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Longitudinal discriminant analysis (LoDA) can be used to classify patients into prognostic groups based on
their clinical history, which often involves longitudinalmeasurements of various clinically relevant markers.
Patients’ longitudinal data is first modelled using multivariate generalised mixed models, allowing markers
of different types (eg continuous, binary, counts) to be modelled simultaneously. We describe three ap-
proaches to calculating a patient’s posterior group membership probabilities which have been outlined in
previous studies, based on the marginal distribution of thelongitudinal markers, the conditional distribution
and the distribution of the random effects. Here we compare the three approaches, first using data from the
Mayo Primary Biliary Cirrhosis study and then by way of simulation study to explore in which situations
each the three approaches is expected to give the best prediction. We demonstrate situations in which the
marginal or random effects approach perform well but find that the conditional approach offers little extra
information to the random effects and marginal approaches.
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1 Introduction

Regular surveillance of a patient is a crucial step in determining if/when they will develop a particular
disease. Patients thought to be at risk of a disease may be asked to attend periodic clinic appointments
at which a number of clinically relevant variables (referred to as markers) are measured. These variables
can be used to assess the risk that a particular patient has ofdeveloping a disease, possibly within a set
time frame. Patients are classified into prognostic groups based on their risk of having the disease. One
may consider a two group case where patients are allocated tothe disease group or the no disease group.
Alternatively a multiple group scenario could be considered where patients are classified into groups based
on the anticipated severity of their disease (e.g. stages ofcancer). Such a clinical problem can be addressed
by using methods of discriminant analysis.

In many clinical settings only the most recent information (obtained at the most recent clinic visit) is
considered in assessing the risk of developing a disease fora particular patient. All previously gathered
information is not considered, which could be an inefficientuse of data. It may also be the case that the
change in a patient’s marker values over time is more informative in predicting their risk than simply the
most recent value of the marker. To allow for a more flexible classification approach, in recent years, longi-
tudinal discriminant analysis (LoDA) methods have been developed which classify patients into prognostic
groups based on their longitudinal history.

Methods of LoDA which consider only a single continuous marker have been developed by a number of
authors (see for exampleTomasko et al.(1999), Brant et al.(2003), Wernecke et al.(2004), Lix and Sajobi
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(2010) andKohlmann et al.(2009)). When multiple longitudinal markers have been collectedat the follow
up visits it can be useful to include this additional information in the classification scheme. Extensions
of LoDA for multiple continuous markers have been considered by Morrell et al. (2012), Marshall et al.
(2009) andKomárek et al.(2010). Fieuws et al.(2008) andHughes et al.(2016) develop multivariate
LoDA methods which can be used when the markers are not all continuous (e.g. counts or binary data).

In each of the LoDA methods referenced above, a linear mixed model is first used to model the lon-
gitudinal evolution of each marker for patients of known prognosis. A useful feature of mixed models is
that random effects are used to allow patient specific deviation from the mean profile as well as to model
correlation between observations of a marker at different time points and also between markers. In the case
of markers of different types (Fieuws et al., 2008; Hughes et al., 2016) the linear mixed model is extended
to a multivariate generalised linear mixed model (MGLMM). AMGLMM is fit separately to data from
each prognostic group. The output of these models is then used in the LoDA to inform a classification rule.
In other words, we use the longitudinal data on markers, frompatients of known prognosis, to derive a
classification rule which predicts the future disease status of a patient of unknown prognosis based on their
individual longitudinal history.

Morrell et al.(2007) specify three alternative ways to use the output from the mixed model to predict
disease status, namely marginal, conditional and random effects prediction. In each case the prediction
has a different focus. For marginal prediction, the marginal distribution of the new patient’s observed
longitudinal data is used to predict their future status. That is, the prediction is focused on the mean
evolution of the markers over time. We are interested in which of the group-specific mean longitudinal
profiles, calculated using the MGLMM, the new patient’s trajectory is closest to. The conditional prediction
replaces the marginal distribution with the conditional density of the observed longitudinal data given the
estimate of the new patient’s random effects. In this case the prediction is based on the patient specific
evolution of markers over time, ignoring any error in the variability of the patient’s estimated random
effects. This method could be thought of as comparing the mean longitudinal profiles for a subset of
patients with ‘similar’ random effects in each group to the conditional longitudinal profile of the new
patient. Finally, for random effects prediction the density of the patient’s estimated random effects is used
for prediction and the focus is on the patient specific evolution of the markers.

Most applications of LoDA have focused on the so called ‘marginal’ prediction approach. To the best
of our knowledgeMorrell et al.(2007) were the first to propose the use of conditional and random effects
prediction as alternatives. Relatively little work has been done to assess which of the three methods is most
appropriate to use, or whether different approaches suit some scenarios more than others. In work that
aims to identify patients with prostate cancer based on the evolution over time of prostate specific antigen
(PSA)Morrell et al. (2007, 2011) compare the three prediction approaches using a number of measures.
In terms of sensitivity (proportion of correctly identifiedcancer cases) and lead time (mean time before
clinical diagnosis that a patient is correctly predicted asa cancer case) the marginal method performs
the best, whilst in terms of specificity (proportion of correctly identified non-cases) and probability of
correct classification (PCC), the random effects method performed the best. By contrastKomárek et al.
(2010) used the three methods to identify patients with Primary Biliary Cirrhosis (PBC) based on three
continuous longitudinal markers and concluded that the random effects method gave the best prediction.
Hughes et al.(2016) also compared the three approaches to identify patients with refractory epilepsy and
show that, in their application the marginal and conditional approaches performed similarly, with a slight
preference for the marginal approach whilst the random effects approach performed poorly.

All previous comparisons of the three approaches to LoDA have been based on specific data sets and
have provided different conclusions as to which approach works best. In this paper we investigate this
matter further, by way of simulation study, to determine whether the three approaches are sensitive to
different types of differences between the prognostic groups.

An outline of this paper is as follows. In Section2 we give an overview of the LoDA methodology and
explain in more detail the marginal, conditional and randomeffects approaches. Section3 gives a real data
application of LoDA using the PBC data available within themixAK (Komárek and Komárková, 2014)
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package inR (R Core Team, 2016). We describe a simulation study comparing the three approaches in two
different scenarios in Section4. We highlight some conclusions in Section5.

2 Overview of longitudinal discriminant analysis

2.1 Multivariate generalised linear mixed model

Our aim in this paper is to use data from patients of known prognosis to predict the group member-
ship at some future point for new patients. We first introducesome notation following the definitions
of Hughes et al.(2016). Each patient may belong to one ofG groups based on a diagnosis at specific
time T . We represent this by a value of the random variableU ∈

{
0, . . . , G − 1

}
, which is only ob-

served at timeT . We assume that for each patient measurements are made onR ≥ 1 markers at times
tr =

(
tr,1, . . . , tr,nr

)
, tr,1 < · · · < tr,nr

< T , r = 1, . . . , R. In common with all MGLMM method-
ology, this approach does not require that each marker is measured at the same time points, or even the
same number of times. Neither is it necessary for all patients to have the same number of measurements or
identical visit schedules.For each marker, these longitudinal observations for a particular patient are de-
notedYr =

(
Yr,1, . . . , Yr,nr

)
, r = 1, . . . , R. The longitudinal evolution of each marker may depend on

additional covariate vectorsvr,1, . . . , vr,nr
∈ R

pr which we denote asC. We aim to use the information
collected for a patient up until somet < T to predict the future group,U , to which the patient belongs.
The prediction is based upon the information gathered aboutthe patient at timet and also all previous data
for that patient.

We first fit separate MGLMM’s to the longitudinal data for eachprognostic group. The expected value
(transformed by an appropriate link function)for thej’th observation (j = 1, . . . , nr) of ther’th marker
(r = 1, . . . , R) of a patient in groupg (denotedYr,j) is given by

h−1
r

{
E
(
Yr,j

∣∣b, U = g
)}

= x
g⊤
r,jα

g
r + z

g⊤
r,jbr, r = 1, . . . , R, j = 1, . . . , nr, (1)

whereh−1
r is a chosen link function (chosen dependent on the particular exponential family distribution

being modelled (e.g., normal, Poisson, Bernoulli), with possible dispersion parametersφg
r ), xg

r,j = x
g
r,j(C)

andzgr,j = z
g
r,j(C) are covariate vectors used in a model for the prognostic group g andαg

r , r = 1, . . . , R,
g = 0, . . . , G− 1 denotes unknown regression coefficients.

The unobserved random effects vectorb =
(
b1, . . . , bR

)
accounts for possible correlation between

repeated observations of the same marker and also differentmarkers on the same patient. Typically, the
random effects vector is assumed to jointly follow a normal distribution. However,Hughes et al.(2016)
allow additional flexibility by specifying a mixture of normal distributions for the joint distribution of the
random effects vector in each prognostic group (See alsoKomárek et al., 2010; Verbeke and Lesaffre,
1996) That is, they assumeb |U = g ∼

∑K

k=1 w
g
k MVN (µg

k, D
g
k), whereMVN (µ, D) stands for

a multivariate normal distribution with the mean vectorµ and a covariance matrixD. The mixture distri-
butions are weighted by a factorwk, (k = 1, . . . , K). This multivariate normal distribution has a density
denoted asϕ(·; µ, D).

To fit this MGLMM we need to estimate fixed effects regression coefficients from (1), denotedψg :=(
α
g
1, . . . , α

g
R, φ

g
1, . . . , φ

g
R

)
and additionally mixture related parameters denotedθg :=

(
wg, µ

g
1, . . . ,

µ
g
Kg , D

g
1, . . . , D

g
Kg

)
. Full details of this MGLMM, which is based on the MGLMM proposed byKomárek

and Komárková(2013) can be found inHughes et al.(2016).

2.2 Group Probabilities for individual patients

The aim of the discriminant analysis is to use the model parameters,ψg andθg, estimated from the
MGLMM in each group, to classify a new patient based on their longitudinal history. An application of
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Bayes theorem gives the probability that a patient belongs to groupg given their longitudinal and covariate
data and the model parameters from the MGLMM’s fit to patientsof known status.

Pg,new =
πg f̂g,new∑G−1

g̃=0 πg̃ f̂g̃,new
g = 0, . . . , G− 1. (2)

wheref̂ denotes a predictive density of the observed markers given the group and model parameters (or
in the case of the random effects approach, the density of therandom effects given the group specific
mixture parameters). Here the prior probabilities of belonging to each group are denoted byπg = P(U =
g), g = 0, . . . , G − 1 and are often taken to be the proportions of the prognostic groups in the study
population. In a frequentist setting,fg,new is estimated using the maximum likelihood estimates of the
relevant model parameters in groupg. The proposed MGLMM produces a likelihood function involving
intractable integrals and so insteadHughes et al.(2016) propose the use of Bayesian estimates of the group
membership probabilities. In a Bayesian setting,fg,new is estimated as the mean of the posterior predictive
density estimated fromM samples from a Markov Chain Monte Carlo (MCMC) scheme (seeKomárek and
Komárková(2013) for details of the MCMC procedure and also for the full specification of the Bayesian
model). As already indicated, in this paper we investigate three different ways of specifying the predictive
densityfg,new in order to classify patients into prognostic groups.

2.3 Marginal prediction

The marginal prediction approach is the most commonly used approach in the LoDA literature. The aim of
this approach is to compare the longitudinal profiles of a newpatient to the group specific average profiles
(computed from the historical data). The new patient is assigned to the prognostic group to which their
longitudinal profiles lie closest. Here the predictive density fg,new is taken as the marginal density of
Ynew =

(
ynew,1, . . . , ynew,R

)
. That is

Pmarg
new,g

(
ψ, θ

)
=

πg f
marg
g,new

(
y1, . . . , yR; ψ

g, θg, C
)

∑G−1
g̃=0 πg̃ f

marg

g̃,new

(
y1, . . . , yR; ψg̃, θg̃, C

) g = 0, . . . , G− 1,

wherefmarg
g,new is the marginal density

fmarg
g

(
y1, . . . , yR; ψ

g, θg, C
)
=

∫
f cond
g

(
y1, . . . , yR

∣∣b; ψg, C
)
f ranef
g

(
b; θg

)
db, (3)

andf cond
g denotes a (conditional) density of the observed markers in the prognostic groupg given the

random effect vectors,

f cond
g

(
y1, . . . , yR

∣∣b; ψg, C
)
=

R∏

r=1

nr∏

j=1

pr
(
yr,j

∣∣b; ψg, C
)
.

Herepr
(
·
∣∣b; ψg, C) denotes an exponential family density of the random variable Yr,j related to the

GLMM (1). The random effects density,f ranef
g in (3), in the prognostic groupg is,

f ranef
g

(
b; θg

)
=

Kg∑

k=1

w
g
k ϕ(b; µ

g
k, D

g
k).
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The group membership probabilities,Pg

(
ψ, θ

)
are evaluated at each draw of the MCMC procedure

and approximate group membership probabilities are calculated as the average across allM samples.

P̂marg
new,g =

1

M

M∑

m=1

Pmarg
new,g

(
ψ(m), θ(m)

)
, g = 0, . . . , G− 1,

2.4 Conditional prediction

For the conditional approach the marginal distribution ofYnew is replaced by the conditional distribution
of Ynew given a patient specific estimate of the unknown random effects as the form of the predictive
densityfg,new. That is, we usef cond

g in place offg,new in (2) and the conditional group membership
probabilities are calculated as the average overM draws in the MCMC procedure

P̂cond
new,g =

1

M

M∑

m=1

πg f
cond
g

(
ynew,1, . . . , ynew,R

∣∣bg,(m)
new ; ψg,(m)

)
∑G−1

g̃=0 πg̃ f
cond
g̃

(
ynew,1, . . . , ynew,R

∣∣bg̃,(m)
new ; ψg̃,(m)

) , g = 0, . . . , G−1.

In this case, the random effects for the patient must be estimated, and the mean of the conditional dis-
tribution of the random effects given the patient data and the model parameters is typically used (Komárek
et al., 2010; Hughes et al., 2016).

2.5 Random Effects prediction

Random effects prediction focuses on the patient specific evolution of the longitudinal markers. As with
the conditional approach a suitable estimate of the patientspecific random effect is required. The predictive
densityfg,new is taken to be the density of the random effects evaluated at the patient and group specific
estimate of the random effect given the marker data,f ranef

g . As previously, the mean group membership
probabilities, to be used for classification, are calculated by averaging over the MCMC samples.

P̂ranef
new,g =

1

M

M∑

m=1

πg f
ranef
g

(
b
g,(m)
new ; θg,(m)

)
∑G−1

g̃=0 πg̃ f
ranef

g̃

(
b
g̃,(m)
new ; θg̃,(m)

) , g = 0, . . . , G− 1.

2.6 Classification rules

The estimates of the marginal, conditional and random effects group membership probabilities for a patient,
are then used to classify the patient into a prognostic group. Typically, for each scheme, the patient is
assigned to the group with the largest probability. For example, for marginal prediction of the future status
of a (new) patient would beargmaxg=0, ..., G−1 P̂

marg
new,g. This is equivalent to setting a cutoff probability

of 0.5 in the two group classification case. An alternative scheme would be to classify a patient into a
group only if the probability of belonging to that group is greater than a chosen cutoffc. This cutoff
is typically chosen through analysis of a receiver operating characteristic (ROC) curve (by selecting for
example the cutoff that gives the closest point on the ROC curve to the top left corner). In the Bayesian
methods outlined the MGLMM’s do not need to be refitted to classify new patients. Simply the group
membership probabilities are calculated and an appropriate classification rule is applied.In this paper all
of the longitudinal information gathered on a patient up until the time of prediction is used to calculate
a patient’s group membership probabilities. However, the LoDA approach can also be used to calculate
dynamic predictions where the patient’s group probabilities are recalculated each time new information
becomes available, as was described in Hughes et al. (2016).
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3 Primary Biliary Cirrhosis Data

Komárek et al.(2010) present an application of LoDA to data from the Dutch Multicenter Primary Biliary
Cirrhosis study, using three continuous markers to show that, for this application, the random effects predic-
tion approach performs better than the marginal and conditional approaches. A similar PBC data set (The
Mayo clinic trial Dickson et al.(1989); Murtaugh et al.(1994)) is presented inKomárek and Komárková
(2013) in the context of cluster analysis and this data set is included within themixAK (Komárek and
Komárková, 2014) package inR (R Core Team, 2016) (The data is available in Appendix D ofFleming
and Harrington(1991) and also electronically at http://lib.stat.cmu.edu/datasets/pbcseq). We present here
an application of multivariate LoDA using continuous, binary and Poisson markers to the Mayo PBC data.
PBC is a rare, but fatal liver disease. The initial study aimed to determine if the use of D-penicillamine
increased the length of patient survival. Data on a large number of clinical parameters were recorded for
312 patients over a median of 6.3 years per patient.

Our aim is to use only the data collected up until 2.5 years to predict those patients who will die or
require transplant within 5 years. Therefore, we focus on patients known to be alive and without a liver
transplant after two and a half years, and for whom we also know their condition after 5 years. We identified
202 patients who were known to be alive without transplant after 5 years and 51 patients who died or had
a liver transplant at some point in time between 2.5 years and5 years. Four longitudinal markers were
considered for the multivariate LoDA, specifically the continuous markers albumin and logarithmic serum
bilirubin, the platelet count (Poisson) and a binary markerindicating blood vessel malformations.See
Figure 1 for individual patient profiles for each marker.

The GLMM for each of the continuous and count markers contained a random intercept and a random
time slope, whilst the GLMM for the binary marker contained arandom intercept and a fixed effect for
time (in each model time was recorded in months). To keep things simple, and to allow easy comparison
with the simulations presented in Section4 we consider a one component mixture distribution (i.e.K = 1,
seeHughes et al.(2016)) for the random effects distribution.

FIGURE 1 ABOUT HERE.

To predict the group membership of a patient, separate MGLMMs were fit to patients in each group ex-
cluding the data of the patient for whom prediction was beingmade. Table1 shows the predictive accuracy
of this leave one out cross validation study applied to the PBC data. The cutoff was chosen to give the point
closest to the top left corner of the ROC curve (Figure2) and the predictive accuracies relate to the cutoff
reported for each of the three methods. For the PBC data, all three methods give reasonably good predic-
tion of whether or not a patient will be alive without transplant after five years of observation.However, the
conditional approach gives worse predictions than the other two approaches, whilst the marginal approach
gives the best prediction, with 78% of patients who will die or require transplant correctly identified (Sen-
sitivity), 81% of patients who will be alive without transplant correctly identified (Specificity) and 81%
of patients correctly identified overall. The area under ROCcurve (AUC) summarises the performance
of the classification methods over a range of cutoffs and again the marginal prediction approach performs
best. A positive predictive value (PPV) of 51% for the marginal approach shows the percentage of pa-
tients predicted to die or require transplant who ultimately did die or require transplant, whilst the negative
predictive value (NPV) of 94% shows that 94% of patients predicted to be alive without transplant were
indeed alive after five years without requiring transplant.

TABLE 1 ABOUT HERE.

Profiles of the longitudinal markers in each group are shown in Figure1. The thick lines represent the
group average profile. Except for the platelet count, the mean group profiles clearly differ between the
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two groups (i.e., there exist marginal differences betweenthe groups). The variability around the mean
group profiles also appears to be different between the groups. These factors explain why the marginal
and random efffects approaches give good classification accuracy. Komárek et al. (2010) find that the
random effects approach gives best prediction when using LoDA on the Dutch Multicenter Primary Biliary
Cirrhosis data. However, they have approximately 10 years of follow up per patient with 13 observations
per patient on average (every three months for the first year and then annually after that). We believe that
the increased number of observations per patient allowed better estimation of the patient specific random
effects, hence showing the improved prediction accuracy from the random effects approach. In fact, when
we analysed all the Mayo PBC data (average of 7.03 visits per patient), and not just the first 2.5 years of data
per patient (3.53 visits per patient) we also observed that the random effects approach gave better predictive
accuracy. This suggests that the random effects approach can give added information and improvement in
classification accuracy, but only if the random effects are precisely estimated.

FIGURE 2 ABOUT HERE.

4 Simulation Study

In Section3 we presented an application of multivariate LoDA in which the marginal and therandom
effects prediction method gavegoodpredictive accuracy. However, as noted in Section1, there have been
contrasting findings in published studies as to which prediction method is best (Morrell et al., 2007, 2011;
Hughes et al., 2016). This suggests that the type of data being considered influences which method will
give the best prediction accuracy.

To explore this further, we considered simulation scenarios, based on the PBC data, but altered to reflect
situations in which we believed the marginal and conditional approaches would lead to the most accurate
predictions. We simulate data from 200 patients who are alive after 5 years without requiring transplant
and 50 patients who were alive at 2.5 years but subsequently died or required transplant before 5 years,
approximately reflecting the prevalence of the PBC data. Foreach patient we simulated 4 clinic visits
(following Komárek and Komárková, 2013). The first visit occurred att = 0 and the remaining visits
were generated from uniform distributions in the intervals(170,200), (350,390) and (710,770) days. This
approximates to a visit after six months and then visits at one and two years. To more easily control the
simulation differences we consider only a single normal distribution for the random effects (i.e.K = 1,
no mixture).

In each group, marker values were simulated from the appropriate GLMM at each of the four time
points for each of the four markers considered in Section3 (albumin, log(bilirubin), platelet count and
blood vessel malformations). The values used to simulate the marker data from a GLMM are given in
Table4. We consider two alternative scenarios in our simulations.

In Scenario 1, we keep the fixed effects parameters and the means of the random effects as they are for
the PBC data in both groups, with the only difference being that the random effects variance-covariance
matrix,D, is set to be the same in each group. In this setting, the differences between the groups are in the
mean profiles and so we would expect the marginal prediction method to give the best prediction. In each
group there is approximately the same amount of variabilityaround the group average for each marker.
The focus of this simulation scenario is on the marginal differences between groups.

In all of the published comparisons of the three prediction approaches either the random effects or
marginal method has given the most accurate prediction. We are not aware of any studies in which the
conditional method is the best. Further, we find it difficult to envisage a situation in which the conditional
approach would outperform both the marginal and therandom effectsapproach simultaneously. We sus-
pect emphasising differences between the marginal profilesin each group would lead to the conditional
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approach outperforming the random effects method, but not the marginal method. In contrast, greater dif-
ferences in the random effects structure would allow the conditional approach to outperform the marginal
approach but would be unlikely to lead to the conditional approach being better than the random effects
approach.

Morrell et al. (2011) discuss the three approaches and speculate that the conditional approach may
work well in the case where the residual error is large in comparison to the random effects variance. For
our second scenario, we investigate further this possibility. Since only the continuous markers have a
residual error term, in this scenario we only consider a MGLMM including the continuous markers in our
simulation. In this case, the means and variances of the random effects are set to be the same in each group
and the only difference is the value of the residual error. This reflects a scenario in which the measurement
error in one group is larger than in the other group.

For each scenario we simulated 100 data sets. The MGLMMs in each group were based on 10,000
iterations of 1:10 thinned MCMC after a burn in of 500 iterations. In each case, leave one out cross-
validation was used to provide individual patient predictions. MGLMMs were fitted using theGLMM_MCMC
function, and LoDA was performed using theGLMM_longitDA2 function from theR packagemixAK
(Komárek and Komárková, 2014). The reported prediction accuracies and model parametersare based on
the averages over 100 simulated data sets.

Source code to reproduce the results is available as Supporting Information on the journal’s web page
(http://onlinelibrary.wiley.com/doi/xxx/suppinfor).

4.1 Results for Scenario 1

Table5 shows the mean parameter estimates for the MGLMM in each group across 100 simulated data
sets. The simulated data sets approximate well the true model as shown by the low values of bias and
MSE for most parameters. The coverage reports the proportion of times in which the true model parameter
was within the estimated 95% credible interval for the parameter in the simulated data sets. The random
slope variances for the continuous markers are poorly estimated in the simulated data sets. This is shown
by the low coverage values of0.45and0.76in Group 0 and0.57and0.50in Group 1. We believe this
may be due to the fact that the ‘true’ random effects variancefor the slopes are smaller than the residual
error making them difficult to estimate accurately (Table4). However, the simulated data sets provide good
approximations to the true GLMM parameters.

TABLE 2 ABOUT HERE.

Under Scenario 1, the marginal method gave the best predictive accuracy in terms of AUC, specificity,
PCC and PPV (Table2). The choice of method is not so clear cut in Table1 as the random effects
approach gives the best sensitivity and NPV, although with a much worse specificity. These accuracies
were calculated by selecting the optimal cutoff for each simulated data set and averaging the respective
sensitivities, specificities etc. Nevertheless Figure3, which averages the sensitivity and specificity at each
cutoff across the 100 simulated data sets, shows that the marginal approach consistently outperforms the
other methods. This is consistent with what we expected since the main differences between the groups
were in the fixed effects and expected values of the random effects.

FIGURE 3 ABOUT HERE.

We conclude from Scenario 1 that when the main differences between the groups are in the mean
longitudinal evolution, the marginal method will be the best tool to classify patients. This effect was true
in the case ofBrant et al.(2003) andMorrell et al. (2011) where the marginal approach was shown to
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give the best classification results. The expected prostatespecific antigen (PSA) level was seen to increase
substantially between visits for patients who developed prostate cancer, and so the marginal approach
was able to detect a difference between the largely stable PSA profile of healthy patients and the generally
increasing longitudinal PSA profiles of patients who would ultimately develop prostate cancer. By contrast,
Figure 1 and Tables 2 and 3 ofKomárek et al.(2010), in which the random effects approach gave best
prediction, show that although there were some differencesbetween the mean longitudinal profiles of each
group there were also substantial differences in the patient specific variability around the group mean in
each group. Incorporating this additional information (which the random effects approach does) led to the
random effects approach most accurately identifying patients who would require liver transplant or die.

4.2 Results for Scenario 2

Table6 shows that the bias, standard deviation and MSE of the estimated parameters was generally very
low demonstrating that each simulated sample approximatedthe true model well.

In Scenario 2, the only difference between the two groups is the value of the residual variance (Table4).
The random effects approach is unable to detect this difference. In addition, since the residual variance is
larger than the random effects variances, the model is unable to make accurate estimates of the individual
random effects leading to poor prediction (Table3 and Figure4). The poor estimation of the random effects
parameters is also seen in the worse coverage rates in Table 6. The marginal and conditional approaches
are still able to make accurate classification of patients with 90% and89% of patients correctly identified
respectively. It is noticeable however, that even in a situation which we thought would most favour the
conditional approach the marginal approach is just as good on all measures of accuracy.Figure 4 shows
that whilst the marginal and conditional approaches classify the patients well, the random effects approach
performs little better than chance.

TABLE 3 ABOUT HERE.

According to Sections 4.1 and 4.2 ofKomárek et al.(2010), in the case of continuous longitudinal
markers, the normal distributions used to calculate group membership probabilities for both the conditional
and marginal methods make use of the residual error. For the marginal approach the variance of the
multivariate normal distribution is influenced by the residual variance whilst for the conditional approach
both the mean and the variance are affected. The normal distribution for the random effects approach
makes no use of the residual variance and relies upon an estimate of the individual random effects which
we noted above has been poorly estimated due to the high residual error. This demonstrates why both
the conditional and marginal methods are able to detect a difference in the residual variance between the
groups but the random effects approach cannot.

FIGURE 4 ABOUT HERE.

It should be noted that we observed large variation in the prediction accuracy of the random effects
approach over each simulated data sets. This accounts for the fact that the average ‘best’ sensitivities
and specificities in Table3 are noticeably better than the ROC curve for the random effects approach
in Figure4 (where sensitivity and specificity are averaged across the 100 data sets at each cutoff). The
prediction accuracy of the marginal and conditional approaches were, in contrast, much more stable. This
is demonstrated in Figure5, which shows the sensitivity, specificity, PCC and AUC for each simulated
data set under Scenario 2. For each of the measures considered, the values in each simulated data set are
very similar for both the marginal and conditional methods.However, the inability of the random effects
approach to correctly estimate the individual patient random effects leads to very unstable estimates of

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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sensitivity and specificity for example (A similar effect was observed in Scenario 1). It is noticeable that
many of the simulated data sets gave sensitivity of 1 and specificity of 0, reflecting the fact that the random
effects approach was unable to distinguish between the two groups. This leads us to conclude that when
analysing data in which there is though to be a high likelihood of large measurement error, researchers
should be wary about using the random effects approach and may wish to focus on the marginal approach.

FIGURE 5 ABOUT HERE.

5 Discussion

In this paper we have compared three approaches to predicting group membership using LoDA, specif-
ically the marginal, conditional and random effects approaches. These approaches have been compared
previously using a number of real data sets with contrastingresults regarding which approach gives the
most accurate prediction. Themarginal andrandom effects approaches are shown to give the most ac-
curate classification in an application of multivariate LoDA to the real data of the Mayo PBC study. We
explored the three approaches further by way of a simulationstudy in which we explored two scenarios
designed to favour the marginal and conditional approaches.

When the average profile is noticeably different between prognostic groups then the marginal approach
is expected to provide good classification accuracy. However, if the main difference between prognostic
groups is dominated by the variability about the mean profile(differences in subject specific variability
across the groups) then the marginal approach is not able to distinguish patients as well and the random
effects approach is expected to work best.

The 95% credible interval coverage for the simulations indicated that for some of the parameters the
coverage was considerably below 95%, suggesting poor estimation. On the other hand, a coverage around
99% was observed for some of the random effects covariance terms, which may have been influenced by
(i) the magnitude of the true values, which tend to be small incomparison to the residual error variance
and (ii) the fact that we are attempting to fit a reasonably complicate model to fairly small numbers of
patients (200 and 50 for Group 0 and Group 1 respectively), and with only 4 observations per patient. It
is possible that over a larger number of simulated data sets,or with more repeated measurements of each
marker, more precise credible intervals could be calculated which would in turn influence the coverage.

Although three approaches have been reported in the literature (and compared in this paper), we have
been unable to simulate a scenario in which the conditional approach works better than the marginal and
random effects approachessimultaneously. The conditional approach seems to offer little additionalvalue
to these two approaches.

There has been insufficient guidance as to which prediction approach to use in applications of LoDA. We
suggest that a data analyst first plots longitudinal profilesof their markers for patients in each prognostic
group. If there are seen to be differences in the group mean profiles and similar between and within-subject
variability between groups, then the marginal approach should be expected to provide the best accuracy
results.

If, in addition if there seems to be a difference in the level of variability about the group mean in
each group then the random effects approach is expected to offer additional information leading to more
accurate classification. However, if the variability between patients is dominated by a large measurement
error, then the random effects approach should be avoided since estimates of the individual random effects
are inaccurate. In such a case, the marginal approach would be preferred.In addition, if there are only a
few repeated measurements per patient it may be that estimates of individual patient random effects are not
sufficiently precise to detect differences between the groups. In the case of only a few measurements per
patient we suggest the marginal approach is a good first option.

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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Further work could consider the effect that group prevalence has on the prediction accuracy of each
method. The overall sample size and the number of longitudinal observations per patient may also influence
the choice of which approach is preferable (for example, therandom effects approach relies on having
enough data collected to properly characterize subject-specific profiles).
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Figure 1 Observed longitudinal profiles of albumin (mg/dl), log(bilirubin) (log(mg/dl)), platelet counts
and blood vessel malformation for patients who are known to be alive at 5 years (Group 0, solid lines) and
who die between 2.5 and 5 years (Group 1, dashed lines). The thick lines show fitted mean over time.
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Figure 2 Receiver Operating Characteristic curves of the LoDA usingthe random effects (solid),
marginal (dotted) and conditional (dot-dashed) prediction methods for PBC data.
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Figure 3 Receiver Operating Characteristic curves of the LoDA usingthe random effects (solid),
marginal (dotted) and conditional (dot-dashed) prediction methods for Scenario 1.
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Figure 4 Receiver Operating Characteristic curves of the LoDA usingthe random effects (solid),
marginal (dotted) and conditional (dot-dashed) prediction methods for Scenario 2.
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Figure 5 Histograms showing the sensitivity, specificity, PCC and AUC of each of the three approaches
for each of the 100 simulated data sets under Scenario 2.
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Table 1 Prediction accuracy from leave-one-out cross validation of random-effects, marginal and condi-
tional prediction for PBC data.

Random Marginal Conditional
Cutoff 0.98 0.21 0.12

Sensitivity 0.75 0.78 0.61
Specificity 0.78 0.81 0.67

PCC 0.77 0.81 0.66
AUC 0.81 0.85 0.63
PPV 0.46 0.51 0.32
NPV 0.92 0.94 0.94
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Table 2 Scenario 1 prediction accuracy from leave-one-out cross validation of random-effects, marginal
and conditional prediction. The reported values are the averages over the 100 simulated datasets.

Random Marginal Conditional
Cutoff 0.81 0.19 0.12

Sensitivity 0.93 0.85 0.70
Specificity 0.71 0.85 0.73

PCC 0.75 0.85 0.73
AUC 0.84 0.91 0.76
PPV 0.57 0.59 0.40
NPV 0.98 0.96 0.96

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



20 Hugheset al. and dd: LoDA Comparison

Table 3 Scenario 2 prediction accuracy from leave-one-out cross validation of random-effects, marginal
and conditional prediction. The reported values are the averages over the 100 simulated datasets.

Random Marginal Conditional
Cutoff 0.56 0.26 0.58

Sensitivity 0.78 0.92 0.92
Specificity 0.70 0.89 0.88

PCC 0.72 0.90 0.89
AUC 0.74 0.96 0.95
PPV 0.55 0.69 0.66
NPV 0.90 0.98 0.93
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Table 4 Parameter estimates for the PBC data and the modifications used for each simulation scenario. Blank entries occur when the parameter was
not used in Scenario 2.

Group 0 Group 1
PBC Data Scenario 1 Scenario 2 PBC Data Scenario 1 Scenario 2

Albumin
E[Albumin:Intercept] 3.69 3.69 3.00 3.39 3.39 3.00
E[Albumin:slope] -6.83×10−3 -6.83×10−3 0.00 -1.44×10−2 -1.44×10−2 0.00
SD[Albumin:Intercept] 2.73×10−1 2.64×10−1 6.50×10−2 2.64×10−1 2.64×10−1 6.50×10−2

Corr[Albumin:Intercept,Albumin:slope] -8.60×10−2 -6.46×10−2 -6.46×10−2 -6.46×10−2 -6.46×10−2 -6.46×10−2

Corr[Albumin:Intercept,log(Bilirubin):Intercept] -2.48×10−1 -1.97×10−1 -1.97×10−1 -1.97×10−1 -1.97×10−1 -1.97×10−1

Corr[Albumin:Intercept,log(Bilirubin):slope] -1.10×10−1 2.11×10−1 2.11×10−1 2.11×10−1 2.11×10−1 2.11×10−1

Corr[Albumin:Intercept,Platelet:Intercept] 1.82×10−1 1.91×10−1 1.91×10−1 1.91×10−1

Corr[Albumin:Intercept,Platelet:slope] 5.72×10−2 1.09×10−1 1.09×10−1 1.09×10−1

Corr[Albumin:Intercept,Blood vessel malformation:Intercept] -2.27×10−1 -3.48×10−1 -3.48×10−1 -3.48×10−1

SD[Albumin:slope] 4.30×10−3 7.76×10−3 7.76×10−3 7.76×10−3 7.76×10−3 7.76×10−3

Corr[Albumin:slope,log(Bilirubin):Intercept] -2.91×10−1 1.57×10−3 1.57×10−3 1.57×10−3 1.57×10−3 1.57×10−3

Corr[Albumin:slope,log(Bilirubin):slope] -6.50×10−1 -2.33×10−1 -2.33×10−1 -2.33×10−1 -2.33×10−1 -2.33×10−1

Corr[Albumin:slope,Platelet:Intercept] 8.89×10−2 -2.57×10−1 -2.57×10−1 -2.57×10−1

Corr[Albumin:slope,log(Bilirubin):slope] 2.96×10−1 -2.60×10−1 -2.60×10−1 -2.60×10−1

Corr[Albumin:slope,Blood vessel malformation:Intercept] -2.93×10−1 2.27×10−1 2.27×10−1 2.27×10−1

SD[Albumin:residual] 3.18×10−1 3.18×10−1 3.14×10−1 3.14×10−1 3.14×10−1 1.59×10−1

log(Bilirubin)
E[log(Bilirubin):Intercept] 2.13×10−2 2.13×10−2 1.00 1.23 1.23 1.00
E[log(Bilirubin):slope] 9.94×10−3 9.94×10−3 0.00 2.38×10−2 2.38×10−2 0.00
SD[log(Bilirubin):Intercept] 6.88×10−1 8.45×10−1 1.12×10−2 8.45×10−1 8.45×10−1 1.12×10−2

Corr[log(Bilirubin):Intercept,log(Bilirubin):slope] 2.32×10−1 -1.75×10−1 -1.75×10−1 -1.75×10−1 -1.75×10−1 -1.75×10−1

Corr[log(Bilirubin):Intercept,Platelet:Intercept] -1.66×10−1 2.47×10−1 2.47×10−1 2.47×10−1

Corr[log(Bilirubin):Intercept,Platelet:slope] -2.04×10−1 -1.87×10−1 -1.87×10−1 -1.87×10−1

Corr[log(Bilirubin):Intercept,Blood vessel malformation:Intercept] 3.42×10−1 2.70×10−1 2.70×10−1 2.70×10−1

SD[log(Bilirubin):slope] 1.12×10−2 1.49×10−2 1.49×10−2 1.49×10−2 1.49×10−2 1.49×10−2

Corr[log(Bilirubin):slope,Platelet:Intercept] 1.44×10−2 -1.69×10−1 -1.69×10−1 -1.69×10−1

Corr[log(Bilirubin):slope,Platelet:slope] -2.40×10−1 1.25×10−1 1.25×10−1 1.25×10−1

Corr[log(Bilirubin):slope,Blood vessel malformation:Intercept] 3.05×10−1 8.13×10−3 8.13×10−3 8.13×10−3

SD[log(Bilirubin):residual] 3.38×10−1 3.38×10−1 3.95×10−1 3.96×10−1 3.96×10−1 1.69×10−1

Platelet Count
E[Platelet:Intercept] 5.54 5.54 5.46 5.46
E[Platelet:slope] -4.29×10−3 -4.29×10−3 -1.14×10−2 -1.14×10−2

SD[Platelet:Intercept] 3.73×10−1 3.45×10−1 3.45×10−1 3.45×10−1

Corr[Platelet:Intercept,Platelet:slope] -4.64×10−2 6.14×10−2 6.14×10−2 6.14×10−2

Corr[Platelet:Intercept,Blood vessel malformation:Intercept] -7.41×10−2 -2.48×10−1 -2.48×10−1 -2.48×10−1

SD[Platelet:slope] 5.66×10−3 1.51×10−2 1.51×10−2 1.51×10−2

Corr[Platelet:slope,Blood vessel malformation:Intercept] -1.68×10−1 -8.03×10−2 -8.03×10−2 -8.03×10−2

Blood Vessel Malformations
E[Blood vessel malformation:Intercept] -2.54 -2.54 -6.81×10−1 -6.81×10−1

Blood vessel malformation:slope 1.46×10−2 1.46×10−2 4.81×10−2 4.81×10−2

SD[Blood vessel malformation:Intercept] 3.00 1.88 1.88 1.88
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Table 5 Simulation study Scenario 1: Posterior Means, highest posterior density (HPD) intervals, bias, standard deviation (sd), mean square error
(MSE) and coverage for the fixed and random effects. These measurements are the average of 100 simulations.

Group 0 Group 1
Posterior Mean 95% HPD Interval SD Bias MSE CoveragePosterior Mean 95% HPD Interval SD Bias MSE Coverage

Albumin
Albumin

E[Albumin:Intercept] 3.69 (3.64,3.74) 4.03×10−3 4.22×10−3 6.35×10−4 0.93 3.39 (3.29,3.49) 4.02×10−3 -3.19×10−3 2.08×10−3 0.98
E[Albumin:slope] -7.03×10−3 (-9.35,-4.68)×10−3 3.47×10−4 -2.02×10−4 2.15×10−6 0.88 -1.42×10−2 (-1.91,-0.93)×10−2 2.76×10−4 2.65×10−4 6.85×10−6 0.94
SD[Albumin:Intercept] 2.63×10−1 (2.22,3.06)×10−1 1.81×10−3 -6.12×10−4 4.10×10−4 0.98 2.58×10−1 (1.71,3.46)×10−1 3.80×10−3 -5.75×10−3 2.77×10−3 0.89
Corr[Albumin:Intercept,Albumin:slope] 2.09×10−2 (-5.25,5.89)×10−1 2.45×10−2 8.55×10−2 2.28×10−2 1.00 3.96×10−2 (-6.24,7.09)×10−1 1.43×10−2 1.04×10−1 3.08×10−2 0.99
Corr[Albumin:Intercept,log(Bilirubin):Intercept] -1.75×10−1 (-3.49,0.02)×10−1 6.79×10−3 2.21×10−2 6.34×10−3 0.99 -1.61×10−1 (-4.97,1.81)×10−1 1.14×10−2 3.56×10−2 2.87×10−2 0.97
Corr[Albumin:Intercept,log(Bilirubin):slope] 1.73×10−1 (-1.67,5.06)×10−1 1.35×10−2 -3.87×10−2 2.44×10−2 0.96 5.84×10−2 (-5.94,6.94)×10−1 1.38×10−2 -1.53×10−1 5.29×10−2 0.98
Corr[Albumin:Intercept,Platelet:Intercept] 1.52×10−1 (-0.24,3.27)×10−1 8.84×10−3 -3.88×10−2 9.83×10−3 0.93 1.12×10−1 (-2.25,4.44)×10−1 1.12×10−2 -7.95×10−2 3.13×10−2 0.94
Corr[Albumin:Intercept,Platelet:slope] 6.59×10−2 (-1.14,2.46)×10−1 8.38×10−3 -4.35×10−2 9.15×10−3 0.93 4.21×10−2 (-3.00,3.86)×10−1 1.17×10−2 -6.73×10−2 3.86×10−2 0.91
Corr[Albumin:Intercept,Blood Vessel Malformations:Intercept] -3.01×10−1 (-5.22,-0.76)×10−1 9.16×10−3 4.69×10−2 1.36×10−2 0.95 -2.58×10−1 (-6.39,1.37)×10−1 1.31×10−2 9.01×10−2 4.24×10−2 0.96
SD[Albumin:slope] 3.47×10−3 (0.65,7.13)×10−3 6.27×10−4 -4.30×10−3 2.53×10−5 0.45 3.98×10−3 (0.36,9.15)×10−3 3.65×10−4 -3.79×10−3 2.46×10−5 0.57
Corr[Albumin:slope,log(Bilirubin):Intercept] -2.06×10−2 (-5.58,5.18)×10−1 2.22×10−2 -2.22×10−2 1.29×10−2 0.99 -1.31×10−2 (-6.54,6.34)×10−1 1.23×10−2 -1.47×10−2 1.74×10−2 0.99
Corr[Albumin:slope,log(Bilirubin):slope] -2.65×10−2 (-6.18,5.74)×10−1 2.55×10−2 2.06×10−1 6.09×10−2 0.99 -1.03×10−2 (-7.62,7.46)×10−1 1.14×10−2 2.23×10−1 5.82×10−2 1.00
Corr[Albumin:slope,Platelet:Intercept] -1.69×10−1 (-6.92,3.87)×10−1 3.54×10−2 8.78×10−2 2.56×10−2 1.00 -5.97×10−2 (-6.86,5.84)×10−1 1.30×10−2 1.97×10−1 5.69×10−2 0.99
Corr[Albumin:slope,Platelet:slope] -1.54×10−1 (-6.54,3.73)×10−1 3.06×10−2 1.07×10−1 3.29×10−2 0.99 -8.70×10−2 (-6.94,5.46)×10−1 1.39×10−2 1.73×10−1 5.08×10−2 0.98
Corr[Albumin:slope,Blood Vessel Malformations:Intercept] 1.01×10−1 (-4.86,6.62)×10−1 3.09×10−2 -1.26×10−1 3.14×10−2 0.98 2.11×10−2 (-6.62,6.96)×10−1 1.49×10−2 -2.06×10−1 6.47×10−2 0.99

log(Bilirubin)
E[log(Bilirubin):Intercept] 1.67×10−2 (-1.06,1.39)×10−1 4.04×10−3 -4.57×10−3 3.71×10−3 0.96 1.24 (0.99,1.49) 8.51×10−3 9.60×10−3 1.62×10−2 0.96
E[log(Bilirubin):slope] 1.00×10−2 (0.69,1.32)×10−2 1.27×10−4 8.22×10−5 3.41×10−6 0.91 2.31×10−2 (1.65,2.99)×10−2 3.44×10−4 -6.91×10−4 1.33×10−5 0.94
SD[log(Bilirubin):Intercept] 8.42×10−1 (7.52,9.35)×10−1 3.03×10−3 -3.32×10−3 2.37×10−3 0.97 8.38×10−1 (0.66,1.03) 6.08×10−3 -7.28×10−3 7.98×10−3 0.96
Corr[log(Bilirubin):Intercept,log(Bilirubin):slope] -1.33×10−1 (-4.25,1.78)×10−1 1.11×10−2 4.12×10−2 2.26×10−2 0.93 -4.34×10−2 (-6.45,5.95)×10−1 1.31×10−2 1.31×10−1 4.00×10−2 0.99
Corr[log(Bilirubin):Intercept,Platelet:Intercept] 2.35×10−1 (0.97,3.70)×10−1 4.56×10−3 -1.25×10−2 4.23×10−3 0.98 2.12×10−1 (-0.60,4.78)×10−1 8.66×10−3 -3.48×10−2 1.67×10−2 0.96
Corr[log(Bilirubin):Intercept,Platelet:slope] -1.86×10−1 (-3.28,-0.42)×10−1 4.66×10−3 9.56×10−4 5.38×10−3 0.93 -1.49×10−1 (-4.27,1.34)×10−1 9.22×10−3 3.77×10−2 2.06×10−2 0.94
Corr[log(Bilirubin):Intercept,Blood Vessel Malformations:Intercept] 2.73×10−1 (0.82,4.60)×10−1 6.34×10−3 2.29×10−3 8.31×10−3 0.96 2.48×10−1 (-0.88,5.74)×10−1 1.12×10−2 -2.19×10−2 2.70×10−2 0.95
SD[log(Bilirubin):slope] 1.20×10−2 (0.64,1.72)×10−2 4.52×10−4 -2.93×10−3 2.17×10−5 0.76 7.03×10−3 (0.05,1.55)×10−2 4.76×10−4 -7.90×10−3 8.64×10−5 0.50
Corr[log(Bilirubin):slope,Platelet:Intercept] -1.75×10−1 (-4.77,1.28)×10−1 1.12×10−2 -5.37×10−3 1.87×10−2 0.94 -6.26×10−2 (-6.68,5.62)×10−1 1.30×10−2 1.07×10−1 3.67×10−2 0.99
Corr[log(Bilirubin):slope,Platelet:slope] 1.10×10−1 (-1.88,4.07)×10−1 1.01×10−2 -1.48×10−2 2.24×10−2 0.94 6.57×10−2 (-5.44,6.61)×10−1 1.26×10−2 -5.91×10−2 2.35×10−2 1.00
Corr[log(Bilirubin):slope,Blood Vessel Malformations:Intercept] 1.92×10−2 (-3.55,3.97)×10−1 1.35×10−2 1.11×10−2 3.06×10−2 0.95 1.62×10−2 (-6.44,6.77)×10−1 1.41×10−2 8.09×10−3 2.87×10−2 0.99

Platelet Count
E[Platelet:Intercept] 5.54 (5.49,5.59) 1.58×10−3 2.20×10−3 5.03×10−4 0.96 5.46 (5.36,5.55) 3.12×10−3 -4.86×10−3 1.70×10−3 0.98
E[Platelet:slope] -4.29×10−3 (-6.45,-2.14)×10−3 7.02×10−5 4.70×10−6 1.25×10−6 0.94 -1.14×10−2 (-1.59,-0.70)×10−2 1.42×10−4 -3.02×10−5 4.33×10−6 0.95
SD[Platelet:Intercept] 3.49×10−1 (3.15,3.85)×10−1 1.13×10−3 4.27×10−3 3.38×10−4 0.96 3.49×10−1 (2.81,4.23)×10−1 2.34×10−3 4.34×10−3 1.39×10−3 0.94
Corr[Platelet:Intercept,Platelet:slope] 6.66×10−2 (-0.75,2.08)×10−1 4.65×10−3 5.20×10−3 5.77×10−3 0.93 6.77×10−2 (-2.11,3.45)×10−1 9.28×10−3 6.25×10−3 1.59×10−2 0.97
Corr[Platelet:Intercept,Blood vessel malformations:Intercept] -2.57×10−1 (-4.40,-0.71)×10−1 6.11×10−3 -9.29×10−3 9.27×10−3 0.94 -2.23×10−1 (-5.42,1.05)×10−1 1.04×10−2 2.47×10−2 2.60×10−2 0.97
SD[Platelet:slope] 1.52×10−2 (1.37,1.69)×10−2 5.20×10−5 9.68×10−5 6.37×10−7 0.95 1.55×10−2 (1.23,1.90)×10−2 1.09×10−4 3.74×10−4 2.92×10−6 0.97
Corr[Platelet:slope,Blood vessel malformations:Intercept] -7.64×10−2 (-2.72,1.20)×10−1 6.45×10−3 3.96×10−3 9.90×10−3 0.96 -7.61×10−2 (-4.16,2.68)×10−1 1.13×10−2 4.24×10−3 2.39×10−2 0.97

Blood Vessel Malformations
E[Blood vessel malformations:Intercept] -2.55 (-3.12,-2.00) 1.93×10−2 -7.35×10−3 1.19×10−1 0.89 -6.74×10−1 (-1.48,0.11) 2.57×10−2 6.45×10−3 1.82×10−1 0.92
Blood vessel malformations:Slope 1.37×10−2 (-1.03,3.78)×10−2 7.98×10−4 -8.53×10−4 1.84×10−4 0.88 4.63×10−2 (0.67,8.66)×10−2 1.35×10−3 -1.77×10−3 3.96×10−4 0.95
SD[Blood vessel malformations:Intercept] 1.89 (1.39,2.40) 1.84×10−2 4.76×10−3 1.02×10−1 0.89 1.82 (1.02,2.69) 3.42×10−2 -5.73×10−2 2.71×10−1 0.91
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Table 6 Simulation study Scenario 2: Posterior Means, highest posterior density (HPD) intervals, bias, standard deviation (sd), mean square error
(MSE) and coverage for the fixed and random effects. These measurements are the average of 100 simulations.

Group 0 Group 1
Posterior Mean 95% HPD Interval SD Bias MSE CoveragePosterior Mean 95% HPD Interval SD Bias MSE Coverage

Albumin
E[Albumin:Intercept] 3.00 (2.97,3.03) 2.80×10−3 -2.04×10−3 3.73×10−4 0.89 3.00 (2.96,3.04) 1.89×10−3 3.45×10−3 4.00×10−4 0.92
E[Albumin:slope] -9.63×10−5 (-2.37,2.10)×10−3 2.12×10−4 -9.63×10−5 1.49×10−6 0.92 -3.08×10−4 (-3.01,2.38)×10−3 1.31×10−4 -3.08×10−4 1.88×10−6 0.92
SD[Albumin:Intercept] 4.19×10−2 (0.34,9.07)×10−2 4.21×10−3 -2.31×10−2 1.06×10−3 0.84 4.28×10−2 (0.68,8.68)×10−2 2.10×10−3 -2.22×10−2 1.19×10−3 0.76
Corr[Albumin:Intercept,Albumin:slope] -7.48×10−3 (-8.53,8.51)×10−1 2.02×10−2 5.72×10−2 1.26×10−2 1.00 2.61×10−2 (-8.02,8.50)×10−1 1.18×10−2 9.07×10−2 2.60×10−2 1.00
Corr[Albumin:Intercept,log(Bilirubin):Intercept] 1.50×10−2 (-8.38,8.64)×10−1 2.32×10−2 2.12×10−1 5.79×10−2 1.00 3.21×10−3 (-8.46,8.64)×10−1 1.10×10−2 2.00×10−1 5.28×10−2 1.00
Corr[Albumin:Intercept,log(Bilirubin):slope] 3.21×10−2 (-7.43,7.95)×10−1 2.46×10−2 -1.79×10−1 7.77×10−2 0.97 1.01×10−1 (-6.29,7.96)×10−1 1.57×10−2 -1.10×10−1 5.22×10−2 0.98
SD[Albumin:slope] 2.13×10−3 (0.07,5.38)×10−3 2.54×10−4 -5.63×10−3 3.38×10−5 0.16 2.91×10−3 (0.56,5.79)×10−3 1.32×10−4 -4.85×10−3 2.75×10−5 0.24
Corr[Albumin:slope,log(Bilirubin):Intercept] 1.18×10−2 (-8.59,8.73)×10−1 2.35×10−2 1.02×10−2 8.28×10−3 1.00 -2.69×10−2 (-8.80,8.37)×10−1 1.06×10−2 -2.84×10−2 8.65×10−3 1.00
Corr[Albumin:slope,log(Bilirubin):slope] -4.95×10−2 (-8.46,7.84)×10−1 2.98×10−2 1.83×10−1 6.26×10−2 0.99 -8.38×10−2 (-7.91,6.32)×10−1 1.50×10−2 1.49×10−1 6.69×10−2 0.98

log(Bilirubin)
E[log(Bilirubin):Intercept] 1.00 (0.96,1.04) 3.05×10−3 -3.92×10−4 3.58×10−4 0.96 1.00 (0.96,1.04) 1.74×10−3 7.55×10−4 3.71×10−4 0.92
E[log(Bilirubin):slope] 8.35×10−5 (-3.20,3.37)×10−3 1.95×10−4 8.35×10−5 2.18×10−6 0.98 3.08×10−4 (-3.69,4.28)×10−3 1.50×10−4 3.08×10−4 4.18×10−6 0.93
SD[log(Bilirubin):Intercept] 3.35×10−2 (0.03,9.02)×10−2 3.39×10−3 2.23×10−2 1.11×10−3 0.99 1.79×10−2 (0.00,5.29)×10−2 1.36×10−3 6.65×10−3 2.21×10−4 0.98
Corr[log(Bilirubin):Intercept,log(Bilirubin):slope] -1.11×10−2 (-8.24,8.29)×10−1 2.61×10−2 1.64×10−1 5.96×10−2 1.00 -1.66×10−2 (-8.36,8.30)×10−1 1.48×10−2 1.58×10−1 4.98×10−2 0.99
SD[log(Bilirubin):slope] 1.02×10−2 (0.59,1.43)×10−2 2.67×10−4 -4.74×10−3 2.95×10−5 0.38 1.10×10−2 (0.79,1.43)×10−2 1.06×10−4 -3.93×10−3 1.82×10−5 0.39
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