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NOMENCLATURE

Cr. lift coefficient derivative with respect to pitching motion
Cr4 lift coeflicient derivative with respect to generic input
f dimensional frequency

Jj complex unit V—1

ls  reference length

q generic input signal

M cell volume matrix

R residual vector

U, free-stream velocity

w vector of fluid unknowns

X vector of grid coordinates

w reduced frequency (w* = %:“)

[{}| magnitude
/{}  phase
Fourier coefficient
{}o steady state
{h perturbation around steady state
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ABSTRACT

One key task in computational aeroelasticity is to calculate frequency response functions of
aerodynamic coefficients due to structural excitation or external disturbance. Computational
fluid dynamics methods are applied for this task at edge-of-envelope flow conditions. Assum-
ing a dynamically linear response around a non-linear steady state, two computationally effi-
cient approaches in time and frequency domain are discussed. A non-periodic, time-domain
function can be used on the one hand to excite a broad frequency range simultaneously giv-
ing the frequency response function in a single non-linear, time-marching simulation. The
frequency-domain approach on the other hand solves a large, but sparse linear system of
equations, resulting from the linearisation about the non-linear steady state, for each fre-
quency of interest successively. Results are presented for a NACA 0010 aerofoil and a generic
civil aircraft configuration in very challenging transonic flow conditions with strong shock-
wave/boundary-layer interaction in the pre-buffet regime. Computational cost savings of up
to one order of magnitude are observed in the time domain for the all-frequencies-at-once
approach compared with single-frequency simulations, while an additional order of magni-
tude is obtained for the frequency-domain method. The paper demonstrates the readiness of
computational aeroelasticity tools at edge-of-envelope flow conditions.

1.0 Introduction

Certifying new airframes includes gust loads analysis and flutter clearance. Simulations have
to be performed for a huge number of parameter combinations varying e.g. Mach number,
altitude, load factor and gust length. Linear potential methods like doublet lattice! cannot
capture re-compression shocks and shock-induced separation. Thus, these methods cannot be
applied at transonic flow conditions, where modern aircraft operate, without additional correc-
tion methods.>* Solving the non-linear Reynolds-averaged Navier-Stokes (RANS) equations
in a time-marching fashion coupled with a structural and flight dynamics solver on the other
hand is prohibitive regarding the computational time required to cover the flight envelope.

In the industrial process, frequency response functions of integrated aerodynamic quantities
are pre-computed instead and the fluid-structure problem is solved afterwards using e.g. a p-k
method* during the flutter analysis. A common approach applies sinusoidal structural excita-
tions while integrating the RANS equations in time until the aerodynamic response becomes
periodic. This process is repeated for each structural mode shape and several frequencies to
interpolate the discrete output signal. If small disturbances are assumed, the aerodynamic
system responds dynamically linear. The superposition principle can then be applied leading
to two computationally more efficient approaches.

In the first method, a non-periodic time-domain function — a pulse — is used to excite per
mode a broad frequency range simultaneously.>” Since linearity is assumed, the aerody-
namic response is a superposition of these excitation frequencies. Hence, the frequency re-
sponse function can be obtained by a single time-domain simulation when dividing the Fourier
transform of the output signal by the Fourier transform of the excitation signal. The second
approach to reduce the computational cost, referred to as linear (better linearised) frequency-
domain (LFD) method, applies the small disturbance assumption to linearise the governing
equations around a steady flow field. Thereafter, the equations are transferred into frequency
domain resulting in a large, but sparse, linear system of equations for the perturbation of the
fluid unknowns. The linear system is then solved at several frequencies to obtain the fre-
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quency responses per mode shape. The LFD method was first developed for turbo-machine
applications®® and later extended towards external aerodynamics. Published results comprise
aerofoil cases,'®!! isolated wings'>!3 and aircraft configurations.”>!%13

While the two approaches are well-known, the aim of this paper is to analyse these methods
at severe flow conditions close to the shock-buffet'® onset. Hence, the application readiness
of the methods is demonstrated at the edge of the flight envelope. Both methods rely on the
superposition assumption and thus compute dynamically linear responses. Nevertheless, non-
linear effects contained in the steady flow field like shock-induced separation are captured.
Results of the LFD and pulse method are compared for a NACA 0010 aerofoil at a transonic
Mach number and increasing angle of attack. In addition, frequency responses of lift and
pitching moment as well as surface pressure coefficients are presented for a generic wing-
fuselage configuration. The discussion is completed by detailed run-times for the non-linear,
time-marching approach and both time-linearised methods.

2.0 Methods

2.1 Linearised frequency-domain solver

The LFD approach is first introduced. For a finite-volume method, the semi-discrete RANS

equations can be written as
dM
% + R(w, x,%) = 0, (1)

with the diagonal matrix M storing the cell volumes and the residual function R depending on
the vectors of fluid unknowns w, grid-point locations x and grid-point velocities x. Assuming
small perturbations (wy, x1, ;) from a steady state (wy, xo), the variables can conveniently be
separated as

w(t) =wo+wi(0),  x(2) = xo + x1(2), x(t) = x1(1)

and eq. (1) can be linearised around this steady state

dw OR OR OR oM
Md_tl+R(W0’XO)+6_WW1+a_XXI+gX1+W06_XXI:O (2)

The residual at steady state R (wy, xp) is assumed to be negligible small and eq. (2) is then
transferred into the frequency domain

X, 3)

oR ., }A [0R ,*(0R 8M)}
— +joMw=—-|—+ jw
ow

— + Wy —
dx ox " ox
with j denoting the imaginary unit. The reduced frequency w* has been normalised with the
chord length and the free-stream velocity

o 27 Ler
W= —.

U “)

Equation (3) relates the Fourier coefficients of a harmonic excitation X to the Fourier coeffi-
cients of the fluid unknowns w, constituting a large, but sparse linear system of equations. In
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the frequency-domain approach, the flux Jacobian matrix is evaluated analytically, while the
linearisation with respect to grid motion and velocity uses central finite differences. Includ-
ing the linearisation of the turbulance model is crucial to accurately capture viscous effects
like shock-boundary-layer interactions. Further details concerning the LFD method in the
DLR-TAU code and effects of simplifications within the Jacobian 3—5 can be found in [13].
The accuracy of this method depends on two assumptions: a dynamically linear response
and a negligible steady-state residual. Especially the latter might be violated for complex
geometries at challenging flow conditions. In a preliminary study, the mean solution of a
time-accurate simulation was used in as linearisation point, when the steady solver did not
converge, yielding still reasonable results.!!

The central part when applying an LFD method is solving the system of linear equations,
corresponding to the exact order of the underlying spatial scheme, efficiently in terms of
computational time and memory requirements. A generalised conjugate residual solver with
deflated restarting is used, which recycles an invariant Krylov subspace between restarts of the
underlying generalised minimal residual solver.!” The linear system is preconditioned using
an incomplete lower-upper factorisation of a blended flux Jacobian matrix resulting from first-
and second-order spatial discretisations.'® Applying these methods significantly improved the
robustness, providing convergence even at severe flow conditions.

2.2 Pulse excitation

A common approach to identify frequency response functions with a time-domain solver is to
use a sinusoidal excitation while integrating in time until the response becomes periodic. This
process is repeated for all frequencies of interest. However, if small disturbances are assumed,
the aerodynamic system responds dynamically linear. The superposition principle can then
be applied leading to a more efficient approach. A non-periodic time-domain function, e.g.
a pulse, chirp or step, can be used to excite a broad frequency range. Hence, a frequency
response function H per mode can be obtained from one single time-domain simulation when
dividing the Fourier transform of the output signal by the Fourier transform of the excitation
signal, e.g. for an arbitrary response { due to arbitrary input g,

o T -
Heal @)= = )

with ¥ denoting the Fourier operator. Since this approach assumes a linearly responding
system, it belongs to the group of time-linearised methods, while avoiding an explicit lineari-
sation of the underlying governing equations.

While the particular shape of the excitation function is not important, three criteria should
be satisfied nevertheless. First, its Fourier transform should not exhibits roots in the magnitude
at frequencies within the range of interest. An example is presented in Figure 1(a) showing
the Fourier transform of four excitation functions. While the chirp and the step functions
result in a nearly constant magnitude over the relevant frequency range, the magnitude of the
1-cos function shows two roots and a significant decrease with increasing frequencies. Such
behaviour can be avoided if a non-symmetric polynomial is used instead. The non-symmetric
polynomial used in this study takes the specific form

&)

q(t) = (6 — 15t + 10), t€[0,1]



EFrriciENT AERODYNAMIC DERIVATIVE CALCULATION IN THREE-DIMENSIONAL TRANSONIC FLow

0.040

1.2

chirp — 1-cos
0.035 step 10 --- poly
1-cos
0.030
0.8
0.025
«0.020 =06
_— S,
0.015
0.4
0.010
0.2
0.005
0.000, 0.0 b
00 02 04 06 08 1.0 12 14
w* non-dimensional time

(a) Fourier transform of excitation signals (b) excitation signals

Figure 1: Fourier transforms of selected excitation signals and corresponding time histories
of pulse excitations.

for the ascending part of the pulse. The function is constructed with the boundary conditions,
that the first and second derivative is zero at both endpoints of the interval. The final form
is obtained by mirroring and stretching the polynomial for the descending part by a factor of
three. Its time-domain representation as well as the 1-cos function are provided in Figure 1(b).
Both functions have the same compact support, while the polynomial exhibits its maximum
earlier than the 1-cos function.

A compact support is the second criterion. Such support is preferred to reduce the num-
ber of grid deformation and preprocessing calls while integrating in time. Preprocessing is
usually required to update the dual-grid metrics, but it is relatively fast compared with the
deformation. For the wing-fuselage configuration discussed below, grid deformation and pre-
processing combined account for almost as much computational time per physical time step
as the iterations of the non-linear flow solver, which underlines the necessity to perform as
few grid deformations as possible. Thus, using a chirp function as excitation, which offers
almost ideal frequency content, would lead to significant computational overheads.

In the application of CFD solvers smooth functions are preferable. While the chirp and the
two pulse functions satisfy this condition, the step function does not. In the case of a step
function, the grid velocity during the first time step is

CxE+A)-—x@) 1

~ 6
At At ©)

and hence inverse proportional to the time-step size. When severe flow conditions demand
very small computational time steps, the grid velocity can become large causing serious con-
vergence issues for the time integrator. Therefore, applying a step function would constrain
the minimum time-step size. Consequently, the non-symmetric polynomial pulse, satisfying
all criteria, is used as excitation function throughout in this paper.

Applying the pulse technique comes with the assumption that a perturbation from the steady
base state is caused by the excitation only. However, the initial steady computation is usually
not converged to machine precision and additional fluctuations can occur, e.g. due to reflec-
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Figure 2: Magnitude of lift frequency response for wing-fuselage configuration

tions from the farfield. These have an effect on the computed frequency response function
especially if the excitation amplitude is small such as required at flow conditions exhibit-
ing strong shock-induced separation. The calculation of response functions is improved by
performing an additional time-dependent, static simulation. The perturbation of the output
is computed by subtracting both signals instead of considering the difference to the steady
solution only. Although the computational cost is nearly doubled, significant improvements
can be observed at small and medium frequencies for the wing-fuselage case in pre-buffet,
as shown in Figure 2. While more detail for this configuration is discussed below, improved
results are observed for reduced frequencies between 1 and 4 as well as for the quasi-steady
part at zero reduced frequency.

2.3 Computational fluid dynamics solver DLR-TAU

The DLR-TAU code!*?’ is a finite-volume Euler and Navier-Stokes solver using hybrid grids.
The chosen discretisation employs the modified scheme of Jameson, Schmidt and Turkel?!
for the mean flow equations, while the Spalart-Allmaras®> one-equation turbulence model is
used for the eddy-viscosity closure throughout in this paper. The flow equations are marched
to steady state with a lower-upper, Symmetric-Gauss-Seidel pseudo-time integration method
and geometric multigrid. Time-accurate unsteady flow solutions can be obtained following the
dual time-stepping approach?? combined with a second-order accurate backward differencing
scheme.
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Figure 3: Steady surface pressure and skin friction coefficients for NACA 0010 aerofoil

3.0 Results
3.1 NACA 0010

Results are presented for the NACA 0010 aerofoil using a computational domain discretised
with about 30,000 points. The point distribution has a structured layer near the wall to ensure
a sufficient boundary layer resolution, while the far-field distance is set to 50 chord lengths.
Results are shown at a constant Mach number of 0.8 and Reynolds number based on the chord
length of 10 million. Three angles of attack are analysed ranging from 3 to 5 deg.

The steady surface pressure and skin friction coefficients are presented in Figure 3. At an
angle of attack of 3 deg, a re-compression shock can be observed at about 22 % chord length
while the flow remains attached. Increasing the angle of attack to 4 deg moves the shock
downstream, while a small re-circulation region is observed. At an angle of attack of 5 deg,
while the flow is still re-attaching before the trailing edge, the shock starts to move up-stream,
often referred to as inverse shock motion.

A rigid pitching motion is simulated around these different steady states with a rotational
axis located at 25 % chord length. A small amplitude of 107> deg is chosen to ensure a dy-
namically linear behaviour of the CFD solver. The dual-time stepping parameters are listed
in the first column of Table 1. For all simulated angles of attack and time steps, the abort cri-
terion based on the density residual was reached. A temporal convergence study is presented
in Figure 4 for a sinusoidal excitation at the highest angle of attack considered and reduced
frequency of 0.4. The complex-valued derivative of the lift coefficient is computed using a
sliding window to understand when the lift derivative converges. Convergence is achieved
after about 2.5 periods. Increasing the number of time steps per period (Np) from 128 to 256
reduces the lift coefficient’s magnitude and increases its phase. A further refinement of the
time step size has a negligibly small effect on the results.

Before comparing results computed with the different methods, a more general discussion
of the lift coefficient’s frequency response is given in Figure 5. A reduced frequency resolution
of 0.05 is chosen to provide a smooth frequency response function. This corresponds to
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NACA 0010 Generic civil aircraft

CFL number 20 30
max. # inner iterations 250 300
abort density residual 10710 1078
Cauchy Convergence - Cp (1078)
time step size 420 us 2us

Table 1: Dual-time stepping parameters
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Figure 4: Temporal convergence of lift coefficient for NACA 0010 at 5 deg angle of attack
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Figure 5: Frequency responses in lift coefficient for NACA 0010 aerofoil
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0.535 s simulated physical time when using the pulse method. At an angle of attack of 3 deg,
the frequency response is qualitatively comparable with Theodorsen’s aerodynamics.?* A
monotonic decrease in magnitude and a phase lag at small reduced frequencies is observed.
The small region of separation at 4 deg angle of attack is reducing the quasi-steady derivative,
while the magnitude is still decreasing monotonically over the reduced frequency range. The
shape of the frequency response function is different for the highest angle of attack, caused by
the stronger interaction between the shock and the region of separated flow. Since the quasi-
steady derivative is further reduced, this test case is in the non-linear region of the C; — «
polar. Moreover, the magnitude is now exhibiting a maximum around a reduced frequency of
about 0.4 and for reduced frequencies below the maximum, a phase lead is observed. This
behaviour was linked to a weakly damped eigenvalue of the fluid Jacobian matrix. Such
resonance behaviour was previously analysed in the context of shock buffet in [25,26] and
discussed for validation of the LFD method in [11].

The time-domain lift response due to the pulse excitation as well as for the static simulation
is shown in Figure 6(a) for the 5 degree angle of attack case. Although fluctuations obtained
from the static simulation are two orders of magnitude smaller than the response due to the
pulse, an influence on the frequency response function is observed in Figure 6(b). The quasi-
steady derivative is improved - indicating a small drift of the mean solution - as well as the
magnitude at higher frequencies.

A comparison of the frequency response functions computed with both the LFD and time-
domain methods using either sinusoidal or pulse excitation is given in Figure 7 for the
attached-flow case at 3 deg angle of attack and the most severe case at 5 deg. An excel-
lent agreement is obtained between the LFD and the pulse method for the complete frequency
range considered, even at the severe pre-buffet flow condition. Computations using sinusoidal
excitations were performed at three reduced frequencies, confirming the validity of the time-
linearised approaches for attached as well as detached steady flow conditions. Computational
performance is not discussed for this academic test case. This will be done for the aircraft
configuration instead.
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Figure 6: Time-domain lift response of pulse and static computation and comparison of fre-
quency response function for NACA 0010 aerofoil at incidence of 5 deg.
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Figure 7: Comparison of frequency responses in lift coefficient for NACA 0010 aerofoil

3.2 Generic civil aircraft

The second test case is a half wing-body configuration scaled to wind tunnel dimensions.
The semi-span of the model is 1.10 m and the aerodynamic mean chord is about 0.279 m.
The wing is twisted, tapered and has a constant sweep angle of 25 deg. This configuration
has recently been investigated in the transonic wind tunnel facility of the Aircraft Research
Association?’” and it was also chosen for investigation of global stability analysis.?

An unstructured mesh was produced using the Solar grid generator.?” The initial spacing
normal to all viscous walls is less than 0.8 in wall units for this coarse mesh, while the growth
rate of cell sizes in the viscous layer is less than 1.3. The blunt trailing edge is described by
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(a) full configuration (b) outer wing section

Figure 8: Generic wing-fuselage configuration
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Figure 9: Steady surface pressure and z-component of excitation mode

8 cells corresponding to a spacing of about 0.15 % of the local chord. Concerning the span-
wise mesh distribution, a spacing of 0.5 % and 0.1 % of the span is imposed for the wing root
and tip, respectively. Altogether, the grid is composed of 2.7 million points corresponding
to 4.7 million elements of mixed type including 12,000 prisms, 71,000 pyramids, 2.4 million
hexahedral and 2.3 million tetrahedral elements. The grid spacing on the wing surface is
presented in Figure 8.

The freestream Mach number is set to 0.8 and the Reynolds number based on the aerody-
namic mean chord is 3.75 million. Fully turbulent flow is assumed. The angle of attack in
the current study is fixed at 3 deg, just below shock-buffet onset. The reference temperature
and pressure are 266.5 K and 66.0 kPa, respectively. Far-field conditions are applied at a dis-
tance corresponding to 25 times the semi-span of the model (around 90 aerodynamic mean
chords), while symmetry boundary condition is applied along the centre plane. The steady
surface pressure distribution on the wing is depicted in Figure 9(a) showing a shock at about
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Figure 10: Comparison of frequency responses for generic civil aircraft

50 % chord length. The shock-induced separation — marked by a black, dashed line — starts
at mid-semi-span with reattachment further downstream, whereas in the outer wing section,
between 79 % and 91 % of the semi-wing span, the flow is detached all the way from the
re-compression shock to the trailing edge. Around this steady flow field, forced-motion simu-
lations are performed exciting the system in a synthetic torsion mode, as shown in Figure 9(b).
The parameter settings for the dual-time stepping are listed in the second column of Table 1.

The frequency response in lift and moment coefficient computed with the LFD and pulse
method is presented in Figure 10. A reduced frequency range between 0.0 and 1.0 based on
the mean aerodynamic chord is considered. The reduced frequency resolution of the pulse
method is 0.1 which corresponds to a simulated physical time of 0.3s. The magnitude of
the lift exhibits a local maximum around reduced frequency 0.7, see Figure 10(a). A simi-
lar behaviour can be observed for the pitching moment in Figure 10(b). This is contrary to
linear potential theory, where starting from the quasi-steady derivative a monotonic decrease
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Figure 11: Comparison of complex-valued surface pressures at reduced frequency of 0.5 for
wing-body configuration at normalised span position of 0.9

Table 2: Runtimes for generic civil aircraft using 72 cores of Intel E5-2660 with 2.2 GHz

LFD Pulse + Static Sinusoidal
total number of frequencies 1 260 1
number of frequencies of interest 1 25 1
total runtime (h) 1.3 362.2 194.4
runtime per frequency (h) 1.3 14.5 194.4

is predicted for torsion-dominated modes. Analysing the phase of the lift coefficient, a max-
imum and an inflection point can be observed as well as a phase lead over a wide range of
reduced frequencies. A similar behaviour has been observed for the aerofoil case in Figure 7.
The results computed by both time-linearised methods agree excellently in the considered
frequency range for the lift and moment despite this complex response behaviour. A solution
using the time-domain method with sinusoidal excitation is shown for reduced frequency 0.2
confirming the time-linearised results.

Figure 11 presents unsteady pressure coefficients at 90 % semi-span; a position where the
steady flow field exhibits separation as shown in Figure 9(a). The magnitude is dominated
by a strong peak at about 40 % of the local chord length showing the movement of the re-
compression shock. Upsteam of the shock, in the supersonic region, only minor pressure
fluctuations can be seen, while the separation bubble causes pressure fluctuations near the
trailing edge. A discontinuity of about 145 deg can be observed in phase at the same chord-
wise position as the shock peak. A monotonic increase in phase from leading to trailing edge
is seen on the lower surface with subsonic flow. All these features are captured well by the
LFD and the pulse method at this pre-buffet flow condition showing the maturity of both
time-linearised approaches for three-dimensional geometries.

Finally, the runtimes of the different methods are compared for the generic wing-fuselage
configuration in Table 2. Both LFD and the non-linear, time-domain method using sinusoidal
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excitation evaluate one frequency at a time, whereas the former approach is 150 times faster
in comparison. A reduction in computational time of more than an order of magnitude com-
pared to the sinusoidal time-domain simulations is still achieved when the pulse method is
applied. The pulse method is slower than the LFD, since an additional static simulation was
required and higher frequencies are evaluated as well, which are not of interest in an aeroe-
lastic application. A larger time step size than than the used 2 us would directly improve the
speed-up of the pulse method and reduce the number of unnecessarily computed frequency
responses. However, a previous time-convergence analysis>® in the context of shock buffet
has shown, that larger time steps have a negative influence on the prediction quality at these
severe flow conditions. At more benign flow conditions the convergence requirements of the
non-linear, time-dependent solver are less stringent, and hence the cost-savings of LFD be-
come less dominant. Experience has shown that a cost saving factor of about five between
LFD and pulse is often observed in attached transonic flow. Overall, an order of magni-
tude speed-up between each of the presented simulation approaches to calculate aerodynamic
derivatives is a fair estimate. Moreover, while LFD only requires a monitoring of the aerody-
namic derivatives to judge the convergence of the linear system, time-dependent simulations
require expensive investigation of temporal convergence, such as real time-step size and num-
ber of sub-iterations/abort criteria. In addition, an appropriate excitation amplitude has to be
chosen. This cost is not included in the table.

4.0 Conclusion

Two approaches are presented to reduce the computational cost of calculating frequency re-
sponse functions of aerodynamic derivatives for aeroelastic applications. Both methods rely
on the assumption of a dynamically linear responding system. The first approach linearises
the flow equations and solves the resulting system in the frequency domain. A robust iterative
technique based on a Krylov subspace method is applied to efficiently solve the large, but
sparse linear system. The second method uses pulse excitation in the time domain to compute
the entire frequency response function within one simulation. A non-symmetric, polynomial
function with compact support (i.e. a pulse) is used to excite a broad frequency spectrum while
minimising the amount of grid deformation calls. Results are presented for the NACA 0010
aerofoil as well as for a generic wing-fuselage configuration. Excellent agreement between
both time-linearised methods and the time-marching simulations using sinusoidal excitation
are obtained for both test cases comparing frequency response functions of lift and moment
coefficients as well as local pressure distributions. Even at edge-of-envelope flow conditions
including shock-induced separation close to the buffet onset, time-saving factors of one order
of magnitude are achieved comparing the pulse method to non-linear, time-domain simula-
tions using sinusoidal excitation. Applying the linearised frequency domain method provides
an additional order of magnitude in speed-up; to enable routine computational aeroelasticity.

Comparing both time-linearised approaches, the frequency domain method is faster if re-
sponses in a limited frequency range are of interest and a non-uniform sample distribution is
desired. In addition, no expensive time-convergence or amplitude analyses are required. If
responses are desired for a large frequency range, the pulse method is computationally more
efficient. Moreover, it is a reasonable alternative if a Jacobian matrix or the matrix-free prod-
uct of the Jacobian and a vector is not implemented for the chosen type of flux discretisation
or turbulence model.
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