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Longitudinal discriminant analysis (LoDA) can be used w@ssify patients into prognostic groups based on
their clinical history, which often involves longitudinadeasurements of various clinically relevant markers.
Patients’ longitudinal data is first modelled using multigée generalised mixed models, allowing markers
of different types (eg continuous, binary, counts) to be efled simultaneously. We describe three ap-
proaches to calculating a patient’s posterior group mesfiyemprobabilities which have been outlined in
previous studies, based on the marginal distribution ofahgitudinal markers, the conditional distribution
and the distribution of the random effects. Here we compaeétiree approaches, first using data from the
Mayo Primary Biliary Cirrhosis study and then by way of siatidn study to explore in which situations
each the three approaches is expected to give the besttirdié/e demonstrate situations in which the
marginal or random effects approach perform well but find the conditional approach offers little extra
information to the random effects and marginal approaches.

Key words: Conditional Distribution; Longitudinal Discriminant Afsis; Marginal Distribu-
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1 Introduction

Regular surveillance of a patient is a crucial step in deitenyg if/when they will develop a particular
disease. Patients thought to be at risk of a disease may bd &slattend periodic clinic appointments
at which a number of clinically relevant variables (referte as markers) are measured. These variables
can be used to assess the risk that a particular patient ldesefoping a disease, possibly within a set
time frame. Patients are classified into prognostic grogset on their risk of having the disease. One
may consider a two group case where patients are allocatbe wisease group or the no disease group.
Alternatively a multiple group scenario could be considesbere patients are classified into groups based
on the anticipated severity of their disease (e.g. stagesrafer). Such a clinical problem can be addressed
by using methods of discriminant analysis.

In many clinical settings only the most recent informatiobt@ined at the most recent clinic visit) is
considered in assessing the risk of developing a disease garticular patient. All previously gathered
information is not considered, which could be an inefficies¢ of data. It may also be the case that the
change in a patient’s marker values over time is more inftiu®an predicting their risk than simply the
most recent value of the marker. To allow for a more flexibéessification approach, in recent years, longi-
tudinal discriminant analysis (LoDA) methods have beerettgyed which classify patients into prognostic
groups based on their longitudinal history.

Methods of LoDA which consider only a single continuous nesutkave been developed by a number of
authors (see for exampl®masko et al(1999, Brant et al (2003, Wernecke et al2004), Lix and Sajobi
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(2010 andKohlmann et al(2009). When multiple longitudinal markers have been colle@ttthe follow
up visits it can be useful to include this additional infottioa in the classification scheme. Extensions
of LoDA for multiple continuous markers have been considdrg Morrell et al. (2012, Marshall et al.
(2009 andKomarek et al(2010. Fieuws et al(2008 andHughes et al(2016 develop multivariate
LoDA methods which can be used when the markers are not diheeous (e.g. counts or binary data).

In each of the LoDA methods referenced above, a linear mixedenis first used to model the lon-
gitudinal evolution of each marker for patients of knowngmosis. A useful feature of mixed models is
that random effects are used to allow patient specific devidtom the mean profile as well as to model
correlation between observations of a marker at diffelier points and also between markers. In the case
of markers of different types-{euws et al.2008 Hughes et a).2016 the linear mixed model is extended
to a multivariate generalised linear mixed model (MGLMM)MGLMM is fit separately to data from
each prognostic group. The output of these models is thehingke LoDA to inform a classification rule.

In other words, we use the longitudinal data on markers, fpaitents of known prognosis, to derive a
classification rule which predicts the future disease stafa patient of unknown prognosis based on their
individual longitudinal history.

Morrell et al. (2007) specify three alternative ways to use the output from theethimodel to predict
disease status, namely marginal, conditional and randeutsfprediction. In each case the prediction
has a different focus. For marginal prediction, the margitistribution of the new patient’s observed
longitudinal data is used to predict their future status.atTis, the prediction is focused on the mean
evolution of the markers over time. We are interested in whitthe group-specific mean longitudinal
profiles, calculated using the MGLMM, the new patient'sddpry is closest to. The conditional prediction
replaces the marginal distribution with the conditionahsiey of the observed longitudinal data given the
estimate of the new patient’s random effects. In this caseptiediction is based on the patient specific
evolution of markers over time, ignoring any error in thei&hility of the patient’'s estimated random
effects. This method could be thought of as comparing thennt@agitudinal profiles for a subset of
patients with ‘similar’ random effects in each group to ttenditional longitudinal profile of the new
patient. Finally, for random effects prediction the densitthe patient’s estimated random effects is used
for prediction and the focus is on the patient specific evoiubf the markers.

Most applications of LoDA have focused on the so called ‘nivealy prediction approach. To the best
of our knowledgeViorrell et al.(2007) were the first to propose the use of conditional and randdectsf
prediction as alternatives. Relatively little work hasieéene to assess which of the three methods is most
appropriate to use, or whether different approaches suiesscenarios more than others. In work that
aims to identify patients with prostate cancer based onvbkigon over time of prostate specific antigen
(PSA)Morrell et al. (2007, 2011 compare the three prediction approaches using a numbeeasgumes.

In terms of sensitivity (proportion of correctly identifi@dncer cases) and lead time (mean time before
clinical diagnosis that a patient is correctly predictedaasancer case) the marginal method performs
the best, whilst in terms of specificity (proportion of canttg identified non-cases) and probability of
correct classification (PCC), the random effects methotbpmed the best. By contraBbomarek et al.
(2010 used the three methods to identify patients with PrimatiaBi Cirrhosis (PBC) based on three
continuous longitudinal markers and concluded that thewameffects method gave the best prediction.
Hughes et al(2016 also compared the three approaches to identify patierisrefractory epilepsy and
show that, in their application the marginal and conditiapproaches performed similarly, with a slight
preference for the marginal approach whilst the randonceffapproach performed poorly.

All previous comparisons of the three approaches to LoDAeHzeen based on specific data sets and
have provided different conclusions as to which approactksvbest. In this paper we investigate this
matter further, by way of simulation study, to determine thiee the three approaches are sensitive to
different types of differences between the prognostic gsou

An outline of this paper is as follows. In Secti@mwe give an overview of the LoDA methodology and
explain in more detail the marginal, conditional and randdfacts approaches. Sectidigives a real data
application of LoDA using the PBC data available within thiex AK (Komarek and Komarkoy&014)
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package iR (R Core Team2016. We describe a simulation study comparing the three ajghesain two
different scenarios in Sectigh We highlight some conclusions in Sectidn

2 Overview of longitudinal discriminant analysis

2.1 Multivariate generalised linear mixed model

Our aim in this paper is to use data from patients of known posg to predict the group member-
ship at some future point for new patients. We first introdseme notation following the definitions
of Hughes et al(2016. Each patient may belong to one Gfgroups based on a diagnosis at specific
time 7. We represent this by a value of the random varidble {0, ..., G — 1}, which is only ob-
served at timél". We assume that for each patient measurements are male>ori markers at times
tr = (trts - oos by )i b1 < -o0 < tpp, < T, 7 =1,...,R. In common with all MGLMM method-
ology, this approach does not require that each marker isuned at the same time points, or even the
same number of times. Neither is it necessary for all patignhave the same number of measurements or
identical visit scheduled-or each marker, these longitudinal observations for dquadat patient are de-
notedY, = (Y,.1, ..., Y, ), = 1,..., R. The longitudinal evolution of each marker may depend on
additional covariate vectoss. 1, ..., v, ,,. € RP" which we denote a§. We aim to use the information
collected for a patient up until sonte< 7' to predict the future grougd/, to which the patient belongs.
The prediction is based upon the information gathered abeytatient at time and also all previous data
for that patient.

We first fit separate MGLMM's to the longitudinal data for egaognostic group. The expected value
(transformed by an appropriate link functidioy the j'th observation{ = 1, ..., n,) of ther'th marker
(r=1,..., R) of a patient in groug (denoted, ;) is given by

hil{E(nj\b, U:g)} —xad 4200, r=1...R j=1,....n, 1)

7 \J

whereh, ! is a chosen link function (chosen dependent on the partiexiponential family distribution
being modelled (e.g., normal, Poisson, Bernoulli), witsgible dispersion paramete®), x? ; = x7 ;(C)

andzfﬁj = zij (C) are covariate vectors used in a model for the prognosticgg@ndad, r = 1,..., R,
g =0, ..., G—1denotes unknown regression coefficients.
The unobserved random effects vecdtore= (bl, e bR) accounts for possible correlation between

repeated observations of the same marker and also differarers on the same patient. Typically, the
random effects vector is assumed to jointly follow a normiatribution. HoweverHughes et al(2016
allow additional flexibility by specifying a mixture of nomhdistributions for the joint distribution of the
random effects vector in each prognostic group (See latsoarek et al. 201Q Verbeke and Lesaffre
1996 That is, they assumb |U = g ~ S, w! MVN (ud, DY), where MVN (u, D) stands for

a multivariate normal distribution with the mean vectoand a covariance matri®. The mixture distri-
butions are weighted by a facter,, (k = 1, ..., K). This multivariate normal distribution has a density
denoted a(-; p, D).

To fit this MGLMM we need to estimate fixed effects regressioafficients from (), denotec)? :=
(of, ..., 0%, ¢, ..., ¢%) and additionally mixture related parameters dendted= (w9, uf, ...,
wheq, DY, ..., DY, ). Full details of this MGLMM, which is based on the MGLMM proged byKomarek
and Komarkovg2013 can be found irHughes et al(20189.

2.2 Group Probabilities for individual patients

The aim of the discriminant analysis is to use the model patars, ) and 89, estimated from the
MGLMM in each group, to classify a new patient based on thmigitudinal history. An application of
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Bayes theorem gives the probability that a patient belomgsdupg given their longitudinal and covariate
data and the model parameters from the MGLMM's fit to patiefitenown status.

Tg fg,new

Pg,new:&—A g:(),...,Gfl. (2)
Zg:ol g f§,7Le1t)

wheref denotes a predictive density of the observed markers ghweigitoup and model parameters (or
in the case of the random effects approach, the density ofath@éom effects given the group specific
mixture parameters). Here the prior probabilities of bglag to each group are denoted by = P(U =
g9),g = 0,...,G — 1 and are often taken to be the proportions of the prognostiogsg in the study
population. In a frequentist setting, ..., is estimated using the maximum likelihood estimates of the
relevant model parameters in grogpThe proposed MGLMM produces a likelihood function involgi
intractable integrals and so instelddghes et al(2016 propose the use of Bayesian estimates of the group
membership probabilities. In a Bayesian settifig,.., is estimated as the mean of the posterior predictive
density estimated from/ samples from a Markov Chain Monte Carlo (MCMC) scheme gaeéarek and
Komarkova(2013 for details of the MCMC procedure and also for the full sfieation of the Bayesian
model). As already indicated, in this paper we investigated different ways of specifying the predictive
density f, . in Order to classify patients into prognostic groups.

2.3 Marginal prediction

The marginal prediction approach is the most commonly uppdoach in the LoDA literature. The aim of
this approach is to compare the longitudinal profiles of a patient to the group specific average profiles
(computed from the historical data). The new patient isgeesd to the prognostic group to which their
longitudinal profiles lie closest. Here the predictive dgng ..., is taken as the marginal density of
Ynew = (ynew,la SERE) ynew,R)- That is

Ty 979 (v L yrs b9, 09, C
P (¥, 0) = G_gl“”"ew< oo Ve 9, 64,C) g=0,...,G—1,

250 T [gmew (Y15 -y Y& %7, 67, C)

wheref!""9 js the marginal density

g,new

f;na'r‘g (yla -5 YRS 17[)g7 097 C) = /f;ond(yla -5 YR ‘ bv 17[)g7 C) f;‘anef (bv 09) dba (3)

and fg""d denotes a (conditional) density of the observed markerkénprognostic groug given the
random effect vectors,

R n,

£ yry o yr b, C) = [ TT pr(yrs | 05 97, C).

r=1 j=1

Herep,.(- \ b; ¥9, C) denotes an exponential family density of the random veeiab); related to the
GLMM (1). The random effects densiw;“”ef in (3), in the prognostic groug is,

KS]

f3em (b3 09) =Y " wi o(b; pf, D).
k=1
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The group membership probabilitieB, (¢, 0) are evaluated at each draw of the MCMC procedure
and approximate group membership probabilities are catiedlas the average acrossilisamples.

M

~ 1

Prews = 3] > PR (™, etm),  g=0,...,G-1,
m=1

2.4 Conditional prediction

For the conditional approach the marginal distributioriygf., is replaced by the conditional distribution
of Y, given a patient specific estimate of the unknown random tsffas the form of the predictive

density fy new. Thatis, we usqg""d in place of f, new IN (2) and the conditional group membership
probabilities are calculated as the average avedraws in the MCMC procedure

M g,(m),
Scond 1 Tg fgcond()’new,l; ) ynew,R‘bne('L))y wg,(m)) g*() G-1
new,g — ar G—1 . 7,(m). = ) =Y , U
M m=1 Z§=O g féOTLd(ynew,lv <oy Ynew,R | bne(;) ); ¢g,(m))

In this case, the random effects for the patient must be agtith and the mean of the conditional dis-
tribution of the random effects given the patient data aedhtiodel parameters is typically usétbnarek
et al, 201Q Hughes et a).2016).

2.5 Random Effects prediction

Random effects prediction focuses on the patient specifitugon of the longitudinal markers. As with
the conditional approach a suitable estimate of the patjgeific random effect is required. The predictive
density f, new IS taken to be the density of the random effects evaluatduegpatient and group specific
estimate of the random effect given the marker dﬁ;a’,wf. As previously, the mean group membership
probabilities, to be used for classification, are calcadg averaging over the MCMC samples.

M a (m). pg,(
/fjranef _ i Ty f;anef (b%e(wj7 097(’”)) g=0,...,G—1.
new,g M — Zgz_()l 5 ganef (bgfe(;n)y 0'_(7,(m))

2.6 Classification rules

The estimates of the marginal, conditional and random effigroup membership probabilities for a patient,
are then used to classify the patient into a prognostic graypically, for each scheme, the patient is
assigned to the group with the largest probability. For eplanfor marginal prediction of the future status
of a (new) patient would bergmax,_, ¢4 73;;7,;%. This is equivalent to setting a cutoff probability
of 0.5 in the two group classification case. An alternatiieesce would be to classify a patient into a
group only if the probability of belonging to that group isegter than a chosen cutaff This cutoff

is typically chosen through analysis of a receiver opegatinaracteristic (ROC) curve (by selecting for
example the cutoff that gives the closest point on the ROQecto the top left corner). In the Bayesian
methods outlined the MGLMM’s do not need to be refitted to gifgsnew patients. Simply the group
membership probabilities are calculated and an apprepelassification rule is appliedn this paper all

of the longitudinal information gathered on a patient upilihe time of prediction is used to calculate
a patient’s group membership probabilities. However, tb®A approach can also be used to calculate
dynamic predictions where the patient’s group probabditare recalculated each time new information
becomes available, as was described in Hughes et al. (2016).
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3 Primary Biliary Cirrhosis Data

Komarek et al(2010 present an application of LoDA to data from the Dutch Mtiter Primary Biliary
Cirrhosis study, using three continuous markers to shotyfibrethis application, the random effects predic-
tion approach performs better than the marginal and camditiapproaches. A similar PBC data set (The
Mayo clinic trial Dickson et al(1989; Murtaugh et al(1994) is presented itKomarek and Komarkova
(2013 in the context of cluster analysis and this data set is ohatuwithin thenm x AK (Komarek and
Koméarkovg 2014 package irR (R Core Team2016 (The data is available in Appendix D éleming
and Harringtor(1991) and also electronically at http://lib.stat.cmu.eduddats/pbcseq). We present here
an application of multivariate LoDA using continuous, linand Poisson markers to the Mayo PBC data.
PBC is a rare, but fatal liver disease. The initial study alrt®determine if the use of D-penicillamine
increased the length of patient survival. Data on a largebmirof clinical parameters were recorded for
312 patients over a median of 6.3 years per patient.

Our aim is to use only the data collected up until 2.5 yearsréalipt those patients who will die or
require transplant within 5 years. Therefore, we focus diepts known to be alive and without a liver
transplant after two and a half years, and for whom we alsaitheir condition after 5 years. We identified
202 patients who were known to be alive without transplaterdf years and 51 patients who died or had
a liver transplant at some point in time between 2.5 years5apears. Four longitudinal markers were
considered for the multivariate LoDA, specifically the danbus markers albumin and logarithmic serum
bilirubin, the platelet count (Poisson) and a binary maikeicating blood vessel malformation$ee
Figure 1 for individual patient profiles for each marker.

The GLMM for each of the continuous and count markers coethanrandom intercept and a random
time slope, whilst the GLMM for the binary marker containedaadom intercept and a fixed effect for
time (in each model time was recorded in months). To keethgimple, and to allow easy comparison
with the simulations presented in Sectibwe consider a one component mixture distribution (kKe= 1,
seeHughes et al(2016) for the random effects distribution.

FIGURE 1 ABOUT HERE.

To predict the group membership of a patient, separate MGlsMidre fit to patients in each group ex-
cluding the data of the patient for whom prediction was benagle. Tablé shows the predictive accuracy
of this leave one out cross validation study applied to th€ l[dBta. The cutoff was chosen to give the point
closest to the top left corner of the ROC curve (Figeyand the predictive accuracies relate to the cutoff
reported for each of the three methods. For the PBC datdyrak tmethods give reasonably good predic-
tion of whether or not a patient will be alive without trarespl after five years of observatiodowever, the
conditional approach gives worse predictions than theratin@ approaches, whilst the marginal approach
gives the best prediction, with 78% of patients who will digequire transplant correctly identified (Sen-
sitivity), 81% of patients who will be alive without transpit correctly identified (Specificity) and 81%
of patients correctly identified overall. The area under R@@/e (AUC) summarises the performance
of the classification methods over a range of cutoffs andreth@ marginal prediction approach performs
best. A positive predictive value (PPV) of 51% for the maajiapproach shows the percentage of pa-
tients predicted to die or require transplant who ultimatidl die or require transplant, whilst the negative
predictive value (NPV) of 94% shows that 94% of patients mted to be alive without transplant were
indeed alive after five years without requiring transplant.

TABLE 1 ABOUT HERE.

Profiles of the longitudinal markers in each group are showrigurel. The thick lines represent the
group average profile. Except for the platelet count, themgraup profiles clearly differ between the
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two groups (i.e., there exist marginal differences betwtbengroups). The variability around the mean
group profiles also appears to be different between the grolipese factors explain why the marginal
and random efffects approaches give good classificationracg. Komarek et al. (2010) find that the
random effects approach gives best prediction when usiglan the Dutch Multicenter Primary Biliary
Cirrhosis data. However, they have approximately 10 ye&fsllow up per patient with 13 observations
per patient on average (every three months for the first yeatteen annually after that). We believe that
the increased number of observations per patient allowtdrbestimation of the patient specific random
effects, hence showing the improved prediction accuraay fthe random effects approach. In fact, when
we analysed all the Mayo PBC data (average of 7.03 visitsgiént), and not just the first 2.5 years of data
per patient (3.53 visits per patient) we also observed tteatandom effects approach gave better predictive
accuracy. This suggests that the random effects approadjivcmadded information and improvementin
classification accuracy, but only if the random effects aeeisely estimated.

FIGURE 2 ABOUT HERE.

4  Simulation Study

In Section3 we presented an application of multivariate LoDA in whicle tharginal and theandom
effects prediction method gagmodpredictive accuracy. However, as noted in Secfipthere have been
contrasting findings in published studies as to which ptextianethod is best\(orrell et al, 2007, 2017
Hughes et a).2016. This suggests that the type of data being considered mfkgwhich method will
give the best prediction accuracy.

To explore this further, we considered simulation scesabiased on the PBC data, but altered to reflect
situations in which we believed the marginal and conditi@mproaches would lead to the most accurate
predictions. We simulate data from 200 patients who areaiter 5 years without requiring transplant
and 50 patients who were alive at 2.5 years but subsequertlyad required transplant before 5 years,
approximately reflecting the prevalence of the PBC data. éaah patient we simulated 4 clinic visits
(following Koméarek and Koméarkov&013. The first visit occurred at = 0 and the remaining visits
were generated from uniform distributions in the inter\{aig0,200), (350,390) and (710,770) days. This
approximates to a visit after six months and then visits @& amd two years. To more easily control the
simulation differences we consider only a single normaritistion for the random effects (i.e = 1,
no mixture).

In each group, marker values were simulated from the apjatepGLMM at each of the four time
points for each of the four markers considered in Seciidalbumin, log(bilirubin), platelet count and
blood vessel malformations). The values used to simulaenthrker data from a GLMM are given in
Table4. We consider two alternative scenarios in our simulations.

In Scenario 1, we keep the fixed effects parameters and theswéshe random effects as they are for
the PBC data in both groups, with the only difference beirag the random effects variance-covariance
matrix, D, is set to be the same in each group. In this setting, therdiffees between the groups are in the
mean profiles and so we would expect the marginal predictietnad to give the best prediction. In each
group there is approximately the same amount of variakdiityund the group average for each marker.
The focus of this simulation scenario is on the marginakdé@hces between groups.

In all of the published comparisons of the three predictippraaches either the random effects or
marginal method has given the most accurate prediction. M/aet aware of any studies in which the
conditional method is the best. Further, we find it difficolenvisage a situation in which the conditional
approach would outperform both the marginal andrthedom effect@pproach simultaneously. We sus-
pect emphasising differences between the marginal prafileach group would lead to the conditional
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approach outperforming the random effects method, butheottarginal method. In contrast, greater dif-
ferences in the random effects structure would allow thelitmmal approach to outperform the marginal
approach but would be unlikely to lead to the conditionalrapph being better than the random effects
approach.

Morrell et al. (2011) discuss the three approaches and speculate that the iooatliapproach may
work well in the case where the residual error is large in canspn to the random effects variance. For
our second scenario, we investigate further this posibilsince only the continuous markers have a
residual error term, in this scenario we only consider a MGILMcluding the continuous markers in our
simulation. In this case, the means and variances of themmrdfects are set to be the same in each group
and the only difference is the value of the residual errois Téflects a scenario in which the measurement
error in one group is larger than in the other group.

For each scenario we simulated 100 data sets. The MGLMMsdh geoup were based on 10,000
iterations of 1:10 thinned MCMC after a burn in of 500 iteoats. In each case, leave one out cross-
validation was used to provide individual patient predici. MGLMMs were fitted using theL MV MCMC
function, and LoDA was performed using t&MM | ongi t DA2 function from theR packager x AK
(Komarek and Komarkoy2014). The reported prediction accuracies and model paramatersased on
the averages over 100 simulated data sets.

Source code to reproduce the results is available as Supganformation on the journal’s web page
(http://onlinelibrary.wley.conf doi/xxx/suppinfor).

4.1 Results for Scenario 1

Table5 shows the mean parameter estimates for the MGLMM in eachpgactoss 100 simulated data
sets. The simulated data sets approximate well the true Inasdeghown by the low values of bias and
MSE for most parameters. The coverage reports the propartitmes in which the true model parameter
was within the estimated 95% credible interval for the pagmnin the simulated data sets. The random
slope variances for the continuous markers are poorly astidnin the simulated data sets. This is shown
by the low coverage values 6f45and0.76in Group 0 and).57and0.50in Group 1. We believe this
may be due to the fact that the ‘true’ random effects varidoceéhe slopes are smaller than the residual
error making them difficult to estimate accurately (Tad)leHowever, the simulated data sets provide good
approximations to the true GLMM parameters.

TABLE 2 ABOUT HERE.

Under Scenario 1, the marginal method gave the best pregliaticuracy in terms of AUC, specificity,
PCC and PPV (Tabl@). The choice of method is not so clear cut in Taklas the random effects
approach gives the best sensitivity and NRlthough with a much worse specificitifhese accuracies
were calculated by selecting the optimal cutoff for eachusiited data set and averaging the respective
sensitivities, specificities etc. Nevertheless Figdirehich averages the sensitivity and specificity at each
cutoff across the 100 simulated data sets, shows that thgimahapproach consistently outperforms the
other methods. This is consistent with what we expecteckdine main differences between the groups
were in the fixed effects and expected values of the randcgutsff

FIGURE 3 ABOUT HERE.

We conclude from Scenario 1 that when the main differencésd®n the groups are in the mean
longitudinal evolution, the marginal method will be the be®l to classify patients. This effect was true
in the case oBrant et al.(2003 andMorrell et al. (2011) where the marginal approach was shown to
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give the best classification results. The expected prospegeific antigen (PSA) level was seen to increase
substantially between visits for patients who developeskiate cancer, and so the marginal approach
was able to detect a difference between the largely stabdepr§ile of healthy patients and the generally
increasing longitudinal PSA profiles of patients who woutihately develop prostate cancer. By contrast,
Figure 1 and Tables 2 and 3 gbmarek et al(2010, in which the random effects approach gave best
prediction, show that although there were some differehe@seen the mean longitudinal profiles of each
group there were also substantial differences in the patigecific variability around the group mean in
each group. Incorporating this additional information {@fhthe random effects approach does) led to the
random effects approach most accurately identifying p&iezho would require liver transplant or die.

4.2 Results for Scenario 2

Table 6 shows that the bias, standard deviation and MSE of the estthpmrameters was generally very
low demonstrating that each simulated sample approxintagettue model well.

In Scenario 2, the only difference between the two grougsdvalue of the residual variance (Tal)e
The random effects approach is unable to detect this diftereln addition, since the residual variance is
larger than the random effects variances, the model is erialvthake accurate estimates of the individual
random effects leading to poor prediction (TaBknd Figuret). The poor estimation of the random effects
parameters is also seen in the worse coverage rates in Talblee@narginal and conditional approaches
are still able to make accurate classification of patienth 8% and89% of patients correctly identified
respectively It is noticeable however, that even in a situation which theught would most favour the
conditional approach the marginal approach is just as gooallaneasures of accuracligure 4 shows
that whilst the marginal and conditional approaches diatise patients well, the random effects approach
performs little better than chance.

TABLE 3 ABOUT HERE.

According to Sections 4.1 and 4.2 bmarek et al.(2010, in the case of continuous longitudinal
markers, the normal distributions used to calculate groembership probabilities for both the conditional
and marginal methods make use of the residual error. For #ginal approach the variance of the
multivariate normal distribution is influenced by the regtivariance whilst for the conditional approach
both the mean and the variance are affected. The normaibdistm for the random effects approach
makes no use of the residual variance and relies upon anagstonthe individual random effects which
we noted above has been poorly estimated due to the highueg¢sdor. This demonstrates why both
the conditional and marginal methods are able to detecffereifce in the residual variance between the
groups but the random effects approach cannot.

FIGURE 4 ABOUT HERE.

It should be noted that we observed large variation in théliptien accuracy of the random effects
approach over each simulated data sets. This accountsedath that the average ‘best’ sensitivities
and specificities in Tabl& are noticeably better than the ROC curve for the random tsffagproach
in Figure4 (where sensitivity and specificity are averaged across @iffedhta sets at each cutoff). The
prediction accuracy of the marginal and conditional appih@a were, in contrast, much more stable. This
is demonstrated in Figurg, which shows the sensitivity, specificity, PCC and AUC focteaimulated
data set under Scenario 2. For each of the measures conkitte¥e/alues in each simulated data set are
very similar for both the marginal and conditional methoHswever, the inability of the random effects
approach to correctly estimate the individual patient canceffects leads to very unstable estimates of

(© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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sensitivity and specificity for example (A similar effect svabserved in Scenario 1). It is noticeable that
many of the simulated data sets gave sensitivity of 1 andfapgcof 0, reflecting the fact that the random
effects approach was unable to distinguish between the tagpg. This leads us to conclude that when
analysing data in which there is though to be a high likelthob large measurement error, researchers
should be wary about using the random effects approach apavish to focus on the marginal approach.

FIGURE 5 ABOUT HERE.

5 Discussion

In this paper we have compared three approaches to predigtoup membership using LoDA, specif-
ically the marginal, conditional and random effects apphes. These approaches have been compared
previously using a number of real data sets with contras#salts regarding which approach gives the
most accurate prediction. Thearginal andandom effects approaches are shown to give the most ac-
curate classification in an application of multivariate 1D the real data of the Mayo PBC study. We
explored the three approaches further by way of a simulatiody in which we explored two scenarios
designed to favour the marginal and conditional approaches

When the average profile is noticeably different betweegpostic groups then the marginal approach
is expected to provide good classification accuracy. Howéivinhe main difference between prognostic
groups is dominated by the variability about the mean prdéiierences in subject specific variability
across the groups) then the marginal approach is not ablistingliish patients as well and the random
effects approach is expected to work best.

The 95% credible interval coverage for the simulationsdatéd that for some of the parameters the
coverage was considerably below 95%, suggesting poor&sbim On the other hand, a coverage around
99% was observed for some of the random effects covarianoe tevhich may have been influenced by
(i) the magnitude of the true values, which tend to be smatlamparison to the residual error variance
and (ii) the fact that we are attempting to fit a reasonably mlarate model to fairly small numbers of
patients (200 and 50 for Group 0 and Group 1 respectively) véith only 4 observations per patient. It
is possible that over a larger number of simulated data setgith more repeated measurements of each
marker, more precise credible intervals could be calcdleteich would in turn influence the coverage.

Although three approaches have been reported in the liter§gand compared in this paper), we have
been unable to simulate a scenario in which the conditiomal@ach works better than the marginal and
random effects approachsisnultaneouslyThe conditional approach seems to offer little additiorzdiie
to these two approaches.

There has been insufficient guidance as to which predicppnaach to use in applications of LoDA. We
suggest that a data analyst first plots longitudinal protfetheir markers for patients in each prognostic
group. If there are seen to be differences in the group mezitgerand similar between and within-subject
variability between groups, then the marginal approachulshbe expected to provide the best accuracy
results.

If, in addition if there seems to be a difference in the levielariability about the group mean in
each group then the random effects approach is expectedetoanfditional information leading to more
accurate classification. However, if the variability beénepatients is dominated by a large measurement
error, then the random effects approach should be avoided sistimates of the individual random effects
are inaccurate. In such a case, the marginal approach weyddberred.In addition, if there are only a
few repeated measurements per patient it may be that esimfindividual patient random effects are not
sufficiently precise to detect differences between the ggoln the case of only a few measurements per
patient we suggest the marginal approach is a good firstraptio
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Further work could consider the effect that group prevateimas on the prediction accuracy of each
method. The overall sample size and the number of longitildioservations per patient may also influence
the choice of which approach is preferable (for example réimelom effects approach relies on having
enough data collected to properly characterize subjestip profiles).
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Figure 1 Observed longitudinal profiles of albumin (mg/dl), log{hibin) (log(mg/dl)), platelet counts
and blood vessel malformation for patients who are knowretallve at 5 years (Group 0, solid lines) and
who die between 2.5 and 5 years (Group 1, dashed lines). Tdielithes show fitted mean over time.
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Figure 2 Receiver Operating Characteristic curves of the LoDA udimg random effects (solid),
marginal (dotted) and conditional (dot-dashed) predictieethods for PBC data.
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Figure 3 Receiver Operating Characteristic curves of the LoDA udimg random effects (solid),
marginal (dotted) and conditional (dot-dashed) predictieethods for Scenario 1.
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Figure 4 Receiver Operating Characteristic curves of the LoDA udimg random effects (solid),
marginal (dotted) and conditional (dot-dashed) predictieethods for Scenario 2.
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Figure 5 Histograms showing the sensitivity, specificity, PCC andCAtf each of the three approaches
for each of the 100 simulated data sets under Scenario 2.
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Table 1 Prediction accuracy from leave-one-out cross validatiorodom-effects, marginal and condi-
tional prediction for PBC data.

Random Marginal Conditional

Cutoff 0.98 0.21 0.12
Sensitivity 0.75 0.78 0.61
Specificity 0.78 0.81 0.67

PCC 0.77 0.81 0.66
AUC 0.81 0.85 0.63
PPV 0.46 0.51 0.32
NPV 0.92 0.94 0.94
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Table 2 Scenario 1 prediction accuracy from leave-one-out croégdateon of random-effects, marginal
and conditional prediction. The reported values are thesayes over the 100 simulated datasets.

Random Marginal Conditional

Cutoff 0.81 0.19 0.12
Sensitivity 0.93 0.85 0.70
Specificity 0.71 0.85 0.73

PCC 0.75 0.85 0.73
AUC 0.84 0.91 0.76
PPV 0.57 0.59 0.40
NPV 0.98 0.96 0.96
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Table 3 Scenario 2 prediction accuracy from leave-one-out croégdateon of random-effects, marginal
and conditional prediction. The reported values are thesayes over the 100 simulated datasets.

Random Marginal Conditional

Cutoff 0.56 0.26 0.58
Sensitivity 0.78 0.92 0.92
Specificity 0.70 0.89 0.88

PCC 0.72 0.90 0.89
AUC 0.74 0.96 0.95
PPV 0.55 0.69 0.66
NPV 0.90 0.98 0.93
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Table 4 Parameter estimates for the PBC data and the modificati@asfaseach simulation scenario. Blank entries occur whemp#rameter was

not used in Scenario 2.

Group O Group 1
PBC Data Scenario 1 Scenario 2 PBC Data Scenario 1 Scenario 2
Albumin
E[Albumin:Intercept] 3.69 3.69 3.00 3.39 3.39 3.00
E[Albumin:slope] -6.83x10~3  -6.83x10~3 0.00 -1.441072 -1.44x10~2 0.00
SD[Albumin:Intercept] 2.73x1071  2.64x107!  6.50x1072 2.64x10°' 2.64x107! 6.50x1072
Corr[Albumin:Intercept,Albumin:slope] -8.601072 -6.46x1072 -6.46x10"%2 -6.46x1072 -6.46x1072 -6.46x1072
Corr[Albumin:Intercept,log(Bilirubin):Intercept] -28x107!  -1.97x107! -1.97x107! -1.97x10~' -1.97x10~! -1.97x107!
Corr[Albumin:Intercept,log(Bilirubin):slope] -1.30107Y 2.11x107t  2.11x107'  2.11x107!  2.11x107!  2.11x107!
Corr[Albumin:Intercept,Platelet:Intercept] 182071 1.91x10~! 1.91x107'  1.91x10~!
Corr[Albumin:Intercept,Platelet:slope] 5%2072 1.09x10°! 1.09x10~%  1.09x10~!
Corr[Albumin:Intercept,Blood vessel malformation:intept] -2.2%107Y  -3.48x107! -3.48<10~!  -3.48x107!
SD[Albumin:slope] 4.30x107%  7.76x107% 7.76x107% 7.76x107% 7.76x107% 7.76x107°
Corr[Albumin:slope,log(Bilirubin):Intercept] -2.92107Y  1.57x107%  1.57x107® 1.57x107% 1.57x107% 1.57x1073
Corr[Albumin:slope,log(Bilirubin):slope] -6.50107! -2.33x10~! -2.33x10~! -2.33x107! -2.33x10"! -2.33x10°!
Corr[Albumin:slope,Platelet:Intercept] 8.89072 -2.57x107! -2.57x107!  -2.57x107!
Corr[Albumin:slope,log(Bilirubin):slope] 2.96107! -2.60x107! -2.60x10~!  -2.60x107!
Corr[Albumin:slope,Blood vessel malformation:Intertlep -2.93x1071  2.27x107! 2.27x1071  2.27x107!
SD[Albumin:residual] 3.18x1071  3.18<107' 3.14x107! 3.14x107' 3.14x10~' 1.59x107!
log(Bilirubin)
E[log(Bilirubin):Intercept] 2.13x1072  2.13x1072 1.00 1.23 1.23 1.00
E[log(Bilirubin):slope] 9.94x1072  9.94x1073 0.00 2.38&1072 2.38x1072 0.00
SD[log(Bilirubin):Intercept] 6.88x1071  8.45x10~! 1.12x1072 8.45x10~! 8.45x107! 1.12x1072
Corr[log(Bilirubin):Intercept,log(Bilirubin):slope] 2.32<1071  -1.75x10~' -1.75x107' -1.75x10~! -1.75x107! -1.75x107!
Corr[log(Bilirubin):Intercept,Platelet:Intercept] A6x1071  2.47x107! 2471071 2.47x107!
Corr[log(Bilirubin):Intercept,Platelet:slope] -2.84071  -1.87x107! -1.87x1071  -1.87x107!
Corr[log(Bilirubin):Intercept,Blood vessel malformati:intercept]  3.4210~!  2.70x107! 2.70x1071  2.70x107!
SD[log(Bilirubin):slope] 1.12<1072  1.49x1072  1.49x1072 1.49x<1072 1.49x1072 1.49x1072
Corr[log(Bilirubin):slope,Platelet:Intercept] 1.44072 -1.69x107! -1.69x107!  -1.69x107!
Corr[log(Bilirubin):slope,Platelet:slope] -2.400°Y  1.25x10°1 1.25x107t  1.25x10°!
Corr[log(Bilirubin):slope,Blood vessel malformationtércept] 3.0x107!  8.13x107? 8.13x1073%  8.13x107?
SD[log(Bilirubin):residual] 3.38x1071  3.38<10°! 3.95x107! 3.96x107' 3.96x107!  1.69x107!
Platelet Count
E[Platelet:Intercept] 5.54 5.54 5.46 5.46
E[Platelet:slope] -4.29<1073  -4.29x1073 -1.14x1072  -1.14x1072
SD[Platelet:Intercept] 3.73x1071  3.45x<107! 3.45x1071  3.45x107!
Corr[Platelet:Intercept,Platelet:slope] 460072 6.14x1072 6.14x1072  6.14x1072
Corr[Platelet:Intercept,Blood vessel malformatiorehaept] -7.4%1072  -2.48<107! -2.48<1071  -2.48x107!
SD[Platelet:slope] 5.66x1073  1.51x1072 1.51x107% 1.51x1072
Corr[Platelet:slope,Blood vessel malformation:Intgtte -1.68x10~! -8.03x1072 -8.03x1072  -8.03x1072
Blood Vessel Malformations
E[Blood vessel malformation:Intercept] -2.54 -2.54 -68D~! -6.81x107!
Blood vessel malformation:slope 146072  1.46x1072 4.81x1072  4.81x1072
SD[Blood vessel malformation:Intercept] 3.00 1.88 1.88 88l.

19 (0T0Z) ZgeuInor [edLswolg

x4



WwiBYUIBM Ve 00 B HqWS Belsp HOA-ATTIM 0T0Z @

WO9"[euINO[-[eoLIBLIOIq MMM

Table 5 Simulation study Scenario 1: Posterior Means, highestepiostdensity (HPD) intervals, bias, standard deviatiat),(enean square error

(MSE) and coverage for the fixed and random effects. Thessunements are the average of 100 simulations.

Group 0 Group 1
Posterior Mean  95% HPD Interval SD Bias MSE Cover@ﬁosterior Mean  95% HPD Interval SD Bias MSE Coverage
Albumin
Albumin
E[Albumin:Intercept] 3.69 (3.64,3.74) 4.0810°3 4.22¢10% 6.35x10~" 0.93 3.39 (3.29,3.49) 4.0210~% -3.19<10~% 2.08x10~° 0.98
E[Albumin:slope] 7.03x1073  (-9.35,-4.68K107  3.47x10~" -2.02<10~" 2.15%10~° 0.88| -1.42¢1072 (-1.91,-0.93x10°2 2.76x10~* 2.65<10~" 6.85x10~° 0.94
SD[Albumin:Intercept] 2.63x10~1  (2.22,3.06x10"! 1.81x10~3 -6.12<10* 4.10x10~* 0.98| 258<10'  (1.71,3.46)k10"' 3.80x10~% -5.75<10~% 2.77x10~% 0.89
Corr[Albumin:Intercept,Albumin:slope] 2.001072 (-5.25,5.89%10~' 2.45x10~? 8.55x107% 2.28x107? 1.00 3.96x107%  (-6.24,7.09x10~" 1.43x10~2 1.04<10~' 3.08x10~? 0.99
Corr[Albumin:intercept,log(Bilirubin):Intercept] SI5x107! (-3.49,0.02x101  6.79x107%  2.21x10~2  6.34x10~3 0.99| -161x10-! (-4.97,1.81x10~' 1.14x10~2 3.56x10~2 2.87x10~2 0.97
Corr[Albumin:Intercept,log(Bilirubin):slope] 1.73107!  (-1.67,5.06x107! 1.35x1072 -3.87x107% 2.44x1072 0.96 5.84<107%  (-5.94,6.94x107! 1.38<107% -1.53x107! 5.29x10~?2 0.98
Corr[Albumin:Intercept,Platelet:Intercept] 1.5207"  (-0.24,3.27x10~! 8.84x10~% -3.88x107% 9.83x10~* 0.93 1.12¢x107"  (-2.25,4.44x107" 1.12x1072 -7.95x107% 3.13x1072 0.94
Corr[Albumin:Intercept,Platelet:slope] 6.59072 (-1.14,2.46x10~' 8.38x107% -4.35x1072 9.15x10~* 0.93 4.21x1072  (-3.00,3.86x10~' 1.17x1072 -6.73x1072 3.86x107?2 0.91
Corr[Albumin:Intercept,Blood Vessel Malformationséntept] -3.0k107!  (-5.22,-0.76x107! 9.16x107%  4.69x<107% 1.36x107?2 0.95 -2.58<107!  (-6.39,1.37x107! 1.31x107% 9.01x107% 4.24x107? 0.96
SD[Albumin:slope] 3.47x107%  (0.65,7.13x107% 6.27x10™* -4.30x<107% 2.53x107° 0.45 3.98<107%  (0.36,9.15x107% 3.65<107* -3.79x107% 2.46x107° 0.57
Corr[Albumin:slope,log(Bilirubin):Intercept] -2.06107%2  (-5.58,5.18x107! 2.22x107% -2.22x1072 1.29x10~? 0.99 -1.31x107%  (-6.54,6.34x 107! 1.23x107% -1.47x1072 1.74x107?2 0.99
Corr[Albumin:slope,log(Bilirubin):slope] -2.661072  (-6.18,5.74x107' 2.55x1072 2.06x10"! 6.09x107* 0.99 -1.03x107%  (-7.62,7.46x107! 1.14x107% 2.23x107! 5.82x107?2 1.00
Corr[Albumin:slope,Platelet:Intercept] -1.69071  (-6.92,3.87x10"! 3.54x10"2 8.78x1072 2.56x1072 1.00 -5.97x1072  (-6.86,5.84x10! 1.30x1072 1.97x10"' 5.69x102 0.99
Corr[Albumin:slope,Platelet:slope] -1.5407'  (-6.54,3.73x10"' 3.06x1072  1.07x10"! 3.29x102 0.99 -8.70<107%  (-6.94,5.46x10~! 1.39x107% 1.73x10~! 5.08x10~? 0.98
Corr[Albumin:slope,Blood Vessel Malformations:Intepte 1.01x107'  (-4.86,6.62x10°! 3.09x1072 -1.26x10"' 3.14x10°2 0.98 2.11x1072  (-6.62,6.96Xx10°! 1.49x1072 -2.06x10"' 6.47x102 0.99
log(Bilirubin)
E[log(Bilirubin):Intercept] 1.67x10"2  (-1.06,1.39x10~" 4.04<10~% -4.57x10~% 3.71x10~3 0.96 1.24 (0.99,1.49) 8.5110~% 9.60x10~3 1.62x102 0.96
Eflog(Bilirubin):slope] 1.00<10~2  (0.69,1.32x10~% 1.27x10~* 8.22x10° 3.41x10~6 0.91 2.31x1072  (1.65,2.99x10~% 3.44x10% -6.91x10~* 1.33x10~° 0.94
SD[log(Bilirubiny:Intercept] 8.42¢10~1  (7.52,9.35x10"! 3.03x10~3 -3.32x1073 2.37x10~3 0.97 8.38x10~! (0.66,1.03) 6.0810~3 -7.28<10~3 7.98<10~3 0.96
Corr[log(Bilirubin):Intercept,log(Bilirubin):slope] -1.33x107!  (-4.25,1.78x10~! 1.11x107% 4.12x1072 2.26x10~? 0.93 -4.34<107%  (-6.45,5.95x10~! 1.31x107% 1.31x10~! 4.00x10~? 0.99
Corr[log(Bilirubin):Intercept,Platelet:Intercept] 3HBx10~!  (0.97,3.70x107! 4.56x107% -1.25x107% 4.23x107° 0.98 2.12x107"  (-0.60,4.78x107! 8.66x107% -3.48<107% 1.67x107?2 0.96
Corr[log(Bilirubin):Intercept,Platelet:slope] -1.86071  (-3.28,-0.42x107! 4.66x107%  9.56x10™* 5.38x107* 0.93 -1.49<1071  (-4.27,1.34x107%  9.22x107%  3.77x107% 2.06x10~? 0.94
Corr[log(Bilirubin):Intercept,Blood Vessel Malformatis:Intercept] 2731071 (0.82,4.60x107' 6.34x107%  2.29x10~* 8.31x107* 0.96 2.48<107"  (-0.88,5.74x107! 1.12x107% -2.19x107% 2.70x10~? 0.95
SDJ[log(Bilirubin):slope] 1201072 (0.64,1.72x1072 4.52x10~* -2.93<10~3 2.17x10~5 0.76 7.03x<10~%  (0.05,1.55x10"2 4.76x10~* -7.90x10~% 8.64x10~° 0.50
Corr[log(Bilirubin):slope,Platelet:Intercept] -1.¥807! (-4.77,1.28x107'  1.12x1072 -5.37x107° 1.87x1072 0.94 -6.26x107%  (-6.68,5.62x107! 1.30x107% 1.07x10~! 3.67x107? 0.99
Corr[log(Bilirubin):slope,Platelet:slope] 1.3007"  (-1.88,4.07x107! 1.01x107% -1.48<1072 2.24x107?2 0.94 6.57x107%  (-5.44,6.61x107! 1.26x107% -591x1072 2.35x107?2 1.00
Corr[log(Bilirubin):slope,Blood Vessel Malformatiostercept] 1.921072  (-3.55,3.97x10"! 1.35x1072 1.11x1072 3.06x10?2 0.95 1.62x1072  (-6.44,6.77x10"! 1.41x1072 8.09x107% 2.87x1072 0.99
Platelet Count
E[Platelet:Intercept] 5.54 (5.49,5.59) 1.58107% 2.20x10% 5.03x10~* 0.96 5.46 (5.36,5.55) 3.12107% -4.86x10~% 1.70x10°* 0.98
E[Platelet:slope] -4.29¢107  (-6.45,-2.14x 103  7.02x10~°  4.70x10~% 1.25x10~6 0.94| -1.14x10"% (-1.59,-0.70x10~2 1.42<10~% -3.02x10~° 4.33x10~° 0.95
SD[Platelet:Intercept] 3.49x107! (3.15,3.85x107"  1.13x107%  4.27x10~% 3.38x10~* 0.96 3.49x107! (2.81,4.23x107"  2.34x107%  4.34x10~% 1.39x10* 0.94
Corr[Platelet:Intercept,Platelet:slope] 6:68)~2  (-0.75,2.08x10"! 4.65<10~% 5.20x10~% 5.77x10~% 0.93 6.77x107%  (-2.11,3.45x10~' 9.28x10~%  6.25x10~% 1.59x10~? 0.97
Corr[Platelet:Intercept,Blood vessel malformationtetoept] -25%107"  (-4.40,-0.71x107' 6.11x107% -9.29x10°% 9.27x10°? 0.94 -2.23x107!  (-5.42,1.05x10'  1.04x107% 2.47x1072 2.60x102 0.97
SDI[Platelet:slope] 152x10-2  (1.37,1.69x10~2 5.20<10~° 9.68x10~° 6.37x10~7 0.95 1.55¢10~2  (1.23,1.90x10~2 1.09x10~% 3.74x10~% 2.92x106 0.97
Corr[Platelet:slope,Blood vessel malformations:ineprtd -7.64<107%  (-2.72,1.20x107' 6.45x10~% 3.96x10~% 9.90x10~* 0.96 -7.61x107%  (-4.16,2.68x107! 1.13x107%  4.24x<107% 2.39x107? 0.97
Blood Vessel Malformations
E[Blood vessel malformations:intercept] -2.55 (-3.12,-2.00) 1.931072 -7.35x10~% 1.19x107! 0.89 -6.74x107! (-1.48,0.11) 25%1072 6.45x107% 1.82x107! 0.92
Blood vessel malformations:Slope 1.37x1072  (-1.03,3.78x1072 7.98x10~* -8.53x10~* 1.84x10~* 0.88 4.63x1072  (0.67,8.66)x107% 1.35x107% -1.77x107% 3.96x10~* 0.95
SD[Blood vessel malformations:intercept] 1 (1.3902.41.84x1072  4.76x10~% 1.02x10~* 0.89 1.82 (1.02,2.69) 3.42107% -573x107% 2.71x107! 0.91
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Table 6 Simulation study Scenario 2: Posterior Means, highestgpiostdensity (HPD) intervals, bias, standard deviatiat),(enean square error

(MSE) and coverage for the fixed and random effects. Thessunements are the average of 100 simulations.

Group O Group 1
Posterior Mean  95% HPD Interval SD Bias MSE Cover¢g€osterior Mean  95% HPD Interval SD Bias MSE Coverag
Albumin
E[Albumin:Intercept] 3.00 (2.97,3.03) 2.8010~% -2.04<10~3 3.73x10~* 0.89 3.00 (2.96,3.04) 1.8910~% 3.45<10~3 4.00x<10~* 0.92
E[Albumin:slope] -9.6%107° (-2.37,2.10x107% 2.12x<10~* -9.63x10~° 1.49x10° 0.92 -3.08x10~*  (-3.01,2.38x10~° 1.31x10~* -3.08<10~* 1.88x10~° 0.92
SD[Albumin:Intercept] 41910"2  (0.34,9.07x102 4.21x10° -2.31x10~2 1.06x10~3 0.84 4.28<10"2  (0.68,8.68K10°2 2.10x1073 -2.22¢10"2 1.19x1073 0.76
Corr[Albumin:intercept,Albumin:slope] -7.48107% (-8.53,8.51x10°! 2.02x1072? 5.72x107% 1.26x1072 1.00 2.61x107% (-8.02,8.50x10~! 1.18x10"2 9.07x10"2 2.60x10~2 1.00
Corr[Albumin:Intercept,log(Bilirubin):Intercept] 10<1072  (-8.38,8.64x 1071 2.32x1072  2.12x10~' 5.79x10~2 1.00 3.21x107% (-8.46,8.64x10~' 1.10x1072 2.00x10~' 5.28x1072 1.00
Corr[Albumin:intercept,log(Bilirubin):slope] 3.24107%  (-7.43,7.95x107' 2.46x1072 -1.79x10~' 7.77x1072 0.97 1.01x10'  (-6.29,7.96)x 10~ 1.57x107% -1.10x10~' 5.22x107?2 0.98
SD[Albumin:slope] 2.1%107%  (0.07,5.38x107% 2.54x10~* -5.63x10"% 3.38x107° 0.16 2.91x107%  (0.56,5.79x10% 1.32x10~* -4.85<10"% 2.75x10~° 0.24
Corr[Albumin:slope,log(Bilirubin):Intercept] 1.181072 (-8.59,8.73k10~! 2.35x10"2 1.02x10~2 8.28x10~3 1.00| -2.69x10"2 (-8.80,8.37x10"! 1.06x1072 -2.84x10~% 8.65x10~° 1.00
Corr[Albumin:slope,log(Bilirubin):slope] -4.961072 (-8.46,7.84x10"! 2.98x10~2 1.83x10"! 6.26x10"2 0.99| -8.38x1072 (-7.91,6.32x10~! 1.50x10~2 1.49x10~! 6.69x10~2 0.98
log(Bilirubin)
Eflog(Bilirubin):Intercept] 1.00 (0.96,1.04) 3.680°% -3.92x10~% 3.58x<10~* 0.96 1.00 (0.96,1.04) 1.7410~% 7.55x10~% 3.71x10* 0.92
E[log(Bilirubin):slope] 8351075 (-3.20,3.37x10~% 1.95x10~% 8.35x10~5 2.18x1076 0.98 3.08<10~% (-3.69,4.28K10~% 1.50x10~% 3.08<10~* 4.18<1076 0.93
SD[log(Bilirubin):Intercept] 3351072 (0.03,9.02x10~2 3.39<10~% 2.23x10~2 1.11x10~3 0.99 1.79<1072  (0.00,5.29x102 1.36x10~% 6.65x10~% 2.21x10~* 0.98
Corr[log(Bilirubin):Intercept,log(Bilirubin):slope] ~ -1.11x1072 (-8.24,8.29x10~" 2.61x10"2  1.64x10~' 5.96x102 1.00 -1.66x1072 (-8.36,8.30x10~' 1.48<10"2 1.58<10~! 4.98x10°? 0.99
SD[log(Bilirubin):slope] 1.0%1072  (0.59,1.43)10~2 2.67x10~* -4.74x10~% 2.95x10~° 0.38 1101072 (0.79,1.43%10~2 1.06x10~% -3.93x10~% 1.82x10~° 0.39
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