− ε)

(
f(x)− fi(x)

)
.

Recall now that f(x) = maxj∈[n] fj(x). Thus the term f(x) − fi(x) can be

written as maxj∈[n]

{
fj(x)− fi(x)

}
. So, the expression above is equivalent to:

ε
(
Dfi(x,x

′)− f(x)
)

+ Λi(x,x
′, ε)− ε2ui(x′ − x)− (1− ε) max

j∈[n]

{
fj(x)− fi(x)

}
.

ut

We will now use Lemma 8 to study the limit limε→0(fi(x̄)−f(x)
)

for all i ∈ [n].

Firstly, we deal with Λ(x,x′, ε). It is easy to see that limε→0

(
x + ε(x′−x)

)
= x.

Then, when S = Bri(x) we have that:

lim
ε→0

(
max
k∈S̄
{(vi(x̄))k} −max

l∈S
{(vi(x̄))l}

)
< 0.

This is true from the definition of pure best response strategies. So, from Equa-
tion (23) for Λi(x,x

′, ε) it is true that limε→0 Λi(x,x
′, ε) = 0.

Furthermore, the term ε2·ui(x′−x) when is divided by ε equals to ε·ui(x′−x),
thus limε→0

(
ε · ui(x′ − x)

)
= 0.

Moreover, the term:

lim
ε→0

(
−1− ε

ε
·max
j∈[n]

{
fj(x)− fi(x)

})
is either 0 when fi(x) = f(x), i.e player i has the maximum regret and maxj∈[n]

{
fj(x)−

fi(x)
}

= 0, or −∞ otherwise, because maxj∈[n]

{
fj(x)− fi(x)

}
> 0.

To sum up, if fi(x) achieves the maximum regret at point x′, then the limit
limε→0

(
fi(x̄)− f(x)

)
= Dfi(x,x

′)− f(x), otherwise the limit equals −∞.

B Proof of Lemma 4

Throughout this proof, x,x′, x̄, and ε will be fixed as they are defined in Sec-
tion 6. In order to prove this lemma, we must show a bound on:

f(x̄)− f(x) = max
i∈[n]

fi(x̄)− f(x).

Before we start the analysis we need to redefine the term Λδi (x,x
′, ε) in order

to prove an analogous version of Lemma 7 when δ-best responses are used.

Definition 10. We define Λδi (x,x
′, ε) as:

Λδi (x,x
′, ε) := max

{
0, max
k∈Brδi (x)

{(vi(x̄))k} − max
l∈Brδi (x)

{(vi(x̄))l}

}
. (27)

We now use this definition to prove the following lemma.

Lemma 9. We have:

u∗i ((1− ε) · x + ε · x′)) ≤ (1− ε) max
k∈Brδi (x)

(
vi(x))k + ε max

k∈Brδi (x)
(vi(x

′)
)
k

+ Λδi (x,x
′, ε).

(28)

Proof. We have:

u∗i ((1− ε) · x + ε · x′)) = max
k∈[mi]

(
vi((1− ε) · x + ε · x′)

)
k

= max
k∈Brδi (x)

(
vi((1− ε) · x + ε · x′)

)
k

+ Λδi (x,x
′, ε) Using (24)

≤ (1− ε) max
k∈Brδi (x)

(
vi(x)

)
k

+ ε max
k∈Brδi (x)

(
vi(x

′)
)
k

+ Λδi (x,x
′, ε).

ut

We will use the reformulation from Equation (26) for ui(x̄):

ui(x̄) = (1− ε) · ui(x) + ε
(
ui(xi,x

′) + ui(x
′
i,x)− ui(x)

)
+ ε2 · ui(x′ − x). (29)

The correctness of this was proved in Appendix A. Now we use all the these
reformulations in order to prove the following lemma.

Lemma 10. We have that fi(x̄)− f(x) is less than or equal to:

ε
(
Dfδi (x,x′)− f(x)

)
+Λδi (x,x

′, ε)− ε2ui(x′ − x)− (1− ε) max
j∈[n]

{fj − fi} . (30)

Proof. Recall that, by definition, we have that:

fi(x̄) = u∗i (x̄)− ui(x̄).

Thus, we can apply Lemma 9 along with the reformulation given in Equation (29)
for ui(x̄) to prove that fi(x̄)− f(x) is less than or equal to:

(1− ε) max
k∈Brδi (x)

(
vi(x))k + ε max

k∈Brδi (x)
(vi(x

′)
)
k

+ Λδi (x,x
′, ε)

− (1− ε)ui(x) + ε
(
−ui(xi,x′)− ui(x′i,x) + ui(x)

)
− ε2ui(x′ − x)− f(x).

We can now use the fact that maxk∈Brδi (x)

(
vi(x)

)
k
− ui(x) = fi(x) and the defi-

nition of Dfδi (x,x′) given in (9) to prove that the expression above is equivalent
to:

ε ·Dfδi (x,x′) + Λδi (x,x
′, ε)− ε2ui(x′ − x) + (1− ε)fi(x)− f(x)

= ε ·Dfδi (x,x′) + Λδi (x,x
′, ε)− ε2ui(x′ − x) + (1− ε)fi(x)− (1− ε)f(x)− εf(x)

= ε
(
Dfδi (x,x′)− f(x)

)
+ Λδi (x,x

′, ε)− ε2ui(x′ − x)− (1− ε)
(
f(x)− fi(x)

)
= ε
(
Dfδi (x,x′)− f(x)

)
+ Λδi (x,x

′, ε)− ε2ui(x′ − x)− (1− ε) max
j∈[n]

{
fj(x)− fi(x)

}
.

This completes the proof. ut

Having shown Lemma 10, we will now study each term of (30) and provide
bounds for each of them. To begin with, it is easy to see that for all i ∈ [n]
we have that maxj∈[n]

{
fj(x) − fi(x)

}
≥ 0, and since ε < 1, we have that

(1 − ε) maxj∈[n]

{
fj(x) − fi(x)

}
≥ 0. Thus, Equation (30) is less than or equal

to:

ε
(
Dfδi (x,x′)− f(x)

)
+ Λδi (x,x

′, ε)− ε2ui(x′ − x). (31)

Next we consider the term Λδi (x,x
′, ε). In the following technical lemma we

prove that Λδi (x,x
′, ε) = 0 for all i ∈ [n].

Lemma 11. We have Λδi (x,x
′, ε) = 0 for all i ∈ [n].

Proof. According to equation (27) for Λδi (x,x
′, ε), we have:

Λδi (x,x
′, ε) = max

{
0, max
k∈Brδi (x)

{(vi(x̄))k} − max
l∈Brδi (x)

{(vi(x̄))l}

}
.

We can rewrite this expression as follows. First define:

Z(x,x′, ε, k) = (vi(x̄))k − max
l∈Brδi (x)

{(vi(x̄))l}.

Then we have:

Λδi (x,x
′, ε) = max

{
0, max
k∈Brδi (x)

{
Z(x,x′, ε, k)

}}
.

Our goal is to show that, for our chosen value of ε, we have Λδi (x,x
′, ε) = 0. For

this to be the case, we must have that Z(x,x′, ε, k) ≤ 0 for all k ∈ Brδi (x). In
the rest of this proof, we will show that this is indeed the case.

By definition, we have that:

(vi(x̄))k =
(
vi(x) + ε(vi(x

′)− vi(x))
)
k
. (32)

The term maxl∈Brδi (x){(vi(x̄))l} can be written as follows:

max
l∈Brδi (x)

{(vi((1− ε)x + εx′))l} ≥ max
l∈Brδi (x)

{(vi((1− ε)x))l}

= (1− ε) · max
l∈Brδi (x)

{(vi(x))l}

= max
l∈Brδi (x)

{(vi(x))l} − ε · max
l∈Brδi (x)

{(vi(x))l}. (33)

We now substitute these two bounds into the definition of Z(x,x′, ε, k). We have:

Z(x,x′, ε, k) ≤ vi(x)k− max
l∈Brδi (x)

{(vi(x))l}+ε
(
vi(x

′)k−vi(x)k+ max
l∈Brδi (x)

{(vi(x))l}
)
.

(34)

From the definition of δ-best responses (Definition 3), we know that for all

k ∈ Brδi (x):
vi(x)k − max

l∈Brδi (x)
{(vi(x))l} < −δ.

Furthermore, since we know that the maximum payoff for player i ∈ [n] is 1, we

have the following trivial bound for all k ∈ Brδi (x):

vi(x
′)k − vi(x)k + max

l∈Brδi (x)
{(vi(x))l} ≤ 2.

Substituting these two bounds into Equation (34) gives, for all k ∈ Brδi (x):

Z(x,x′, ε, k) ≤ −δ + ε · 2.

Thus, for each k ∈ Brδi (x), we have that Z(x,x′, ε, k) ≤ 0 whenever:

−δ + ε · 2 ≤ 0,

and this is equivalent to:

ε ≤ δ

2
.

This inequality holds by the definition of ε, so we have Z(x,x′, ε, k) ≤ 0 for all

k ∈ Brδi (x), which then implies that Λδi (x,x
′, ε) ≤ 0. ut

Next we consider the term ui(x
′−x) in Equation (31). The following lemma

provides a simple lower bound for this term.

Lemma 12. For all i ∈ [n], we have Dfδi (x,x′)− 1 ≤ ui(x′ − x).

Proof. For ui(x
′ − x) we have the following:

ui(x
′ − x) = ui(x

′
i − xi,x′ − x)

= ui(x
′
i,x
′ − x)− ui(xi,x′ − x)

= ui(x
′
i,x
′)− ui(x′i,x)− ui(xi,x′) + ui(xi,x). (35)

Recall from (9) that:

Dfδi (x,x′) = max
k∈Brδi (x)

{(
vi(x

′)
)
k

}
− ui(xi,x′)− ui(x′i,x) + ui(xi,x).

We can see that (35) and (9) differ only in terms ui(x
′
i,x
′) and maxk∈Brδi (x)

{(
vi(x

′)
)
k

}
respectively. We know that maxk∈Brδi (x)

{(
vi(x

′)
)
k

}
≤ 1. Then, we can see that

Dfδi (x,x′)− 1 ≤ ui(x′ − x). ut

Recall that D = maxi∈[n]Df
δ
i (x,x′) and fnew = f(x̄) and f = f(x). We can now

apply the bounds from Lemma 11 and Lemma 12 to Equation (31) to obtain:

fnew − f ≤ max
i∈[n]

{
ε
(
Dfδi (x,x′)− f(x)

)
− ε2

(
Dfδi (x,x′)− 1

)}
≤ max

i∈[n]

{
ε
(
Dfδi (x,x′)− f(x)

)
− ε2

(
D − 1

)}
= ε(D − f) + ε2(1−D).

This completes the proof of Lemma 4.

