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Notations

The following notations and abbreviations are found throughout this thesis:

J A set of input jobs J = {J1, J2, J3, · · · }.
w(J) Time duration (width) of job J.

h(J) Power request (height) of job J.

I(J) Feasible timeslots of J. The set of available timeslots where job J can

be executed. If I(J) is a contiguous interval, we call it the feasible interval of J.

r(J) The earliest time when job J can be executed.

d(J) The latest time by then job J has to be finished.

`oad(S, t) The load at timeslot t in the S schedule.

cost(S) The total cost of the schedule S.

st(A, J) The start time of job J in the S schedule.

et(A, J) The end time of job J in the S schedule.

DVS The dynamic voltage/speed scaling problem

BINPACKING The bin packing problem

PARTITION The partition problem

AVR The AVR algorithm of the DVS problem.

BKP The BKP algorithm of the DVS problem.
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Preface

A significant part of this thesis is based on three peer-reviewed papers that have been

published in international conferences and a journal. The four papers have been adapted

for the purpose of this thesis and expanded to contain work that was omitted from the

conference versions of the papers. The extended versions of the papers are also either

under submission for journal publication or in preparation for submission. An additional

chapter presents work that has not yet been published that is related to one of the above

papers.

Specifically, Sections 4.1 and 4.2 of the thesis are based on the paper entitled

“Scheduling for Electricity Cost in Smart Grid”, co-authored with Mihai Burcea, Wing-

Kai Hon, Prudence W.H. Wong and David K. Y. Yau. The paper has been published in

Proceedings of the 7th Annual International Conference on Combinatorial Optimization

and Applications. The journal version is published in the Journal of Scheduling 2016.

Sections 4.3, 4.4 and Chapter 5 of the thesis are based on the paper entitled “Optimal

Nonpreemptive Scheduling in a Smart Grid Model”, co-authored with Fu-Hong Liu

and Prudence W.H. Wong. The paper has been published in Proceedings of the 27th

International Symposium on Algorithms and Computation.

Finally Chapter 6 represents a continuation of the work in Chapters 4 and 5 that

focuses on other optimization problems. We show how to solve them by adapting our

techniques and prove that our online algorithm can solve the machine minimization

problem with an asymptotically optimal competitive ratio. In this chapter we also show

that our exact algorithm can be adapt to solve other demand response management

problems.
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Abstract

In this thesis, we study the theoretical approach on energy-efficient scheduling problems

arising in demand response management in the modern electrical smart grid. Consumers

send in power requests with flexible feasible timeslots during which their requests can

be served. The grid controller, upon receiving power requests, schedules each request

within the specified interval. The electricity cost is measured by a convex function of

the load in each timeslot. The objective is to schedule all requests with the minimum

total electricity cost.

We study the smart grid scheduling problem in different models. For the offline

model, we prove the problem is NP-hard for the general case. We propose a polynomial

time algorithm for special input where jobs have unit power request and unit time

duration. By adapting the polynomial time algorithm for unit-size jobs, we propose an

approximation algorithm for more general input. On the other hand, we also present an

exact algorithm to find the optimal schedule for the problem with general input.

For the online model, we propose an online algorithm for jobs with jobs with arbitrary

power request, arbitrary time duration, and arbitrary contiguous feasible intervals. We

also show a lower bound of the competitive ratio for the smart grid scheduling problem

with unit height and arbitrary width. For special cases, we design different online

algorithms with better competitive ratios.

Finally, we look at other optimization problems and show how to solve them by

adapting our techniques. We prove that our online algorithm can solve the machine

minimization problem with an asymptotically optimal competitive ratio. We also show

that our exact algorithm can be adapted to solve other demand response management

problems.

xiii





Acknowledgements

This project is a long journey. This journey would not be completed without the help

of people around me. In this small section of acknowledgments, I would like to use this

opportunity to show my gratitude.

I would like to express my immense gratitude to my supervisor, Prudence W.H.

Wong. It is my pleasure of working with her. She has widened my view and shown me

the beauty of problem-solving, critical thinking, and conciseness. This thesis would not

have been possible without her wise mentorship and guidance. I am also grateful for

Prudence’s kind help and suggestions in many things throughout these years.

I also want to thank my supervisor in NTHU, Wing-Kai Hon, for his great support.

Under his guidance and encouragement I can pursue many different research topics which

I am interested in.

A great aid in evaluating my progress throughout the years was provided by my

advisors, Paul Spirakis and Michele Zito. I am very greatfull for their suggestions on

improving and expanding the work in this thesis.

Furthermore, I want to thank Ton Kloks, with whom I started the systematic re-

search. Through him I can take a glimpse at how a decent researcher would be. I also

want to thank my collaborators for material in this thesis, Mihai Burcea, Fu-Hong Liu,

and David K. Y. Yau. I enjoyed the discussion with them very much and learned a lot

from them.

I would like to thank my examiners, George Mertzios and Paul Spirakis. I am very

grateful for their thoroughness and advice in revising this thesis to its final version.

Finally, I am going to thank Fu-Hong Liu for his constant support, encouragement,

and unconditional love. To me, he is the light in the darkest time.

xv





Chapter 1

Introduction

This thesis is a theoretical study on energy-efficient scheduling problems arising in “de-

mand response management” in the modern electrical smart grid [25, 33, 38, 59, 84]. The

electrical smart grid is one of the major challenges in the 21st century [23, 78, 79]. The

smart grid [26, 62] is a power grid system that makes power generation, distribution,

and consumption more efficient through information and communication technologies

against the traditional power system. By the ability of communication, the smart grid

management system is able to provide advanced management, improve energy efficiency

and reduce cost [25].

There are many important issues in the research on smart grid [25]. For instance, the

infrastructure of smart grid in which the energy can be monitored, the communication

technology, the privacy protection, etc. Also, there are various management objectives

like improving energy efficiency, balancing demand and supply, cost reduction, utility

maximization, reducing energy consumption, price stabilization, etc.

This thesis focuses on the demand response management [11, 44, 58, 61, 64, 72] of

smart grid. We consider the research problem as the following. Consumers send in

power requests with a set of flexible feasible time intervals during which their requests

can be served. The grid controller, upon receiving power requests, schedules each request

within the specified interval. The electricity cost is measured by a convex function of

the load in each timeslot. The objective is to schedule all requests with the minimum

total electricity cost. We consider both offline and online settings and aim to minimize

the total cost in the worst case.

1.1 Smart Grid Scheduling and Demand Respond Man-

agement

Unlike the traditional power grid where the power generator is centralized and the power

needs to be transmitted over long distance to users, the smart grid allows distributed

generation and uses the bi-directional flow of electricity. By using information and

communication technologies in an automated fashion, the smart grid is able to improve

1
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the efficiency and reliability of production and distribution of electricity. The cost of

generating electrical power has several factors such as fuel cost, heat rate, waste disposal.

Different power sources have different generating cost. Usually the power company

will use the cheaper power sources before using the more expensive one. If too many

tasks are issued at the same time, the total power demand at the time might exceed

the amount which the cheapest power source can supply. Hence a more expensive

source have to be employed, and it increases the cost. Research initiatives in the area

include [40, 57, 70, 77]. Peak demand hours happen only for a short duration, yet make

existing electrical grid less efficient. It has been noted in [12] that in the US power grid,

10% of all generation assets and 25% of distribution infrastructure are required for less

than 400 hours per year, roughly 5% of the time [79].

Demand response management. By communicating between producers and con-

sumers and making decisions about when and how much the power should be generated,

the smart grid can improve the efficiency of electricity generators. According to the

information revealed by the demand profile, which is a curve of demand/electrical load

over time, power company can plan how much power they need to generate to satisfy the

requests from the consumers at any time. Demand response management is changing

the demand profile to match the supply better by shifting requests to different time.

It can reduce the peak load and avoid emergency to shift the demands of users from

on-peak hours to off-peak hours [11, 44, 58, 61, 64, 72].

The electricity grid supports demand response mechanism and obtains energy effi-

ciency by organizing consumption of electricity in response to supply conditions. It is

demonstrated in [59] that demand response is of remarkable advantage to consumers,

utilities, environment, and society. From the viewpoint of the system operator, effective

demand load management brings down the cost of operating the grid, while it reduces

electricity prices for users. It is also beneficial for utility providers to keep aggregate

power demand as flat as possible since this lowers the cost as well as energy generation

and distribution [58]. Considering the whole environment, demand response has the

ability to minimize the cost for generating electricity and significantly reduces carbon

emissions [59]. Demand response management is not only advantageous to the supplier

but also to the consumers as well. It is common that electricity supplier charges accord-

ing to the generation cost, i.e., the higher the generation cost the higher the electricity

price. Therefore, it is to the consumers’ advantage to reduce electricity consumption at

a high price and hence reduce the electricity bill [72].

The smart grid operator and consumers communicate through smart metering de-

vices [46, 62]. A consumer sends in a power request with the power requirement (cf.

height of request), required duration of service (cf. width of request), and the time in-

terval that this request can be served (giving some flexibility). For example, a consumer

may want the dishwasher to operate for two hours during the periods from 10 a.m. to

12 noon or 2 p.m. to 5 p.m., and the washing machine to operate for one hour during

the periods from 9 a.m. to 1 p.m. (see Figure 1.1). The grid operator upon receiving
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requests has to schedule them in their respective time intervals using the minimum elec-

tricity cost. The load of the grid at each timeslot is the sum of the power requirements

of all requests allocated to that timeslot. The electricity cost is modeled by a convex

function on the load, in particular, we consider the cost to be the α-th power of the

load, where α > 1 is an arbitrary real number. In practice, α is a small constant, e.g.,

α = 2 [21, 73].

9am 10 11 12

Dishwasher

washing machine

1pm 2 3 4

500 W

1800 W

1 hour 2 hours

5

Figure 1.1: An illustration of demand response management.

1.2 Our contribution

Previously, Koutsopoulos and Tassiulas [45] have formulated a similar problem to our

problem where the cost is an arbitrary convex function of the load. They claimed that

this problem is NP-hard by proving the smart gird scheduling problem with minimizing

peak object is NP-hard first, and proposed algorithms to minimize the total cost over

the time horizon. For the offline setting, the authors gave an exact algorithm for the

preemptive case and claimed that the non-preemptive case is NP-hard. For the online

setting, the authors proposed a stochastic model and gave two strategies to minimize the

long-term average cost. Their main contribution, Controlled Release strategy, is based on

referencing a threshold power level. Given the Poisson distribution of jobs and the cost

function, the threshold power level can be decided by running experiments. By deriving

a lower bound, the authors proved that as the lengths of feasible intervals increase to

infinity, there exists an optimal threshold such that the Controlled Release strategy

guarantees asymptotically optimal expectation of total cost under the stochastic model.

Our contribution. We focus on the worst case analysis of the smart grid scheduling

problem. Moreover, we consider the case where there is no knowledge of the distribu-

tion of release times, deadlines, widths and heights. We first show that this problem is

strongly NP-hard, even for very restricted input set or preemptive case. However, we
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find that for special input where each job has unit power request and unit time duration,

the smart grid scheduling problem can be solved efficiently. We propose a polynomial

time offline algorithm that gives an optimal solution and show that the time complex-

ity of the algorithm is O(n2τ), where n is the number of jobs and τ is the number of

timeslots. We further show that if the feasible timeslots for each job to be served form a

contiguous interval, we can improve the time complexity to O(n log τ+min(n, τ)n log n).

By employing an existing algorithm for the discrete dynamic voltage/speed scaling prob-

lem (see Section 3.2.2), we show that the time complexity can be further improved to

O(n log n).

For more general input set where jobs have arbitrary widths, arbitrary heights, and

arbitrary contiguous feasible intervals, we use special graphs to represent the jobs and

the important notion maximal cliques to partition the time horizon into disjoint win-

dows. The special corresponding intersection graph is an interval graph, which has

special properties. These properties direct us to a dynamic programming approach to

find the optimal schedule. We propose two exact algorithms; both are fixed-parameter

algorithms. By these two fixed-parameter algorithms, we show that the smart grid

scheduling problem is fixed-parameter tractable with respect to the maximum width of

jobs, and the maximum number of overlapped feasible intervals. That is, when these

parameters are constant, the grid problem is no longer NP-hard.

For the general input, we also propose a 36α · (1 + dlog wmax
wmin
e)α · (1 + dlog hmax

hmin
e)α-

approximation algorithm by making use of the optimal scheduling algorithm for unit-

size jobs, where wmax, wmin, hmax, and hmin are the maximum time duration, minimum

time duration, maximum power request, and minimum power request of the input jobs.

Comparing with the exact algorithm, the approximation algorithm is more efficient.

For the smart grid problem in online model, we propose the first online algorithm

for the general input with worst case competitive ratio, which is polylogarithmic in the

max-min ratio of the duration of jobs. Our online algorithms are based on identifying a

relationship with the dynamic speed/voltage scaling (DVS) problem. We first propose a

2α(8eα + 1)-competitive algorithm for jobs with unit time duration and a 12α(8eα + 1)-

compeititve algorithm for jobs with uniform time duration. It means that when α is

a constant, both algorithms are constant competitive. By generalizing the result, we

present a 36α · (1 + dlog wmax
wmin
e)α · (8eα + 1)-competitive algorithm for general input. The

interesting thing is, our online algorithm and exact algorithms depend on the variation

of the job widths but not the variation of the job heights.

On the other hand, we prove that for any deterministic online algorithm, the com-

petitive ratio is at least (1
3 log wmax

wmin
)α. The lower bound on the competitive ratio is

proven by an adversary where the input is a set jobs with uniform power request. For

special cases of feasible intervals, there are online algorithms which perform better. For

jobs with unit time duration, common feasible interval, we propose a 2α-competitive

algorithm. For jobs with uniform power request, common release time and common

deadline, we propose a 22α-competitive algorithm. For jobs with agreeable deadlines
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(which means the jobs released later would have later deadlines) and uniform power

request, we prove that a next-fit approach is ( (8α)α

2 + 2α)-competitive. All these online

algorithms for special input are O(1)-competitive when α is a constant. The results are

listed in Table 1.1 (Kw is defined as 1 + dwmax
wmin
e, where wmax and wmin are the maximum

and minimum widths among all jobs; similarly, Kh is defined as 1 + dhmax
hmin
e, where hmax

and hmin are the maximum and minimum heights among all jobs.).

The techniques we use to solve the smart grid scheduling problem are adaptable

for other optimization problems. By adapting our online algorithm, we can solve the

online machine minimization problem and the peak minimization problem in smart grid

optimally in an asymptotic sense. We also elaborate how to use our fixed parameter

algorithm to solve the machine minimization problem.

Table 1.1: Our contribution on minimizing total cost in smart grid

Model Width Height Performance Chapter

Offline

exact

Unit Uniform

Contiguous feasible interval
O(n log τ + min{n, τ}n log n) time

4.2

O(n2τ) time 4.2
Contiguous feasible interval
O(n log n) time

4.2.4

Arbitrary Arbitrary

Three parameters
wmax

2m · (Wmax + 1)4m ·O(n2) time
4.3.3

Two parameters
(4m · wmax

2)2m ·O(n2) time
4.3.4

Offline

approx.
Arbitrary Arbitrary (36KwKh)α-approximation 4.4

Online

Unit Uniform min{ (4α)
α

2 + 1, 2α(8(e+ e2)α + 1)}-compet. 5.3.1

Unit Arbitrary
2α(min{ (2α)

α

2 , 8(e+ e2)α}+ 1)-compet. 5.1.1
Common feasible interval
2α-competitive

5.3.4

Uniform Arbitrary 12α · (min{ (2α)α

2 , 8(e+ e2)α}+ 1)-compet. 5.1.2

Arbitrary Uniform

Agreeable deadlines

( (8α)α

2 + 2α)-competitive
5.3.2

Common feasible interval
22α-competitive

5.3.3

Arbitrary Arbitrary (36Kw)α(min{ (2α)
α

2 , 8(e+ e2)α}+ 1)-compet. 5.1.3

The differences between our results and the results in [45]. The main

difference is that, in the online model, our goal is to guarantee the worst case performance

for the case where and the jobs without knowledge of release times, deadlines, widths,

and heights, while in [45], the authors established a stochastic model of the jobs and

tried to minimize the longterm average cost. Also, in our work we focus on the cost

function which is a power function of the load at any time, whereas in [45] the cost

function can be an arbitrary convex function.

For the NP-hardness, the authors in [45] showed it by reducing the bin packing

problem to a smart grid problem where jobs have heights and the objective is to minimize
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the maximum power consumption over time. By claiming that minimizing the maximum

power consumption in the time horizon is equivalent to minimizing the total convex cost

in the horizon, the authors claimed that the smart grid problem is NP-hard. Differently,

we prove that the smart grid problem is NP-hard by reducing the 3-partition problem

directly to the smart grid problem where the objective is to minimize the total cost.

1.3 Organization of the Thesis

The thesis is dedicated to the design and analysis of offline and online algorithms for the

smart grid scheduling problem. The work in this thesis is mainly based on the following

publications:

1. Mihai Burcea, Wing-Kai Hon, Hsiang-Hsuan Liu, Prudence W. H. Wong, David

K. Y. Yau: Scheduling for Electricity Cost in Smart Grid. The 7th Annual Inter-

national Conference on Combinatorial Optimization and Applications (COCOA),

2013: 306-317 ([9])

2. Wing-Kai Hon, Hsiang-Hsuan Liu, Prudence W.H. Wong: Online Nonpreemptive

Scheduling for Electricity Cost in Smart Grid. The 12th Workshop on Models and

Algorithms for Planning and Scheduling Problems (MAPSP), 2015: 193–195 ([35])

3. Mihai Burcea, Wing-Kai Hon, Hsiang Hsuan Liu, Prudence W. H. Wong, David

K. Y. Yau: Scheduling for electricity cost in a smart grid. Journal of Scheduling

19(6): 687-699 (2016) ([10])

4. Fu-Hong Liu, Hsiang-Hsuan Liu, Prudence W.H. Wong: Optimal Nonpreemptive

Scheduling in a Smart Grid Model. The 27th International Symposium on Algo-

rithms and Computation (ISAAC), 2016: 53:1-53:13 ([54])

Chapter 2 gives preliminaries about algorithms, tractability, and offline/online

models. We also mention some commonly used terminologies in scheduling area. We

formally define the smart grid scheduling discussed in this thesis.

Chapter 3 looks into a detailed background and history of the smart grid schedul-

ing problem. We also elaborate relating scheduling problems and algorithms, including

dynamic voltage speed/voltage scaling problem (DVS), bin packing problem, machine

minimization problem, and load balancing problem. We compare the smart grid schedul-

ing problem and these more classical scheduling problems; we also make contrast and

show the difficulties of adapting the existing solutions. In this chapter, we also discuss

graph algorithms and interval graphs, a special graph class. The graph algorithms give

us directions to solve the smart grid scheduling problem with special input, and hence

we can show that the grid problem with special input is polynomial-time solvable. On

the other hand, the special properties of interval graphs give us a way of tickling the

gird problem with more general input.
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Chapter 4 discusses offline smart grid scheduling problem. First, we prove that

the smart grid scheduling problem is NP-hard even when the input is very restricted or

preemption is allowed. However, we show that for a special input set with unit-size jobs

(that is, each job has unit power request and unit time duration), the optimal schedule

can be found in polynomial time. The main idea is using a graph structure to capture

all possible assignments of the current input jobs. The results were presented in [9] and

the journal version [10]. For the unit-size jobs, we also suggest a faster algorithm by

employing the results from the discrete DVS problem (Section 4.2.4.) This result is new

and has not published in proceedings. For the smart grid scheduling problem with more

general input, we give both approximation algorithms and exact algorithms. A simple

approximation algorithm for jobs with unit time duration was presented in [10], and we

generalize it to deal with the general input in this thesis (Section 4.4). The approxima-

tion algorithms use a classification technique and the polynomial time algorithm for the

unit-size jobs. On the other hand, the exact algorithms (Section 4.3) are based on the

observation of interval graphs. By the exact algorithms, we also prove the smart grid

scheduling problem is fixed-parameter tractable with respect to the maximum width of

jobs and the maximum number of jobs with overlapped feasible intervals. The results

about the exact solution for general input were presented in [54].

Chapter 5 considers the smart grid scheduling problem under the online model.

We present an online algorithm for general input with competitive ratio 36α · (1 +

dlog wmax
wmin
e)α · (min{ (2α)α

2 , 8(e(1 + e))α}+ 1) (Section 5.1). The online algorithm is based

on the one for unit power request input and uniform power request. We also prove

that for any deterministic online algorithm, the competitive ratio is at least (α3 )α for

any constant α and (1
3 log wmax

wmin
)α for arbitrary α. The results were presented in [54].

Furthermore, we investigate online algorithms for special input. We show that when

input jobs have restricted width, height, or feasible intervals, there are online strategies

with better performance (Section 5.3). The results about online algorithms for special

input were presented in [35] and some of the results are further improved in this thesis.

Chapter 6 contains other work which has not been published in proceedings. We

show how to use the techniques in this thesis to solve other problems like peak minimiza-

tion problem in smart grid model and machine minimization problem. We also discuss

the smart grid scheduling problem under limited power environment. For the approach

to finding an exact solution using interval graphs properties, we investigate some other

problems which are able to solve using this framework.

Chapter 7 gives concluding remarks. We also propose future directions for the

work.





Chapter 2

Preliminaries and Definitions

In this thesis, we mainly investigate the theoretical approach to a smart grid scheduling

problem. In the smart grid scheduling problem, each job associates with time duration,

power request, and feasible timeslots where it can be executed. The aim is to execute

the jobs within their feasible timeslots with the minimum sum of cost at every timeslot,

which is convex in the power request at the timeslot. Our aim is to study the smart grid

scheduling algorithms which guarantee worst case performance. We consider different

models. In the offline model, the algorithms know the whole set of input jobs in advance

while in the online model jobs arrive in an online manner and the algorithms have to

make decisions without knowledge of the future input.

In this chapter, we give preliminaries about algorithms, tractability, and offline al-

gorithms including approximation algorithm and exact algorithm in Section 2.1. In

Section 2.2, we give an introduction to online algorithms and competitive analysis. We

also introduce some commonly used terminologies in scheduling area in Section 2.3 which

is widely used throughout this thesis. In Section 2.4, we formally define the smart grid

scheduling problem discussed in this thesis.

2.1 Offline algorithms and class NP

Offline algorithms are algorithms with complete knowledge of the input for the prob-

lem in advance. For offline algorithms, one of the measurements of performance of an

algorithm is its time complexity. A problem is said to be in class P if it is solvable in

polynomial (in the size of the input) time. A problem is in the class NP if any of its yes

instance (that is, an instance such that the answer of the decision problem is “yes”) is

verifiable in polynomial time. The problems in class P are also in class NP since they are

naturally polynomial time verifiable for any yes instance. A problem is NP-hard if all

problems in class NP can be reduced to it in polynomial time, even though the problem

itself may not be in NP. An NP-hard problem is NP-complete if it is in NP.

There are many problems that have been proved to be in class NP. Some very clas-

sical ones are partition problem, bin packing problem, the decision version of traveling

salesman problem, the decision version of the 0/1-knapsack problem, etc. [30]. Most of

9
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the optimization problems, including the smart grid scheduling problem, are NP-hard.

We introduce the partition problem and bin packing problem:

The PARTITION problem. Given a set of integers A = {a1, a2, · · · , an}, decide if

there exists a subset of A such that the sum of integers in the subset is equal to half of

the summation of all integers.

The BINPACKING problem. Given a set of items A = {a1, a2, · · · , an} and infinite

supply of bins each with capacity c, decided if there exists a number of B bins to pack

the items such that the total size of the items in a bin does not exceed the bin capacity.

A problem might have numerical parameters. For example, the magnitudes of the

integers in the input to the PARTITION problem and the size of items and the capacity of

bins in the BINPACKING problem. The numerical parameters are part of the input to the

problem. For any NP-complete problem, there is no polynomial (in the input size) time

algorithm unless P=NP. If there exists an algorithm for the NP-hard/complete problem

whose running time is pseudo-polynomial in the input, the problem is said to be weakly

NP-hard/complete (NP-hard/complete in the weak sense). On the other hand, a problem

is strongly NP-hard/complete (NP-hard/complete in the strong sense), if it remains NP-

hard/complete even when all the numerical parameters are polynomial in the input size.

The BINPACKING problem is strongly NP-complete, while the PARTITION problem is

weakly NP-complete.

2.1.1 Approximation algorithms

To solve NP-complete or NP-hard problems efficiently, the optimality might be sacri-

ficed. In other words, there are trade-offs between the optimality and the efficiency.

An algorithm which can find nearly optimal solutions within polynomial time may be

good enough. Approximation algorithms are offline algorithms finding nearly optimal

solutions.

We use approximation ratio to measure the performance of approximation algo-

rithms. The approximation ratio of an algorithm is the worst case of its cost divided

by the optimal cost for all feasible input. Consider a minimization problem and let A
be an approximation algorithm. We denote A(I) as the cost of the output of algo-

rithm A with input I. We say that A is c-approximate if for any legal input I, we have

cost(A(I)) ≤ c · cost(O(I)) + b, where O is the optimal solution and b is a non-negative

constant.

2.1.2 Fixed-parameter algorithms

Exact algorithms seek an optimal solution for optimization problems. The running time

of these algorithms could be very large, especially for NP-hard problems. It is unknown

if an NP-complete problem can be solved in polynomial time in the input size of the

problem. In parameterized complexity theory, the complexity of a problem is not only
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measured regarding the input size, but also in terms of parameters. Generally speaking,

an algorithm is a fixed-parameter algorithm if it solves a problem with input size n and

a set of parameters {p1, p2, · · · } in f(p1, p2, · · · ) ·O(g(n)) time for some function f and

some polynomial function g.

A problem is fixed-parameter tractable if it admits a fixed-parameter algorithm. The

idea is that, by restricting parameters which are allowed to have exponential growth

running time, we may get knowledge of how these parameters or characters of the prob-

lem influence the complexity. Hence, by studying fixed-parameter algorithms we might

know better about which parameters make the decision-making so difficult. On the

other hand, the parameters might be assumed to be small, and the time complexity of

the fixed-parameter algorithm would be small if the parameters are small. That is, we

can claim that if the parameters are small, the problem can be solved efficiently.

For a problem, there might be many different sets of parameters. Different ways

of parameterizing a problem give different insights into the complexity of the problem,

and there is no parameterization which is better than others. For example, in the

CNF-SATISFIABILITY problem, some possible parameters are clause size, the number of

variables, the number of clauses, etc. [66].

2.2 Online algorithms

In online computation, an algorithm has to make decisions based on past events and

without information about future. Once a decision is made, it cannot be changed. Such

algorithms are called the online algorithms. The difficulty of designing online algorithms

is that each decision is made without knowing the whole picture of the input, and the

impact of each decision influences the cost or performance of the final solution. In

Section 5, we consider online algorithms, where the job information is only revealed at

the time the job is released; the algorithm has to decide which jobs to run at the current

time without future information and decisions made cannot be changed later.

There are two types of online models, online time model and online list model. In

the online time model, the information of each job is known at the time it is available.

Hence the available time of a job is equal to its release time and the job released earlier

would be available earlier. In the online list model, the jobs are released according to

an ordering. The next job in the ordering will be released once the previously released

one is processed. The ordering of releasing does not depend on the earliest time when

the jobs are available.

Similarly to the approximation ratio, we use competitive ratio to measure the perfor-

mance of an online algorithm. The competitive ratio of an algorithm is the worst case of

its cost divided by the optimal cost for all feasible input. We let A(I) denote the cost of

the output of algorithm A with input I. Consider a minimization problem and an online

algorithm A. We say that A is c-competitive if for all feasible input sequence I, its cost

cost(A(I)) ≤ c · cost(O(I)) + b, where O is the optimal solution and b is a constant at
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least 0. Notice that O is the optimal offline solution, which knows the whole input in

advance. It is worth to mention that any online algorithm is also an approximation and

the approximation ratio of the algorithm is exactly its competitive ratio.

The game with adversaries. When analyzing online algorithms, it can be viewed

as a game between an online player who runs an online algorithm and an adversary

who can create inputs. In this thesis, we consider adaptive adversaries. An adaptive

adversary knows the action of the online player so far, and is able to design the next input

according to this knowledge. In the game between an online algorithm and an adversary,

the adversary tries to construct the worst possible input for the online algorithm such

that the competitive ratio is maximized. In other words, the adversary works to make

the competitive ratio as high as possible.

Consider a sequence I of input generated by an adversary and an online algorithm A.

If cost(A(I)) ≥ c ·cost(O(I)) for all instance I, it means that the competitive ratio of A
is at least c. On the other hand, if we can prove that for any online algorithms A, there

is an input I such that the competitive ratio is at least c, it means c is the lower bound

of the competitive ratio of the optimization problem.

2.3 Scheduling

Scheduling is one of the intensively studied optimization problems. We refer to a survey

by Leung [48]. Generally speaking, scheduling is about making decisions to allocate

resources to activities with the objective of optimizing one or more measurement of

performance. In this thesis, the scheduling problem is to allocate execution timeslots

(resources) to jobs (activities) such that the total cost in generating power is minimized.

In the following, we introduce some terminologies widely used in scheduling area.

Preemptive and non-preemptive scheduling. In preemptive scheduling, jobs

are allowed to stop temporarily and resume later. On the other hand, in non-preemptive

scheduling, once a job starts executing, the execution will not stop until the task is

finished. In this thesis, we consider non-preemptive scheduling.

The earliest deadline first (EDF) principle. The EDF principle is a natural

strategy of scheduling. It defines the ordering of job executions according to their

deadlines. At any time, the EDF principle chooses the job with the minimum deadline

to be executed.

Special inputs. There are some special inputs discussed in scheduling problems.

A clique instance is a set of jobs all containing at least one common timeslot. That is,

a clique instance is a set of jobs J1, J2, · · · , with at least one timeslot t ∈ I(Ji) for all i,

where I(Ji) is the feasible interval of job Ji.

The jobs with agreeable deadlines means that for any two jobs J1 and J2, if J1 is

released no later than J2, then the deadline of J1 must be no later than the deadline of J2.
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More formally, for any two jobs J1 and J2 with their own feasible intervals [r(J1), d(J1))

and [r(J2), d(J2)), respectively, r(J1) ≤ r(J2) implies d(J1) ≤ d(J2).

A laminar instance is another well-know special input set. In laminar case, any two

jobs J1 and J2 are either disjoint or one’s feasible interval is completely inside the the

other’s feasible interval. That is, either [r(J1), d(J1))∩[r(J2), d(J2)) = ∅, [r(J1), d(J1)) ⊆
[r(J2), d(J2)), or [r(J1), d(J1)) ⊇ [r(J2), d(J2)).

2.4 Smart Grid Scheduling Problem and Definitions

In this thesis, we consider a smart grid scheduling problem. The input to the smart grid

scheduling problem is a set of jobs with power requests, time durations, and a set of

feasible timeslots in which it can be scheduled. The goal is to serve all jobs within their

feasible timeslots without preemption such that the total electricity cost is minimized.

It can be seen as deciding the time to start each job. According to the schedule, there is

a profile of power needs to be generated at each time. That is, the total power request

at each timeslot which is determined by the schedule. The cost needed for generating

the power is a convex function of the power request at any time [45, 65]. We want to

find a schedule such that the total electricity cost of the consequent power profile is as

small as possible.

The input. We denote by J = {J1, J2, · · · , Jn} a set of input jobs. Each job Jj

comes with width w(Jj), representing the time duration required by Jj , and height h(Jj),

representing the power required by Jj . The work of job Jj , p(Jj), is defined as the

product of its power request and its time duration. That is, p(Jj) = w(Jj)×h(Jj). The

time is labeled from 1 to τ + 1 and we call the unit time [t, t + 1) timeslot t. That is,

the time is divided into integral timeslots T = {1, 2, 3, ..., τ}. Each job Jj also associates

with feasible timeslots I(Jj) ⊆ T , representing the set of timeslots when Jj can be

executed. We say that Jj is available during I(Jj). If the feasible timeslots I(Jj) of Jj

form a contiguous interval, we call it the feasible interval of Jj . A feasible interval I(Jj)

is represented by [r(Jj), d(Jj)) where release time r(Jj) is the earliest time Jj can be

executed and Jj should be finished before its deadline d(Jj). We consider events (release

time, deadlines, feasible timeslots) occurring at integral time and assume w(Jj), h(Jj),

r(Jj), and d(Jj), are integers.

Figure 2.1 shows illustrations of jobs. We consider each job Jj as a solid and unsplit-

table rectangle which can be shifted inside its feasible timeslots. An input job set would

be a set of this kind of rectangles. Moreover, we assume that the input is feasible, that is,

there exists a schedule such that each of the jobs can be assigned in its feasible timeslots.

In other words, for every job Jj , there exist t ∈ I(Jj) such that [t, t + w(Jj)) ⊆ I(Jj).

The rectangles can be stacked up, which means the corresponding jobs are executed at

some same timeslots.
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release time r(Jj) deadline d(Jj)

feasible interval

Figure 2.1: Illustrations of a job in the GRID problem.

Feasible schedule. A feasible schedule S has to assign for each job J a start

time st(S, J) ∈ I(J) meaning that J runs from [st(S, J), et(S, J)), where for each t ∈
[st(S, J), et(S, J)), t ∈ I(J). Note that this means preemption is not allowed. The load

of S at time t, denoted by `oad(S, t) is the sum of the height (power request) of all jobs

running at t, i.e., `oad(S, t) =
∑

J :t∈[st(S,J),et(S,J)) h(J). We drop S and use `oad(t) when

the context is clear. Given an interval I, the work of a schedule S within I is defined as∑
t∈I `oad(S, t). For any algorithm A, we use A(J ) to denote the schedule of A on J .

We denote by O the optimal algorithm.

The GRID algorithm. We consider the smart grid scheduling problem where the

cost of a schedule S is the sum of the α-th power of the load over all time, for some α > 1,

i.e., cost(S) =
∑

t(`oad(S, t))α. For a set of timeslots I (not necessarily contiguous), we

denote by cost(S, I) =
∑

t∈I(`oad(S, t))α. The objective is to find an assignment of all

jobs in J to feasible timeslots such that the total cost is minimized. We call this the

GRID problem.

In classical scheduling problems, the objectives usually concern about time. For ex-

ample, minimizing flow time is to minimize the sum of the time from releasing a job to

the time it is finished; minimizing makespan is to minimize the completion time of the

last completed jobs. Unlike the classical scheduling problems, in the smart grid schedul-

ing problem, the cost of a certain job dependents on not only its power request and

time duration, but also the parameters of the jobs with overlapping execution intervals

with it. Because of the convexity of the cost function, it would be much more expen-

sive to execute jobs at the same time than to execute jobs without execution timeslots

overlapping. In other words, it is better to schedule the jobs evenly over time.
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Literature Review

Koutsopoulos and Tassiulas [45] has formulated a similar problem to our problem and

the objective is to minimize the long term cost given a distribution of the input jobs.

They show that the problem is NP-hard. Feng et al. [27] have claimed that a simple

greedy algorithm is 2-competitive for the unit case and α = 2. However, as shown in [55],

there is indeed a counter example that the greedy algorithm is at least 3-competitive

and so the precise competitiveness of the greedy algorithm is still unknown. This implies

that it is still an open question to derive competitive online algorithms for the problem.

Salinas et al. [72] considered a multi-objective problem to minimize energy consumption

cost and maximize some utility. A closely related problem is to manage the load by

changing the price of electricity over time [11, 24, 61, 63]. Heuristics have also been

developed for demand side management [58]. Other aspects of smart grid have also

been considered, e.g., communication [12, 49, 53, 56], security [56, 60]. Reviews of smart

grid can be found in [25, 33, 38, 59, 84].

The combinatorial problem we defined in this thesis has analogy to the traditional

load balancing problem [4] and machine minimization problem [13, 16, 17, 71] but the

main differences are the objectives. In the load balancing problem, the objective is to

minimize the peak load among all machines [4]; in the machine minimization problem,

the objective is to minimize the maximum number of machines needed [13, 16, 17, 71].

Minimizing peak load has also been looked at in the context of smart grid [1, 41, 76, 82,

83], some of which further consider allowing reshaping of the jobs [1, 41]. Our problem

also has a resemblance to the dynamic speed scaling problem [2, 7, 81] and our algorithms

employ some techniques there.

We first review the previous results of the grid problem with the objective to min-

imize the peak power request (Section 3.1.1), which has been widely studied. Then

we move on to the GRID problem, that is, the smart grid scheduling problem with the

objective to minimize the total cost (Section 3.1.2), which is the problem we discuss in

this thesis. We also elaborate relating scheduling problems and algorithms, including

dynamic voltage speed/voltage scaling problem (DVS) (Section 3.2), machine minimiza-

tion problem (Section 3.3.1), bin packing problem (Section 3.3.2), and load balancing

problem (Section 3.3.3). We aim to understand the relation between the GRID problem

15
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and these more classical scheduling problems. In this chapter, we also discuss graph

algorithms and interval graphs, a special graph class. The graph algorithms give us di-

rections to solve the smart grid scheduling problem with special input, and hence we can

show that the grid problem with special input is polynomial-time solvable (Section 3.4).

On the other hand, the special properties of interval graphs give us a way of tickling the

grid problem with more general input (Section 3.4.3).

3.1 Previous Work on Smart Grid Scheduling

In this section, we first review the previous results in the smart grid scheduling problems.

Before the research in the grid problem with the objective of minimizing the total cost,

the grid problem with the objective of minimizing the peak power request is much

widely investigated. We first review the results of the grid problem with the objective

of minimizing the peak power request, then move on to the smart grid problem with the

objective of minimizing the total cost, which is the problem we discuss in this thesis.

3.1.1 Minimizing peak power demand

The problem of minimizing peak power demand over time has been studied before [68,

69, 76, 82, 83]. The peak minimization problem is similar to the GRID problem but the

objective is to find an assignment of all jobs to feasible timeslots such that the peak load

along the time is minimized. That is, minimize maxt{`oad(t)}. We call it the GRIDpeak

problem.

Tang et al. [76] studied the GRIDpeak problem and considered a special case that the

jobs have common feasible interval. That is, each job has same release time and same

deadline. They proved that the GRIDpeak problem is NP-hard even for the common

feasible interval special case. They further proposed an offline greedy strategy and

proved that it is 7.82-approximate [76, 83].

The authors [76] also discussed another related problem, the Delay Minimization

Problem, in which the maximum power supply is given. The Delay Minimization Prob-

lem is to schedule the jobs such that the power is no more than the maximum power

supply at any time and the objective is to minimize the maximum finish time among

all jobs. In other words, if the available power per time unit is limited, how to finish

all the requests as soon as possible. For this problem with special input where all jobs

have common feasible interval, the online greedy strategy is 2-competitive if there exists

a feasible solution.

For the non-preemptive Peak Demand Minimization problem, Yaw et al. [83] further

proved that it is even NP-hard to approximate within a factor of 3
2 − ε (this holds even

for special input where each job has common feasible interval). The proof is by reducing

from Bin-Packing problem. The authors proposed a 4-approximation algorithm for the

instance where jobs have same release time and same deadline. The basic idea is grouping
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jobs by height, splitting the bin recursively, and schedule each group in the different area.

For input job set with agreeable deadlines (that is, jobs have later release time must

have later deadline), the authors also proposed a O(log wmax
wmin

)-approximation algorithm

by modifying their algorithm for common feasible interval instance. For general input

where jobs have arbitrary release time and arbitrary deadline, the authors proposed a

heuristic and experimental results. The heuristic is basically scheduling the less flexible

jobs (that is, the jobs with higher w(J)
d(J)−r(J) ratio) first.

Ranjan et al. [68] studied the preemptive case of the GRIDpeak problem. They showed

that the GRIDpeak problem is NP-hard even when preemptive is allowed. The authors

further proved that the next-fit decreasing height heuristic is 2-approximate when jobs

(with same feasible interval) are all preemptive and 3-approximate when some of the

jobs are non-preemptive. In their another paper [69], the authors further improved the

approximation ratio upper bound to 1 + 1.7OPT by first-fit decreasing height strategy

for instances with both preemptive and non-preemptive jobs.

Yaw et al. [82] investigated an exact algorithm to find an optimal schedule of the

non-preemptive GRIDpeak problem and gave experimental results. They showed that the

problem is fixed-parameter tractable.

3.1.2 Minimizing total cost over time

In some cases, minimizing peak power demand may not be good enough. Although the

peak is minimized, there might be many timeslots with high power demand and hence

the total cost is still high. We focus on another objective in the smart grid scheduling

problems which is to minimize the total electricity cost. There were some results in

minimizing total cost [27, 45, 65]. We first elaborate the relation between the two

objectives, minimizing total cost and minimizing peak demand.

Relating to minimizing peak demand. For the same input instance, the ob-

jective of minimizing peak or minimizing total cost might leads to different optimal

schedule. That is, minimizing the peak demand does not necessarily minimize the to-

tal cost, and vice versa. Example 3.1 shows an instance and schedules with respect to

minimizing peak and minimizing total cost. The example shows that a schedule with

minimized peak may have a higher cost. In other way round, a schedule with minimized

cost may have higher peak demand.

Example 3.1. Consider positive integer x and J = {J1, J2, J3} where w(J1) = w(J2) =

x, h(J1) = h(J2) = 1, w(J3) = 1, h(J3) = 2, I(J1) = I(J2) = [0, 2x) and I(J3) =

[x − 1, x) (see Figure 3.1a). Figure 3.1b shows a schedule Sc with minimum total cost,

which is 3α + 2x − 1. Figure 3.1c shows a schedule Sp with minimum peak, which has

cost (x+ 1) · 2α. It is easy to see that the peak in Sc is 3, which is higher than the peak

in Sp, while the cost in Sc is lower than Sp when x > 3α−2α−1
2α−2 .



Chapter 3. Literature Review 18

x-1 x0 2x

J2

J3

J11

1

1

x

x

2

(a) Illustration of the three jobs
in J

x-1 x0 2x

J2

J3

J1

(b) Schedule Sc with minimum
total cost

x-1 x0 2x

J2

J3

J1

(c) Schedule Sp with minimum
peak

Figure 3.1: An illustration of Example 3.1.

Intuitively, when α is big enough, the cost at the peak hour will dominate the total

cost. In fact, it was shown in [55] that there is a polynomial time reduction of the

decision version of the min-peak problem to that of the min-cost problem for a large

enough α:

Lemma 3.1 ([55]). A grid scheduling problem with objective to minimize the maximum

power request can be reduced to a grid scheduling problem with objective to minimize the

total cost by setting α > (τ − 1)(2
∑

J∈J h(J) + 1), and the solution of min-cost problem

under this setting is a solution of the corresponding min-max problem.

Previously there were some results in minimizing total cost in smart grid model [27,

45, 65].

Koutsopoulos and Tassiulas [45] studied a similar problem to the GRID problem.

Comparing to our problem, their cost function can be an arbitrary convex function while

our cost function is an α-power function of load. Moreover, they studied stochastic model

and aimed to minimize the expectation of long-term cost while we aim to minimize the

total cost and guarantee the worst case performance.

The authors [45] claimed that for instance where jobs can be preempted, the GRID

problem is equivalent to a load balancing problem (and hence NP-hard) and proposed

an iterative load balancing algorithm to find an optimal schedule of preemptive jobs.

For non-preemptive case of the GRID problem, the authors claimed that it is NP-hard.

For the online setting, the authors devised a stochastic model and focused on mini-

mizing the long-term average cost. The authors proposed two strategies and proved one

of them to be asymptotically optimal by deriving a lower bound for the performance of

all policies.

Instead of minimizing the long-term average cost, Feng et al. [27] investigated the

worst case competitive ratio of the GRID problem under online list setting. In the model

time is divided into integral timeslots, each job has unit power request and unit time

duration and is released with arbitrary feasible timeslots, which can be non-contiguous.

Moreover, the authors consider the case where the cost function is quadratic (that is,

α = 2). They investigated the greedy strategy and claimed that it is 2-competitive.
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However, Liu et al. [55] proved that greedy strategy is no better than 3-competitive

when α = 2 by showing an adversary and hence the precise competitiveness of the

greedy algorithm is still unknown.

Narayanaswamy et al. [65] considered a more practical model that other than the

power generated by the generator (with quadratic cost function), there is also a renewable

resource. The renewable power resource (for example, wind power) varies over time and

can only be predicted accurately before short period of time. The generator has to

decide how much power to generate such that the generated power together with the

renewable power satisfy the time-varying power demand. The objective is to generate

sufficient amount of power with minimum regret, which is the difference between the

online and the optimal costs. The authors applied recent work in online optimization

and proved the algorithm is asymptotically good by deriving bounds in terms of the

generator parameters.

Another flourishingly studied problem about optimizing power demand with convex

cost function is Dynamic Voltage/Speed Scaling problem. We will discuss in details in

Section 3.2

3.2 Dynamic Voltage/Speed Scaling Problem

The combinatorial problem we defined in this thesis has an analogy to the dynamic

voltage/speed scaling problem. In this section, we review some famous algorithms for

the dynamic voltage/speed scaling problem. In Chapter 5 we will further elaborate how

to solve the GRID problem by adapting these algorithms. We also introduce different

variations of the dynamic voltage/speed scaling problem and investigate the similarities

and differences between these problems and the GRID problem. It gives us fascinating

views on how the constraints/properties of the energy-efficient optimization problems

affect on the complexities and strategies design.

The theoretical research of dynamic voltage/speed scaling (DVS) problem was raised

by Yao, Demers, and Shenker in 1995 [81]. The authors proposed a model of job schedul-

ing aiming at minimizing energy consumption. In their model, job requests J are given

with their work loads p(J), release times r(J) and deadlines r(J). For each job J, its

work p(J) should be finished within [r(J), d(J)) and preemption is allowed. A processor

can run at speed s ∈ [0,∞) and consumes energy in a rate of sα, for some α > 1. The

processor with speed s means that it can finish s units of work per unit of time. At any

time the scheduler has to decide both which job to be executed and the processor speed

to execute the job. The objective is to minimize the total energy consumption. There

are different variations of the DVS problem. We also introduce the discrete dynamic

DVS problem and the non-preemptive DVS problem.
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3.2.1 Algorithms for the DVS Problem

In this section, we introduce various algorithms for the DVS problem under offline or

online setting.

The YDS algorithm [81]. The authors proposed an O(n2 log n) time algorithm for

the offline DVS problem where n is the number of jobs. The key characterization of an

optimal schedule is based on the notion of critical intervals. A critical interval is a time

interval where a group of jobs must be scheduled at maximum, constant speed in any

optimal schedule. The offline algorithm is iteratively picking critical intervals by finding

intervals having most work has to be done within it. More formally, define intensity of

interval I as the summation of work of jobs with feasible interval completely inside I

divided by the length of |I|, it is easy to see that the intensity of I is a lower bound

of the average speed in I. The YDS algorithm iteratively finds the interval I with the

highest intensity, assigns the speed as the intensity and runs the jobs completely inside

the interval.

It is worth to mention that for the objective minimizing the maximum processor

speed, YDS is also optimal [6].

The AVR algorithm [81]. For online DVS problem, Yao et al. [81] proposed

the average rate algorithm (AVR). The strategy is based on the density of each job

J, which is defined as p(J)
d(J)−r(J) . In other words, consider an input with a single job,

the density of the job is the processor speed in the optimal schedule. At any time t,

AVR set the processor speed as the summation of the density of the jobs with feasible

interval crossing t and the ordering of jobs execution follows the earliest deadline first

(EDF) principle. In other words, in AVR, the schedule and processor speed of each

job are considered independently. The final schedule can be seen as stacking up of all

independent schedules; at any time, the processor speed is the sum of processor speed in

every independent schedule (Figure 3.2c) and the job to be executed is chosen according

to the EDF principle (Figure 3.2d). The authors claimed that if the energy consumption

function is in the form P (s) = s2, the competitive ratio ofAVR is between 4 to 8. Bansal,

Kimbrel, and Pruhs [6] later proved that the AVR algorithm is O(1)-competitive if the

energy consumption function is in the form P (s(t)) = (s(t))α.

Lemma 3.2 ([6]). The AVR algorithm is (2α)α

2 -competitive if the energy consumption

function is in the form P (s(t)) = (s(t))α.

Notice that AVR does not perform well with objective minimizing maximum speed.

The following example shows an adversary on which AVR is Ω(n)-competitive.

Example 3.2. There are n jobs J1, J2, · · · , Jn. For job Jj, its release time r(Jj) = 0,

deadline d(Jj) = 2j−1, and work load `j = 2j−1. The YDS algorithm runs at constant

processor speed 2 − 21−n all over the time horizon while AVR runs at speed n at time

interval [0, 1) and speed n − i at time t ∈ [2i−1, 2i) for i ≥ 1. The maximum speed of

YDS is less than 2 while the maximum speed of AVR is n. Figure 3.2 shows an input

set where n = 4.
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Figure 3.2: Illustration of Example 3.2.

Time complexity of AVR. At any time t, it needs O(n) time to calculate the

speed needed at t.

The BKP algorithm [6]. The BKP algorithm is proposed by Bansal, Kimbrel, and

Pruhs. At time t, BKP considers all possible windows with specific proportion before

and after t. More formally, the window, which is a time interval [t1, t2) containing t, must

have the relation that |t2−t1| : |t2−t| = e : 1. The BKP algorithm considers all windows

satisfying the property and finds the one with highest average released work load (by

time t) completely inside it. That is, let `(t, t1, t2) =
∑

t≥r(Jj)∧[r(Jj),d(Jj))⊆[t1,t2) `j denote

the total work load of jobs which have been released by time t and are completely inside

the window [t1, t2). Notice that the window [t1, t2) should satisfy the property stated

above. At any time t, BKP finds the window [t1, t2) which has maximum value of `(t,t1,t2)
|t2−t1|

and decides the processor speed to be at e × `(t,t1,t2)
|t2−t1| . The ordering of jobs execution

follows the earliest deadline first (EDF) principle. The authors proved that BKP is O(1)-

competitive with respective to both total energy consumption and maximum speed:

Lemma 3.3 ([6]). The BKP algorithm is 2( α
α−1)αeα-competitive with respect to energy

and e-competitive with respect to maximum speed.
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If α ≥ 2, the competitive ratio of BKP is at most 8eα. Note that BKP has better

competitive ratio than AVR when α ≥ 5. And also, YDS, AVR, and BKP are all

independent of α.

Time complexity of BKP. At any time t, consider the window [t1, t2) with

maximum `(t,t1,t2)
|t2−t1| value, at least one of t1 and t2 is the release time or deadline of some

jobs, otherwise `(t,t1,t2)
|t2−t1| is not maximum. Hence the window [t1, t2) can be found in

O(n2
t ) time where nt is the number of jobs released by t.

3.2.2 Discrete dynamic voltage/speed scheduling

Unlike the DVS problem where the speed of the processor can be arbitrary, in the Discrete

DVS problem, the processor speed is restricted to a given set of speeds. In the end of

this section, we will see how to related the DVS problems to the GRID problem. The

speed restriction of the Discrete DVS problem gives us an inspiration: since in the GRID

problem, the power requests of jobs are fixed and not any real value of power request

is needed (for example, if all jobs have integral power requests, then the non-integral

speeds seem to be redundant), hence, maybe the Discrete DVS problem is closer to the

GRID problem. In this section we introduce the results of the Discrete DVS problem.

In Section 4.2.4, we will show in details how to relate the Discrete DVS problem to the

GRID problem and elaborate a polynomial time algorithm for the GRID problem with

special input by adapting an algorithm for the Discrete DVS problem.

Ishihara and Yasuura addressed the discrete dynamic voltage/speed scheduling prob-

lem [39]. In the original (continuous speed) DVS problem, the processor can be run

at arbitrary real-valued speed. However, in real world the processor can only run at

a speed selected from a given finite set of d speed levels S = {s1, s2, · · · , sd} where

s1 > s2 > · · · > sd. The DVS problem with discrete speeds constraint is called discrete

dynamic voltage/speed scheduling problem. Under the discrete speeds constraints, the

schedule generated by YDS algorithm may not be valid for the Discrete DVS problem

since the processor speed decided by YDS may not be available. Kwon and Kim pro-

posed a O(n2 log n)-time algorithm (where n is the number of jobs) to find a schedule

with optimal energy consumption which also satisfies the discrete speed constraints [47].

The algorithm is based on the YDS algorithm for original DVS problem, which is prob-

ably invalid (for the Discrete DVS problem). If the speed s of YDS schedule in time

interval [t1, t2) is not available in the speed set S, the authors transform the YDS sched-

ule to a valid schedule for the Discrete DVS problem by replacing the speed in [t1, t2)

by si and si+1 (which are both in S) where si > s > si+1.

By directly characterizing the optimal schedule of the Discrete DVS problem, Li et

al. [52] proposed an optimal algorithm with running time O(n log max{d, n}) where n is

the number of jobs and d is the number of available speeds. The authors also revisited

the continuous DVS problem and improved the running time from O(n2 log n) to O(n2).
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Also, the computation lower bound of the discrete DVS problem is proved to be at least

Ω(n log n) in the algebraic decision tree model.

For the online version of discrete DVS, Li proposed an (2α−1(α−1)α−1(δα−1)α

(δ−1)(δα−δ)α−1 + 1)-

competitive online algorithm, where δ is the maximum ratio between any pair of adjacent

non-zero speed levels [50]. That is, δ = maxsi>0
si
si+1

. The algorithm is by transforming

AVR to an online heuristic.

3.2.3 Non-preemptive dynamic voltage/speed scheduling

The DVS problems we discussed above all allow preemption. One of the main differences

between the DVS problem and the GRID problem is that the preemption of jobs is allowed

in the DVS problem while the preemption of jobs is not allowed in the GRID problem.

It brings up a question: is the GRID problem more related to the non-preemptive DVS

problem than to the DVS problem?

Although the DVS problem is polynomial time solvable for both single machine and

multi-machine [5], the non-preemptive DVS is NP-hard. It can be proved by reducing

from the PARTITION problem [3]. Moreover, it can be proved to be strongly NP-hard

by reducing from the 3-PARTITION problem [3]. However, for instance with agreeable

deadlines, the non-preemptive DVS problem is in P [3].

For jobs with equal work loads, the non-preemptive DVS problem is polynomial time

solvable. Huang and Ott [37] proved it by proposing an O(n4) time algorithm based on

dynamic programming.

Bampis et al. [5] proposed a (1+ `max
`min

)α-approximation algorithm for the general case,

where `max and `min are maximum work load and minimum work load, respectively.

The algorithm is by transforming the YDS schedule (which is preemptive) to a non-

preemptive one. By this result, there is a 2α-approximation algorithm for uniform-

workload jobs.

Antoniadis and Huang [3] proposed an approximation algorithm with approximation

ratio 25α−4, which is not related to the work loads. This algorithm is based on a 24α−3-

approximation algorithm for laminar case jobs.

In Table 3.1, we summarize the current results of different variations of the DVS

problem under offline or online model.

Relating to the GRID problem. DVS and GRID are both energy-aware scheduling

problems. The cost functions in the two problems are in the same convex form. However,

the differences between these two problems are crucial and make the design and analysis

of algorithms different. One of the main differences is, in the DVS problem, jobs are

characterized by work load, which can be finished with any speed (and even different

speeds at different time). In contrast, in the GRID problem, the jobs are characterized

by fixed power request and time duration, which means each job has to be executed with

specific power for a specific duration of time. Not to mention that preemption is allowed
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Table 3.1: Summarize of results of the DVS problem.

offline
(running time)

online
(competitve ratio)

DVS O(n2 log n) [52]

AVR:
2α−1αα [6]
BKP:
2( α
α−1)αeα [6]

discrete DVS O(n log max{d, n}) [52] 2α−1(α−1)α−1(δα−1)α

(δ−1)(δα−δ)α−1 + 1 [50]

non-preemptive
DVS

strongly NP-hard
O(25α−4)-approximate [3]

in the original DVS problem while preemption is not allowed in the GRID problem.

For visualizing the DVS problem, a job can be seen as arbitrary “shape” which can be

stretched, rotated or split, as long as the total area of the shape remains the same as its

work load.

For GRID problem with unit-size jobs (that is, the jobs have unit time duration

and unit power request), preemption is not necessary since the jobs are only released

or expired at the beginning of timeslots (which means the necessary preemptions must

happen at the beginning of timeslots). Hence for GRID problem with unit-size jobs, it

is relatively easy to adapt the algorithms of DVS.

We can transform an input set where all jobs have contiguous feasible intervals of

GRID problem to an input set of DVS problem by the following: for each job J, the

corresponding job in the DVS problem has work load w(J) ·h(J), release time r(J), and

deadline d(J). Notice that for special input where jobs sizes are unit, the consequent

jobs are with unit work loads.

Since the power requests of jobs in GRID problem with unit-size jobs are exactly 1,

the power demand at each timeslots in any schedule is integral. Recall the discrete DVS

problem, by setting the speeds set S = {1, 2, 3, · · · , n} where n is the number of jobs, a

discrete DVS schedule of the input jobs is also a GRID schedule. We will give details of

this approach in Section 4.2.4.

For more general input of GRID problem, it is hard to adapt the algorithms for

DVS problems. It is difficult even for unit-width jobs although there is no need for

preemption. The first difficulty is that in the case where jobs with arbitrary heights and

unit width, setting speeds set as all integers is not reasonable. Given a discrete DVS

schedule, it may be impossible to transform the schedule into a GRID schedule since the

speed at a timeslot may not be sum of heights of any subset of jobs available at that

timeslot (it is just like the McNugget number problem). It makes it hard to upper bound

the approximation/competitive ratio.

Although it is difficult to use the DVS algorithms to solve the GRID problem, the

cost of optimal schedule in the DVS problem is a lower bound of the cost of optimal

schedule in the GRID problem for the corresponding input sets. More formally, given any

input set of the GRID problem, JGRID, and the transformed input set of DVS problem,
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JDVS, cost(OGRID(JGRID)) ≤ cost(OGRID(JGRID)), whereOGRID andODVS are the optimal

algorithm of GRID and DVS, respectively.

Comparing the non-preemptive DVS problem with the GRID problem, there is an

example shows that given a job set JGRID and the corresponding JDVS, cost(ODVS(JDVS))

may not necessarily lower than cost(OGRID(JGRID)), where ODVS here is the optimal

algorithm for non-preemptive DVS.

Example 3.3. There are two jobs. One has release time 0, deadline 3, width 3 and

height 1. The other has release time 1, deadline 2, width 1 and height 1. Both jobs can

only schedule at their release time in GRID since their widths are the same as the lengths

of their feasible intervals. The optimal cost of GRID is 1α + 2α + 1α = 2α + 2. Whereas

the optimal cost of non-preemptive DVS is 2α + 2α = 2 · 2α. This is because the schedule

uses speed 2 and runs the longer job with time interval with length 1.5 and the shorter

job with time interval with length 0.5. The optimal cost of GRID is lower when α > 1.

Therefore, it is unclear how we may use the results on non-preemptive DVS problem

and so we would stick with the preemptive DVS algorithms in this thesis.

3.3 Related Scheduling Problems

The energy-efficient optimization problem we consider in this thesis has analogies to

the traditional optimization problems such as the Machine Minimization problem, the

Load Balancing problem, and the Bin Packing problem. In this section, we investigate

these problems and some of the techniques are adapted to solve the GRID problem in

Section 5.3. Furthermore, in Chapter 6 we show that our technique can be adapted to

solve the Machine Minimization problem.

3.3.1 Machine minimization

The Machine Minimization problem is a well-studied optimization problem. The non-

preemptive machine minimization problem is a special case of the smart grid scheduling

problem with objective of minimizing the peak. In this section, we investigate the

Machine Minimization problem. In Chapter 6 we show that our technique can be adapted

for this problem and we propose a competitive algorithm for the Machine Minimization

problem.

The formal definition of the Machine Minimization problem is as the following. Given

a set of jobs with processing times p, release times r, and deadlines d and infinite number

of machines, each job has to be scheduled on a machine such that in its execution interval

(which is inside the interval between its release time and deadline) there is no other jobs

assigned on the same machine. The goal is to minimize the number of opened machines.

The machine minimization problem has been studied intensively for both preemp-

tive and non-preemptive settings. The preemptive machine minimization problem is
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polynomial time solvable [36]. On the other hand, the non-preemptive case is NP-hard.

Cieliebak et al. [18] showed that there is no polynomial time non-preemptive machine

minimization problem with approximation ratio less than 2, unless P=NP. They also

proved that there is an (d2δmax
pmin
e + 1)-approximation algorithm where pmin is the mini-

mum processing time among all jobs and δmax is the maximum slack, which is defined as

d− r− p for each job. For non-preemptive machine minimization, there are results with

respect to different parameters. Chuzhoy et al. [15] proposed an O(m)-approximation

algorithm where m is the optimal solution. It can also be shown to be O(
√

logn
log logn)-

approximate where n is the number of jobs.

For the online version of preemptive machine minimization, Phillips et al. [67] showed

that the least laxity first (LLF) strategy is O(log pmax

pmin
)-competitive, where pmax and pmin

are the maximum processing time and the minimum processing time, respectively. They

also showed that there exists no 5
4 -competitive algorithm. For other parameters, Chen et

al. [13] proposed an O(logm)-competitive algorithm, where m is the number of machines

used by an optimal schedule.

Saha [71] showed that any online algorithm for the non-preemptive machine min-

imization problem has competitive ratio at least log3
pmax

pmin
. The adversary is like the

following. There are n jobs, each job Jj has processing time p(Jj) = 3n−j and the length

between its release time and deadline, |d(Jj)− r(Jj)| = 3 · p(Jj). The first job J1 is re-

leased at time 1 and for 1 < j < n, Jj+1 is released at the time when Jj is executed. It is

easy to see that the online algorithm uses log3
pmax

pmin
machines while an optimal schedule

only needs one machine. In addition, it can be interpreted as the online algorithm using

n machines and it leads to a competitive lower bound n.

Saha also proposed an O(log pmax

pmin
)-competitive online algorithm in [71]. The al-

gorithm basically classified jobs by their processing times and applies the constant ap-

proximation non-preemptive machine minimization algorithm proposed by Chuzhoy and

Codenotti [20] for each class. Unfortunately, the authors [14] have retreated the results

as they have identified a mistake in the analysis which invalidates the claimed approx-

imation ratio and as a result the best approximation ratio for the problem remains

O(
√

logn
log logn). Hence it remains unknown if there existed an asymptotically optimal al-

gorithm for the non-preemptive machine minimization problem. To answer the question,

we propose a O(1 + dlog pmax

pmin
e)-competitive algorithm in Section 6.1.

There are some constant competitive algorithms for the machine minimization prob-

lem with special input set. For the online preemptive machine minimization prob-

lem, Chen et al. [13] proposed a 96-competitive algorithm for laminar jobs and a

176-competitive algorithm for jobs with agreeable deadlines. For non-preemptive ma-

chine minimization, Devour et al. [19] proposed a e-competitive algorithm for jobs with

unit processing times. And for jobs with equal deadlines, the authors proposed a 16-

competitive algorithm. They also showed that for jobs with unit processing time, the

competitive ratio lower bound is e, and for laminar jobs, the competitive ratio lower

bound is n (this came from the adversary we mentioned above.)
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On the other hand, there are also constant approximation algorithms for special in-

put. Cieliebak et al. [17] proposed a 23+3
√

5
2 -approximation algorithm for clique instance,

that is, all feasible intervals overlap at a timeslot.

Relating to the GRID problem. The non-preemptive machine minimization prob-

lem is a special case of the smart grid scheduling problem on minimizing the peak power

request. The input jobs of machine minimization problem can be seen as input jobs

of smart grid peak minimization problem such that each job has unit height and the

width is the processing time. The number of machines used in a machine minimiza-

tion problem is exactly the peak power in the corresponding GRID problem. Hence, the

2-approximation algorithm for jobs with same release times and the 6-approximation al-

gorithms for jobs with equal widths in the smart grid peak minimization problem in [82]

imply that in the machine minimization problem, there is a 2-approximation algorithm

for jobs with same release times and a 6-approximation algorithms for jobs with uniform

processing times.

In Section 6.1, we show how to use the techniques in this paper to solve the online

machine minimization problem. We propose an asymptotically optimal online algorithm

for the machine minimization problem. We also give a 2e-competitive algorithm for jobs

with unit processing times, and it leads to a 6e-competitive algorithm for jobs with

uniform processing times.

3.3.2 Bin Packing problem

The Bin Packing problem has similar flavor with the smart grid problem in which the

object is to minimize the peak power request. In the Bin Packing problem, the objec-

tive is to minimize the opened bins such that all the items are packed; in the GRIDpeak

problem, the objective is to schedule all the jobs such that the maximum load is min-

imized. In this section we review the Bin Packing problem and discuss the similarities

and differences with the GRIDpeak problem. In Section 5.3.3, we adapt the technique in

analyzing the First-Fit strategy for the Bin Packing problem to an analysis for First-Fit

strategy for the GRID problem where the objective is to minimize the total cost.

Bin Packing is a classical NP-hard problem [30]. The problem is defined as the

following. Given a set of items with real-valued size in (0, 1] and an infinite number of

bins with capacity 1, the objective is to pack the items into minimum number of bins

such that within each bins, the total size of items packed in this bin does not exceed the

bin capacity.

First-fit (FF) is a basic strategy that each item is put into the first bin which is

capable of accommodating it. If all bins have the remaining capacity with size smaller

than the size of the item, a new bin is created and the item is assigned to it. Notice that

there is no specific order on items. Hence FF can be used as an online strategy. FF has

been proved to use no more than 1.7O+ 1 bins if the optimal solution uses O bins [29].
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Strip packing problem. There are different variations of the packing problem.

We introduce strip packing, which is also discussed in some research about smart grid

scheduling with objective of minimizing the maximum power request. In the strip

packing problem, there are a set of two-dimensional items with width and height both

bounded by 1 and a single bin with width 1 and infinite height. The goal is to pack the

items in the bin without overlapping or rotation such that the height of the final strip

(that is, the minimum rectangle area in the bin which can cover all items) is minimized.

Relating to the GRID problem. The strip packing problem is similar to the

smart gird peak-minimization problem. Like the jobs in the grid problem, the items in

the packing problem are rectangles and cannot be rotated, and the objectives are both

minimizing the maximum height of the consequence placement. However, in the smart

grid peak-minimization problem, there are constraints on when jobs can be scheduled

(that is, the release time and deadline constraint) while in the strip packing problem

the items can be placed arbitrarily.

Although the strip packing problem cannot capture the time constraint in the smart

grid peak-minimization problem, strip packing problem is a special case of the GRIDpeak

problem where all jobs have same release times and same deadlines.

For the traditional Bin Packing problem, it also has similar flavor with the GRIDpeak

problem with special input. Consider the jobs J in the grid problem with equal release

time r, equal deadline d, unit height and arbitrary width w(J). It can be seen as a

Bin Packing problem where each bin has capacity d − r and each of the items has size

the same as the width of its corresponding job. The peak demand in the smart grid

schedule is exactly the number of bins used in the Bin Packing algorithm. In [83], the

inapproximability of the smart gird peak-minimization problem is proved by reducing

from the Bin Packing problem.

In Section 5.3.3, we prove that First-Fit (FF) is 22α-competitive for the GRID problem

(where the objective is minimizing the total cost), with input jobs having same release

times, same deadlines, unit heights and arbitrary widths. The proof idea is from the

analysis of first-fit strategy in Bin Packing problem.

3.3.3 Load Balancing problem

The Load Balancing problem is another classical optimization problem. There is a

close resemblance between the Load Balancing problem and the smart grid problem

with minimizing peak power request objective. The min-peak smart grid problem aims

to minimize the peak power request, and the Load Balancing problem aims to assign

jobs to the machines such that the heaviest load among all machines is minimized. In

Section 5.3.4, we show how to adapt the technique in analyzing the greedy strategy for

the Load Balancing problem to an analysis for the greedy strategy for the GRID problem

with special input.
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In the Load Balancing problem, there is a sequence of jobs with loads have to be

assigned to one of a finite set of machines. The goal is to balance the summation of

loads of jobs assigned to each machine such that the maximum load among all machines

is minimized. There are different machine models. For identical machines, the load for

each job is fixed no matter which machine it is assigned to. For related machines, it can

be interpreted as each machine has different speed or power. The incurred load of a job

on different machine differs by the speed of the machine; a machine with higher speed

has smaller incurred load. For unrelated machines, the load of each job on different

machines are arbitrary (but is given). The Load Balancing problem can be proved to

be NP-hard by reducing from the PARTITION problem.

The GREEDY strategy (or Best-Fit) assigns the incoming job to the machine such

that after assigning the job, the maximum load among all machines is minimized. Gra-

ham [31] proved that GREEDY is exactly (2 − 1
m)-competitive in identical machines

model, where m is the number of machines. On the other hand, GREEDY is O(logm)-

competitive in the related machine model.

Restricted machines model. There is a special variation of the Load Balancing

problem where the machines are identical and each job can be assigned to a subset

of machines. For different jobs, the available subset of machines can be different. The

GREEDY strategy is proved to be (dlog2me+1)-competitive while the competitive ratio

lower bound is dlog(m+ 1)e [8].

Relating to the GRID problem. The identical machines Load Balancing problem

also has a similar flavor with the smart gird peak-minimization problem with a special

input set. Consider a set of jobs in the grid problem where all jobs have same release

times, same deadlines, unit widths and arbitrary heights. The input set can be trans-

formed into an input set of the Load Balancing problem where each job has workload

equals to the height of its corresponding job in the grid problem. Each machine can

be seen as a timeslot and the jobs assigned to the machine can be seen as the jobs in

the smart grid problem assigned to the corresponding timeslot. By the transformation,

the peak power demand in the grid problem is exactly the maximum load among all

machines.

Similarly, the related machines model might give us a direction for investigating the

GRID problem with tariff constraints. That is, different timeslots may have different

cost functions.

In the restricted machines model, the subset of machines associating with each job

can be interpreted as the feasible timeslots of a job in the smart gird problem. However,

this approach is adaptable only for jobs with unit widths.

In Section 5.3.4, we show that greedy strategy is 2α-competitive for GRID problem

for unit width job set with same release time and same deadline.
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3.4 Related Graph Algorithms

The flow problem and the matching problem are two classical optimization problems

in graph theory and are usually applied to design and analyze the other optimization

problems. In this section, we investigate how to use the flow or matching algorithms to

solve the GRID problem. More specifically, we consider the GRID problem with special

input where jobs have unit height and unit width. We also introduce a special class

of graphs, interval graphs. The special properties of interval graphs give us a way of

tickling the GRID problem with more general input.

3.4.1 Flow problem

The minimum cost maximum flow problem with convex functions. Given

a flow network, that is, a directed graph. There are source s and sink t, both are

vertices. In the flow network, each edge has capacity, flow and cost. In the minimum

cost maximum flow problem we want to find a path from s to t with the maximum flow

but having the minimum cost [22, 80].

We can solve the unit-size scheduling problem by using the minimum cost maximum

flow algorithm with convex functions. We can reduce the unit-size scheduling problem

to the following min-cost max-flow problem. We have a graph G = (V,E), where

V = {s, t} ∪ {J1, J2, ..., Jn} ∪ {t1, t2, ..., tτ}. For any two vertices Ji and tk, if time k

is feasible for job Ji, there is an edge from vertex Ji to vertex tk with capacity 1 and

constant cost c. For vertices Ji where 1 ≤ i ≤ n, there are edges (s, Ji) with capacity 1

and constant cost c. For vertices tk where 1 ≤ k ≤ τ , there are edges (tk, t) with

capacity n and cost is convex function of the flow on the edge.

There are already some work about convex cost function [74, 75]. Sokkalingam et

al. [74] proposed an O(m(m+n log n) min{log(nU),m log n})-time algorithm for convex

cost function, where m is the number of edges, n is the number of vertices, and U

is the maximum edge capacity. According to the reduction described above, it takes

O(nτ(nτ + n log n) min{log n, nτ log n}) time to solve our scheduling problem.

3.4.2 Matching problem

The maximum-cardinality minimum-weight matching on a bipartite graph.

Given a bipartite graph G = (U, V,E), where U and V are two parts of the graph

and E is set of edges in G. For each edge (u, v) where u ∈ U and v ∈ V , there is a

weight w(u, v). The maximum-cardinality minimum-weight matching problem on the

graph G is finding the matching in G where have the maximum number of edges but

the summation of the weights on these edges is minimum.

Given an instance of unit-size scheduling problem, we can reduce it to a maximum-

cardinality minimum-weight matching instance as following. We have a bipartite graph

G = (U, V,E). Part U = {J1, J2, ..., Jn} (each vertex Ji is corresponding to job Ji).
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Part V has nτ vertices where V = {t11, t12, ..., t1n, t21, t22, ..., t2n, ..., tτ1, tτ2, ..., tτn}. If

time T is feasible for job Ji, there is an edge (Ji, tTk) for all 1 ≤ k ≤ n. For each edge

that has one end point tij , its weight is f(j) − f(j − 1), where the function f is the

convex cost function in the scheduling problem. There are some algorithms for solving

the weighted matching problem [34, 42]. However, the running time would be huge if

we solve the scheduling problem by reducing it to a matching problem.

Example 3.4. Given jobs {J1, J2, J3, J4}. The feasible (not contiguous) timeslots of

J1, J2, J3, J4 are {1, 2}, {2, 4, 5}, {1, 3, 5}, and {2, 3, 5}, respectively. Figure 3.3 are

illustrations about the graph algorithms. Figure 3.3a shows the minimum cost maxi-

mum flow problem transformed from the scheduling problem and Figure 3.3b shows the

maximum-cardinality minimum-weight matching problem transformed from the schedul-

ing problem.
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Figure 3.3: Illustration of Example 3.4.

3.4.3 Interval graphs

Interval graphs is a class of graphs which is widely discussed in scheduling problems.

Definition 3.4. A graph G is an interval graph if it is the intersection graph of a

collection of intervals on the real line. That is, there is an interval Ix for every vertex x

in G such that two vertices x and y are adjacent in G if and only if Ix ∩ Iy 6= ∅.

Because of the nature of the scheduling problems, the interval graphs can capture

some properties in the scheduling problems. For example, if each the tasks in a schedul-

ing problems has to be served in a time interval, the interval graph of these intervals

encodes the competition for resources between the jobs. That is, two tasks have conflicts

if and only if there is an edge between the corresponding vertices in the interval graph.

The class of interval graphs is a subset of the perfect graphs. There are many useful

properties of interval graphs. Here we introduce a very important property of interval

graphs:
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Lemma 3.5 ([32]). An interval graph G has a consecutive clique arrangement, that is,

there is a linear ordering [M1,M2, · · · ,Mt] of the maximal cliques in G such that for

every vertex x, the maximal cliques that contain x form a subsequence.

We give an example of a interval graph corresponding to a set of intervals and

illustrate its consecutive clique arrangement:

Example 3.5. Figure 3.4 is an example of a set of jobs, its corresponding interval

graph and the corresponding maximal cliques. Figure 3.4a shows a set of jobs, where

the horizontal line segments are the feasible intervals of jobs. The vertical dotted lines

indicate the maximal cliques. Figure 3.4b shows an interval graph of the corresponding

job set. And Figure 3.4c is a set of all the maximal cliques in the interval graph. The

cliques are put in such a way that any vertex appears consecutively if there is two or

more of it.
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(c) The consecutive cliques.

Figure 3.4: An input instance and the corresponding interval graph.

The consecutive clique arrangement property gives us a direction of dynamic pro-

gramming. And hence many of the graph problems can be solved in polynomial time on

interval graphs. For example, the maximum independent set problem, which is NP-hard

for general graphs, is linear-time solvable for interval graphs [43]. By the consecutive

clique arrangement property, we propose an exact algorithm for finding the optimal

schedule of the GRID problem. The details are in Section 4.3.



Chapter 3. Literature Review 33

3.5 Summary

In this chapter, we reviewed previous results in the smart grid scheduling problems aris-

ing in demand response management. We also investigate the similarities and differences

between some classical optimization problems and the GRID or GRIDpeak problems. The

DVS problem has a similar flavor to the GRID problem in the form of the cost func-

tion and suggests a lower bound on the GRID schedule. Interestingly, although the

non-preemptive DVS problem has more similar form with the GRID problem since pre-

emption is not allowed in the GRID problem, the optimal non-preemptive DVS schedule

does not guarantee a lower bound of the GRID schedule. It is still unclear how to relate

the non-preemptive DVS problem to the GRID problem.

The Machine Minimization problem is a special case of the smart grid scheduling

problem with objective minimizing the peak power request. We will continue our inves-

tigation of these problems in Chapter 6.

For other classical optimization problems, we compare the Bin Packing problem,

Load Balancing problem, flow problem and matching problem. By reducing to the flow

problem or the matching problem, we showed that the GRID problem with unit-size

input jobs is polynomial time solvable. On the other hand, the Bin Packing problem

and Load Balancing problem give us directions to solve the GRID problem with other

special inputs. The discussion will be continued in Section 5.3.

At the end of this chapter, we introduce a special class of graphs, interval graphs,

which plays an important role in our exact algorithms, which would be introduced in

Section 4.3.





Chapter 4

Offline Algorithms for The GRID

Problem

In this chapter we consider the offline setting of the GRID problem where all widths,

heights, and feasible timeslots of the jobs are known in advance. In Section 4.1, we prove

that the GRID problem is NP-hard even when either the widths or heights of the jobs are

of unit size. However, the GRID problem can be solved in polynomial time when both

the width and height of each job are both of unit size. We propose a polynomial time

algorithm for finding the optimal schedule for such input in Section 4.2. The basic idea

of this polynomial time algorithm is to use a “feasibility graph” to capture all possible

assignments of the jobs. By detailed analysis we show that the optimality of the current

schedule can be known by a simple condition check and hence we can maintain and

query the feasibility graph efficiently.

The feasibility graph algorithm works when each job has unit width and unit height.

Yet, in Section 4.4 we use it to approximately solve a more general case where jobs

have arbitrary width and height and contiguous feasible interval. The basic idea is to

classify the jobs by their widths and heights, treating each class of jobs as unit size and

scheduling each class independently.

For a general input where each job has arbitrary width, arbitrary height and con-

tiguous feasible interval, we also investigate the exact algorithms (Section 4.3). We

propose an exponential time algorithm to find an optimal schedule for the general case.

The algorithm is based on dynamic programming by using special properties of interval

graphs. Also, we show that the GRID problem is fixed parameter tractable since the

exact algorithms are parameterized exact algorithms.

4.1 NP-hardness

Koutsopoulos and Tassiulas [44] claimed that the general GRID problem with any convex

cost function is NP-hard. The proof is basically by reducing the BINPACKING problem

to a smart grid problem where jobs have heights and the objective is to minimize the

maximum power consumption over time. By claiming that minimizing the maximum

35
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power consumption in the time horizon is equivalent to minimizing the total convex cost

in the horizon, the authors claimed that the GRID problem is NP-hard.

For completeness, we prove that the GRID problem is strongly NP-hard by reducing

a strongly NP-hard problem directly to the GRID problem where the objective is to

minimize the total cost.

In the following we define the decision version of GRID problem. Note that the input

job parameters (width, height, and feasible timeslots) and the cost of a schedule follow

the formal problem definition mentioned in Section 2.4.

The GRID problem (decision version). Given a set of jobs J = {J1, J2, · · · , Jn}
and a non-negative real number K, decide whether there exists a feasible schedule for

J such that the total cost is no more than K.

We first introduce a helpful observation of the schedules of the GRID problem by the

convexity of the cost function (recall that the work of a job J is defined as w(J) · h(J)):

Observation 1. In the GRID problem, consider an interval I with length ` and the total

work P for all jobs which have to be finished within I, (i) for any feasible schedule S,

the cost cost(S) ≥ (P` )α · `; and (ii) if in a schedule S, there exists a timeslot t with load

> P
` , then cost(S) > (P` )α · `.

Note that the first part of Observation 1 shows a trivial lower bound of any feasible

schedule of the GRID problem. The second part is easy to see from the first part.

We prove that the GRID problem with special input is NP-hard, hence the general

GRID problem is NP-hard. First we consider the special case where each job has unit

height and common contiguous feasible interval. We prove that the GRID problem is

strongly NP-hard by reducing from the 3-PARTITION problem.

The 3-PARTITION problem. Given a set of n = 3·m numbersA = {a1, a2, · · · , an}
and number b =

∑
ai∈A

ai

m , decided if there exists a way to partition A into m disjoint

subsets S1, S2, · · · , Sm such that in each Sj there are exactly 3 elements and the sum of

the elements is exactly b.

The reduction works as follows. For each ai in the input set in the 3-PARTITION

problem, we construct a job Ji such that w(Ji) = ai. For each job Ji, its release time is

0 and its deadline is b. That is, the feasible intervals of the jobs are common. Also, we

let K = b ·mα.

It is easy to see that there exists a partition such that the sum of the numbers in each

subset are equal if and only if there is an optimal schedule with total cost b ·mα. If there

is a partition S1, S2, · · · , Sm in the 3-PARTITION problem, then the corresponding jobs

in the GRID problem can be scheduled in m “levels” evenly. That is, the corresponding

jobs in each Sj can be scheduled without overlapping to each other (and form a level).

The m level of jobs can be stacked up and the resulting schedule has load m at any

timeslot. Since the feasible intervals are common and the length is b, the total cost

of the schedule is b · mα. On the other hand, if there is no such partition in the 3-

PARTITION problem, at least one of the jobs in the GRID problem has to be scheduled
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at the m+ 1 level (that is, there is at least one timeslot with load > m in the schedule).

By Observation 1, the total cost is greater than K = b ·mα.

Theorem 4.1. The GRID problem is strongly NP-hard even when all jobs have common

feasible interval and the heights of jobs are all of unit size.

We prove in the following that the GRID problem is also strongly NP-hard when all

jobs have unit width. We also prove it by reducing from the 3-PARTITION problem. The

reduction works as follows. For each ai in the input set in the 3-PARTITION problem,

we construct a job Ji such that h(Ji) = ai. For each job Ji, its release time is 0 and its

deadline is m. That is, the feasible intervals of the jobs are common and with size m.

Also, we let K = m · bα.

We prove that there exists a partition S1, S2, · · · , Sm such that the sum of numbers

in each subset is equal in the 3-PARTITION problem if and only if there is a schedule

with total cost m · bα. If there is a partition S1, S2, · · · , Sm in the PARTITION problem,

the jobs in the GRID problem can be scheduled evenly in the m timeslots 1, 2, · · · ,m,

that is, the corresponding jobs in Sj can be all scheduled at timeslot j for all 1 ≤ j ≤ m.

The total cost of this schedule is m · bα. On the other hand, if there is no such partition

in the 3-PARTITION problem, then for any schedule, there must be at least one timeslot

with load higher than b. By Observation 1, the total cost of the schedule is greater than

K = m · bα.

Theorem 4.2. The GRID problem is strongly NP-hard even when all jobs have common

feasible interval and the widths of jobs are all of unit size.

Next we prove that the GRID problem is strongly NP-hard even when preemption

is allowed. The preemptive GRID problem, GRIDprmp, is defined as the following. Each

input job J has width w(J), height h(J), and contiguous feasible interval [r(J), d(J)).

A feasible schedule of job J is a subset of timeslots in [r(J), d(J)) with cardinality w(J).

That is, the job J can be executed at exact w(J) timeslots which are not necessarily

contiguous, and at each timeslot the power request of J is exactly h(J).

Theorem 4.3. The problem GRIDprmp is strongly NP-hard.

Proof. Consider the GRIDprmp problem with special input where jobs have unit time

duration and arbitrary power request, there is no need for preemption. Hence this

problem is the same as the problem GRID with special input where jobs have unit

time duration. By Theorem 4.2, this special GRID problem is NP-hard. Therefore, the

GRIDprmp problem is NP-hard since one of the special case is NP-hard.

4.2 Unit Case

In this section we consider the GRID problem with a special input set J where each job

has unit power request and unit time duration. That is, for each J ∈ J , h(J) = 1 and
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w(J) = 1. Each job J associates with feasible timeslots I(J) ⊆ T in which the job can

be executed. For example, the feasible timeslot of a job can be {1, 2, 4, 5}. We prove

the smart grid scheduling problem is polynomial time solvable with this special input.

4.2.1 Feasibility graph Algorithm

We solve the GRID problem with a special input set J where each job has unit power

request and unit time duration by using feasibility graph to represent alternative assign-

ments. The basic idea is similar to the residual network in network flows; after scheduling

a job, we can look for improvement via this feasibility graph. We show that each time a

job is scheduled, the optimality can be maintained in polynomial time. For the analysis,

we compare our schedule with an optimal schedule via the notion of agreement graph,

which captures the differences of our schedule and an optimal schedule. We then show

that we can transform our schedule stepwise to improve the agreement with the optimal

schedule, without increasing the cost, thus proving the optimality of our algorithm.

Feasibility graph. Given a particular job assignment S, we define a feasibility

graph Gf = {Vf, Ef} to be a directed multi-graph that shows the potential allocation of

each job in alternative assignments. Recall that the time is divided into set of timeslots

|T | = {1, 2, · · · , τ}, there are |T | vertices in Vf = {v1, v2, · · · , vτ} and each vertex vt ∈ Vf

corresponds to the timeslot t ∈ T . Moreover, each vertex vt associates with a positive

weight ω(vt), denotes the load of the corresponding timeslot t, i.e., ω(vt) = `oad(t). On

the other hand, Ef captures all other possible assignments of each assigned job. If job Jj

is assigned to timeslot t in S, then for all t′ ∈ I(Jj)\{t} we add a directed arc (vt, vt′)

to Ef with Jj as its label.

A feasibility graph Gf corresponds to an assignment S. If a job J is assigned to

timelsot t in S, we also say that J is assigned to vt for short.

Legal-path in a feasibility graph. A path [vs, · · · , vt] in a feasibility graph Gf

is a legal-path if and only if the weight of the starting point vs is at least 2 more than

the weight of the ending point vt, i.e., `oad(s)− `oad(t) ≥ 2.

Example 4.1 is an example of the feasibility graph corresponds to an input set and a

legal-path in the feasibility graph. We will explain later that if there is a legal-path in

the feasibility graph Gf, the corresponding job assignment is not optimal.

Example 4.1. We now give an example of the notions feasibility graph and legal-path.

Let J = {J1, J2, J3}, T = {1, 2, 3, 4}, I(J1) = {1, 2}, I(J2) = {1, 4}, and I(J3) =

{1, 2, 3}. Figure 4.1a shows a schedule where J1 and J2 are both assigned to timeslot 1,

and J3 is assigned to timeslot 2. Figure 4.1b shows the feasibility graph Gf for an job

assignment S. Figure 4.1c shows two legal-paths with respect to S, [v1, v4] and [v1, v2, v3].
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Figure 4.1: The feasibility graph and two legal-paths with respect to Example 4.1

Observation 2. Moving J from timeslot s to timeslot t may result in decrease/in-

crease/same cost depending on the loads of s and t. More formally, the overall energy

cost (i) decreases if `oad(s) > `oad(t)+1, (ii) remains the same if `oad(s) = `oad(t)+1,

and (iii) increases if `oad(s) < `oad(t)) + 1.

Shifting. By Observation 2, the existence of a legal-path implies that the corre-

sponding assignment is not optimal and we can execute a “shift” and decrease the total

cost of the assignment. Given a path P = [u1, u2, · · · , un] where (ui, ui+1) ∈ Ef for

each i, a shift moves each job corresponding to an arc (ui, ui+1) along P from the origi-

nal assigned timeslot ui to the timeslot ui+1. More precisely, if the path contains an arc

(ui, ui+1) with Jj as its label, then job Jj is moved from ui to ui+1. If there are more

than one arc between ui and ui+1, we break ties arbitrarily. Note that after shifting, the

load of vertices in P remains unchanged except u1 and un. Moreover, `oad(u1) decreases

by one and `oad(un) increases by one.

Figure 4.2 shows an illustration of shifting a legal-path referring to Example 4.1.

Originally, the jobs J1, J2, and J3 are assigned at timeslot 1, 1, and 2, respectively. The

shifting is along the legal-path [v1, v2, v3].
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(c) Gf after shifting
job J3 timeslot 3.

Figure 4.2: Example of shifting along a legal-path referring to Example 4.1.

From Observation 2 that such a shift along a legal-path decreases the cost, implying

that the original assignment is not optimal. On the other hand, when there is no legal-

path, it is not as straightforward to show that the assignment is optimal. Nevertheless,

we will prove this is the case in Lemma 4.10.
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Feasibility graph algorithm AFG. We propose a polynomial time offline al-

gorithm that minimizes the total cost for the GRID problem. The algorithm arranges

the jobs in J in arbitrary order, and works in stages. In each stage, one new job joins

and is considered. First the new job is greedily assigned to one of its feasible timeslots

with lowest load. Then the corresponding feasibility graph is updated and shifting is

executed along a legal-path (if there exists at least one legal-path.)

More formally, at any Stage j we have three steps (also see Algorithm 1):

(1) Assign Jj to a feasible timeslot with minimum load, breaking ties arbitrarily;

(2) Suppose Jj is assigned to timeslot r. We update the feasibility graph Gf to reflect

this assignment in the following way. If applicable, we add arcs from vr labelled

by Jj to any other feasible timeslots (vertices) of Jj ;

(3) If there exists any legal-path in Gf from r to any other vertex t, the algorithm

executes a shift along the legal-path (Figure 4.2 shows an illustration). At the

end, the algorithm updates the feasibility graph Gf to reflect this shift.

Note that when searching for legal-paths (Step (3)), we focus on those starting

from vr, where r is the only timeslot of which the load is changed. We need to prove

that if there is any legal-paths after assigning the new job to r, there must be at least

one which is start from vr or they existed before the assigning step (Lemma 4.4). On

the other hand, if there is no legal-paths before assigning the new job, the assignment

is optimal or there must be at least one legal-path starting from vr (Lemma 4.10).

Algorithm 1 The feasibility graph algorithm AFG

Input: a set of jobs J = J1, J2, · · · , Jn
Output: an optimal schedule of J
for i from 1 to n do

r ← arg mint∈I(Ji) `oad(AFG, t)
Assign Ji to r
Update the feasibility graph according to the assignment
if there exists a legal-path P starting from r then

Shift the jobs along P
Update the feasibility graph according to the shifting

return the schedule corresponding to the final feasibility graph

Additional notations. To ease the discussion, in the remainder of this section, we

use `oad′j(t) to represent the load of timeslot t after assigning Jj (but before the shift),

`oadj(t) to represent the load of timeslot t at the end of Stage j, and `oad′j(s, t) and

`oadj(s, t) to represent `oad′j(s)− `oad′j(t) and `oadj(s)− `oadj(t), respectively.

4.2.2 Correctness

We assume that at the beginning of each stage, there is no legal-paths in Gf and the

current assignment is optimal for all assigned jobs:
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Invariants. We show that the algorithm maintains the following two invariants. At

the end of each stage:

(I1) There is no legal-path in the resulting feasibility graph;

(I2) The assignment is optimal for the jobs considered so far.

We want to prove that given the invariants hold at the beginning of each stage, after

assigning and shifting the new job the invariants still hold.

Framework. Consider any stage of AFG. After Step (2), there may be a legal-

path in the resulting feasibility graph Gf. In Lemma 4.4, we show that if a legal-path

exists in Gf after assigning Jj to timeslot r, there is at least one legal-path starting

from r. Suppose the algorithm chooses the legal-path [r, . . . , t] and executes the shift

along this path in Step (3). In Lemma 4.7, we show that if there is no legal-path in the

feasibility graph Gf before assigning a job, then after assigning a job and executing the

corresponding shift by the algorithm, the resulting feasibility graph has no legal-paths.

Therefore, Step (3) of the algorithm needs to be applied only once and there will be no

legal-path left, implying that Invariant (I1) holds. In Lemma 4.10, we show that if there

is no legal-path in a feasibility graph Gf, the corresponding assignment is optimal and

hence Invariant (I2) holds.

We begin by proving Lemmas 4.4 and 4.5. Lemma 4.5 is a technical lemma used in

the proof of Lemma 4.7.

In Step (2), we only search legal-paths starting from r, hence we need to prove that

there is at least one legal-path after assigning the new job to r or there is no legal-paths.

Note that in Gf, there is no legal-paths before assigning j (Invariant (I1)). Hence,

for any two vertices u and v in Gf, `oadj(u, v) ≥ 2 only if u, v are disconnected. In other

words, `oadj(u, v) < 2 for any pair of connected u and v.

Lemma 4.4. Suppose that before assigning job Jj to timeslot r the feasibility graph Gf

has no legal-path. If there is any legal-path after assigning Jj, there is at least one

legal-path starting from r.

Proof. Assume that there is a legal-path [s, · · · , t] after assigning Jj to timeslot r, so

that `oad′j(s, t) ≥ 2. If r = s, we have obtained a desired legal-path. Otherwise, r 6= s,

there are two cases:

Case 1. Vertices s and t are connected in Gf before assigning Jj . Since r 6= s,

`oadj−1(s) = `oad′j(s) and `oadj−1(t) ≤ `oad′j(t) (the latter inequality comes from

the fact that r may be equal to t). This implies `oadj−1(s, t) ≥ `oad′j(s, t) ≥ 2, which

contradicts the precondition that there is no legal-path before assigning Jj . Thus, Case 1

cannot occur.

Case 2. Vertices s and t are disconnected in Gf before assigning Jj . Since (s, t) are

connected after assigning Jj , it must be the case that assigning Jj to timeslot r adds
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some new arc (r, w) (with Jj as its label) to Gf, which connects an existing [s, · · · , r] path

and an existing [w, · · · , t] path. We know that `oadj−1(s)−`oadj−1(r) ≤ 1 because there

is no legal-path before assigning Jj . Also, `oad′j(s) = `oadj−1(s), `oad′j(t) = `oadj−1(t),

and `oad′j(r) = `oadj−1(r) + 1 because the new job Jj is assigned to r, with r 6= s.

Hence, `oad′j(s) ≤ `oad′j(r). It implies that `oad′j(r, t) ≥ `oad′j(s, t) ≥ 2, so that the

[r, · · · , t] subpath is also a legal-path.

In Step (3), we only choose one legal-path and execute the corresponding shifting.

That is, only one job is moved from r and after the shifting this stage is finished. We

need to prove that shifting one arbitrary legal-path is sufficient. First we prove that for

a legal-path starting from r, it is not a legal-path after shifting.

Lemma 4.5. If before assigning a job the feasibility graph Gf does not have a legal-

path, then after assigning one more job there will be no legal-paths where the load of the

starting point is at least 3 more than the load of the ending point. In other words, the

load difference corresponding to any new legal-path, if it exists, is exactly 2.

Proof. We prove that if there was no legal-paths, by assigning a single job is not capable

to cause a legal-path which needs two shiftings.

Assume on the contrary that there is a legal-path [s, · · · , t] with `oad′j(s, t) ≥ 3.

There are two cases:

Case 1. Before assigning job Jj , s and t are connected. Assigning a job at timeslot

r increases by one on the load difference of any path starting from r. On the other

hand, the load difference of any path ending at r is decreased by one. Recall that

`oad′j(s, t) ≥ 3. There are three situations: (i) Timeslot s is r, implying `oadj−1(s, t) ≥ 2;

(ii) Timeslot t is r, which implies `oadj−1(s, t) ≥ 4; (iii) r, s, and t are three different

timeslots, which implies `oadj−1(s, t) ≥ 3. Each of these cases contradicts the fact that

Gf has no legal-path before assigning Jj .

Case 2. Before assigning job Jj , s and t are disconnected. That is, assigning job Jj

creates a new path (legal-path) [s, · · · , t] with `oad′j(s, t) ≥ 3. There are two sub-cases

(see Figure 4.3 for an illustration):

Case 2-1. Job Jj is assigned to timeslot s, which means s and r are the same

timeslot. Since [s, · · · , t] becomes a new legal-path after assigning job Jj , it must be the

case that assigning Jj to timeslot s adds some new arc (s, w) in Gf that connects s with

an existing [w, · · · , t] path. The arc (s, w) means that job Jj can be assigned to timeslot

s or w. By our algorithm, `oad(w) ≥ `oad(s). Furthermore, we have `oadj−1(s) =

`oad′j(s) − 1, `oadj−1(t) = `oad′j(t), and `oad′j(w) = `oadj−1(w) ≥ `oadj−1(s). Hence,

`oadj−1(w, t) = `oadj−1(w) − `oadj−1(t) ≥ `oadj−1(s) − `oadj−1(t). According to our

assumption, `oad′j(s, t) ≥ 3, thus `oadj−1(s, t) ≥ 2. It leads to that `oadj−1(w, t) ≥ 2,

which contradicts the fact that there is no legal-paths before assigning Jj .

Case 2-2. The job Jj is assigned to timeslot r with r 6= s. Since (s, t) be-

comes a new legal-path after assigning job Jj , it must be the case that there is some
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new arc (r, w) added in Gf that connects an existing [s, · · · , r] path with an existing

[w, · · · , t] path. Because there is no legal-path before assigning job Jj , `oadj−1(s, r) ≤ 1

and `oadj−1(w, t) ≤ 1. According to our assumption, `oad′j(s, t) ≥ 3; this implies

`oadj−1(s, t) ≥ 3, so that `oadj−1(r) − `oadj−1(w) ≥ 1. The latter inequality contra-

dicts the fact that Jj is assigned to a feasible timeslot with minimum load.

w

t

s

Jj w

t

s

(a) Case 2-1 before and after assigning
job Jj to timeslot s.

r w

ts

Jj
r w

ts

(b) Case 2-2 before and after assigning
job Jj to timeslot r.

Figure 4.3: The two sub-cases of Case 2 in the proof of Lemma 4.5 (the dotted arcs are
used to represent paths).

Now we are able to prove that after shifting along an arbitrary legal-path starting

from r (Step (3)), there is no more legal-path if there is none at the beginning of this

stage.

To ease the discussion, we introduce two parameters IN (v) and OUT (v) for any

vertex v in Gf and give some properties. We define IN j(r) to be the set of vertices w such

that a [w, · · · , r] path exists before assigning Jj , and OUT j(r) to be the set of vertices w

such that an [r, · · · , w] path exists before assigning Jj . We assume that r ∈ IN j(r) and

r ∈ OUT j(r) for the ease of later discussion. Similarly, we define IN ′′j (r) and IN ′′j (r)

to be the set of vertices w such that a [w, · · · , r] path exists after assigning Jj and

after shifting. respectively. Note that IN ′′j (r) = IN j+1(r) and OUT ′′j (r) = OUT j+1(r).

Given a set R of vertices, let IN j(R) =
⋃
r∈R

IN j(r) and OUT j(R) =
⋃
r∈R

OUT j(r). The

notation IN ′′j (R) and OUT ′′j (R) are defined analogously. The subscript of j can be

ignore when the context is clear.

Figure 4.4 shows an illustration of a feasibility graph and the IN (r) and OUT (r) for

a vertex r. The green vertices are those in IN (r), which have at least one path to r; the

yellow vertices are those in OUT (r), which have at least one path from r. There are

three vertices (including r) with colors green and yellow. They are the vertices having

paths from r and paths to r. That is, these bi-color vertices are in IN (r) ∩OUT (r).

Suppose that there were no legal-paths in Gf after Stage j − 1, but there is a new

legal-path in Gf after assigning Jj . By Lemma 4.4, there must be one such legal-path



Chapter 4. Offline Algorithms 44

r

Figure 4.4: IN (r) (green vertices) and OUT (r) (yellow vertices). The three vertices
including r with colors green and yellow are in both IN (r) and OUT (r).

[s, · · · , t] where s is the timeslot assigned to Jj , and without loss of generality, let the

path be the one that is selected by our algorithm to perform the corresponding shift.

Let the ordering of the vertices in the legal-path be [s, v1, v2, · · · , vk, t], and P denote

the set of these vertices.

Briefly speaking, we upper bound the load of a vertex in IN ′′j (P ), and lower bound

the load of a vertex in OUT ′′j (P ), as any legal-path that may exist after the shift must

start from a vertex in IN ′′j (P ) and end at a vertex in OUT ′′j (P ). Based on the bounds,

we shall argue that there are no legal-paths as the load difference of any path after the

shift will be at most 1. Recall that after the shift, only the load of t is increased by

one, the load of s is decreased by one, whereas the load of any other vertex remains

unchanged.

We observe the change of IN (v) and OUT (v) for vertices v on the legal-path after

assigning Jj on vertex s (Lemma 4.6). First let us see what happened in the feasibility

graph during Stage j. In Stage j, job Jj is assigned to s and there is a sequence of

shifting along the legal-path P = [s, v1, v2, · · · , vk, t]. After Jj is assigned to s, the only

difference in the feasibility graph is that there are some new arcs from s to other feasible

vertices of Jj . If there was no (s, v1) arc before assigning Jj , each vertex in P \{s} might

get some new paths entering in it and leaving from vertices in IN j(s). However, consider

vertices in P altogether, there are no new vertices in IN j(P ) after assigning Jj . That is,

if we denote the IN ′j(P ) (and OUT ′j(P )) as the vertices with path leaving (or entering)

them and entering (or leaving) at least one of vertices in P after assigning but before

shifting, IN ′j(P ) = IN j(P ). On the other hand, because of the new arcs between s and

vertices in I(Jj), there might be some new vertices having path leaving s and entering

it after assigning Jj . Hence OUT ′j(P ) = OUT j(P ) ∪OUT j(I(Jj)).

After shifting, only the edges labeled by shifted jobs change. More specifically, only

those edges labeled by shifted jobs change. There is no new jobs getting involved so
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IN ′′j (P ) = IN ′j(P ) = IN j(P ) and OUT ′′j (P ) = OUT ′j(P ) = OUT j(P ) ∪ OUT j(I(Jj)).

Then we look at the IN ′′j (P
′) more carefully. Recall that when s and v1 was not connected

before assigning Jj , IN ′j(v1) = IN j(v1) ∪ IN j(s). However, after shifting, (s, v1) arc is

reversed and therefore all vertices in IN ′j(v1)\ IN j(v1) is not connected to vertices in P ′

anymore. Hence, IN ′′j (P
′) ⊆ IN j(P

′) in general.

Lemma 4.6. After assigning Jj at s, consider a legal-path P = [s, v1, v2, · · · , vk, t] and

its subpath P ′ = P \ {s} = [v1, v2, · · · , vk, t]. After shifting along P ,

a. IN ′′j (P
′) ⊆ IN j(P

′) and IN ′′j (P ) ⊆ IN j(P )

b. OUT ′′j (P ) ⊆ OUT j(P ) ∪OUT j(I(Jj)).

Proof. (a) Let z be a vertex in IN ′′(P ′) but not in IN (P ′). Take the shortest path from z

to some vertex in P ′ after the shift. Then all the intermediate vertices of such a path are

not from P ′. However, the jobs assigned to those intermediate vertices are unchanged,

so that such a path also exists before the shift, and z is in IN (P ′). A contradiction

occurs. The second part can be proved similarly.

(b) Similar to (a), let z be a vertex in OUT ′′(P ) but not in OUT (P )∪OUT (I(Jj)).

Take the shortest path that goes to z starting from some vertex in P after the shift.

Then all the intermediate vertices of such a path are not from P . If such a path does

not involve vertices from I(Jj), then this path must exist before the shift, so that z is

in OUT (P ). Else, z is in OUT (I(Jj)). A contradiction occurs.

Now we can show that if there were no legal-paths at the beginning of each stage,

there are no legal-paths at the end of each stage. The key is, since every shifted job

is assigned at the legal-path, edges not incident to the vertices on the legal-path will

not change. Hence, if after assigning Jj and shifting along a legal-path there is still

a legal-path, the legal-path must go through at least one changed edge. Otherwise,

the legal-path existed before Stage j and it contradicts to the fact that there were no

legal-paths at the beginning of Stage j. To put it in other words, the legal-path existing

at the end of Stage j must contain at least one shifted job. These shifted jobs are

assigned at vertices on the legal-path, hence the potential legal-path must start from a

vertex in IN ′′j (P ) and and end at a vertex in OUT ′′j (P ). By Lemma 4.6, we can bound

the load of vertices in IN ′′j (P \ {s}), IN ′′j (P ), and OUT ′′j (P ) by the load of vertices in

IN j(P \ {s}), IN j(P ), OUT j(P ), and OUT j(I(Jj)).

Lemma 4.7. Suppose that Gf is a feasibility graph with no legal-paths. Then after

assigning a job and executing the corresponding shift by the algorithm, the resulting

feasibility graph has no legal-paths.

Proof. Assume that Jj is assigned to s and `oadj−1(s) = x. Suppose that there is a

legal-path P = [s, v1, v2, · · · , vk, t]. For any vertex r in I(Jj) \ {s}, `oadj−1(r) ≥ x,

since s ∈ I(Jj) has the minimum load. This implies that the load for any vertex
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in OUT j(I(Jj)) is at least x − 1, or there was a legal-path leaving a vertex in I(Jj)

before assigning Jj . On the other hand, by Lemma 4.5, `oadj−1(t) = x − 1 since there

is no legal-path before assigning Jj but there is one after assigning Jj . Hence, for

all vertices r ∈ IN j(t), `oadj−1(r) ≤ x or there was a legal-path from r to t before

assigning Jj . Therefore, for each vertex vh, IN j(vh) ≤ x because of vh is on path P ,

and IN j(s) ≤ x if there was an arc (s, v1) at the beginning of Stage j. That is, for each

vertex r ∈ IN j(P ), `oadj−1(r) ≤ x if (s, v1) arc existed at the beginning of Stage j. On

the other hand, we can only say that for each vertex r ∈ IN j(P \ {s}), `oadj−1(r) ≤ x

if there was no (s, v1)-arc before assigning Jj .

Concerning the legal-path P , there are two cases:

Case 1. There was an arc from s to v1 in the feasibility graph Gf before assigning Jj .

The load of any vertex in OUT j(P ) is at least x− 1 or there was a legal-path leaving s

and entering the vertex with load less than x − 1 before assigning Jj . Hence, after

the shift, the load of any vertex in IN ′′j (P ) is at most x, and the load of any vertex

in OUT ′′j (P ) is at least x− 1, so no legal-paths will exist.

Case 2. There were no arcs from s to v1 in the feasibility graph Gf before assign-

ing Jj . In this case, Jj must be involved in the shift, so that the jobs assigned to s

after the shift will be the same as if Jj was not assigned. Consequently, if there is still

a legal-path after the shift, the starting vertex must be from IN ′′(P \ {s}) (since there

is no arc (s, v1) anymore), while the ending vertex must be from OUT ′′(P ) (note that

there is an arc (v1, s).)

Since v1 ∈ I(Jj), `oadj−1(v1) ≥ x. Also, `oadj−1(v1) ≤ x or there was a legal-

path from v1 to t. Hence, `oadj−1(v1) = x = `oadj−1(s) and the load of any vertex

in OUT j(P ) is at least x − 1, since there was no legal-path leaving s or v1 before

assigning Jj . In conclusion, after the shift, the load of any vertex in IN ′′j (P \ {s}) is at

most x, and the load of any vertex in OUT ′′j (P ) is at least x− 1, so no legal-paths will

exist.

We now prove in Lemma 4.10 (the other key lemma for the correctness) that non-

existence of legal-paths implies the assignment is optimal. First we introduce a notation:

Agreement graph Ga. We define an agreement graph Ga(S,O) which is a directed

multi-graph that measures the difference between a job assignment solution S and an

optimal assignment O. In Ga(S,O) each timeslot is represented by a vertex and the

number inside the vertex denotes the load of the timeslot in S. For each job Jj such

that Jj is assigned to different timeslots in S and O, we add an arc from t to t′, where t

and t′ are the timeslots that Jj is assigned to by S and O, respectively. The arc (t, t′)

is labelled by the tuple (Jj , +/−/=). The second value in the tuple is “+” or “−” if

moving job Jj from timeslot t to timeslot t′ causes the total cost of assignment S to

increase or decrease, respectively. The value is “=” if moving the job does not cause

any change in the total cost of assignment S.
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The rough ideas about the non-existence of legal-paths implying the optimality of

the assignment are as follows. Consider an optimal assignment O (satisfying some

constraints as to be defined). In Lemma 4.9, we show that there is a sequence of

agreement graphs Ga(S1,O), Ga(S2,O), · · · , Ga(Sk,O) where the cost is non-increasing

every step, S1 = S is the original assignment of jobs given by our algorithm, and Sk = O
is an optimal assignment. We prove Lemma 4.10 by contradiction, assuming there is

no legal-path in the feasibility graph Gf but the assignment S is not optimal. We then

consider the sequence of agreement graphs given in Lemma 4.9 and show that either there

is no agreement graph in the sequence involving strict decrease of overall cost (which

means S is already optimal) or that there is a legal-path in the feasibility graph Gf,

leading to a contradiction.

Note that Lemma 4.9 considers an optimal assignment O such that Ga(S,O) is

acyclic. The existence of acyclic O is proved in Lemma 4.8.

Lemma 4.8. There exists an optimal assignment O such that Ga(S,O) is acyclic.

Proof. Consider an optimal assignment O′ such that Ga(S,O′) contains directed cycles.

We show that the assignment O′ can be transformed into an optimal assignment O such

that Ga(S,O) is acyclic. Recall that each timeslot is represented by a vertex in Ga(S,O′)
and an arc from vertex s to vertex t labelled by a tuple (Jj , +/−/=) means that Jj

is assigned to timeslot s in assignment S and timeslot t in O′. For every cycle (s, t)

such that s = t in Ga(S,O′), we show that the load of any vertex does not change after

executing all the moves in the cycle. This implies that the total cost of O′ remains the

same after removing all cycles from Ga(S,O′).
We consider a cycle that contains the vertices [s, v1, v2, · · · , vk, t], for s = t. There are

arcs from s to v1, v1 to v2, and so on, until the last arc from vk to t = s. An arc denotes

the moving of a distinct job each step. As we move one job from s to v1, `oad(s) decreases

by one and `oad(v1) increases by one. However, `oad(v1) returns to the original value as

we move the respective job from vertex v1 to v2. Thus, `oad(vi), for 1 ≤ i < k remains

unchanged. As we move the last job from vertex vk to t = s, both `oad(vk) and `oad(s)

return to their original value. Clearly, the load of all vertices remains the same even

for cycles of size 2. Thus, the cost of O′ remains the same after removing all cycles

from Ga(S,O′) and we denote the corresponding agreement graph by Ga(S,O).

We have an example to illustrate the previous proof; we refer to Example 4.1 and

Figure 4.1. Consider two optimal solutions in Example 4.1: O1 and O2 (Figure 4.5b

and 4.5c). In O1, J1, J2, and J3 are assigned to v2, v1, and v3, respectively. And in O2,

J1, J2, and J3 are assigned to v2, v4, and v1, respectively.

Refer to the schedule S, O1, and O2 in Figure 4.5, Figure 4.6 shows agreement

graphs Ga(S,O1) and Ga(S,O2) for assignment S where J1, J2, and J3 are assigned to

v1, v1, and v2, respectively (Figure 4.5a). In Figure 4.6b, the agreement graph Ga(S,O2)

contains a cycle, yet an alternative optimal assignment O′2 exists such that Ga(S,O′2)
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(a) An illustration of S.
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J1

(b) An illustration of O1.

1 2 3 4

J3

J2

J1

(c) An illustration of O2.

1 2 3 4

J3

J2

J1

(d) An acyclic alternative of O2.

Figure 4.5: Illustration of assignments in Example 4.1.

contains no cycles, as depicted in Figure 4.6. Figure 4.5d shows O′2, an alternative of O2

without cycles, generated by the instructions mentioned in proof of Lemma 4.8.

Lemma 4.9. Suppose S is not optimal and O is an optimal assignment such that the

agreement graph Ga(S,O) is acyclic. Then we can have a sequence of agreement graphs

Ga(S1,O), Ga(S2,O), · · · , Ga(Sk,O) such that S1 = S, Sk = O, and the cost is non-

increasing every step.

Proof. Consider the agreement graph Ga(Si,O), for i ≥ 1, starting from S1 = S. In

each step, from Ga(Si,O) to Ga(Si+1,O), one arc is removed. For i ≥ 1, we consider

in Ga(Si,O) any arc labelled with either a “−” or an “=” and we execute the move

corresponding to this arc. Through this move, we remove one arc, and thus we do

not introduce any new arcs. However, the +/−/= label of other arcs may change. If

the resulting graph Ga(Si+1,O) does not contain any more “−” or “=” arcs, we stop.

Otherwise, we repeat the process.

Note that the cost is non-increasing in every step since we only perform those move

which is labeled with “−” or an “=”. By the time we stop, if the resulting graph,

say, Ga(Sh,O), does not contain any more arcs, we have obtained the desired sequence

of agreement graphs. Otherwise, we are left only with “+” labelled arcs in Ga(Sh,O);



Chapter 4. Offline Algorithms 49

2

1 0

V1

(J1,=) 

0

V2
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V3

(J3,=) 

{J1,J2}

{J3}

(a) The agreement graph Ga(S,O1).

2

1 0

V1

(J1,=) 

0

V2

V4

V3

(J3,+) 

(J2,-) {J1,J2}

{J3}

(b) The agreement graph Ga(S,O2).

2

1 0

V1

0

V2

V4

V3

(J2,-) {J3,J2}

{J1}

(c) The agreement graph Ga(S,O′
2).

Figure 4.6: Two agreement graphs for the same assignment S and two different optimal
schedules O1 and O2 in Figure 4.5.

however, in the following, we shall show that such a case cannot happen, thus completing

the proof of the lemma.

Firstly, cost(Sh) ≥ cost(O) since O is an optimal assignment. Next, by Lemma 4.8,

the agreement graph Ga(S1,O) is acyclic and the resulting graph Ga(Sh,O) by removing

all “−” and “=” labelled arcs is also acyclic. Thus, in Ga(Sh,O), there must exist at

least one vertex with in-degree 0 and one vertex with out-degree 0. We look at all

such [v1, · · · , vi] paths in Ga(Sh,O), where v1 has in-degree 0, vi has out-degree 0, and

v1 6= vi. For any such [v1, · · · , vi] path, we show that by executing all moves of the

path (i) the overall cost is increasing, and (ii) the labels of all arcs not contained in

the [v1, · · · , vi] path remain “+”. After executing all moves of the path, all arcs of

the [v1, · · · , vi] path are removed.

(i) Suppose the vertices of the path are [v1, v2, · · · , vi] and `oad(v1) = x. As all arcs

in (v1, vi) are labelled with “+” (i.e., the cost is increasing), `oad(vj) ≥ `oad(vj−1), for

j > 1. By executing all moves in the path, `oad(v1) = x− 1, `oad(vj) is unchanged, for

1 < j < i, and `oad(vi) is increased by one. Thus, the overall cost is increasing.

(ii) We show that the labels of all arcs not contained in the [v1, · · · , vi] path re-

main “+”. There may be out-going arcs from v1 to other vertices not in the [v1, · · · , vi]
path initially labelled by “+”. Before executing all the moves in the [v1, · · · , vi] path,
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the load of all these vertices with out-going arcs from v1 is at least x as we assume

`oad(v1) = x. After the move, `oad(v1) = x − 1 and out-going arcs from v1 point to

vertices with load at least x. Thus, an arc from v1 to any other vertex denotes a fur-

ther increase in the cost and the labels of the arcs do not change. For vertices vj , for

1 < j < i, the load of vj remains unchanged and thus the labels of the arcs incoming

to or outgoing from vj remain the same. For vi, there may be incoming arcs. Suppose

`oad(vi) = y before executing all the moves in the [v1, · · · , vi] path. Then the load of

all other vertices pointing to vi is at most y and the arcs are labelled by “+”. After ex-

ecuting all the moves in the [v1, · · · , vi] path, `oad(vi) = y+ 1, and thus any subsequent

moves from vertices pointing to vi cause further increases in the cost, i.e., the labels do

not change.

Thus, the overall cost is increasing. We repeat this process until there are no more

such [v1, · · · , vi] paths. We end up with cost(Sk) > cost(O), which contradicts the fact

that cost(Sk) = cost(O) as Sk = O. Thus, the case where we are left only with “+”

labelled arcs in Ga(Sh,O) cannot happen, and the lemma follows.

Lemma 4.10. If there is no legal-path in the feasibility graph Gf, the corresponding

assignment is optimal.

Proof. Suppose by contradiction there is no legal-path in the feasibility graph Gf, but

the corresponding assignment A is not optimal. Let A∗, A1 = A,A2, · · · , Ak = A∗

be the assignments as defined in Lemma 4.9. Note that each arc in the agreement

graph Ga(A1, A
∗) corresponds to an arc in the feasibility graph Gf (since Gf captures

all possible moves of A = A1). Because the sequence of agreement graphs in Lemma 4.9

only involves removing arcs, each arc in all of Ga(Ai, A
∗) corresponds to an arc in Gf.

Suppose Ga(Aj , A
∗) is the first agreement graph in which a “−” labelled arc is

considered between some timeslots tα and tβ. If there is no such arc, then A is already

an optimal solution (since the sequence will be both non-increasing by Lemma 4.9 and

non-decreasing as no “−” labelled arc is involved). Otherwise, if there is such an arc

in Ga(Aj , A
∗), we show that there must have existed a legal-path in the feasibility

graph Gf, leading to a contradiction. We denote by `oad(Ai, t) the load of timeslot

t in the agreement graph Ga(Ai, A
∗). Suppose `oad(Aj , tα) = x, then `oad(Aj , tβ) ≤

x − 2 as the overall energy cost would be decreasing by moving a job from tα to tβ.

If `oad(A1, tα) = x and `oad(A1, tβ) ≤ x − 2 in the original assignment, then there is

a legal-path in Gf, which is a contradiction. Otherwise, we claim that there are some

timeslots uiy and vkz such that `oad(A1, uiy) ≥ x and `oad(A1, vkz) ≤ x− 2, and there

is a path from uiy to vkz in Gf. This forms a legal-path in Gf, leading to a contradiction.

To prove the claim, we first consider finding uiy . We first set i0 = j and ui0 = tα.

If `oad(A1, ui0) ≥ x, we are done. Else, since `oad(Aj , ui0) = x and `oad(A1, ui0) < x,

there must be some job that is moved to ui0 before Aj . Let i1 < i0 be the latest step such

that a job is assigned to ui0 and the job is moved from ui1 . Note that since this move

corresponds to an arc with label “=”, `oad(Ai1 , ui1) = x and `oad(Ai1 , ui0) = x − 1.
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If `oad(A1, ui1) ≥ x, we are done. Otherwise, we can repeat the above argument to

find ui2 and so on. The process must stop at some step iy < i0 where `oad(A1, uiy) ≥ x.

Similarly, we set k0 = j and vk0 = tβ, so that we can find a step kz < k0 such that

`oad(A1, vkz) ≤ x − 2. Recall that since each arc in Ga(A1, A
∗) corresponds to an arc

in the feasibility graph Gf and in all subsequent agreement graphs we only remove arcs,

there is a path from uiy and vkz in Gf. Therefore, we have found a legal-path from uiy

to vkz in Gf.

Theorem 4.11. Algorithm AFG finds an optimal assignment.

4.2.3 Time Complexity

We analyze the time complexity of our algorithm and show that this can be improved

when the feasible timeslots associated with each job form a contiguous interval.

Noncontiguous Feasible Timeslots

In this section, we consider the case where jobs have noncontiguous feasible timeslots

and show that the time complexity is O(n2τ).

Input set. In this case, each job Jj associates with feasible timeslots I(Jj). Assume

that there are τj timeslots in I(Jj) and let τ ′ =
∑

j τj , the input size of job Jj is

O(log n+ τj log τ ′). Hence, the total input size is O(n log n+ τ ′ log τ ′).

Analysis. Now we show that the feasibility graph approach can be done in polyno-

mial time.

Theorem 4.12. We can find the optimal schedule in O(n2τ) time.

Proof. We assign jobs one by one. Each round when we assign the job J to timeslot t, we

add arcs (t, w) labelled by J for all vertices w that w ∈ I(J) in the feasibility graph. By

Lemma 4.4, there is a legal-path starting from t if there is a legal-path after assigning J

to timeslot t. When J is assigned to t, we start breadth-first search (BFS) at t. By

Lemma 4.5, if there is a node w which can be reached by the search and the number of

jobs assigned to w is two less than the number of jobs assigned to t, it means that there

is a legal-path [t, · · · , w]. Then we shift the jobs according to the [t, · · · , w] legal-path.

After shifting there will be no legal-paths anymore by Lemma 4.7. Finally we update

the arcs of the vertices on the legal-path in the feasibility graph.

Adding J to the feasibility graph needs O(|I(J)|) time. Because |I(J)| is at most the

total number of timeslots in T , |I(J)| = O(τ) where τ is the number of timeslots. The

BFS takes O(τ + nτ) time because there are at most nτ arcs in the feasibility graph.

If a legal-path exists after assigning J and its length is l, the shifting needs O(l) time,

which is O(τ) because there are at most τ vertices in the legal-path. After the shift, the

final step to update the arcs of the vertices on the legal-path takes at most O(nτ) time

because there are at most nτ arcs in the feasibility graph. The total time for assigning n

jobs is thus bounded by O(n2τ).
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Contiguous Intervals

In this section, we consider the special case where each job J ∈ J is associated with

an interval of contiguous timeslots I(J) = [r(J), d(J)), for positive integers r(J) < d(J).

We show that we can improve the time complexity to O(n log τ + min{n, τ}n log n).

Input set. In this setting, each job Jj associates with a feasible interval [r(Jj), d(Jj))

where r(Jj), d(Jj) ∈ [1, τ ]. The input size of job Jj is O(log n+2 log τ). Hence, the total

input size is O(n log n+ n log τ).

Framework. Recall that our algorithm first assigns a job J to a feasible timeslot s

with minimum load and then executes a shift if there is a legal-path in the resulting

feasibility graph. When the feasible timeslots of a job form a contiguous interval, we

will use several data structures to help finding a legal-path. In particular, we first find a

path from s such that the end point has the minimum load. If this path is a legal-path,

we execute the shift, otherwise, there is no legal-path from s. To find such a path,

we exploit the notion of l-reachable intervals (to be defined). To compute reachable

intervals, we maintain two heaps for each timeslot t to store r(Ji) and d(Ji) of jobs Ji

which are assigned to t. To find the timeslot with minimum load in a reachable interval,

we use a data structure that supports dynamic range minimum query (RMQ). Before

we give the detailed analysis, we first define a few notions on a feasibility graph.

Reachable interval. For every timeslot t, the l-reachable interval of t, denoted

by R(l)
t , is defined to be the set of timeslots s such that there is a path from t to s with

length at most l. We define R(0)
t = {t} and R(−1)

t = ∅. Note that R(1)
t = ∪st(J)=tI(J)

(that is, the union of feasible intervals for all jobs J which are assigned at t). We callR(1)
t

the directly reachable interval of t. The setR(1)
t is a contiguous interval containing t since

the feasible timeslots of each job form a contiguous interval and the feasible timeslots of

any job that is assigned to t must contain t.

Notice that R(l+1)
t is the union of the directly reachable intervals of each timeslot

in R(l)
t . For any s ∈ R(l)

t , as observed above, the directly rearchable interval of the time-

slot s must contain s and thus is a contiguous interval overlappingR(l)
t . Therefore,R(l+1)

t

forms a contiguous interval and R(l)
t ⊆ R

(l+1)
t for l ≥ 0. We denote the interval R(l)

t

as [α
(l)
t , β

(l)
t ]. In particular, for directly reachable intervals, α

(1)
t = minst(J)=t r(J) and

β
(1)
t = maxst(J)=t d(J).

Depth. We note that if R(l+1)
t is the same as R(l)

t , then for any k ≥ l, R(k)
t is

also the same as R(l)
t . We define the depth Dt of t to be the smallest integer l such

that R(l+1)
t = R(l)

t . Note that the depth Dt is the longest length of the shortest paths

starting from t to any other connected vertex in the feasibility graph. Furthermore, the

Dt-reachable interval of t is the set of all timeslots such that there is a path from t.

Path-finder-jobs. Consider any 1 ≤ l ≤ Di. The definition of Dt implies that

R(l)
t ) R(l−1)

t . We define the left-path-finder-job (right-path-finder-job resp.) of R(l)
t as

the job J (with smallest job index) such that st(J) ∈ R(l−1)
t and r(J) = α

(l)
i (d(J) =

β
(l)
i resp.). We denote them by lpfj(R(l)

t ) and rpfj(R(l)
t ), respectively. Then we have

the following property about path-finder-jobs, which then leads to a bound on Dt in
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Property 4.2. Figure 4.7 shows an illustration of reachable intervals and the path-finder

jobs of an assignment.

s

Rs(1)

Rs(2)

lpfj(Rs(2))

rpfj(Rs(2))

lpfj(Rs(1)) and rpfj(Rs(1))

Figure 4.7: An illustration of reachable intervals and the path-finder jobs.

Algorithm 2 The process of assigning job Jj

Hmin(t) is a min-heap containing the release times of the jobs assigned at t
Hmax(t) is a max-heap containing the deadlines of the jobs assigned at t
l← 0
s← arg mint∈I(Ji) `oad(AFG, t)

α
(l)
s ← s
β

(l)
s ← s

while R(l−1)
s 6= R(l)

s do
l← l + 1
α

(l)
s ← α

(l−1)
s

β
(l)
s ← β

(l−1)
s

for t ∈ R(l)
s \R(l−1)

s do

if α
(l)
s > the min value in Hmin(t) then

lpfj(R(l)
t )← arg minst(AFG,i)=t r(Ji)

α
(l)
s ← the min value in Hmin(t)

if β
(l)
s < the max value in Hmax(t) then

rpfj(R(l)
t )← arg maxst(AFG,i)=t d(Ji)

β
(l)
s ← the max value in Hmax(t)

t← arg min
t′∈[α

(Dt)
s ,β

(Dt)
s )

`oad(AFG, t
′)

Rebuild the legal-path from s to t
Shift the jobs along the legal-path

Property 4.1. For 1 ≤ l ≤ Dt, lpfj(R(l)
t ) or rpfj(R(l)

t ) is assigned to a timeslot in

R(l−1)
t \ R(l−2)

t .

Proof. By the definition of Dt, R(l)
t ) R(l−1)

t , implying that α
(l)
t < α

(l−1)
t or β

(l)
t >

β
(l−1)
t . Consider the former case. Let J = lpfj(R(l)

t ); i.e., r(J) = α
(l)
t . We claim that
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st(J) ∈ R(l−1)
t \ R(l−2)

t ; otherwise, st(J) ∈ R(l−2)
t implying α

(l−1)
t ≤ r(J), which is

contradicting to r(J) = α
(l)
t and α

(l)
t < α

(l−1)
t . Using a similar argument, the latter case

implies that rpfj(R(l)
t ) is assigned to a timeslot in R(l−1)

t \ R(l−2)
t . Combining the two

cases, the property holds.

Property 4.2. For every timeslot t, (i) Dt ≤ min{n, τ}; (ii) the number of timeslots

in R(Dt)
t that have jobs assigned to them is at most min{n, τ}.

Proof. (i) We observe that Dt ≤ τ because R(l)
t ) R(l−1)

t for 1 ≤ l ≤ Dt. On the other

hand, by Property 4.1, there is at least one job assigned to a timeslot in R(l−1)
t \R(l−2)

t

for every 1 ≤ l ≤ Dt and each job is only assigned to one timeslot, therefore, Dt ≤ n.

(ii) is trivial.

Analysis. To compute reachable intervals, we have to know the minimum of r(J)

and maximum of d(J) of jobs J assigned to each timeslot. We use two heaps for each

timeslot to keep this information: a min-heap (max-heap resp.) keeps the starting

timeslot r(J) (ending timeslot d(J) resp.) of all jobs assigned to the timeslot. Using

these two heaps we can compute the directly reachable interval of any timeslot in O(1)

time. When a job is assigned to or moved away from a timeslot, the corresponding heaps

have to be updated and each such update takes O(log n) time since the size of the heap

is bounded by the total number of jobs. By Property 4.2 (i), the update time for each

newly assigned job is bounded by O(min{n, τ} log n).

Lemma 4.13. For each timeslot t, we can compute Dt-reachable intervals in O(min{n, τ})-
time.

Proof. As described above, we can compute directly reachable interval in O(1) time.

By Property 4.1, to compute R(l)
t , we only need to consider timeslots in R(l−1)

t \ R(l−2)
t

by checking the corresponding heaps; hence, each timeslot in the Dt-reachable interval

needs to be considered in the computation of one l-reachable interval only. The number

of timeslots in the Dt-reachable interval could be τ . However, we only need to consider

those “occupied” timeslots that have jobs assigned to them. We can keep links among

occupied timeslots by a doubly linked list. Each occupied timeslot s is linked to two

nearest occupied timeslots sl < t and sr > t. In this way, we can skip non-occupied

timeslots and only check occupied timeslots in R(l−1)
t \ R(l−2)

t when we compute R(l)
t .

By Property 4.2 (ii), the number of occupied timeslots in the Dt-reachable interval is at

most min{n, τ} and the overall computation takes O(min{n, τ}) time.

Using Lemma 4.13, we can analyze the overall time complexity which takes into

account also the time taken to update various data structures.

Theorem 4.14. We can find the optimal schedule in O(n log τ + min{n, τ}n log n)-

time for the case where the feasible timeslots associated with each job form a contiguous

interval.
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Proof. For each newly considered job which is assigned to s, we first compute the Ds-

reachable interval R(Ds)
s in O(min{n, τ}) time. We then check the existence of a legal-

path from s by examining the timeslot t in R(Ds)
s with the minimum load. If the load

`oad(s)− `oad(t) ≥ 2, then there is a legal-path, otherwise, there is no legal-path. This

timeslot t can be found by using a simple balanced binary tree structure that supports

dynamic range minimum query (RMQ). We store the load of the timeslots 1, 2, · · · , τ
in the leaves from left to right. Each internal node maintains the minimum load in

its subtree. Using this data structure, we can return the minimum load in any time

interval [x, y] in O(log τ) time. The value from the root to a leaf needs to be modified

when the load of a leaf is changed, and such update takes O(log τ) time. When a new

job is assigned and a possible shift takes place, at most two timeslots have their load

changed. Therefore, the update of the dynamic RMQ structure takes O(log τ) time for

each job assigned.

If there exists a legal-path from s to t, we construct a legal-path with length at

most Ds as follows (see Algorithm 3). Suppose t ∈ R(k)
s \ R(k−1)

s for some l ≤ Ds.

We construct a legal-path [s = v0, v1, · · · , vk = t] in a bottom-up fashion. If vk is on

the right extension of R(k−1)
s , i.e., vk > β

(k−1)
s , then we set vk−1 to be the timeslot

that rpfj(R(k)
s ) is assigned to; otherwise, i.e., vk < α

(k−1)
s , we set vk−1 to be the timeslot

that lpfj(R(k)
s ) is assigned to. By the definition of path-finder-jobs, vk−1 has jobs assigned

to it and one of these jobs (rpfj(R(k)
s ) or lpfj(R(k)

s ) accordingly) has a feasible interval

covering vk, hence the arc (vk−1, vk) exists in the feasibility graph and the arc is labelled

by rpfj(R(k)
s ) or lpfj(R(k)

s ) correspondingly. Inductively, we can define vj−1 from vj , for

j = k, k − 1, · · · , 1, until we reach s.

Given the legal-path found, we execute a shift along the path. We need to update the

heaps of at most Ds timeslots, thus taking O(min{n, τ} log n) time, by Property 4.2 (i).

The doubly linked list in the proof of Lemma 4.13 can be updated in O(1) time when

a job is added or removed from a timeslot, and hence updating at most Ds timeslots

takes O(min{n, τ}) time.

In summary the time taken for assigning a new job (including update of data struc-

tures) is bounded by O(log τ + min{n, τ} log n). Therefore, the overall time complexity

for assigning n jobs is O(n log τ + min{n, τ}n log n) and the theorem follows.

Figure 4.8 shows an illustration of legal path from s to t. The shifting is according

to the description in the proof of Theorem 4.14.

4.2.4 Using a Discrete DVS Algorithm

In this section we aim to demonstrate how to solve the GRID problem where the jobs

have unit size and contiguous feasible interval by reducing to the Discrete DVS problem.

It helps us to understand the relationship between the GRID problem and the DVS

problem better.
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Algorithm 3 The process of rebuilding the [s, · · · , t] legal-path and shifting after as-
signing Jj

Input: s, t ∈ R(k)
s \ R(k−1)

s , lpfj(R(0)
s ), lpfj(R(1)

s ), · · · , lpfj(R(Dt)
s ), rpfj(R(0)

s ),

rpfj(R(1)
s ), · · · , rpfj(R(Dt)

s ), α
(0)
s , α

(1)
s , · · · , α(Dt)

s , β
(0)
s , β

(1)
s , · · · , β(Dt)

s

tk ← t
for i = k to 2 do

if ti < α
(i−1)
s then

J(i) ← lpfj(R(i)
s )

ti−1 ← st(AFG, lpfj(R(i)
s ))

else
J(i) ← rpfj(R(i)

s )

ti−1 ← st(AFG, rpfj(R(i)
s ))

if t1 < s then
J(1) ← lpfj(R(1)

s )
else

J(1) ← rpfj(R(1)
s )

for i=1 to k do
Shift job J(i) to ti

s

Rs(1)

Rs(2)

t s

Rs(1)

Rs(2)

t

Figure 4.8: An illustration of legal path from s to t and the shifting.

In Section 3.2, we introduced the DVS problem and elaborated the difference between

the GRID problem and the DVS problem. Simply speaking, the main differences of DVS

problem to the GRID problem include (i) jobs in DVS can be preempted while preemption

is not allowed in the GRID problem; (ii) as processor speed in DVS can scale, a job can

be executed for varying time duration as long as the total work is completed while in the

GRID problem a job must be executed for a fixed duration given as input; (iii) the work

requirement p(J) of a job J in DVS can be seen as w(J) × h(J) for the corresponding

job in GRID.

More importantly, the DVS problem can be solved in polynomial time while the GRID

problem is NP-hard except for the case where jobs have unit size. We investigate the

GRID problem for unit-size jobs by relating to the DVS problem. More specifically, we

relate the GRID problem to the discrete DVS problem. As mentioned in Section 3.2.2,
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unlike in DVS problem the speed of processor can be arbitrary, in Discrete DVS problem,

the processor speed is restricted to a given set of speeds. We will use a polynomial time

algorithm for Discrete DVS problem proposed by Li et al. [52] to solve the GRID problem.

The formal problem definition of Discrete DVS is as the following [51]. There are n

jobs in the input job set J . Each job J has three parameters: arrival time r(J), dead-

line d(J), and required work to be finished p(J). The work p(J) should be finished be-

tween r(J) and d(J) and preemption is allowed. At any time t, the processor speed s(t)

can be chosen from d given speed levels s1 > s2 > · · · > sd. Speed s means that the pro-

cessor can do s units of work per unit of time. For example, if a job J with work p(J) is

executed at speed s, it needs p(J)
s unit of time to finish the job. A schedule S of J needs

to decide the speed and the jobs to be executed at any time t. A schedule S is feasible

if all jobs are finished before their deadlines. The cost at time t is a convex function of

the speed at t, denoted by P (s(t)). The total energy consumption by a schedule S is

E(S) =
∫∞
t=0 P (s(t))dt. The goal is to find a feasible schedule that minimize the total

energy consumption.

The O(n log max{d, n})-time algorithm for Discrete DVS problem [52].

Li [52] proposed a O(n log max{d, n})-time algorithm to solve the Discrete DVS problem

where n is the number of jobs and d is the number of allowed speeds. The basic idea of the

algorithm is as follows. The time horizon T is partitioned into T1, T2, · · · , Td such that

each Ti is a collection of time intervals and in each Ti, the speed of each timeslot in the

optimal schedule for continuous DVS problem is within [si, si+1). According to the Tis,
the jobs in J can be partitioned into J1,J2, · · · ,Jd. Each Ji is corresponding to Ti.
The jobs in Ji have to be scheduled within Ti for each i using speed si or si+1. Finally,

the authors proposed (si, si+1)-schedule algorithm to feasibly schedule jobs in Ji. The

(si, si+1)-schedule algorithm is based on the schedule using constant speed si+1 (which

may not be feasible.) By consulting the schedule using constant speed si, the final

schedule is feasible and optimal.

By the following procedure we can transform an input job set J of GRID problem

into an input job set J ∗ of Discrete DVS problem. For any job J ∈ J , its corresponding

job J∗ has r(J∗) = r(J), d(J∗) = d(J), and p(J) = w(J) · h(J). Also, we set the set of

allowed speeds S = {n, n− 1, n− 2, · · · , 2, 1}. Note that the number of available speed

d = n.

The output of Li’s algorithm is a schedule S which is a pair of functions (s(t), job(t))

defined as the processor speed and the job to be executed at time t. However, it is not

easy to transform the schedule to a schedule for the GRID problem. It is because that in

the Discrete DVS schedule, a job can be execute at any speed in S. Moreover, at each

timeslot, the schedule of Discrete DVS problem might have different speed. Hence we

design our own (si, si+1)-schedule algorithm instead using the one in [51].

Our (si, si+1)-schedule algorithm (Algorithm 4). Recall that Li’s algorithm

partitions J and T into J1,J2, · · · ,Jn and corresponding T1, T2, · · · , Tn. For each Ji
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over Ti, it can be feasibly scheduled by speed si and si+1. Our (si, si+1)-schedule algo-

rithm works for each pair of Ji and Ti as follows. For each timeslot t in Ti, assign si+1

available jobs in Ji at t by the EDF principle. At any timeslot t, if there are k jobs

missing their deadlines, we set the “overflow” number of t, ot = k and ignore those

jobs. When all timeslots in Ti are done and ot is know for each t ∈ Ti, we maintain a

counter no which is 0 in the very beginning and schedule the jobs in a reverse sequence.

That is, we go through the timeslot in Ti from right to left (instead of from left to right)

and assign jobs in the latest release time first principle. At timeslot t, we add ot to no.

If no > 0, we schedule si jobs at t by the latest release time first principle and minus one

from no; otherwise, we schedule si+1 jobs at t by the latest release time first principle.

Algorithm 4 Our (si, si+1)-schedule algorithm

Input: Ti = {t1, t2, · · · , tτi}, Ji = {J(1), J(2), · · · , J(n′)}, where the jobs are sorted by
their deadlines
no ← 0
for j = 1 to τi do

Assign si+1 available jobs to tj
otj ← the number of jobs which has deadline at t and has not been assigned yet

Reorder the jobs in Ji such that the jobs are sorted by their release time
for j = τi to 1 do

no ← no + otj
if no > 0 then

Assign si available jobs at tj by the latest release time first principle
no ← no − 1

else
Assign si+1 available jobs at tj by the latest release time first principle

It is easy to see that the total number of assigned jobs will be equal to the number

of jobs in Ji. At each timeslot t, if no > 0, there must be si+1 available jobs, otherwise,

there should not be no overflowed jobs in the time interval [t, t+ no). In our (si, si+1)-

scheduling algorithm, we perform two scheduling with constant speed, while there are

one in Li’s algorithm. Hence the time complexity of our algorithm is at most twice of

Li’s algorithm. Also, in [52], Lemma 5.4, the authors proved that all (si, si+1)-schedule

have the same cost. We have the following lemma.

Lemma 4.15. There exists an O(n log n)-time algorithm to solve the GRID problem

where there are input n jobs and each job has unit width, unit height and arbitrary

contiguous feasible interval.

Proof. According to [52], the T1, T2, · · · , Td and J1,J2, · · · ,Jd can be found in O(n log n)

time.

Now we prove that our (si, si+1)-schedule can be done in O(ni log ni) time where

ni = |Ji| for each i. The sorting in the (si, si+1)-schedule need O(ni log ni) time. By

the definition of Ti, τi ≤ ni for all i > 0. Also, each job is exactly considered twice, one

for each round. Hence the time needs for our (si, si+1)-schedule is (ni log ni).
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Finally, the total time for all (si, si+1)-schedules is O(n1 log n1 + n2 log n2 + · · · ) =

O((n1 + n2 + · · · ) log n) = O(n log n).

4.3 Exact Algorithms for Jobs with Arbitrary Widths and

Heights

In parameterized complexity theory, the complexity of a problem is not only measured

in terms of the input size, but also in terms of parameters. The theory focuses on

situations where the parameters can be assumed to be small, and the time complexity

is exponential mainly because of these small parameters. The problems having such

small parameters are captured by the concept “fixed-parameter tractability”. An algo-

rithm with parameters p1, p2, · · · is said to be an fixed parameter algorithm if it runs in

f(p1, p2, · · · ) ·O(g(N)) time for any function f and any polynomial function g, where N

is the size of input. A parameterized problem is fixed-parameter tractable if it can be

solved by a fixed parameter algorithm. In this section, we show that the general case

of GRID problem, jobs with arbitrary contiguous feasible intervals (that is, arbitrary

release times and arbitrary deadlines), widths and heights, is fixed-parameter tractable

with respect to a few small parameters. Table 4.1 summarizes our exact algorithms for

different parameters.

Parameters Time complexity

wmax,m,Wmax wmax
2m · (Wmax + 1)4m ·O(n2)

wmax,m (4m · wmax
2)2m ·O(n2)

Table 4.1: Summary of our exact algorithms (n is the number of jobs; wmax is the
maximum width of jobs; m is the maximum size of cliques; Wmax is the maximum

length of windows; k is the number of windows).

4.3.1 Key notions

We design two fixed parameter algorithms that are based on a dynamic programming

fashion. Roughly speaking, we divide the timeline into k contiguous windows in a

specific way, where each window Wi represents a time interval [bi, bi+1) for 1 ≤ i ≤ k.

The algorithm visits all windows accordingly from the left to the right and maintains

a candidate set of schedules for the visited windows that no optimal solution is deleted

from the set.

In the first fixed parameter algorithm, the parameters of the algorithm are the max-

imum width of jobs, the maximum number of overlapped feasible intervals and the

maximum size of windows, where the latter two can be parameterized if we interpret

the input job set as an “interval graph”. In the second algorithm, we further drop out

the last parameter. All these parameters do not increase necessarily as the number of
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jobs grows, and can be assumed to be small in practice. For example, a width of a job

is a requested amount of time to run an appliance, and the running time is usually a

few hours, which is small when we make a timeslot to be an hour. And the number of

overlapped feasible intervals is at most the number of appliances.

Interval graph. A graph G = (V,E) is an interval graph if it captures the inter-

section relation for some set of intervals on the real line. Formally, for each v ∈ V , we

can associate v to an interval Iv such that (u, v) is in E if and only if Iu ∩ Iv 6= ∅. It has

been shown in [28, 32] that an interval graph has a “consecutive clique arrangement”,

i.e., its maximal cliques in an interval graph can be linearly ordered in a way that for

every vertex v in the graph, the maximal cliques containing v occur consecutively in the

linear order.

For any instance of the GRID problem, we can transform it into an interval graph

G = (V,E): For each job J with interval I(J), we create a vertex v(J) ∈ V and an edge

is added between v(J) and v(J ′) if and only if I(J) intersects I(J ′). We can then obtain

a set of maximal cliques in linear order, C1, C2, · · · , Ck, by sweeping a vertical line from

the left to the right, where k denotes the number of maximal cliques thus obtained. The

parameter of our algorithm, the maximum number of overlapped feasible intervals, is

just the maximum size of these maximal cliques.

Figure 4.9 shows a set of input jobs and the corresponding interval graph. The max-

imal cliques in this interval graph are C1 = {v(J1), v(J2)}, C2 = {v(J2), v(J3), v(J4)},
C3 = {v(J2), v(J4), v(J5), v(J6), v(J7)}, C4 = {v(J2), v(J5), v(J8)}, C5 = {v(J2), v(J9), v(J10)},
and C6 = {v(J2), v(J10), v(J11)}.

J1

J3

J4

J5

J6

J7

J8

J9

J10

J11

J2

v(J2)

v(J4)
v(J5)

v(J7) v(J6)

v(J8)

v(J11)

v(J9)

v(J10)

v(J3)

v(J1)

Figure 4.9: A set of input jobs and the corresponding interval graph.

Boundaries and windows. Based on the maximal cliques described above, we

define some “windows” W1, W2, · · · , Wk with “boundaries” b1, b2, · · · , bk+1 as follows.

We first give the definition of boundaries for the first algorithm. This definition will be

generalized in section 4.3.4 for the second algorithm. For 1 ≤ i ≤ k, the i-th boundary bi

is defined as the earliest release time of jobs in clique Ci but not in cliques before Ci (see

Figure 4.11), precisely, bi = min{t | t = r(Jj) and Jj ∈ Ci \ (∪i−1
s=1Cs)}. The rightmost

boundary bk+1 is defined as the latest deadline among all jobs. With the boundaries, we
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partition the timeslots into contiguous intervals called windows. The i-th window Wi is

defined as [bi, bi+1).

Figure 4.11 shows the boundaries and windows corresponding to the input in Fig-

ure 4.9. It is easy to see that each window Wi is corresponding to the clique Ci. That

is, the jobs J with I(J)∩ [bi, bi+1) forms clique Ci. For example, the jobs passing W3 are

J2, J4, J5, J6, and J7, which are the jobs in C3. Moreover, each job is contained within

at least one window. If there are multiple windows which contain a job J, the windows

must form a contiguous sequence. That is, the windows containing certain job J are

Wi,Wi+1,Wi+2, · · · ,Wj for some i ≤ j. For example, the job J5 is contained in W3,W4,

and W5.

J1

J3

J4

J5

J6

J7

J8

J9

J10

J11

J2

W3W1 W2 W4 W5 W6

b1 b2 b3 b4 b5 b6 b7

Figure 4.10: The windows corresponding to the input in Figure 4.9.

4.3.2 Framework of the algorithms

We propose two exact algorithms, both of which runs in k stages corresponding to each

of the k windows. We maintain a table Tleft that stores all “valid” configurations of jobs

in all the windows that have been considered so far. A configuration of a job corresponds

to an execution segment. And a row in the table consists of the configurations of all the

jobs. In addition, for each window Wi, we compute a table Trighti to store all possible

configurations of start and end time of jobs available in Wi. The configurations in Trighti

would then be “concatenated” to some configurations in Tleft that are “compatible” with

each other. These merged configurations will be filtered to remove those non-optimal

ones. The remaining configurations will become the new Tleft for the next window.

To describe the details of the algorithm, we explain several notions below. We denote

by Wleft the union of the windows corresponding to Tleft. More formally, in the i-th

stage, Wleft = ∪j<iWj . And we use Tright to denote Trighti when the context is clear.

Configurations. A configuration Fi(J) of job J in window Wi is an “execution

segment”, denoted by [sti(J), eti(J)) contained completely by Wi. An execution segment
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can be seen as a part of the whole execution interval. That is, assume the execution

interval of job J in the schedule is [st(J), et(J)), [sti(J), eti(J)) = [st(J), et(J))∩Wi. For

a collection C of jobs, we use Fi(C) to denote the set of configurations of all jobs in C,

and Fleft(J) and Fleft(C) for the counterparts corresponding to Tleft. The cost of Fi(C)

is the cost corresponding to the execution segments in Fi(C). That is, cost(Fi(C)) =∑
t∈Wi

(
∑

J∈C:t∈Fi(J) h(Jj))
α.

We want to enumerate all possible configurations in each window Wi. That is, for

each job J, sti(J) can be chosen from {bi, bi + 1, · · · , bi+1− 1}∪ {bi− 1, bi+1} and eti(J)

can be chosen from {bi + 1, bi + 2, · · · , bi+1} ∪ {bi, bi+1 + 1}. We say that sti(J) ∈Wi or

eti(J) ∈Wi if sti(J) ∈ [bi, bi+1) or eti(J) ∈ (bi, bi+1] respectively. And J is executed inWi

if both sti(J) ∈ Wi and eti(J) ∈ Wi hold. There are three other special configurations

(the last three configurations in Figure 4.11):

• Setting sti(J) = bi − 1 and eti(J) = bi means J is executed completely before Wi.

• Setting sti(J) = bi+1 and eti(J) = bi+1 + 1 means J starts execution after Wi.

• Setting sti(J) = bi − 1 and eti(J) = bi+1 + 1 means J starts execution before Wi,

crosses the whole window Wi, and ends execution after Wi.

Figure 4.11 shows an illustration of all possible configurations of J5 in window W4.

W4

b4 b5

invalid

J5

[st4(J5), et4(J5))
[b4, b4+1)

[b4-1, b4)

[b5, b5+1)

[b4-1, b5+1)

Figure 4.11: Configurations F4(J5).

Validity. To make sure that the final schedule is a feasible one, we have to make

sure that the configurations are valid. A configuration Fi(J) is invalid if one of the

following conditions hold:

1. sti(J) ≥ eti(J);

2. eti(J) > sti(J)+w(Jj) meaning that the length of execution segment of J is larger

than the width of J;
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3. (eti(J) < sti(J) +w(Jj)) ∧ (sti(J) ≥ bi) ∧ (eti(J) ≤ bi+1) meaning that the length

of execution segment of J is smaller than the width of J;

4. (sti(J) < r(Jj)) ∧ (sti(J) < bi+1) meaning that the start time of J is earlier than

the release time of J;

5. (eti(J) > d(Jj))∧(eti(J) > bi) meaning that the end time of J exceeds the deadline

of J.

Note that for Fleft(J), the validity is defined on the boundaries b1 (instead of bi) and bi+1.

And for Tleft, Fleft(J) is also invalid if stleft(J) = b1 − 1 since there is no window on the

left of Wleft. Similarly, Fk(J) is invalid if etk(J) = bk+1 + 1. A configuration Fi(C) is

invalid if there exists J ∈ C such that Fi(J) is invalid.

Compatibility. For each job, the configurations of it in different windows should

be consistent, which means the configurations should not state contradicted schedules.

We say that the configurations are compatible if they do not contradict to each other.

For job J, the two configurations Fleft(J) and Fi(J) are compatible if:

1. The configuration Fleft(J) states that J is executed in Wleft, and the configura-

tion Fi(J) states that J is executed before Wi.

2. The configuration Fleft(J) states that J starts execution in Wleft and ends execution

after Wleft, and the configuration Fi(J) states that J starts execution before Wi

and ends execution either in Wi or after Wi.

3. The configuration Fleft(J) states that J is executed completely after Wleft, and the

configuration Fi(J) states that J does not start before Wi.

Concatenating configurations. To concatenate two configurations Fleft(J) and Fi(J),

we create a new Fleft(J) by the following setting based on the three types of compatible

configurations described in the previous paragraph: for type (i), stleft(J) and etleft(J)

leave unchanged; for type (ii), stleft(J) leaves unchanged and set etleft(J) ← eti(J);

and for type (iii), set stleft(J) ← sti(J) and etleft(J) ← eti(J). Concatenating Fleft(C)

and Fi(C) is to concatenate the configurations of each job in C. The corresponding cost

is simply adding the cost of the two configurations.

Note that the concatenation of two valid configurations might not be valid, hence

we have check the validity after concatenation. Figure 4.12 shows examples of concate-

nation. The black block in the middle indicates the width and height of the job J5. The

example in green is a valid configuration after concatenation while the example in red

is an invalid one since the width of the concatenated job dose not fit the width of J5.

Uncertainty and identity. A configuration Fi(J) is uncertain if eti(J) = bi+1 + 1

meaning that the end time of J is not determined yet, and we are not sure at the i-th stage

whether Fi(J) will be valid after concatenating Fi(J) and Fi+1(J). Note that the certain

jobs will not affect the jobs released later since the later-released jobs have release time
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W4Wleft

Fleft(J5)

Fright(J5)

new Fleft(J5)

J5

Fleft(J5)

Fright(J5)

new Fleft(J5) 

Figure 4.12: Valid and invalid concatinations of Fleft(J5) and Fright(J5).

later than the end time of the certain jobs. Figure 4.13 shows an example of certain and

uncertain job configurations. The red blocks mean that the configurations are uncertain,

that is, the end times of the red jobs are not determined yet. In Stage i, consider any

configuration, the jobs in
⋂
k>iCk will not have execution intervals overlapping with the

certain jobs.

W4

J5

Wleft

type (i)

type (ii)

type (ii)

type (ii)

type (ii)

type (iii)

Figure 4.13: Concatinating Fleft(J5) and F4(J5).

Two configurations Fi(C) and F ′i (C) are identical if (i) Fi(J) is uncertain if and only

if F ′i (J) is uncertain for all job J ∈ C; and (ii) the start time of Fi(J) is equal to the start

time of F ′i (J) for all uncertain configuration Fi(J) and J ∈ C. That is, we only consider

the differences among the start times of those jobs with uncertain configurations when

we distinguish two configurations of a set of jobs.

Figure 4.14 shows six configurations of jobs in
⋃4
i=1Ci. The configurations in 4.14a

and 4.14b are not identical since the job J5 is uncertain in 4.14b but not in 4.14a. The

configurations in 4.14c and 4.14e are identical since the configuration of uncertain jobs
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(J2 and J5) are the same (that is, the jobs different configurations have same start

time). Note that the jobs J3, J4, and J7 are not uncertain jobs. Although these jobs

have different execution times in different configurations, the two configurations are still

considered as identical. The configurations in 4.14d and 4.14f are identical since there

is no uncertain jobs. The configurations in 4.14b and 4.14c are not identical since the

uncertain job J2 has different start time each of the configurations.
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W3W1 W2 W4 W5 W6

b1 b2 b3 b4 b5 b6 b7
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Figure 4.14: Illustrations of configurations.

The linear property of the consecutive clique arrangement of interval graphs gives
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a direction to design a dynamic programming algorithm, which breaks down a problem

into overlapped subproblems until the subproblems are simple enough to be solved.

Given a configuration a configuration Fi(Ci), considered as fixed, we break down the

problem to the subproblem that find the ”best” schedule of the jobs J ∈
⋃i−1
k=1Ck \ Ci

such that the cost (together with Fi(Ci)) is the least. This schedule thus obtained would

be adopted later when we consider the best schedule of the subsequent cliques.

Figure 4.15 shows four different configurations F4(C4) and the corresponding best

schedules. The red blocks are jobs in C4, and their execution intervals form a configu-

ration in F4(C4). The green blocks represent the jobs with feasible intervals complete

before W4, that is, the jobs are in
⋃3
k=1Ck \ C4. Since the green jobs’ feasible intervals

end before W4, given a configuration F4(C4) (that is, the red jobs), we can schedule the

green jobs such that the cost within [b1, bi+1) is minimized. Note that the configurations

of the red jobs are given and the red jobs are considered as fixed (that is, not shiftable)

while the green jobs can be shifted. The best schedule of the green jobs means a schedule

of green jobs such that the cost (of the green jobs together with those fixed red jobs) is

minimized. Also note that different configurations lead to different schedule of the green

jobs and different cost. Hence not all these schedules are the optimal with respect to all

the jobs seen so far. For example, the top-right subgraph in Figure 4.15 has lower cost

than the other three, while all four schedules are best for the given configurations.
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Figure 4.15: Different F4(C4) and the corresponding optimal schedules.
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4.3.3 An algorithm with three parameters

Algorithm E. The algorithm consists of three components: ListConfigurations, Con-

catenateTables and FilterTable. In the algorithm, we first transform the input job set J
to an interval graph, and obtain the maximal cliques Ci for 1 ≤ i ≤ k and the cor-

responding windows Wi. We start with Tleft containing the only configuration, which

initially sets st0(J) = b1 and et0(J) = b1+1 for all jobs J ∈ J . That is, the configuration

treats all the jobs to be not yet executed. Then we visit the windows from the left to

the right.

ListConfigurations: For window Wi and jobs in Ci, we construct Tright storing all

configurations of J ∈ Ci. We enumerate all sti(J) ∈ {bi, bi+1, · · · , bi+1−1}∪{bi−1, bi+1}
and eti(J) ∈ {bi + 1, bi + 2, · · · , bi+1} ∪ {bi, bi+1 + 1} for each job J ∈ Ci, list all the

combinations of all the jobs J with all of its start times and end times, and store the

results in Tright in the way that one row is for one configuration Fi(Ci). In another

words, Tright stores all the combinations of possible execution segments of J in Wi for

all J ∈ Ci. Recall that the configurations where jobs with release time later than Wi are

considered to execute after Wi and the jobs with deadline earlier than Wi are considered

to execute beforeWi. For each configuration Fi(Ci), we further store its cost contribution

in Wi, cost(Fi(Ci)). That is, we only count the cost caused by the jobs’ execution

segments within Wi. We also check each of the configurations and delete those invalid

ones.

ConcatenateTables: We then concatenate compatible configurations in Tleft and Tright.

The resulting table is the new Tleft. More specifically, for each configuration Fleft(C)

in Tleft and each configuration Fright(C) in Tright, we concatenate Fleft(C) and Fright(C)

if they are compatible, and store the result to a new row in Tleft. Note that in the

ListConfigurations step, the configurations in Tleft and Tright are all valid. However, the

concatenation of two valid configurations might not be valid (see Figure 4.12), hence

we also check the validity of each of the configurations in the new Tleft and delete those

invalid ones.

FilterTable: After concatenation, we filter non-optimal configurations. We classify

all the configurations in (the new) Tleft into groups such that the configurations in a

group are identical and no two configurations from different groups are identical. For

each group, we only leave the configuration with the lowest cost (break tie arbitrarily)

and remove the others in the group (see Figure 4.15). In the current Tleft, no two

configurations are identical.

After processing all windows, the only configuration in the final Tleft is returned as

the solution. Algorithm 5 is the pseudocode of this algorithm.

Lemma 4.16. Algorithm E outputs an optimal solution.

Proof. In each stage, we list all possible configurations. A configuration is deleted only

when it is invalid or it is identical to another configuration with lower cost. It is easy



Chapter 4. Offline Algorithms 68

Algorithm 5 The fixed parameter algorithm E
Input: a set of job J
Output: an optimal configuration of J
{(Wi, Ci)}ki=1 ← the windows and their corresponding cliques of J
Tleft ← a configuration that sets all jobs Jj ∈ J to be not yet executed
for i from 1 to k do

Tright ← ListConfigurations(Wi, Ci)
Tleft ← ConcatenateTables(Tleft, Tright)
Tleft ← FilterTable(Tleft)

return any configuration in Tleft

to see an invalid configuration cannot be optimal since it will not be a feasible schedule.

So we focus on the other case. Given two identical configurations Fleft(C) and F ′left(C)

with cost(Fleft(C)) < cost(F ′left(C)), we show that F ′left(C) cannot be optimal. Suppose

there is an optimal solution F ∗ containing F ′left(C), which means each execution seg-

ment F ′left(J) in F ′left(C) is completely contained by the corresponding execution interval

of J in F ∗. Since Fleft(C) and F ′left(C) are identical, the start times of J are the same

in the two configurations for all uncertain jobs J. In Wleft, this means the uncertain

jobs do not make the costs of the two configurations to be different, and the jobs Jc
that are not uncertain do. Note that Jc is consisted of the jobs with their end times

being determined. This means we can replace the configurations of Jc in F ′left(C) by the

configurations of Jc in Fleft(C) and this action will not affect the procedures in the al-

gorithm thereafter. However, this also results in a solution of lower cost and contradicts

the assumption that F ∗ is optimal. Thus F ′left(C) cannot be optimal. Therefore, none

of the deleted configuration can be part of an optimal schedule. That is, no optimal

schedule would be removed through out the whole process.

Theorem 4.17. Algorithm E computes an optimal solution in O(k · wmax
2m · (Wmax +

1)4m · n) time, where n is the number of jobs, wmax is the maximum width of jobs, m

is the maximum size of cliques, Wmax is the maximum length of windows, and k is the

number of windows.

Proof. We first compute the time complexities for the three components of the algo-

rithm, and then compute the total time complexity. For ListConfigurations, there are

at most (Wmax + 1)2m configurations in the outputted table Tright, since there are at

most Wmax + 1 possible start times and end times respectively and at most m jobs that

should be considered in the current window. For each configuration, it takes O(n) time

for construction and validity checking. It also takes O(nWmax) to compute the cost of a

configuration. So, the time complexity for ListConfigurations is

O((Wmax + 1)2m · nWmax) = O((Wmax + 1)2m+1 · n) .

Before computing the time complexities of the other components, we focus on the

number of configurations of Tleft at the end of each iteration in the algorithm. Since Tleft
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is filtered to have no identical configurations, the number of configurations can be upper

bounded. This number depends on the number of different start times of uncertain jobs.

There are at most m uncertain jobs, and for each such job, the number of start times

is at most wmax. Note that the end times of these jobs are all set to be later than

the current window and will not affect the number of configurations. So the number of

configurations of Tleft at the end of each iteration is at most wmax
m.

For ConcatenateTables, there are at most wmax
m ·(Wmax +1)2m configurations in the

outputted table Tleft. This is because for each configuration in the input Tleft, we need

to compare it with all the configurations in Tright for compatibility checking. For each

configuration, it takes O(n) time for compatibility checking, concatenation and validity

checking. Thus the time complexity for ConcatenateTables is O(wmax
m·(Wmax+1)2m·n).

For FilterTable, the number of configurations in the outputted table Tleft is at most

the number of configurations outputted by ConcatenateTables. Also, the number of

groups is at most its number of configurations. Thus it takes

O([wmax
m · (Wmax + 1)2m]2 · n) = O(wmax

2m · (Wmax + 1)4m · n)

time for classification. And it takes O(wmax
m · (Wmax + 1)2m) time for deletion. So

the time complexity for FilterTable is O(wmax
2m · (Wmax + 1)4m · n). Since there are k

iterations, the total time complexity is O(k · wmax
2m · (Wmax + 1)4m · n).

In the worst case, there are at most O(n) windows. So algorithm E also runs in

f(wmax,m,Wmax) ·O(n2) time where f(wmax,m,Wmax) = wmax
2m · (Wmax + 1)4m.

Corollary 4.18. GRID problem is fixed parameter tractable with respect to the maximum

width of jobs, the maximum number of overlapped feasible intervals, and the maximum

length of windows.

4.3.4 An algorithm with two parameters

This section describes how to drop out the parameter Wmax in the previous algorithm

by generalizing the definitions of windows and boundaries.

At the beginning of Algorithm E , we transform a set of jobs to its corresponding

interval graph and obtain a sequence of windows by the set of maximal cliques in the

interval graph. We require in the algorithm that all the cliques should be maximal.

However, the algorithm is still optimal and has parameterized bound of time complexity

if we divide a maximal clique into multiple non-maximal cliques in a specific way. Given

a maximal clique Ci and its corresponding window Wi, we divide Wi into a set of

contiguous windows Wi1 ,Wi2 , . . . such that Wi = ∪jWij . Note that the set of jobs Cij
corresponding to Wij is a clique in the interval graph since Ci is a clique and Cij ⊆ Ci.
In this way, the number of jobs in the window Wij is still at most m. Furthermore,

since this window division does not affect the proof of lemma 4.16, the algorithm is still

optimal. Thus we have the following observation.
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Observation 3. Algorithm E outputs an optimal solution if it receives a set of contiguous

windows containing all the jobs such that each window represents a clique (not neces-

sarily maximal) in the interval graph of the input jobs. And we have the number of jobs

in each window is at most the maximum number of overlapped feasible intervals.

To drop out the parameter Wmax in the previous algorithm, we divide windows into

smaller ones such that the number of configurations in a window can be bounded by

wmax and m. In the new algorithm, we set the locations of boundaries at the release

times and deadlines of all the jobs and construct the windows bases on these boundaries.

In this way, there is no job being released or attaining its deadline in the middle of a

window, and all the jobs in the window can be put anywhere in the window. Thus

the number of used timeslots is at most m · wmax + 2(wmax − 1). This is because in

the worst case, all jobs in a window are scheduled such that no job overlaps to another

and these jobs consume at most m · wmax timeslots. In addition, we need to consider

the cases that a job’s start time is earlier than the window or its deadline is later than

the window. Both cases consume at most wmax − 1 timeslots respectively. Note that

this window division results in a set of windows that their sizes are smaller than their

original counterparts, and thus observation 3 can be applied. Based on this new window

division, we have the following algorithm.

Algorithm E+. This algorithm is similar to algorithm E except the definitions of

boundaries and the component ListConfigurations. Given a set of jobs J , the algorithm

uses the set of boundaries {r(Jj) | Jj ∈ J } ∪ {d(Jj) | Jj ∈ J } to construct the windows

and obtain the corresponding cliques. Let k denotes by the number of windows. There

are k stages for the algorithm. At the i-th stage, the algorithm runs ListConfigurations,

ConcatenateTables and FilterTable accordingly as algorithm 5 does. It finally outputs

the only configuration in Tleft. For the component ListConfigurations, we only consider

to schedule jobs on the timeslots used instead of enumerating all possibilities of start

times and end times. The algorithm tries all m ·wmax timeslots (the worst case described

in the previous paragraph) as the start time of a job, and also the 2(wmax−1) schedules

that a job is partially executed in the window. In addition, the component shall includes

the cases that either a job is completely executed before the window, it is completely

executed after the window, or it crosses the window.

Theorem 4.19. Algorithm E+ computes an optimal solution in f(wmax,m)·O(n2) time,

where n is the number of jobs, wmax is the maximum width of jobs, m is the maximum

size of cliques, and f(wmax,m) = (4m · wmax
2)2m.

Proof. As in the proof of theorem 4.17, we compute the running time of the three

components and then the total time complexity. For the component ListConfigurations,

there are at most (m ·wmax +2(wmax−1)+3)m outputted configurations, since there are

at most m ·wmax +2(wmax−1)+3 schedules for a job (see the description in the previous

paragraph) and at most m jobs in a window. It takes O(n(m · wmax + 2(wmax − 1))) ≤
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O(n·m·wmax) time to compute the cost for each configuration. Thus the time complexity

for ListConfigurations is at most

O((m · wmax + 2(wmax − 1) + 3)m · (n ·m · wmax)) ≤ O((4m · wmax)m+1 · n) .

The time complexities of ConcatenateTables and FilterTable are similar to that in

the proof of theorem 4.17 except the number of outputted configurations. For Concate-

nateTables and FilterTable, both the number of outputted configurations are at most

wmax
m ·(4m ·wmax)m. Thus their running time are at most O(wmax

2m ·(4m ·wmax)2m ·n).

Since there are k = O(n) iterations, the total time complexity of the algorithm is at

most

O((4m · wmax
2)2m · n2) = f(wmax,m) ·O(n2) .

Corollary 4.20. GRID problem is fixed parameter tractable with respect to the maximum

width of jobs, and the maximum number of overlapped feasible intervals.

The time complexity of the exact algorithm O((4m ·wmax
2)2m ·n2) seems to be very

big. However, in the real world, m is the number of devices and wmax, which is the longest

processing time, can be actually small. Hence the time complexity is considerably small

if we consider a small scale environment (for example, within a house).

4.4 An (36(1+ dlog wmax

wmin
e)(1+ dlog hmax

hmin
e))α-Approximation Al-

gorithm for General Case

We have shown in Section 4.2 that for input jobs with unit height and unit width, the

GRID problem can be solved in polynomial time. In this section we are going to propose

an approximation algorithm for GRID problem with a more general input where each job

has arbitrary size (that is, arbitrary width and arbitrary height) and contiguous feasible

interval by using the polynomial time algorithm. The idea is to classify the jobs by their

heights and weights such that in each class of jobs where jobs heights (and widths) are

bounded within a factor of two. For each class, the jobs are treated as unit jobs and we

run the polynomial time algorithm independently. We show that such a transformation

only increases the cost modestly and establish the approximation ratio of our algorithm.

In Section 4.4.1, we propose an approximation algorithm for uniform input (that is,

jobs with uniform widths and uniform heights) by using the polynomial time optimal

algorithm for unit case. In Section 4.4.2, we use the approximate algorithm in Sec-

tion 4.4.1 to schedule a general input where jobs have arbitrary widths and arbitrary

heights.
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4.4.1 Uniform Widths and Uniform Heights Jobs

In this section, we consider job set J where each job has uniform width and uniform

height. The idea of handling uniform width and uniform height jobs is to treat them as

if they were unit width and unit height, however, this would mean that jobs may have

release times or deadlines at non-integral time. To remedy this, we define a procedure

AlignFI to align the feasible intervals (precisely, release times and deadlines) to the

new time unit of duration w. Let J be a uniform width job set. We classify the jobs

in J by the length of their feasible intervals. A job J is said to be tight if |I(J)| ≤ 2w;

otherwise, it is loose. Intuitively, the tight jobs are less flexible. In fact, for each tight

job, there must be at least one timeslot in its feasible interval which has non-zero load in

any feasible schedule. The in-flexibility guarantees that any strategy for tight jobs will

not be too bad comparing to the optimal schedule. Let JT and JL denote the disjoint

subsets of tight and loose jobs of J , respectively. We have different strategies for tight

and loose jobs. As to be shown, an arbitrary feasible schedule of tight jobs is good

enough comparing to the optimal schedule. On the other hand, we modify every loose

job via Procedure AlignFI such that its release time and deadline are both multiple

of w. Then, we can treat the loose jobs as unit input and run AFG.

Procedure AlignFI. Given a loose job set JL in which w(J) = w and |I(J)| > 2w

for all J ∈ JL. We define the procedure AlignFI to transform each loose job J ∈ JL

into a job J ′ with release time and deadline “aligned” as follows. We denote the resulting

job set by J ′.

• r(J ′)← mini≥0{i · w | i · w ≥ r(J)};

• d(J ′)← maxi≥0{i · w | i · w ≤ d(J)}.

Figure 4.16 shows an illustration of three feasible intervals I(Jj) and correspond-

ing I(J ′j) generated by AlignFI where w = 4.

w = 4

ww w

r(J2)

r(J1)

r(J3)

d(J1)

d(J2)

d(J3)

r(J’1) d(J’1)

r(J’2) d(J’2)

r(J’3) d(J’3)

Figure 4.16: An illustration of Procedure AlignFI.
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Observation 4 asserts that after performing AlignFI, the job set J ′ is a feasible

input. Moreover, for every J ∈ JL, we give a range where the feasible interval of the

corresponding J ′ would be and a range of the length of I(J ′).

Observation 4. For any job J ∈ JL and the corresponding J ′ generated by AlignFI,

(i) d(J ′) > r(J ′) and |I(J ′)| ≥ w;

(ii) I(J ′) ⊆ I(J);

(iii) 1
3 |I(J)| < |I(J ′)| ≤ |I(J)|.

Proof. (i) Consider any job J ∈ J and the corresponding J ′. If r(J) is a multiple of w,

d(J) ≥ r(J) + 2w since J is a loose job. Hence d(J ′) > d(J) − w ≥ r(J) + 2w − w =

r(J ′)+w. On the other hand, if r(J) is not a multiple of w, that is, (i−1)w < r(J) < iw

for some integer i, then d(J) > (i + 1)w since |I(J)| ≥ 2w. Thus, d(J ′) ≥ (i + 1)w,

r(J ′) = iw, and |I(J ′)| ≥ w.

(ii) It is clear to see that r(J) ≤ r(J ′) < r(J) + w. Also, d(J) − r(J) ≥ 2w, thus

r(J ′) ∈ I(J). Similarly, d(J ′) ∈ I(J). Hence I(J ′) ⊆ I(J).

(iii) According to (i), d(J ′)−r(J ′) ≥ w. Because r(J ′)−r(J) < w and d(J)−d(J ′) <

w, |I(J)| − |I(J ′)| < 2w ≤ 2|I(J ′)|.

Notice that after AlignFI, the release time and deadline of each loose job are aligned

to timeslot i1 ·w and i2 ·w for some integers i1 < i2. Furthermore, after AlignFI all jobs

are released at time which is a multiple of w. Also, by Observation 4 (ii), any feasible

schedule of J ′ is feasible for JL. Hence the job set J ′ can be treated as job set with

unit size, where each unit has duration w instead of 1 and power request h instead of 1.

As a consequence of altering the feasible intervals, we introduce two additional pro-

cedures that convert associated schedules. Given a schedule S for a loose job set JL,

AlignSch converts it to a schedule S′ for the corresponding job set J ′ where each job

is treated as unit input. The other procedure FreeSch takes a schedule S′ for a job

set J ′ and converts it to a schedule S for JL.

Since any feasible schedule of J ′ is feasible for JL, the Transformation FreeSch is

straightforward:

Transformation FreeSch. FreeSch transform S′ into S.

• st(S, J)← st(S′, J ′);

• et(S, J)← et(S′, J ′).

The feasibility of S′ can be proved easily by Observation 4 (iii). And the cost of S

is the same as S′.

Lemma 4.21. Using FreeSch, we have cost(S) = cost(S′).

Proof. It is easy to see that `oad(S, t) = `oad(S′, t) for all t. Hence cost(S) = cost(S′).
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The other direction, AlignSch, is trickier. Apparently, the start time of J in a

feasible schedule can be at any time which is not necessary a multiple of w. Not to

mention that I(J) might greater than I(J ′) and the execution interval of J could be

partially outside the I(J ′) (see Figure 4.17).

The idea of AlignSch is that, if the execution interval of J is not at a multiple of w

time, we shift it to the right to the first multiple of w it can reach. It also fixes the case

where the start time of J is outside the I(J ′) (note that in this case st(S, J) < r(J ′)). It

could be possible that shifting the executional interval of J to the right does not give a

feasible schedule of J ′. Consider the case that the start time of J is inside I(J ′) but the

whole execution interval of J is not completely inside I(J ′). More formally, it happens

when d(J ′) − w < st(S, J) < d(J ′). In this case, if we shift the execution interval to

the right to the first multiple of w, which is exactly d(J ′), the resulting schedule is not

feasible for J ′.

Transformation AlignSch. AlignSch transforms S into S′ by shifting the exe-

cution interval of every job J ∈ JL.

• st(S′, J ′)← min{d(J ′)− w,mini≥0{i · w | i · w ≥ st(S, J)}};

• et(S′, J ′)← st(S′, J ′) + w.

Figure 4.17 shows an illustration of the Transformation AlignSch. Simply speaking,

the Transformation AlignSch shifts the execution interval of J to the right to align at

the first multiple of w on the right-hand side. If it would cause infeasibility (for example,

job J2 in Figure 4.17), the execution interval is shifted to the left instead and align at

the first multiple of w on the left-hand side. Note that either shifting to the right or

shifting to the left, the distance of shifting is no more than w.

w = 4

ww w

r(J1) d(J1)

r(J’1) d(J’1)

r(J2) d(J2)

r(J’2) d(J’2)

J1

J’1

J’2

J2

Figure 4.17: An illustration of Transformation AlignSch.

The following properties can be proved directly from the Transformation AlignSch:
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Observation 5. Consider any schedule S for JL and the schedule S′ for J ′ constructed

by AlignSch. The following properties hold:

(i) [st(S′, J ′), et(S′, J ′)) ∩ [st(S, J), et(S, J)) 6= ∅; and

(ii) S′ is a feasible schedule for J ′.

Proof. (i) In Transformation AlignSch, the execution interval of J can be shift to right

or left. No matter which side it is shifted to, the distance of shifting is no more than w

or contradiction occurs.

(ii) By the first step in AlignSch, r(J ′) ≤ st(S′, J ′) ≤ d(J ′)− w. Hence the whole

execution interval [st(S′, J ′), et(S′, J ′)) is inside I(J ′)

In the following lemma we show that after AlignSch, the load at any timeslot in

the schedule S′ can be captured by the loads of constant number of timeslots in S. The

key idea is that the execution intervals in S which after AlignSch is passing t must not

be too far from t.

Lemma 4.22. Consider any schedule S for JL and the schedule S′ for J ′ constructed

by AlignSch. At any timeslot t, `oad(S′, t) ≤ `oad(S, t) + `oad(S, t− (w − 1)) +

`oad(S, t+ (w − 1)).

Proof. Consider that for any timeslot t, the execution intervals of jobs, which are pos-

sible to be shifted such that the resulting execution intervals passing t, are inside an

interval with length 4w − 3 centers around t. Formally, by Observation 5 (i), if t ∈
[st(S′, J ′), et(S′, J ′)), the execution interval of the corresponding J, [st(S, J), et(S, J)) ⊆
[st(S′, J ′)− (w− 1), et(S′, J ′) + (w− 1)) ⊆ [t− 2(w− 1), t+ 2(w− 1)). In other words, if

st(S, J) < t− 2(w − 1) or et(S, J) > t+ 2(w − 1), the resulting execution interval after

AlignSch will not cover t.

Consider all jobs with execution interval completely inside [t−2(w−1), t+2(w−1)),

they can be partitioned into two types:

• t− 2(w − 1) ≤ st(S, J) < t− (w − 1) or t+ (w − 1) < et(S, J) ≤ t+ 2(w − 1)

• [st(S, J), et(S, J)) ⊆ [t− (w − 1), t+ (w − 1))

The first type of jobs have original execution intervals not covering t and after

AlignSch, the new execution intervals might cover t. Since the jobs widths are w,

the original execution intervals of these jobs must cover either timeslot t − (w − 1)

or timeslot t + (w − 1). On the other hand, the second type of jobs have original

execution intervals covering t. Hence, we can upper bound `oad(S′, t) by sampling

the load of S at timeslots t, t − (w − 1), and t + (w − 1). That is, `oad(S′, t) ≤
`oad(S, t) + `oad(S, t− (w − 1)) + `oad(S, t+ (w − 1)).

Figure 4.18 shows an illustration for Lemma 4.22. The gray solid blocks represent

execution intervals of jobs J in JL and the corresponding blocks without filling color

show the union of possible execution intervals of the corresponding J ′. It is easy to see
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that jobs with execution intervals too far from t (jobs J2 and J6) cannot have execution

intervals of their corresponding J ′ over timeslot t. On the other hand, consider those

jobs J ′ with execution interval over t, their corresponding J have execution interval in S

over timeslot t−(w−1) (job J1), t+(w−1) (jobs J4 and J5), or t itself (jobs J3 and J4).

Note that the execution interval of J4 passing both t and t + (w + 1). Hence what we

calculate is an upper bound of `oad(S′, t).

J1

t

w = 4

t-(w-1) t+(w-1)

J2

J3

J4

J5

J6

Figure 4.18: An illustration for Lemma 4.22.

Since we can upper bound the loads of timeslots in S′ by the loads of timeslots in S,

we can bound the cost of S′:

Corollary 4.23. Using AlignSch to generate S′ given S, we have cost(S′) ≤ 3α ·
cost(S).

Proof. By Lemma 4.22, cost(S′) =
∑

t `oad(S′, t)α ≤
∑

t(3 · `oad(S, t))α = 3α · cost(S).

By bounding the cost affected by performing AlignSch, we can bound the optimal

cost of S′ by the optimal cost of the corresponding S:

Lemma 4.24. Given a loose job set JL and the corresponding J ′ generated by AlignFI,

cost(O(J ′)) ≤ 3α · cost(O(JL)).

Proof. Given O(JL), there exists a schedule S(J ′) generated by AlignSch for the corre-

sponding J ′. By Corollary 4.23, cost(S(J ′)) ≤ 3α · cost(O(JL)). Hence, cost(O(J ′)) ≤
cost(S(J ′)) ≤ 3α · cost(O(JL)).

Approximation algorithm Au for uniform size input (Algorithm 6). The

algorithm takes a job set J with uniform width w and uniform height h as input and

schedules the jobs in J as follows. Let JT be the set of tight jobs in J and JL be the

set of loose jobs in J . Then the resulting schedule is transformed into a scheduled for

jobs in JT by FreeSch.
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1. For any tight job J ∈ JT, schedule J to start at r(J).

2. Loose jobs in JL are converted into J ′ by AlignFI. For J ′, we run Algorithm

AFG, which is elaborated in Section 4.2.1.

The running time of Algorithm Au is exactly the running time of AFG since for each

job it only takes constant extra time to transform it to a suitable input for AFG.

Algorithm 6 The approximation algorithm Au
Input: a set of job J = {J1, J2, · · · , Jn} where w(Jj) = w for all Jj .
AFG is the offline algorithm for unit case
J ′ ← ∅
for each job Jj do

if |I(Jj)| < 2w then
st(Au, Jj)← r(Jj)

else
w(J ′j)← w(Jj)
h(J ′j)← h(Jj)

r(J ′j)← wd r(Jj)w e
d(J ′j)← wbd(Jj)

w c
Add J ′j into J ′

for each job J ′j ∈ J ′ do
st(Au, Jj)← st(AFG(J ′), J ′j)

return the schedule Au

Analysis of Algorithm Au. We analyze the tight jobs and loose jobs separately.

We first give an observation about the optimal cost of a job set and the one of its subset.

Observation 6. For any to job sets Jx ⊆ Jy, cost(O(Jx)) ≤ cost(O(Jy)).

Proof. Assume on the contrary that cost(O(Jy)) < cost(O(Jx)), we can generate a

schedule S(Jx) by removing jobs from O(Jy) which are not in Jx. It follows that

cost(S(Jx)) ≤ cost(O(Jy)) < cost(O(Jx)), which is contradicting to the fact that O(Jx)

is optimal for Jx.

In the following we prove that since the tight jobs are “inflexible”, any feasible

schedule is good enough comparing to the optimal.

Lemma 4.25. Given an arbitrary feasible schedule S(JT) where JT is a set of tight

jobs, cost(S(JT)) ≤ 3α · cost(O(JT)).

Proof. We first extend jobs J ∈ JT to J∗ as the following: r(J∗) = r(J), d(J∗) = d(J),

w(J∗) = d(J) − r(J), and h(J∗) = h(J). That is, every job has its width as the length

of its feasible interval. We denote the resulting job set by J ∗. It is easy to see that

because of each job in J ∗ are not shiftable, there is only one feasible schedule for J ∗

and it is optimal.
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Similar to the claim in the proof of Observation 6, cost(S(JT)) ≤ cost(O(J ∗)) since

we can get S(JT) by shaving O(J ∗).
Because for each job in JT, the length of its feasible interval is at most 2w − 1,

we can bound the load at any time t of O(J ∗) by the loads of constant number of

timeslots in S(JT). Assume that at timeslot t an extended job J∗ is executed. That is,

t ∈ [r(J∗), d(J∗)) since J∗ is not shiftable. Consider the job J corresponding to J∗, the

execution interval of J in any feasible schedule must contains either timeslot t−(w−1), t+

(w−1), or t (see Figure 4.19). Hence we can upper bound the load at any time t inO(J ∗):
`oad(O(J ∗), t) ≤ `oad(O(JT), t− (w − 1))+`oad(O(JT), t+ (w − 1))+`oad(O(JT), t).

Similar to the proof of Corollary 4.23, cost(O(J ∗)) ≤ 3α · cost(O(JT)). To sum up,

cost(S(JT)) ≤ cost(O(J ∗)) ≤ 3α · cost(O(JT)).

Figure 4.19 shows an illustration for proof of Lemma 4.25 where w = 5. The gray

solid blocks represent the execution interval of each job Ji; the corresponding blocks with

bold edge and without filling color represent the execution interval of corresponding J∗j ,

which is exactly the feasible interval of Jj . Since the length of any feasible interval is

at most 2w − 1 and each job has width w, any job J∗j with execution interval passing t

must have execution interval of corresponding J passing at least one of the timeslots t

(jobs J3, J5, and J6), t− (w − 1) (jobs J1 and J2), or t+ (w − 1) (jobs J3 and J4).

t

w = 5

t-(w-1) t+(w-1)

J1

J2

J3

J4

J5

J6

J7

Figure 4.19: An illustration for Lemma 4.25.

In Au, the start time of each tight job is exactly its release time, hence it is feasible

and we have the following corollary:

Corollary 4.26. cost(Au(JT)) ≤ 3α · cost(O(JT)).

For loose jobs, we convert them such that their release times and deadlines are at

multiple of w time. Then we run AFG on the resulting jobs. In the following we prove

that these procedure guarantee a good ratio.

Lemma 4.27. cost(Au(JL)) ≤ 3α · cost(O(JL)).
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Proof. By Lemma 4.21, cost(Au(JL)) = cost(AFG(J ′)). As mentioned in Section 4.2,

cost(AFG(J ′)) = cost(O(J ′)). By Lemma 4.24, cost(O(J ′)) ≤ 3α ·cost(O(JL)) given JL

and the corresponding J ′. To sum up, cost(Au(JL)) ≤ 3α · cost(O(JL))

By Corollary 4.26 and Lemma 4.27, we can bound the over all approximation ratio

of Au and show that the approximation ratio of Au is constant.

Theorem 4.28. cost(Au(J )) ≤ 6α · O(J ).

Proof. In the schedule computed by Au, the load at t is from both tight jobs and loose

jobs. We can upper bound the cost ofAu over all jobs by summation of cost(Au(JT)), the

cost of Au over tight jobs, and cost(Au(JL)), the cost of Au over loose jobs, with a con-

stant blow-up. More formally, cost(Au(J )) =
∑

t(`oad(Au(JT), t)+`oad(Au(JL), t))α ≤
2α−1·(

∑
t `oad(Au(JT), t)α+

∑
t `oad(Au(JL), t)α) = 2α−1·(cost(Au(JT))+cost(Au(JL))).

By Corollary 4.26 and Lemma 4.27, cost(Au(J )) ≤ 2α−1 · (3α · cost(O(JT)) + 3α ·
cost(O(JL))). By Observation 6, cost(Au(J )) ≤ 2α−1·(3α·cost(O(J ))+3α·cost(O(J ))) =

6α · O(J ).

4.4.2 General Input

In this section we present an algorithm Ag for jobs with arbitrary width and arbitrary

height. We first transform job set J to a “nice” job set J ∗ (to be defined) and run the

algorithm Au for uniform width and uniform height jobs introduced in Section 4.4.1.

We show that such a transformation only increases the cost modestly. Furthermore, we

show that for any nice job set J ∗, we can bound cost(Ag(J )) by cost(O(J ∗)) and in

turn by cost(O(J )). Then we can establish the competitive ratio of Ag.

Classes of jobs. Consider a job J, if 2p−1 < w(J) ≤ 2p and 2q−1 < h(J) ≤ 2q, it is in

class Cp,q. Since jobs heights and widths are both at least 1, p, q ≥ 0. In class C0,q, jobs

have unit widths and in class Cp,0, jobs have unit heights. Let wmax, wmin, hmax, and hmin

denote the maximum width, minimum width, maximum height, and minimum height

over all jobs, there are in total (dlogwmaxe− dlogwmine+ 1)(dlog hmaxe− dlog hmine+ 1)

classes. To simplify the notation, note that if the largest width (or height) and smallest

width (or height) over all jobs are not the same, dlogwmaxe−dlogwmine+1 ≤ 3dlog wmax
wmin
e.

Otherwise, there is only one class regarding to jobs widths (or heights). Hence, there

are at most (1 + 3dlog wmax
wmin
e)(1 + 3dlog hmax

hmax
e) classes.

Nice job set and transformations. In this section we define that a job J is a

nice job if w(J) = 2p and h(J) = 2q where p and q are both non-negative integers. A

job set J ∗ is a nice job set if all jobs in J ∗ are nice jobs. In other words, if a nice job

has width 2p and height 2q, it is in class Cp,q

We convert arbitrary job set J into a nice job set by the Procedure Convert.
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Procedure Convert. Given an jobs set J , we define a procedure Convert to

transform each job J ∈ J into a nice job J∗ by rounding up the widths and heights of

the jobs to the next power of 2. The resulting job set is denoted by J ∗. Suppose that

job J is in class Cp,q, we modify its width, height and deadline. The procedure is defined

as follows.

• w(J∗)← 2p

• h(J∗)← 2q

• r(J∗)← r(J)

• d(J∗)← r(J∗) + max{d(J)− r(J), w(J∗)}

w = 8
h = 4

r(J1) d(J1)

r(J*1) d(J*1)

r(J2) d(J2)

r(J*2) d(J*2)

J1

J*2

J2

J*1

Figure 4.20: An illustration for Procedure Convert.

Figure 4.20 shows an illustration for Procedure Convert where p = 3 and q = 2.

After Convert, the jobs in Cp,q form a nice job set J ∗p,q. It means that after Convert,

for each Cp,q, the jobs have same widths and same heights. The modification of width

and height is to transform J into a nice job by rounding up its width and height.

After rounding up to the next power of 2, the width may greater than the length of

the original feasible and it makes the job itself infeasible (for example, the job J2 in

Figure 4.20). To make sure the resulting job is a part of feasible input, we also modify

the deadline if needed. The following observation is about the properties of J and the

corresponding J∗ generated by Convert. The following observation can be proved

directly from the procedure Convert.

Observation 7. For any job J and its corresponding J∗ after performing Convert,

(i) |I(J∗)| ≥ w(J∗), that is, J ∗ is a feasible input set;

(ii) I(J) 6= I(J∗) if and only if |I(J)| < w(J∗); and

(iii) I(J) ⊆ I(J∗).
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We then define two procedures that transform schedules related to nice job sets.

RelaxSch takes a schedule S for a job set J and coverts it to a schedule S∗ for the

corresponding nice job set J ∗. On the other hand, ShrinkSch takes a schedule S∗ for

a nice job set J ∗ and converts it to a schedule S for J .

Transformation RelaxSch. RelaxSch transfors feasible S into S∗ by moving

the start and end time of every job J.

• st(S∗, J∗)← min{d(J∗)− w(J∗), st(S, J)}

• et(S∗, J∗)← st(S∗, J∗) + w(J∗)

The following observation asserts that the resulting schedule S∗ is feasible for J ∗.

Observation 8. Consider any schedule S for J and the schedule S∗ constructed by

RelaxSch for the corresponding J ∗. We have

(i) [st(S, J), et(S, J)) ⊆ [st(S∗, J∗), et(S∗, J∗)); and

(ii) [st(S∗, J∗), et(S∗, J∗)) ⊆ [r(J∗), d(J∗)) for all J∗ ∈ J ∗; in other words, S∗ is

feasible for J ∗.

Proof. (i) By the first step, st(S∗, J∗) ≤ st(S, J). Assume that st(S∗, J∗) = st(S, J),

et(S∗, J∗) ≥ et(S, J) since et(S∗, J∗) = st(S∗, J∗) +w(J∗) ≥ st(S, J) +w(J) = et(S, J).

On the other hand, Assume that st(S∗, J∗) = d(J∗)−w(J∗). In this case the execution

et(S∗, J∗) = d(J∗). By the Procedure Convert, d(J∗) ≥ d(J) ≥ et(S, J) since S is

feasible.

(ii) We prove that st(S∗, J∗) ≥ r(J∗) and et(S∗, J∗) ≤ d(J∗). Assume that st(S∗, J∗) =

d(J∗)−w(J∗). By the Procedure Convert, d(J∗)−r(J∗) ≥ w(J∗). Hence st(S∗, J∗) ≥
r(J∗). In this case, et(S∗, J∗) = st(S∗, J∗) + w(J∗) = d(J∗).

On the other hand, assume that st(S∗, J∗) = st(S, J). In this case, st(S, J) ≤
d(J∗) − w(J∗). Hence, et(S∗, J∗) = st(S∗, J∗) + w(J∗) = st(S, J) + w(J∗) ≤ d(J∗).

Also, it is easy to see that st(S∗, J∗) ≥ r(J∗) since r(J∗) = r(J) and J is a feasible

input.

In the following we want to analyze the cost of S∗ and show that it can be bounded

by the cost of S.

According to the Procedure Convert and the Transformation RelaxSch, we can

image that the S∗ is the result of S by expanding each job such both vertically and hor-

izontally. That is, the jobs widths and heights are both expanded by at most twice and

hence affect the cost. For the vertical expanding, it is easy to analyze since the heights

are not increased by more than two. However, the analysis is more complicated for the

horizontally expanding. By Transformation RelaxSch, the horizontally expanding of

a job execution interval can be extending to the left or extending to the right. Once the

execution interval of a job is extended, the job’s height affects the loads of each timeslots

which is in the new execution interval but not in the original one. For example, assume

that a job J is in class Cp,q, there might be at most 2p−1 timeslots have w(J)-higher
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load in S∗ than in S. In other words, consider timeslot t, the jobs executed at timeslots

t− 2p−1 + 1, t− 2p−1 + 2, t− 2p−1 + 3, ·, t, t+ 1, t+ 2, ·, t+ 2p−1 − 1 in S could possibly

extend to t and affect its load in S∗. It seems the cost of S∗ might be O(2p−1) times

to the cost of S. However, in the following lemmas we show that by smartly sampling

constant number of timeslots, the cost of S∗ is bounded by a constant times the cost

of S.

Lemma 4.29. Let Jp,q and J ∗p,q denote the set of jobs in class Cp,q and the nice jobs

generated by Convert. Also we denote Sp,q and S∗p,q as the schedule of Jp,q and the

schedule generated by RelaxSch. For any time t, `oad(S∗p,q, t) ≤ 2(`oad(Sp,q, t) +

`oad(Sp,q, t− (2p−1 − 1)) + `oad(Sp,q, t+ (2p−1 − 1))).

Proof. We first prove that the jobs which can affect the load `oad(S∗p,q, t) are assigned in

a range centering around t. Next, we claim that inside this range of timeslots, there are

several special timeslots of which the load in Sp,q are essential for estimating the cost of

`oad(S∗p,q, t).

Consider any job J ∈ Cp,q and its execution interval in Sp,q, [st(Sp,q, J), et(Sp,q, J)).

According to RelaxSch, [st(Sp,q, J), et(Sp,q, J)) ⊆ [st(S∗p,q, J
∗), et(Sp,q, J)). Hence, af-

ter performing RelaxSch, the execution interval of the corresponding J∗ is within

[st(Sp,q, J) − (2p−1 − 1), et(Sp,q, J) + (2p−1 − 1)) since the amount of horizontal ex-

panding is at most 2p−1 − 1. In other words, consider timeslot t, the jobs J∗ with

execution interval in S∗p,q which is over t, those nice jobs must have their correspond-

ing J with execution interval in Sp,q completely inside [t− (2p − 1), t+ (2p − 1)). Since

2p−1 < w(J) ≤ 2p, the execution interval of any J must over at least one of the follow-

ing three timeslots: t, t − (2p−1 − 1), or t + (2p−1 − 1). Hence the `oad(S∗p,q, t) can be

upper bounded by the three loads in Sp,q: `oad(Sp,q, t), `oad(Sp,q, t− (2p−1 − 1)), and

`oad(Sp,q, t+ (2p−1 − 1)). Also, after rounding up the height, for a job J and its corre-

sponding J∗, h(J∗) ≤ 2h(J). Hence `oad(S∗p,q, t) ≤ 2·(`oad(Sp,q, t)+`oad(Sp,q, t− (2p−1 − 1))+

`oad(Sp,q, t+ (2p−1 − 1)))

Figure 4.21 shows an illustration for proof of Lemma 4.25 where p = 3. The gray solid

blocks represent the execution interval of each job Jj ; the corresponding hollowed blocks

represent the possible execution interval with load after round-up of corresponding J∗j .

Since we can bound the load of S∗p,q at any time t by the loads of Sp,q, we can bound

the cost of S∗p,q by the cost of Sp,q:

Lemma 4.30. Using RelaxSch, we have cost(S∗p,q) ≤ 6α · cost(Sp,q).

Proof. By definition, cost(S∗p,q) =
∑

t `oad(S∗p,q, t)
α. By Lemma 4.29,

∑
t `oad(S∗p,q, t)

α ≤∑
t(2(`oad(Sp,q, t)+`oad(Sp,q, t− (2p−1 − 1))+`oad(Sp,q, t+ (2p−1 − 1))))α. By calcula-

tion we get
∑

t `oad(S∗p,q, t)
α ≤ 2α

∑
t 3α−1(`oad(Sp,q, t)

α + `oad(Sp,q, t− (2p−1 − 1))
α

+

`oad(Sp,q, t+ (2p−1 − 1))
α
) ≤ 2α · 3α−1 · 3 · cost(Sp,q) = 6α · cost(Sp,q).

The other direction which convert a schedule for nice job set to a schedule for the

corresponding job set is easier:
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J1

t

p = 3

t-(23-1-1) t+(23-1–1)

J2

J3

J4

J5

J6

Figure 4.21: An illustration for Lemma 4.29.

Transformation ShrinkSch. ShrinkSch converts a schedule S∗ for a nice job

set J ∗ to a schedule S for the corresponding job set J ;

• st(S, J)← st(S∗, J∗).

• et(S, J)← st(S, J) + w(J). Since w(J) ≤ w(J∗), et(S, J) ≤ et(S∗, J∗).

The Transformation ShrinkSch shrink the execution interval of each nice job J∗ to

an execution interval of its corresponding J. By the following observation we show that

the resulting execution interval is valid for J.

Observation 9. Consider any feasible schedule S∗ for J ∗ and schedule S constructed by

ShrinkSch for the corresponding J , where J ∗ is the generated by Convert given J .

For any J∗ and the corresponding J,

(i) [st(S, J), et(S, J)) ⊆ [st(S∗, J∗), et(S∗, J∗));

(ii) [st(S, J), et(S, J)) ⊆ [r(J), d(J)).

Proof. (i) It is clear to see by the procedure of ShrinkSch that st(S, J) = st(S∗, J∗)

and et(S, J) ≤ et(S∗, J∗).
(ii) Since S∗ is feasible, [st(S∗, J∗), et(S∗, J∗)) ⊆ I(J∗). By Convert, r(J∗) =

r(J), so st(S, J) ≥ r(J). According to Convert, there are two possibility of I(J∗),

I(J∗) = I(J) or I(J∗) 6= I(J). Assume that |I(J∗)| = |I(J)|, it is easy to see that

[st(S, J), et(S, J)) ⊆ [st(S∗, J∗), et(S∗, J∗)) ⊆ I(J∗) ⊆ I(J). On the other hand, assume

that I(J) 6= I(J∗). In this case [st(S∗, J∗), et(S∗, J∗)) = I(J∗), r(J) = r(J∗), and

d(J) ≥ r(J) + w(J). Hence [st(S, J), et(S, J)) ⊆ [r(J), d(J)).

The following lemma shows that given a schedule Sp,q, the cost of the corresponding

schedule S∗p,q generated by ShrinkSch can be bounded by the cost of Sp,q.

Lemma 4.31. Using ShrinkSch, we have cost(Sp,q) ≤ cost(S∗p,q).
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Proof. According to ShrinkSch, the execution interval of each job J shrinks from the

one of its corresponding J∗. Hence for any time t, `oad(Sp,q, t) ≤ `oad(S∗p,q, t). By

definition, cost(Sp,q) ≤ cost(S∗p,q).

Now we have all elements we need and are ready to introduce the online algorithm

for general input:

Approximation algorithm Ag for general input (Algorithm 7). When

a job J is released, it is converted to J∗ by Convert and classified into one of the

classes Cp,q. Jobs in the same class after Convert are with uniform widths and uniform

heights. For each class, jobs are scheduled by Au independently of other classes. We

then modify the execution interval of J∗ to a execution interval of J by ShrinkSch.

Algorithm 7 The approximation algorithm Ag
Input: a set of job J = {J1, J2, · · · , Jn}.
Au is the approximation algorithm for uniform-width case
J ∗ij ← ∅ for 1 ≤ i ≤ 1 + dlog2wmaxe and 1 ≤ j ≤ 1 + dlog2 hmaxe
for each job Jk do

i← dlog2w(Jk)e
j ← dlog2 h(Jk)e
w(J∗k )← 2i

h(J∗k )← 2j

r(J∗k )← r(Jk)
d(J∗k )← r(Jk) + max{d(Jk)− r(Jk), w(J∗k )}
Add J∗k into J ∗ij

for each job J∗k ∈ J ∗ij do
st(Ag, Jk)← st(Au(J ∗ij), J∗k )

return the schedule Ag

Analysis of Algorithm Ag. Using Theorem 4.28, we know the ratio between the

cost of Ag(Jp,q) and the cost of O(J ∗p,q) for each class Cp,q. It remains to find out the

relation between the cost of O(J ∗p,q) and the cost of O(Jp,q).

Observation 10. Consider any job set J , its corresponding nice job set J ∗ generated by

Convert and the the corresponding job set of each class Jp,q and J ∗p,q.
(i) cost(O(J ∗p,q)) ≤ 6α · cost(O(Jp,q));
(ii) cost(O(J ∗p,q)) ≤ 6α · cost(O(J)).

Proof. (i) Given O(Jp,q), there exists a schedule S(J ∗p,q) generated by RelaxSch. By

Lemma 4.30, cost(S(J ∗p,q)) ≤ 6α · cost(O(Jp,q)). Hence, cost(O(J ∗p,q)) ≤ cost(S(J ∗p,q)) ≤
6α · cost(O(Jp,q)).

(ii) By Observation 6, cost(O(Jp,q)) ≤ cost(O(J)). Also by (i) cost(O(J ∗p,q)) ≤
6α · cost(O(Jp,q)) ≤ 6α · cost(O(J)),

Now we are ready to compute the approximation ratio of algorithm Ag:
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Theorem 4.32. For any job set J, we have cost(Ag(J)) ≤ (36KwKh)α · cost(O(J )),

where Kw = 1 + dlog wmax
wmin
e and Kh = 1 + dlog hmax

hmin
e.

Proof. We first focus on the cost in one single class Cp,q. According to the algorithm Ag,
cost(Ag(Jp,q)) =

∑
t `oad(Ag(Jp,q), t)α ≤

∑
t `oad(Au(J ∗p,q), t)

α = cost(Au(J ∗p,q)). By

Theorem 4.28, cost(Au(J ∗p,q)) ≤ 36α · O(J ∗p,q). By Observation 10, cost(Au(J ∗p,q)) ≤
36α · cost(O(J)).

Now we turn to the total cost of the whole input set. By definition, cost(Ag(J)) =∑
t `oad(Ag(J), t)α =

∑
t(
∑

p,q `oad(Ag(Jp,q), t))α. By carefully calculation, cost(Ag(J)) ≤
(KwKh)α−1

∑
t

∑
p,q `oad(Ag(Jp,q), t)α = (KwKh)α−1

∑
p,q cost(Ag(Jp,q)). As the anal-

ysis stated in last paragraph, cost(Ag(Jp,q)) ≤ 36α · cost(O(J)). Hence cost(Ag(J)) ≤∑
p,q(KwKh)α−1 · 36α · cost(O(J)) = 36α · (KwKh)α · cost(O(J)).

4.5 Summary

In this chapter we investigate the GRID problem under the offline model. First we show

that the GRID problem is NP-hard even when all jobs have common feasible interval,

and the power request or the time duration of the jobs are unit size. Moreover, the GRID

problem is NP-hard even when preemption is allowed.

However, when all jobs have unit power request, unit time duration, and arbitrary

feasible timeslots, the GRID problem is polynomial time solvable. We proposed a poly-

nomial time algorithm for this special input by using a “feasibility graph” to capture all

possible assignments. By relating to the Discrete DVS problem, we proposed another

polynomial time algorithm to solve the GRID problem with unit power request and unit

time duration and contiguous feasible intervals. It gives us a clearer view about the the

GRID problem and the DVS problem.

For the general input where jobs have arbitrary widths, arbitrary heights, and ar-

bitrary feasible intervals, we proposed two exact algorithms inspired by the interval

graphs. We showed that the GRID problem is fixed-parameter tractable. We also pro-

posed an approximation algorithm for the general input jobs by generalizing the optimal

algorithm for unit case.





Chapter 5

Online Algorithms for The GRID

Problem

This chapter investigates the GRID problem in the online model. We consider online

algorithms, where the job information is only revealed at the time the job is released. The

scheduling algorithm has to decide which jobs to run at the current time without future

information and decisions made cannot be changed later. In particular, we consider non-

preemptive algorithms where a job cannot be preempted to resume/restart later. Our

goal is to minimize the worst case competitive ratio, i.e. the maximum ratio between

the cost of the online algorithm and the cost of an offline optimal algorithm.

Our main contribution is proposing the first online algorithm to the online GRID

problem for jobs with arbitrary power requests, arbitrary time durations, and arbitrary

feasible intervals (which is the time interval between the release time and deadline of a

job). The online algorithm is based on the classification on the time durations of jobs and

the worst case competitive ratio is (36(1 + dlog wmax
wmin
e))α ·

(
min{8(e+ e2), (2α)α

2

α
}+ 1

)
where wmax and wmin are the maximum and minimum time duration among the jobs,

respectively. We also prove that for any deterministic online algorithm, the competitive

ratio is at least (1
3 log wmax

wmin
)α.

Other than the GRID problem for jobs with arbitrary widths, arbitrary heights, and

arbitrary feasible intervals, we also investigate the GRID problem with special input. We

show that when input jobs have restricted release times or deadlines, there are online

strategies with better performance (Section 5.3).

Our online algorithms are based on identifying a relationship with the dynamic speed

(voltage) scaling (DVS) problem. The main challenge, even when jobs have uniform

width or uniform height, is that in time intervals where the “workload” is low, the

optimal DVS schedule may have much lower cost than the optimal GRID schedule because

jobs in DVS schedules can effectively be stretched as flat as possible while jobs in GRID

schedules have rigid duration and cannot be stretched. In such case, it is insufficient to

simply compare with the optimal DVS schedule. Therefore, our analysis is divided into

two parts: for high workload intervals, we compare with the optimal DVS schedule; and

87
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Width Height Ratio

Unit Uniform min{ (4α)α

2 + 1, 2α · (min{8(e+ e2)α, (2α)α

2 }+ 1)}-competitive

Unit Arbitrary

2α+1-approximate
same release time and same deadline:

2α-competitive

2α · (min{8(e+ e2)α, (2α)α

2 }+ 1)-competitive

Uniform Arbitrary 12α · (min{8(e+ e2)α, (2α)α

2 }+ 1)-competitive

Arbitrary Uniform

same release time and same deadline:
22α-competitive

agreeable deadline:

( (8α)α

2 + 2α)-competitive

Arbitrary Arbitrary (36Kw)α ·
(

min{8(e+ e2)α, (2α)
α

2 }+ 1
)

-competitive

Table 5.1: Summary of our online or approximation algorithms.

for low workload intervals, we directly compare with the optimal GRID schedule via a

lower bound on the total workload over these intervals. For jobs with arbitrary width,

we adopt the natural approach of classification based on job width. We then align the

“feasible interval” of each job in a more uniform way so that we can use the results on

uniform width.

Table 5.1 summarizes our results of online algorithms for different input set (Kw =

1 + dlog wmax
wmin
e).

Relating to the speed scaling problem. The GRID problem resembles the dy-

namic speed scaling (DVS) problem [81] and we are going to refer to three algorithms

for the DVS problem, namely, the YDS algorithm which gives an optimal algorithm for

the DVS problem, the online algorithms called BKP and AVR. We first recap the DVS

problem and the associated algorithms. In the DVS problem, jobs J come with release

time r(J), deadline d(J), and a work requirement p(J). A processor can run at speed

s ∈ [0,∞) and consumes energy in a rate of sα, for some α > 1. The objective is to com-

plete all jobs by their deadlines using the minimum total energy. The main differences

of DVS problem to the GRID problem include (i) jobs in DVS can be preempted while

preemption is not allowed in our problem; (ii) as processor speed in DVS can scale, a job

can be executed for varying time duration as long as the total work is completed while

in our problem a job must be executed for a fixed duration given as input; (iii) the work

requirement p(J) of a job J in DVS can be seen as w(J) × h(J) for the corresponding

job in GRID.

With the resemblance of the two problems, we make an observation about their

optimal algorithms. Let OD and OG be the optimal algorithm for the DVS and GRID

problem, respectively. Given a job set JG for the GRID problem, we can convert it into

a job set JD for DVS by keeping the release time and deadline for each job and setting

the work requirement of a job in JD to the product of the width and height of the

corresponding job in JG. Then we have the following observation.
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Observation 11. Given any schedule SG for JG, we can convert SG into a feasible sched-

ule SD for JD such that cost(SD(JD)) ≤ cost(SG(JG)); implying that cost(OD(JD)) ≤
cost(OG(JG)).

Proof. Consider any feasible schedule SG. At timeslot t, suppose there are k jobs sched-

uled and their sum of heights is H. The schedule for SD during timeslot t can be

obtained by running the processor at speed H and the jobs time-share the processor in

proportion to their height. This results in a feasible schedule with the same cost and

the observation follows.

It is known that the online algorithmAVR for the DVS problem is (2α)α

2 -competitive [81].

Basically, at any time t, AVR runs the processor at a speed which is the sum of the den-

sities of jobs that are available at t. By Observation 11, we have the following corollary.

Note that it is not always possible to convert a feasible schedule for the DVS problem

to a feasible schedule for the GRID problem easily. Therefore, the corollary does not

immediately solve the GRID problem but as to be shown it provides a way to analyze

algorithms for GRID.

Corollary 5.1. For any input JG and the corresponding input JD, cost(AVR(JD)) ≤
(2α)α

2 · cost(OG).

The online algorithm BKP proposed by Bansal et al. [6] for DVS problem is 8eα-

competitive. Let `oad(BKP, t) denote the speed of BKP at time t. `oad(BKP, t) =

maxt′>t
p(t,[et−(e−1)t′,t′))

t′−t where p(t, I) denotes the total work of jobs J with I(J) ⊆ I

and r(J) ≤ t. That is, BKP chooses the interval I? = [t1, t2) which has maximal

released average load and |[t1, t2)| : |[t, t2)| = e : 1 and uses e · p(t,I
?)

|I?| as speed at t. By

Observation 11 we have the following corollary:

Corollary 5.2. For any input JG and the corresponding input JD, cost(BKP(JD)) ≤
8eα · cost(OG).

Remark: One may consider the non-preemptive DVS problem as the reference of the

GRID problem. However, given a job set JG and the corresponding JD, cost(OD(JD))

may not necessarily lower than cost(OG(JG)), where OD here is the optimal algorithm

for non-preemptive DVS. There is an instance shows the optimal cost of GRID is smaller.

The instance contains two jobs. One has release time 0 deadline 3, width 3 and height 1.

The other has release time 1, deadline 2, width 1 and height 1. Both jobs can only

schedule at their release time in GRID since their widths are the same as the lengths of

their feasible intervals. The optimal cost of GRID is 1α + 2α + 1α = 2α + 2. Whereas the

optimal cost of non-preemptive DVS is 2α + 2α = 2 · 2α. This is because the schedule

uses speed 2 and runs the longer job with time interval 1.5 and the shorter job with time

interval 0.5. The optimal cost of GRID is lower when α > 1. Therefore, it is unclear how

we may use the results on non-preemptive DVS problem and so we would stick with the

preemptive DVS algorithms.
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In Section 5.1.3, we consider an algorithm that classifies jobs according to their

widths. To ease discussion, we let wmax and wmin be the maximum and minimum width

over all jobs, respectively. We further define the logarithm of the max-min ratio of width,

denoted by kw, to be kw = log wmax
wmin

. We further define Kw to be Kw = 1 + dlog wmax
wmin
e,

which is the number of classes (to be defined). Without loss of generality, we assume

that wmin = 1. We say that a job J is in class Cp if and only if 2p−1 < w(J) ≤ 2p for

any 0 ≤ p ≤ Kw.

5.1 General Case

To handle jobs of arbitrary width and height, we first study the case when jobs have unit

width (that is, all jobs J have w(J) = 1). We present an online algorithm V which makes

reference to an arbitrary feasible online algorithm for the DVS problem, denoted by R.

Using a similar technique in Section 4.4, we generalize this algorithm to solve the case

when jobs have uniform width (i.e., all jobs J have the uniform width w(J) = w > 1) in

Section 5.1.2 and the general case where jobs have arbitrary width in Section 5.1.3.

5.1.1 Unit width and arbitrary height

In this section, we consider jobs with unit width and arbitrary height. We present an

online algorithm V which makes reference to an arbitrary feasible online algorithm for

the DVS problem, denoted by R. In particular, we require that the speed of R remains

the same during any integral timeslot, i.e., in [t, t+ 1) for all integers t. Note that when

jobs have integral release times and deadlines, many known DVS algorithms satisfy this

criteria, including YDS and AVR. On the other hand, BKP does not satisfy this criteria

and the speeds in [t, t + 1) might change. Nevertheless, by Lemma 5.3, we can modify

BKP such that the criteria is satisfied and the performance remains well.

Lemma 5.3. Let s(t) denote the speed at t decided by BKP. For any integral time t

and a constant 0 < ∆ ≤ 1, s(t+ ∆) ≤ (1 + e) · s(t) if the release times and deadlines of

jobs are integral.

Proof. Recall that the speed of BKP at time t is s(t) = maxt′>t e · p(t,I)|I| where I = [t1, t2)

and |[t1, t2)| : |[t, t2)| = e : 1. The proof idea is, consider the interval I chosen by BKP
corresponding to t+ ∆, we can transform it into another interval I ′ which is one of the

interval candidate for t. We show that the e · p(t,I
′)

|I′| is at least 1
1+e times of the speed of

BKP at t+ ∆.

Assume that at time t+ ∆, s(t+ ∆) = e · p(t,I)|I| where I = [t1, t2). We can construct

I ′ = [t′1, t2) such that |[t′1, t2)| : |[t, t2)| = e : 1 by setting t′1 = t2 − e(t2 − t). It is clear

that I ⊂ I ′ since the two intervals have same right endpoint and I ′ is longer than I. In

fact, |I ′| = e(t2 − t) = e(t2 − (t+ ∆) + ∆) = e(t2 − (t+ ∆)) + e∆ = |I|+ e∆ ≤ |I|+ e.

Moreover, for any interval candidate, the length must be at least 1 if the release times

or deadlines of the jobs are integral. Otherwise, the interval contains no jobs and the
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speed is 0. Hence, |I ′| ≤ (1 + e)|I|. By BKP, s(t) ≥ e · p(t,I
′)

|I′| = e · p(t+∆,I′)
|I′| . The later

equality holds since there is no job released between t and t + ∆. Since I ⊂ I ′ and

|I ′| ≤ (1 + e)|I|, e · p(t+∆,I′)
|I′| ≥ e · p(t+∆,I)

|I′| ≥ e · p(t+∆,I)
(1+e)|I| . Hence, s(t) ≥ 1

1+e · s(t+ ∆).

Lemma 5.3 implies that, although the speeds of BKP change within [t, t + 1), the

speeds are bounded by (1 + e) times of the speed at t. Hence we can modify the BKP
into BKP ′ as follows: at integral time t, the speed of BKP ′, s(BKP ′, t) = (1 + e)s(t);

at time t′ = t + ∆ where t is integral and 0 < ∆ < 1, s(BKP ′, t′) = s(BKP ′, t). By

the modification, the speed of BKP ′ remains the same during any integral timeslot,

and cost(BKP ′) ≤ (1 + e)α · cost(BKP). Similar to Corollary 5.1 and 5.4, we have the

following corollary:

Corollary 5.4. For any input JG and the corresponding input JD, cost(BKP ′(JD)) ≤
8(e+ e2)α · cost(OG).

We can transform an input set of GRID problem to an input set of DVS problem by

the following: for each job J, the corresponding job in the dvs problem has work load

p(J) ← w(J) · h(J), release time r(J), and deadline d(J). Notice that for special input

where jobs sizes are unit, the consequent jobs are with unit work loads. We simulate a

copy of R on the converted job set and denote the speed used by R at t as `oad(R, t).
Our algorithm makes reference to `oad(R, t) but not the jobs run by R at t.

Algorithm V. For each timeslot t, we schedule jobs to start at t such that `oad(V, t)
is at least `oad(R, t) or until all available jobs have been scheduled. Jobs are chosen in

an EDF manner.

Analysis. We note that since V makes decision at integral time and jobs have unit

width, each job is completed before any further scheduling decision is made. In other

words, V is non-preemptive. To analyze the performance of V, we first note that V gives

a feasible schedule (Lemma 5.5), and then analyze its competitive ratio (Theorem 5.7).

Lemma 5.5. V gives a feasible schedule.

Proof. Let `oad(S, I) denote the total work done by schedule S in I. That is, `oad(S, I) =∑
t∈I `oad(S, I). According to the algorithm, for all It = [0, t), `oad(V, It) ≥ `oad(R, It).
Suppose on the contrary that V has a job Jm missing deadline at t. That is, d(Jm) = t

but Jm is not assigned before t. By the algorithm, for all t′ ∈ [0, t), `oad(V, t′) ≥
`oad(R, t′) unless there are less than `oad(R, t′) available jobs at t′ for V. Let t0 be

the last timeslot in [0, t) such that `oad(V, t0) < `oad(R, t0), r(Jm) > t0 since all jobs

released at or before t0 have been assigned. For all t′ ∈ (t0, t), `oad(V, t′) ≥ `oad(R, t′).
Also, all jobs J with r(J) ≤ t0 are finished by t0 + 1 and jobs executed in (t0, t) are

those released after t0. Consider set Jt of jobs with feasible interval completely inside

I = (t0, t) (note that Jm ∈ Jt), `oad(S, I) ≥
∑

J∈Jt h(J) for any feasible schedule S.

Since V assigns jobs in EDF manner and is not feasible, `oad(V, I) <
∑

J∈Jt h(J). It

follows that
∑

J∈Jt h(J) > `oad(V, I) ≥ `oad(R, I). It contradicts to the fact that R is

feasible. Hence V finishes all jobs before their deadlines.
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Let hmax(V, t) be the maximum height of jobs scheduled at t by V; we set hmax(V, t) =

0 if V assigns no job at t. We first classify each timeslot t into two types: (i) hmax(V, t) <
`oad(R, t), and (ii) hmax(V, t) ≥ `oad(R, t). We denote by I1 and I2 the union of all

timeslots of Type (i) and (ii), respectively. Notice that I1 and I2 can be empty and the

union of I1 and I2 covers the entire time line. The following lemma bounds the cost

of V in each type of timeslots. Recall that cost(S, I) denotes the cost of the schedule S

over the interval I and cost(S) denotes the cost of the entire schedule.

Lemma 5.6. The cost of V satisfies the following properties.

(i) cost(V, I1) ≤ 2α · cost(R); and

(ii) cost(V, I2) ≤ 2α · cost(O).

Proof. (i) By the algorithm, `oad(V, t) < `oad(R, t) + hmax(V, t) ≤ 2 · `oad(R, t) for t ∈
I1. It follows that cost(V, I1) ≤ 2α ·

∑
t∈I1 `oad(R, t)α = 2α · cost(R, I1) ≤ 2α · cost(R).

(ii) By convexity, cost(O) ≥
∑

J∈J h(J)α. It is easy to see that cost(O) ≥
∑

t∈I2 hmax(V, t)α.

According to the algorithm, `oad(V, t) < `oad(R, t)+hmax(V, t) ≤ 2·hmax(V, t) for t ∈ I2.

Hence, cost(V, I2) =
∑

t∈I2 `oad(V, t)α ≤ 2α ·
∑

t∈I2 hmax(V, t)α ≤ 2α · cost(O).

Notice that cost(V) = cost(V, I1) + cost(V, I2) since I1 and I2 have no overlap.

Together with Lemma 5.6 and Observation 11, we obtain the competitive ratio of V in

the following theorem.

Theorem 5.7. Algorithm V is 2α · (R+ 1)-competitive, where R is the competitive ratio

of the reference DVS algorithm R.

As mentioned in Section 5.1.1 and Section 3.2, the BKP ′ algorithm is 8(e + e2)α-

competitive and AVR algorithm is (2α)α

2 -competitive. On the other hand, V can take

an offline DVS algorithm, e.g., the optimal YDS algorithm, as reference and returns an

offline schedule. Therefore, we have the following corollary.

Corollary 5.8. V is 2α · (8(e + e2)α + 1)-competitive, 2α · ( (2α)α

2 + 1)-competitive and

2α ·2-approximate when the algorithm BKP ′, AVR and YDS are referenced, respectively.

5.1.2 Uniform width and arbitrary height

In this section, we consider jobs J with uniform width w and arbitrary height. We

adapt the techniques in Section 4.4 and generalize the algorithm V to serve uniform

width input. Let J ∗ be a uniform width job set and let J ∗T and J ∗L be the disjoint

subsets of tight and loose jobs of J ∗, respectively. We design different strategies for

tight and loose jobs. As to be shown, tight jobs can be handled easily by starting them

at their release times. For any loose job, we modify it via Procedure AlignFI such

that its release time and deadline is a multiple of w. The consequent job set J ′ can be

treated as a set of unit-width jobs and the algorithm V can be performed on J ′.

Online algorithm UV. The algorithm takes a job set J ∗ with uniform width w

as input and schedules the jobs in J ∗ as follows. Let J ∗T be the set of tight jobs in J ∗

and J ∗L be the set of loose jobs in J ∗.
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1. For any tight job J∗ ∈ J ∗T, schedule J∗ to start at r(J∗).

2. Loose jobs in J ∗L are converted to J ′ by AlignFI. For J ′, we run Algorithm V,

which is defined in Section 5.1.1, with BKP ′ as the reference DVS algorithm. Jobs

are chosen in an earliest deadline first (EDF) manner.

Note that the decisions of UV can be made online.

Analysis of Algorithm UV. We analyze the tight jobs and loose jobs separately.

The analysis is mainly based on properties of AlignFI, AlignSch, and FreeSch which

are proved in Section 4.4. However, since in Section 4.4 we generalized the algorithmAFG

while in this section we generalize the algorithm V, which is based on referencing the

BKP algorithm, some parts of the analysis are different from the one in Section 4.4.

Lemma 5.9. cost(UV(J ∗T)) ≤ 3α · cost(O(J ∗)).

Proof. By Lemma 4.25, cost(UV(JT)) ≤ 3α · cost(O(JT)) ≤ 3α · cost(O(J ∗)).

Lemma 5.10. cost(UV(J ∗L )) ≤ 6α · (8(e+ e2)α + 1) · cost(O(J ∗)).

Proof. For J ∗L , we perform AlignFI and get J ′. We then run V on J ′ and get V(J ′),
which can be viewed as a schedule for unit width jobs. We get S∗(J ∗L ) = V(J ′) by

FreeSch. Hence, cost(UV(J ∗L )) =
∑

t `oad(UV(J ∗L ), t)α =
∑

t `oad(S∗(J ∗L ), t)α =∑
t `oad(V(J ′), t)α = cost(V(J ′)). According to Corollary 5.8, cost(V(J ′)) ≤ 2α ·

(8(e(1 + e))α + 1) · cost(O(J ′)) by choosing BKP ′ as reference algorithm. Since J ∗L is

set of loose jobs with uniform width, cost(O(J ′)) ≤ 3α · cost(O(J ∗L )) ≤ 3α · cost(O(J ∗))
by Lemma 4.24 and Observation 6. Therefore, cost(UV(J ∗L )) ≤ 2α · (8 · (e(1 + e))α + 1) ·
3α · cost(O(J ∗)).

Theorem 5.11. cost(UV(J ∗)) ≤ 12α · (8(e+ e2)α + 1) · cost(O(J ∗)).

Proof. By definition, cost(UV(J ∗)) =
∑

t `oad(UV(J ∗), t)α =
∑

t(`oad(UV(J ∗T), t) +

`oad(UV(J ∗L ), t))α ≤ 2α−1 · (cost(UV(J ∗T)) + cost(UV(J ∗L ))). By Lemma 5.9 and 5.10,

cost(UV(J ∗)) ≤ 2α−1 · (3α + 6α · (8(e(1 + e))α + 1)) · cost(O(J ∗)) ≤ 2α · 6α · (8(e(1 +

e))α + 1) · cost(O(J ∗)).

Similarly, if we choose AVR as the reference algorithm, we can get the following

corollary:

Corollary 5.12. cost(UV(J ∗)) ≤ 12α · ( (2α)α

2 + 1) · cost(O(J ∗)).

Corollary 5.13. cost(UV(J ∗)) ≤ 12α · (min{8(e+ e2)α, (2α)α

2 }+ 1) · cost(O(J ∗)).
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5.1.3 Arbitrary Input

In this section, we present an algorithm A for jobs with arbitrary width and height.

We first transform job set J to a “nice” job set J ∗ (to be defined) and show that such

a transformation only increases the cost modestly. Furthermore, we show that for any

nice job set J ∗, we can bound cost(A(J ∗)) by cost(O(J ∗)) and in turn by cost(O(J )).

Then we can establish the competitive ratio of A.

Note that the definition of nice jobs in this section is different from the one in

Section 4.4.2. Hence the analysis is different from the one we had before.

Nice job set and transformations. A job J is said to be a nice job if w(J) = 2p,

for some non-negative integer p and a job set J ∗ is said to be a nice job set if all its

jobs are nice jobs. In other words, the nice job J is in class Cp.

Procedure Convert. Given a job set J , we define the procedure Convert to

transform each job J ∈ J into a nice job J∗ as follows. We denote the resulting nice job

set by J ∗. Suppose J is in class Cp. We modify its width, release time and deadline.

• w(J∗)← 2p;

• r(J∗)← r(J);

• d(J∗)← r(J∗) + max{d(J)− r(J), 2p}.

Note that in Section 4.4, the Procedure Convert rounds up both the widths and

the heights of the jobs, while in this section the Procedure Convert only rounds up the

widths of the jobs. It is because that in Section 4.4, we adapt the optimal algorithm AFG

for jobs with unit width and unit height, while in this section we adapt the algorithm V
for unit-width jobs.

Figure 5.1 shows an illustration for Procedure Convert where p = 3. After Convert,

the jobs in Cp form a nice job set J ∗. It means that after Convert, for each Cp, the

jobs have same widths. The modification of width is to transform J into a nice job by

rounding up its width. After rounding up, the width may greater than the length of

the original feasible and it makes the job itself infeasible (for example, the job J2 in

Figure 5.1). To make sure the resulting job is a part of feasible input, we also modify

the deadline if needed.

The observation below follows directly from the definition.

Observation 12. For any job J and its nice job J∗ transformed by Convert,

(i) I(J) ⊆ I(J∗); and

(ii) I(J) 6= I(J∗) if and only if |I(J)| < 2p; in this case, den(J) > 1
2 and den(J∗) = 1.

We then define two procedures that transform schedules related to nice job sets.

RelaxSch takes a schedule S for a job set J and converts it to a schedule S∗ for the

corresponding nice job set J ∗. On the other hand, ShrinkSch takes a schedule S∗ for

a nice job set J ∗ and converts it to a schedule S for J .
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w = 8

r(J1) d(J1)

r(J*1) d(J*1)

r(J2) d(J2)

r(J*2) d(J*2)

J1

J*2

J2

J*1

Figure 5.1: An illustration for Lemma 4.29.

Transformation RelaxSch. RelaxSch transforms S into S∗ by moving the start

and end time of every job J.

• st(S∗, J∗) = min{d(J∗)− w(J∗), st(S, J)}

• et(S∗, J∗) = st(S∗, J∗) + w(J∗).

Observation 13 asserts that the resulting schedule S∗ is feasible for J ∗ while Lem-

mas 5.14 and 5.15 analyze the load and cost of the schedule.

Observation 13. Consider any schedule S for J and the schedule S∗ constructed by

RelaxSch for the corresponding J ∗. We have [st(S∗, J∗), et(S∗, J∗)) ⊆ [r(J∗), d(J∗));

in other words, S∗ is a feasible schedule for J ∗.

To analyze the load of the schedule S∗, we consider partial schedule S∗p ⊆ S∗ (resp.

Sp ⊆ S) which is for all the jobs of J ∗ (resp. J ) in class Cp. Intuitively, the load of S∗p at

any time is at most the sum of the load of Sp at the current time and 2p−1− 1 timeslots

before and after the current time.

Lemma 5.14. At any time t, `oad(S∗p , t) ≤ `oad(Sp, t) + `oad(Sp, t− (2p−1 − 1)) +

`oad(Sp, t+ (2p−1 − 1)).

Proof. We prove that for any job J, J∗ contributes to `oad(S∗, t) only if J contributes

to either `oad(Sp, t), `oad(Sp, t− (2p−1 − 1)), or `oad(Sp, t+ (2p−1 − 1)). There are two

cases that J does not contribute to `oad(Sp, t− (2p−1 − 1)) nor `oad(Sp, t+ (2p−1 − 1)):

(i) et(Sp, J) < t− (2p−1− 1) or st(Sp, J) > t+ (2p−1− 1), and (ii) [st(Sp, J), et(Sp, J))∩
(t− (2p−1 − 1), t+ (2p−1 − 1)) 6= ∅.

Consider case (i), by Transformation RelaxSch, et(S∗, J∗) ≤ et(Sp, J) + (2p−1− 1)

and st(S∗, J∗) ≥ et(Sp, J)− (2p−1 − 1). Hence, t /∈ [st(S∗, J∗), et(S∗, J∗)) if et(Sp, J) <

t−(2p−1−1) or st(Sp, J) > t+(2p−1−1). That is, J∗ does not contribute to `oad(S∗p , t).
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Notice that if et(Sp, J) = t−(2p−1−1) or st(Sp, J) = t+(2p−1−1), J does not necessarily

contribute to `oad(S∗p , t). We count the contribution for worst case analysis.

For case (ii), consider job J with et(Sp, J))∩(t−(2p−1−1), t+(2p−1−1)) 6= ∅, that is,

[st(Sp, J), et(Sp, J)) ⊆ (t− (2p− 1), t+ (2p− 1)). Since 2p−1 < w(J) ≤ 2p, J contributes

to at least of `oad(Sp, t), `oad(Sp, t− (2p−1 − 1)), or `oad(Sp, t+ (2p−1 − 1)), no matter

if the execution interval of the corresponding J∗ generated by RelaxSch contributes

to timeslots t− (2p−1 − 1) or t+ (2p−1 − 1) or not.

By case (i) and (ii), for any job J with [st(Sp, J), et(S, J))∩ [t−(2p−1−1), t+(2p−1−
1)) = ∅, its corresponding J∗ does not contribute to `oad(S∗p , t). And for any job J with

[st(Sp, J), et(Sp, J)) ⊆ (t−(2p−1−1), t+(2p−1−1)), J contributes to `oad(Sp, t). Hence,

by assuming all jobs at timeslot t− (2p−1−1) or t+ (2p−1−1) contribute to `oad(S∗p , t),

`oad(S∗p , t) is bounded by `oad(Sp, t)+`oad(Sp, t− (2p−1 − 1))+`oad(Sp, t+ (2p−1 − 1)).

Figure 5.2 shows an illustration for Lemma 5.14. The solid rectangles represent the

jobs J ∈ J, and the hollowed rectangles represent the possible execution intervals of the

corresponding J∗ generated by RelaxSch. Jobs J1, J2, and J3 have execution intervals

completely ouside the interval [t− (2p−1 − 1), t+ (2p−1 − 1)) (that is, the (i) case in the

proof). It is easy to see that the execution intervals generated by RelaxSch are not

capable for covering t since w(J∗) < 2w(J) for all J ∈ J. On the other hand, jobs J4, J5,

and J6 have execution intervals overlapping with the interval [t−(2p−1−1), t+(2p−1−1))

(that is, the (ii) case in the proof). For these jobs, the original execution interval must

over one of these timeslots: t, t− (2p−1 − 1), or t+ (2p−1 − 1).

J1

t

p = 3

t-(23-1-1) t+(23-1–1)

J2

J3

J4

J5

J6

t+(23–1)t-(23-1)
Figure 5.2: An illustration for Lemma 5.14.

Lemma 5.15. Using RelaxSch, we have cost(S∗p) ≤ 3α · cost(Sp).

Proof. By Lemma 5.14, cost(S∗p) =
∑

t `oad(S∗p , t)
α ≤

∑
t(`oad(Sp, t)+`oad(Sp, t− (2p−1 − 1))+

`oad(Sp, t+ (2p−1 − 1)))α ≤
∑

t(3 · `oad(Sp, t))
α = 3α · cost(Sp).



Chapter 5. Online Algorithms 97

Transformation ShrinkSch. On the other hand, ShrinkSch converts a sched-

ule S∗ for a nice job set J ∗ to a schedule S for the corresponding job set J . We

set

• st(S, J)← st(S∗, J∗);

• et(S, J)← st(S, J) + w(J), therefore, et(S, J) ≤ et(S∗, J∗).

Observation 14 asserts that the resulting schedule S is feasible for J and Lemma 5.16

analyzes the cost of the schedule.

Observation 14. Consider any schedule S∗ for J ∗ and schedule S constructed by ShrinkSch

for the corresponding J . For any J∗ and the corresponding J,

(i) [st(S, J), et(S, J)] ⊆ [st(S∗, J∗), et(S∗, J∗)];

(ii) [st(S, J), et(S, J)] ⊆ [r(J), d(J)].

By Observation 14, we have the following lemma.

Lemma 5.16. Using ShrinkSch, we have cost(Sp) ≤ cost(S∗p).

The online algorithm A. We are now ready to describe the algorithm A for an

arbitrary job set J . When a job J is released, it is converted to J∗ by Convert and

classified into one of the classes Cp. Jobs in the same class after Convert (being a

uniform-width job set) are scheduled by UV independently of other classes. We then

modify the execution time of J∗ in UV to the execution time of J in A by Transformation

ShrinkSch. Note that all these procedures can be done in an online fashion.

Using the results in Sections 5.1.2 and 5.1.3, we can compare the cost of A(J )

withO(J ∗p ) for each class Cp (see Theorem 5.17). It remains to analyze the cost ofO(J ∗p )

and O(J ) in the next observation.

Observation 15. Consider any job set J , its corresponding job set J ∗ and the corre-

sponding job set of each class Jp and J ∗p .

(i) cost(O(J ∗p )) ≤ 3α · cost(O(Jp));
(ii) cost(O(Jp)) ≤ cost(O(J )).

Proof. (i) Given O(Jp), there exists schedule S(J ∗p ) generated by RelaxSch. By

Lemma 5.15, cost(S(J ∗p )) ≤ 3α · cost(O(Jp)). Hence, cost(O(J ∗p )) ≤ cost(S(J ∗p )) ≤
3α · cost(O(Jp)).

(ii) Assume on the contrary that cost(O(J )) < cost(O(Jp)), we can generate a

schedule S(Jp) by removing jobs from O(J ) which are not in Jp. It follows that

cost(S(Jp)) ≤ cost(O(J )) < cost(O(Jp)), contradicting to the fact that O(Jp) is opti-

mal for Jp.

Theorem 5.17. Denote Kw = 1 + dlog wmax
wmin
e, for any job set J , we have cost(A(J )) ≤

(36Kw)α ·
(

min{8(e+ e2)α, (2α)α

2 }+ 1
)
· cost(O(J )).
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Proof. By definition, cost(A(J )) =
∑

t `oad(A(J ), t)α =
∑

t(
∑Kw

p=1 `oad(A(Jp), t))α.

The latter is at most Kw
α−1∑Kw

p=1

∑
t `oad(A(Jp), t)α. For each group of jobs Jp, we

Convert it to J ∗p , perform algorithm UV on it, and transform the schedule into a

schedule for Jp by ShrinkSch. Hence, `oad(A(Jp), t) ≤ `oad(UV(J ∗p ), t) for each t. It

follows that cost(A(J )) ≤ Kw
α−1∑Kw

p=1 cost(A(Jp)) ≤ Kw
α−1 ·

∑Kw
p=1 cost(UV(J ∗p )). By

Corollary 5.13 and Observations 15, cost(UV(J ∗p )) ≤ 12α · (min{8(e+ e2)α, (2α)α

2 }+ 1) ·
cost(O(J ∗p )) ≤ 12α · (min{8(e + e2)α, (2α)α

2 } + 1) · 3α · cost(O(Jp)) ≤ 36α · (min{8(e +

e2)α, (2α)α

2 }+1)·cost(O(J )). Hence cost(A(J )) ≤ 36α ·Kw
α−1 ·(min{8(e+e2)α, (2α)α

2 }+
1) ·

∑Kw
p=1 cost(O(J )) = (36Kw)α · (min{8(e+ e2)α, (2α)α

2 }+ 1) · cost(O(J )).

Discussion about the classification factor. The logarithm in the competitive

ratio comes from the number of classes defined in Section 5.1.3 since we partition the

jobs by their width. In Class Cp, jobs J have width 2p−1 < w(J) ≤ 2p for 0 < p ≤
dlogKwe = dlog2dwmax

wmin
ee. For jobs in Cp, their widths are round up to 2p. Due to the

round up procedure, three timeslots load should be sampled in order to bound the load

after Transformation RelaxSch (Lemma 5.14) and later it affects the competitive ratio

by 3α (Lemma 5.15, Observation 15 (i), and Theorem 5.17). The competitive ratio is

also affected by logαKw where logKw is the number of classes.

Suppose we change the definition of classes such that class p includes jobs of width in

the range ((1+λ)p−1, (1+λ)p] for some λ > 0 (which is not necessarily 2) and Procedure

Convert such that the width of jobs in class Cp is round up to (1 + λ)p. Then, the

number of classes becomes dlog1+λKwe. When λ is big, the number of classes is less.

However, the number of timeslots needs to be sample is bigger. More precisely, the

competitive ratio depends on Lemma 5.14 that bounds the load at any timeslot by the

load of three other timeslots. This number of timeslots is also affected by the definition

of classes.

We define penalty factor, Fp(λ), as spl(λ) · cls(λ) where spl is the number of timeslot

to be sampled to bound the load and cls is the number of classes with classification

factor λ. Let κw denote log2
wmax
wmin

, cls(λ) = d κw
log2 λ

e. We have the following observation

about Fp(λ) and the competitive ratio: In summary, the following lemma states the

competitive ratio for varying λ.

Lemma 5.18. Let λ be the classification factor. Consider the case that the width of

jobs is big enough.

Fp(λ) =


2 · d κw

log2 λ
e if 0 < λ ≤ 0.5

3 · d κw
log2 λ

e if 0.5 < λ ≤ 1

(2λ− 1) · d κw
log2 λ

e if λ > 1

Proof. If we λ is bigger, it needs to sample more timeslot in order to bound the load

after round up (Lemma 5.14.) When the classification factor is between 1 and 1.5, the

number of timeslots it needs to bound the load of a timeslot after round up is 2, which
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is the minimum number of timeslots we need to sample among all cases. However, there

are more classes and it brings even bigger penalty cost.

Lemma 5.19. For 0 < λ ≤ 0.5, 0.5 < λ ≤ 1 and λ > 1, the competitive ra-

tio of our algorithm becomes (12 × 2dlog1+λKwe)α(min{8(e + e2)α, (2α)α

2 } + 1), (12 ×
3dlog1+λKwe)α(min{8(e+ e2)α, (2α)α

2 }+ 1), and (12× (2λ+ 1)dlog1+λKwe)α(min{8(e+

e2)α, (2α)α

2 }+ 1), respectively.

Proof. The number of classes is dlog1+λKwe, which replaces dlogKwe in Theorem 5.17.

We note that this number decreases as λ increases. In Lemma 5.14, the load of S∗p at

any time t is bounded by the load of Sp at three timeslots when λ = 1. We observe that

this property stays the same for 0.5 < λ ≤ 1. Using a similar argument, we can show

that if λ is smaller and 0 < λ ≤ 0.5, then the number of timeslots involved becomes

smaller and equals to 2. Furthermore, when λ > 1, the number of timeslots increases

and equals to 2λ+ 1.

We note the competitive ratio for λ < 1 is larger than that for λ = 1, and the best

competitive ratio occurs when 1 < λ < 2.

Corollary 5.20. Use classification factor 2.156, we can get the minimum competitive

ratio (2.9882 · 12kw)α ·
(

min{8(e+ e2)α, (2α)α

2 }+ 1
)

.

5.2 Lower Bound

In this section, we show a lower bound of competitive ratio for GRID problem with

unit height and arbitrary width by designing an adaptive adversary for the problem.

Furthermore, we consider the cost at any time t as `oad(t)α with arbitrary α > 1. This

lower bound is immediately a lower bound for the general case of GRID problem.

The adversary constructs a set of jobs with a low cost of offline optimal schedule but

a high cost of any online algorithm A. It generates jobs one by one and assigns release

times, deadlines and widths of jobs based on the previously generated jobs. The start

times of jobs scheduled by algorithm A will be used for the job generations later. This

ensures that algorithm A has to put a job on top of all existing jobs and results in a

high energy cost for algorithm A. Meanwhile, the adversary will choose an appropriate

feasible interval for each job such that an optimal offline algorithm can schedule the job

set with low energy cost. The following is the description of the adversary.

Adversary Λ and job instance J . Given an online algorithm A, arbitrary α > 1

and a large number x, adversary Λ outputs a set of jobs J with bαc + 1 jobs. Let Ji

be the ith job of J . The adversary first computes a width for each job before running

algorithm A. It sets w(Jbαc) = x, w(Jbαc+1) = x − 1, and w(Ji) = 3 · w(Ji−1) + 1 for

1 ≤ i ≤ bαc − 1. Then adversary Λ computes a release time and deadline for each job

through a interaction with algorithm A. For the first job J1, adversary Λ chooses any
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release time and deadline such that d(J1)− r(J1) ≥ 3w(J1). For the ith job Ji ∈ J for

2 ≤ i ≤ bαc+ 1, adversary Λ sets r(Ji) = st(A, Ji−1) + 1 and d(Ji) = et(A, Ji−1). This

limits algorithm A to fewer choices of start times for scheduling a new job. A job can

only be scheduled in the execution interval of the previous job by algorithm A. On the

other hand, no two jobs have the same release time. Algorithm A shall schedule the

jobs accordingly from J1 to Jbαc+1 and one job at a time.

Let wmax and wmin denote by the maximum and minimum width of jobs respectively,

and let O be an optimal offline algorithm for GRID problem. We have the following

results.

Lemma 5.21. cost(O(J )) ≤ x · 3bαc where x is a large number.

Proof. By the setting of adversary Λ, we show that O can schedule all jobs in J without

overlapping, and the cost of an optimal schedule is just the summation of widths of all

the jobs.

For any job Ji ∈ J and i ≥ 2, the length of its feasible interval is d(Ji) − r(Ji) =

et(A, Ji−1)− (st(A, Ji−1) + 1) = w(Ji−1)− 1 = 3w(Ji). This means no matter where we

schedule a job, one of the lengths of [r(Ji), st(Ji)) and [et(Ji), d(Ji)) is at least w(Ji),

and algorithm O can schedule the remaining jobs in the interval with length at least

w(Ji) because the summation of widths of all the remaining jobs does not exceed w(Ji).

The remaining jobs will not overlap to Ji. Since this argument can be applied on all the

jobs, this implies that all the jobs do not overlap with each other in an optimal schedule.

Thus the cost of an optimal schedule is the summation of widths of all the jobs. More

precisely,

cost(O(J )) = (x− 1) + x+ (3x+ 1) + (3(3x+ 1) + 1) + . . .+ wmax

≤ 2x+ 2 · 3x+ 2 · 9x+ . . .+ 2 · 3bαc−1x

= 2x · 3bαc − 1

2
≤ x · 3bαc .

Theorem 5.22. For any deterministic online algorithm A for GRID problem with unit

height and arbitrary width, adversary Λ constructs an instance J such that

cost(A(J ))

cost(O(J ))
≥
(

1

3
log

wmax

wmin

)α
.

Proof. We first give a lower bound of cost(A(J )) and then give the lower bound of the

ratio by combining cost(A(J )) with Lemma 5.21.

By the setting of adversary Λ, all the jobs scheduled by algorithm A overlap to

each other. For ease of the computation, we only consider the timeslots contained by

the execution interval of the last job Jbαc+1 when we compute the cost of A. Thus

cost(A(J )) ≥ (x − 1) · (bαc + 1)α. Now we use wmax and wmin to bound bαc + 1.
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According to Lemma 5.21, we have wmax ≤ cost(O(J )) ≤ x · 3bαc, and thus

bαc ≥ log3

wmax

x
≥ log3

wmax

3(x− 1)
= log3

wmax

wmin
− 1 .

Note that x ≤ 3(x−1) if x ≥ 2. Therefore, cost(A(J )) ≥ (x−1) · logα wmax
wmin

. Combining

with Lemma 5.21, we have the lower bound of the competitive ratio

cost(A(J ))

cost(O(J ))
≥

(x− 1) · logα wmax
wmin

x · 3bαc
≥
(

1

3
log

wmax

wmin

)α
as x to be large enough.

Corollary 5.23. For any deterministic online algorithm for GRID problem, the compet-

itive ratio is at least (1
3 log wmax

wmin
)α.

5.3 Special Cases

In this section we focus on uniform-height jobs of height h and consider two special

cases of the width. We investigate the “density” of jobs and relating it to the online

algorithm AVR proposed by Yao et al. [81]. We first consider jobs with uniform-height

and unit-width (Section 5.3.1) and secondly consider jobs with agreeable deadlines (Sec-

tion 5.3.2). Note that the results in Section 5.1.3 are applicable to unit-height jobs but

we can improve the competitive ratio further.

To ease the discussion, we refine a notation we defined before. For any algorithm A
for a job set J and a time interval I, we denote by A(J , I) the schedule of A on J over

the time interval I.

A framework using AVR. We define the density of J, denoted by den(J), to

be w(J)∗h(J)
d(J)−r(J) . Roughly speaking, the density signifies the average load required by the

job over its feasible interval. We then define the average load at any time t as avg(t) =∑
J:t∈I(J) den(J). In our analysis, we have to distinguish timeslots with high and low

average load with respect to h. Therefore, for any h > 0, we define I>h and I≤h to be set

of timeslots where the average load avg(t) is larger than h and at most h, respectively.

Note that I>h and I≤h do not need to be contiguous.

The main idea is to make reference to the online algorithm AVR and consider two

types of intervals, I>h where the average load is higher than h and I≤h where the average

load is at most h. For the former, we show that we can base on the competitive ratio of

AVR directly; for the latter, our load could be much higher than that of AVR and in

such case, we compare directly to the optimal algorithm. Combining the two cases, we

have Lemma 5.24, which holds for any job set. In Sections 5.3.1 and 5.3.2, we show how

we can use this lemma to obtain algorithms for the special cases. Notice that the number

davg(t)
h e is the minimum number of jobs needed to make the load at t at least avg(t).
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Lemma 5.24. Suppose we have an algorithm A for a any job set J such that (i)

`oad(A, t) ≤ ch · davg(t)h e for all t ∈ I>h, and (ii) `oad(A, t) ≤ c′h for all t ∈ I≤h. Then

we have cost(A(J )) ≤ ( (4cα)α

2 + c′α) · cost(O(J )).

Proof. We denote the speed of AVR at t as `oad(AVR, t). We are going to prove that

cost(A(J, I>h)) ≤ (4cα)α

2 ·cost(O(J)) and cost(A(J, I≤h)) ≤ c′α ·cost(O(J)). Hence the

total cost cost(A(J)) ≤ ( (4cα)α

2 + c′α) · cost(O(J)) since I>h and I≤h are disjoint.

By assumption of A, `oad(A, t) ≤ ch · davg(t)
h e for all t ∈ I>h. Since avg(t) > h,

davg(t)
h e <

avg(t)
h + 1 < 2 · avg(t)

h . Hence `oad(A, t) ≤ 2c · avg(t). The total cost

of A over I>h, cost(A(J, I>h)) =
∑

t∈I>h `oad(A, t)α <
∑

t∈I>h(2c · avg(t))α. Re-

call that `oad(AVR, t) = avg(t) for each t. As a result cost(A(J, I>h)) ≤ (2c)α ·
cost(AVR(J, I>h)) ≤ (2c)α · cost(AVR(J)). By Corollary 5.1, cost(A(J, I>h)) ≤
(2c)α · (2α)α

2 · cost(O(J)) = (4cα)α

2 · cost(O(J)).

On the other hand, although we know that `oad(A(J), t) ≤ c′h for each t ∈ I≤h.

It may not work if we upper bound the cost(A(J, I≤h), t) simply by (c′h)α since the

size of I≤h can be very big. Hence we need to calculate cost(A(J, I≤h)) more carefully.

Since only jobs which are available in I≤h can be scheduled at t ∈ I≤h, cost(A(J, I≤h)) ≤∑
J:I(J)∩I≤h 6=∅w(J)·(c′h)α ≤

∑
J∈J w(J)·(c′h)α. By convexity, cost(O(J)) ≥

∑
J∈J w(J)·

h(J)α =
∑

J∈J w(J) · hα. Hence cost(A(J, I≤h)) ≤ c′α · cost(O(J)).

Since we have Lemma 5.24 as a framework, in the Section 5.3.1 and 5.3.2 we elaborate

two online algorithms for special case and upper bound their competitive ratio using the

framework.

5.3.1 Unit-width and uniform-height

In this section we consider job sets where all jobs have unit width and uniform height,

i.e., w(J) = 1 and h(J) = h for all J ∈ J. Note that such case is a sub-case discussed in

Section 5.1.1. Here we illustrate a different approach using the ideas above and describe

the algorithm UU for this case. The competitive ratio of UU is better than that of

Algorithm V in Section 5.1.1 when α < 3.2198.

Algorithm UU . At any time t, choose davg(t)
h e jobs according to the EDF rule and

schedule them to start at t. If there are fewer jobs available, schedule all available jobs.

The feasibility of UU can be proved by comparing to AVR:

Lemma 5.25. The schedule construct by Algorithm UU is feasible for J.

Proof. We prove the feasibility of UU by comparing to AVR. Simply speaking, by each

timeslot t, we show that the amount of work done by UU is at least the one done by

AVR. Hence UU is feasible since AVR is feasible.

At any time t, the total work done by AVR in interval [0, t) is
∑

t′<t avg(t′). On

the other hand, the total work done by UU in the same interval is
∑

t′<t h · d
avg(t)
h e ≥
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∑
t′<t h ·

avg(t)
h =

∑
t′<t avg(t) if there are enough available jobs in this interval. If the

number of available jobs is less than
∑

t′<t h · d
avg(t)
h e, UU will execute all these jobs

released by t. The work done by UU within interval [0, t) is at least the work done by

AVR in both cases. Hence, UU is feasible since AVR is feasible.

The next theorem states the competitive ratio of UU by using Lemma 5.24.

Theorem 5.26. Algorithm UU is ( (4α)α

2 + 1)-competitive.

Proof. We note that for each t ∈ I>h, `oad(UU , t) ≤ h · davg(t)
h e. And for each t ∈ I≤h,

`oad(UU , t) ≤ h since there are at most one job assigned at t. We set c′ = 1 for t ∈ I≤h
and set c = 1 for t ∈ I>h. By Lemma 5.24 competitive ratio of UU is (4·1·α)α

2 + 1α =
(4α)α

2 + 1.

Remark. Note that by Theorem 5.7, with referencing to AVR or BKP, V is ( (4α)α

2 +

2α)-competitive or 2α(8eα + 1)-competitive, respectively, for the unit input. Hence UU
has better performance for unit input when α < 3.2198.

5.3.2 Uniform-height, arbitrary widths and agreeable deadlines

In this section we consider jobs with arbitrary width, uniform height h and agreeable

deadlines. That is, in the input sequence of jobs J = {J1, J2, · · · , Jn}, h(Ji) = h for

all i, and r(Ji) ≤ r(Jj) and d(Ji) ≤ d(Jj) for all i < j. We first note that simply

scheduling davg(t)
h e number of jobs may not return a feasible schedule even for jobs with

common feasible interval.

Example 5.1. Consider four jobs, each job Jj with r(Jj) = 0, d(Jj) = 5, h(Jj) = h,

w(Jj) = 3. Note that avg(t) = 2.4 · h for all t. If we schedule at most davg(t)h e = 3 jobs

at any time, we can complete three jobs but the remaining job cannot be completed. To

schedule all jobs feasibly, we need at least two timeslots where all jobs are being executed.

The reason why scheduling davg(t)
h e number of jobs does not work is that in the

GRID problem, jobs cannot be preempted. Hence even when the total amount of work

which AVR is capable to do in the rest of timeslots (that is, time interval [4, 5)) is more

than the total work which has not been scheduled in the GRID problem (that is, one

remaining job with total work 3h), the remaining jobs in the GRID problem cannot be

feasibly scheduled. Note that Algorithm UU escapes from this problem since when all

jobs are unit size, there is no need to preempt.

To schedule jobs with arbitrary width, uniform height h and agreeable deadlines,

we first observe in Lemma 5.27 that for a set of jobs with total density at most h,

it is feasible to schedule them such that the load at any time is at most h. Roughly

speaking, we consider jobs in the order of releasing, and hence in EDF manner since the

jobs have agreeable deadlines. We keep the current ending time of all jobs that have

been considered. As a new job is released, if its release time is earlier than the current
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ending time, we set its start time to the current ending time (and increase the current

ending time by the width of the new job); otherwise, we set its start time to be its

release time. Lemma 5.27 asserts that such scheduling is feasible and maintains the load

at any time to be at most h.

Using this observation, we then partition the jobs into “queues” each of which has

sum of densities at most h. Each queue Qi is scheduled independently and the resulting

schedule is to “stack up” all these schedules. The queues are formed in a Next-Fit

manner: (i) the current queue Qq is kept “open” and a newly arrived job is added to the

current queue if including it makes the total densities stays at most h; (ii) otherwise,

the current queue is “closed” and a new queue Qq+1 is created as open.

Lemma 5.27. Given any set of jobs of uniform-height h, arbitrary-width and agreeable

deadlines. If the sum of densities of all these jobs is at most h, then it is feasible to

schedule all of them using a maximum load h at any time. That is, there is no stacking

up among these jobs.

Proof. Suppose there are k jobs J1, J2, · · · , Jk such that
∑k

i=1 den(Ji) ≤ h. Without

loss of generality, we assume that d(Ji) ≤ d(Jj) and r(Ji) ≤ r(Jj) for 1 ≤ i < j ≤ k.

We claim that by EDF principle, each job Ji can be finished by its deadline d(Ji). More

formally, we show that it is feasible to set st(Ji) to max{r(Ji), et(Ji−1)} and et(Ji) to

st(Ji)+w(Ji) for all i (note that J1 has the earliest release time and st(J1) is set to r(Ji)).

By the algorithm, the execution intervals of jobs have no overlapping. Also, each job

has uniform height h. Hence the load in the resulting schedule at any timeslot t is no

more than h.

We prove that every job can be finished without preemption before its deadline by

induction. We assume there is no gap between the jobs execution. That is, there is no

idle time between the execution intervals of jobs. First we observe that den(J1) ≤ h

since
∑k

i=1 den(Ji) ≤ h. It is feasible to set [st(J1), et(J1)) to [r(J1), r(J1)+w(J1)) since

the input is feasible. Next, we have to prove that Ji can be finished before d(Ji) given

all jobs Ji′ can be finished before d(Ji′) without preemption for all i′ < i. There are

two cases, r(Ji) ≥ et(Ji−1) or r(Ji) < et(Ji−1). If r(Ji) ≥ et(Ji−1), it is easy to see

that Ji can be finished by d(Ji) (by setting st(Ji) to r(Ji)) since the input is feasible.

On the other hand, if r(Ji) < et(Ji−1), since
∑i

j=1 den(Jj) ≤
∑k

j=1 den(Jj), we know∑i
j=1

w(Jj)·h
d(Jj)−r(Jj) ≤ h. Because the jobs have agreeable deadline, d(Ji) ≥ d(Ji′) for all i′ ≤

i and r(J1) ≤ r(Ji′) for all i′ ≥ 1. Therefore, h ≥
∑i

j=1
w(Jj)·h

d(Jj)−r(Jj) ≥
∑i

j=1
w(Jj)·h

d(Ji)−r(J1) .

That is,
∑i

j=1w(Jj) ≤ d(Ji) − r(J1). Hence J1, J2, · · · , Ji can be finished by d(Ji).

Moreover, since the jobs have agreeable deadline, there is no need to preempt jobs.

We have shown that for uniform-height jobs with agreeable deadlines, there is a way

to schedule a subset of jobs with a special property (that is, total density is bounded

by h) feasibly and without overlapping. Now we want to introduce an online scheduling

algorithm for the whole input set. The basic idea is to partition jobs into subset where
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the summation of jobs’ densities is at most h in a next-fit manner (InsertQueue.) In

each subset, jobs are scheduled independently from jobs in other subsets (SetStartTime

and ScheduleQueue.)

Algorithm AD. The algorithm consists of the following components: InsertQueue,

SetStartTime and ScheduleQueue.

InsertQueue: We keep a counter q for the number of queues created and Qq is the

current queue. When a job J arrives, if den(J) +
∑

J ′∈Qq den(J ′) ≤ h, then job Jj is

added to Qq; otherwise, job J is added to a new queue Qq+1 and we set q ← q + 1.

SetStartTime: For the current queue, we keep a current ending time E, initially set

to 0. When a new job J is added to the queue, if r(J) ≤ E, we set st(J)← E; otherwise,

we set st(J)← r(J). We then update E to st(J) + w(J).

ScheduleQueue: At any time t, schedule all jobs in all queues with start time set at t.

Note that in the InsertQueue procedure, a queue is no longer under consideration if

it is not capable to accommodate the currently arrived job. In other words, we pack jobs

into the queues in a next-fix manner. In the SetStartTime procedure, the scheduling

strategy is the same as the one we used in proof of Lemma 5.27. Hence by Lemma 5.27,

the schedule returns by AD is feasible.

We then analyze the load of AD and hence derive the competitive ratio. Recall

that I>h and I≤h are set of timeslots where the average load avg(t) is larger than h and

at most h, respectively.

Lemma 5.28. Using AD, we have (i) `oad(AD, t) ≤ 2 · h · davg(t)h e for t ∈ I>h; (ii)

`oad(AD, t) ≤ 2h for t ∈ I≤h.

Proof. For any timeslot t, suppose there are k queues (Q1,Q2, · · · ,Qk) which contains

jobs available at t. By the algorithm, `oad(UU , t) ≤ k · h. We first observe that because

of the next-fix strategy, each queue Qq contains a contiguous subsequence of input jobs

Ji, Ji+1, Ji+2, · · · . Let Di denote the summation of densities of jobs which is available

at t and is assigned to Qi. We prove (ii) first since it is simpler.

(ii) Consider t ∈ I≤h. By definition, avg(t) ≤ h. That is, the sum of densities of all

available jobs at t is no more than h. By the InsertQueue procedure all jobs will be in

at most two consecutive queues. Note that although all the jobs can be put into a single

queue, it could be the case that some of the jobs are put into the previous queue and

hence the jobs available at t are placed into two queues. Therefore, `oad(AD, t) ≤ 2h

for t ∈ I≤h.

(i) If t ∈ I>h, according to our algorithm, `oad(AD, t) ≤ k · h. We want to show

that if k is big at t, avg(t) is also big.

Consider the queues Q1,Q2, · · · ,Qk, since the jobs have agreeable deadlines and

we use next-fit strategy for assigning jobs into queues, we first observe that for any

job Jj(q) which is the first job assigned to queue Qq, den(Jj(q)) +Dq−1 > h. Otherwise,

the job Jj(q) would be assigned to the queue Dq−1. Note that it may not be true

for den(Jj(2)) + D1 because some of the jobs in Q1 may not be available at t. That
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is, D1 may be less than
∑

J∈Q1
den(J). Therefore, if k ≥ 3, avg(t) =

∑k
i=1Di >∑b k−1

2
c

i=1 (D2i+Jj(2i+1)) > bk−1
2 c ·h. It can be shown that k ≤ 2 · davg(t)

h e since avg(t) > 1.

Let r = avg(t)
h , since t ∈ I>h, r > 1. By deduction, bk−1

2 c < r ≤ dre. We investigate the

relation between k and r. Since bk−1
2 c is a natural number, by calculation, k−1

2 − 1 <

bk−1
2 c ≤ dre − 1. Also, k is a natural number, so k ≤ 2dre. Therefore, `oad(AD, t) ≤

k · h < 2dre · h = 2 · h · davg(t)
h e for t ∈ I>h.

On the other hand, if k = 2, `oad(UU , t) ≤ 2h. Since avg(t) > h (by definition

of I>h), `oad(UU , t) < 2 · avg(t) ≤ 2 · h · davg(t)
h e.

By Lemma 5.28 and Lemma 5.24, we have the competitive ratio of AD by setting

c = 2 and c′ = 1 in the following Theorem.

Theorem 5.29. For jobs with uniform height, arbitrary width and agreeable deadlines,

AD is ( (8α)α

2 + 2α)-competitive.

Remark. In Section 5.1.3, we showed that for general input, there is an online

algorithm A to schedule the jobs with competitive ratio 36α ·(1+dlog wmax
wmin
e)α ·(min{8(e+

e2)α, (2α)α

2 } + 1). However, if we know the jobs released later would have later (or

at least the same) deadlines, we can improve the competitive ratio. By generalizing

algorithm AD similarly to the method introduced in Section 4.4, the competitive ratio

for scheduling jobs with arbitrary widths, arbitrary heights, and agreeable deadlines is

2α · (1 + dlog hmax
hmin
e)α · ( (8α)α

2 + 2α).

5.3.3 Uniform height job set with common feasible intervals

In this section we consider jobs with arbitrary width, uniform height h and common

feasible interval. That is, in the input sequence of jobs J = {J1, J2, · · · , Jn}, h(Ji) = h,

r(Ji) = 0 and d(Ji) = D for all i. Recall that this setting is NP-hard. However, we

prove that a simple greedy algorithm is 22α-competitive, and hence 22α-approximate.

We introduce an greedy algorithm Cuh which schedule the jobs such that the increas-

ing of current total cost is minimized. In other words, assume the highest load of the

current schedule is `, a released job J will be assigned to level ` + 1 if and only if each

level from 1 to ` cannot accommodate it. We consider the greedy strategy as a bin

packing one. That is, each bin has capacity D and once a job J arrives, it is assigned

to the first bin which has remaining capacity at least w(J).

Algorithm Cuh. The algorithm consists of the following components: InsertQueue,

SetStartTime and ScheduleQueue.

InsertQueue: We keep a sequence of queues Q1,Q2,Q3, · · · . When a job J arrives, it

is assigned to Qq with minimum q such that den(J) +
∑

J ′∈Qq den(J ′) ≤ D; otherwise,

job J is added to a new queue.
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SetStartTime: For each queue, we keep a current ending time E, initially set to 0.

When a new job J is added to the queue, if r(J) ≤ E, we set st(J)← E; otherwise, we

set st(J)← r(J). We then update E to st(J) + w(J).

ScheduleQueue: At any time t, schedule all jobs in all queues with start time set at t.

It is clear to see that the algorithm Cuh is exactly the First-Fit strategy of BINPACKING.

It has been proven that First-Fit is 2-competitive for BINPACKING. Therefore, for

the GRID problem where the object is to minimize maximum power request, Cuh is 2-

competitive. We prove that Cuh is 22α-competitive for the GRID problem objected to

minimize the total cost by bounded the total work and hence the lower bound of any

optimal schedule.

Theorem 5.30. The algorithm Cuh is 22α-competitive for Grid problem for uniform

height job set with same release time and same deadline.

Proof. Let OG and OB denote the optimal schedules of the GRID and BINPACKING

problem, respectively. Assume in the schedule generated by Cuh, the highest load among

timeslot 1, 2, · · · , D is k. By the analysis of First-Fit strategy on bin-packing, OB uses

at least k
2 bins. Hence, the total work of all jobs is at least k

2 ·
D
2 (since the load of

each bin in OB might be less than D but must over D
2 or OB is not optimal.) The best

the optimal schedule in the smart grid problem OG can do is to schedule the total load

evenly on each timeslot. Hence, cost(O) ≥ (
kD
4
D )α · D = (k4 )α · D. On the other hand,

cost(Cuh) ≤ kα ·D. Therefore, the competitive ratio of Cuh is at most 4α.

5.3.4 Unit width job set with common feasible intervals

In this section we consider jobs with unit width, arbitrary height and common feasible

interval. That is, in the input sequence of jobs J = {J1, J2, · · · , Jn}, w(Ji) = w,

r(Ji) = 0 and d(Ji) = D for all i. Recall that this setting is NP-hard (see Section 4.1.

However, we prove that a simple greedy algorithm is 2α-competitive, and hence 2α-

approximate.

We introduce an greedy algorithm Cuw which schedule the jobs such that the increas-

ing of current total cost is minimized. In other words, a released job J will be assigned

to the timeslot with lowest load. We consider this problem as a load balancing problem

with D uniform machines. That is, each timeslot is considered as a machine and each

job is considered as a task which has to be assigned to one machine (timeslot.)

Algorithm Cuw. Consider timeslots 1, 2, 3, · · · , D. When a job J arrives, it is

assigned to t with minimum load.

It has been proven that the greedy strategy is 2-competitive for uniform machines

load balancing problem. Therefore, for the GRID problem where the object is to mini-

mize maximum power request, Cuw is 2-competitive. Similar to Section 5.3.3, we prove
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that Cuw is 2α-competitive for the GRID problem objected to minimize the total cost by

bounded the total work and hence the lower bound of any optimal schedule.

We first observe the Cuw schedule and have the following bounds. For each timeslot t,

let ht be the height of the last job which is assigned to t in the Cuw schedule, and

St = `oad(Cuw, t)−ht. Note that ht > 0 and St ≥ 0 since there are at least one job at t.

Lemma 5.31. In the Cuw schedule, if there exists at least one timeslot with more than

one job assigned to it, assume the last job Jn in J is assigned to timeslot x:

(i) there must be at least two jobs at x;

(ii) St ≤ Sx for all t 6= x;

(iii) cost(O) ≥
∑D

t=1 h
α
t ; and

(iv) cost(O) ≥ D · Sαx .

Proof. First we observe that there is at least one job at each timeslot, or the last job

assigned at the timeslot which has at least jobs would be assigned to the empty timeslot.

Hence, ht > 0 for all t. Let `oadj(t) denote the load of Cuw at timeslot t when the first j

jobs are released and assigned.

(i) Assume by contrary that if there is only one job assigned at x. By the definition

of tiemslot x, the job assigned at x is Jn. We let timeslot t′ denote the timeslot with

more than one jobs and Ji be the last job which is assigned to t′. Consider the load at t′

when Ji arrived, that is, `oadi=1(t′), it is clear that `oadi−1(t′) > 0 since there are at least

two jobs would be assigned at t′. On the other hand, `oadi−1(x) ≤ `oad(Cuw, x) = 0,

hence `oadi−1(x) = 0 < `oadi−1(t′). It contradicts to how the algorithm works. Hence

there must be at least two jobs assigned at x.

(ii) Consider the last job Ji which is assigned at timeslot t where t 6= x. Recall

that Jn, the last job in J, is assigned at timeslot x, hence i < n. By definition,

`oadi−1(t) = St. When Ji is released, the load at t, St = `oadi−1(t) ≤ `oadi−1(x),

or Ji would be assigned at x. Also, since at least one of the jobs which would be

assigned at x has not arrived (that is, Jn), Sx ≥ `oadi−1(x). Therefore, St ≤ Sx.

(iii) Note that the last jobs at each timeslot form a subset of the whole input set

J. By the convexity of the cost function, cost(O) =
∑n

j=1 h(Jj)
α ≥

∑D
t=1 h

α
t . (iv) By

(i), there must be at least two jobs assigned at x, hence Sx > 0. Consider the last job

assigned to any timeslot t 6= x, it is assigned to t because by then, `oad(Cuw, t) = St ≤ Sx
or the job would be assigned at x (recall that timeslot x has the last job in the input set.)

Furthermore, the total work of jobs is at least (D−1)Sx+`oad(Cuw, x) ≥ (D−1)Sx+Sx ≥
D · Sx. Therefore, cost(O) ≥ D · (DSxD )α = D · Sαx .

Now we are ready to analysis the competitive ratio of Cuw.

Theorem 5.32. The algorithm Cuw is 2α-competitive for GRID problem for unit width

job set with same release time and same deadline.

Proof. First we observe that if there for each timeslot there is at most one job assigned

at it, by the convexity of the cost function, cost(Cuw) = cost(O). Similarly, if there is

exactly one job at each timeslot, cost(Cuw) = cost(O).
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On the other hand, we consider the case where there exist at least one timeslot has

more than one jobs. By definition, cost(Cuw) =
∑D

t=1 `oad(Cuw, t)α =
∑D

t=1(ht + St)
α ≤

2α−1(
∑D

t=1 h
α
t +

∑D
t=1 S

α
t ). By Lemma 5.31 (ii) and (iv),

∑D
t=1 S

α
t ≤ D · Sαx ≤ cost(O).

Also, by Lemma 5.31 (iii),
∑D

t=1 h
α
t ≤ cost(O). Therefore cost(Cuw) ≤ 2α−1(cost(O) +

cost(O)) = 2α · cost(O).

Corollary 5.33. For unit case with same release time and same deadline, Cuw = O.

5.4 Summary

In this chapter we investigated the GRID problem in the online model. We proposed

a (36(1 + dlog wmax
wmin
e))α · (min{8(e + e2)α, (2α)α

2 } + 1)-competitive online algorithm for

the jobs with arbitrary widths, arbitrary heights, and arbitrary feasible intervals. We

also prove that for any deterministic online algorithm, the competitive ratio is at least

(1
3 log wmax

wmin
)α.

For special cases, we showed that there are better strategies. There is a ( (4α)α

2 + 1)-

competitive algorithm for the unit case by relating to the AVR algorithm for the DVS

problem. For uniform height, arbitrary widths and agreeable deadlines jobs, we showed

that a Next-Fit algorithm is ( (8α)α

2 + 1)-competitive. For jobs with common intervals,

we showed that the First-Fit algorithm is 22α-competitive for unit-height jobs, and the

Best-Fit algorithm is 2α-competitive for unit-width jobs.





Chapter 6

Extensions to Other Problems

In this chapter we extend our algorithms to solve other problems different from GRID.

We find that the online algorithm introduced in Section 5.1 also performs well on other

problems. We also find that the exact algorithm introduced in Section 4.3 can solve

other demand response management problems with different objective functions, and

hence we can prove these problems are all fixed-parameter tractable.

First we turn to the online smart grid scheduling problem, GRIDpeak, objective to

minimize the maximum power request over time. The GRIDpeak problem is quite similar

to the classical Machine Minimization problem. In fact, the Machine Minimization

problem is a special case of the smart grid scheduling problem objective to minimize the

peak power request over time where jobs have unit height. Saha [71] has proven that no

deterministic online algorithm for Machine Minimization can achieve an approximation

factor better than log3
wmax
wmin

. It also gives us a lower bound that no deterministic online

algorithm for the GRIDpeak problem can achieve a competitive ratio better than log3
wmax
wmin

.

In Section 6.1, we show that the online algorithm presented in Section 5.1 is asymp-

totically optimal for the GRIDpeak problem and the Machine Minimization problem. In

Section 6.2, we show how to adapt the exact algorithm presented in Section 4.3 to solve

the GRIDpeak problem. We further give an idea about solving the GRID problem with

power limit, the GRIDlimited problem. That is, given a power limit L, is there a feasible

schedule such that for each timeslot, the load cannot exceed L?

6.1 Online algorithm: Minimizing the peak power request

In this section, we investigate the online smart grid scheduling problem objective to the

maximum power request over time horizon instead of the total cost. We prove that

the online algorithm A proposed in Section 5.1 is also asymptotically optimal for the

GRIDpeak problem objective to maximum power request.

The GRIDpeak problem. The input of the GRIDpeak problem is a set of jobs where

each job has a power request, time duration, and a feasible intervals in which the job

can be scheduled. The goal is to feasibly serve all jobs without preemption such that

the maximum power request over time horizon is minimized.

111
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The GRIDpeak problem has been proven to be NP-hard by Tang et al. [76]. Yaw

et al. [83] proposed a 4-approximation algorithm for input jobs with common feasible

interval and an O(log wmax
wmin

)-approximation algorithm for jobs with agreeable deadlines.

In this section, we consider the GRIDpeak problem in the online model. Saha [71]

proved that any online algorithm for the non-preemptive Machine Minimization problem

has competitive ratio at least log3
wmax
wmin

. Since the Machine Minimization problem is a

special case of the GRIDpeak problem where jobs have unit height, the lower bound

also holds for the GRIDpeak problem. We prove that the online algorithm A proposed

in Section 5.1 is asymptotically optimal for the GRIDpeak problem. More specifically,

we use the online strategy to solve the GRIDpeak problem by using the adapted BKP
algorithm, BKP ′ (see Section 5.1.1), as the reference algorithm. Bansal et al. [6] proved

the following lemma:

Lemma 6.1 ([6]). The BKP algorithm is e-competitive with respect to maximum speed.

According to Lemma 5.3, we have the following lemma:

Lemma 6.2. The BKP ′ algorithm is e(1 + e)-competitive with respect to maximum

speed.

Also, the YDS algorithm guarantees that maximum speed is minimized [6]. Let

function peak(S) denote the maximum power request of schedule S. More formally,

peak(S) = maxt `oad(S, t). Similar to Observation 11, YDS gives a lower bound for the

GRIDpeak problem.

Observation 16. Let OD and OG be the optimal schedule for the DVS and GRIDpeak

problem, respectively. Given a job set JG for the GRIDpeak problem and convert it into

a job set JD for the DVS problem (see Chapter 5), peak(OD(JD)) ≤ peak(OG(JG)).

Analysis of the online algorithm A. Now we analyze the online algorithm A
and show that it is O(1 + dlog wmax

wmin
e)-competitive with respect to the maximum power

request.

We first introduce an observation which is widely used throughout the analysis:

Observation 17. For two schedule S1 and S2, if the following relation between the loads

holds `oad(S1, t) ≤
∑k

i=1 `oad(S2, ci(t)), where ci(t) is a function of t, then peak(S1) ≤
k · peak(S2).

Proof. By definition, peak(S1) = maxt `oad(S1, t). By the given condition, peak(S1) ≤
maxt

∑k
i=1 `oad(S2, ci(t)) ≤

∑k
i=1 maxt `oad(S2, ci(t)) =

∑k
i=1 peak(S2) = k · peak(S2).

Recall that in Section 5.1, we solve the general case by generalizing the online algo-

rithm for special input. The algorithm V can schedule unit-width jobs with promising

performance by referencing to an arbitrary feasible online algorithm for the DVS prob-

lem. By generalizing V, we have online algorithm UV for jobs with uniform width. By
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further generalizing UV, we have online algorithm A for jobs with arbitrary widths and

arbitrary heights.

We first prove that the algorithm V for unit-width jobs schedules the jobs with good

performance by referencing to BKP ′. Recall that for each timeslot t, V schedules jobs

to start at t such that `oad(V, t) is at least `oad(BKP ′, t) = (1 + e) · `oad(BKP, t) or

until all available jobs have been scheduled. We prove that although `oad(V, t) might

be higher than `oad(BKP ′, t), the peak of V is no more than 2e times of the peak of the

optimal.

Let hmax(V, t) be the maximum height of jobs scheduled at t by V; we set hmax(V, t) =

0 if V assigns no job at t. We classify each timeslot t into two types: (i) hmax(V, t) <
`oad(BKP ′, t), and (ii) hmax(V, t) ≥ `oad(BKP ′, t). We denote by I1 and I2 the union

of all timeslots of Type (i) and (ii), respectively. Notice that I1 and I2 can be empty

and the union of I1 and I2 covers the entire time line. In Lemma 6.3 bounds the cost

of V in each type of timeslots, and Theorem 6.4 asserts that V is 2(e+ e2)-competitive.

Lemma 6.3. For any job set J where for each job J ∈ J, w(J) = 1, (i) peak(V(J), I1) ≤
2(e+ e2) · peak(O(J)); and (ii) peak(V(J), I2) ≤ 2 · peak(O(J)).

Proof. (i) For every timeslot t ∈ I1, `oad(V, t) < `oad(BKP ′, t) + hmax(V, t) ≤ 2 ·
`oad(BKP ′, t) ≤ 2(1+e)·`oad(BKP, t). By definition, peak(V, I1) = maxt∈I1 `oad(V, t) <
2(1 + e) · `oad(BKP, t). Therefore, peak(V, I1) ≤ 2e(1 + e) · peak(O) by Observation 16

and Lemma 6.1.

(ii) For every timeslot t ∈ I2, `oad(V, t) < `oad(BKP ′, t)+hmax(V, t) ≤ 2 ·hmax(V, t).
In the optimal schedule, the job with height hmax(V, t) has to be scheduled some-

where or the schedule is not feasible, so peak(O) ≥ hmax(V, t). Hence, peak(V, I2) =

maxt∈I2 `oad(V, t) ≤ 2hmax(V, t) ≤ 2 · peak(O).

Theorem 6.4. For any job set J where for each job has unit width, peak(V(J)) ≤
2(e+ e2) · peak(O(J)).

Proof. Since I1 and I2 are disjoiont, peak(V) = max{peak(V, I1),peak(V, I2)}. By

Lemma 6.3, peak(V) = max{2(e+ e2) · peak(O), 2 · peak(O)} = 2(e+ e2) · peak(O).

Next, we show that UV is (6(e + e2) + 1)-competitive (Theorem 6.9). We let J ∗

denote the input set where jobs have uniform width, J ∗T denote the tight job set in J ∗

and J ∗L denote the loose job set in J ∗. First we prove that any feasible schedule for

tight jobs is 3-competitive because of the “inflexibility”.

Lemma 6.5. For any feasible schedule S, peak(S(J ∗T)) ≤ 3 · peak(O(J ∗)).

Proof. We prove it by showing that even if the execution intervals of jobs are considered

as the whole feasible interval, the peak is not too much larger than the peak in the

optimal schedule.

We first extend jobs J ∈ J ∗T to J+ as the following: r(J∗) = r(J), d(J∗) = d(J),

w(J∗) = d(J) − r(J), and h(J∗) = h(J). That is, every job has its width as the length
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of its feasible interval. We denote the resulting job set by J +. It is easy to see that

because of each job in J + are not shiftable, there is only one feasible schedule for J +

and it is optimal. It is clear that peak(S(J ∗T)) ≤ peak(O(J +)).

Similar to Lemma 4.25, we can bound the load at any time t of O(J +) by the loads

of constant number of timeslots in S(J ∗T). Consider the job J corresponding to J+, the

execution interval of J in any feasible schedule must contains either timeslot t− (w−1),

t+(w−1), or t. Hence we can upper bound the load at any time t in O(J +) as following:

`oad(O(J +), t) ≤ `oad(O(J ∗T), t− (w − 1))+`oad(O(J ∗T), t+ (w − 1))+`oad(O(J ∗T), t).

By Observation 17, peak(S(J ∗T)) ≤ peak(O(J +)) ≤ 3 · peak(O(J ∗L )).

Recall that for the loose jobs set J ∗L where jobs have uniform width w, we transform

it to J ′ by AlignFI into jobs with release times and deadlines being at i ·w for certain

integers i. The schedule UV(J ∗L ) is transformed from the schedule V(J ′) by FreeSch.

In the following we prove that the Transformation FreeSch does not affect the per-

formance (Lemma 6.6), and the Transformation AlignSch does not enlarge the gap

between the peak of UV and the peek of O too much (Lemma 6.7). Hence, the UV(J ∗L )

is O(1)-competitive (Lemma 6.8).

Lemma 6.6. Given S′, consider the S∗ generated by FreeSch, peak(S∗) = peak(S′).

Proof. It is easy to see that `oad(S∗, t) = `oad(S′, t) for all t. Hence peak(S∗) =

peak(S′).

According to Lemma 4.22, we know that for any schedule S∗ for J ∗L and the sched-

ule S′ for J ′ constructed by AlignSch, at any timeslot t, `oad(S′, t) ≤ `oad(S∗, t) +

`oad(S∗, t− (w − 1)) + `oad(S∗, t+ (w − 1)). Therefore we have the following lemma:

Lemma 6.7. Given a schedule S∗ for a set of loose jobs J ∗L with uniform width and

the schedule S′ generated by AlignSch for the corresponding J ′ generated by Procedure

AlignFI, peak(O(J ′)) ≤ 3 · peak(O(J ∗L )).

Proof. By definition, peak(S′) = maxt `oad(S′, t). By Lemma 4.22 and Observation 17,

peak(S′) ≤ maxt(`oad(S′, t) ≤ `oad(S∗, t)+`oad(S∗, t− (w − 1))+`oad(S∗, t+ (w − 1)))

≤ 3 · peak(S∗). Given O(J ∗L ), there exists a schedule S(J ′) generated by AlignSch.

Therefore, peak(S(J ′)) ≤ 3 · peak(O(J ∗L )). Hence peak(O(J ′)) ≤ peak(S(J ′)) ≤
3 · peak(O(J ∗L )).

Lemma 6.8. For loose jobs set J ∗L where jobs have uniform width, peak(UV(J ∗L )) ≤
6(e+ e2) · peak(O(J ∗)).

Proof. In UV, the job set J ∗L is transformed into a job set J ′ by AlignFI and V
is performed on J ′. Then, UV(J ∗L ) = V(J ′) by Transformation FreeSch. Hence,

peak(UV(J ∗L )) = peak(V(J ′)). By Theorem 6.4, peak(V(J ′)) ≤ 2(e+ e2)·peak(O(J ′)).
By Lemma 6.7, peak(O(J ′)) ≤ 3 · peak(O(J ∗L )). Hence, peak(UV(J ∗L )) ≤ 6(e+ e2) ·
peak(O(J ∗)).
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Now we are ready to prove that the algorithm UV performs well when the tight jobs

and loose jobs are considered together:

Theorem 6.9. peak(UV(J ∗)) ≤ (6(e+ e2) + 1) · peak(O(J ∗)).

Proof. By definition, peak(UV(J ∗)) ≤ peak(UV(J ∗T)) + peak(UV(J ∗L )). By Lemma 6.5

and 6.8, peak(UV(J ∗)) ≤ 3 · peak(O(J ∗)) + 6(e+ e2) · peak(O(J ∗)) = (6(e+ e2) + 1) ·
peak(O(J ∗)).

Finally we are going to bound the competitive ratio of A. Recall that A(J ) partition

jobs into subsets Jp such that in each Jp jobs have bounded widths. For each Jp, it is

transformed into J ∗p and UV is performed. Then, A(Jp) = UV(Jp) by Transformation

ShrinkSch. We show that ShrinkSch does not increase the peak in Lemma 6.12. On

the other hand, we show that the effect on considering jobs as nice jobs is bounded

(Lemma 6.11). Let Jp and J ∗p denote the set of jobs in class Cp and the nice jobs

generated by Convert. Also we denote Sp and S∗p as the schedule of Jp and the

schedule generated by RelaxSch. According to Lemma 4.29, we know that for any

time t, `oad(S∗p , t) ≤ `oad(Sp, t) + `oad(Sp, t− (2p−1 − 1)) + `oad(Sp, t+ (2p−1 − 1)).

Hence we have the following lemma:

Lemma 6.10. Given Sp and S∗p generated by RelaxSch, peak(S∗p) ≤ 3 · peak(Sp)

Proof. By Lemma 4.29 and Observation 17, peak(S∗p) = maxt `oad(S∗p , t) ≤ maxt(`oad(Sp, t)+

`oad(Sp, t− (2p−1 − 1)) + `oad(Sp, t+ (2p−1 − 1))) ≤ 3 · peak(Sp).

Lemma 6.11. Consider any job set J, its corresponding J ∗ and the corresponding job

set of each class Jp and J ∗p , peak(O(J ∗p )) ≤ 3 · peak(O(J)).

Proof. GivenO(Jp), there exists schedule S(J ∗p ) generated by RelaxSch. By Lemma 6.10,

peak(S(J ∗p )) ≤ 3·peak(O(Jp)). Hence, peak(O(J ∗p )) ≤ peak(S(J ∗p )) ≤ 3·peak(O(Jp)) ≤
3 · peak(O(J)).

Lemma 6.12. Using ShrinkSch, peak(Sp) ≤ peak(S∗p)

Proof. It can be easily seen that for all t, `oad(Sp, t) ≤ `oad(S∗p , t). Hence peak(Sp) ≤
peak(S∗p).

The following theorem asserts that A is O(1 + dlog wmax
wmin
e)-competitive.

Theorem 6.13. For any job set J, peak(A(J)) ≤ (6(e+ e2) + 1) · (1 + dlog wmax
wmin
e) ·

peak(O(J)).

Proof. By definition, peak(A(J)) = maxt `oad(A(J, t)) = maxt
∑1+dlog wmax

wmin
e

p=1 `oad(UV(Jp), t).

By shuffling the terms, peak(A(J)) ≤
∑1+dlog wmax

wmin
e

p=1 peak(UV(Jp)). By Theorem 6.9,

peak(A(J)) ≤
∑1+dlog wmax

wmin
e

p=1 (6(e+ e2) + 1)·peak(O(J ∗p )). By Lemma 6.11, peak(A(J)) ≤∑1+dlog wmax
wmin

e
p=1 (6(e+ e2) + 1)·peak(O(J)) ≤ (6(e+ e2) + 1)·(1+dlog wmax

wmin
e)·peak(O(J)).
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The Machine Minimization problem. The Machine Minimization problem is

as follows. The inputs are a set of jobs J with processing times p(J), release times r(J),

and deadlines d(J) and infinite number of machines. Each machine can serve only one

job at a time. Each job has to be scheduled on a machine such that in its execution

interval (which is in the interval between its start time and end time) there is no other

job assigned on the same machine. The goal is to minimize the number of used machines.

The Machine Minimization problem can be seen as a special case of the GRIDpeak

problem by considering the processing time as the time duration of the job. In the

Machine Minimization problem, the jobs have no power request. Hence we can reduce

an input set JM of the machine minimization problem to an input set JD of the GRIDpeak

problem as follows. For every job J ∈ JM , there is a corresponding job J ′ ∈ JD with

w(J ′) ← p(J), h(J ′) ← 1, r(J ′) ← r(J) and d(J ′) ← d(J). By Theorem 6.13, we

prove that there exists an asymptotically optimal online algorithm for the Machine

Minimization problem.

6.2 The interval graph approach on other problems

In Section 4.3, we introduced an exact algorithm E using the linear clique arrangement

property of the interval graphs. The linear property of the consecutive clique arrange-

ment of interval graphs gives a direction to design a dynamic programming algorithm,

which breaks down a problem into overlapped subproblems until the subproblems are

simple enough to be solved. Recall the algorithm E :

Algorithm E (also see Section 4.3). Basically, the jobs are considered as time

intervals and the time horizon is chopped into “windows”. We first transform the input

job set J to an interval graph, and obtain the maximal cliques Ci for 1 ≤ i ≤ k and the

corresponding windows Wi. The algorithm visits all windows accordingly from the left to

the right. In Stage i, the i-th window is visited and the algorithm maintains a candidate

set of schedules for the visited windows that no optimal solution is deleted from the

set. In each Stage i, the algorithm consists of three procedures: ListConfigurations,

ConcatenateTables and FilterTable.

The ListConfigurations procedure lists all possible configurations (i.e., execution

segments) of the jobs in Ci within Wi. The invalid configurations will be deleted. The

valid configurations together with their cost will be stored in a table.

The ConcatenateTables procedure concatenates the configurations in the current

window Wi and the configurations in the windows which have been seen so far. If the

execution interval after concatenation is not valid, it is deleted from the table. The cost

of the new configuration is simply the sum of the two concatenated configurations.

The FilterTable procedure filters non-optimal configurations. The idea is, given a

configuration of the jobs in Ci, there must be a best decision of the jobs in
⋃i−1
k=1Ck \Ci

which has minimum cost within the intervals [0, bi+1), where bi+1 is the right boundary
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of the window Wi. For each configuration, we only keep the (partial) schedule with the

minimum cost.

After processing all the windows, the schedule with minimum cost can be found in

the final table.

In the following of this section, we show that the E can be used to solve other demand

response management problems by changing the objective function.

6.2.1 Minimizing the peak power request

To solve the GRIDpeak problem, we modify the algorithm E as the following. Recall

that in Stage i, in the original ListConfigurations procedure, each valid configuration

will be stored in the table together with their cost. We store the valid configurations

together with the peak power request instead of the total cost. In the ConcatenateTables

procedure, the peak power request of the new configuration is the bigger one of the two

concatenated configurations. In the FilterTable procedure, we keep the partial schedule

with minimum peak power request for each given configurations of jobs in Ci.

It is easy to see that we list all possible configurations. A configuration is deleted

only when it is invalid or it is identical to another configuration with lower peak power

request. Hence in the end we get an optimal schedule. It also shows that the GRIDpeak

problem is fixed parameter tractable with respect to the maximum width of jobs and the

maximum number of overlapped feasible intervals, and the maximum length of windows.

Corollary 6.14. The GRIDpeak problem is fixed parameter tractable with respect to the

maximum width of jobs, the maximum number of overlapped feasible intervals, and the

maximum length of windows.

Corollary 6.15. The GRIDpeak problem is fixed parameter tractable with respect to the

maximum width of jobs, and the maximum number of overlapped feasible intervals.

6.2.2 Minimizing the total cost with limited power

In this section we consider the GRID problem with power limit L. More formally, the

aim is to find a schedule which feasibly schedule all jobs such that for every timeslot,

the power request is at most L and the total cost is minimized.

The GRIDlimited problem. The input of the GRIDlimited problem is a set of jobs where

each job has a power request, a time duration, and a feasible intervals in which the job

can be scheduled. Moreover, there is a power limit L such that the total power request

at any timeslot cannot be more than L. The goal is to feasibly serve all jobs without

preemption such that for all timeslot t, `oad(t) ≤ L and the total cost is minimized.

To solve the GRIDlimited problem, we modify the algorithm E by redefining the “valid”

configuration. Previously the validity of configuration was only about the consistency of

the execution segments; now we also consider a configuration with load at some timeslot

bigger than L as invalid. The other parts of the algorithm E remain the same.
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It is clear that we list all possible configurations. A configuration is deleted only

when it is invalid, it has some timeslots with load more than L or it is identical to

another configuration with lower cost Hence in the end we get an optimal schedule and

in the schedule each timeslot has load at most L.

Corollary 6.16. The GRIDlimited problem is fixed parameter tractable with respect to the

maximum width of jobs, the maximum number of overlapped feasible intervals, and the

maximum length of windows.

Corollary 6.17. The GRIDlimited problem is fixed parameter tractable with respect to the

maximum width of jobs, and the maximum number of overlapped feasible intervals.

6.3 Summary

In this chapter, we adapted our techniques to solve other problems. We proved that

the online algorithm we proposed in Section 5.1 is asymptotically optimal for the smart

grid problem with objective minimizing maximum power request. Since the Machine

Minimization problem is a special case of the GRIDpeak problem, the algorithm is also

asymptotically optimal for the Machine Minimization problem.

We also investigated the potential of the exact algorithm framework proposed in Sec-

tion 4.3. We showed that the framework can be adapted to solve other demand response

management problems by simply changing the check conditions in the algorithm. It also

showed that these problems are all fixed-parameter tractable with respect to the same

set of parameters.



Chapter 7

Conclusion

In this thesis, we study algorithms for problems within the general area of the smart

grid scheduling.

In Chapter 4, we proved that the GRID problem is NP-hard, even when preemption

is allowed, or the jobs have common feasible intervals and unit width/heights. We then

show that for a special case where jobs have unit width and unit height, the GRID

problem is polynomial time solvable. The polynomial time algorithm is based on a

graph structure which captures all feasible assignments. We show that maintaining the

graph and querying the graph can be done in polynomial time. By a simple checking on

the graph, we can know if the current assignment is optimal. If the current assignment

is not optimal, by polynomial time shifting of the jobs, the optimal schedule can be

achieved easily.

By generalizing the optimal algorithm for the unit case, we proposed an approxima-

tion algorithm for jobs with arbitrary widths and arbitrary heights. The approximation

algorithm is based on classifying jobs by their widths and heights. For each class, jobs

are treated as unit-size jobs by necessary modifications and the optimal algorithm for

unit-size jobs is performed.

The approximation only gives a very initial result. A potential direction is to inves-

tigate other approaches and see if there are more accurate approximation algorithms.

Further, for complexity interests, it would be interesting to find an approximation lower

bound.

In Chapter 5, we proposed a (36(1 + dlog wmax
wmin
e))α · (min{(8(e + e2)α, (2α)α

2 } + 1)-

competitive online algorithm for the jobs with arbitrary widths, arbitrary heights, and

arbitrary feasible intervals. We also prove that for any deterministic online algorithm,

the competitive ratio is at least (1
3 log wmax

wmin
)α for arbitrary α > 1. We also proved that

for more restricted input, the simple strategies as First-Fit, Next-Fit, or Best-Fit can

achieve good competitive ratio.

Some of our online algorithms are based on the analogy to the dynamic voltage/speed

scaling algorithm. It gives us fascinating views on the relations of these energy-aware

problems. However, it is also necessary to look at different approaches. Furthermore,
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the parameters we considered so far are wmax and wmin. Trying other parameters might

give us new point of views.

In Chapter 6 we investigate the interval graphs-based framework for exact solutions,

which was proposed in Chapter 4, can be adapted to solve different demand manage-

ment problems. By the adaption, we also proved that these problems are all fixed-

parameterized tractable with respect to maximum width of jobs, and the maximum

number of overlapped feasible intervals. It would be interesting to see how to adapt this

framework to more other problems. On the other hand, the competitive ratio of our

online algorithm also dependents on the ratio wmax
wmin

. It raises a curious question: does

the parameterized complexity direct us to possible competitive algorithms?

The online algorithm proposed in Chapter 5 is proved in Chapter 6 to be asymp-

totically for the Machine Minimization problem. It would be interesting to look into

the relations between these optimization problems. We compared and contrasted many

classical optimization problems and the GRID/GRIDpeak problems in Chapter 3. It would

be exciting to dive into the problems and investigate how the constraints of the prob-

lems, preemptive or non-preemptive, discrete or continuous, allowing reshaping or not,

affect the strategy design and analysis. Moreover, how these properties affect on the

complexity of the problems.

For the GRID problem, there are a number of potential directions. It would be

interesting to consider the jobs with precedence constraints. Also, users might be willing

to pay more for finishing certain jobs earlier. It is another interesting problem that how

to minimize a linear combination of the cost and the (weighted) completion time, which

might be a balance between the cost and the happiness of the users.

In real world, the power plants have limited power, which means there is a power

request upper bound. If the power request is over this bound, it might causes the shot

down of the power plant. Hence it is essential to consider minimizing the total cost

under the power limit. We proposed an exact algorithm for this problem in Chapter 6,

and further research in the online setting is needed.

In UK there is an “Economy 7” tariff which costs different price per unit of power

at day and night. It is also interesting to fit the GRID problem in such kind of tariff.

That is, at different time, the cost functions are different.

Some of the users might be able to generate energy. In this case, the scheduling

strategy has to take it into consideration. Depending on the capability of storage and

trading of energy, the scheduling problem becomes even more complicated.

Moreover, consider different power generators as different machines, the GRID prob-

lem can be extended to multiple machines model. Different power generators might hive

different cost function, and different job request might cost differently on different power

generators. It brings more interesting and unsolved problems.
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