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Abstract 

 The evolution of landscapes crucially depends on the climate history. This is particularly 

evident in South America where landscape responses to orbital climate shifts have been well 

documented. However, while most studies have focused on inferring temperature variations from 

paleoclimate proxy data, estimates of water budget changes have been complicated because of a lack 

of adequate physical information. Here, we present a methodology and related results, which allowed 

us to extract water discharge values from the sedimentary record of the 40 Ka-old fluvial terrace 

deposits in the Pisco valley, western Peru. In particular, this valley hosts a Quaternary cut-and-fill 

succession that we used, in combination with 10Be-based sediment flux, gauging records, channel 

geometries and grain size measurements, to quantitatively assess sediment and water discharge values 

c. 40 Ka ago in relation to present-day conditions. We compare these discharge estimates to the 

discharge regime of the modern Pisco River and find that the water discharge of the paleo-Pisco 

River, during the Minchin pluvial period c. 40 Ka ago, was c. 7-8 times greater than the modern Pisco 

River if considering the mean and the maximum water discharge. In addition, the calculations show 

that inferred water discharge estimates are mainly dependent on channel gradients and grain size 

values, and to a lesser extent on channel width measures. Finally, we found that the c. 40 Ka-old 

Minchin terrace material was poorer sorted than the modern deposits, which might reflect that 

sediment transport during the past period was characterized by a larger divergence from equal 

mobility compared to the modern situation. In summary, the differences in grain size distribution and 

inferred water discharge estimates between the modern and the paleo-Pisco River suggests that the 40 

Ka-old Minchin period was characterized by a wetter climate and more powerful flood events. 
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Introduction 

 Fluvial and hillslope processes are the primary mechanisms by which sediments are 

transported from mountainous terrains to depositional basins. The sensitivity of river process to 

changes in tectonic and climatic boundary conditions makes fluvial successions an ideal archive, if 

fragmentary, from which past changes in these boundary conditions can be inferred (Heller and Paola, 

1992; Whipple, 2004; Church, 2006; Allen, 2008). However, inversion of these is non-trivial because 

tectonics and climate have a similar net impact on surface elevation change, mediated by river 

processes (Humphrey and Heller, 1995). In this context, many interpretations particularly in terms of 

climate change scenarios have been developed from the observation of models because natural, well-

preserved sediment deposits are rare.  



 Here, we focus on the Quaternary cut-and-fill terrace sequences in the Pisco valley (Figure 1), 

located on the western Andean margin at 13°S, where the results of previous chronological (Steffen et 

al., 2009) and 
10

Be-based investigations (McPhillips et al., 2013; Bekaddour et al., 2014) provide ideal 

datasets that can be utilized to explore the controls on the sedimentary processes preserved by the 

terraces and the modern deposits. In this valley, sediment supply and transport during the past 40 kyrs 

has been related to orbital shifts in paleoclimate (Bekaddour et al., 2014) and seismicity (McPhillips 

et al., 2014). The main arguments for interpretation of these mechanisms were based on: (i) 

populations of 
10

Be concentrations encountered in pebbles and boulders, that were considered to 

reflect the erosional response to seismicity patterns (McPhilipps et al., 2014), (ii) 
10

Be-based sediment 

fluxes that were used to infer changes in precipitation rates and regimes (Bekaddour et al., 2014; 

McPhilipps et al. 2013), and (iii) the temporal coincidence between pluvial periods on the Altiplano 

and sedimentation in the Pisco valley, based on stratigraphic investigations of the terrace material 

(Steffen et al., 2009). Despite these results, interpretations of whether or not changes in water 

discharge have taken place are ambiguous due to lack of physical evidence. This physical evidence 

for past water discharge is embedded in the sediments and formative dimensions of the channel 

(Church, 2006). Using sedimentary, specifically sediment caliber, and morphometric information 

from the 54-34 ka-old terrace sequences in the Pisco valley (Steffen et al., 2009; Figure 1) we 

reconstruct past water discharge (Church, 2002; 2006; Duller et al., 2012) and compare this hydraulic 

information to that of the modern river to demonstrate differences, or not, between the two time 

periods. Our study provides new field data to constrain, and to test, possible impacts of climatic 

changes on the characteristics of fluvial deposits and to quantify the magnitude of these changes.  

 

Geomorphological setting 

 The c. 200 km-long Pisco River is sourced from the Pultoc Lake on the Altiplano of central 

Peru (c. 5000 m.a.s.l.) and its course runs across the western Andean Escarpment before joining the 

Pacific Ocean near Pisco at 13°S (Figure 1). During the late Miocene, there was a phase of surface 

uplift of the Altiplano and of the western Andean slope, the vestiges of which are still visible in the 

shape of the modern river profile (Schildgen et al., 2007). The long stream profile is characterized by 

two segments separated by a c. 20 km-long knickzone at c. 120 km distance from the coast. The 

bedrock is composed of Tertiary volcaniclastic deposits in the upstream segments, Late Jurassic and 

Early Cretaceous sediments in the middle segment, and a Cretaceous to early Tertiary Batholith in the 

lower segment (inset of Figure 1; Davila, 1993; INGEMENT, 2011). Upstream of the knickzone 

where Tertiary volcaniclastic deposits are found, bedrock is exposed on the channel floor, while a 

deeply-incised channel floor composed of mixed bedrock and alluvial cover characterizes the 

knickzone (Abbühl et al., 2011). In the knickzone, the channel is c. 50 m wide whereas farther 

downstream to the Pacific coast, the valley widens to several hundreds of meters, and the channel is 

composed of an alluvial cover. This alluvial cover (or river bed material) is made up of rounded 

polygenic pebbles and sand (Figures 2E-F).  

 



 
 

Figure 1: Elevation map of the Pisco River drainage basin, which is based on Shuttle Radar 

Topography Mission 90 m data. Inset in the upper left corner shows a simplified geological map of 

the study area (modified from INGEMENT, 2011 and Bekaddour et al., 2014). Circles represent sites 

where grain size data have been collected. 

 Quaternary cut-and-fill terrace sequences are common features along other rivers that occur 

along the coastal margin between Peru and northern Chile. The Pisco drainage basin (4300 km
2
) 

(Figure 1) hosts three, well-preserved Quaternary terrace levels. The terrace sequences have been 

dated to 54-34 ka for terrace level T1 and to 26-15 ka for level T2 using optically stimulated 

luminescence (OSL) dating techniques (Steffen et al., 2009; Trauerstein et al., 2014). The T2 terrace 

level (Steffen et al., 2009) is only preserved in few places. We focus on the well-preserved terrace 

level T1 (e.g., Figure 2A), which is referred to as the Minchin terrace (Steffen et al., 2009) as its 

construction was coeval with the Minchin palaeolake on the Altiplano when rainfall rates were 

supposedly higher than at present (Baker et al., 2001a, 2001b; Placzek et al., 2006). This terrace level 

is made up of a >50 meter-thick sequence with predominantly clast-supported horizontally stratified 

conglomerates (e.g., Figures 2C and 3), of mixed composition, at the base that were deposited by the 

Pisco trunk stream during this time (Steffen et al., 2009). Towards the top of the sequences, matrix-

supported breccias, of monomict composition, become more frequent and make up the uppermost 

units of most of these sequences, mainly in the upstream part of the valley (Figure 4). The occurrence 

of these deposits suggests the supply of material by debris flows from tributary valleys, constructing 

lateral fans that were prograding into the valley axis through time as the terrace sequence was built up 

(Steffen et al., 2009). 

The Minchin terrace level can be identified for 40 km along the entire valley floor from the onset of 

the knickzone to within 30 km of the Pacific coast (Figure 4; Steffen et al., 2009). Accordingly, the 

chronological framework of polymict fluvial deposits preserved in the terrace sequences (implying the 

transport by the Pisco trunk stream) in combination with the present river bed material in the Pisco 

valley provide conditions to assess the physical signature of the inferred climate changes within the 

fluvial material. In particular, we test whether a higher water discharge for the Pisco River during the 

Minchin pluvial period has to be invoked to explain the transport of T1 material during this time. We 

also explore whether differences in climates between the Minchin period and today explains the 



contrasts in the characteristics of the fluvial deposits, particularly in terms of the grain size 

distribution.   

 

 
 

Figure 2: (A) View looking to the south toward the Minchin terrace escarpment from the present 

Pisco River belt. (B) Photo of the terrace deposits taken north of sampling site 5. Meter-scale 

boulders and centimeter-scale pebbles are distinguishable. (C) View looking to the north toward 

sampling site 2. The photo illustrates the Minchin sediments. Meter-scale boulders are rare. (D) 

Picture illustrating the present Pisco River at site 2. The modern river belt and the Minchin terrace 

deposits (background) are visible. (E) View to the northeast, showing person who takes photos of 

sampling site 5. (F) Modern deposits depicted at sampling site 2. 

 

Methods 

 According to these scopes, we proceeded by measuring: (i) the grain size distributions along 

the Pisco River collected from digital images. These were taken from modern longitudinal stream bars 

and from well-exposed and accessible outcrops of the Minchin terrace deposits; (ii) the flow strengths 

and related water discharges for the two time periods, using the Bagnold equation for sediment 

transport (e.g. Tucker and Slingerland, 1997) and published 
10

Be-based sediment budgets as basis 

(Bekaddour et al., 2014) that will be corrected for solute and suspension loads. Flow strength and 



water discharge estimates additionally require information about the morphometric properties of the 

stream including channel gradients and widths during the Minchin time and the present-day. 

Accordingly, we mapped the terrace deposits in the field, on satellite images and on the 90 m 

resolution DEM. 

As mentioned above, in the upper reaches at >50 km upstream from the river mouth, the Minchin 

deposits comprise fluvial gravels at the base (clast supported, polymict gravels exhibiting imbrication 

in places) and debris flow  units (matrix supported, monomict breccias) at the top in most sections 

(Figure 4C; Steffen et al., 2009). This suggests that while the lateral supply of sediment has been 

accomplished through debris flow processes, the down-valley transport of this material occurred 

principally through fluvial transport mechanisms (Steffen et al., 2009). Towards the coast, however, 

the Minchin deposits are exclusively made up of fluvial gravels, implying that the valley fill 

comprises river-lain material (Figure 4C, Steffen et al., 2009). As the equations used in this paper (see 

below) are designed for fluvial and not debris flow processes, we will focus our hydrological analyses 

mainly on the lower reach and on fluvial gravels only. 

          Grain size data 

 We determined the grain size of river sediments at 5 sites (Figures 1A, 2) along the 120 km-

long reach downstream of the knickzone where both present channel bar and Minchin terrace deposits 

were accessible. Grain size data was collected from imbricated and horizontally-stratified, clast-

supported conglomerates of fluvial origin (Steffen et al., 2009; Figures 2 and 4C). At each site, the b-

axis of particles were measured from digital images that were taken at 5 to 7 different locations within 

an area of circa 200 m
2
 (modern stream) and within 10 m of vertical section (Minchin terrace). Sites 

of the Minchin terrace were selected to represent the identical chronological level (within errors) of c. 

5 ka (Figure 4C; Steffen et al., 2009). This strategy yielded a total of c. 2500 grain size measurements 

per site for the modern material, and c. 4000 per site for the terrace deposits. These numbers of 

measurements have been considered as sufficient for reliable estimations of the grain size 

distributions (e.g. Rice and Church 1998). The comparison between the grain sizes of the surface and 

terrace material requires correction for the modern bed material, because post depositional winnowing 

tends to coarsen the sediment surface (Andrews, 1984). In the same sense, Kellerhals and Bray (1971) 

demonstrated that areal samples tend to be biased in favor of the coarser grains, as outlined by Diplas 

and Fripp (1991). To solve this problem, we followed the results by Andrews (1984) who showed that 

surface samples are coarser up to a factor of 3 compared with the grain size distribution of the 

embedded sediments (Andrews, 1984). We thus account for this bias following the latter author (i.e. 

lowering by a factor of 3), which, however, could potentially result in an underestimate, and thus in a 

conservative assessment, of the role of water discharge to entrain the modern sediments.  

 We used the grain sizes of the 50
th
 and 96

th
 percentile values (D50 and D96) and calculated the 

standard deviation of the D50 and D96 from the 5 to 7 locations at each site. The principal limitation to 

defining the entire grain size distribution was the inability to accurately measure particles <3 mm in 

diameter from digital images (see also Whittaker et al., 2010). While we cannot resolve this problem 

with available techniques, we do not expect that this adds a substantial bias in the grain size 

distributions reported here because their relative contributions to the point-count results are minor (i.e. 

< 5%, based on visual inspection of the digital images). 

 

         Water discharge estimates  

 The water discharge of the Pisco River has been surveyed during the past fifty years by the 

hydrological service of Peru. We thus have access to the hydrological data from a gauging station 

(Figure 1) located between our survey sites 2 and 3 (Agteca, 2010, Bekaddour et al., 2014; Figures 1 



and 2). In addition, sediment fluxes Qs have been estimated near the site of the gauging station using 

concentrations of in-situ 
10

Be for modern and Minchin river-born sediments (Bekaddour et al., 2014), 

which we took here as basis to solve the Bagnold equation for the evacuation of the supplied sediment 

(Equation 1). According to this equation, the occurrence of sediment transport at a rate Qs requires 

that critical (threshold) conditions for the mobilization of a population of gravel clasts or particles are 

exceeded. There are several possibilities to calculate sediment transport but all share the form of a 

power function of excess shear stress imparted on a river-bed. Here, we selected the Bagnold equation 

(e.g. Tucker and Slingerland, 1997), which relates sediment flux Qs (here based on the 
10

Be-based 

sediment discharge estimates of Bekaddour et al., 2014) to threshold conditions for sediment 

entrainment and water flow strength through:   

 

                                                                   (1),

                

where W is channel width, ρs = 2700 kg/m
3
 and ρ = 1000 kg/m

3
 are sediment and water densities, 

respectively,  is the shear stress exerted by water, c is the critical shear stress required to entrain a 

sediment particle size of size Dx (with x representing the percentile) and a is a constant. We will 

discuss later that a depends on the effects related to skin friction and the nature of bed forms, at least 

in our case. 

While the 
10

Be-derived sediment discharge considers the total loads that also include the solute and 

suspension load components (von Blanckenburg, 2005), the Bagnold equation (eq. 1) has been 

derived for the bedload material only. Datasets from modern examples show that dissolved and 

suspended sediment loads commonly account for 50-80% of the total sediment discharge (e.g. 

Schlunegger and Hinderer, 2003; Hinderer et al., 2014). Accordingly, the sediment flux data of 

Bekaddour et al. (2014) was corrected assuming that 20-50% of the total sediment flux was bedload 

sediment flux. This correction yields bedload flux values of c. 16000-40000 m
3
/yr (mean, 28000 

m
3
/yr) for the modern Pisco River, and c. 130000-325000 m

3
/yr (mean, 227000 m

3
/yr) for the Pisco 

River during the Minchin period.  

We note that these fluxes have been measured on sand material that is commonly trapped in the pore 

space of gravels. However, the entrainment of the sand fraction in the pore spaces requires that the 

gravels are shifted, which occurs when minimum flow strengths are exceeded. Using D50 and D96 as 

threshold criteria for the entrainment of material, we are confident that the combined 10Be dataset, 

sediment sampling procedure and sediment transport relationships are reasonably well captured by the 

corrected bedload flux values given above.. In principle, this approach returns water discharge values 

required to evacuate the supplied bedload material (based on 
10

Be measurements, corrected for solute 

and suspension components), provided that sediment transport can be accomplished during mean 

(threshold water strength set by the D50) or peak runoff only (threshold set by the D96). 

For the D50, we determined values of 1.2 cm ± 0.2 cm for the present and 2 cm ± 0.8 cm for the 

terrace deposits, while sizes of 6 cm ± 2 cm (present material) and 11.5 cm ± 4 cm (terrace deposits) 

were determined for the D96. We obtained these measures at the locations (between sites 2 and 3) 

where the 
10

Be-based sediment flux (Bekaddour et al., 2014) has been estimated, and where the 

Minchin terrace deposits are made up of fluvial material. 

Critical shear stress values τc (see Equation 1) for the entrainment of the D50 and D96 can be obtained 

through Shields (1936) criteria, whereby a dimensionless critical shear stress τ*cDx is used to denote 

threshold of motion of the grain size of interest Dx: 

 

 



                                                                                                          (2),

     

where ρs and ρ denote the particle and the water densities respectively, and g the gravitational 

acceleration. Shields (1936) showed that for near-uniform grains, represented best by the D50, τ
*

cDx  

attains a constant value of c. 0.06 in the case of rough turbulent flow over narrowly graded sediment 

beds coarser than sand. Following Meyer-Müller (1948), Heller and Paola (1992) used a value of 

0.047, which yields lower discharge estimates for mean water flux. However, since this will not 

change our conclusions regarding the contrasts in runoff between modern and past times, we applied 

the original value of 0.06 (Shields, 1936). This then yields the following relationships (use of D50): 

 

                                                                                                         (3).                                                                                      

Studies dealing with non-uniform mixture of grains (e.g. Egiazaroff, 1965; Parker et al., 1982; 

Andrews, 1983) point to the importance of the hiding/protrusion effect or divergence from equal 

mobility on the critical Shields parameter, which will be lower if the coarse grained fraction of a river 

bed is considered. Reported values (Buffington and Montgomery, 1997 and references therein) of 

related Shields parameters vary considerably. According to Church (2002), however, a value of 0.03 

appears a conventional approach for individual, well-exposed gravel, cobble or boulder clasts, 

consistent with the D96 selected here. In support of this statement, a relatively detailed study in an 

Alpine torrent returned a value of c. 0.03 (van den Berg and Schlunegger, 2012). We are thus left with 

either a conservative approach where the Shields variable equals 0.06, yielding an upper bound for 

estimating water discharge, and 0.03 returning lower water discharge values. We therefore selected a 

mean value of 0.045 as a start (see in Tables 1 and 2) and iteratively changed to values of 0.03 and 

0.06, thereby exploring the sensitivity of this variable. This then yields the following relationships 

(use of D96):  

 

                                                                                                       (4). 

Bed shear stress exerted by water (see equation 1) is computed through: 

 

                                                                                                                                       (5),

  

where R is the hydraulic radius, g is gravitational acceleration, S the channel gradient if steady-

uniform flow is assumed, and ρ the density of water. Note by using the S term as mentioned here, 

equation (5) might yield in overestimations for shear stress. Accordingly, the value of the variable τ 

needs to exceed the threshold τcDx to entrain the grain size with the b-axis Dx. The hydraulic radius R 

is the ratio between the cross-sectional area of a flow A (L
2
) and the wetted perimeter P (L): R =A/P. 

For wide channels where the width W of the active channel is at least twenty times larger than water 

depth d, it follows that R ≈ d (Tucker and Slingerland, 1997). Our own observation during a low 

discharge period (November 2014) has shown that this is the case (d<0.5 m, W≈15-25 m).  

The most robust way for solving equation (5) utilizes the Darcy-Weisbach friction factor f since this 

variable approximates a drag coefficient if resistance is defined as the gravitational driving force per 

unit area and assumed to be proportional to the square of the flow velocity V (Ferguson, 2007): 

 



                                                                                                         (6). 

  

Values of f differ considerably between shallow- and deep-water flows and depend on grain size D 

relative to water depth d. Ferguson (2007) combined these relationships to a single equation referred 

as the Variable-Power Equation (VPE) where roughness-layer and skin friction effects are considered 

(Ferguson, 2007): 

 

                          (7), 

 

where D is the grain size under consideration, d is water depth, and a1 and a2 are constants that vary 

between 7-8 and 1-4, respectively (Ferguson, 2007). The VPE-approach thus combines friction 

differences under deep and shallow flow conditions, but has the disadvantage that the related 

coefficients a1 and particularly a2 have relatively large uncertainties. However, we are faced with the 

problem that the Bagnold equation has too many unknowns to properly be solved with the Variable-

Power Equation. In particular, a solution of equation (1) through the combination of equations (5), (6) 

and (7), and thus via the consideration of f, requires that either flow velocity V or water depth d are 

independently constrained, for which we lack the required datasets. We therefore selected a different 

approach where we solved the Bagnold equation through a combination of equation (5) and formulas 

describing the continuity of mass (equation 8), and Jarrett’s (1984) approximation for the relationship 

between flow velocity and channel bed roughness (equation 9):  

 

 𝑄 = 𝑉𝑊𝑑                            (8), 

and 

                                        (9).  

 

As for equation (5), we substituted R ≈ d, where d is the channel depth. 

Although Jarrett’s (1984) approximation uses high slope as a surrogate for coarse bed material, which 

is a simplification, we justify our solution because Marcus et al. (1992) showed that the Jarrett (1984) 

method yields a solid estimate for flow resistance for channel gradients <0.183, which is the case for 

the Pisco River.  

This then returns a measure for water flow strength as a function of water discharge Q and channel 

width W: 

                       (10).  

 

This leaves us with Q as the only non-constrained variable with analytical techniques. 

 

 We iteratively changed water discharge Q until the calculated sediment discharge Qs equals 

the measured one (Table 1). We started from the modern situation, assigned the measured mean 

values to the input parameters (mean grain size, mean channel width etc.) and computed the 

corresponding water discharge solutions. We then calibrated the model with the hydrological records 

from a gauging station located at 52 km from the Pacific coast through adjustments of the value for 

the parameter a (equation 1). In addition, we explored the range of possible solutions for water 

f

8
= (D / d)2 / a2

2 + (D / d)1/3 / a1

2

V = 3.10R0.83S0.12



discharge values where the entire range of grain size and channel width estimates was considered. We 

also performed simple sensitivity analyses, thereby starting from the calibrated model (labeled as 

standard in Table 1). When then either doubled or halved the constraining variables (gradient, 

channel width, and grain size, Table 1) while solving the Bagnold Equation for water discharge. We 

finally applied our calibrated model to the situation for the Minchin times (Table 2), where we used 

the corresponding grain size and sediment flux data as input parameters. In summary, these 

calculations yielded water discharge values that are required to evacuate the known value of the 

supplied sediment, assuming that sediment transport can be accomplished during mean (threshold 

water strength set by the D50) or peak runoff only (threshold set by the D96). 



 



 



 
 

 



       Terrace mapping and estimates of paleo-channel gradients and paleo-channel widths 

 The most important parameters in the discharge reconstruction are the longitudinal slope and 

channel width (see equations above). Among these, channel gradients have a larger effect as our 

simple sensitivity study shows (Table 1). In support of our observations, Ryder and Church (1986) 

have shown that paleo-hydraulic reconstructions based on terrace material are extremely sensitive to 

these data. The morphometric properties of the modern Pisco River were quantified through available 

remote sensed datasets and digital elevation models. For older, ‘stratigraphic’, periods, these 

parameters were determined using a reconstruction of the paleo-channel profile. We proceeded by 

mapping (Figure 3) the surface of the Minchin terrace deposits on Google Earth satellite images and 

on the 90 m DEM (ASTER GDEM, NASA), which enabled the reconstruction of the paleo-channel 

profile by correlating points of known altitudes and by assuming no subsequent surface tilting 

(Figures 4A and B). The interpolation of the elevation of these deposits is then served as basis for the 

calculation of the paleo-channel gradients. We note that the top of the Minchin level is made up by 

fluvial deposits along the lower reaches, debris flow fan material (>55 km distance from the river 

mouth), or a combination of both (between 40-55 km distance from the river mouth). The 

consideration of lateral fan material in the reconstruction of the paleo gradients could thus result in a 

slight overestimation of the paleo-gradients, with the effect that the calculated differences in flow 

strengths between present and past times will yield conservative contrasts, which is the scope here.  

 

Figure 3: Map of the occurrence of the Minchin terrace and lateral fans along the Pisco river. The 

map shows the location of the sampling sites for grain size data (circles) and of the gauging station.  

 

 Mapping also serves as basis to estimate channel widths. We acknowledge that uncertainties 

in channel width estimates introduce errors in our calculations (Equation 1, and results of sensitivity 

analyses shown in Table 1). For the current situation, three variables can be readily extracted from 

available archives. These comprise: (i) the width of the river belt and (ii) the width of the active 

channel during low (dry season) and (iii) high water stages (wet season). We do have satellite images 



from different years covering the river length for both periods (Figure 5), which we use here to 

constrain channel widths for inferring water fluxes for the entrainment of sediment during dry (mean 

active channel c. 20±5 m wide) and flood stages (mean active channel c. 50±10 m wide, Figures 5 and 

6A). These values are nearly constant along the entire stream length and correspond to ca. 1/3 and 2/3 

of the river belt width values measured between gauging station and farther upstream. 

 

 
 

Figure 4: (A) Pisco river profile. (B) Zoom of the figure 4A showing the altitude of the top of the 

terrace and of the lateral fans from which we reconstruct the river profile at the Minchin time. (C) 

Wheeler diagram showing the composition of the terrace level T1 along the Pisco river (modified 

from Steffen et al., 2009). Site numbering as in Figure 1. 

 

 While we have no constraints on these variables for the Minchin times, we are capable of 

measuring values for the river belt during this period (Figure 6B), which is the cross-sectional width 

of the Pisco valley at the base of the terrace deposits where the material is made up of fluvial gravels 

(Steffen et al., 2009, see above). Similar to the present state, we anticipate the occurrence of same 

ratios between 1/3 and 2/3 between river belt and active channel widths for mean and high water 

stages in our calculations for the past. Also according to the current situation, we applied these ratios 

to the river belt width values that we measured at the gauging station and farther upstream, and we 

infer that the width of the active channel was nearly stationary along the entire Pisco River (as it is 



today). As a consequence, for our site of interest between 45 and 55 km distance of the river mouth 

(which is the reach surrounding the gauging station), the river belt width is c. 550±100 m. Our 

approach thus yields an active channel width of 180 ± 30 m during low flow stages and 365 ± 65 m 

during high flow stages. We note that uncertainties in active channel widths will be greatest for lower 

flood stages since we cannot reconstruct the proportion of channel width that was occupied by water, 

and therefore sediment discharge. It is fair to assume that the maximum flood stages will occupy 

most, if not all, of the channel width when the coarsest material (D96) can be mobilized. Even if this 

was not the case, the larger sediment fluxes, coarser grain sizes and nearly identical channel gradients 

during the past do call for more water during Minchin times irrespective of channel width assignments 

(see below). In addition, as we do not consider bankfull discharge even for the entrainment of the D96, 

our water discharge estimates, based on equation (1), will return conservative values. 

 
 

Figure 5: (A) Satellite images showing how the active modern channel width and both the modern 

and the Minchin river belt widths have been measured during dry and wet season. (B) Active channel 

widths during wet and dry season obtained from satellite images from different years. 

 

Results 

         Terrace mapping and estimates of paleo-channel gradient 

 The first terrace material that we assigned to the Minchin time period has been encountered at 

an upstream distance of c. 90-100 km from the coast (Figure 3). From there, we mapped the highest 

terrace deposits c. 15 km farther downstream, where they reach an elevation of at least 80 m above the 

current river levels. From this location downward, relative terrace elevations decrease to 40 m, and 

then to 20 m at 35 km from the coast. No terrace deposits are present near the Pacific coast (Figures 3 

and 4). 

If we take the top terrace level as reference, then the reconstruction of the terrace surface implies a 

stream profile, prior to dissection by the modern river, which was less concave than that of the current 



river (Figures 4A and B). Related stream gradients are 0.011 m/m for the current situation and 0.015 

m/m for the past. 

Modern river belt widths vary from 25 m to 350 m over the entire reach. Between the coast and 50 km 

from the coast, the river belt is unconfined and >150 m wide. Farther upstream, the river belt is 

confined to a 50-150 m-wide section (Figure 6A), which yields a mean value of 75±15 m. 

During Minchin times, river belt width values varied between 400 and 800 m (mean value 550±100 

m) at >50 km upstream distance of the Pacific coast, and c. 1000 m farther downstream (Figure 6B). 

As outlined above, the modern situation revealed that widths of active channels are nearly constant 

along the entire Pisco River (for both low and high water stages), and that related values correspond 

to between 1/3 and 2/3 of the river belt width values that we encountered upstream of the gauging 

station. These considerations return active channel width values that range between c. 150 and 210 m 

for low water stages, and c. 300-420 m for high discharge situations. 

 

 
 

Figure 6: (A) River belt and active river channel widths along the Pisco River from the Pacific coast 

to 100 km distance from the coast during the modern time. This yields a ratio between river belt and 

active channel widths ranging between 1/3 and 2/3. (B) River belt width and estimation of active 

channel width during the Minchin time using the same ratio between these variables as to the present 

situation.  

 

         Grain size data 

 River grain size variation is an important property of streams controlled by the magnitude of 

the water discharge (e.g. Duller et al., 2012). In our case, the D50 varies between 0.8 and 3.6 cm, and 

between 1.9 and 3.7 cm for the modern and the Minchin deposits, respectively (Figure 7A). In the 

same sense, the D96 varies between 4.5 and 9.5 cm for the present material, and 8.7 and 18.4 cm for 

the past deposits (Figure 7B). At all sites, the ancient material is coarser for the two percentiles than 

the present material. Likewise, the modern bed material is better sorted than the Minchin deposits, i.e. 

D96-D50 ~ 10.5 cm for the Minchin deposits compared to D96-D50 ~ 4.8 cm for the modern bed 

material. In addition, the Minchin deposits are characterized by the occurrence of 2-3 m-large 

boulders particularly at upstream sites (Figure 2B). In contrast, meter-sized boulders are nearly absent 



in the modern river bars, and the material appears more homogenous in terms of granulometric 

composition (Figure 2F).   

 

 
 

Grain sizes of modern and Minchin deposits against distance from the Pacific coast. The black 

diamonds represent the modern deposits and open diamonds represent the Minchin material. The 

vertical bars correspond to the grain size standard deviation between the photographs at each site. 

Note changes in scale on y-axis. 

 

         Water discharge estimates for the modern situation 

 The combination of information about grain size, river morphology and sediment discharge 

allows the calculation of modern and paleo water discharges. Using the Bagnold relationships 

between sediment discharge and water flow strength (Equation 1), we obtained the shear stress and 

the related water flux required to mobilize the supplied sediment under the condition that flow 

strengths exceed critical values to entrain the D50 and D96 (see methodology).  

For the modern scenario a mean water discharge of 2.5 m
3
/s (row labeled with mean in Table 1). This 

was based on a value of the constant in the Bagnold equation of a = 1 and average parameter values of 

1.1 cm for D50 and 20 m for the active channel width. We note that a value of 2.5 m
3
/s is up to 10 

times less than the mean water flux measured at the gauging station. The constant in the Bagnold 

equation thus needs to be adjusted to a=1/20 to achieve the known mean discharge value of c. 25 

m
3
/s. Minimum and maximum values of  channel widths and D50 return water discharge estimates 

between 1 and 4 m
3
/s (a=1) and 15-35 m

3
/s (a=1/20) (Table 1). In summary, these results represent 

estimates of flow strengths, which would be required to evacuate the supplied sediment Qs (Table 1) 

under the condition that the D50 sets the threshold for the entrainment of the sediment. 

Also for the modern situation, the use of (Table 1): 7.5 cm for the D96, 50 m for the channel width, 

and 0.045 for the Shields criterion for the entrainment of sediment returns an average water discharge 

of 40 m
3
/s during floods, provided that a=1. This is c. 1.5 times less than the annual mean of 

maximum runoff that has been measured. A corresponding adjustment of the constant in the Bagnold 

equation to a=1/5 allows to correct for this underestimate (row labeled as mean in Table 1).  The 

consideration of minimum and maximum values for channel widths, the D96 and Shields criterion 

runoff values between 12 and 100 m
3
/s (a=1) and 18-150 m

3
/s (a=1/5) (Table 1). These represent 

estimates for the present maximum water discharge, which would be required to evacuate the supplied 

sediment Qs (Table 1), provided that the D96 sets the threshold for the entrainment of the sediment. 



         Water discharge estimates for Minchin times  

 We proceeded in the same way as for the modern situation, but used the calibrated model 

where a=1/20 if the D50 sets the threshold conditions for sediment transfer, or alternatively a=1/5 if 

the D96 is considered (see also equation 1). Accordingly, for Minchin times, the use of mean values 

including: (i) 2 cm for the D50 as threshold percentile for the transport of sediment, (ii) 180 m for the 

active channel width, and (iii) 227000 m
3
/s for sediment discharge returns a mean runoff value of 180 

m
3
/s for the past (row labeled as mean on Table 2), which is 7 times larger than what is currently 

being measured. The consideration of minimum and maximum values for channel widths and the D50 

plus the full range of sediment discharge estimates returns water runoff values between 70-300 m
3
/s 

(Table 2).  

In the same sense, the use of mean values for the parameters that we related to peak water discharge 

such as (row labeled as mean on Table 2): (i) 12 cm for the D96, (ii) 365 m for the channel width, (iii) 

0.045 for the Shields criterion for the entrainment of sediment, and (iv) 227000 m
3
/s for sediment 

discharge returns a mean water discharge estimate of 490 m
3
/s that is required to evacuate the 

sediment (Table 2). This is c. 3 times larger than the inferred mean discharge value during Minchin 

times and 8 times larger than the corresponding mean discharge values that is currently being 

measured during peak conditions. The consideration of minimum and maximum values for channel 

widths, the D96 and Shields criterion and the full range of sediment flux returns water discharge values 

between 130 and 1300 m
3
/s.  

 

Interpretation and discussion 

 Data about the river morphology, the downstream grain size characteristics and the estimated 

water flux are used to infer the sediment transport dynamics in the Pisco River for the two studied 

time periods. We first present a section that discusses the validity of the selected models. In the 

subsequent sections, we will use our results to infer: (i) the timescales of sediment transport, (ii) 

contrasts in discharges between the present and the past, and (iii) implications from the difference in 

the sorting between modern and past times. 

 

          Selected Model 

 The use of a =1 in the Bagnold equation (1) returns discharge values that are between 10 and 

1.5 times lower than the measured ones if the mean and maximum flood stages are considered, 

respectively (Figure 8). Corrections where we set a ≈ 1/20 and a ≈ 1/5 yield discharge estimates that 

closely correspond to the measured runoff during low and maximum water stages, respectively. As 

the Bagnold equation for sediment transport is based on the concept that sediment flux is 

accomplished in response to the ratio between drag and inertia forces, the 4 times larger value for the 

constant a during peak discharge (compared to low runoff stages) implies that during high discharge 

events, drag forces are more efficiently transferred into transport work than during low water stages. 

Related effects are also implied by the Variable-Power Equations of Ferguson (2007), where the 

friction factor f is inversely related to the water depth relative to the particles’ grain sizes. 

Additionally, the contrasts in the assigned values for a (Bagnold equation 1) during low and high 

discharge are in nearly the same range as the ratios of the coefficients a1 and a2 of the VPE-approach 

(equation 7) that scale the conditions during high and low flows, respectively. 

However, our simple sensitivity analyses shows that the largest uncertainties in our model are related 

to channel gradient, S, where a doubling or halving of this variable requires the water discharge 

variable to be adjusted by a factor of 4 to maintain the same sediment transport rate (Table 1). 

Doubling or halving of channel width affects discharge estimates by a factor of 1.5, while doubling or 

halving the mean grain size value affects discharge estimates by a factor of 3.  



We also note that our model is set up such as that the transport work of the Pisco River can be 

accomplished on an annual basis. While this assumption is sustained by other studies (Emmett and 

Wolman, 2001; van der Berg and Schlunegger, 2012), some authors proposed that most of the 

erosional and transport work of streams is accomplished by large floods with long return intervals. 

These latter findings are based on observations in the USA and contrasts between 
10

Be-based 

denudation rates and decadal sediment yields in the European Alps (e.g, Molnar, 2001; Wittmann et 

al., 2007). While we cannot properly determine the time span required to transfer the sediment in the 

Pisco River with the current dataset, we tentatively favor a model where most of the sediment 

transport is accomplished during short time intervals spanning a few years at most.  

 

 
 

Figure 8: Recorded water discharge in the Pisco River, collected at the gauging station (modified 

after Bekaddour et al., 2014). Annual water discharge estimated from grain size and sediment flux 

data are presented by the diamond symbols.  

 

  Differences in inferred discharge patterns during the past and modern times 

 The analysis presented here demonstrates that water discharge of the Pisco River during 

Minchin times was larger than that of the modern Pisco River. This result mainly reflects the coarser 

grain size distribution of the Minchin-age terrace deposits (e.g. Figure 2B), which is also supported by 
10

Be-based sediment flux calculations for the Minchin period (Bekaddour et al., 2014). Potential 

errors to the analysis are introduced through an overestimation of channel widths and the introduction 

of coarser particles through debris flow processes. With regards to channel width, we are confident in 

our estimates of channel width as they are based on conservative grounds. With regards to the 

contribution of coarser particles through debris flow processes, this might explain the occurrence of 

m-scale boulders in the upper reaches but, we stress that these boulders are embedded within fluvial 

gravels and so must have been transported by the Pisco River (Steffen et al., 2009). Furthermore, the 

terrace material along the lowermost reaches of the Pisco River is composed of fluvial gravels, and 

debris flow-derived material occurs only as thin units that are of limited lateral extent and constrained 

to the hillslope borders and tributary valleys. 

 We note, however, that the inferred difference in water discharge could be biased since the 

sediment supply exerts an important influence on bed grain size in modern channels (e.g., Buffington 

and Montgomery, 1997). In particular, the terrace deposits are by definition from a non-equilibrium 

period in the channel’s history when sediment supply was higher than transport capacity. 

Accordingly, the grain size of the paleo-supply could be quite different from the modern conditions, 

which then requires that inversions of our equations for water discharge needs the consideration of 



changes in sediment supply and related grain size through time. In a similar context, Krumbein and 

Lieblein (1956) showed that most of the anomalously large particles in gravel deposits are probably 

normal members of the stream particle population. However the larger value of graphical standard 

deviation of the Minchin deposits compared to the modern is suggestive of a true causative 

mechanism, which we infer to be driven by the hydraulic regime of the river system (Manville and 

White, 2003). We are currently not able to properly solve this problem, but we note that our inference 

of larger discharge values not only relies on the grain size data, but also on the contrasts of supplied 

and evacuated sediment (Bekaddour et al., 2014), which we did consider through the application of 

equation 1. Accordingly, the interpretation of larger discharge values and a wetter climate for the past 

will not change.  

 

   Implications from the difference in the sorting 

 The poorer sorting of the Minchin material might reflect that the past was characterized by a 

larger divergence from equal mobility, when the timescale of rapid transient events was too short, or 

shorter than today, to allow equilibration to equal mobility (Miller et al., 2014). This concept has been 

used to explain the dependency of downstream fining rates on the threshold of motion (e.g., Miller et 

al., 2014) and the rapid supply of coarse-grained material with a poor initial sorting (e.g., Manville 

and White, 2003). Indeed, a larger divergence from equal mobility could have been accomplished by 

a high relative importance of sediment supply through erosion on the valley borders, versus sediment 

evacuation in the channel, which likewise points to a relatively high sediment discharge/water flux 

ratio. We are currently not able to test this latter hypothesis, but the occurrence of sediment 

accumulation during Minchin times (Steffen et al., 2009) and 
10

Be-based large sediment supply rates 

from bordering hillslopes (Bekaddour et al., 2014) do support this argument. 

 

Summary and Conclusions 

 Terrace successions in the Pisco Valley, Peru have been used to infer a climatic (Steffen et al., 

2009), specifically a wetter climate (Bekaddour et al., 2014) origin, without a physically-based dataset 

to reinforce this assertion. Using sedimentological and morphometric parameters of the Minchin 

terrace succession, we were able to reconstruct the paleo-water discharge during the Minchin time 

interval. Using the 50
th
 and 96

th
 percentile fractions of the grain size distributions to denote mean 

water discharge and maximum water discharge, we find that the Pisco River, during Minchin times, 

was characterized by a larger discharge (Figure 9), which was c. 7-8 times greater than today. In this 

context, an increase in the mean and maximum water discharge could either be related to a wetter 

climate along the Pacific coast as postulated by Bekaddour et al. (2014), or to high precipitation rates 

on the Altiplano (Baker et al., 2001a, b), or to a combination of both. We note, however, that we are 

currently not able to distinguish between both scenarios with the here presented dataset.  

In summary, by linking grain size and morphometric data of the modern Pisco River to measured 

water discharges over the past 60 years, we calibrate our paleo-hydrological investigation of the 

Minchin-age succession. This, combined with chronology and sediment flux data from 
10

Be, 

illustrates that the dynamics of a river system can be deciphered with a reasonable degree of 

confidence from high-resolution sedimentological and morphometric dataset.  



 
 

Figure 9: Summary figure illustrating grain size patterns, channel properties and hydrological 

conditions during modern and Minchin times.  
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