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Abstract

Evaluating the behaviour of deteriorating steel structures is complicated by

the inherent uncertainties in the corrosion process. Theoretically, these un-

certainties can be modeled using a probabilistic approach. However, there

are practical difficulties in identifying the probabilistic model for the dete-

rioration process as the actual corrosion data are rather limited. Also, the

dependencies between different random variables are often vaguely known

and, thus, not included in the modeling. This paper proposes a probabilistic

analysis framework for modeling the atmospheric corrosion of steel structures

with incomplete information. The framework is based on the theory of im-

precise probability and copula. Two examples are presented to illustrate the

methodology. The role of epistemic uncertainties on structural reliability is

investigated through the examples.
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1. Introduction1

For the safety assessment of deteriorating steel structures, it is crucial to2

develop a reliable probabilistic model of deterioration to predict the temporal3

changes to structural resistance [1, 2]. The deterioration of steel structures is4

a stochastic process with high uncertainties and variabilities. Recent works5

have treated the uncertainties using a pure probabilistic approach [3, 4]. This6

approach requires that all statistical characteristics for each uncertainty can7

be determined reliably from sufficient observational data. In practice, how-8

ever, available real-world data on structural corrosion are very limited, and9

the selection of probabilistic models (e.g., distribution type and/or distri-10

bution parameters) for uncertain variables is so generally based on limited11

information and/or subjective judgment.12

It is thus advisable to consider the distribution itself as uncertain when13

the available data is limited. Statistical estimations provide us with distri-14

bution functions for the sampling uncertainty, which depends on the sample15

size. This uncertainty is reducible with an increasing amount of informa-16

tion/data. From this angle, it may be understood as epistemic uncertainty.17

Within a pure probabilistic framework, epistemic uncertainty can be handled18

with Bayesian approaches. Uncertain parameters of a probabilistic model can19

be described with prior distributions and updated by means of even limited20

data. They can then be modeled by Bayesian random variables and intro-21

duced formally, together with the remaining (aleatory) uncertainties, in the22

probabilistic analysis [5]. Judgmental information is needed to characterize23

the epistemic uncertainties. The characterization of the epistemic uncertain-24

ties can be substantiated by using the Bayesian updating rule when data25
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become available. However, when the data is very limited, the result of the26

Bayesian approach remains as almost purely subjective.27

Alternatively, an imprecisely known probability distribution can be mod-28

eled by a family of all candidate probability distributions which are compati-29

ble with available data. This is the idea of the theory of imprecise probabili-30

ties [6]. Dealing with a set of probability distributions is essentially different31

from a Bayesian approach. A practical way to represent the distribution32

family is to use a probability bounding approach by specifying the lower and33

upper bounds of the imprecise probability distribution. This corresponds34

to the use of an interval to represent an unknown but bounded number.35

Consequently, a unique failure probability cannot be determined. Instead,36

the failure probability is obtained as an interval whose width reflects the37

imprecision of the distribution model in the calculated reliability.38

A popular uncertainty model using the probability bounding approach is39

the probability box (p-box for short) structure [7]. A p-box is closely related40

to other set-based uncertainty models such as random sets, fuzzy probabili-41

ties, Dempster-Shafer evidence theory and random intervals. In many cases,42

these uncertainty models can be converted into each other, and thus consid-43

ered to be equivalent [7–10]. Therefore, the p-box approach presented in this44

paper is also applicable to other set-based uncertainty models. The approach45

of imprecise probability generally requires less subjective information than46

the Bayesian approach. It can be argued that, from a frequentist point of47

view, the epistemic uncertainties in the probability distribution can be more48

faithfully represented using a probability bounding approach [6, 7, 11].49

Conventional probabilistic analysis often neglects the correlations and de-50

pendencies between random variables. This assumption is a common practice51

partly due to its mathematical convenience, but more likely due to the limited52
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availability of data. It has been shown that the wrong assumption of depen-53

dence can lead to unreliable predictions for risk assessments [12]. Copula54

theory is a powerful tool for the dependence modeling of multivariate data.55

A copula is a joint cumulative distribution function (CDF) with uniform56

marginal. Copula theory has been used to model dependence in probabil-57

ity boxes. Ref. [12] proposed a dependence bounds convolution approach58

in which the uncertainties are modelled as Dempster-Shafer structures and59

the dependence is expressed as a given parametric copula. This method is60

useful for calculations of basic arithmetic operations with small numbers of61

variables. In [13], copula theory is combined with random sets for computing62

the lower and upper bounds of a failure probability.63

This paper proposes a practical framework for uncertainty analysis using64

dependent p-boxes in which copulas describe the dependence. The Akaike65

Information Criterion is used to select the copula model that provides the66

best fit to the observational data. The confidence intervals of the copula pa-67

rameter are estimated using the Bootstrap method. The dependent p-boxes68

are propagated through interval Monte Carlo (MC) simulation in order to69

assess structural reliability. The framework is applied to the time-dependent70

reliability analysis of steel structures subject to atmospheric correlations, and71

is demonstrated through two examples. The importance of epistemic uncer-72

tainty in the probabilistic modeling including dependencies is demonstrated73

on its influence on the reliability estimates.74

2. Dependent Probability boxes75

2.1. Probability boxes with dependencies76

Let FX(x) denote the cumulative distribution function (CDF) for a real-77

valued random variable X. A probability box is defined by a pair of CDFs,78
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FX(x) and FX(x), which form the envelopes of the probability family79

P = {P |∀x ∈ R, FX(x) ≤ FX(x) ≤ FX(x)}. (1)

A p-box thus represents an FX( ) which is imprecisely known except that it80

is within the two bounding CDFs. It can be seen that FX( ) and FX( ) are81

the lower and upper probabilities of the event X ≤ x. Detailed background82

can be found elsewhere [7]. There are various ways to define p-boxes such as83

utilizing Kologorox-Smirnow (K-S) confidence limits, Chebyshev’s inequality,84

or by distributions with interval parameters, depending on the amount of85

available information [14].86

The modeling of dependencies between probability boxes follows the con-87

cept of dependence between random variables. Both Pearson correlation and88

rank correlation have been adopted for p-boxes, but retaining their limita-89

tions known from probability theory. Thus, copula models have been sug-90

gested to describe dependence between p-boxes [15]. There are two main91

advantages of using copulas for this purpose. First, copulas can account for92

various types of dependencies. Second, the copula is flexible in selecting the93

appropriate dependence model independently from choosing the marginal94

distributions for each variable [16].95

2.2. A brief introduction of copulas96

A copula is a multivariate CDF for which the marginal distribution of97

each variable is uniform. According to Sklar’s Theorem, a joint distribution98

can be expressed in terms of the marginal distribution functions and a copula99

which describes the dependence structure between the variables. Consider100

a d-dimensional random vector X = (X1, X2, . . . , Xd) with margins Fi(x),101

i = 1, . . . , d. There exists a copula C such that the joint CDF, denoted by102
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FX(x1, . . . , xd), can be written as103

FX(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (2)

There are two common classes of copulas; Gaussian and Archimedean.104

The Gaussian copula is used for the normal dependence structure. This105

structure can be estimated from its only parameter of a correlation matrix106

[17]. In a non-normal case, Archimedean copulas are often used to model the107

dependence structure in the data. The class of copula has a closed-form of108

representation,109

C(u1, u2, ..., ud, θ) = φ−1 (φ(u1), φ(u2), ..., φ(ud, θ)) , (3)

in which φ is a generator with φ−1 completely monotonic on [0,∞)×[0,∞)...×110

[0,∞) (d-dimensional copula). The copula parameter, θ, can be related to111

various dependence structures of Archimedean copulas. The most common112

Archimedean copulas include Clayton, Gumbel and Frank copulas which are113

summarised in Table 1. Details about copulas can be found elsewhere, e.g.,114

[18].115

Table 1: Some common Archimedean copulas.

Copula Form Range of θ

Clayton C(u1, u2, θ) =
(
u1

−θ + u2
−θ − 1

)−1/θ
(0, ∞)

Frank C(u1, u2, θ) =

−θ−1 log

{
1 +

(e−θu1−1)(e−θu2−1)
e−θ−1

} R

Gumbel C(u1, u2, θ) =

exp

(
−
(
(− log (u1))

θ + (− log (u1))
θ
)1/θ) [1, ∞)
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2.3. Estimation of copula parameter116

Different copulas represent different dependence structures on the data.117

Thus, we establish the copula model in two steps. Step 1 is devoted to118

estimate the parameters for a number of candidate copulas. The copulas119

considered in this paper (e.g., Clayton, Gumbel and Frank copulas) involve120

only one parameter, denoted by θ. The copula parameter θ can be estimated121

by the classical maximum likelihood estimation (MLE). The MLE yields a122

point estimate of θ.123

In step 2 the best-fit copula model for the given observed data and (point-)124

estimated parameter is selected. This is realized based on the Akaike Infor-125

mation Criterion (AIC), which has particular suitability for best fit estima-126

tions when the samples are small [19]. The AIC is given by127

AIC = −2 logL+ 2q, (4)

in which logL is the log-likelihood function and q is the number of parameters128

of the copula model [20]. A copula model with a smaller AIC-value fits the129

data better.130

When the observational data is quite limited, it is desirable to calculate131

an interval estimate of θ to indicate the range over which the copula may lie132

with a certain confidence. The present work uses the Bootstrap method [21]133

to construct confidence intervals of copula parameters.134

Suppose we have n pairs of data points ({x1, y1}, . . . , {xn, yn}) represent-135

ing two dependent random variables X and Y . We aim to estimate the136

copula C(X,Y ) to characterize their dependence. The procedure of comput-137

ing the 100(1− 2α)% confidence interval for the copula parameter θ can be138

summarized as follows139

1. Compute a point estimate, θ̂, for θ from the original dataset.140
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2. Construct a Bootstrap sample ({x∗
1, y

∗
1}, . . . , {x∗

n, y
∗
n}). Compute the141

copula parameter θ∗ and the Bootstrap difference δ∗ = θ∗ − θ̂.142

3. Repeat Step 2 for B times. Thus, we obtain (δ∗1, . . . , δ
∗
B), in which δ∗i143

represents the Bootstrap difference for the ith Bootstrap sample.144

4. Determine the 100(α)th and 100(1 − α)th percentile of (δ∗1, . . . , δ
∗
B),145

denoted by δ∗α and δ∗1−α. Then 100(1 − 2α)% confidence interval for θ146

is calculated as [θ̂ − δ∗α, θ̂ − δ∗1−α].147

3. Interval Monte Carlo simulation with dependent p-boxes148

We follow the concept of propagating p-boxes using simulation-based149

methods (e.g., interval Monte Carlo simulation or similar approaches) [22–150

25]. Consider a mapping g : X → Y , X = (X1, X2) are basic variables151

represented by p-boxes. Further, X1 and X2 are dependent through a copula152

C. The response quantity Y , as a function of X1 and X2, is another p-box.153

Let FY (y) denote the CDF of Y . We are interested to determine the p-box154

structure for the response quantity Y , i.e., bounds on FY (y).155

Monte Carlo simulation involves repeated random sampling from each156

input distribution and to observe the result. Since only the bounds of CDF’s157

for X are known, it is not possible to generate point samples but only interval158

samples. Let [FX1, FX1] and [FX2, FX2] be upper and lower bounds of CDF159

for X1 and X2. Random interval samples from X1 and X2 can be generated160

as follows.161

1. Generate a sample ofN dependent uniform variate ({ui
1, u

i
2}, i = 1, .., N)162

from the specified copula C.163
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2. Generate pairs of dependent random interval samples by

[xi
1, x

i
1] = [F

−1

X1 (u
i
1), F

−1
X1 (u

i
1)],

[xi
2, x

i
2] = [F

−1

X2 (u
i
2), F

−1
X2 (u

i
2)], i = 1, 2, . . . , N

in which F
−1

and F −1 denotes the inverse functions of upper and lower164

bounds of a p-box.165

For the sampling in the first step we utilize a common method, see e.g.,166

[18]:167

1. Generate two independent standard uniform variates u1 and t.168

2. Set u2 = c−1
u (t), where c−1

u denotes a quasi-inverse of cu.169

3. {u1, u2} is a pair of uniform variates with the specified copula C.170

Once the correlated random interval samples are generated, the empirical

lower and upper bounds for the CDF of Y can be calculated as

F Y (y) =
1

N

N∑
i=1

I[g(xi) ≤ y],

F Y (y) =
1

N

N∑
i=1

I[g(xi) ≤ y], (5)

in which N = total number of simulations, xi = ([xi
1, x

i
1], [x

i
2, x

i
2]), I[ ] is the

indicator function, having the value 1 if [ ] is “true” and the value 0 if [ ] is

“false”. g and g represent a lower bound and an upper bound for g(xi), i.e.,

g(xi) = min{g(X1, X2) : x
i
1 ≤ X1 ≤ xi

1, x
i
2 ≤ X2 ≤ xi

2},

g(xi) = max{g(X1, X2) : x
i
1 ≤ X1 ≤ xi

1, x
i
2 ≤ X2 ≤ xi

2}. (6)

Computing Eq. (6) involves the calculation of the range of function g171

when the inputs vary in certain closed intervals. The problem of finding172

the range of a function is solved on the basis of interval analysis [26]. A173
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variety of solution techniques have been proposed, including the interval174

arithmetic approach, combinatorial method, perturbation method, and opti-175

mization method, etc. Reliable methods are available to compute the bounds176

of responses of structures with reasonable accuracy when the structural stiff-177

ness and geometrical properties and loads vary in relatively narrow intervals178

[27]. It should be noted that the burden of interval analysis can be reduced179

if the response quantity Y is monotonic with respect to the input variables.180

4. Atmospheric corrosion model for steel structures181

For steel structures, corrosion is considered as the most dominant form of182

deterioration. Corrosion is a product of the chemical reaction by electrochem-183

ical oxidation of metals and oxidant when a steel surface is left unprotected184

from the environment. This chemical reaction causes a reduction in net area185

of a member; thus, it leads to a reduction in the structural capacity of a steel186

member.187

Depending on the environment where the steel is exposed, corrosion pro-188

cesses can be broadly classified as atmospheric corrosion, immersion corrosion189

and underground corrosion. The present paper considers the atmospheric190

corrosion in rural-urban environment to illustrate the proposed uncertainty191

analysis framework. It should be noted that corrosions due to salted air192

(marine atmospheric corrosion), de-icing chemical, etc. have higher impact193

to the failure of a structure. However, they are beyond the scope of the194

present study.195

The available models for time-variant atmospheric corrosion of steel are196

commonly based on the mass loss or penetration depth loss from experiments.197

They include time variable and several regression coefficients in the form of198

power formula to capture the corrosion process. A widely-accepted model199
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for long-term atmospheric corrosion of steel conforms to an equation of the200

form [28–30]:201

c(t) = A · tB, (7)

in which c(t) is the corrosion loss after t years, A is the corrosion loss af-202

ter one year, and B is a constant representing the slope of the logarithmic203

transformation of Eq. (7). The power function was derived based on the204

diffusional process of oxygen through rust layers. Due to its simplicity, the205

power function has a long history in modelling of atmospheric corrosion for206

steel structures [31, 32]. This model was adopted in the present study.207

4.1. Uncertainties in the corrosion model208

The coefficients A and B in Eq. (7) were studied in [29, 33]. The study209

showed that A and B are dependent on environmental parameters including210

ambient temperature, moisture of environment and presence of pollutants,211

etc. If the site-specific environment information is not available, the val-212

ues of A and B can be estimated according to the general classification of213

environment, i.e., marine, urban and rural environment.214

The present study focuses on the modelling of atmospheric corrosion of215

carbon steels exposed in rural-urban environments. A total of 62 atmospheric216

corrosion data in rural-urban environment are complied from the literature217

[34–38]. These corrosion data are fitted with Eq. (7) and the coefficients A218

and B are determined. The obtained statistics (point estimates) of A and B219

are summarised in Table 2.220

It can be seen that the results from these studies are quite consistent.221

Most studies show that A has a mean of about 30 µm with a high COV222

(coefficient of variation) around 0.3, and the coefficient B has a mean around223

0.55 with a COV varying between 0.1 to 0.3. (Note that there are only two224

11



samples in [37]. The data can be used to estimate the mean values, but is225

insufficient to estimate the variance.) If the data from the five sources are226

lumped together, A has a mean of 29.1 µm and a COV of 0.31, and B has227

a mean of 0.54 with a COV of 0.21. Many researchers assumed that A and228

B follow normal distributions, e.g., [39]. This assumption is adopted in the229

present study.230

Four types of copula were examined to represent the dependence between231

A and B: Frank, Clayton, Gumbel and Gaussian copulas. The copula pa-232

rameters were estimated using the maximum likelihood method. Among the233

four candidate copulas, the Frank copula with a parameter θ = −1.85 yields234

the smallest value of AIC, thus it provides the best-fit to the dependence235

structure of A and B.236

Table 2: Statistics for corrosion coefficients A and B (rural-urban environment).

References
A B

No. samples
Mean (µm) COV Mean COV

[34] 24.5 0.22 0.501 0.23 12

[35] 28.36 0.29 0.571 0.19 14

[36] 30.74 0.32 0.583 0.07 19

[37] 23.5 − 0.516 − 2

[38] 32 0.31 0.502 0.30 15

Combined 29.1 0.31 0.54 0.21 62

In addition to the randomness in A and B, we next consider the addi-237

tional uncertainty (epistemic uncertainty) arising from the inaccuracies in the238

estimation of distribution parameters due to limited data, namely, the mean239

values of A and B (denoted by µA and µB), and the copula parameter θ. The240

imperfect knowledge about µA, µB and θ can be modelled by interval bounds241
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constructed from confidence intervals. The 95% confidence intervals for µA242

and µB are µA = [26.83, 31.37] and µB = [0.51, 0.57]. Using the Bootstrap243

method, the 95% confidence interval for θ is found to be θ = [−3.35,−0.35].244

Depending on the modeling of the distribution parameters, the present245

study considers 6 cases, as summarised in Table 3. Case 1 uses the point246

estimates for µA, µB and θ. This case represents the customary practice in247

which the epistemic uncertainties due to small sample size are not consid-248

ered. Case 2 considers the interval estimate of θ, while µA and µB are point249

estimates. In Case 3, both µA and µB are modeled as intervals, while θ is a250

point estimate. To examine the sensitivities of each of the parameters (µA,251

µB and θ) on the failure probability Pf , Case 3 is further divided into Case252

3a and Case 3b. In Case 3a, µA is an interval estimate, while µB and θ are253

point estimates. In Case 3b, µB is an interval estimate, while µA and θ are254

point estimates. Thus, by comparing Case 2, 3a and 3b, the impacts of µA,255

µB and θ on Pf can be quantified, respectively. In Case 4, all parameters,256

µA, µB and θ, are modeled as intervals.257

Table 3: Six cases for modeling A (unit: µm) and B.

A B

µA σA µB σB copula parameter

Case 1 29.1 9.13 0.54 0.11 θ = −1.85

Case 2 29.1 9.13 0.54 0.11 θ = [−3.35, −0.35]

Case 3 [26.83, 31.37] 9.13 [0.51, 0.57] 0.11 θ = −1.85

Case 3a [26.83, 31.37] 9.13 0.54 0.11 θ = −1.85

Case 3b 29.1 9.13 [0.51, 0.57] 0.11 θ = −1.85

Case 4 [26.83, 31.37] 9.13 [0.51, 0.57] 0.11 θ = [−3.35, −0.35]
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5. Examples258

5.1. Example 1: a steel plate259

A steel plate in tension is studied. The problem is adopted from [40].260

The limit state function is given by:261

g = R(t)− S, (8)

in which S is the applied tensile load, and R(t) is the time-variant resistance262

of the plate. Let b and d denote the nominal width and thickness of the263

plate, respectively. The plate is assumed to be corroded in the rural-urban264

environment on two sides, thus the temporal change to the plate thickness265

is d − 2c(t), in which c(t) represents the corrosion loss after t years. The266

time-dependent structural resistance is given by:267

R(t) = fyb(d− 2c(t)), (9)

in which fy is the yield stress. The applied load S is assumed to be a normal268

distribution with a mean of 200 kN and a standard deviation of 23 kN. The269

yield stress fy is a normal random variable with a mean of 300 MPa and a270

standard deviation of 10 MPa. The width b and the original thickness d are271

deterministic, and b = 250 mm, d = 4 mm. The corrosion loss c is computed272

according to Eq. (7).273

To verify the reliability results from the interval Monte Carlo method, a274

double-loop Monte Carlo procedure is utilized to compute the bounds of Pf275

for Case 2 and Case 3 at t = 20 year and t = 50 year. In the double-loop276

Monte Carlo procedure, the interval parameter(s) is assumed to uniformly277

distribute between its lower and upper bounds. Two hundred samples of the278

interval parameter was generated in the outer loop using the Latin Hyper-279

cube sampling technique. With each sampled parametric value, the failure280
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probability was then evaluated in the inner loop. Thus a sample of Pf can281

be obtained; its lower and upper bounds are then compared with the Pf282

bounds computed using the interval Monte Carlo method. Tables 4 and 5283

compare the bounds of Pf in t = 20 year and t = 50 year obtained from284

the double-loop Monte Carlo and the interval Monte Carlo methods. It can285

be seen that the results from the two methods agree reasonably well. The286

bounds of Pf from the interval Monte Carlo method are slightly wider than287

those of the double-loop Monte Carlo method.288

Table 4: Comparison of double-loop Monte Carlo and interval Monte Carlo methods: Pf

in t = 20 yr, (Example 1).

Case 2 Case 3

P f (%) P f (%) P f (%) P f (%)

Interval MC 0.049 0.727 0.116 0.410

Double-loop MC 0.051 0.682 0.121 0.387

Table 5: Comparison of double-loop Monte Carlo and interval Monte Carlo methods: Pf

in t = 50 yr, (Example 1).

Case 2 Case 3

P f (%) P f (%) P f (%) P f (%)

Interval MC 0.297 10.082 1.394 5.719

Double-loop MC 0.307 9.245 1.455 5.356

The all six cases in Table 3 are then considered. The failure probability289

Pf for the six cases are plotted in Figs. 1 and 2 as a function of time. The290

results for t = 20 yr and 50 yr are also summarised in Table 6.291

In Table 6, Pf is a point estimate for Case 1; it is 0.208% for t = 20292

year and 2.910% for t = 50 year. This point estimate of Pf does not provide293
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Figure 1: Bounds of the failure probabilities of Example 1 (Case 1-4).

Table 6: Probability of failure (Example 1).

t = 20 years t = 50 years

P f P f P f P f

Case 1 0.208% 2.910%

Case 2 0.049% 0.727% 0.297% 10.082%

Case 3 0.116% 0.410% 1.394% 5.719%

Case 3a 0.166% 0.283% 2.212% 3.733%

Case 3b 0.149% 0.308% 1.847% 4.449%

Case 4 0.029% 1.382% 0.131% 17.650%

information about the confidence in the result of the reliability estimate. The294

role of epistemic uncertainty on Pf is clearly demonstrated in the bounds of295

Pf shown in Figure 1 and Table 6. The width of the interval Pf shows the296

effect of epistemic uncertainty on the results of the reliability estimate. For297
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example, the upper bound of Pf for t = 50 year is 10.082% for Case 2. This298

probability is an order of magnitude greater than the point estimate from299

Case 1. A point estimate without considering the epistemic uncertainty may300

significantly underestimate the true risk.301

It can be seen from Figure 1 that the interval bounds of Pf become wider302

as time increases. Take Case 3 for example, Pf varies from [0.116%, 0.410%]303

at t = 20 yr, and increases significantly to [1.394%, 5.719%] at t = 50 yr. It304

is also observed that the width of Pf for Case 2 is much wider than that of305

Case 3. For instance, at t = 50 year, Pf is [0.297%, 10.082%] for Case 2, and306

[1.394%, 5.719%] for Case 3. The width of the former is more than twice of the307

latter. This suggests that the epistemic uncertainty in the copula modeling308

the dependence between A and B has a more significant effect on Pf than309

the epistemic uncertainty in the mean values of A and B. As expected, the310

width of Pf becomes wider when the analysis incorporates more epistemic311

uncertainties, i.e., the interval failure probabilities for Case 2 and Case 3 are312

enclosed in the Pf for Case 4.313

To study the sensitivity of the parameters, µA, µB and θ, on the failure314

probability, we compare the results of Case 2, Case 3a and Case 3b. The time-315

dependent probabilities of failure for the three cases are plotted in Figure 2.316

The results for t = 20 yr and t = 50 yr are also presented in Table 6. It is317

observed from Figure 2 that the width of Pf for Case 2 is much wider than318

those of Case 3a and Case 3b. This suggests that the uncertainty in the319

dependence between A and B has a more significant effect on Pf than the320

epistemic uncertainties in µA and µB. Table 6 and Fig. 2 also shows that321

the widths of Pf for Case 3a and Case 3b are comparable, implying that the322

uncertainties in µA and µB have similar effects on Pf . This sensitivity study323

shows that to improve the confidence in the reliability estimates, additional324
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Figure 2: Bounds of the failure probabilities of Example 1 (Case 2, Case 3a and Case 3b).

data should be collected, particularly for modeling the dependence between325

A and B.326

5.2. Example 2: a ten-bar truss327

Figure 3 shows a ten-bar planar steel truss subjected to two concentrated328

loads P . The example is adopted from [41]. The truss members are circular329

hollow section (CHS) with three different sections, A1, A2 and A3, for the330

horizontal, vertical and diagonal members, respectively. The nominal section331

sizes (outer diameter) and thickness are summarised in Table 7. The basic332

random variables include the load P , the thickness of CHS ri, i = 1, 2, 3,333

and the Young’s modulus E. These random variables are assumed to be334

mutually statistically independent normal distributions, with the statistics335

summarised in Table 8. The outer diameters of the sections are assumed to336

be deterministic and equal to their nominal values.337

The limit state of interest is the stress in the diagonal member 1. The338
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Figure 3: A ten-bar steel truss (adopted from [41]).

Table 7: Nominal section sizes for the ten-bar truss.

Section d (outer diameter) r (thickness)

A1 243.8 mm 8.8 mm

A2 193 mm 2.9 mm

A3 243.8 mm 7.4 mm

Table 8: Random variables for the ten-bar truss.

Variable Unit Mean COV (%) Distribution

P kN 444.8 20 Normal

r1 mm 8.8 8 Normal

r2 mm 2.9 8 Normal

r3 mm 7.4 8 Normal

E GPa 205 6 Normal
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stress, σ1, is given by a closed-form solution [41]:339

σ1 =
P

A3

(
2 +

√
2A1A2A3

(
2
√
2A1 + A3

)
D

)
, (10)

where

D = 4A2
2
(
8A1

2 + A3
2
)
+ 4

√
2A1A2A3 (3A1 + 4A2) +A1A3

2 (A1 + 6A2) .

(11)

The limit state function, g(·), is defined as340

g = σa − σ1 (12)

in which the allowable stress σa is 250 MPa.341

Considering the atmospheric deterioration of the steel and assuming two-342

sided corrosion loss, the cross-section areas Ai (t) change with time t:343

Ai (t) =

(
di

2π

4
− (di − 2ri)

2π

4

)
−

(
di

2π

4
− (di − 2c (t))2π

4

)
, i = 1, 2, 3.

(13)

in which di and ri denote the outer diameter and thickness for the CHS344

members, and c(t) is the corrosion loss after t years.345

Cases 2, 3a and 3b are first studied to examine the sensitivity of each346

parameter, µA, µB and θ, on the failure probability. The lower and upper347

bounds of the failure probabilities for the three cases are plotted in Fig. 4.348

Next, all six cases listed in Table 3 are studied. Figure 5 plots the lower349

and upper bounds of Pf as a function of time for Case 1-4. Table 9 presents350

the probability of failure for t = 30 year and t = 50 year. From Figs. 4 and351

5, and Table 9, similar observations can be made as in Example 1. Case 4352

has the widest bounds, followed by Case 2, 3 and 1. The results confirm353

that 1) the epistemic uncertainty has a significant impact on the reliability354

estimates, 2) the epistemic uncertainty in the copula parameter θ has a far355

20



0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0 10 20 30 40 50

P
ro

b
a

b
il

it
y

 o
f 

fa
il

u
re

 P
f 

Time t (years) 

Case 2

Case 3a

Case 3b

Figure 4: Bounds of the failure probabilities of Example 2 (Case 2, Case 3a and Case 3b).
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Figure 5: Bounds of the failure probabilities of Example 2 (Case 1-4).

21



Table 9: Probability of failure of member 1 of the 10-bar truss.

t = 30 yr t = 50 yr

P f P f P f P f

Case 1 0.0359 0.0414

Case 2 0.0288 0.0466 0.0302 0.0612

Case 3 0.0321 0.0402 0.0352 0.0491

Case 3a 0.0343 0.0378 0.0389 0.0445

Case 3b 0.0336 0.0382 0.0374 0.0456

Case 4 0.0265 0.0541 0.0268 0.0764

more significant effect on Pf than the epistemic uncertainties in the means356

of A and B, and 3) the epistemic uncertainties in the mean values of A of B357

have comparable effects on Pf .358

6. Conclusions359

Significant epistemic uncertainties exist in the current models for atmo-360

spheric corrosion of steel structures due to the limited availability of reliable361

corrosion data. Probability-box is a useful tool to model the uncertain cor-362

rosion process, accounting for both the aleatory and epistemic uncertainties.363

In the present study, the epistemic uncertainties are vested in the estimates364

of the first-order statistics (mean) of the corrosion coefficients A and B, and365

also the dependence structure between A and B. By examining available366

corrosion data, it is found that the dependence between A and B can be367

modeled by a Frank copula. The confidence intervals of the copula parame-368

ter are estimated using the Bootstrap method. Interval Monte Carlo method369

are used to compute the lower and upper bounds of probability of failure.370

The probability-box analysis framework was applied to the time-dependent371
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reliability analysis of a steel plate and a steel truss structures. In both ex-372

amples, similar observations are made. The epistemic uncertainties play an373

important role in the reliability assessment. A point estimate of Pf without374

considering any epistemic uncertainty may lead to a false impression of the375

reliability. The interval bounds of Pf become wider as time increases. It376

was also found that the epistemic uncertainty in the dependence between A377

and B (vested in the copula parameter θ) has a far more significant effect378

on Pf than the epistemic uncertainty in the means of A and B. The epis-379

temic uncertainties in the mean values of A and B have comparable effects380

on Pf . The importance of collecting more corrosion data, particularly for381

modeling the dependence of A and B, is demonstrated if the confidence in382

the reliability assessment is to be improved.383
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