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1 Introduction

It has been known for some time that there is (super)symmetry enhancement near extreme

black hole and brane horizons [1–3]. This observation has been made on a case by case

basis and it has been instrumental in the formulation of AdS/CFT correspondence [4] .

In the last three years it has been realized that (super)symmetry enhancement is

a generic phenomenon for all smooth supergravity Killing horizons with compact spa-

tial sections that preserve at least one supersymmetry. The essential features of this

(super)symmetry enhancement mechanism have been described in [5] in the form of the

“horizon conjecture” following earlier related work in [7, 8]. The horizon conjecture has

two parts. One part involves a formula for the number of supersymmetries preserved by

such horizons. In the second part, this is used to show that some of the horizons with

non-trivial fluxes admit an sl(2,R) symmetry subalgebra. So far, the horizon conjecture

has been proven for all 10- and 11-dimensional supergravities [5, 6, 8–10] and minimal

5-dimensional gauged supergravity [7].

In this paper, we shall demonstrate the validity of the horizon conjecture [5] for all

4-dimensional gauged N = 2 supergravities coupled to any number of abelian vector mul-

tiplets, see for example [11]. The supersymmetric black hole solutions of such theories, and

hence their near horizon geometries, have been extensively investigated in the context of

entropy counting and attractor mechanism, starting from [13–16].

The assumptions which are made for the proof of the horizon conjecture are as follows:
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• The near horizon geometry as well as the rest of the fields are smooth,

• the near horizon spatial section is compact without boundary,

• the matrix of gauge couplings ImN is negative definite and hence invertible1,

• the scalar potential V is negative semi-definite, V ≤ 0.

The first two assumptions may be replaced by the requirement that the data are such that

the Hopf maximum principle applies [12], and that a certain surface term integral over the

horizon spatial section vanishes.

A consequence of the proof of the conjecture is that all Killing horizons that satisfy

these assumptions:

(i) preserve

N = 2c1(K) + 4` , (1.1)

supersymmetries, where N ≤ 8, ` = 1, 2 and K is the pull-back of the Hodge bundle

of the special Kähler geometry on the spatial horizon section S,

(ii) and those with ` 6= 0, or equivalently c1(K) = 0, admit an sl(2,R) symmetry2.

Note that if c1(K) = 0, which as we shall show is the case for all the horizons with ` 6= 0,

the number of supersymmetries preserved are either 4 or 8. This Chern class corresponds

to the index of a certain Dirac operator defined on S.

We further proceed to investigate the geometry of the horizons with c1(K) = 0. There

are two cases to consider depending on whether the orbits of sl(2,R) are 2- or 3-dimensional.

In the former case, the horizons are warped products of AdS2 with the horizon spatial

section S, AdS2 ×w S. Furthermore, if the warp factor is trivial, S is a sphere S2, a torus

T 2 or a (quotient of) hyperbolic space H2 equipped with the Einstein metric depending

on the sign of the right-hand-side term in (6.5) and the rest of the fields either vanish or

they are constant. If the warp factor is non-trivial, S admits an isometry which leaves the

rest of the fields invariant. We give the local form of the metric on S and show that it

depends on the scalars of the gauge multiplet. Moreover, we show that all the remaining

fields are specified by first order ordinary differential equations. In particular, the scalars

flow on the horizon.

If sl(2,R) has a 3-dimensional orbit on the spacetime, then S admits an isometry which

leaves all the remaining fields invariant. There are several cases that one can consider. In

all cases, we give the local form of the spacetime metric and demonstrate that the remaining

fields are determined by first order ordinary differential equations. In most cases, the scalars

1In turn this implies that the scalar manifold admits a (positive definite) Kähler metric.
2In 11-dimensional and type II horizons the presence of sl(2,R) requires that the horizons must have non-

trivial fluxes. This is not necessary here as this assumption is implied by our restrictions on the couplings

of N = 2 gauged supergravity.
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flow on the horizon. Furthermore as the scalars depend on at most one coordinate, the first

Chern class of K vanishes and so all such horizons preserve either 4 or 8 supersymmetries.

We also present an application of the horizon conjecture. In particular, we show that

it is a consequence of the horizon conjecture that all horizons with fluxes and N− 6= 0,

see [5] and (4.13), for which the spatial horizon section is a marginally trapped surface

contain untrapped surfaces both just inside and outside the horizon. This is a characteristic

behavior of extreme black hole horizons. As a result such supersymmetric horizons meet

the necessary conditions of [24], see also [25, 26], to be extended to full extreme black hole

solutions.

The proof of the horizons conjecture utilizes in a essential way that near a smooth

Killing horizon one can adapt a null gaussian coordinate system. Then the Killing spinor

equations (KSEs) of N = 2 supergravity are integrated along the lightcone directions to

express the Killing spinors in terms of spinors that depend only on the coordinates of S.

The remaining equations involve the reduction of the gravitino and gaugini KSEs on S as

well as a large number of integrability conditions. The latter are shown to be implied by

the reduced gravitino and gaugini KSEs on S as well as the field equations. Unlike similar

calculations for D = 11 and type II supergravities, the assumption that the horizons admit

one supersymmetry is used in an essential way. Then the number of solutions of the

reduced gravitino and gaugini KSEs on S are counted by first making use of Lichnerowicz

type theorems to turn the problem into one of counting zero modes of Dirac-like operators

on S, and then using the index theorem [30]. After taking into account that the KSEs

of the N = 2 theory are linear over the complex numbers, the formula for the number of

supersymmetries N is produced (1.1), where the number of supersymmetries N is counted

over the reals.

The proof of the second part of the horizon conjecture proceeds after first observing

that if c1(K) = 0 then one can always construct pairs of Killing spinors over the spacetime

which in turn give rise to three linearly independent vector bilinears. Then the commutators

of these vector fields are calculated and it is found that they satisfy a sl(2,R) algebra.

The geometry of these horizons is also investigated. For this, appropriate coordinates are

adapted on the horizon, and local expressions for the metric and other fields are obtained

in all cases.

The paper is organized as follows. In section 2, after a brief description of gauged

N = 2 supergravity, we describe the near horizon geometries and evaluate the field equa-

tions of the theory on the near horizon fields. In section 3, we solve the KSEs of N = 2

supergravity along the lightcone directions of near horizon geometries and state the re-

maining independent KSEs. In section 4, we establish that near horizon geometries either

preserve 4 or 8 supersymmetries. In section 5, we slow that the near horizon geometries

exhibit an sl(2,R) symmetry. In section 6, we describe the local geometries of all near

horizon geometries of N = 2 gauged supergravity. In section 7, we present an application

of the horizon conjecture on trapped surfaces. In appendix A, we give our conventions. In

appendix B, we summarize the properties of special Kähler geometry which are essential in

all our derivations. In appendix C, we determine the independent KSEs of the near hori-

zon backgrounds. In appendix D, we present the derivation of Lichnerowicz type theorems
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essential for counting the supersymmetries. In appendix E, we examine some symmetry

properties of the near horizon fields. In appendix F, we derive the near horizon data of

a class of solutions found previously in [20]. In appendix G, we present the details of the

derivation of the local expressions for geometries of all near horizon configurations, and in

appendix H we verify some of the field equations.

2 Near-Horizon Geometry and Field Equations

2.1 N = 2 gauged supergravity with vector multiplets

The bosonic field content of the gravitational multiplet of N = 2 supergravity is a metric

and a U(1) field. The theory can also couple to k vector abelian multiplets in which case

contains k additional U(1) fields and 2k real scalars. In the coupled theory, all the fields

interact and the U(1) field of the gravitational multiplet mixes with the rest. The scalars

take values on a sigma model manifold which exhibits a special Kähler structure. The two

(real) gravitini of the theory can be described together as a Dirac so(3, 1) spinor 1-form.

The gaugini can also be described as Dirac spinors. The supersymmetry parameter is then

a Dirac spinor which is taken in what follows to be commuting.

The action of N = 2, 4-dimensional, U(1) gauged supergravity with no gauging of

special Kähler isometries [11] in the conventions of [21] is given by

e−1L =
1

2
R+

1

4

(
ImN

)
IJ
F IµνF

Jµν − 1

8

(
ReN

)
IJ
e−1εµνρσF IµνF

J
ρσ

− gαβ̄∇µzα∇µzβ̄ − V , (2.1)

where R is the Ricci scalar of spacetime, F I = dAI are the field strengths of U(1) fields

and so I = 1, . . . , k+ 1, z are k complex scalars, and V is the scalar potential, for a review

see also [17]. We have suppressed all terms in the action that depend on the fermions. The

scalar manifold M exhibits special Kähler geometry with metric gαβ̄; see appendix B for

the definition and a summary of some key properties. The rest of the couplings include the

gauge couplings matrix ImN and the theta angles ReN which can depend on the scalars.

These couplings are also determined in terms of the special Kähler geometry. Furthermore,

the scalar potential is given by

V = 4g2

(
U IJ − 3X̄IXJ

)
ξIξJ = −2g2

((
ImN

)−1 IJ
+ 8X̄IXJ

)
ξIξJ , (2.2)

where g is a non-zero constant, and the constants ξI are obtained from the U(1) Fayet-

Iliopoulos terms. Moreover XI , I = 1, . . . , k + 1, depend only the scalar fields z, z̄ and are

defined in the context of special Kähler geometry, see appendix B. To establish the second

identity we have used the expression for U IJ in appendix B.

As we have already mentioned in the introduction, apart from the smoothness of the

near horizon data, we shall make two assumptions on the couplings of the theory. These

are that the matrix of gauge couplings ImN is negative definite, and that V ≤ 0. A

consequence of our two assumptions is that ξIX
I never vanishes,

ξIX
I 6= 0 . (2.3)
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This is because if ξIX
I = 0 at any point, then at such a point V = −2g2(ImN )−1IJξIξJ > 0,

in contradiction to our assumption that V ≤ 0.

The Einstein, gauge and scalar field equations of the theory are

Rµν = −2Im(N )IJ(F+)Iρµ(F−)Jρν + 2gαβ̄∇(µz
α∇ν)z̄

β̄ + gµνV , (2.4)

−2∇µ
(

Im(N )IJ(F−)Jµν
)

+ i(∇µNIJ)F̃ Jµν = 0 , (2.5)

∇µ∇µzα +
1

4i
(F+)Iµν(F+)Jµνgαγ̄

∂

∂z̄γ̄
NIJ

− 1

4i
(F−)Iµν(F−)Jµνgαγ̄

∂

∂z̄γ̄
N̄IJ − gαγ̄

∂

∂z̄γ̄
V = 0 , (2.6)

respectively, where the definition of (F±)I is given in (2.11) It should be noted that (2.4)

and (2.6) correct typographical errors found in [21].

2.2 Horizon Fields and field equations

The black hole horizons that we shall be investigating are extremal Killing horizons with

regular spatial horizon sections S. For such horizons, one can adapt a Gaussian Null

coordinate system [18, 19] such that the spacetime metric ds2 and 2-form field strengths

F I can be written as

ds2 = 2e+e− + δije
iej ,

F I = ΦI e+ ∧ e− + re+ ∧ dhΦI +
1

2
QIεij ei ∧ ej , (2.7)

where u, r are the lightcone coordinates and yI , I = 1, 2, are the remaining coordinates of

the spacetime, dhΦI = dΦI − hΦI , and the spatial horizon section S is given by u = r = 0

with induced metric and volume form

ds2
S = δije

iej , dvol(S) =
1

2
εije

i ∧ ej , (2.8)

respectively. Furthermore, we have used the frame

e+ = du , e− = dr + rh− 1

2
r2∆du , ei = eiJdy

J , i, j = 1, 2 . (2.9)

The components of fields h,∆,ΦI , QI and ei depend only on yI . The black hole stationary

Killing vector field is identified with ∂u and becomes null on the hypersurface r = 0. The

1-form gauge potential associated to F I is

AI = −rΦIdu+BI , dBI = QIdvol(S) . (2.10)

Our smoothness assumption asserts that ∆,ΦI , QI are globally defined smooth scalars,

and h is a globally defined smooth 1-form on the horizon section S, respectively. In addition,
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the induced metric on S, ds2
S , is smooth, and S is compact, connected without boundary.

We denote the Levi-Civita connection of S by ∇̂.

In what follows, it is convenient to define

(F±)Iµν =
1

2
(F I ± F̃ I)µν , F̃ Iµν = − i

2
εµν

ρσF Iρσ . (2.11)

We note that the components of (F±)I are given by

(F±)I+− =
1

2
(ΦI ∓ iQI) , (F±)I−j = 0 ,

(F±)I+i =
r

2

(
dhΦi ± iεijdhΦj

)
, (F±)Iij = ± i

2
(ΦI ∓ iQI)εij . (2.12)

Before proceeding with the analysis of the supersymmetry, we decompose the field

equations of the bosonic fields along the lightcone and S directions. In particular, ν = −
component of field equations of the U(1) gauge fields (2.5) is

∇̂j
(

Im(NIJ)dhΦJ
j

)
− Im(NIJ)hjdhΦJ

j +
1

2
Im(NIJ)(dh)ijε

ijQJ

+

(
∇̂jRe(NIJ)

)
εjkdhΦJ

k = 0 , (2.13)

and the ν = j component of (2.5) is equivalent to

Im(NIJ)dhΦJ
j = −dh

(
Im(NIJ)QJ

)
k
εkj −

(
∇̂kRe(NIJ)

)
ΦJεkj . (2.14)

The scalar field equation3 (2.6) can be expressed as

∇̂i∇̂izα − hi∇̂izα + gαγ̄∂λgσγ̄∇̂izλ∇̂izσ − gαγ̄∂γ̄V +
1

2

(
QIΦJ +QJΦI

)
gαγ̄∂γ̄Re(NIJ)

+
1

2

(
QIQJ − ΦIΦJ

)
gαγ̄∂γ̄Im(NIJ) = 0 , (2.15)

where the Kähler connection of the scalar manifold involving partial derivatives of gαβ̄ has

been given explicitly.

The +− component of the Einstein equations (2.4) is

1

2
∇̂ihi −∆− 1

2
h2 − 1

2
Im(NIJ)

(
ΦIΦJ +QIQJ

)
− V = 0 , (2.16)

while ++ component of the Einstein equations is

∇̂i∇̂i∆− 3hi∇̂i∆−∆∇̂ihi + 2∆h2 +
1

2
(dh)ij(dh)ij + 2Im(NIJ)δijdhΦI

i dhΦJ
j = 0.(2.17)

Next the +i component of the Einstein equations is

1

2
∇̂j(dh)ij − (dh)ijh

j − ∇̂i∆ + ∆hi − Im(NIJ)

(
ΦIdhΦI

i −QIεijdhΦI
j

)
= 0 , (2.18)

3We shall use ∂α = ∂
∂zα

, and ∂ᾱ = ∂
∂z̄ᾱ

to denote differentiation w.r.t. the scalars zα, z̄ᾱ.
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and finally ij component of the Einstein equations is

1

2
R̂δij + ∇̂(ihj) −

1

2
hihj +

1

2
Im(NIJ)

(
ΦIΦJ +QIQJ

)
δij

− 2gαβ̄∇̂(iz
α∇̂j)z̄β̄ − V δij = 0 ,

(2.19)

where R̂ is the Ricci scalar of the spatial horizon section S.

Not all of these field equations are independent. In particular, (2.13) is obtained by

taking the divergence of (2.14). (2.17) is obtained from taking the divergence of (2.18),

together with (2.14) and (2.13). Equation (2.18) is obtained by taking the divergence of

the traceless part of (2.19), together with (2.16), (2.15) and (2.14). So the independent

bosonic field equations are (2.14), (2.15), (2.16) and (2.19).

3 Supersymmetric Near-Horizon Geometries

3.1 Killing spinor equations

The KSEs of supergravity theories are the vanishing conditions of the supersymmetry

variations of the fermionic fields of these theories evaluated at the locus where all the

fermionic fields vanish. The fermionic fields of 4-dimensional N = 2, gauged supergravity

coupled to U(1) multiplets are the gravitino and the gaugini. In particular, the gravitino

KSE is

∇µε+

(
i

2
AµΓ5 + igξI(A

I)µ + gΓµξI

(
ImXI + iΓ5ReXI

)
+
i

4
Γρσ
(

Im
(
(F−)IρσX

J
)
− iΓ5Re

(
(F−)IρσX

J
))

ImNIJΓµ

)
ε = 0 , (3.1)

and the gaugini KSEs are

i

2
ImNIJΓρσ

(
Im
(
(F−)JρσDβ̄X̄Igαβ̄

)
− iΓ5Re

(
(F−)JρσDβ̄X̄Igαβ̄

))
ε

+Γµ∇µ
(

Rezα − iΓ5Imzα
)
ε+ 2gξI

(
Im
(
Dβ̄X̄Igαβ̄

)
− iΓ5Re

(
Dβ̄X̄Igαβ̄

))
ε = 0 , (3.2)

where ε is the supersymmetry parameter that is taken to be Dirac commuting spinor,

∇µε = ∂µε+
1

4
Ωµ,ρσΓρσε , Aµ = − i

2

(
∂αK∇µzα − ∂ᾱK∇µzᾱ

)
, (3.3)

and Ω is the frame connection of the spacetime metric. The gravitino KSE is a parallel

transport equation for the spinor ε, while the gaugini KSEs do not involve derivatives of ε

and so are algebraic. Our spinor conventions including those for the gamma matrices Γµ as

well as the realization of Cliff(3, 1) used are specified in Appendix A. Observe that the KSEs

is linear over the complex numbers. So the supersymmetric configurations always admit an

even number of supersymmetries as counted over the real numbers. The classification of

supersymmetric solutions of gauged N = 2 supergravity coupled to any number of vector

multiplets has been investigated in [21–23].
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3.2 Integrability along the lightcone and independent KSEs

For the near horizon geometries that we are investigating, the KSEs of the 4-dimensional

supergravity theory can be explicitly integrated along the lightcone directions. This de-

termines the dependence of the Killing spinors in terms of the u, r coordinates. Then we

substitute back the resulting expressions for the Killing spinors into the KSEs to find re-

maining conditions on the Killing spinors. The remaining conditions include those that

one expects by the naive restriction of both the gravitino and gaugini KSEs on the spatial

horizon section S as well as large number of integrability conditions.

To determine all the conditions on the Killing spinors, we first solve the µ = − com-

ponent of the gravitino KSE (3.1) to find

ε+ = φ+ , ε− = φ− + rΓ−Θ+φ+ , (3.4)

where ∂rφ± = 0, Γ±ε± = Γ±φ± = 0, and we have defined

Θ± =
1

4
hiΓ

i − gξI
(
ImXI + iΓ5ReXI

)
∓ i

2

(
Im((ΦI + iQI)XJ) + iΓ5Re((ΦI + iQI)XJ)

)
ImNIJ . (3.5)

Next,we solve the µ = + component of the gravitino KSE (3.1) to find that

φ+ = η+ + uΓ+Θ−η−, φ− = η− , (3.6)

where ∂rη± = ∂uη± = 0, Γ±η± = 0, and so η± depend only on the coordinates of S. Thus

after solving the gravitino KSE along the lightcone directions the Killing spinor can be

written as

ε = ε+ + ε− , ε+ = η+ + uΓ+Θ−η− , ε− = η− + rΓ−Θ+

(
η+ + uΓ+Θ−η−

)
. (3.7)

Substituting ε back into all the KSEs, one obtains a large number of conditions (C.1)-(C.10)

described in appendix C.

Not all these conditions are independent. Using in an essential way that the horizons

preserve at least one supersymmetry4, and in particular the relations between the fields

(C.24), (C.25), (C.29), (C.30), (C.31), (C.32), (C.35) and (C.36) that are implied by such an

assumption, and after utilizing the field equations, one finds that the remaining independent

conditions implied by the gravitino KSE on the Killing spinors are

∇(±)
i η± = 0 , (3.8)

where

∇(±)
i ≡ ∇̂i +

i

2
AiΓ5 + igξIB

I
i − ΓiΘ̂∓ ∓

1

4
hi , (3.9)

4Such an assumption is not necessary for the proof of a similar result in 10- and 11-dimensional su-

pergravities [5, 8–10] but it has been used before in the context of minimal 5-dimensional supergravity

[7].
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and

Θ∓ =
1

4
Γihi + Θ̂∓ , Ai = − i

2

(
∂αK∂iz

α − ∂ᾱK∂izᾱ
)
. (3.10)

Similarly, the gaugini KSEs (3.2) give

Aα(±)η± = 0 , (3.11)

where

Aα(±) = ∓iImNIJ
[
Im
(
(ΦJ + iQJ)Dβ̄X̄Igαβ̄

)
− iΓ5Re

(
(ΦJ + iQJ)Dβ̄X̄Igαβ̄

)]
+Γi∇̂i

[
Rezα − iΓ5Imzα

]
+ 2gξI

[
Im
(
Dβ̄X̄Igαβ̄

)
− iΓ5Re

(
Dβ̄X̄Igαβ̄

)]
. (3.12)

The KSEs (3.8) and (3.12) can be thought of as the naive restriction of the gravitino and

gaugini KSEs on the spatial horizon section S.

Furthermore, one also establishes from the analysis of the integrability conditions that

if η− satisfies the above KSEs, then

η+ = Γ+Θ−η− , (3.13)

also is a Killing spinor. To see whether η+ 6= 0, one has to show that Ker Θ− = {0} which

is demonstrated below.

3.3 Ker Θ− = {0}

To show this, we shall use contradiction. Suppose that there is exists η− 6= 0 such that

Θ−η− = 0. It follows that

Θ+η− =
(
Θ+ −Θ−

)
η−

= ImNIJ
(

Γ5Re
(
(ΦI + iQI)XJ

)
− iIm

(
(ΦI + iQI)XJ

))
η− . (3.14)

It then follows from (3.8) that

∇̂i ‖ η− ‖2= −hi ‖ η− ‖2 , (3.15)

and so dh = 0 as η− is a parallel spinor and so is nowhere vanishing. The integrability

condition (C.2) further implies that ∆ = 0. On taking the divergence of (3.15), one then

obtains

∇̂i∇̂i ‖ η− ‖2=

(
− ImNIJ

(
ΦIΦJ +QIQJ

)
− 2V

)
‖ η− ‖2 , (3.16)

As we have assumed that ImNIJ is negative definite, and also V ≤ 0, an application of the

maximum principle reveals that

ΦI = QI = 0 , V = 0 , (3.17)
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and also ‖ η− ‖2= const. Substituting the constant norm condition into (3.15), we obtain

h = 0.

Substituting all of these conditions back into the condition Θ−η− = 0, one obtains

ξI

(
ImXI + iΓ5ReXI

)
η− = 0 , (3.18)

which implies ξIX
I = 0 which contradicts our assumptions on the couplings. Thus, we

establish that Ker Θ− = {0}.
One consequence of the above result is that for all horizons φ+ 6= 0. To see this, since

our backgrounds are supersymmetric either η+ or η− must not vanish. If η+ 6= 0, then

φ+ 6= 0. On the other hand if η− 6= 0, then also φ+ 6= 0 as can be seen from (3.6) and

Ker Θ− = {0}. In particular, this means that all supersymmetric near-horizon geometries

must admit a non-zero spinor φ+ satisfying (C.5), (C.1), (C.3), (C.7), (C.8) and (C.10).

4 Counting the supersymmetries of horizons

In this section, we shall demonstrate the first consequence of the horizons conjecture which

is the counting of supersymmetries of N = 2 supergravity horizons as stated in the intro-

duction. For this, we shall establish two Lichnerowicz type theorems and then we shall

use index theory to count the number of supersymmetries preserved by the near horizon

geometries.

4.1 Lichnerowicz type Theorem for φ+

The Killing spinor equations on η+ have been reduced to the naive restriction of the

gravitino and gaugini KSEs on S (3.8) and (3.12), respectively. Let us define the horizon

Dirac operators

D(±) ≡ Γi∇̂(±)
i = Γi∇̂i +

i

2
ΓiAiΓ5 + igΓiξIB

I
i − 2Θ̂∓ ∓

1

4
Γihi . (4.1)

Here we shall establish the Lichnerowicz type theorem

∇̂(+)
i φ+ = 0 and Aα(+)φ+ = 0 ⇐⇒ D(+)φ+ = 0 . (4.2)

The proof of the Lichnerowicz type theorem for η+ spinor is similar. It is clear that if

φ+ is Killing, then it is a zero mode of the D(+) and so one direction is straightforward.

To prove the converse, we shall assume that the near horizon geometries preserve one

supersymmetry5and that the maximum principle applies.

The assumption of the existence of one supersymmetry requires some explanation. We

have shown in appendix C that the fields of the near horizon geometries that preserve one

supersymmetry satisfy certain at most first order differential conditions which depend on

the choice of the Killing spinor via a function κ. These conditions are necessary to establish

5This assumption is not necessary for 11-dimensional and type II horizons in [5, 8–10] but this assumption

has been used before for the 5-dimensional horizons [7].
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the Lichnerowicz type theorems. However although the conditions (C.24), (C.25), (C.29),

(C.30), (C.31), (C.32), (C.34), (C.35) and (C.36) are used, κ is not required to be related to

the spinor under investigation in the Lichnerowicz type theorem. In other words, we use the

at most first order differential conditions on the fields that are derived from the requirement

of one supersymmetry but the Lichnerowicz type theorems are valid for every zero mode of

the horizon Dirac operators irrespectively on whether this zero mode is associated to the

Killing spinor used to establish the differential relations.

To proceed one can show utilizing (C.29) that the gaugini algebraic condition can be

rewritten as

Aα(+)φ+ = 0 , (4.3)

where now

Aα(+) = Γi∇̂iRezα + iΓ5Γi∇̂iImzα + 2g(1− κΓ5)

(
ξIIm

(
Dβ̄X̄Igαβ̄

)
− iΓ5ξIRe

(
Dβ̄X̄Igαβ̄

))
. (4.4)

Next assume that φ+ is a zero mode of the horizon Dirac operator, D(+)φ+ = 0, then after

some computation which is described in appendix D, one can show that

∇̂i∇̂i ‖ φ+ ‖2 −hi∇̂i ‖ φ+ ‖2 = 2〈∇̂(+)iφ+, ∇̂(+)
i φ+〉

+ 〈Aβ(+)φ+,
(
Re(gαβ̄) + iΓ5Im(gαβ̄)

)
Aα(+)φ+〉 . (4.5)

The right-hand-side of this expression is a sum of positive definite terms. The maximum

principle then implies that η+ is a Killing spinor and that

∂i ‖ φ+ ‖= 0 . (4.6)

We conclude by stating the Lichnerowicz type theorem for η+ spinors. In particular,

we have that

∇̂(+)
i η+ = 0 and Aα(+)η+ = 0 , ⇐⇒ D(+)η+ = 0 , (4.7)

and

‖ η+ ‖= const , (4.8)

where ∇̂(+), Aα(+) and D(+) are defined by (3.9), (4.4) and (4.1), respectively.

4.2 Lichnerowicz type Theorem for η− spinors

There is an analogous Lichnerowicz type theorem for η− spinors. In particular, one can

show that

∇̂(−)
i η− = 0 and Aα(−)η− = 0 ⇐⇒ D(−)η− = 0 , (4.9)
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where the operator ∇̂(−) is defined in (3.9), A(−) is given in (3.12) and upon using (C.29)

can be expressed as

Aα(−) ≡ Γi∇̂iRezα + iΓ5Γi∇̂iImzα

+ 2g(1 + κΓ5)

(
ξIIm

(
Dβ̄X̄Igαβ̄

)
− iΓ5Re

(
Dβ̄X̄Igαβ̄

))
, (4.10)

and the horizon Dirac operator is

D(−) ≡ Γi∇̂(−)
i . (4.11)

We have again assumed that the near horizon geometries preserve one supersymmetry and

we shall use this in a way that has been explained for φ+ spinors in the previous section.

It is clear that if η− is a Killing spinor, then it is also a zero mode of the horizon Dirac

operator. To establish the converse, take η− to be a zero mode of the horizon Dirac operator

D(−), D(−)η− = 0, and after some computation that is described in appendix D, one can

establish the identity

∇̂i∇̂i ‖ η− ‖2 +∇̂i
(
hi ‖ η− ‖2

)
= 2〈∇̂(−)iη−, ∇̂(−)

i η−〉

+ 〈Aβ(−)η−,
(
Re(gαβ̄) + iΓ5Im(gαβ̄)

)
Aα(−)η−〉 . (4.12)

The right-hand-side of this expression is a sum of positive definite terms. On integrating

both sides of this expression over S, which is taken to be compact without boundary,

the contribution from the left-hand-side vanishes. So the integral of the right-hand-side

vanishes as well. As it is the sum of positive terms, this implies that η− is Killing spinor

as required.

4.3 Counting Supersymmetries

The number of supersymmetries of near horizon geometries is N = N+ + N− where N±
is the number of linearly independent η± Killing spinors. On the other hand, the two

Lichnerowicz type theorems (4.7) and (4.9) we have established for both the η± spinor

imply that

N± = dim Ker D(±) . (4.13)

Moreover one can easily show that

Γ−(D(+))† = D(−)Γ− , (4.14)

which implies that

dim
(
Ker(D(+)†)

)
= dim

(
Ker(D(−))

)
. (4.15)

On the other hand [30]

Index
(
D(+)

)
≡ dim Ker D(+) − dim Ker (D(+)† = N+ −N− . (4.16)
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Therefore, the number of supersymmetries preserved by the near horizon geometries can

be expressed as

N = index
(
D(+)

)
+ 2N− . (4.17)

It remains to calculate index (D(+)). For this observe that from (4.1) and using the

conventions in appendix A that one can write

D(+) = Γi∇̂i +
i

2
ΓiAiΓ5 + igΓiξIB

I
i − 2Θ̂− −

1

4
Γihi

= σi ⊗ σ3∇̂i −
i

2
σiσ3 ⊗ σ3Ai + igσi ⊗ σ3ξIB

I
i − 2Θ̂− −

1

4
σi ⊗ σ3hi

= σi∇̂i −
i

2
σiσ3Ai + igσiξIB

I
i − 2Θ̂− −

1

4
σihi , (4.18)

where in the last equality we have used Γ+η+ = 0, or equivalently I2 ⊗ σ3η+ = η+, and

identified σi ⊗ 1 = σi and σiσ3 ⊗ 1 = σiσ3. Using the chirality operator σ3 on S the above

operator further decomposes into two other operators as

D(+) = D(+)
+ ⊕D(+)

− , (4.19)

where

D(+)
± = σi∇̂i ∓

i

2
σiAi + igσiξIB

I
i − 2Θ̂− −

1

4
σihi . (4.20)

To continue observe that

D(+)
+ : Γ(S+ ⊗K

1
2 ⊗ L)→ Γ(S− ⊗K

1
2 ⊗ L) ,

D(+)
− : Γ(S− ⊗ K̄

1
2 ⊗ L)→ Γ(S+ ⊗ K̄

1
2 ⊗ L) , (4.21)

where S± are the bundles of chiral/antichiral spinors on S, respectively, K is the pull-back

of the Hodge bundle on S, L is the line bundle with connection ξIB
I and Γ(E) denotes

the smooth sections of the vector bundle E.

The index of D(+) can be calculated as follows.

index
(
D(+)

)
= index

(
D(+)

+

)
+ index

(
D(+)
−
)

= index
(
D(+)

+

)
− index

(
(D(+)
− )†

)
=
(1

2
c1(K) + c1(L)

)
−
(1

2
c1(K̄) + c1(L)

)
= c1(K) , (4.22)

where we have used that D(+)
+ and (D(+)

− )† have the same principal symbol as that of

twisted Dirac operators with the bundles K
1
2 ⊗ L and K̄

1
2 ⊗ L, respectively, and so the

same index.

Therefore, we have found that

N = 2c1(K) + 2N− = 2c1(K) + 4` , (4.23)

as N− is an even number because the D(−) is linear over the complex numbers. The

additional factor of 2 in front of c1(K) appears because the index is computed over the

complex numbers while our counting of supersymmetries is over the real numbers.

In many cases of interest c1(K) vanishes. In particular, we shall see that if N− 6= 0, or

equivalently ` 6= 0, then c1(K) = 0. This is because the pull-back of the Hodge bundle on

S in all these cases is trivial. This will be proven after a detailed analysis of the geometries

of the horizons in section 6. Conversely, if c1(K) = 0 then N = 4`, so all supersymmetric

solutions with c1(K) = 0 must have ` 6= 0.
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5 sl(2,R) symmetry

We shall demonstrate that all supersymmetric horizons with N− 6= 0, or equivalently

c1(K) = 0 in (1.1), of N = 2 gauged supergravity exhibit an sl(2,R) symmetry which is

the second part of the horizons conjecture as stated in the introduction. To prove this,

first observe that if ε1 and ε2 are Killing spinors, then the 1-form bilinear

K(ε1, ε2) = Re〈(Γ+ − Γ−)ε1,Γµε2〉 eµ , (5.1)

is associated with a Killing vector which in addition leaves all other fields invariant, see [21–

23] and also appendix E. The former property is a consequence of the gravitino KSE. Sup-

pose now that N− 6= 0. We have also shown that if η− is Killing spinor, then η+ = Γ+Θ−η−
is also a Killing spinor (3.13). Using these, we can construct two linearly independent

Killing spinors over the whole spacetime associated with the pairs (η−, 0) and (η−, η+)

which after a rearrangement can be written as

ε1 = η− + uη+ + ruΓ−Θ+η+ , ε2 = η+ + rΓ−Θ+η+ ; η+ = Γ+Θ−η− . (5.2)

These give rise to three 1-form bi-linears as

K1 = Re 〈(Γ+ − Γ−)ε1,Γµε2〉 eµ = (2rRe 〈Γ+η−,Θ+η+〉+ 4ur2 ‖ Θ+η+ ‖2) e+

− 2u ‖ η+ ‖2 e− +Wie
i ,

K2 = Re 〈(Γ+ − Γ−)ε2,Γµε2〉 eµ = 4r2 ‖ Θ+η+ ‖2 e+ − 2 ‖ η+ ‖2 e− ,

K3 = Re 〈(Γ+ − Γ−)ε1,Γµε1〉 eµ = (2 ‖ η− ‖2 +4ruRe 〈Γ+η−,Θ+η+〉+ 4r2u2 ‖ Θ+η+ ‖2)e+

− 2u2 ‖ η+ ‖2 e− + 2uWie
i ,

(5.3)

where to simplify the expressions for K1,K2 and K3 somewhat we have used the fact that

‖ η+ ‖ is constant (4.8), and have set

Wi = Re 〈Γ+η−,Γiη+〉 , (5.4)

and also have used

Re〈η+,ΓiΘ+η+〉 = Re〈η+,ΓiΘ−η+〉 = 0 , (5.5)

which follows from a direct computation utilizing the expressions for Θ±.

Furthermore, the requirement that all the above three 1-forms give rise to Killing

vector fields implies the conditions, see also appendix E,

∇̂(iWj) = 0 , L̂Wh = 0 , L̂W∆ = 0 , 4 ‖ Θ+η+ ‖2= ∆ ‖ η+ ‖2 ,

−2 ‖ η+ ‖2 −hiW i + 2Re 〈Γ+η−,Θ+η+〉 = 0 , iW (dh) + 2dRe 〈Γ+η−,Θ+η+〉 = 0 ,

2Re 〈Γ+η−,Θ+η+〉 −∆ ‖ η− ‖2= 0 , W+ ‖ η− ‖2 h+ d ‖ η− ‖2= 0 . (5.6)

Using the above expressions, observe that K1,K2 and K3 can be simplified further and

also one can show that

LW ‖ η− ‖2= 0 . (5.7)
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In addition to the Killing vectors associated with K1, K2 and K3, the geometry of space-

time is further restricted by the KSEs and field equations of the theory. An exhaustive

description of the geometry of the horizons will be given in the next section.

To demonstrate that the horizons exhibit an sl(2,R) symmetry, we use the various

identities derived above (5.6) to write the vector fields associated to the 1-forms K1,K2

and K3 (5.3) as

K1 = −2u ‖ η+ ‖2 ∂u + 2r ‖ η+ ‖2 ∂r +W i∂̂i ,

K2 = −2 ‖ η+ ‖2 ∂u ,
K3 = −2u2 ‖ η+ ‖2 ∂u + (2 ‖ η− ‖2 +4ru ‖ η+ ‖2)∂r + 2uW i∂̂i , (5.8)

where we have used the same symbol for the 1-forms and the associated vector fields. A

direct computation then reveals using (5.7) that

[K1,K2] = 2 ‖ η+ ‖2 K2 , [K2,K3] = −4 ‖ η+ ‖2 K1 , [K3,K1] = 2 ‖ η+ ‖2 K3 . (5.9)

Therefore all such horizons with non-trivial fluxes admit an sl(2,R) symmetry subalgebra.

The orbits of the sl(2,R) symmetry are either two or three dimensional depending on

whether W vanishes or not. In the former case, the spacetime is a warped product of AdS2

with S.

6 Geometry of the Near-Horizon Solutions

In this section, we shall summarize the local forms of all near-horizon geometries of N = 2

gauged supergravity with c1(K) = 0, which implies that N− 6= 0. In fact, as a consequence

of the following analysis, it can also be easily seen that the converse holds, i.e. N− 6= 0

implies that c1(K) = 0. This is because if N− 6= 0 then the scalars locally depend on at

most one coordinate or they are constant. As a result the first Chern class of the pull-back

of the Hodge bundle on S vanishes. Hence c1(K) = 0 if, and only if, N− 6= 0. All such

near-horizon geometries preserve either 4 or 8 supersymmetries. As c1(K) = 0 implies that

N− = N+, the global argument given previously implies that the KSEs (3.8) and (3.11)

admit the same number of η− and η+ spinor solutions.

The function

κ =‖ φ+ ‖−2 〈φ+,Γ5φ+〉 , (6.1)

plays a particularly important role in the analysis, because the metric and other fields

depend on it, see also appendices C and G. Observe that |κ| ≤ 1 as a consequence of the

Cauchy-Schwarz inequality and κ = ±1 iff φ+ is an eigenspinor of Γ5 with eigenvalue ±1.

To examine the geometry of near horizon backgrounds, we are mostly concerned with

solving the conditions (C.24), (C.25), (C.29), (C.30), (C.31), (C.32), (C.35) and (C.36)

on the fields which arise from the KSEs on φ+ and for this we also make use of some of

the Einstein equations (2.16)-(2.19) according to need. Note that the independent field

equations are (2.14) for the vector fields, (2.15) for the scalars, and the Einstein equations

(2.16) and (2.19). Moreover, we have verified that for all supersymmetric near horizon
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backgrounds (2.14) is automatically satisfied in appendix H. The scalar field equations

(2.15) have not at any point been used in the analysis of any of the KSE. Furthermore, it

has been shown in [21] that the scalar field equations are implied by supersymmetry and

the remaining field equations.

In many of the cases we consider, it turns out that the scalar fields zα have a non-trivial

dependence on the co-ordinate κ. Such near-horizon solutions have also been considered in

the context of the entropy function formalism [31], in which a SL(2,R)× U(1) symmetry

was assumed, together with spherical topology of the horizon spatial cross-section S.

The solution of the (C.24), (C.25), (C.29), (C.30), (C.31), (C.32), (C.35) and (C.36)

equations and field equations is arranged so that all the other fields are determined in terms

of the scalar fields of the vector multiplets and κ. These in turn obey non-linear first order

differential equations. In what follows, we shall not give details of the proof. Instead, we

shall simply state the results with some minimal explanation. A more detailed derivation

can be found in appendix G.

6.1 Warped AdS2 horizons; W ≡ 0

It can be shown using the maximum principle that for all these backgrounds

∆ > 0 , ξIΦ
I = 0 . (6.2)

Furthermore, the associated vector field to

τ = ?Sh , (6.3)

leaves the field zα,∆, h,ΦI , QI invariant. As a result, there are two cases to consider

depending on whether or not h = 0.

6.1.1 Solutions with W = h ≡ 0

The conditions from supersymmetry and the field equations imply that the fields zα, κ, ∆,

ΦI and QI are all constant, with ∆ > 0. The spacetime metric is then given by

ds2 = 2du(dr − 1

2
r2∆du) + ds2

S , (6.4)

where the Ricci scalar of S is given by

R̂ = 2∆ + 4V , (6.5)

where

∆ = −1

2
ImNIJ

(
ΦIΦJ +QIQJ

)
− V . (6.6)

So the spacetime is AdS2×S where S is T 2, S2 or H2 according to whether 2∆ + 4V > 0,

2∆ + 4V = 0 or 2∆ + 4V < 0, respectively.

The constant fields zα, κ, ∆, ΦI and QI are not arbitrary. In particular, as h = 0,

(C.24) implies that κ2 = 1. Also, (C.29) must be imposed, which relates the electric and

magnetic parts of the U(1) fields in terms of the scalars.
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6.1.2 Solutions with W ≡ 0 and h 6= 0.

Such solutions are warped products AdS2 ×w S. Adapting suitable coordinates along h

and τ and after a further coordinate transformation, one finds that the near-horizon data

is then given by

∆ = 4ν2ex, h = dx,

ds2
S =

1

16g2|ξIXI |2(1− κ2)
dx2 + 16g2L2(1− κ2)e−xdψ2 , (6.7)

together with

ΦI + iQI = −4iν
|ξJXJ |
ξT X̄T

e
x
2 X̄I − 2igκξJ ImN−1IJ , (6.8)

where ν, L are a real constants. The scalars zα and κ depend only on x and satisfy

dzα

dx
=

1

2ξJX̄J
ξIDβ̄X̄Igαβ̄,

dκ

dx
= κ− ν

2g|ξIXI |
e
x
2 . (6.9)

On setting r = e−xρ, the spacetime metric is

ds2 = 2e−xdu
(
dρ− 2ν2ρ2du) +

1

16g2|ξIXI |2(1− κ2)
dx2 + 16g2L2(1− κ2)e−xdψ2 ,(6.10)

which is a warped product AdS2 ×w S with warp factor e−x.

In this case, we have solved all the (C.24), (C.25), (C.29), (C.30), (C.31), (C.32),

(C.35) and (C.36) equations.

6.2 Solutions with W 6≡ 0

The spacetime metric as well as all the other fields are invariant under the action of W 6= 0.

W also leaves invariant the metric on S as well as the other near horizon data h, zα, ΦI ,

QI , and ∆. Furthermore, the Lie derivatives of κ, and ‖ η− ‖2 with respect to W also

vanish. We present the proof of these in Appendix G. There are several cases to consider

and we summarize the local form of the fields below.

6.2.1 Solutions with W 6≡ 0 and κ = const

For all these solutions h 6= 0, dh = 0, and

ΦI + iQI = −2igκ

(
ξJ ImN−1IJ + 4ξJX

JX̄I

)
, (6.11)

and

∆ = 16g2κ2|ξIXI |2 , (6.12)

see appendix G. Furthermore because of (G.47), R̂ = (1 + κ2)(1 − κ2)−1∇̂ihi, the Euler

number of S vanishes and so S is a topological 2-torus. There are two different subcases

to consider, corresponding as to whether ‖ η− ‖2 is constant or not.
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‖ η− ‖2 constant

If ‖ η− ‖2 is constant, then one finds that (G.1) implies that

‖ η− ‖2 h+W = 0 , R̂ = 0 , |ξIXI |2 = const. (6.13)

Thus h is covariantly constant and S is a torus. Then one can introduce local co-ordinates

x, y on S such that

h = dx, ?Sh = dy , (6.14)

so that the zα, ΦI and QI depend only on y. In these co-ordinates, the metric is

ds2 = 2du

(
dr + rdx− 8g2κ2|ξIXI |2r2du

)
+

1

16g2(1− κ2)|ξIXI |2

(
dx2 + dy2

)
,(6.15)

and the scalars zα satisfy

dzα

dy
=

i

2ξJX̄J
ξIDβ̄X̄Igαβ̄ . (6.16)

The ΦI and QI are given by (6.11) and ∆ is constant given by (6.12); the scalars also must

satisfy

gαβ̄ξIDαXIξJDβ̄X̄J = |ξIXI |2, and ImN−1IJξIξJ = −4|ξIXI |2 . (6.17)

‖ η− ‖2 non-constant

For this class of solutions iWh is a negative constant. So we set

iWh = −µ2 , (6.18)

and introduce coordinates x, ψ on S as

W = µ2 ∂

∂ψ
, µ2x =‖ η− ‖2 . (6.19)

Then after some extensive analysis which utilizes the maximum principle and is presented

in appendix G, one can show that

∆ = κ = 0 , ΦI = QI = 0 , h = −dψ , (6.20)

ds2
S =

1

x

((
xdψ − dx

)2
+

1

16g2|ξIXI |2x− 1
dx2

)
, (6.21)

and

dzα

dx
= − i

2x

(
1√

16g2|ξLXL|2 − 1
− i
)

1

ξJX̄J
ξIDβ̄X̄Igαβ̄ . (6.22)

It follows that the spacetime metric is given by

ds2 = 2du(dr − rdψ) +
1

x

((
xdψ − dx

)2
+

1

16g2|ξIXI |2x− 1
dx2

)
, (6.23)

which concludes the analysis.
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6.2.2 Solutions with W 6≡ 0 and κ 6= const.

The local coordinates in this case are chosen to be

κ , φ ; W =
∂

∂ψ
. (6.24)

The relation between φ and ψ can be found in appendix G. Furthermore, one sets

A+ iB = κξIX̄
IG , G = − 2ig

1− iY
; Y 6= 0,−i , (6.25)

and after some extensive analysis which has been presented in appendix G, one finds that

Ȳ

Y
=
κ+ ic

κ− ic
, (6.26)

where c is a real constant, and

dG
dκ

=
1

2κ(κ+ ic)

(
κG + ig(κ+ ic)

1
2G + ig

)(
ig(κ− ic)G

κG + ig(κ+ ic)
(1− i

g
G)

− 1

|ξLXL|2
GξIDαXIξJDβ̄X̄Jgαβ̄

)
. (6.27)

There are two cases to investigate depending on whether κG + 2ig(κ+ ic) vanishes or not.

κG + 2ig(κ+ ic) 6= 0

In this case, after some computation which is explained in appendix G, one finds that

∆ =
16g2κ2|ξIXI |2

|1− iY |2
, (6.28)

dzα

dκ
=

1

2κξJX̄J
(1 + iY −1)ξIDβ̄X̄Igαβ̄ , (6.29)

h = κ−1

(
1− c

(κ+ ic)Y

)
dκ− (1− κ2)dφ , (6.30)

and

ΦI + iQI = − 8igκ

1 + iȲ
ξJX

JX̄I − 2igκImN−1IJξJ , (6.31)

where ψ = p
16g2φ and p is an integration constant which appears at an intermediate step.

Moreover, the spacetime metric is

ds2 = 2du

(
dr + r

[
κ−1

(
1− c

(κ+ ic)Y

)
dκ− (1− κ2)dφ

]
− r2 8g2κ2|ξIXI |2

|1− iY |2
du

)
+ ∆−1

(
1

|Y |2(1− κ2)
dκ2 + (κ2 + c2)(1− κ2)dφ2

)
. (6.32)
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From these data after solving the first order non-linear differential equations, one can

construct explicit solutions for each of the theories.

κG + 2ig(κ+ ic) = 0

This special case corresponds to taking c 6= 0, with

Y =
c

κ+ ic
. (6.33)

Furthermore, ‖ η− ‖2= const, |ξIXI |2 = const, and (G.89) implies that

ξIDαXIξJDβ̄X̄Jgαβ̄ = |ξIXI |2 . (6.34)

The remainder of the near-horizon data is given by (6.28)-(6.31) for this choice of Y with

c 6= 0.

In all the four cases above, we have solved all the (C.24), (C.25), (C.29), (C.30), (C.31),

(C.32), (C.35) and (C.36) equations.

7 Degenerate Marginally Trapped Surfaces

The definition of what is a black hole spacetime is a long standing problem in general

relativity, see [28] for a review. In particular it is desirable to have a quasi-local definition

of what is a black hole horizon. An investigation of this question for extreme black holes

has revealed that the degenerate Killing horizons that occur in extreme black holes exhibit

a marginally trapped surface which after a suitable deformation becomes untrapped both

inside and outside the horizon [24–27]. From the perspective of the Killing horizons, one

then turn these conditions into criteria for a near horizon geometry to extend to a full black

hole spacetime. In particular, these conditions can be stated as follows [24, 27]. Given the

1-form h on S, there is a unique positive function Γ, and a divergence-free 1-form h′ such

that

h = Γ−1h′ − d log Γ . (7.1)

For S to be a marginally trapped surface, it is required that∫
S

Γγ(1) > 0 , (7.2)

where γ(1) is a function associated with the deformation of the metric of S. Then the

condition to have untrapped surfaces both inside and outside the horizon is that the integral∫
S
γ(1)(F ′ − (h′)2) < 0 , (7.3)

where F ′ = −Γ2∆.

For the supersymmetric horizons of N = 2 supergravity we are considering , as well

as the horizons of 11-dimensional and type II supergravities with fluxes [5, 6, 8–10], which
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satisfy the criteria of the second part of the horizon conjecture and have a marginally

trapped surface using (G.1), one finds that

h′ = −W, Γ =‖ η− ‖2 , (7.4)

which in turn gives ∫
S

Γγ(1) =

∫
S
‖ η− ‖2 γ(1) > 0 . (7.5)

Moreover,

F ′ = −Γ2∆ = − ‖ η− ‖4 ∆ . (7.6)

For all such supersymmetric near-horizon solutions, the conditions (5.6) imply that

W 2 = − ‖ η− ‖2 hiWi (7.7)

and

∆ ‖ η− ‖2 −hiWi = 2 ‖ η+ ‖2 , (7.8)

and hence

F ′ − (h′)2 = −2 ‖ η− ‖2‖ η+ ‖2 . (7.9)

So one obtains ∫
S
γ(1)

(
F ′ − (h′)2

)
= −2 ‖ η+ ‖2

∫
S
‖ η− ‖2 γ(1) < 0 (7.10)

as a consequence of (7.5), where we have made use of the condition ‖ η+ ‖2= const.

Hence, (7.3) holds automatically for all supersymmetric near horizon geometries with

fluxes and N− 6= 0 satisfying (7.5). Therefore assuming the validity of the horizon conjec-

ture, we have shown the following: All supersymmetric horizons with fluxes and N− 6= 0 for

which the spatial horizon section is a marginally trapped surface contain untrapped surfaces

both just inside and outside the horizon.

8 Concluding remarks

We have confirmed the validity of the horizon conjecture for all near horizon geometries of

N = 2, D = 4, gauged supergravity coupled to any number of vector multiplets under some

mild restrictions on the couplings. As a result, we have provided a formula which counts

the number of superymmetries of all such backgrounds (1.1) as well as demonstrated that

those with N− 6= 0, or equivalently c1(K) = 0, in (1.1) exhibit a sl(2,R) symmetry. We have

also provided an exhaustive local description of supersymmetric near horizon geometries.

The horizon conjecture has been confirmed for a large number of theories. It demon-

strates that the emergence of conformal symmetry near the horizon of supersymmetric

black holes is a consequence of the fluxes of supergravity theories and the smoothness of
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the horizons. Therefore it is a generic property of these theories and it does not depend

on the details of the black hole solution under consideration.

Apart from this, we have demonstrated another application of the horizon conjecture.

In particular, we have shown that the horizon conjecture implies that all those horizons

for which the horizon section is a marginally trapped surface have untrapped surfaces both

just inside and outside the horizon. As a result, it is possible that they may be extended

to full extreme black hole solutions. As it is likely that the horizon conjecture holds for

all supergravity theories, perhaps under some mild restrictions on the couplings, the above

result holds for all such supersymmetric near horizon geometries. As the first obstruction to

extend the near horizon geometries to full black hole solutions can be removed, it indicates

that many of the supersymmetric horizons could be extended to full black hole solutions.

However not all criteria for this are known and so the question of which of the near horizon

geometries are extendable and which are not remains an open question.

Other aspects of our results are the plethora of new Lichnerowicz type theorems that

have been demonstrated, and the extensive applications that the maximum principle has in

the context of horizons. The former results can be adapted to the theory of Clifford bundles

and so they can used for applications to geometry. The latter indicate that the maximum

principle has a close relationship with supersymmetry. Perhaps this is not too surprising as

supersymmetry imposes restrictions on the couplings of various theories which are essential

for the validity of the various maximum principle formulae. However the precise relation

is not apparent and it would be of interest to investigate it in the future.
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A Conventions

A.1 Spin Connection and Curvature

The non-vanishing components of the spin connection of the near horizon geometry (2.7)

in the frame basis (2.9) are

Ω−,+i = −1

2
hi , Ω+,+− = −r∆, Ω+,+i =

1

2
r2(∆hi − ∂i∆),

Ω+,−i = −1

2
hi, Ω+,ij = −1

2
rdhij , Ωi,+− =

1

2
hi, Ωi,+j = −1

2
rdhij ,

Ωi,jk = Ω̂i,jk , (A.1)

where Ω̂ denotes the spin-connection of the spatial horizon cross section S in with basis

ei. If f is any function of spacetime, then frame derivatives are expressed in terms of

co-ordinate derivatives as

∂+f = ∂uf +
1

2
r2∆∂rf , ∂−f = ∂rf , ∂if = ∂̃if − r∂rfhi . (A.2)

The non-vanishing components of the Ricci tensor is the basis (2.9) are

R+− =
1

2
∇̂ihi −∆− 1

2
h2 , Rij = R̂ij + ∇̂(ihj) −

1

2
hihj ,

R++ = r2
(1

2
∇̂2∆− 3

2
hi∇̂i∆−

1

2
∆∇̂ihi + ∆h2 +

1

4
(dh)ij(dh)ij

)
,

R+i = r
(1

2
∇̂j(dh)ij − (dh)ijh

j − ∇̂i∆ + ∆hi
)
, (A.3)

where R̂ is the Ricci tensor of the horizon section S in the ei frame.

A.2 Spinor Conventions

We first present a matrix representation of Cliff(3, 1) adapted to the basis (2.9). The

module of Dirac spinors has been identified with C4 and we have set

Γi = σi ⊗ σ3 =

(
σi 0

0 − σi

)
, i = 1, 2 ; Γ0 = iI2 ⊗ σ2 , Γ3 = I2 ⊗ σ1 ;

Γ+ =

(
0
√

2 I2
0 0

)
, Γ− =

(
0 0√
2 I2 0

)
, (A.4)

where σi, are the Hermitian Pauli matrices σiσj = δijI2 + iεijkσk. Note that

Γ+− =

(
I2 0

0 − I2

)
, (A.5)

and we define

Γ5 = iΓ+−12 = −σ3 ⊗ σ3 . (A.6)
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It will be convenient to decompose the spinors into positive and negative chiralities with

respect to the lightcone directions as

ε = ε+ + ε− , (A.7)

where

Γ+−ε± = ±ε±, or equivalently Γ±ε± = 0 . (A.8)

With these conventions, note that

Γijε± = ∓iεijΓ5ε± . (A.9)

The inner product, 〈·, ·〉, we use is that for which spacelike gamma matrices are Her-

mitian while time-like ones are anti-Hermitian. When restricted on Spin(2) is also Spin(2)-

invariant. In particular, note that (Γij)
† = −Γij .

B Special Kähler geometry

B.1 Definition

The matter couplings of the N = 2, d = 4 supergravity are described by special Kähler

geometry data. For this, we shall give a brief summary of special Kähler geometry. For a

review of the various approaches to special Kähler geometry, see [32] and references within.

Let M be a Hodge Kähler manifold6, K be the Hodge complex line bundle over M

and E be a flat Sp(2(k+ 1),R) vector bundle E with typical fibre C2(k+1) and compatible

(symplectic) fibre inner product 〈·, ·〉.
Next, consider E ⊗K and introduce the connection on the sections ν of E ⊗K

Dᾱν = Dᾱν −
1

2
∂ᾱKν ,

Dαν = Dαν +
1

2
∂αKν , (B.1)

where D is the flat connection of E, ∂α = ∂/∂zα and zα are homomorphic coordinates of

the Kähler manifold. Observe that the curvature of D is proportional to the Kähler form

of M .

Definition: M is a special Kähler manifold provided that E ⊗K admits a section ν
such that it satisfied the following conditions

Dᾱν = 0 , 〈ν , ν̄〉 = i ,

〈Dαν ,ν〉 = 0 , 〈Dαν ,Dβν〉 = 0 . (B.2)

4
6A Kähler manifold M is Hodge, if the cohomology class represented by the Kähler form is the Chern

class of a line bundle K on M . We have also denoted with K the pull back of the Hodge bundle over S.

Which line bundle K refers to is clear from the context.
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To investigate the consequences of the above definition, first perform a GL(2(k+1),R)

transformation to bring the symplectic inner product 〈·, ·〉 into canonical form7. Then the

above conditions can be re-written as

DᾱXI = DᾱFI = 0 ,

XI F̄I − FIX̄I = i ,

DαFI XI − FI DαXI = 0 ,

DαFIDβXI −DβFIDαXI = 0 , (B.3)

where the section ν has been written in the canonical form as

ν =

(
XI

FI

)
. (B.4)

Observe that the first condition in (B.3) is a covariant holomorphicity condition while the

last condition in (B.3) is implied by the third condition.

Taking the covariant derivative of the second condition in (B.3), we find that

DαXI F̄I −DαFIX̄I = 0 . (B.5)

Next taking that Dβ̄ covariant derivative of the above expression we find that

gαβ̄ ≡ ∂α∂β̄K = i[DαXIDβ̄F̄I −DαFIDβ̄X̄I ] . (B.6)

The gauge couplings N are then defined as

FI = NIJXI , DᾱF̄I = NIJDᾱX̄J . (B.7)

The conditions of special Kähler geometry together with the requirement that M is a

Kähler manifold imply that N is a symmetric matrix. In terms of the gauge couplings, the

second and third equations in (B.3), and (B.6) can be written as

ImNIJXIX̄J = −1

2
, (B.8)

ImNIJXIDαXJ = 0 , (B.9)

gαβ̄ = −2ImNIJDαXIDβ̄X̄J , (B.10)

respectively. As the Kähler metric must be positive definite, it is required that ImN is

negative definite. The fourth equation in (B.3) and (B.5) are automatically implied as N
is a symmetric matrix.

Furthermore from the definition of N , one can establish the identity

U IJ ≡ gαβ̄DαXIDβ̄X̄J = −1

2

(
ImN

)−1 IJ − X̄IXJ . (B.11)

This identity is required in the definition of the scalar potential of the supergravity theory.

7Of course one then can use a local gauge Sp(2(k + 1),R) transformation to set Dα = ∂α and Dᾱ = ∂ᾱ
as D is flat. But this is not necessary in what follows.
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B.2 Prepotential

A special class of solutions for the conditions of special Kähler geometry (B.3) can be

expressed in terms of a holomorphic prepotential as follows. It is well-known that the

solutions of a covariant holomorphicity condition on sections of a vector bundle with respect

to a connection which has (1,1) curvature can be expressed in terms of the holomorphic

sections of the associated holomorphic bundle. In this case, write

ν = e
K
2 u , (B.12)

and observe that

Dαν = e
K
2 Dαu , Dᾱν = e

K
2 Dᾱu , (B.13)

with

Dαu = Dαu+ ∂αKu , Dᾱu = Dᾱu . (B.14)

It is clear from this that in the gauge Dᾱ = ∂ᾱ, the covariant holomorphicity condition on

ν can be solved by setting

ν = e
K
2

(
ZI

∂
∂ZI

F

)
, u =

(
ZI

∂
∂ZI

F

)
, (B.15)

where u is a holomorphic section, ie function only of z, and F (Z) is the prepotential which

is taken to be a homogeneous function of degree two in Z. The use of the homogeneity

condition will become apparent later.

Let us now investigate the remaining conditions of the special Kähler geometry (B.2)

or (B.3) in terms of u. The second condition in (B.3) can now be rewritten as

e−K = −i(ZI ∂̄I F̄ − Z̄I∂IF ) = −2ZI Z̄J Im(∂I∂JF ) , (B.16)

where we have used the homogeneity of the prepotential. The remaining two conditions in

(B.3) are identically satisfied as a consequence of the homogeneity of F . While (B.5) and

(B.6) can now be written as

Im(∂I∂JF )DαZI Z̄J = 0 , gαβ̄ = −∂α∂β̄ log[ZI Z̄J Im(∂I∂JF )] . (B.17)

Furthermore, the identities involving the gauge couplings in terms of u can now be

written as follows. First the definition of the gauge couplings becomes

∂IF = NIJZI , ∂̄I ∂̄J F̄DᾱZ̄J = NIJDᾱZ̄J . (B.18)

Then the remaining identities can be expressed as

e−K = −2ImNIJZI Z̄J , (B.19)

ImNIJZIDαZJ = 0 , (B.20)

gαβ̄ = −2eKImNIJDαZIDβ̄Z̄J . (B.21)

Furthermore, U IJ in (B.11) can be easily written in terms of Z. This concludes the

description of the geometry.
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C Independent KSEs

C.1 KSEs and integrability conditions on S

Substituting the Killing spinor ε (3.7) back into all the KSEs, one obtains from the gravitino

KSE along the lightcone directions the integrability conditions(
1

2
∆ +

i

8
dhijε

ijΓ5 − igξIΦI − Γ+Θ−Γ−Θ+

)
φ+ = 0 , (C.1)

and (
Γ−Θ+Γ+Θ− −

1

2
∆− i

8
dhijε

ijΓ5 − igξIΦI

− iImNIJΓiIm
((
dhΦI

i − iεijdhΦI
j

)
XJ
))
η− = 0 , (C.2)

and (
1

4
Γi
(
∆hi − ∇̂i∆

)
+
i

8
dhijε

ijΓ5Θ+ − igξIΦIΘ+

+ iImNIJΓiIm
((
dhΦI

i − iεijdhΦI
j

)
XJ
)
Θ+

)
φ+ = 0 , (C.3)

where φ+ is defined in (3.6).

We remark that the conditions (C.2) and (C.3) are obtained by making use of the

following identity:

ImNIJΓi
(

Im
(
(∇̂iΦI − hiΦI − iεij(∇̂jΦI − hjΦI))XJ

)
±iΓ5Re

(
(∇̂iΦI − hiΦI − iεij(∇̂jΦI − hjΦI))XJ

))
ξ± = 0. (C.4)

Furthermore, substituting ε given in (3.7) into the µ = i component of the gravitino

KSE (3.1) gives two parallel transport equations

∇̂iφ+ +

(
i

2
AiΓ5 + igξIB

I
i − ΓiΘ− −

i

4
εijh

jΓ5

)
φ+ = 0 , (C.5)

and

∇̂iη− +

(
i

2
AiΓ5 + igξIB

I
i +

1

2
hi − ΓiΘ+ +

i

4
εijh

jΓ5

)
η− = 0 , (C.6)

together with an algebraic integrability condition(
− ∇̂iΘ− +

1

2
∇̂(ihj)Γ

j − 2gξI∇̂i
(
ImXI + iΓ5ReXI

)
− i

4
εijh

jΘ+Γ5

− i
2
Ai
(
Γ5Θ+ + Θ+Γ5

)
− 2gΘ+ΓiξI

(
ImXI + iΓ5ReXI

)
− 3

4
hiΘ+ +

1

4
ΓihjΓ

jΘ+

+
i

2
ImNIJ

[
Im
(
(dhΦI

i − iεijdhΦI
j )X

J
)

+iΓ5Re
(
(dhΦI

i − iεijdhΦI
j )X

J
)])

φ+ = 0 . (C.7)
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Next we consider the gaugini KSEs (3.2). Substituting the spinor ε (3.7) again, we

obtain (
− iImNIJ

[
Im
(
(ΦJ + iQJ)Dβ̄X̄Igαβ̄

)
− iΓ5Re

(
(ΦJ + iQJ)Dβ̄X̄Igαβ̄

)]
+Γi∇̂i

[
Rezα − iΓ5Imzα

]
+ 2gξI

[
Im
(
Dβ̄X̄Igαβ̄

)
− iΓ5Re

(
Dβ̄X̄Igαβ̄

)])
φ+ = 0 , (C.8)

and (
iImNIJ

[
Im
(
(ΦJ + iQJ)Dβ̄X̄Igαβ̄

)
− iΓ5Re

(
(ΦJ + iQJ)Dβ̄X̄Igαβ̄

)]
+Γi∇̂i

[
Rezα − iΓ5Imzα

]
+ 2gξI

[
Im
(
Dβ̄X̄Igαβ̄

)
− iΓ5Re

(
Dβ̄X̄Igαβ̄

)])
η− = 0 , (C.9)

and (
iImNIJ

[
Im
(
(ΦJ + iQJ)Dβ̄X̄Igαβ̄

)
+ iΓ5Re

(
(ΦJ + iQJ)Dβ̄X̄Igαβ̄

)]
Θ+

−Γi∇̂i
[
Rezα + iΓ5Imzα

]
Θ+ + 2gξI

[
Im
(
Dβ̄X̄Igαβ̄

)
+ iΓ5Re

(
Dβ̄X̄Igαβ̄

)]
Θ+

+iImNIJΓiIm

((
dhΦJ

i − iεijdhΦJ
j

)
Dβ̄X̄Igαβ̄

))
φ+ = 0 . (C.10)

The KSEs (C.5), (C.6), (C.8) and (C.9) on η± can be thought of as the naive reduction of

the gravitino and gaugini KSEs on the spatial horizon section S. The remaining conditions

should be thought of as integrability conditions. Typically, the integrability conditions are

not independent. Rather they are implied by (C.5), (C.6), (C.8) and (C.9) on η± and the

field equations.

C.2 Conditions on ‖ φ+ ‖

Having established that φ+ cannot vanish identically as a consequence of Ker Θ− = {0} and

the assumption that the solutions are supersymmetric, we consider further the conditions

on φ+. In particular, we shall establish, via a maximum principle argument, that ‖ φ+ ‖2

does not depend on the co-ordinates of S.

To proceed, note that (C.5) implies that

∇̂i ‖ φ+ ‖2=
1

2
hi ‖ φ+ ‖2 +〈φ+,−2gΓiξI

(
ImXI + iΓ5ReXI

)
φ+〉 , (C.11)

and hence it follows that

∇̂i∇̂i ‖ φ+ ‖2 =
1

2
∇̂ihi ‖ φ+ ‖2 +

1

2
hi∇̂i ‖ φ+ ‖2

+ 〈φ+,−ghiΓiξI
(
ImXI + iΓ5ReXI

)
φ+〉

+ 〈φ+,−4gξIImX
I
(
Θ̂†− + Θ̂−

)
φ+〉

+ 〈φ+,−4igΓ5ξIReXI
(
Θ̂†− − Θ̂−

)
φ+〉

+ 〈φ+,−2gΓi∇̂i
[
ξI
(
ImXI + iΓ5ReXI

)]
φ+〉

+ Re

(
〈φ+,−2iΓiAiΘ̂+Γ5φ+〉

)
, (C.12)
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where

Θ̂± = −gξI
(
ImXI + iΓ5ReXI

)
∓ i

2

(
Im((ΦI + iQI)XJ) + iΓ5Re((ΦI + iQI)XJ)

)
ImNIJ . (C.13)

Next, contract (C.7) with Γi, to obtain(
1

4
∇̂ihi −

1

8
dhijΓ

ij − 2gξIΓ
i∇̂i
(
ImXI + iΓ5ReXI

)
− 1

8
hih

i

−Γi∇̂iΘ̂− − 2gΓiΘ̂+ΓiξI
(
ImXI + iΓ5ReXI

)
− iΓiAiΓ5Θ̂+

)
φ+ = 0 . (C.14)

This expression implies(
1

2
∇̂ihi −

1

4
hih

i

)
‖ φ+ ‖2 +〈φ+,−2gξIΓ

i∇̂i
(
ImXI + iΓ5ReXI

)
φ+〉

+Re

(
〈φ+,−4gΓiΘ̂+ΓiξI

(
ImXI + iΓ5ReXI

)
φ+〉

)
−Re

(
〈φ+, 2iΓ

iAiΘ̂+Γ5φ+〉
)

= 0 . (C.15)

On substituting (C.15) into (C.12) to eliminate the ξIΓ
i∇̂i
(
ImXI + iΓ5ReXI

)
term, and

making use of (C.11), we obtain

∇̂i∇̂i ‖ φ+ ‖2 −hi∇̂i ‖ φ+ ‖2= 0 . (C.16)

On applying the maximum principle8 we find that

∇̂i ‖ φ+ ‖2= 0 , (C.17)

and hence

1

2
hi ‖ φ+ ‖2 +〈φ+,−2gΓiξI

(
ImXI + iΓ5ReXI

)
φ+〉 = 0 , (C.18)

or equivalently

Re

(
〈φ+,ΓiΘ−φ+〉

)
= 0 , (C.19)

or, again, equivalently

hiΓ
iφ+ = 4g

(
ξIImX

I + iΓ5ξIReXI

)(
1− 〈φ+,Γ5φ+〉

‖ φ+ ‖2
Γ5

)
φ+ . (C.20)

These conditions imply that

h2 = 16g2|ξIXI |2
(

1− 〈φ+,Γ5φ+〉2

〈φ+, φ+〉2

)
. (C.21)

As a consequence of the last equation we conclude that 〈φ+,Γ5φ+〉 ‖ φ+ ‖−2 does not

depend on the coordinate u.

8See e.g. [12].
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C.3 Independent KSEs on φ+

In this appendix, we shall first prove that, given the gravitino KSE (C.5) on φ+ and (C.22)

defined below, the algebraic KSEs which arise as integrability conditions (C.1), (C.3),

(C.7), (C.8), (C.10) can be reduced to conditions involving only the bosonic fields and a

function κ on S. Then we shall show that, given these bosonic conditions together with

the bosonic field equations, the KSEs involving φ+ are equivalent to the naive restriction

of the gravitino (C.5) and gaugini (C.8) KSEs on φ+.

To continue, consider

hiΓ
iφ+ = 4g

(
ξIImX

I + iΓ5ξIReXI
)(

1− κΓ5

)
φ+ , (C.22)

an additional condition, where κ is a real function. As (C.22) implies that

κ =
〈φ+,Γ5φ+〉
‖ φ+ ‖2

, (C.23)

(C.22) is a rewriting of (C.20) but without ‖ φ+ ‖ being constant. So (C.22) is equivalent

to (C.18). Furthermore, (C.22) also implies that

κ2 = 1− h2

16g2|ξIXI |2
. (C.24)

Then (C.5) implies that κ satisfies

∇̂iκ = κhi − Im

(
(A− iB)

2gξIXI

)
hi + Re

(
(A− iB)

2gξIXI

)
εi
jhj , (C.25)

where we define the scalars A and B via

A = −gκξIImXI +
1

2
ImNIJRe

(
(ΦI + iQI)XJ

)
,

B = −gκξIReXI − 1

2
ImNIJ Im

(
(ΦI + iQI)XJ

)
. (C.26)

In the analysis which will follow, we shall also make use of the integrability condition of

(C.5), which is

Γj
(
∇̂j∇̂i − ∇̂i∇̂j)φ+ =

1

2
ΓjR̂ijφ+ , (C.27)

where the LHS is evaluated using (C.5). This condition is equivalent to(
− gαβ̄∇̂izβ̄∇̂izα − igαβ̄∇̂izβ̄∇̂jzαεij +

1

4
hih

i + ∆ + ImNIJ(ΦIΦJ +QIQJ)

−1

4
dhijΓ

ij + 2gΓ5ξIQ
I − 2Γi∇̂iΘ̂− − 2ΓjΘ̂−ΓjΘ̂− + 2iΓiAiΓ5Θ̂−

)
φ+ = 0 . (C.28)

Now we are ready to determine the conditions on the fields implied by the remaining

KSEs on φ+. We begin with the condition (C.8). This condition is equivalent to the

following two conditions:
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ΦI + iQI = −2ImNJNXJ(ΦN + iQN )X̄I

− 2igκ

(
ξJ ImN−1IJ + 2ξJX

JX̄I

)
, (C.29)

and

∇̂iRezα − εij∇̂jImzα =
1

2
Re

(
1

ξJX̄J
ξIDβ̄X̄Igαβ̄

)
hi

− 1

2
Im

(
1

ξJX̄J
ξIDβ̄X̄Igαβ̄

)
εi
jhj , (C.30)

where (C.22) has been used in order to obtain (C.30).

Next we shall consider (C.1); this is equivalent to the following conditions:

∆ = 4(A2 +B2) , (C.31)

and

1

8
dhijε

ij + 2gκImNIJRe
(
ξNX̄

N (ΦI + iQI)XJ
)

= 0 . (C.32)

In particular, (C.31) implies that ∆ ≥ 0.

Next, we consider (C.10). We remark that with the definition of the scalars A, B in

(C.26), together with (C.22), one has

Θ+φ+ = (AΓ5 + iB)φ+ . (C.33)

This expression can be used, together with (C.29), to simplify (C.10) considerably. After

some computation, we find that (C.10) is equivalent to:(
− (A− iB)

2ξJXJ
ξIDβ̄X̄Igαβ̄ + 2(A+ iB)ImNIJXJDβ̄X̄Igαβ̄

)(
hi − iεijhj

)
−(A+ iB)

(
∇̂izα − iεij∇̂jzα

)
+ ImNIJDβ̄X̄Igαβ̄

(
∇̂iΦJ − iεij∇̂jΦJ

)
= 0 . (C.34)

Next we consider (C.3). This algebraic KSE is equivalent to(
1

4
∆ +

1

ξJXJ
(AξIReXI −BξIImXI)(A− iB)− (A+ iB)ImNIJΦIXJ

)(
hi − iεijhj

)
−1

4

(
∇̂i∆− iεij∇̂j∆

)
+ (A+ iB)ImNIJXJ

(
∇̂iΦI − iεij∇̂jΦI

)
= 0 . (C.35)

Finally, we consider the algebraic KSE (C.7). On making use of (C.5), after some

further involved computation, one finds

∇̂i(A+ iB)− 1

2
(A+ iB)hi − i(A+ iB)Ai

−1

2
ImNIJX̄J

(
dhΦI

i + iεi
jdhΦI

j

)
+

ξJΦJ

8ξIXI

(
hi − iεijhj

)
= 0 . (C.36)
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Having rewritten the algebraic conditions in this fashion, we shall now reconsider the

condition (C.22). This was obtained via a global analysis in the previous section. However,

no such analogous condition exists for η−. Hence, we wish to exchange the condition (C.22)

for another algebraic condition, (C.8), for which there does exist an analogous condition

for η−, which is (C.9). First, note that if one assumes (C.22), together with (C.29) and

(C.30), then one directly obtains (C.8). Conversely, if one assumes (C.8), together with

(C.29) and (C.30), then one obtains the condition(
Im
(
ξIDβ̄X̄Igαβ̄

)
− iΓ5Re

(
ξIDβ̄X̄Igαβ̄

))
(
hiΓ

i − 4g
(
ξJ ImXJ + iΓ5ξJReXJ

)
(1− κΓ5)

)
φ+ = 0 . (C.37)

Hence, either ξIDαXI = 0, or (C.37) implies (C.22).

We remark that in the special case for which ξIDαXI = 0 then the equations (C.30),

(C.29) and (B.11) imply that the scalars zα are constant, and also

ΦI + iQI = −2ImNJNXJ(ΦN + iQN )X̄I . (C.38)

In this special case, it is then straightforward to show that one can obtain the condition

(C.22) directly from the KSE (C.5) and the bosonic conditions listed above. To see this,

note that (C.11) holds as a consequence of (C.5), and as the scalars are constant one finds

that (C.12) can be simplified to give

∇̂i∇̂i ‖ φ+ ‖2 =
1

2
∇̂ihi ‖ φ+ ‖2 +

1

2
hi∇̂i ‖ φ+ ‖2

+ 〈φ+,−ghiΓiξI
(
ImXI + iΓ5ReXI

)
φ+〉

+ 〈φ+,−4gξIImX
I
(
Θ̂†− + Θ̂−

)
φ+〉

+ 〈φ+,−4igΓ5ξIReXI
(
Θ̂†− − Θ̂−

)
φ+〉 , (C.39)

which can then be further rewritten as

∇̂i∇̂i ‖ φ+ ‖2 −hi∇̂i ‖ φ+ ‖2=

(
∆ +

1

4
hih

i − 4g2|ξIXI |2 − |ImNIJ(ΦI + iQI)XJ |2

− 4g
〈φ+,Γ5φ+〉
‖ φ+ ‖2

Im
(
ξLX̄

LImNIJ(ΦI + iQI)XJ
))
‖ φ+ ‖2 , (C.40)

where we have used (2.16) to eliminate the divergence in h term, together with (C.38).

However, on taking the inner product of (C.28) with φ+ and expanding out the terms,

one finds that the RHS of (C.40) vanishes as a consequence of (C.5) and the Einstein field

equations. Hence, we have

∇̂i∇̂i ‖ φ+ ‖2 −hi∇̂i ‖ φ+ ‖2= 0 , (C.41)

which, via an application of the maximum principle, we get ‖ φ+ ‖= const on S. Then

(C.11), which follows from (C.5), implies (C.22) as claimed.
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C.4 Independent KSEs on η−

In this section, we analyse the various KSEs involving η−. The conditions involving η−
are the u-dependent parts of the conditions on φ+ together with (C.6), (C.2) and (C.9).

We shall assume all of the conditions on the bosonic fields (C.29), (C.30), (C.31), (C.32),

(C.34), (C.35) and (C.36), together with (C.24) and (C.25); which we have previously

obtained.

A consequence of our assumptions is that all the KSEs involving η− which come from

the u-dependent parts of φ+, apart from that of (C.5), are automatically satisfied. In the

case of the u-dependent part of the gaugino equation, (C.8), we remark that this is implied

from (C.5), by making use of the Lichnerowicz theorem analysis as set out in Section 4.1.

We shall show that the conditions on η− corresponding to the u-dependent part of

(C.5), as well as (C.2), are implied by (C.6) and (C.9) together with the bosonic conditions.

We begin with the u-dependent part of (C.5).

C.4.1 The u-dependent part of (C.5)

The u-dependent part of (C.5) can be rewritten as(
∇̂iΘ̂− +

1

8
dhijΓ

j +
1

4

(
∇̂(ihj) −

1

2
hihj

)
Γj −

( i
4
hi +

1

4
εijh

jΓ5

)
ImNIJ

(
Im((ΦI + iQI)XJ)

+ iΓ5Re((ΦI + iQI)XJ)
)
− iAiΓ5Θ̂−

− 2gΘ̂−ΓiξI
(
ImXI + iΓ5ReXI

))
η− = 0 . (C.42)

To proceed, note that the integrability condition of (C.6) can be written as(
1

4
Γj
(
∇̂(ihj) −

1

2
hihj

)
+

1

8
dhijΓ

j − 1

2
Γjgαβ̄∇̂(iz

α∇̂j)zβ̄ + Γi
(1

8
ImNIJ(ΦIΦJ +QIQJ)

− 1

4
V +

i

4
gαβ̄ε

mn∇̂mzβ̄∇̂nzα −
1

2
gξIQ

IΓ5 −
1

2
Γj∇̂jΘ̂+

+
i

2
AjΓ

jΘ̂+Γ5 −
1

2
ΓjΘ̂+ΓjΘ̂+

))
η− = 0 . (C.43)

On computing the difference of (C.42) from (C.43), one then obtains, after making use of

(C.29)(
1

2
Γjgαβ̄∇̂(iz

α∇̂j)zβ̄ + Γi
(
g2gαβ̄ξIDαXIξJDβ̄X̄J(1 + κΓ5)2 − i

4
gαβ̄ε

mn∇̂mzβ̄∇̂nzα
)

−3

2
gIm

(
ξIDαXI∇̂izα

)
− 3i

2
gΓ5Re

(
ξIDαXI∇̂izα

)
+

1

2
gεi

jRe
(
ξIDαXI∇̂jzα

)
− i

2
gΓ5εi

jIm
(
ξIDαXI∇̂jzα

)
−
( i

4
hi +

1

4
εijh

jΓ5

)
ImNIJ

(
Im((ΦI + iQI)XJ) + iΓ5Re((ΦI + iQI)XJ)

)
+
i

4
∇̂i
(

ImNIJ
(
Im((ΦI + iQI)XJ) + iΓ5Re((ΦI + iQI)XJ)

))
+

1

4
εi
jΓ5∇̂j

(
ImNIJ

(
Im((ΦI + iQI)XJ) + iΓ5Re((ΦI + iQI)XJ)

))
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+
1

4
Ai

(
ImNIJ

(
iRe((ΦI + iQI)XJ) + Γ5Im((ΦI + iQI)XJ)

))
− i

4
εi
jAj

(
ImNIJ

(
Im((ΦI + iQI)XJ) + iΓ5Re((ΦI + iQI)XJ)

)))
η− = 0 . (C.44)

To simplify this expression further, we make use of the algebraic condition (C.9), which

can be rewritten, using (C.29), as(
Γi∇̂i

(
Rezα − iΓ5Imzα

)
+ 2g(1 + κΓ5)ξI

(
Im(Dβ̄X̄Igαβ̄)

− iΓ5Re(Dβ̄X̄Igαβ̄)
))
η− = 0 . (C.45)

Acting on the left-hand-side of this expression with Im(ξJDαXJ)− iΓ5Re(ξJDαXJ) gives

the condition (
Γj∇̂j

(
Rezα − iΓ5Imzα

)(
Im(ξJDαXJ) + iΓ5Re(ξJDαXJ)

)
−2g(1 + κΓ5)ξIDαXIξJDβ̄X̄Jgαβ̄

)
η− = 0 . (C.46)

which is used to eliminate the g2 term from (C.44). Also, a further useful identity is

obtained by acting on the left-hand-side of (C.45) with Imgαλ̄ − iΓ5Regαλ̄, to obtain(
g(1 + κΓ5)

(
Im(ξJDαXJ) + iΓ5Re(ξJDαXJ)

)
+
i

2
Γ5

(
Imgαβ̄ + iΓ5Regαβ̄β)Γi∇̂i(Rezβ̄ + iΓ5Imzβ̄)

)
η− = 0 . (C.47)

Using this expression, (C.44) can be rewritten as(
Si + Γ5Ti

)
η− = 0 , (C.48)

where

Si = − i
4
hiImNIJ Im((ΦI + iQI)XJ)− i

4
εi
jhjImNIJRe((ΦI + iQI)XJ)

+
i

2
κgRe(ξIDαXI∇̂izα)− i

2
κgεi

jIm(ξIDαXI∇̂jzα)

+
i

4
∇̂i
(

ImNIJ Im((ΦI + iQI)XJ)

)
+
i

4
εi
j∇̂j

(
ImNIJRe((ΦI + iQI)XJ)

)
+

i

4
AiImNIJRe((ΦI + iQI)XJ)− i

4
εi
jAjImNIJ Im((ΦI + iQI)XJ) , (C.49)

and

Ti =
1

4
hiImNIJRe((ΦI + iQI)XJ)− 1

4
εi
jhjImNIJ Im((ΦI + iQI)XJ)

+
1

2
κgIm(ξIDαXI∇̂izα) +

1

2
κgεi

jRe(ξIDαXI∇̂jzα)

− 1

4
∇̂i
(

ImNIJRe((ΦI + iQI)XJ)

)
+

1

4
εi
j∇̂j

(
ImNIJ Im((ΦI + iQI)XJ)

)
+

1

4
AiImNIJ Im((ΦI + iQI)XJ) +

1

4
εi
jAjImNIJRe((ΦI + iQI)XJ) . (C.50)
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As Si is imaginary and Ti is real, the condition (C.48) is equivalent to(
Ti − Si

)
η− = 0 , (C.51)

where

Ti − Si =
1

4
(hi + iεi

j)ImNIJ(ΦI + iQI)XJ − i

2
κgξIDαXI∇̂izα +

1

2
κgεi

jξIDαXI∇̂jzα

− 1

4
∇̂i
(

ImNIJ(ΦI + iQI)XJ

)
− i

4
εi
j∇̂j

(
ImNIJ(ΦI + iQI)XJ

)
− i

4
AiImNIJ(ΦI + iQI)XJ +

1

4
εi
jAjImNIJ(ΦI + iQI)XJ . (C.52)

However, the conditions we have found on the fields in the previous section imply that

Ti − Si = 0. In particular, this can be seen by writing

ImNIJ(ΦI + iQI)XJ = 2(A− iB)− 2igκξIX
I , (C.53)

and then by making use of (C.36), (C.25), and (C.29). After some manipulation, one

obtains Ti − Si = 0.

Hence, it follows that the u-dependent part of (C.5) is implied by (C.6), (C.9) and the

bosonic conditions.

C.4.2 The (C.2) KSE

To analyse (C.2) we begin by contracting (C.43) with Γi to obtain

(
1

2
∆ +

1

8
hih

i +
i

8
εijdhijΓ5 −

1

2
gαβ̄∇̂izα∇̂izβ̄ +

1

2
ImNIJ(ΦIΦJ +QIQJ)

+
i

2
gαβ̄ε

mn∇̂mzβ̄∇̂nzα − gξIQIΓ5 − Γj∇̂jΘ̂+

+iΓjAjΘ̂+Γ5 − ΓjΘ̂+ΓjΘ̂+

)
η− = 0 . (C.54)

The Γj∇̂jΘ̂+ term is evaluated by making use of (C.36) together with (C.25), and the

terms quadratic in ΦI and QI are rewritten using (C.29). Then (C.54) is equivalent to(
1

2
∆ +

1

8
hih

i +
i

8
εijdhijΓ5 −

1

2
gαβ̄∇̂izα∇̂izβ̄ +

i

2
gαβ̄ε

mn∇̂mzβ̄∇̂nzα

−4g2κ2gαβ̄ξIDαXIξJDβ̄X̄J − gξIQIΓ5 − 2g2|ξIXI |2 − 1

2
|ImNIJ(ΦI + iQI)XJ |2 + igξiΦ

I

−iΓj
(
− 1

2
ImNIJ Im((ΦI + iQI)XJ)hj +

1

2
ImNIJRe((ΦI + iQI)XJ)εj

khk
)

−iΓj
(
ImNIJReXJεj

kdhΦI
k − ImNIJ ImXJdhΦI

j

)
−gΓj

(
Im(ξIDαXI∇̂jzα) + iΓ5Re(ξIDαXI∇̂jzα)

)(
− 1 + κΓ5

))
η− = 0 (C.55)

This expression can be further simplified in several ways. Firstly, using (C.9), the final line

can be written as

−gΓj
(
Im(ξIDαXI∇̂jzα) + iΓ5Re(ξIDαXI∇̂jzα)

)(
− 1 + κΓ5

)
η−

= 2g2(1 + κΓ5)2gαβ̄ξIDαXIξJDβ̄X̄Jη− . (C.56)
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Also, using (C.29) we have

−gξIQIΓ5 + 4κg2gαβ̄ξIDαXIξJDβ̄X̄JΓ5 = 2gIm

(
ξLX̄

LImNIJ
(
ΦI + iQI)XJ

)
Γ5.(C.57)

Furthermore, it is useful to note the following identity:(
1

2
gαβ̄∇̂izα∇̂izβ̄ −

i

2
gαβ̄ε

mn∇̂mzβ̄∇̂nzα −
i

2
ΓiΓj

(
Re∇̂izα + iΓ5Im∇̂izα

)
Γ5

(
Imgαβ̄ − iΓ5Regαβ̄

)(
Re∇̂jzβ̄ + iΓ5Im∇̂jzβ̄

))
η− = 0 , (C.58)

and on making repeated use of (C.9) this expression implies that(
1

2
gαβ̄∇̂izα∇̂izβ̄ −

i

2
gαβ̄ε

mn∇̂mzβ̄∇̂nzα

− 2g2(1− κ2)gαβ̄ξIDαXIξJDβ̄X̄J

)
η− = 0 . (C.59)

On substituting (C.56), (C.57) and (C.59) info (C.55) in order to rewrite the final line of

(C.55), and then eliminate the ξIQ
I term and the terms quadratic in ∇̂z, we find that

(C.55) is equivalent to(
1

2
∆ +

1

8
hih

i +
i

8
εijdhijΓ5 + 2gIm

(
ξLX̄

LImNIJ
(
ΦI + iQI)XJ

)
− 2g2|ξIXI |2

−1

2
|ImNIJ(ΦI + iQI)XJ |2 + igξIΦ

I + hjΓ
j
( i

2
ImNIJ Im((ΦI + iQI)XJ)

−1

2
Γ5ImNIJRe((ΦI + iQI)XJ)

)
+ iImNIJΓiIm

(
dhΦI

i − iεijdhΦI
j )X

J
))
η− = 0 . (C.60)

After some straightforward rearrangement of terms, we find that (C.60) is equivalent to

(C.2)

D Lichnerowicz type theorems for φ±

In this Appendix, we provide a more detailed description of the proof of the Lichnerowicz

type theorems for φ± spinors. Note that φ− = η− and that the Lichnerowicz type theorem

on η+ is implied from that on φ+.

To begin, the covariant derivatives associated with the gravitino KSE (3.8) have been

defined in (3.9). Next upon using the condition (C.29), the algebraic operators (3.12) which

define the gaugini KSEs (3.11) can be rewritten as

Aα(±) ≡ Γi∇̂iRezα + iΓ5Γi∇̂iImzα

+ 2(1∓ κΓ5)

(
gξIIm

(
Dβ̄X̄Igαβ̄

)
− igΓ5Re

(
Dβ̄X̄Igαβ̄

))
. (D.1)

The horizon Dirac operators D(±) are

D(±) ≡ Γi∇̂(±)
i (D.2)
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and we assume that φ± are zero modes, ie they satisfy

D(±)φ± = 0 . (D.3)

We also assume all of the conditions on the fields (C.24), (C.25), (C.29), (C.30), (C.31),

(C.32), (C.34), (C.35), (C.36) obtained in appendix C. However, we do not assume that

the function κ is related to the zero mode φ+. We then have

∇̂i∇̂i ‖ φ± ‖2= 2Re〈φ±, ∇̂i∇̂iφ±〉+ 2〈∇̂iφ±, ∇̂iφ±〉 (D.4)

where after making use of D(±)φ± = 0

2Re〈φ±, ∇̂i∇̂iφ±〉 =
1

2
R̂ ‖ φ± ‖2

+ 2Re〈φ±,Γi∇̂i
((
− i

2
AjΓ

jΓ5 − igξIBI
jΓj + 2Θ̂∓ ±

1

4
hjΓ

j
)
φ±

)
〉 . (D.5)

It follows that we can write

∇̂i∇̂i ‖ φ± ‖2=

(
1

2
R̂± 1

2
∇̂ihi

)
‖ φ± ‖2 +2〈∇̂(±)iφ±, ∇̂(±)

i φ±〉

+ 2Re〈φ±,Γi(−
i

2
ΓjAjΓ5 − igξIBI

jΓj + 2Θ̂∓ ±
1

4
hjΓ

j)∇̂iφ±〉

− 4Re〈φ±,
(
− i

2
AiΓ5 − igξIBIi − Θ̂†∓Γi ∓ 1

4
hi
)
∇̂iφ±〉

+ Re〈φ±,
(
− i

2
Γij(dA)ijΓ5 − igξIdBI

ijΓ
ij + 4Γi∇̂iΘ̂∓

)
φ±〉

− 2〈φ±,
(
− i

2
AiΓ5 − igξIBIi − Θ̂†∓Γi ∓ 1

4
hi
)

( i
2
AiΓ5 + igξJB

J
i − ΓiΘ̂∓ ∓

1

4
hi
)
φ±〉 . (D.6)

The terms in the second and third lines of the above expression which are linear in ∇̂iφ±
can then be rewritten using D(±)φ± = 0 as

±hi∇̂i ‖ φ± ‖2 +Re〈φ±,
(
− iΓjAjΓ5 + 2igξIB

I
jΓj ∓ 1

2hjΓ
j − 8gξI(ImX

I − iΓ5ReXI)
)

×
(
− i

2ΓiAiΓ5 − igξJBJ
i Γi ± 1

4hiΓ
i + 2Θ̂∓

)
φ±〉 . (D.7)

Furthermore, we also have

(dA)ij = −2igαβ̄∇̂[iz
β̄∇̂j]zα . (D.8)

On substituting these expressions into (D.6), we find for φ+:

∇̂i∇̂i ‖ φ+ ‖2 −hi∇̂i ‖ φ+ ‖2= 2〈∇̂(+)iφ+, ∇̂(+)
i φ+〉

+

(
4g2(1 + κ2)gαβ̄ξIDαXIξJDβ̄X̄J + gαβ̄∇̂izα∇̂izβ̄

)
‖ φ+ ‖2

+ Re〈φ+,

(
igαβ̄ε

ij∇̂izβ̄∇̂jzα − 8κg2gαβ̄ξIDαXIξJDβ̄X̄JΓ5

− 4gΓiIm(ξIDαXI∇̂izα)− 4igΓiΓ5Re(ξIDαXI∇̂izα)

)
φ+〉 , (D.9)
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and for φ− we find

∇̂i∇̂i ‖ φ− ‖2 +∇̂i
(
hi ‖ φ− ‖2

)
= 2〈∇̂(−)iφ−, ∇̂(−)

i φ−〉

+

(
4g2(1 + κ2)gαβ̄ξIDαXIξJDβ̄X̄J + gαβ̄∇̂izα∇̂izβ̄

)
‖ φ− ‖2

+ Re〈φ−,
(
− igαβ̄εij∇̂izβ̄∇̂jzα + 8κg2gαβ̄ξIDαXIξJDβ̄X̄JΓ5

− 4gΓiIm(ξIDαXI∇̂izα)− 4igΓiΓ5Re(ξIDαXI∇̂izα)

)
φ−〉 , (D.10)

where we have made use of the Einstein equation

R̂ = −∇̂ihi +
1

2
hih

i + 2gαβ̄∇̂izα∇̂izβ̄ + 2V − ImNIJ
(
ΦIΦJ +QIQJ

)
, (D.11)

obtained from taking the trace of (2.19), as well as (C.29).

To complete the proof after some computation one can show that(
4g2(1 + κ2)gαβ̄ξIDαXIξJDβ̄X̄J + gαβ̄∇̂izα∇̂izβ̄

)
‖ φ± ‖2

+ Re〈φ±,
(
± igαβ̄εij∇̂izβ̄∇̂jzα ∓ 8κg2gαβ̄ξIDαXIξJDβ̄X̄JΓ5

−4gΓiIm(ξIDαXI∇̂izα)− 4igΓiΓ5Re(ξIDαXI∇̂izα)

)
φ±〉

= 〈Aβ(±)φ±,
(
Re(gαβ̄) + iΓ5Im(gαβ̄)

)
Aα(±)φ±〉 . (D.12)

The positive definiteness of this term follows from positive definiteness of the Kähler metric

on the scalar manifold and after further decomposing Aα(±)φ± into positive and negative

chiralities with respect to Γ5.

E Properties of the isometry W

In this appendix, we shall consider the case for which the vector field W given in (5.4) does

not vanish, W 6≡ 0, and we shall prove that it is a symmetry of the full solution.

First W is an isometry of the metric on S. This can be seen from either (5.6) or verified

directly using (C.5) and (C.6) which imply that

∇̂jWi = Re

(
− 2i〈Γ+η−,Γ5Θ̂−η+〉

)
εij , η+ = Γ+Θ−η−, (E.1)

and hence

∇̂(iWj) = 0 . (E.2)

To proceed, consider the algebraic conditions

Aα(±)η± = 0 . (E.3)
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In particular, on comparing the conditions

〈Γ+η−,Aα(+)η+〉 = 0, and 〈Aα(−)η−,Γ−η+〉 = 0 , (E.4)

one obtains the condition

LWRezα = 0 , (E.5)

and on comparing the conditions

〈Γ+η−, iΓ5Aα(+)η+〉 = 0, and 〈iΓ5Aα(−)η−,Γ−η+〉 = 0 , (E.6)

one finds that

LW Imzα = 0 , (E.7)

and hence

LW zα = 0 . (E.8)

The components of W can be rewritten as

Wi = −1

2
‖ η− ‖2 hi + 2gξIImX

Iτi + 2gξIReXIεijτ
j , (E.9)

where

τi = 〈η−,Γiη−〉 , (E.10)

and τ satisfies

τiτ
i = (‖ η− ‖2)2 − 〈η−,Γ5η−〉2 . (E.11)

Then (G.1) implies

LW ‖ η− ‖2= 4g2|ξIXI |2
(
〈η−,Γ5η−〉2 − (‖ η− ‖2)2κ2

)
. (E.12)

The condition (E.1) implies, on expanding out the expression for Im〈Γ+η−,Γ5Θ̂−η+〉, that

dWijε
ij = 4

(
− gξIImXIhiεijτ

j + gξIReXIhiτi

− 4gRe
(
ξLX̄

LImNIJ(ΦI + iQI)XJ
)
〈η−,Γ5η−〉

)
. (E.13)

However, on taking the exterior derivative of (G.1), one finds

dW = W ∧ h− ‖ η− ‖2 dh . (E.14)

On comparing the components of dW between (E.13) and (E.14), making use of (C.32),

one finds that if ξIΦ
I 6= 0, then the RHS of (E.12) vanishes. So, if ξIΦ

I 6= 0 then

LW ‖ η− ‖2= 0 . (E.15)

– 39 –



Then, taking the Lie derivative of (G.1) with respect to W implies that

LWh = 0 , (E.16)

and taking the Lie derivative of the trace of the Einstein (2.19) with respect to W gives

LW
(

ImNIJ(ΦIΦJ +QIQJ)

)
= 0 , (E.17)

and taking the Lie derivative of the Einstein equation (2.16) with respect to W implies

that

LW∆ = 0 . (E.18)

The condition (C.24) implies also that

LWκ = 0 . (E.19)

Next, on taking the Lie derivative of (C.25) with respect to W gives

−Im

(
1

ξIXI
LW (A− iB)

)
hi + Re

(
1

ξIXI
LW (A− iB)

)
εi
jhj = 0 . (E.20)

We remark that it is not consistent to have h ≡ 0, because if h ≡ 0 then (C.24) implies that

κ2 = 1, and then the condition (C.32) is inconsistent with our assumption that ξIΦ
I 6= 0.

Hence, we must have

LWA = LWB = 0 , (E.21)

which further implies that

LWΦI = LWQI = 0 , (E.22)

as a consequence of (C.29). Hence, if ξIΦ
I 6= 0, then W is a symmetry of the full solution.

Next, we consider the case for which ξIΦ
I ≡ 0. On taking the Lie derivative of (C.30)

with respect to W , it follows that as LW zα = 0, one must have either ξIDαXI = 0, or

LWh = 0. Suppose then that ξIΦ
I ≡ 0, but ξIDαXI 6= 0. Then

LWh = 0 . (E.23)

As before, the trace of (2.19), (2.16) and (C.24) imply that

LW
(

ImNIJ(ΦIΦJ +QIQJ)

)
= 0, LW∆ = 0, LWκ = 0 , (E.24)

and taking the Lie derivative of (C.25) with respect to W gives

LWA = LWB = 0, or h = 0 . (E.25)

Suppose that LWA = LWB = 0. Then (C.29) implies that

LWΦI = LWQI = 0 , (E.26)

– 40 –



and hence W is a symmetry of the full solution.

Alternatively, if h ≡ 0, then the Einstein equation (2.17) implies that ∆ = const,

ΦI = const and (C.30) implies that zα = const. The gauge field equation (2.14) then

implies that QI = const as well. So if h ≡ 0, it follows again that W must be an symmetry

of the full solution. Hence, if ξIΦ
I = 0 but ξIDαXI 6= 0, then W is a symmetry of the full

solution.

It remains to consider the case for which ξIΦ
I = 0 and ξIDαXI = 0. For such solutions

dh = 0, and zα = const. To proceed in this case, consider the gravinito integrability

conditions (C.28) and (C.54), which imply(
2g(Γ5 − κ)ξIQ

I − 2Γi∇̂iΘ̂−
)
η+ = 0 , (E.27)

and (
2g(−Γ5 − κ)ξIA

I + 2Γi∇̂iΘ̂−
)
η− = 0 . (E.28)

On taking the inner product of (E.27) with Γ+η−, and comparing this with the (complex

conjugate of) the inner product of (E.28) with Γ−η+, we obtain

LW
(

ImNIJ Im
(
(ΦI + iQI)XJ

))
= 0 , (E.29)

and on taking the inner product of iΓ5(E.27) with Γ+η−, and comparing with the (complex

conjugate of) the inner product of iΓ5(E.28) with Γ−η+, we find

LW
(

ImNIJRe
(
(ΦI + iQI)XJ

))
= 0 . (E.30)

So, we have

LW
(

ImNIJ
(
(ΦI + iQI)XJ

))
= 0 . (E.31)

The condition (C.29) then implies that

LWΦI = LWQI = 0 . (E.32)

On taking the Lie derivative with respect to W of the gauge equation (2.14), we find

ImNIJΦJ(LWh)j = ImNIJQJεjk(LWh)k , (E.33)

which implies that either ΦI = QI = 0, or LWh = 0. If LWh = 0, then on taking the Lie

derivative of (2.16) with respect to W gives

LW∆ = 0 , (E.34)

and hence W is a symmetry of the full solution.
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It remains to consider the case for which ΦI = 0, QI = 0 and ξIDαXI = 0. In this

case, the Einstein equation (2.16) can be rewritten as

∇̂ihi + 8g2(1 + κ2)|ξIXI |2 = 0 . (E.35)

On integrating this expression over S, we see that it admits no solution. Hence, the case

for which ΦI = 0, QI = 0 and ξIDαXI = 0 is excluded9.

Hence, in all of the above cases, we have shown that the Lie derivative of all near-

horizon data (i.e. the metric on S, h, zα, ΦI , QI , and ∆) with respect to W vanishes.

We remark that these conditions, together with (C.24) imply that in all cases LWκ = 0 as

well. Furthermore, one also has LW ‖ η− ‖2= 0 in all cases as well. To see this, take the

Lie derivative of (G.1) with respect to W to obtain

d
(
LW ‖ η− ‖2

)
= −

(
LW ‖ η− ‖2

)
h . (E.36)

As LW ‖ η− ‖2 must vanish at some point in S, this condition implies that LW ‖ η− ‖2= 0

everywhere on S.

F 1/2 BPS Near-Horizon Geometries

It is instructive to describe the half-supersymmetric near-horizon geometries constructed in

[23] in terms of Gaussian null co-ordinates, and extract all the near-horizon data associated

with the solutions. This will incorporate these solutions into our classification scheme and

so there will be a unified description of all near horizon geometries of N = 2 gauged

supergravity coupled to any number of multiplets.

In the spacetime coordinates (t, z, x, v) the metric of the solutions given in [23] is

ds2 = −z2ev
(
dt+ 4(e−2v − L)z−1dx

)2

+ 4e−vz−2dz2

+ 16e−v(e−2v − L)dx2 +
4e−2v

Y 2(e−v − Lev)
dv2 , (F.1)

where L > 0 is constant, and

Y 2 = 64g2e−v|ξIXI |2 − 1 . (F.2)

The scalars depend only on v, and satisfy

dzα

dv
=

i

2ξIX̄IY
(1− iY )gαβ̄Dβ̄

(
ξJX̄

J

)
. (F.3)

Hence the scalars are constant if and only if

Dα
(
ξIX

I
)

= 0 (F.4)

9We remark that this excludes the solution AdS4 with constant zα, and F I = 0.
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Note in particular that (F.3) implies that

d

dv

(
|ξIXI |2

)
= gαβ̄Dα(ξIX

I)Dβ̄(ξJX̄
J) . (F.5)

The gauge field strengths are given by

F I = 8ig

(
ξJX̄

J

1− iY
XI − ξJX

J

1 + iY
X̄I

)
dt ∧ dz

+
4

Y

(
2ξJX̄

J

1− iY
XI +

2ξJX
J

1 + iY
X̄I + ImN−1IJξJ

)
(zdt− 4Ldx) ∧ dv . (F.6)

In order to rewrite the metric (F.1) in Gaussian null co-ordinates, we set

w = ev, t = u+
4

wr
, x =

1

2
√
L

(ψ + log(wr)), z = −
√
L

2
wr . (F.7)

Then in the co-ordinates (u, r, ψ, w) the metric is

ds2 = −1

4
Lw3r2du2 + 2dudr + 2rdu

(
(1− Lw2)dψ + w−1dw

)
+ 4(w−1 − Lw)dψ2 +

4w−4

Y 2(w−1 − Lw)
dw2 . (F.8)

It follows that the near-horizon data are given by

∆ =
L

4
w3, h = (1− Lw2)dψ + w−1dw , (F.9)

and

ds2
S = 4(w−1 − Lw)dψ2 +

4w−4

Y 2(w−1 − Lw)
dw2 . (F.10)

We choose the volume form on S to be

dvolS = −4w−2Y −1dψ ∧ dw , (F.11)

and with this convention, it is straightforward to prove that the scalars in (F.3) satisfy

(C.30).

It is also straightforward to compute ΦI and QI from (F.6); one finds

ΦI + iQI = 4i
√
Lgw

(
1− iY
1 + iY

)
ξJX

JX̄I + 2i
√
Lgw

(
ξJ ImN−1IJ + 2ξJX

JX̄I

)
.(F.12)

In particular, this expression implies that

ImNIJXI(ΦJ + iQJ) = −2i
√
LgwξJX

J

(
1− iY
1 + iY

)
, (F.13)

and hence

ΦI + iQI = −2ImNJNXJ(ΦN + iQN )X̄I + 2i
√
Lgw

(
ξJ ImN−1IJ + 2ξJX

JX̄I

)
,

(F.14)
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which is consistent with (C.29) on setting

〈φ+,Γ5φ+〉
‖ φ+ ‖2

= −
√
Lw . (F.15)

For convenience, we shall also list here a number of useful identities associated with

this class of solutions:

ξIΦ
I = 8

√
Lgw

|ξIXI |2Y
1 + Y 2

, (F.16)

dzα

dw
=

i

2wξIX̄IY
(1− iY )ξJDβ̄X̄Jgαβ̄ , (F.17)

and

A+ iB =
2
√
Liwg

1− iY
ξIX̄

I , (F.18)

where A and B are defined in (C.26). Furthermore, one can establish

dY

dw
= 32g2w−2Y −1

(
− 1

2
ImN−1IJξIξJ − 2|ξIXI |2

)
, (F.19)

and

dΦI

dw
= −4

√
LgY −1

(
1

2
ImN−1IJξJ +

(
1 + iY

1− iY

)
ξJX̄

JXI +

(
1− iY
1 + iY

)
ξJX

JX̄I

)
.

(F.20)

These formulae provide a useful check on our computations.

G Geometry of the Near-Horizon Solutions

The description of the local geometry of horizons depends on whether the vector field W

associated with (5.4) vanishes or not. As it has been presented in detail in appendix E, W

is a symmetry of the full solution. In what follows it is useful to consider the identity

d ‖ η− ‖2= − ‖ η− ‖2 h−W . (G.1)

This is one of the identities presented in (5.6). It can also been proven directly using (C.6).

We shall first consider the special case when W ≡ 0.

G.1 Solutions with W ≡ 0

All these solutions are warped products AdS2 ×w S. In this case, (G.1) implies that

d ‖ η− ‖2= − ‖ η− ‖2 h , (G.2)

and as ‖ η− ‖2 is nowhere vanishing, one concludes that dh = 0. We remark that these

solutions are distinct from the class of half-supersymmetric BPS near-horizon solutions in

[23], because for those solutions dh 6= 0.
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Next (2.17) can be rewritten as

∇̂i∇̂i
(
∆ ‖ η− ‖2

)
+

1

‖ η− ‖2
∇̂i
(
‖ η− ‖2)∇̂i

(
∆ ‖ η− ‖2

)
=

−2 ‖ η− ‖2 ImδijNIJdhΦI
i dhΦJ

j . (G.3)

As ImNIJ is negative definite, an application of the maximum principle gives the conditions

∆ ‖ η− ‖2= const , (G.4)

and

dΦI − ΦIh = 0 . (G.5)

Also, (2.18) implies that

d∆−∆h = 0 . (G.6)

This condition implies that either ∆ = 0 everywhere, or together with (C.31) ∆ > 0

everywhere. Also, (C.3) implies that

ξIΦ
IΘ+φ+ = 0 . (G.7)

It follows using (5.6) that either ∆ = 0 or ξIΦ
I = 0.

There are no solutions with ∆ = 0 and ξIΦ
I 6= 0. To see this observe that (2.16) can

be rewritten as

∇̂i∇̂i ‖ η− ‖2= −2 ‖ η− ‖2
(

1

2
ImNIJ(ΦIΦJ +QIQJ) + V

)
. (G.8)

As the right-hand-side of this expression is non-negative, an application of the maximum

principle implies that ‖ η− ‖2= const and that ΦI = 0. However, this is in contradiction

to the assumption that ξIΦ
I 6= 0.

Furthermore there are no solutions with ∆ = ξIΦ
I = 0. If ∆ = 0 then (G.8) again

holds, which implies

ΦI = QI = 0, V = 0 , (G.9)

and ‖ η− ‖2= const. The latter condition implies that h = 0 as a consequence of (G.2).

In addition, ∆ = 0 implies that Θ+η+ = 0 as a consequence of (C.31) and (C.33). This,

together with the previous conditions, implies

ξI(ImX
I + iΓ5ReXI)η+ = 0 , (G.10)

and hence

ξIX
I = 0 . (G.11)

However, the conditions ξIX
I = 0 and V = 0 then lead to a contradiction. So we must

have ∆ > 0 everywhere and ξIΦ
I = 0.
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The condition ξIΦ
I = 0 implies that

Re

(
A− iB
ξIXI

)
= 0 . (G.12)

Also, as ∆ > 0 everywhere, A+ iB 6= 0. Then (C.34) and (C.30) imply that

∇̂izα =
1

2ξJX̄J
ξIDβ̄X̄Igαβ̄hi . (G.13)

It will be convenient to define

τ = ?Sh . (G.14)

Then (G.13) implies that

Lτzα = 0 . (G.15)

In turn, using (C.36) and (C.31), respectively, one has that

LτA = LτB = 0 , (G.16)

and

Lτ∆ = 0 . (G.17)

Also, as dh = 0 and iτh = 0, we also have

Lτh = 0 , (G.18)

and (C.25) implies

Lτκ = 0 , (G.19)

as well. These conditions, together with (C.26) imply

Lτ
(

ImNIJ(ΦI + iQI)XJ

)
= 0 , (G.20)

and it therefore follows from (C.29) that

LτΦI = LτQI = 0 . (G.21)

In addition, Lτκ = 0 and LτXI = 0 imply, together with (C.24) that

Lτh2 = 0 . (G.22)

It then follows from (2.16) that

Lτ
(
∇̂ihi

)
= 0 . (G.23)

We shall consider two subcases, corresponding to h ≡ 0 and h 6≡ 0.
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G.1.1 Solutions with W ≡ 0 and h ≡ 0

For solutions with W ≡ 0 and h = 0, the previously obtained conditions on the bosonic

fields imply that zα, κ, A, B, ∆, ΦI and QI are all constant, with ∆ > 0. The spacetime

geometry is a product AdS2 × S described in section 6.1.1.

G.1.2 Solutions with W ≡ 0 and h 6≡ 0.

For solutions with W ≡ 0 and h 6≡ 0, it is convenient to introduce local co-ordinates ψ and

x on S so that

τ =
∂

∂ψ
, h = dx . (G.24)

A local basis for S is then given by

e1 =
1√
h2
dx e2 =

√
h2
(
dψ + q(x, ψ)dx

)
, (G.25)

where h2 = h2(x). The condition Lτ (∇̂ihi) = 0 then implies that

∂2q

∂ψ2
= 0 , (G.26)

and so we have

q = q0(x) + ψq1(x) . (G.27)

A co-ordinate transformation of the form

ψ = f1(x)ψ′ + f2(x) , (G.28)

for appropriately chosen functions f1, f2 can be used to further simplify the basis for S:

e1 =
1√
h2
dx, e2 =

√
h2Pdψ′ , (G.29)

with τ = h2Pdψ′, where P = P (x). We shall now drop the prime on ψ′. The scalars zα,

together with κ, ∆, h2, P , ΦI and QI are independent of the co-ordinate ψ, as are all

components of the metric.

After some calculation, the Einstein equations (2.16) and (2.19) imply that(
16g2κ2|ξIXI |2 − 8gκIm

(
ξLX̄

LImNIJ(ΦI + iQI)XJ

)
− 1

|ξLXL|2
gαβ̄ξIDαXIξJDβ̄X̄Jh2

)
hi + ∇̂ih2 = 0 , (G.30)

and (G.13) implies that

∇̂i|ξIXI |2 = gαβ̄ξIDαXIξJDβ̄X̄Jhi . (G.31)
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Furthermore, note that

∇̂ihi =
dh2

dx
+
h2

P

dP

dx
. (G.32)

On making use of (2.16) and (G.30), together with (C.29) and (C.31), we find that

∇̂ihi −
dh2

dx
= −1

2
h2

(
1 +

1

|ξLXL|2
ξIDαXIξJDβ̄X̄Jgαβ̄

)
. (G.33)

It follows that (G.32) implies

P−1dP

dx
= −1

2

(
1 +

d

dx
log |ξIXI |2

)
, (G.34)

and so

P =
Le−

x
2

|ξIXI |
, (G.35)

for constant L.

Next note that (C.36) implies that

d

dx
log

((A− iB
ξIXI

)2|ξJXJ |2
)

= 1 , (G.36)

so that

A− iB
ξIXI

=
iν

|ξJXJ |
e
x
2 , (G.37)

for ν ∈ R constant, and (C.31) then implies

∆ = 4ν2ex . (G.38)

As we require that ∆ 6= 0, we must take ν 6= 0. The scalar κ then satisfies

dκ

dx
= κ− ν

2g|ξIXI |
e
x
2 , (G.39)

as a consequence of (C.25), and h2 is then given by (C.24) as

h2 = 16g2|ξIXI |2(1− κ2) . (G.40)

The near-horizon data for this class of solutions have been collected in (6.7). The

dependence of the fields in terms of x is determined by the equations (6.8) and (6.9).

G.2 Solutions with W 6≡ 0

As we have already mentioned W leaves all the fields invariant. In addition, the Lie

derivatives of κ, and ‖ η− ‖2 with respect to W also vanish. We present the proof of these

in Appendix E.
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G.2.1 Solutions with W 6≡ 0, and κ = const with |κ| 6= 1

First we consider the special case for which κ = const. Then (G.1) implies that if h ≡ 0,

then W ≡ 0. So it follows that h 6≡ 0, and hence (C.25) implies

A− iB = 2igκξIX
I . (G.41)

Then (C.29) gives that

ΦI + iQI = −2igκ

(
ξJ ImN−1IJ + 4ξJX

JX̄I

)
, (G.42)

and (C.31) implies that

∆ = 16g2κ2|ξIXI |2 . (G.43)

In particular, (G.42) implies that ξIΦ
I = 0, and hence (C.32) implies that

dh = 0 . (G.44)

The Einstein equation (2.16) implies that

∇̂ihi = 2(1− κ2)

(
4g2gαβ̄ξIDαXIξJDβ̄X̄J − 4g2|ξIXI |2

)
, (G.45)

and (C.30) implies that

gαβ̄∇̂izα∇̂izβ̄ = 4g2(1− κ2)gαβ̄ξIDαXIξJDβ̄X̄J . (G.46)

So, on taking the trace of the Einstein equation (2.19) we find

R̂ = 8g2(1 + κ2)

(
gαβ̄ξIDαXIξJDβ̄X̄J − |ξIXI |2

)
, (G.47)

and hence

R̂ =
(1 + κ2)

(1− κ2)
∇̂ihi . (G.48)

Thus S is topologically T 2.

There are two different cases to consider, corresponding as to whether ‖ η− ‖2 is

constant, or not constant.

If ‖ η− ‖2 is constant, then (G.1) implies that

‖ η− ‖2 h+W = 0 . (G.49)

As dh = 0 this implies that dW = 0. Hence, it follows that both h and W are covariantly

constant on S. Therefore S = T 2, and R̂ = 0 implies that

gαβ̄ξIDαXIξJDβ̄X̄J = |ξIXI |2, and ImN−1IJξIξJ = −4|ξIXI |2 . (G.50)
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As h2 is constant, it follows from (C.24) that |ξIXI |2 is constant, and also ∆ is constant.

Furthermore, (C.30) implies that

∇̂izα =
i

2ξJX̄J
ξIDβ̄X̄Igαβ̄εi

jhj . (G.51)

It is straightforward to obtain local co-ordinates for the metric; as h is covariantly constant,

we can introduce local co-ordinates x, y on S such that

h = dx, ?Sh = dy , (G.52)

so that the zα, ΦI and QI depend only on y. The metric and equations that determine the

dependence of the remaining fields on x are summarized in section 6.2.1.

Next, consider the case for which ‖ η− ‖2 is not constant. As LWh = 0 and dh = 0

it follows that iWh = const. Furthermore, from (G.1), together with LW ‖ η− ‖2= 0, it

follows that

‖ η− ‖2 iWh+W 2 = 0 , (G.53)

and hence iWh < 0. We shall set iWh = −µ2, and we shall furthermore introduce local

co-ordinates x and ψ on S such that

W =
∂

∂ψ
, x =‖ η− ‖2 , (G.54)

with

h = −µ2dψ . (G.55)

Then (G.1) implies that

∇̂ix∇̂ix = h2x2 − µ2x , (G.56)

and moreover

W 2 = µ2x . (G.57)

As iWdx = 0, it follows that

dx = β ?S W , (G.58)

for some function β, and on taking the norm of both sides of this expression, using (G.56)

and (G.57) one finds that

dx = µ−1
√
h2x− µ2 ?S W . (G.59)

On substituting this expression back into (G.1) it follows that

h = −x−1W − µ−1x−1
√
h2x− µ2 ?S W . (G.60)
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Next,substituting this expression into (C.30) and using the fact that dzα must be propor-

tional to ?SW , we get that

∇̂izα = − i

2x

(
1− i

µ

√
h2x− µ2

)
1

ξJX̄J
ξIDβ̄X̄Igαβ̄εijW

j , (G.61)

or equivalently

dzα

dx
= − i

2x

(
µ√

h2x− µ2
− i
)

1

ξJX̄J
ξIDβ̄X̄Igαβ̄ . (G.62)

Next we shall consider the conditions (C.34), (C.35) and (C.36). In evaluating these

expressions, we make use of (G.61), together with

∇̂iΦI = 2gκx−1

(
−
(
1 + iµ−1

√
h2x− µ2

) 1

ξJXJ
ξLDᾱX̄LξNDβXNgᾱβXI

+
(
1− iµ−1

√
h2x− µ2

)
DαXIξNDβ̄X̄Ngαβ̄

−
(
1− iµ−1

√
h2x− µ2

) 1

ξJX̄J
ξLDαXLξNDβ̄X̄Ngαβ̄X̄I

+
(
1 + iµ−1

√
h2x− µ2

)
DᾱX̄IξNDβXNgᾱβ

)
εijW

j , (G.63)

and

hi − iεijhj = −x−1
(
1 + iµ−1

√
h2x− µ2

)(
Wi − iεijW j

)
, (G.64)

and

∇̂i|ξIXI |2 = −x−1µ−1
√
h2x− µ2ξIDαXIξJDβ̄X̄Jgαβ̄εijW

j . (G.65)

Then on decomposing (C.36) into directions parallel and orthogonal to W , we find the

condition

κ

(
ImN−1IJξIξJ + 4|ξIXI |2

)
= 0 . (G.66)

This condition is sufficient to ensure that (C.34), (C.35) and (C.36) are satisfied.

Suppose that κ 6= 0. Then the condition (G.66), together with (G.45) implies that

∇̂ihi = 0 , (G.67)

and it follows on taking the divergence of (G.1) that

∇̂i∇̂i ‖ η− ‖2 +hi∇̂i ‖ η− ‖2= 0 . (G.68)

An application of the maximum principle then implies that ‖ η− ‖2= const, but this is in

contradiction to our assumption that ‖ η− ‖2 is not constant. So, for this class of solutions,

we must have κ = 0, which in turn implies that

∆ = 0, ΦI = QI = 0, h2 = 16g2|ξIXI |2 . (G.69)
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It remains to choose a local basis for S; we take

e1 = µ−1x−
1
2W = µ−1x−

1
2 (µ2xdψ − dx) , (G.70)

and

e2 = µ−1x−
1
2 ?S W =

x−
1
2√

h2x− µ2
dx , (G.71)

so that

ds2
S =

1

x

(
µ−2(µ2xdψ − dx)2 +

1

h2x− µ2
dx2

)
. (G.72)

This metric can be simplified further by changing co-ordinates as

x = µ2x′, ψ = µ−2ψ′ , (G.73)

to obtain (on dropping primes)

ds2
S =

1

x

((
xdψ − dx

)2
+

1

16g2|ξIXI |2x− 1
dx2

)
, (G.74)

with

h = −dψ . (G.75)

The results have been summarized in section 6.2.1. The spacetime metric and the equa-

tions that determine the dependence of the scalars on x are given in (6.23) and (6.22),

respectively.

G.2.2 Solutions with W 6≡ 0 and κ 6= const.

To proceed with the analysis, we first make use of (C.25) in order to write h in terms of

dκ and ?Sdκ. We find

h =
1

χ

((
κ− Im(

A− iB
2gξIXI

)
)
dκ− Re(

A− iB
2gξIXI

) ?S dκ

)
, (G.76)

where

χ =
(
κ− Im(

A− iB
2gξIXI

)
)2

+
(
Re(

A− iB
2gξIXI

)
)2
. (G.77)

As dzα must be proportional to dκ, (C.30) implies that

∇̂izα =
1

2χξJX̄J

(
κ+

i(A− iB)

2gξIXI

)
ξLDβ̄X̄Lgαβ̄∇̂iκ . (G.78)

Next, we consider (C.36), and decompose the resulting expression into terms parallel and

orthogonal to ∇̂iκ, by noting that

h+ i ?S h =
1

χ

(
κ+

i(A− iB)

2gξIXI

)(
dκ+ i ?S dκ

)
. (G.79)
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On eliminating the terms involving ∇̂ΦI from the two expressions obtained in this fashion,

we find

∇̂i(A+ iB) =
1

χ

(
κ− i(A+ iB)

2gξLX̄L

)(
1

2
(A+ iB)− ξJΦJ

4ξIXI

)
∇̂iκ

+ i(A+ iB)Ai . (G.80)

In fact, the remaining parts of (C.34), (C.35) and (C.36) also hold automatically. This

makes use of (C.31) and (G.78). Furthermore, using (C.29) together with (G.80) and

(G.78), we find that

ΦI = −2(A− iB)X̄I − 2(A+ iB)XI . (G.81)

One then finds

∇̂iΦI = − 1

χ
Re

(
4(A+ iB)(κ− i(A+ iB)

2gξNX̄N
)XI − κ(A+ iB)

ξLX̄L
ImN−1IJξJ

)
∇̂iκ .

(G.82)

Using these expressions, the remaining content of (C.34), (C.35) and (C.36) holds auto-

matically.

To proceed, we return to the condition (G.80). Motivated by the expression for A+ iB

in (F.18) for the example in Appendix F, we set

A+ iB = κξIX̄
IG . (G.83)

Then (G.80) can be rewritten as

dG
dκ

=
κ−1

1 + i
2g Ḡ

(
1

2
Ḡ(1− i

g
G)− 1

2|ξLXL|2
GξIDαXIξJDβ̄X̄Jgαβ̄

)
. (G.84)

On taking the complex conjugate of (G.84), one obtains the following condition

d

dκ
log

( i
2g + 1

Ḡ
− i

2g + 1
G

)
=

κ−1

2|G|2|1− i
2gG|2

(
G + Ḡ

)(
Ḡ − G − i

g
|G|2

)
. (G.85)

To proceed further, we shall set, see appendix F,

G = − 2ig

1− iY
, (G.86)

for Y a complex function, where Y 6≡ 0, and Y 6≡ −i . Then (G.85) is equivalent to

d

dκ

(
Ȳ

Y

)
=

1

2
κ−1

(
1−

(
Ȳ

Y

)2)
, (G.87)

which has the general solution

Ȳ

Y
=
κ+ ic

κ− ic
, (G.88)
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for constant c ∈ R. Using this expression, we can eliminate Ḡ in favour of G in (G.84) to

find

dG
dκ

=
1

2κ(κ+ ic)

(
κG + ig(κ+ ic)

1
2G + ig

)(
ig(κ− ic)G

κG + ig(κ+ ic)
(1− i

g
G)

− 1

|ξLXL|2
GξIDαXIξJDβ̄X̄Jgαβ̄

)
, (G.89)

and moreover, on using (G.78) we also have

d

dκ
|ξIXI |2 =

1

2κ(κ+ ic)

(
κG + 2ig(κ+ ic)

1
2G + ig

)
ξIDαXIξJDβ̄X̄Jgαβ̄ . (G.90)

We shall consider the cases for which κG + 2ig(κ + ic) vanishes identically, and is

non-zero, separately.

Suppose first that κG + 2ig(κ + ic) 6≡ 0. Then the conditions (G.89) and (G.90) can

be combined to give

d

dκ
log

(
1

|ξIXI |2
(1− iY )(iκ(1 + iY ) + c(1− iY ))

)
=

c

κ(κ+ ic)
(Y −1 + i) . (G.91)

Furthermore, we recall that W = β ?S dκ for some function β = β(κ). On substituting this

into the condition (G.1), one obtains

β =
‖ η− ‖2

2gκ

ReG
(1 + i

2g Ḡ)(1− i
2gG)

, (G.92)

and

d ‖ η− ‖2

dκ
= −‖ η− ‖

2

2κ

(
1

1− i
2gG

+
1

1 + i
2g Ḡ

)
. (G.93)

Then (G.93) can be rewritten in terms of Y as

d

dκ
log ‖ η− ‖2=

cκ−1Y −1

κ+ ic
− κ−1 . (G.94)

Next on combining (G.94) and (G.91), we find that the resulting condition can be integrated

up to give

(κ+ ic)(1− iY )(iκ(1 + iY ) + c(1− iY ))

κ2 ‖ η− ‖2 |ξIXI |2
= ip , (G.95)

for p ∈ R constant, p 6= 0. To see that p 6= 0, we rewrite (G.95) using (G.88) as

(1 + c2κ−2)|1− iY |2

‖ η− ‖2 |ξIXI |2
= p . (G.96)

To obtain local expressions for all the near-horizon data, we take local co-ordinates κ, ψ

with W = ∂
∂ψ and take, without loss of generality

W = Sdψ , (G.97)
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for S = S(κ)10. Then

S = W 2 = β2∇̂iκ∇̂iκ =
4(‖ η− ‖2)2(1− κ2)|ξIXI |2(ReG)2

(1 + i
2g Ḡ)(1− i

2gG)
, (G.98)

where we have used (G.92) together with (C.24) and (C.25). This implies that

?Sdκ = 8gκ ‖ η− ‖2 (1− κ2)|ξIXI |2(ReG)dψ . (G.99)

In addition, ∆ is given by (C.31) as

∆ =
16g2κ2|ξIXI |2

|1− iY |2
, (G.100)

and (G.78) implies that

dzα

dκ
=

1

2κξJX̄J
(1 + iY −1)ξIDβ̄X̄Igαβ̄ . (G.101)

It is convenient to set ψ = p
16g2φ, then the metric on S can be written as

ds2
S = ∆−1

(
1

|Y |2(1− κ2)
dκ2 + (κ2 + c2)(1− κ2)dφ2

)
. (G.102)

The expression for h is obtained by using (G.1), together with (G.97) and (G.98) and

(G.94), to find

h = κ−1

(
1− c

(κ+ ic)Y

)
dκ− (1− κ2)dφ . (G.103)

Furthermore, (C.29) implies

ΦI + iQI = − 8igκ

1 + iȲ
ξJX

JX̄I − 2igκImN−1IJξJ . (G.104)

The spacetime metric and the equations that determine the near horizon fields are sum-

marized in section 6.2.2. The special case for which κG + 2ig(κ+ ic) = 0 is summarized in

section 6.2.2

H Gauge Field Equations

Here, we list the non-trivial content of the gauge field equations (2.14). In a number of

cases, these hold automatically. In the remaining cases, only one non-trivial component of

(2.14) needs to be checked as the others can be shown to hold automatically.

The cases to be considered are

(1) The class of solution in section (6.1.2). The gauge field equation is

d

dx

(
ImNIJQJ

)
+

d

dx

(
ReNIJ

)
ΦJ − ImNIJQJ = 0 . (H.1)

10This can always be done by making use of a co-ordinate transformation of the form ψ = ψ′ +H(κ)
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(2) The first class of solutions in section (6.2.1) - for which ‖ η− ‖2= const, i.e. up to

equation (6.16). For this case, the gauge field equation content is:

d

dy

(
ImNIJQJ

)
+

d

dy

(
ReNIJ

)
ΦJ − ImNIJΦJ = 0 . (H.2)

(3) The solution of section (6.2.2). For this case, the gauge field equation content is:

d

dκ

(
ImNIJQJ

)
+

d

dκ

(
ReNIJ

)
ΦJ − ImNIJ

(
1

(κ+ ic)Y
ΦJ

− c− (κ+ ic)Y

κ(κ+ ic)Y
QJ
)

= 0 . (H.3)

To evaluate these equations it is useful to first note that (C.29) implies that

QJ = Q̂J − 2gκImN−1JLξL (H.4)

where

ΦJ − iQ̂J = WXJ (H.5)

for some complex function W whose precise form depends on the case under consideration.

For all of the gauge field equations, we must evaluate a term of the type

d(ImNIJQJ) + ΦJd

(
ReNIJ

)
= −2gξIdκ+ ImNIJdQ̂J + Re

(
WXJdNIJ

)
. (H.6)

The final term in the above expression can be rewritten using the conditions of special

geometry. In particular we have

XJdNIJ = −2iImNIJDαXJdzα , (H.7)

where we have made use of the special Kähler geometry identities (B.7) in appendix B. On

using these identities one obtains

d(ImNIJQJ) + ΦJd

(
ReNIJ

)
= −2gξIdκ+ ImNIJdQ̂J

+ 2ImNIJ Im

(
WDαXJdzα

)
. (H.8)

All of the terms in this expression can then be directly calculated using the conditions we

have found on the solutions. In particular, the dependence of κ is known, the dQ̂I term

can be calculated directly, as can W and dzα.
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