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Abstract

Dimensionality reduction and data embedding methods generate low dimen-
sional representations of a single type of homogeneous data objects. In this
work, we examine the problem of generating co-embeddings or pattern rep-
resentations from two different types of objects within a joint common space
of controlled dimensionality, where the only available information is assumed
to be a set of pairwise relations or similarities between instances of the two
groups. We propose a new method that models the embedding of each object
type symmetrically to the other type, subject to flexible scale constraints and
weighting parameters. The embedding generation relies on an efficient optimiza-
tion despatched using matrix decomposition, that is also extended to support
multidimensional co-embeddings. We also propose a scheme of heuristically
reducing the parameters of the model, and a simple way of measuring the con-
formity between the original object relations and the ones re-estimated from
the co-embeddings, in order to achieve model selection by identifying the op-
timal model parameters with a simple search procedure. The capabilities of
the proposed method are demonstrated with multiple synthetic and real-world
datasets from the text mining domain. The experimental results and compara-
tive analyses indicate that the proposed algorithm outperforms existing methods
for co-embedding generation.
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1. Introduction

Methods for the generation of embeddings or pattern representations of data
objects in low-dimensional spaces have received significant attention, as they are
very important for both unsupervised and supervised machine learning as well
as information visualization. Over the years, such methods have continually
progressed towards the ability to capture and analyze the structure and latent
characteristics of larger and more complex datasets.

Given objects characterized by high-dimensional features, various dimen-
sionality reduction approaches can be employed to learn the low-dimensional
representation of these objects. Examples include the classic Principal Com-
ponents Analysis [1], which is a linear dimensionality reduction and decorre-
lation technique that maximizes the variance of the projected patterns in the
low-dimensional space. Locality Preserving Projections [2] is another linear
embedding method, but projects the data to preserve a certain affinity graph
constructed from the data pattern similarities. A popular nonlinear alterna-
tive is the Locally Linear Embedding (LLE) [3], which recovers global nonlinear
structure from local linear neighbor fits. Several variations of these classical
projection and embedding approaches have been developed to capture more pre-
cisely the structure of the data. Examples include the Multi-Manifold LLE for
processing multi-class data [4], versions of discriminant embedding generation
[5, 6], and projection methods for processing multimodal data [7]. Moreover,
recent advances in deep learning have enabled the learning of low-dimensional
representations of objects through mapping functions constructed with neural
networks, such as deep semi-supervised embedding [8].

Given objects characterized by distance information, Mutidimensional Scal-
ing [9] can be used to preserve the pairwise distances of the original patterns
in the low-dimensional space. When link information is made available be-
tween objects, e.g., when representing objects by a knowledge graph, their low-
dimensional representations can be learned by the embedding-driven relational
learning algorithms that support the processing of link validities [10, 11].

All the above techniques only embed homogeneous (i.e., of a single type)
data objects into a low-dimensional space given their higher dimensional fea-
ture representations or the relation/distance/link information between them. In
many real-world applications, it is important to simultaneously handle hetero-
geneous types of data, such as genes and symptoms, documents and words or
images, review articles from different domains, etc., by mapping them into a
single common space.

Various data processing methods have been proposed to address the problem
of handling heterogeneous types of data. Examples include methods targeting
specific applications, such as biological networks [12], [13], semantic analysis [14],
[15] and information retrieval [16], [17]. Heterogeneous data analysis has also
been performed by more generic methods. For instance, Correspondence Anal-
ysis [18] represents the rows and columns of a data matrix as points in a space
of low-dimensionality. Latent Semantic Indexing [19] is a popular information
retrieval embedding method, frequently used to embed documents and words
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in a common space [20]. Canonical Correlation Analysis [21] attempts to max-
imize the correlation between two sets of measurements. Similarly, variations
of nonmetric Mutidimensional Scaling [14] have been used to place the corre-
sponding reference data as close as possible, so that the patterns are aligned in
the common space. More recent methods [22] can learn the joint representation
from multiple datasets that lie on multiple manifolds. However, most of these
techniques require the availability of pattern information from the different data
representations.

The heterogeneous embedding problem considered in this work, only as-
sumes the existence of a relational similarity matrix between two sets of ob-
jects of possibly differing cardinality. This is also known as joint embedding
or co-embedding [23, 16, 24]. The goal is to generate co-embeddings, where
both groups of objects are embedded in a joint space. Various stochastic meth-
ods have been previously proposed to achieve this, such as Parametric Embed-
ding [23], Co-occurrence Data Embedding [25], Bayesian Co-occurrence Data
Embedding [16], as well as a dynamic embedding model that processes a se-
quence of co-occurrence data changing over time [26]. These algorithms treat
the co-occurrence object pairs as being generated by a Gaussian mixture in the
embedding space, and then recover the embedding that maximizes the likelihood
of the observed data. An alternative strategy for computing co-embeddings from
similarities between heterogeneous objects is Automatic Co-embedding with
Adaptive Shaping [24] based on matrix factorization, which generalizes ideas
from embedding algorithms such as [19], [18], [27], [28], and controls the factors
that generate different shapes and distributions of column and row objects in
the common space. There are also methods that are specialized at learning
embeddings from a binary relation matrix between two groups of objects. For
instance, Maximum-Margin Matrix Factorization [29] attempts to fit a binary
target matrix with a low-rank inner product matrix between the embedding
vectors of the row and column objects. Another method estimates the data dis-
tribution of the row and column objects from binary co-occurrence data using
a Deep Embedding Model [30].

In this paper, to generate heterogeneous patterns into a unified embedding
space, we propose a new method that models the embedding of each group
with respect to the other group using suitable weightings. We only assume
availability of the relational similarity information between representatives from
each group. The co-embedding generation relies on an efficient joint model
optimization based on a matrix decomposition, accompanied by heuristics that
permit a drastic reduction of the scaling parameters. The proposed method is
compared with state of the art methods using multiple synthetic and real-world
datasets.

We organize the rest of this paper as follows. Section 2 briefly reviews some
related heterogeneous embedding algorithms. In section 3, we introduce the
proposed algorithm, its model, optimization scheme, as well as its parameter
identification mechanism. The experimental results and comparative analyses
are reported in section 4, while section 5 concludes the work.
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2. Related Methods

We are given an m × n input matrix R = [rij], which is assumed to be non-
negative and without the existence of rows or columns made entirely of zero
entries. These entries represent relations (similarities) between the m (row)
objects {xi}mi=1 from group X and n (column) objects {yj}nj=1 from group Y.
Such objects can be heterogeneous and are not assumed to be explicitly rep-
resentable. The objective is to find a joint embedding of these objects in a
common space of dimensionality k, whereby the incurred geometry reflects rea-
sonably well the similarities between the row and column objects. We represent
these heterogeneous embeddings through the m × k embedding matrix Zx and
the n× k matrix Zy, for the row and the column objects, respectively. The em-
bedded patterns are the rows of these matrices, and correspond to the vectors

z
(x)
i = [z(x)1i , z

(x)
2i , . . . , z

(x)
ki ]⊺ for objects xi, and z

(y)
j = [z(y)1j , z

(y)
2j , . . . , z

(y)
kj ]⊺ for

objects yj . In the following subsections, we summarize existing algorithms to
generate such heterogeneous co-embeddings.

2.1. Co-Occurrence Data Embedding (CODE)

CODE [25] is based on a statistical model which interprets ijth elements of
the input matrix R as empirical co-occurrence frequencies. By requiring the
relation matrix to satisfy either the condition ∑mi=1∑nj=1 rij = 1 or ∑nj=1 rij = 1,
CODE models the co-occurrence rate p(xi, yj) to be proportional to the close-

ness of embedded points z
(x)
i and z

(y)
j . Through Bayes’ theorem, the conditional

probability p̂(yj ∣xi) is modelled as

p̂(yj ∣xi) ≡
1

h(z(x)i )
p(yj) exp (−∥z(x)i − z(y)j ∥22) , (1)

where h(z(x)i ) is the normalization term, and p(yj) is the prior probability
for object yj . The degree of the correspondence between input distributions
p(yj ∣xi) and embedding p̂(yj ∣xi) is then measured using the log-likelihood func-
tion ∑mi=1∑nj=1 p(yj ∣xi) log p̂(yj ∣xi), and finally, the embeddings are obtained by
optimizing the underlying problem.

2.2. Bipartite Graph Partitioning (BGP)

BGP [27] models the set of heterogeneous objects, e.g., documents and words
when processing a corpus, as a bipartite graph between the two types of objects,
so that object co-clustering is converted to a graph partitioning problem. In its
model, the (m+n)× (m+n) adjacency matrix of the graph can be expressed as

M = [ 0 R
RT 0

] . (2)

The co-embeddings are then calculated by solving a relaxation to the underlying
normalized cut of this graph. Letting Dx be the m×m diagonal matrix formed
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by the vector of the row sums of R, and Dy the n × n diagonal matrix formed
similarly by the column sums, the optimal co-embeddings are given as

Zx = D
1
2
xUk, (3)

Zy = D
1
2
y Vk, (4)

where Uk and Vk are the matrices containing the left and right singular vectors

matrices of D
1
2
xRD

− 1
2

y , corresponding to the 2nd to (k + 1)th largest singular
values.

2.3. Correspondence Analysis (CA)

CA [18] regards the input relational matrix R as a contingency table, such
that the Euclidean distances between row (or column) objects in the embedded
space are equal to the χ2 distances between rows (or columns) in the table. If
we denote by ri the ith row sum of R, and by cj its jth column sum, the χ2

distance between the ith and the kth rows can be given by

d2ik =
n

∑
j=1

1

cj
(rij
ri

− rkj
rk

) . (5)

Subsequently, to preserve the row object distances, CA finds the row embedding
according to

Zx = D
− 1

2
x UkΘk, (6)

and, similarly, for the column objects, the embedding matrix is given as

Zy = D
− 1

2
y VkΘk, (7)

where Dx and Dy are as defined above. Uk, Vk and Θk are the matrices
containing the left and right singular vectors, and the corresponding 2nd to
(k + 1) largest singular values, respectively, of a normalized version of R, such

as D
− 1

2
x RD

− 1
2

y .

2.4. Automatic Co-embedding with Adaptive Shaping (ACAS)

ACAS [24] is a recent matrix factorization method based on exploiting the
commonalities amongst the existing models of CA, Latent Semantic Indexing
and other methods proposed in [27], [28]. ACAS firstly scales the relational
matrix according to

R̂ = S
− 1

2
x RS

− 1
2

y , (8)

where the scaling matrices Sx and Sy are generalizations to the row sum diagonal
matrix Dx and column sum diagonal matrix Dy. Specifically, the ith diagonal
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element s
(x)
i of Sx and the jth diagonal elements s

(y)
j of Sy are controlled by a

model variable p as

s
(x)
i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if p = 0,

(∑nj=1 rpij)
1
p , if p ≥ 1,

max(ri1, ri2, . . . , rin), if p =∞,
(9)

and

s
(y)
j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if p = 0,

(∑mi=1 rpij)
1
p , if p ≥ 1,

max(r1j , r2j , . . . , rmj), if p =∞.
(10)

Likewise, the co-embeddings Zx and Zy are controlled by model variables
α > 0 and β via

Zx = S−αx UkΘβ
k , (11)

Zy = S−αy VkΘβ
k , (12)

where Uk, Vk and Θk are as defined before. Using different values for the
parameters p, α and β, the method can generate a wide range of embeddings;
for example, with p = 1, α = 1

2
and β = 1, we obtain the CA model, while setting

p = 0, α = 0 and β = 1 yields the Latent Semantic Indexing model. The optimal
model is then obtained by using maximum log-likelihood and a quantized scoring
function.

3. The Proposed Framework

3.1. Model Construction

We firstly consider the simpler problem of mapping the pairwise relationships
contained in matrix R to a line. We let zx = [zx1 , zx2 , . . . , zxm]⊺ and zy =
[zy1 , zy2 , . . . , zyn]⊺ be the maps of the m row objects {xi}mi=1 in group X and the
n column objects {yj}nj=1 in Y, respectively. Assuming that the coordinates of
the embedding zx are known, then a reasonably generic criterion for choosing
a good map for the points zy is to minimize a series of cost functions for all
objects xi, each expressed as

fxi(zy) = (zxi − zy1)2wi1 + (zxi − zy2)2wi2 + . . . + (zxi − zyn)2win. (13)

This criterion is similar to embedding methods, such as the Laplacian Eigenmaps
[31], where the distances between the embedded points are driven to correspond
to those of the original patterns through similarity weights wij . In Eq.(13), the
distances between the embedded {yj}nj=1 and xi, and the weights wij should

be suitably restricted, by, for example, having wij < wik when (zxi − zyj)2 >
(zxi −zyk)2. Based on this, we can define normalized weights wij = rij/∑nj=1 rij ,
such that if objects yj have high similarity to objects xi, then their embedded
counterparts zyj and zxi will be proximate.
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Applying Eq.(13) to all embedded points {zxi}mi=1, generates m different
minimizing functions {fxi(zy)}mi=1. Since the row sum ∑nj=1 rij is an indicator
of the overall similarity level of object xi to all objects {yj}nj=1 within Y, it can
be taken into account in the optimization through an aggregate cost function

F̂(zy) =
m

∑
i=1

(
n

∑
j=1

rij)
η1
fxi(zy), (14)

where η1 ≥ 0 is a parameter that controls the row sum weight ∑nj=1 rij which
scales each objective fxi . The higher this weight is, the more emphasis is given
to the minimization of the particular fxi(zy), in order to keep the embedded
points zyj close to zxi . If we then apply the above normalized weights estimated
from R to Eq.(13) and substitute in Eq.(14) we have

F̂(zy) =
m

∑
i=1

(
n

∑
j=1

rij)
η1 n

∑
j=1

(zxi − zyj)2wij

=
m

∑
i=1

(
n

∑
j=1

rij)
η1 n

∑
j=1

(zxi − zyj)2
rij

∑nj=1 rij

=
m

∑
i=1

n

∑
j=1

(zxi − zyj)2r
(x)
ij , (15)

where r
(x)
ij = rij(∑nj=1 rij)η1−1. This global cost function is, however, subject to

knowing the optimal {zxi}mi=1 coordinates in zx.
Reversing the above, and assuming that zy is given and that we seek to

recover zx, we can define a symmetric to F̂ aggregate cost function, as

Ĝ(zx) =
n

∑
j=1

m

∑
i=1

(zyj − zxi)2r
(y)
ij , (16)

where r
(y)
ij = rij(∑mi=1 rij)η2−1 and η2 ≥ 0. A trivial solution to the above is when

all zxi and zyj collapse to a single coordinate, and this corresponds to F̂(zy) =
Ĝ(zx) = 0. The exclusion of degenerate solutions during the optimization is
discussed in Section 3.2.1.

The minimization problems in Eqs.(15,16) can be expressed in matrix forms
as

F̂(zy) = z⊺xDr,xzx + z⊺yDc,xzy − 2z⊺xRxzy, (17)

Ĝ(zx) = z⊺xDr,yzx + z⊺yDc,yzy − 2z⊺xRyzy, (18)

where Rx = [r(x)ij ], Ry = [r(y)ij ]. Dr,x and Dc,x are the diagonal row and column

sum matrices of Rx, respectively, and similarly, Dr,y and Dc,y are the diagonal
row and column sum matrices of Ry. After removing the constant terms from
Eqs.(17,18) we have the equivalent objective functions

F(zy) = z⊺yDc,xzy − 2z⊺xRxzy, (19)

G(zx) = z⊺xDr,yzx − 2z⊺xRyzy. (20)
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The above can be simplified by setting Dr and Dc to be the diagonal row
and column sum matrix of R, so that

Rx =
⎡⎢⎢⎢⎢⎣
rij

⎛
⎝
n

∑
j=1

rij
⎞
⎠

η1−1⎤⎥⎥⎥⎥⎦
= Dη1−1

r R = Dηr
r R, (21)

Ry =
⎡⎢⎢⎢⎢⎣
rij (

m

∑
i=1
rij)

η2−1⎤⎥⎥⎥⎥⎦
= RDη2−1

c = RDηc
c , (22)

where ηr = η1 − 1 and ηc = η2 − 1.
Given a vector zx, the minimization of F(zy) produces an embedding z∗y

which best complies with information in R, and similarly, given zy, the min-
imization of G(zx) produces an optimally compliant embedding z∗x. If there
exists a pair (z∗x,z∗y) that mutually satisfies both optimizations, then it can
constitute an acceptable joint co-embedding for the row and column objects.

To avoid the collapse of the solutions zx and zy, we need to impose the two
following scale constraints

z⊺xDr,yzx = 1, (23)

z⊺yDc,xzy = ζ. (24)

The parameter ζ ≥ 0 controls the relative scale between the embeddings zx and
zy, as their relative magnitudes need to be taken into account in the geometry
of the recovered co-embeddings.

3.2. Co-Embedding Generation

Considering the optimization problem related to variable zy only, the La-
grangian function for F(zy) is defined as

L(zy, µ1) = z⊺yDc,xzy − 2z⊺xRxzy − µ1(z⊺yDc,xzy − ζ)
= (1 − µ1)z⊺yDc,xzy − 2z⊺xRxzy + µ1ζ, (25)

where µ1 is the multiplier for the associated constraint. Differentiating with
respect to the embedding zy, gives the following condition for stationarity

∂L(zy, µ1)
∂zy

= 2(1 − µ1)Dc,xzy − 2R⊺
xzx = 0. (26)

Combining Eqs.(24,26), yields

zy = ±α(zx)D−1
c,xR

⊺
xzx, (27)

where we use the shorthand α(zx) =
√

ζ
z⊺xRxD−1

c,xR
⊺
xzx

, defined as a function of

the given embedding zx of the row objects. The above expression for zy provides
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the set of possible solutions. Substituting this into Eq.(19), leads to a simpler
expression given by

F(zy) = ζ ∓ 2α(zx)z⊺xRxD
−1
c,xR

⊺
xzx

= ζ ∓ 2α(zx)
ζ

α(zx)2
= ζ ∓ 2ζ

α(zx)
. (28)

It can therefore be seen that, since ζ− 2ζ
α(zx) < ζ+

2ζ
α(zx) , the minimizing embedding

is obtained by the positive branch of Eq.(27) as

z∗y = argmin
zy∈Rn,

z⊺yDc,xzy=ζ

F(zy) = α(zx)D−1
c,xR

⊺
xzx. (29)

We now consider the minimization of G(zx), given the embedding zy for
the column objects, under the constraint Eq.(23). The associated Lagrangian is

L(zx, µ2) = z⊺xDr,yzx − 2z⊺xRyzy − µ2(z⊺xDr,yzx − 1)
= (1 − µ2)z⊺xDr,yzx − 2z⊺xRyzy + µ2, (30)

where µ2 is the multiplier. Similarly to the previous development, we can find
that the minimizing embedding is given as

z∗x = argmin
zx∈Rm,

z⊺xDr,yzx=1

G(zx) = β(zy)D−1
r,yRyzy, (31)

where β(zy) = 1√
z⊺yR⊺

yD
−1
r,yRyzy

is defined to be a function of the given embedding

zy of the column objects.
As mentioned in Section 3.1, a desired co-embedding (z∗x,z∗y) should mu-

tually satisfy both optimization problems. Consequently, using Eqs.(29,31), we
can explicitly make use of this interdependency to express z∗x via

z∗x = β(z∗y)D−1
r,yRy α(z∗x)D−1

c,xR
⊺
xz

∗
x = α(z∗x)β(z∗y)Tz∗x, (32)

where T = D−1
r,yRyD

−1
c,xR

⊺
x is an m ×m matrix defined here to simplify the no-

tation. From Eq.(32), we can see that z∗x should be an eigenvector of T with
1

α(z∗x)β(z∗y)
being the corresponding eigenvalue. Assuming the eigen-decomposition

TΨ = ΨΛ, with Ψ = [ψ1,ψ2, . . . ,ψm] being the eigenvector matrix and Λ =
diag([λ1, λ2, . . . , λm]) the diagonal matrix of eigenvalues, we can take the sought
embedding to be

z∗x =
1√

ψ⊺
qDr,yψq

ψq, (33)

where the solving eigenvector ψq (the choice of q is addressed in Section 3.2.1) is
scaled accordingly to satisfy the constraint in Eq.(23). Subsequently, the paired
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embedding for the column objects can be calculated directly from Eq.(29) as
z∗y = α(z∗x)D−1

c,xR
⊺
xz

∗
x.

It has to be noted that the above assumes that 1
α(z∗x)β(z∗y)

corresponds to an

eigenvalue λq of T. This can be verified through the following steps

α(z∗x)2β(z∗y)2 =
1

( 1
α(z∗x)

z∗y)
⊺
R⊺
yD

−1
r,yRy ( 1

α(z∗x)
z∗y)

= 1

(z∗⊺x RxD−1
c,x) R⊺

yD
−1
r,yRy (D−1

c,xR
⊺
xz

∗
x)

= 1

z∗⊺x T⊺Dr,yTz∗x
= 1

λ2qz
∗⊺
x Dr,yz∗x

= 1

λ2q
, (34)

which rely on Eqs.(29,33).
A final issue concerning the feasibility of the above, is that T = D−1

r,yRyD
−1
c,xR

⊺
x

must have real and nonnegative eigenvalues λq. This can be shown to be the
case, because from Eqs.(21,22), we have Rx = Dηr

r R and Ry = RDηc
c , and hence,

the matrix T can be written as

T = D−1
r,yRDηc

c D−1
c,xR

⊺Dηr
r

= D
− ηr2
r D−1

r,yD
ηr
2
r RD

ηc
2
c D−1

c,xD
ηc
2
c R⊺D

ηr
2
r D

ηr
2
r

= D
− ηr2
r D

− 1
2

r,y (D
− 1

2
r,yD

ηr
2
r RD

ηc
2
c D

− 1
2

c,x)(D
− 1

2
c,xD

ηc
2
c R⊺D

ηr
2
r D

− 1
2

r,y)D
1
2
r,yD

ηr
2
r

= P−1A⊺AP, (35)

where P = D
1
2
r,yD

ηr
2
r is a nonsingular diagonal matrix, and A = D

− 1
2

c,xD
ηc
2
c R⊺D

ηr
2
r D

− 1
2

r,y .
Therefore, T is similar to the positive semidefinite matrix A⊺A, and conse-
quently, it has the same eigenvalues.

3.2.1. Eigenvector selection

So far we have shown the form of the sought co-embedding (z∗x,z∗y) from
Eqs.(29,33). Because of the interdependency between the two sets of objects,
we must minimize the two objective functions F(zy) and G(zx) simultaneously.

From Eq.(28), we can see that the minimum value of F(zy) is ζ− 2ζ
α(z∗x)

. Similarly,

for G(zx), we can find that its minimum corresponds to 1 − 2
β(z∗y)

. These two

quantities obtain their smallest values when the denominators α(z∗x) and β(z∗y)
are as small as possible. Since they are both nonnegative, when α(z∗x) and β(z∗y)
achieve their minimum values, their product α(z∗x)β(z∗y) also is minimized. The
latter is equivalent to choosing that eigenvector ψq of T that corresponds to the
largest eigenvalue λq, in order to compute z∗x using Eq.(33).

It can be seen that the largest eigenvalue of T is the unity with an associated
eigenvector proportional to 1m (the m-length vector of ones). Firstly, since
Dc,x = diag(R⊺

x1m) and Dr,y = diag(Ry1n), we have

T1m = D−1
r,yRyD

−1
c,xR

⊺
x1m = D−1

r,yRy1n = 1m, (36)
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which shows that (1,1m) is an eigenpair. Further, from the fact that the spectral
radius ρ(⋅) of any square matrix cannot exceed any of the norms for that matrix,
we have ρ(T) ≤ ∥T∥∞ = 1. The last equality holds because T is a row stochastic
matrix, that is, it has nonnegative elements, and from Eq.(36) its rows sum to
one. Hence, we have ρ(T) = 1 and no other eigenvalue greater than one exists.

However, we cannot select this largest eigenvalue, because its associated
eigenvector 1m will produce via Eq.(33) an embedding z∗x where all points col-
lapse to a single coordinate. This leads the embedding z∗y of the other group to
also assume a single location. This degenerate solution relates to the case de-
scribed in Section 3.1, where all embedded patterns coincide to yield the smallest
possible aggregate costs, but here the scale constraints are also in force. Conse-
quently, to avoid such solutions, we select the eigenvector ψq corresponding to
the second largest eigenvalue λq. Note, that when R or a suitable permutation
of it contain blocks of disconnected components, then T has a repeated semisim-
ple eigenvalue of one. In this case, all the associated eigenvectors can be ignored
as they map the different groups of the elements of z∗x to constant coordinates.
However, this situation may not correspond to a practically useful relational
representation in R and the different blocks can be processed separately.

3.3. Multidimensional Extension

Although, so far we have focused on the estimation of a unidimensional co-
embedding (zx,zy), it is more practical for the purposes of visualization or su-
pervised pattern analysis to generate k-dimensional (with k >1) co-embeddings
(Zx,Zy) ∈Rm×k×Rn×k. In analogy to the previous section, the additional axes
can be recovered by processing the remaining eigenvectors of T. Specifically, by
assuming decreasing λq with increasing index q, and ignoring λ1 = 1, we choose
k eigenvectors ψq+1 with q = 1, . . . , k. It has to be noted, that since T is rank
deficient and the quantity 1

α(z∗x)β(z∗y)
is not defined for zero eigenvalues, we have

k ≤ rank(T) − 1 ≤ min (m,n) − 1. However, in practice a small number of the
available dimensions is utilized.

In the computed co-embedding, the scale constraints of Eqs.(23,24) need to
be maintained for all axes, as

diag(Z⊺
xDr,yZx) = 1k, (37)

diag(Z⊺
yDc,xZy) = ζ. (38)

The vector ζ = [ζ1, ζ2, . . . , ζk]⊺ contains the parameters that control the relative
scale between the embedded patterns from the row and column objects at each
axis. In order for the k axes to represent different and non-redundant coordi-
nate information, the eigenvectors ψq+1 must be independent. It turns out, that
this is the case here due to the problem formulation and without additional con-
straints in the optimization. Specifically, from Eq.(35), we have T = P−1A⊺AP,

where P = D
1
2
r,yD

ηr
2
r is diagonal. Then, the decomposition TΨ = ΨΛ can be

written as P−1A⊺APΨ = ΨΛ or A⊺A(PΨ) = (PΨ)Λ. This shows that PΨ
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contains the eigenvectors of a symmetric matrix, and therefore, PΨ is orthog-
onal. This is equivalent to Ψ⊺P2Ψ being diagonal, that is, all the eigenvectors
of T are orthogonal with respect to the scaling matrix Dr,yD

ηr
r .

Finally, the qth columns of Zx and of Zy are taken to be

Z(q)x = 1√
ψ⊺
q+1Dr,yψq+1

ψq+1, (39)

Z(q)y = α(Z(q)x , ζq) D−1
c,xR

⊺
xZ
(q)
x , (40)

where the quantity α(⋅) is as defined for Eq.(27), but it now depends also on

the qth scale parameter and is equal to
√

ζq

Z
(q)⊺
x RxD−1

c,xR
⊺
xZ
(q)
x

.

3.3.1. Parameter reduction heuristics

The optimal selection for the proposed model, depends on the dimensionality
k, the k embedding scaling parameters ζq, and the two data weighting param-
eters ηr and ηc (the latter two parameters were introduced in Section 3.1 to
scale the objectives, and as they indirectly parameterize matrix T they cannot
vary with each qth dimension). The mechanism and the objective function that
drive the model selection will be described in Section 3.4. Here, we show that
in the absence of additional information for the relative scales between the row
and column embeddings, we can make use of certain heuristics that reduce the
number of parameters which need to be identified.

Specifically, we experimentally observed that the identification of multiple
ζq can be sensitive to the search resolution, and it is more robust to look instead

for surrogate parameters ξq > 0 that can be defined as α(z∗x)
√
λq+1 or equiva-

lently
√
α(z∗x)√
β(z∗y)

. From the last ratio, it can be intuitively understood that when

no scale information about R is available, ξq can be searched within intervals
around the value of one. This is because we can assume that the two objective
functions F(zy) and G(zx) are of equal importance and that the two sets of
embedded objects are in relative scale by having ζq ≈ 1, which would make the
quantities α(z∗x) and β(z∗y) to be close to each other. Using this new quantity,
and substituting for α(z∗x), the equation for the column embedded points can

be written as z∗y =
ξq√
λq+1

D−1
c,xR

⊺
xz

∗
x. Searching for the surrogate parameters ξq

is easier and more efficient for the model identification.
The above can facilitate a parameter reduction based on the following. We

firstly simplify the model by replacing all k parameters ξq with a single scalar
parameter ξ. Although this speeds up model search significantly, it also removes
the flexibility for scale variation between the different axes. To compensate for
this, we introduce a second scaling parameter γ ≥ 0 that indirectly adjusts the
scale between the different axes through the eigenvalue ratio for a particular
iteration. Specifically, the row embedded points z∗x are adjusted by a factor of

(λq+1
λ2

)
γ
. This is useful because eigenvalues correspond to model costs at each

step, and with the introduced weighted ratio we can achieve some degree of
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scale variation across the coordinates. We have experimentally validated the
usefulness and practicality of the proposed parameter reduction heuristics. In
summary, the final co-embedding is calculated according to

Z(q)x = (λq+1
λ2

)
γ 1√
ψ⊺
q+1Dr,yψq+1

ψq+1, (41)

Z(q)y = ξ√
λq+1

D−1
c,xR

⊺
xZ
(q)
x . (42)

3.4. Model Identification

Computing a suitable co-embedding involves the identification of the four
model parameters η1, η2, ξ and γ. A simple search procedure, such as a grid
search, simulated annealing or a genetic algorithm can be used. However, given
an input relational matrix R, we need to define a suitable objective function
that drives this search. In line with previous work [24], such an objective should
compare the original input R against a re-estimated source based on the gen-
erated co-embedding (Zx,Zy). This can be done, for example, by computing
a between-group Euclidean distance matrix Q ∈ Rm×n between the rows of Zx
and Zy. Then, a possibility would be to simply minimize the normalized sum of

the element-wise products tr(RQ⊺)√
tr (RR⊺) tr (QQ⊺)

between R and Q. However, this

procedure was found to be unreliable due to disproportionate error contribu-
tions from the different entries. Alternative but more complex schemes based
on quantization have previously been used in the evaluation of ACAS [24].

In this work, we evaluate the conformity between R and Q using the local
structural information of the between-group similarities and dissimilarities they
represent. Specifically, we capture the local neighborhoods between the member
patterns of the generated co-embedding, by defining a binary matrix K(R).
Each of its ijth element is one, if and only if the ith row object is within the
first kr neighbors of the jth column object (that is among the kr largest entries
in the jth column), and at the same time the jth column object is within the first
kc neighbors of the ith row object. The neighborhood is established by using
the raw similarities within R, and the parameters kr and kc which can be pre-
assigned or set to be a small percentage of the cardinalitiesm and n, respectively.
The quantity K(Q) is similarly defined using the distance information within
matrix Q (the neighbors here are based on the smallest entries in the columns
or rows).

This type of mutual neighborhood information can reveal useful structural
characteristics that enable the comparison between R and Q. For example,
it can detect co-clustering arrangements between heterogeneous object types,
without being sensitive to large error contributions from element-wise compar-
isons and the discrepant type of information represented by the original R and
the re-estimated Q. Finally, the model parameters η1, η2, ξ and γ are identified
by minimizing the quantity

Γ(R,Q) = 1⊺m (K(R) −K(Q)⊙K(R)) 1n, (43)
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where ⊙ denotes the Hadamard matrix multiplication, and Q depends on the co-
embedding (Zx,Zy), which in turn depends on the four search parameters. From
the definition of Γ(⋅), it can be seen that it is a sum of the unity errors, defined
only at the ijth matrix elements which correspond to object pairs (i, j) that
are in mutual local neighborhoods in R but not Q. The measure assumes that
loss of local neighborhood structure from the original similarity matrix breaks
down the initial requirement for the co-embedding to preserve local proximity
information.

1. Input: An m × n input matrix R representing similarities between the
m row objects and the n column objects, the co-embedding dimension k,
and the local neighborhood control parameters kr, kc.

2. Initialization:

(a) Set restrictions on the search range of the model parameters, as:
η1, η2 ∈ [0,10], ξ ∈ (0,3], and γ ∈ [0,3].

(b) Set some starting values for these model parameters (depending on
the search method employed).

3. Main loop (repeated as long as step (j) cannot reduce the model cost
Γ(R,Q) any further):

(a) Set Dr = diag(R1n) and Dc = diag(R⊺1m).
(b) Calculate Rx = Dη1−1

r R and Ry = RDη2−1
c , as in Eqs.(21,22).

(c) Set Dr,y = diag(Ry1n) and Dc,x = diag(R⊺
x1m).

(d) Construct the matrix T = D−1
r,yRyD

−1
c,xR

⊺
x.

(e) Perform an eigen-decomposition of T, where Ψ = [ψ1, . . . ,ψm] is the
eigenvector matrix and Λ = diag([λ1, . . . , λm]) contains the eigenval-
ues in descending order.

(f) Calculate each qth column (where q = 1, . . . , k) of Zx and of Zy using
Eqs.(41,42).

(g) Use the resulting co-embedding (Zx,Zy) ∈ Rm×k×Rn×k, to estimate
a between-group Euclidean distance matrix Q ∈Rm×n.

(h) Calculate the neighborhood indicator structures K(R) and K(Q),
as defined in Section 3.4.

(i) Compute the model cost Γ(R,Q) using Eq.(43).
(j) If the cost is less than the minimum found so far, store the values of

the current model parameters η1, η2, ξ and γ and update them to
the next search values (depending on the employed search procedure
and resolution of the search).

4. Output: The optimal co-embedding (Zx,Zy) and their associated opti-
mal model parameters.

Table 1: Description of the proposed algorithm using a generic type of search for the identifi-
cation of the optimal co-embedding and the model parameters.

The overall set of operations for the proposed method is summarized in
Table 1. It can be seen that the most complex step for the model identification
is the eigen-decomposition of matrix T. This is typically of O(min(m,n)3),
by swapping conveniently the roles of groups X and Y. The construction of
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T ignoring scaling operations is of O(min(m,n)2max(m,n)). The number of
decompositions depends on the number of iterations of the adopted search pro-
cedure. However, as T depends only on η1 and η2, and not on ξ and γ, a
new decomposition is needed only when the former two parameters are updated
during the search. For each possible co-embedding, the calculation of Q is of
O(mnk), finding K(Q) of O(mkr + nkc), and Γ(R,Q) of O(mn).

4. Experimental Analysis and Results

In this section, we compare the co-embedding generation capabilities of
the proposed algorithm with existing state of the art methods, including CA,
ACAS, CODE and the recently developed multiple kernel preserving embedding
(MKPE) algorithm to preserve similarity between heterogeneous groups of data
[32]. We examine both qualitative and quantitative aspects of the comparison,
which correspond to effectiveness in data visualization and supervised machine
learning. We split the experimentation into three main parts, solving three
different data visualization and analysis tasks using a total of 15 datasets:

• The reconstruction of the 2D distribution of data objects given the partial
similarities between them (Section 4.1). Eight 2D synthetic datasets1 with
multiple geometric arrangements and clusters with patterns separated into
two groups are used.

• The simultaneous learning of the distributional representations of docu-
ments and words in the same space, based on the frequency information
the words appearing in the documents (Section 4.2). Four document col-
lections containing clinical trials [15], Reuters new articles [15], 20 news-
group documents2 and online reviews [33] are used.

• The learning of low-dimensional representations of objects based on link
information contained in knowledge graphs (Section 4.3). We use three
datasets [34] with the citation networks between the Cora and Citeseer
documents, as well as the co-occurrence network between industrial com-
panies.

To identify the optimal model, a set of values for its four model parameters
is searched for within the ranges η1, η2 ∈ [0,10], ξ ∈ (0,3] and γ ∈ [0,3]. The
local neighborhood parameters kr and kc are both fixed to 5 (in general small
values such as {5,10,15} are the most appropriate; Section 4.4 analyzes their
effect on performance). To implement the actual search procedure, we employ
a simple genetic algorithm3, which relies on the Γ(⋅, ⋅) index of Eq.(43) to be its

1Some datasets are generated by us and some are downloaded from cran.r-project.

org/web/packages/mlbench, cs.joensuu.fi/sipu/datasets, and search.r-project.org/

library/fpc/html/rFace.
2Downloaded from qwone.com/~jason/20Newsgroups.
3Using Matlab ver.8.6 internal toolbox implementation.
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minimizing objective function, supported by fitness ranking, stochastic uniform
parent selection and an elitism operator. It uses a population of 52 real-valued
encoded solutions, and terminates when fitness improvement stagnates for 50
generations. Furthermore, we use uniform crossover at a crossover rate of 0.8,
and in order to maintain feasibility of the range constraints an adaptive feasible
mutation.

4.1. Reconstruction of Synthetic 2D Data Points

The eight synthetic datasets are shown in Figure 1, where data points are
allocated to groups X or Y and form various clusters and co-clusters. We
calculate the initial input relational measurements in R, according to

rij = exp( −mn∥xi − yj∥22
∑mi=1∑nj=1 ∥xi − yj∥22

) , (44)

where xi and yj are the m and n coordinates of the patterns from groups X
and Y, respectively.

The co-embeddings from all methods and for all datasets are displayed in Fig-
ures 2-4. It can be observed that the representations generated by the proposed
method resemble more the original arrangements of Figure 1. In most cases,
most methods are shown to possess the ability to preserve the principal spatial
characteristics, but the existing ones often do not fully capture the proximities
of the cluster structures within each individual group X and Y or between them.
For example, the Rface co-embedding of CODE in Figure 3(b) and that of CA
in Figure 3(e) reliably represent the eyes and nose components of the original
set in Figure 1(e), but they both completely break down the composition of the
mouth structure, which is a co-cluster of points belonging to both X and Y, and
CODE also fails to preserve the relative location of the chin. ACAS in Figure
3(e) totally distorts the relative positions of the different components. For the
Target dataset of Figure 1(d), CA, ACAS and CODE in Figure 3(a,d,g) seem
to preserve the continuity of the three surrounding clusters separately compris-
ing points from both groups. For the two middle structures forming a single
co-cluster structure in Figure 1(d), however, CODE segregates the co-cluster,
while ACAS preserves it but compresses one of the structures. The proposed
method is shown in Figure 3(m) to reliably reproduce the co-cluster as a uni-
form mix of points from both groups. Similar observations can be made for the
remaining datasets, e.g., for the ring and the compound datasets, CODE, ACAS
and CA fail to preserve the co-cluster structures. The proposed algorithm qual-
itatively shows to preserve the structure, shapes and relative proximities of both
within-group clusters and between-group co-clusters. MKPE does not perform
well for almost all the datasets, because ideally the algorithm requires both
between-group and within-group relations to recover the heterogeneous data
embedding. When there is only partial relation information available, e.g., the
relation matrix R between groups X and Y, it is difficult for MKPE to generate
embedding that can satisfactory recover the input relation.
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(a) Dots (m=336, n=364)
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(b) Circles (m=200, n=300)
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(c) R15 (m=313, n=287)
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(d) Target (m=496, n=262)
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(e) Rface (m=330, n=670)
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(f) 2dnormals (m=256, n=244)
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(g) Compound (m=108, n=291)
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(h) Ring (m=504, n=496)

Figure 1: Original patterns of the synthetic 2D datasets. Different colors correspond to
different clusters and spatial structures. All points with the same color are allocated either
to group X (marked by “○”) or to group Y (marked by “+”). The cardinalities m = ∣X ∣ and
n = ∣Y ∣ of the groups are shown for each dataset.
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(a) Dots, CODE
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(b) Circles, CODE
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(c) R15, CODE
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(d) Dots, ACAS
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(e) Circles, ACAS
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(f) R15, ACAS
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(g) Dots, CA
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(h) Circles, CA
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(i) R15, CA
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(j) Dots, MKPE
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(k) Circles, MKPE
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(l) R15, MKPE
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(m) Dots, proposed
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(n) Circles, proposed
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(o) R15, proposed

Figure 2: Co-embeddings generated by different algorithms, for the synthetic datasets of Dots,
Circles and R15 displayed in Figure 1. Co-embedding axes are scaled within [0,1].
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(a) Target, CODE
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(b) Rface, CODE
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(c) 2dnormals, CODE
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(d) Target, ACAS
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(f) 2dnormals, ACAS
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(g) Target, CA
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(h) Rface, CA
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(i) 2dnormals, CA
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(j) Target, MKPE
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(k) Rface, MKPE
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(l) 2dnormals, MKPE
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(m) Target, proposed
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Figure 3: Co-embeddings generated by different algorithms, for the synthetic datasets of
Target, Rface and 2dnormals displayed in Figure 1. Co-embedding axes are scaled within
[0,1].
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Figure 4: Co-embeddings generated by different algorithms, for the synthetic datasets com-
pound and ring displayed in Figure 1. Co-embedding axes are scaled within [0,1].
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4.2. Learning Distributional Representations of Documents and Words
Given a collection of documents and a dictionary of unique words, the ab-

sence/presence (or frequency) of the words occurring in each document readily
provides a source of information on the similarities R between the documents
group X and the word group Y. Low-dimensional representations can be learned
from R for both documents and words, reflecting the document and word dis-
tributions in the same space. The empirical co-occurrence counts from the
clinical trials and Reuters news articles are used. In order to quantitatively
assess the co-embedding quality, we make use of the class information available
in the document collections. After embedding the documents and words in the
same space, we first estimate the center for each document class. Then, we
calculate the Euclidean distance between the words and each class center in
the co-embedding space. Sets of words that are closest to the document class
centers are selected. For this particular application, it is reasonable to expect
that in a reliable co-embedding map, the words that are more important for the
identification of a document class are proximate to the documents that belong
to this class. Thus, the selected words are expected to possess higher discrim-
inating power to distinguish between the document classes. Subsequently, we
recompose a new document-by-word frequency matrix by only retaining the
selected words. This recomposed frequency matrix can constitute the feature
matrix input to a classification algorithm, using the document class labels as the
target class memberships, and the resulting classification accuracy to represent
the co-embedding quality. To implement this, we use a support vector machine
(SVM) classifier3 for all experiments in this section. The classifier uses, for sim-
plicity, a linear kernel, without any data scaling or standardization applied to
the predictors. It employs sequential minimal optimization (SMO) for finding
the optimal hyperplane, and a regularization parameter for the nonseparable
cases set to 1. The multiclass setup is based on an one-against-all coding, and
a 10-fold cross-validation is used for model assessment.

Firstly, we visually demonstrate the learned 2D co-embeddings for m=800
clinical trials documents and n=1,780 unique words. Each clinical trial is as-
signed to one of the four disease classes of asthma, breast cancer, lung cancer and
prostate cancer, and each class contains 200 documents. Infrequent words are
removed, and only the most informative ones are retained. The word occurrence
count is used as the relation measure between a document and a word in R.
The resulting co-embeddings of all algorithms are illustrated in Figure 5, where
the document objects from the four classes are plotted together with the word
objects. It can be seen that the ACAS and CODE algorithms have generated
words that can be quite far away from the four classes of documents. For the
proposed method and CA, this is far less pronounced, as the document objects
appear to be blending with the word objects. It is relatively easy to identify the
document-word proximities which correspond to inter-object similarities. As for
MKPE, the document and word objects are displayed along two separate and
roughly parallel linear arrangements. We also use Figure 5(f) to compare the
classification rates that represent the reliability of the proximity between the
embedded document and word objects for varying numbers of selected words
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(f) Classification error comparison

Figure 5: 2D demonstration and classification error comparison of co-embeddings generated
for 800 clinical trials and 1,780 words belonging to four classes by different methods. Each
document (marked by “+”) is a member of group X and belongs to one of the four topics
(plotted in different color). Each member of group Y (marked by “●”) is a word object.

(from 10 to 100) per document class. It can be seen that the proposed method
and CA show comparable error rates that are lower than CODE and ACAS.
MKPE possesses lower error rates in this case, and this indicates that despite
being separated along two parallel arrangements, the locations of each document
class and its related words are actually compatible. However, although offering
a low error rate, such separation is not optimal for visualization purposes.

We further evaluate the algorithms with four more datasets possessing more
complex class structures. One is a larger collection of clinical trials consisting of
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(d) Online reviews, 5 classes

Figure 6: Comparison of the classification error rates of different algorithms, for varying the
number k of the selected words that are closest to each class center using different document
collections.

m=1,800 documents (with 200 documents per topic), containing n=2,300 words
after removing the infrequent words and belonging to the nine disease classes
of asthma, breast cancer, lung cancer, prostate cancer, cardiovascular, HIV,
leukemia, depression and schizophrenia. Another dataset is the Reuters news
article collection, containing m=976 documents represented by n=2,185 words,
belonging to ten document classes of earn, acq, crude, trade, money-fx, interest,
ship, sugar, money-supply and coffee. A third one is the 20Newsgroups data,
containing m=3,000 newsgroup documents represented by n=2,000 frequently
occurring words, belonging to twenty newsgroups. The fourth dataset is the
online review collection containing m=2,000 review documents represented by
n=1,500 words after text processing, belonging to the 5 topics of movies, books,
dvds, electronics and kitchen. For these datasets, the word occurrence counts
in the documents are used as the relation measurements in R. As all datasets
contain multiple classes, it is insufficient to learn 2D embeddings to characterize
the class structure. We, thus, fix the number of selected words per class to 20
and examine the classification performance while varying the number of used
embeddings (k changes from 2 to 20). It can be seen from Figure 6 that the
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proposed method possesses lower or comparable error rates compared to existing
ones. Overall, taking into account all the results demonstrated in Figures 5 and
6, the proposed method exhibits the most consistently good performance in
preserving the relation measurements between documents and words.

4.3. Co-embedding Generation from Link Data

In this experiment, we assess the co-embedding algorithms using a different
type of data, which provides link information between objects. We use three
datasets to experiment with. One is the Cora dataset, which consists of 2,708
academic publications that are classified into one of the seven classes from case
based, genetic algorithms, neural networks, probabilistic methods, reinforce-
ment learning, rule learning and theory. The CiteSeer dataset contains 1,540
articles classified into one of six classes of agents from AI, DB, IR, ML and HCI.
For both datasets, the citation links between the documents are provided. The
third dataset is the Industry-PR, which contains 1,798 companies assigned to
one of the 12 classes representing the 12 industry sectors of Yahoo!. Two com-
panies are linked if they are mentioned by the same text documents among the
PR Newswire press releases gathered from April 1st, 2003 to September 30th,
2003. For all the datasets, undirected links are studied, representing whether
one cites the other in a document pair (for Cora and Citeseer), or whether two
companies appear in the same text (for Industry-PR). We analyze objects that
are included in the maximally connected subgraph of the given adjacency ma-
trix, constructed from the link information. 40% of the objects from each class
are randomly chosen and assigned to group X , while the remaining ones are
assigned to group Y. The geodesic distance matrix D between the objects from

the two groups is computed. Then, the Gaussian e−
Dij
t , with t denoting the av-

erage value of the elements in D, is used to obtain the elements of the similarity
matrix R, which is finally used as the input to each of the three co-embedding
algorithms.

For the quantitative evaluation, we employ a mean rank score [11] to examine
how well the learned embeddings preserve the relation information in R. The
goal is to compare the ranks of the closeness between each row object and all the
column objects based on R, with the same closeness ranks, but obtained from
the Euclidean distances between objects in the co-embedding space. For each
row object, the new co-embedding-based ranks of its ten closest column objects
searched within R are averaged. A smaller value of this mean rank indicates
better preservation of the learned co-embeddings. The final score is computed
by averaging the mean ranks for all the row objects.

In addition to this relation preservation evaluation based on rank, we also
examine the compatibility between the generated co-embeddings and the class
information associated with the row and column objects. The 10-fold cross-
validation classification performance of both row and column objects with re-
spect to their given class labels is computed using a simple one-nearest-neighbor
classifier.
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Figure 7: 2D co-embeddings generated by different algorithms, for the Cora and Citeseer
datasets. Row objects (marked by “+”) and column objects (marked by “○”) are members of
different classes plotted in different colors.
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Figure 8: Quantitative comparison of different co-embedding algorithms in terms of the mean
rank score and classification error rates using the three link datasets.
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Firstly, we visually demonstrate the learned 2D co-embeddings for the three
datasets in Figure 7. For all datasets, the proposed algorithm, CODE and CA
produce more spread out co-embedding distributions and better class separa-
bility than ACAS. For Citeseer, it can be seen from Figures 7(b) and 7(k) that
CODE and MKPE fail to preserve the between-group relations, as row and col-
umn objects from the same classes are shown to map far from each other. The
proposed algorithm, CA and ACAS manage to map the row and column objects
from the same class together.

In Figure 8 we compare the three algorithms numerically, in terms of the
mean rank scores and classification error rates for varying numbers of embedding
dimensions k (from 2 to 10). It can be seen that the proposed algorithm and
CA possess comparable performance, and both of them more frequently provide
lower mean rank scores and classification errors than the other algorithms. This
indicates better preservation of the input relation information in R and more
compatible structure to the associated ground truth class information of the
data objects.

4.4. Further Analysis of the Proposed Method

So far, the proposed algorithm provides the best performance for the syn-
thetic datasets, while MKPE performs the worst (see Section 4.1). For document-
word representation learning, the proposed algorithm and MKPE yield better
quantitative performances, but MKPE provides separate document and word
embedding distributions, which are less attractive for visualization purposes (see
Section 4.2). With regard to link data evaluation, the proposed algorithm and
CA provide better performances in terms of mean rank and classification error
(see Section 4.3). Overall, the proposed algorithm is the only one that provides
consistently good results for all the examined cases and under most evaluation
criteria.

Here, we further compare these algorithms in terms of their used parame-
ters. CA does not involve any parameter in its embedding computation, and
CODE and MKPE do not employ parameters when constructing their objective
or score functions. Both ACAS and the proposed algorithm employ param-
eters to control the balance between the local and global structure matching
between the learned embedding and the input similarities; that is, the quantiza-
tion parameter for ACAS, and the neighborhood parameters kr and kc for the
proposed method. Sometimes, ACAS cannot accurately preserve the desired
relation structure even with an exhaustive search over the quantization param-
eter, especially when processing data with complex geometric distributions (see
Figures 2(e) and 3(b) for example). As we will show in the experiments below,
although the proposed method employs two parameters, whereas CA, MKPE
and CODE employ none, this does not limit its usability because these param-
eters can be set to small values without any performance sensitivity issues.

We investigate the effect of the neighborhood control parameters kr and
kc in detail. In previous experiments, we employed small values of kr and kc,
e.g., kr = kc = 5, because we observed that it is more reliable to preserve local
neighborhood structure than to enforce a global matching that considers both
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Figure 9: 2D embeddings generated by the proposed algorithm with varying settings of the
neighborhood control parameters kr and kc using the three synthetic datasets dots, compound
and ring (in each corresponding column).
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Figure 10: 2D embeddings generated by the proposed algorithm with varying settings of the
neighborhood control parameters kr and kc using the: (a-e) 4-class clinical trials, and (f-j)
Citeseer dataset.
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Figure 11: Performance comparison of the proposed algorithm under varying settings of the
neighborhood control parameters kr and kc. (a) Classification error rates using the whole
clinical trial collection. (b,c) Classification error rate and mean rank values using the Citeseer
data. The experimented settings of kr and kc are shown in the legends. The typical setting
of kr = kc = 5 and similar local settings of kr = kc = 10 and kr = kc = 15, as well as the worst
setting of kr =m and kc = n are also included.
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Figure 12: Computational cost comparison of different methods for increasing number of data
size (n,m) and embedding dimension (k).

proximate and distant objects. To demonstrate the effect of varying settings of
kr and kc, in Figures 9 and 10 we illustrate the change of 2D distributions of
the learned embeddings using three synthetic datasets (dots, compound, ring),
one text (4-class clinical trial) and one link (Citeseer) dataset. For illustration
purposes, we select example datasets exhibiting more complex pattern distri-
butions. The experimented settings include kr = kc = 10, also kr = ⌊pm⌋ and
kc = ⌊pn⌋ (⌊⋅⌋ denotes the floor function) with p ∈ {10%,50%,100%} controlling
the percentage of the row (or column) objects to be included as neighbors, as
well as kr =m − 10 and kc = n − 10 to exemplify the case of large neighborhood
ranges that is close to the extreme case of all the objects being considered.

We compare Figures 9 and 10 and those reported in previous sections using
the kr = kc = 5 setting. It can be seen that there is not much difference between
embedding distributions obtained with smaller numbers of neighbors e.g., kr =
kc = 5, kr = kc = 10 and kr = ⌊10%m⌋, kc = ⌊10%n⌋. For most datasets, the shape
of the embedded data patterns starts to show significant distortion when large
neighbors, e.g., kr = m − 10 and kc = n − 10, are used; for example Figure 9(l).
For the extreme case of kr =m and kc = n, the resulting embedding distribution
collapses for most datasets. For example, in Figure 9(m) some classes almost
shrink to single points, and in Figure 10(e), the words shrink to the center of
documents.

Using the Citeseer dataset and the whole collection of clinical trials, we com-
pare further parameter settings quantitatively in terms of classification errors
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and mean ranks. The performances are displayed in Figure 11. It can be seen
that the worst performance is most frequently obtained with kr =m and kc = n.
Also, the figure shows that as long as the neighborhood is kept small, similarly
good performances can be obtained.

Finally, we compare the computational time of the proposed and existing
methods in Figure 12. It can be seen that CODE and MKPE are more time
consuming, particularly for learning embeddings with higher dimensions. The
computational times of the remaining methods, that are mainly based on matrix
decomposition, do not increase notably when embedding dimensions and data
sizes increase. Both CA and our method are slightly more efficient than ACAS.
Overall, the proposed method not only offers good performance for preserving
relational structure, but also possesses competitive computational requirements.

5. Conclusion

We have proposed a novel method to generate co-embeddings of two dif-
ferent groups of objects within a joint embedding space for use in data visu-
alization tasks, and also unsupervised and supervised machine learning setups.
Co-embedding generation algorithms that simultaneously handle heterogeneous
groups of data objects, are very important in many application areas, includ-
ing biological network analysis, co-occurrence data analysis and information
retrieval, and act as unique data analysis tools for sources supporting such com-
plex multi-modal information.

The algorithm we have introduced is experimentally demonstrated to be very
competitive with the existing state of the art. It holds minimal assumptions with
respect to the data, as it does not require explicit knowledge of the initial objects,
but instead only a set of similarities between objects from the two groups.
Its underlying model is based on a set of weights that allow each embedding
group to be defined in terms of the other, and it is shown that this permits the
model optimization to be achieved via simple matrix factorization. Using a set
of intuitive heuristics, we drastically reduce the number of model parameters
needed for the generation of optimal co-embeddings. This is a also supported by
a very effective model identification score we propose to search for the optimal
parameters of the method.
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